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ABSTRACT

This dissertation studies how forecasting performance can be improved in big data.

The first chapter with Seung C. Ahn considers Partial Least Squares (PLS) estimation

of a time-series forecasting model with data containing a large number of time series

observations of many predictors. In the model, a subset or a whole set of the latent

common factors in predictors determine a target variable. First, the optimal number

of the PLS factors for forecasting could be smaller than the number of the common

factors relevant for the target variable. Second, as more than the optimal number

of PLS factors is used, the out-of-sample explanatory power of the factors could de-

crease while their in-sample power may increase. Monte Carlo simulation results also

confirm these asymptotic results. In addition, simulation results indicate that the out-

of-sample forecasting power of the PLS factors is often higher when a smaller than

the asymptotically optimal number of factors are used. Finally, the out-of-sample

forecasting power of the PLS factors often decreases as the second, third, and more

factors are added, even if the asymptotically optimal number of the factors is greater

than one. The second chapter studies the predictive performance of various factor

estimations comprehensively. Big data that consist of major U.S. macroeconomic and

finance variables, are constructed. 148 target variables are forecasted, using 7 factor

estimation methods with 11 information criteria. First, the number of factors used in

forecasting is important and Incorporating more factors does not always provide bet-

ter forecasting performance. Second, using consistently estimated number of factors

does not necessarily improve predictive performance. The first PLS factor, which is

not theoretically consistent, very often shows strong forecasting performance. Third,

there is a large di↵erence in the forecasting performance across di↵erent information

criteria, even when the same factor estimation method is used. Therefore, the choice

of factor estimation method, as well as the information criterion, is crucial in forecast-
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ing practice. Finally, the first PLS factor yields forecasting performance very close to

the best result from the total combinations of the 7 factor estimation methods and

11 information criteria.
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Chapter 1

FORECASTING WITH PARTIAL LEAST SQUARES WHEN A LARGE

NUMBER OF PREDICTORS ARE AVAILABLE (WITH SEUNG C. AHN)

1.1 Introduction

When a large number (N) of predictor variables are available for forecasting a single

target variable, the Ordinary Least Squares (OLS) regression produces poor forecast-

ing results because of high multicollinearity among predictors, especially when the

number (T ) of time series observations is not su�ciently larger than N ; see Huber

et al. (1973), Stein (1956), and Stock and Watson (2006), among many. A treatment

to this large-dimensionality problem is the use of shrinkage estimation methods such

as Ridge, Bayesian, and Principal Component (PC) regressions; see De Mol et al.

(2008). Another possible choice is the Partial Least Squares (PLS) regression that

was originally introduced and developed by Wold (1966, 1973, 1982). The PLS re-

gression is also a shrinkage estimation method; see, for example, Jong (1993) and

Phatak and de Hoog (2002).1 The PLS regression has been popularly used in chemo-

metrics, bioinformatics, machine learning and marketing research, especially for the

cases in which obtaining a su�ciently large number of data observations per each pre-

dictor variable is restrictively expensive. Recently, use of the PLS regression has been

increasingly popular in the fields of finance and economics, especially for the analysis

1The PLS regression is a shrinkage method in the sense that the norm of the OLS estimates of

the coe�cients of the PLS factors is not greater than that of the OLS estimates of the coe�cients of

all predictors. However, di↵erently from the ridge and the Bayesian regressions, the PLS regression

does not shrink all of the regressor coe�cients. It could rather expand some coe�cients; see Butler

and Denham (2000).
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of the data with both large N and large T ; see, for example, Groen and Kapetanios

(2009, 2016), Kelly and Pruitt (2013, 2015), Huang et al. (2015), Carrasco and Rossi

(2016), Light et al. (2017),Tu and Lee (2019), and Rytchkov and Zhong (2020).

The PC and PLS regressions are similar in the sense that both extract a small

number of common factors in predictor variables and use the extracted factors to

forecast a target variable. However, they use di↵erent methods to extract the factors.

Specifically, the PC regression estimates and uses for forecasting all of the common

factors in predictor variables even if some of the factors are in fact uncorrelated with

the target variable. For this reason, the PC method is viewed as an “unsupervised”

method because the common factors are estimated independently from the target

variable. In contrast, the PLS regression generates relevant factors sequentially by

the “Nonlinear Iterative Partial Least Squares” (NIPLS) algorithm of Wold (1966).

The PLS regression is a “supervised” method because it isolates and estimates rele-

vant factors from the latent factors that are correlated with the target variable; see

Mehmood et al. (2012). For this reason, many previous studies have conjectured that

the PLS factors may have greater predicting power than the PC factors. The purpose

of this paper is to revisit this conjecture investigating the asymptotic and finite sam-

ple properties of the PLS factors when they are obtained from the data with both

large N and large T .

The large-N and large-T properties of the PLS factors have been studied by Kelly

and Pruitt (2015) and Groen and Kapetanios (2016). Kelly and Pruitt (2015) consider

the cases in which a subset or a whole set of the common factors in predictors are the

determinant of a target variable and individual predictor variables are correlated with

the target variable only through the common factors. Groen and Kapetanios (2016)

examine the forecasting power of PLS factors for the cases in which the predictor vari-

ables are directly correlated with the target variables, not just indirectly through the
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latent factors. We do not consider the model of Groen and Kapetanios (2016) in this

paper. Our asymptotic analysis is conducted for a model in which predictor variables

are correlated with the target variable only through the latent factors. However, our

model is more general than that of Kelly and Pruitt (2015). For the general model,

we investigate the asymptotically optimal number of the PLS factors that have the

maximum explanatory power for the target variable. We also conduct some Monte

Carlo simulations to examine the finite-sample properties of the forecasting results by

the PLS regression. For our simulation exercises, we consider some cases in which the

idiosyncratic components of predictor variables, as well as the common latent factors,

are correlated with the target variable.

The PLS regression uses a smaller number of factors than the PC regression to

reach the maximum prediction power. For the cases in which asymptotic theory ap-

plies as T grows infinitely with fixed N , Helland (1988, 1990) has shown that the

number of the distinct eigenvalues of the population variance-covariance matrix of

the predictor variables is the optimal number of the PLS factors to be used. In this

paper we examine how his result can be generalized to the cases in which asymptotic

theory applies as both N and T jointly grow infinitely. Most of the previous studies

related to large-N and large-T properties of the PC or PLS factors have considered

the cases in which predictor variables contain K common latent factors and the first

K largest eigenvalues of the sample variance-covariance matrix of the predictor vari-

ables are asymptotically distinct (e.g., converges to di↵erent limits in probability);

see Bai (2003), Stock and Watson (2002a), and Kelly and Pruitt (2015). For such

cases, each of the eigenvectors corresponding to the K eigenvalues is asymptotically

unique up to sign and scale. A novelty of our model is that it allows some or all of

the K largest eigenvalues to have the same probability limits. For this general model,

the eigenvectors corresponding to the eigenvalues having the same probability limit
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are unique only up to orthonormal transformation. We find that this generalization

is important to understand the asymptotic and finite-sample properties of the PLS

factors.

There are two major findings from our asymptotic analysis. First, we find that the

asymptotically optimal number of the PLS factors crucially depends on the asymp-

totic distribution of the eigenvalues of the sample variance-covariance matrix of the

predictors. For example, if all of the K largest eigenvalues converge to the same prob-

ability limit, the first PLS factor has the maximum prediction power that the PLS

regression can have. In contrast, if the K eigenvalues are all asymptotically distinct

as in Kelly and Pruitt (2015), the asymptotically optimal number of the PLS factors

equals the number of the common factors in predictor variables that are correlated

with the target variable. Second, using overly many PLS factors could substantially

decrease the out-of-sample forecasting power of the PLS regression unless the ratio

N/T is su�ciently small. While using more PLS factors does not decrease the PLS re-

gression’s in-sample prediction power, it can deteriorate the regression’s out-of-sample

forecasting power.

The three major findings from our simulation experiments and topical empirical

study are the following. First, in finite samples, the out-of-sample prediction power

of the PLS regression often sharply drops as more than the asymptotically optimal

number of factors are used. Second, unless the ratio N/T is su�ciently small, the out-

of-sample prediction power of the PLS regression is often peaked when a fewer number

of factors are used. The first PLS factor has dominantly strong forecasting power than

other PLS factors, even for the cases in which the asymptotically optimal number of

PLS factors is greater than one. The gain by using the second or other PLS factors in

addition to the first PLS factor is generally small. Third and finally, cross-validation

methods are not always successful in the number of factors that maximizes the out-
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of-sample forecasting power of the PLS regression. Our simulation experiments and

actual data analysis show that using only the first PLS factor often produces better

forecasting results.

This paper is organized as follows. Section 1.2 introduces the model we consider

and states the asymptotic properties of the PLS factors. Our Monte Carlo simulation

results are reported in Section 1.3, while some results from a topical empirical study

are reported in Section 1.4. Some concluding remarks follow in Section 1.5. Proofs of

the theorems and lemmas are all given in Appendix A.

Throughout this paper, we use the following notation. For an a ⇥ a symmetric

matrix AAA, �h(AAA) denotes the hth largest eigenvalue of AAA; ⇤(AAA|h0+1 : h00) denotes the

diagonal matrix of �h0+1(AAA), ... , �h00(AAA), where h0, h00  a. The notation ⇠h(AAA) stands

for the a⇥ 1 eigenvector of AAA corresponding to �h(AAA). We also use ⌅(AAA|h0+1 : h00) =

[⇠h0+1(AAA), ... , ⇠h00(AAA)]. For an a⇥ b full-column rank matrix BBB, P(BBB) = BBB(BBB000BBB)�1BBB000

and Q(BBB) = IIIa � P(BBB). For an a ⇥ b matrix BBB(not necessarily a full-column rank

matrix), the spectral and the Frobenius norms of BBB are respectively denoted by

kBBBk2 = [�1(BBB000BBB)]1/2 and kBBBkF = [trace(BBB0BBB)]1/2 = [⌃b
h=1�h(BBB

000BBB)]
1/2

. Finally, we

denote “converges in probability” and “converges in distribution” by “!p” and “!d”,

respectively.

1.2 Model and Asymptotic Properties of PLS Factors

1.2.1 Model and Some Preliminary Results

This subsection introduces the model for which we investigate the large-N and large-

T asymptotic properties of PLS factors. The model we consider is a forecasting model

in which N predictor variables are available for forecasting a single target variable.

The model consists of two parts. The first one is a factor model in which N predictor
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variables are generated by K latent factors, and the second part is a forecasting model

for a single target variable. Stated formally:

xit = fff 000
⇧t���⇧i + eit = ⌃J

j=1fff
000
(j)t���(j)i + eit (1.1)

yt+1 = ⌃J
j=1fff

000
(j)t���(j) + ut+1 = fff 000

⇧t��� + ut+1 (1.2)

where i(= 1, ..., N) indexes di↵erent predictor variables, t(= 1, ..., T ) indexes time,

fff (j)t is a k(j) ⇥ 1 random vector of latent factors, ���(j)i is a k(j) ⇥ 1 vector of factor

loadings corresponding to fff (j)t, fff ⇧t = (f 0f 0f 0
(1)t, ..., f

0f 0f 0
(J)t)

000, ���⇧i = (���000(1)i, ...,���
000
(J)i)

000, ���(j) is

k(j)⇥ 1 vector of regression coe�cients on fff (j)t, ��� = (���000
(1), ...,���

000
(J))

000, the eit and ut+1

are random noises, and K = ⌃J
j=1k(j). We later discuss how the factors in fff ⇧t are

sorted into the J di↵erent groups, fff (1)t, ... , fff (J)t. Without loss of generality, we

assume that E(fff ⇧t) = 0K⇥1 and E(eit) = E(ut+1) = 0, for all i and t. For the cases

in which fff ⇧t, xit and yt+1 have non-zero means, we can replace them in (1.1) and

(1.2) respectively by their demeaned versions, fff ⇧t � f̄̄f̄f ⇧, xxxit � x̄̄x̄xi, and yt+1 � ȳ, where

x̄i = T�1⌃T
t=1xit, f̄̄f̄f ⇧ = T�1⌃T

t=1fff ⇧t, and ȳ = T�1⌃T
t=1yt+1.

Stacking the equations for individual predictors in (1.1) vertically, we have

xxx⇧t = ⌃J
j=1�(j)fff (j)t + eee⇧t = �fff ⇧t + eee⇧t (1.3)

where xxx⇧t = (x1t, ..., xNt)
0 and eee⇧t = (e1t, ..., eNt)

0, �(j) = (���(j)1, ...,���(j)N)
0, and � =

(�(1), ...,�(J)). The equations in (1.3) and (1.2) can be rewritten by the following two

matrix equations:

XXX = ⌃J
j=1FFF (j)�

000
(j) +EEE = FFF�000 +EEE (1.4)

yyy = ⌃J
j=1FFF (j)���(j) + uuu = FFF��� + uuu (1.5)

whereXXX = (xxx⇧1, ...,xxx⇧T )
000,FFF (j) = (fff (j)1, ..., fff (j)T )

000,FFF = (FFF (1), ...,FFF (J)),EEE = (eee⇧1, ..., eee⇧T )
000,

yyy = (y2, ..., yT+1)
0, and uuu is similarly defined.
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For the model given in (1.4) and (1.5), our interest lies in forecasting yT+2 using

the data available up to time T+1. We can forecast yT+2 using the PC or PLS factors.

For heuristic discussions, we momentarily consider the model in (1.4) and (1.5) under

some preliminary assumptions that are unrealistically restrictive.

Preliminary Assumption (PA): (i) EEE = 000T⇥N . (ii) The variable groups, {fff ⇧t}

and {ut+1}, are mutually independent. (iii) The factor vectors fff ⇧t are independently

and identically distributed (iid) over time with Var(fff (j)t) = �2
jIIIk(j) where �

2
1 > �2

2 >

... > �2
J . (iv) The errors ut+1 are iid with var(ut+1) = �2

u. (v) ��� is a fixed matrix with

�000�/N = IIIK .

Some remarks follow on PA. First, under (i), the predictors xit do not have any

idiosyncratic components. This assumption is made to find more clearly what the PC

and PLS factors estimate. Second, the assumptions (iii) and (v) are by no means too

restrictive assumptions. Suppose that the true factor vector fff ⇤
⇧t have an unrestric-

tive variance-covariance matrix ⌃⇤and the factor loading matrix �⇤ does not satisfy

the assumption (v). Let fff ⇧t = fff ⇤
⇧t(N

�1�000�)1/2⌅⇤ and � = �⇤(N�1/2�000�)
�1/2
⌅⇤,

where ⌅⇤ = ⌅((N�1�000�)1/2⌃⇤(N�1�000�)1/2|1 : K). Then, we can easily see that

�fff ⇧t = �⇤fff ⇤
⇧t and N�1/2�000� = IIIK . That is, unrestricted factors and factor loadings

can be reparameterized so that they can satisfy conditions (iii) and (v). Third and

finally, for the factors having the same variances, it is not possible to identify which

factors among them are correlated with yt+1 and which factors are not. Such factors

are identified only up to an orthogonal transformation.2

Under condition (v), the explanatory power of a factor in fff ⇧t for individual predic-

2This result is for the same reason that the eigenvectors corresponding to a repetitive eigenvalue

of a matrix are unique up to an orthogonal transformation.
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tor variables xit are on average proportional to the factor’s variance. In the literature,

it is often assumed that the individual factors in fff ⇧t have distinctly di↵erent aver-

age explanatory power for response variables (predictor variables in our case); for

example, see Stock and Watson (2002a), Bai (2003), and Kelly and Pruitt (2015). A

novelty of our analysis is that we allow some factors to have the same explanatory

power. This generation is important to understand the asymptotic and finite-sample

properties of PLS factors.

The asymptotic properties of the PC and PLS factors depend on two terms:

SSSNT =
X 0XX 0XX 0X

NT
; bbbNT =

X 0yX 0yX 0y

N1/2T
(1.6)

We scale down each term by NT and N1/2T , respectively, to facilitate our asymptotic

analysis. For the forecasting with the PC factors, we define the following. For an

integer q = 1, ...,

Â̂ÂAPC
1:q = (↵̂̂↵̂↵PC

1 , ..., ↵̂̂↵̂↵PC
q ) = ⌅(SNT |1 : q) (1.7)

F̂̂F̂F PC
1:q =XÂXÂXÂPC

1:q (1.8)

�̂̂�̂�PC
1:q = (F̂̂F̂F PC

1:q
000
F̂̂F̂F PC

1:q )
�1
F̂̂F̂F PC

1:q
000
yyy (1.9)

ŷPC
T+2|q = xxx000⇧T+1Â̂ÂA

PC
1:q �̂̂�̂�

PC
1:q (1.10)

Here, Â̂ÂAPC
1:q is the N ⇥ q matrix of the PC factor loading estimates, F̂̂F̂F PC

1:K is a T ⇥ q

matrix of q PC factors, �̂̂�̂�PC
1:K is the OLS estimator obtained by regressing yyy on F̂̂F̂F PC

1:q ,

and ŷPC
T+2|q denotes the forecast for yT+2 obtained by the first q PC factors. Under

PA, if both fff ⇧T+1 and ��� were observable, the best forecast for yT+2 is ŷ⇤T+2 = fff 000
⇧T+1���

= ⌃J
j=1fff

000
(j)T+1���(j). By Bai and Ng (2006), the forecast ŷPC

T+2|K that is obtained using

K PC factors is a consistent estimator of the best forecast ŷ⇤T+2.
3

3Of course, this does not mean that the principal component analysis always produces the best

forecasts in finite samples; see De Mol et al. (2008). Other competing alternatives such as Ridge,

Bayesian and PLS regressions may produce better forecasting results in finite samples.
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Alternatively, the PLS regression can be used to consistently estimate ŷ⇤T+2. For

the forecasting with PLS factors, we define the PLS estimate of the N ⇥ q matrix of

the factor loadings by

Ã̃ÃAPLS
1:q = (↵̃̃↵̃↵PLS

1 , ..., ↵̃̃↵̃↵PLS
q ) = (bbbNT ,SNTbbbNT , ..., (SNT )

(q�1)bbbNT ) (1.11)

which is of the form of a Krylov matrix. We also define:

P̃̃P̃P PLS
1:q = (p̃̃p̃pPLS

1 , ..., p̃̃p̃pPLS
q ) =XÃXÃXÃPLS

1:q (1.12)

�̃̃�̃�PLS
1:q = (P̃̃P̃P PLS

1:q
000
P̃̃P̃P PLS

1:q )
�1
P̃̃P̃P PLS

1:q
000
yyy (1.13)

ỹPLS
T+2|q ⌘ xxx000⇧T+1Ã̃ÃA

PLS
1:q �̃̃�̃�PLS

1:q (1.14)

Here, P̃̃P̃P PLS
1:q is the T ⇥ q matrix of the first q PLS factors, �̃̃�̃�PLS

1:q is the OLS estimator

obtained regressing yyy on P̃̃P̃P PLS
1:q , and ỹPLS

T+2|q is the the forecast for yT+2 by using the

first q PLS factors.

The factors defined in (1.12) are di↵erent from the PLS factors that are sequen-

tially generated by the Nonlinear Iterative Partial Least Squares (NIPLS) algorithm.

However, as Helland (1988, 1990) has shown, the factors of form (1.12) span the same

space as the factors generated by the NIPLS algorithm, and both factors produce the

same forecasts. Thus, we refer to the factors of form (1.12) as the PLS factors without

distinguishing them from the PLS factors generated by the NIPLS algorithm.

We investigate the asymptotic properties of PLS factors using P̃̃P̃P PLS
1:q , because their

asymptotic properties are much easier to analyze than those of the factors from the

NIPLS algorithm. However, we note that the PLS factors computed by the NIPLS

algorithm are better to use for actual data analysis. Krylov matrices are generally

highly ill-conditioned matrices and computation of them often generates numerical

errors; see Dax (2017). Consequently, the PLS factors computed by (1.8) are more

likely to contain serious numerical errors. For actual applications, the PLS factors
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generated by the NIPLS algorithm are numerically more accurate. For this reason,

we use the NIPLS procedure for our simulation experiments and actual data analysis.

The NIPLS algorithm is described in Appendix A.

An important issue in using the PLS regression is how to find the optimal q(q⇤)

for forecasting yT+2. Helland (1990) finds that q⇤ could be smaller than the optimal

number of the PC factors for forecasting yT+2. For an intuition on his result, let us

consider the “population versions” of Â̂ÂAPC
1:K , �̂̂�̂�PC

1:K , Ã̃ÃA
PLS
1:J , and �̃̃�̃�PLS

1:J , which are computed

replacing bbbNT and SNT by E(bbbNT ) and E(SNT ), respectively. Let us denote them by

AAAPC
1:K , ���

PC
1:K , AAA

PLS
1:J , and ���PLS

1:J , respectively. Under PA, we can easily find that

E (bbbNT ) =
1

N1/2
⌃J

j=1�
2
j�(j)���(j); E (SNT ) =

1

N
⌃J

j=1�
2
j�(j)�

000
(j)

With these, we can easily show

AAAPC
1:K ⌘ ⌅(E(SNT )|1 : K) = N�1/2�;

FFF PC
1:K ⌘XXXAAAPC

1:K = N1/2FFF ;

���PC
1:K ⌘ [E(FFF PC

1:K
000
FFF PC

1:K)]
�1
E(FFF PC

1:K
000
yyy) = N�1/2[E(T�1F 0FF 0FF 0F )]

�1
E(T�1F 0yF 0yF 0y) = N�1/2���;

fffPC
1:K,T+1 ⌘ AAAPC

1:K

000
xxx⇧T+1 = N1/2fff ⇧T+1

By these results, the forecast for yT+2 obtained by using the population-versions of

the first K PC factors, can be shown to equal the optimal forecast ŷ⇤T+2: y
PC
T+2|K ⌘

fffPC
1:K,T+1���

PC
1:K = fff 000

⇧T+1��� = ŷ⇤T+2. The optimal number of the PC factors for forecasting

yT+2 is K (the total number of the common factors in fff ⇧t).

We now consider the population version of the PLS regression using the first J

PLS factors. Let

GGG⇤
0 = (FFF (1)���(1), ...,FFF (J)���(J)); D̄̄D̄D⇤

0 =

0

BBBBBBB@

�2
1 �4

1 ... �2J
1

�2
2 �4

2 ... �2J
2

: : :

�2
J �4

J ... �2J
J

1

CCCCCCCA
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Observe that D̄̄D̄D⇤
0 is a square Vandermonde matrix which is invertible because all of

the �2
j are distinct. Under PA,

↵↵↵PLS
q ⌘ [E(SNT )]

q�1E(bbbNT ) = N�3/2⌃J
j=1�

2q
j �(j)���(j);

AAAPLS
1:J ⌘ (↵↵↵PLS

1 , ...,↵↵↵PLS
J ) = N�3/2(�(1)���(1), ...,�(J)���(J))DDD

⇤
0(R);

PPP PLS
1:J ⌘XAXAXAPLS

1:J = N�1/2GGG⇤DDD⇤
0

It can be also shown that ���PLS
1:J ⌘ [E(PPP PLS

1:J
000
PPP PLS

1:J )]
�1
E(PPP PLS

1:J
000
yyy) = N�1/2[DDD⇤

0]
�11J ,

where 1J is the J ⇥ 1 vector of ones. With these results, we can show that the

forecast for yT+2with the population versions of the first J PLS factors is

yPLS
T+2|J ⌘ xxx000⇧T+1AAA

PLS
1:J

000
���PLS
1:J = ⌃J

j=1fff
000
(j)���(j) = ŷ⇤T+2

The optimal number of the PLS factors for forecasting yT+2 is J , which is the number

of the distinct factor variances. Thus, unless all the factors in fff ⇧t have distinct vari-

ances, the forecasting by the PLS method requires a smaller number of factors than

the forecasting by the PC method. For an extreme case where all factor variances are

the same, using the first PLS factor is su�cient for optimal forecasting.

Even for more general cases in which the predictor variables xit contain idiosyn-

cratic components, the results obtained under PA asymptotically hold if the error

groups {ut+1} and {eit} are independent. Kelly and Pruitt (2015) consider the asymp-

totic properties of the PLS factors under this assumption and two additional assump-

tions: all factor variances are distinct (k(j) = 1 for all j = 1, ..., J) and some of the

factors fff (j)t are uncorrelated with yt+1 (i.e., ���(j) = 0k(j)⇥1 for some j). Under these

assumptions, the asymptotically optimal number of the PLS factors for forecasting

yT+2 equals the number of the factor vectors fff (j)t that are correlated with yt+1.

Our study has two novelties compared to Kelly and Pruitt (2015). The first is that

we allow some factors to have the same variances. The second is that we investigate

11



the properties of the forecasting results obtained using more than the optimal number

of PLS factors used.

Groen and Kapetanios (2016) consider an alternative model in which the predictor

variables xit are directly correlated with yt+1, not indirectly through the factors fff ⇧t.

Specifically, they consider a model that consists of equation (1.4) and a forecast model

yt+1 = xxx000⇧t���
x+ut+1, where ���

x is anN⇥1 coe�cient vector. For this case, ŷ⇤T+2 = fff 000
⇧T+1���

is no longer optimal forecast even if both fff ⇧T+1 and ��� are known. With some restrictive

assumptions onEEE and ���x, Groen and Kapetanios (2016) show that the PLS regression

could generate more accurate forecasting results than the PC regression. For the model

given in equations (1.4) and (1.5), their finding suggests that the PLS regression could

be a powerful forecasting method, particularly when the idiosyncratic components of

xit (eit) are correlated with yt+1. For our asymptotic analysis we do not consider

such cases. However, it is an interesting case that idiosyncratic components of some

predictor variables are correlated with yt+1. Thus, we consider some of such cases in

our simulation experiments.

1.2.2 Assumptions

In this subsection, we make formal assumptions for our asymptotic analysis and state

the main results. Let m = min{N, T}; M = max{N, T}; and let ⌘ denote a generic

positive constant. All of the asymptotic assumptions are made for the cases in which

as m ! 1.

Assumption 1 (A.1): (i) The variable sets, {fff ⇧t}, {���⇧i}, {eit}, and {ut+1} are mu-

tually independent, while the variables within each group could be correlated. (ii)

The variables in the 4 groups have finite moments at least up to the 4th order. (iii)

E(fff ⇧t) = 0K⇥1 , E(eit) = 0, and E(ut+1) = 0, for all i and t.

12



Assumption 2 (A.2): For j, j0 = 1, ..., J and j 6= j0, T�1FFF 000
(j)FFF (j) !p �2

jIIIk(j) and

T�1FFF 000
(j)FFF (j0) !p 0k(j)⇥k(j0), where �2

1 > �2
2 > ... > �2

J > 0, ks(j) = ⌃j
h=1k(h), and

K = ks(J). That is,

⌦̂FFF = T�1F 0FF 0FF 0F !p ⌦FFF = diagdiagdiag(�2
1IIIk(1), ..., �

2
JIIIk(J)).

Assumption 3 (A.3): For j, j0 = 1, ..., J and j0 6= j, N�1�000
(j)�(j) !p IIIK(j),

N�1�000
(j)�(j0) !p 0k(j)⇥k(j0). That is, ⌦̂� = N�1�000� !p IIIK .

Assumption 4 (A.4): For some real number � 2 (0, 1/2], T �
⇣
⌦̂FFF �⌦FFF

⌘
!d WWWFFF

and N�
⇣
⌦̂� � IIIK

⌘
!d WWW�, whereWWWFFF andWWW� are some matrices of real or rational

random variables.

Assumption 5 (A.5): (i) For all t and N , E (N�1eee0⇧teee⇧t) < ⌘. (ii)�1(E 0EE 0EE 0E/M) =

Op(1). (iii) There exists an increasing integer function of m, mc, such that 0 <

limm!1mc/m < 1 and �mc (E 0EE 0EE 0E/M) � ⌘ + op(1).

Assumption 6 (A.6): For all i, t, N and T , E
⇣��T�1⌃T

t=1fff ⇧teit
��2
2

⌘
< ⌘ and

E
⇣��N�1/2⌃N

i=1���⇧ieit
��2
2

⌘
< ⌘.

Assumption 7 (A.7): (i) For all T , �1(E(uu0uu0uu0)) < ⌘. (ii) For all N and T ,

E
⇣��T�1/2F 0uF 0uF 0u

��2
2

⌘
< ⌘, and E

✓���(NT )�1/2E 0uE 0uE 0u
���
2

2

◆
< ⌘. (iii) �̂2

u = u0uu0uu0u/T !d �2
u 2

(0,1).

Assumption 8 (A.8): ���(j) = 0k(j)⇥1 for j = R + 1, ..., J .

13



Some comments follow on (A.1) – (A.8). The part (i) of (A.1) rules out the possi-

bility that the idiosyncratic errors in the xit are correlated with the error term in the

target variable yt+1. The predictor variables xit are correlated with the target variable

yt+1 only through the factors fff ⇧t. Some of the assumptions of independence among

the variable groups could be relaxed for our asymptotic analysis. For example, we

may allow some weak dependence between {fff ⇧t} and {eit} as long as (A.6) holds. As

discussed in the previous subsection, the zero-mean assumption on the fff ⇧t in (A.1) is

made to save notation.

Assumptions (A.2) and (A.3) are the normalization restrictions that are frequently

used for factor model; see, for example, Stock and Watson (2002a). As discussed in

the previous subsection, the assumptions are not restrictive ones. Onatski (2012)

have considered the factor models with an alternative assumption of �000� = IIIK

instead of (A.3). He refers as “weak” factors to those whose factor loadings satisfy

this alternative assumption and as “strong” factors to those whose factor loadings

satisfy (A.3). In this paper we only consider strong factors, leaving up the analysis of

the cases with weak factors to a future study.

(A.4) implies that ⌦̂F and ⌦̂� are T �-consistent and N�-consistent estimators of

⌦FFF and ⌦�, respectively, while the elements in ⌦̂FFFand ⌦̂� need not be normal. It

would be reasonable to assume that � = 0.5 for (A.4). In fact, restricting � to be 0.5

does not alter our main asymptotic results. However, using � instead of 0.5, we can

observe what parts of our asymptotic results are a↵ected by (A.4).

Under (A.4), the eigenvalues of ⌦̂FFF and ⌦̂� could be also T �-consistent and N�-

consistent for the eigenvalues of ⌦FFF and ⌦�, respectively. For example, Anderson

et al. (1963) has shown that the eigenvalues of ⌦̂FFF are T 1/2-consistent if the fff ⇧t are

iid multivariate normal vectors. In fact, the eigenvalues of ⌦̂FFF are T 1/2-consistent

even if the fff ⇧t are not normal; See Fang and Krishnaiah (1982). It is too restrictive to

14



assume that {fff ⇧t} is an iid process. Taniguchi and Krishnaiah (1987) have shown that

the eigenvalues of ⌦̂FFF are T 1/2-consistent if {fff ⇧t} is a Gaussian stationary process.

More general results related to the asymptotic distributions of the eigenvalues of

sample variance matrices can be found from Eaton and Tyler (1991).

The parts (i) and (ii) of (A.5) can hold even if the idiosyncratic errors eit are cross-

sectionally and/or serially correlated. Some su�cient conditions for (ii) can be found

from Ahn and Horenstein (2013), and Moon and Weidner (2015). Roughly speaking,

the parts (i) and (ii) hold unless too strong cross sectional or serial correlations exist

among the errors eit as in the cases in which the errors contain some common factors.

The part (iii) of (A.5) means that an asymptotically non-negligible number of the

eigenvalues of M�1E 0EE 0EE 0E are bounded away from zero as m ! 1. The condition holds

unless the common factors fff ⇧t can explain most of the predictors perfectly; see Ahn

and Horenstein (2013). Under (iii) of (A.5),

⌃m
h=1�h((NT )�1E 0EE 0EE 0E) � (mc/m)(c+ op(1)) > 0.

Su�cient conditions for (A.6) are the following:

N�1/2⌃N
i=1���⇧ieit !d N(0K⇥1,�t) as N ! 1, for each t (1.15)

T�1/2⌃T
t=1fff ⇧teit !d N(0K ,�i) as T ! 1, for each i (1.16)

where �i = limT!1T�1⌃T
t=1⌃

T
t0=1E(fff ⇧tfff

000
⇧t0eiteit0) and �t = limN!1N�1⌃N

i=1⌃
N
i0=1

E(���⇧i���
000
⇧i0eitei0t). Assuming (1.14), Bai (2003) and Bai and Ng (2006) have derived

the asymptotic distributions of the principal component factors and factor loadings.

Imagine that the factor loading matrix � is observable. For such cases, the factor

vector fff ⇧t can be consistently estimated by the OLS regression of xxx⇧t on �. The

conditions (A.2) and (1.15) are the su�cient conditions under which the resulting

OLS estimators are asymptotically normal. Similarly, for the cases in which the factor
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matrix FFF is observable, the conditions (A.2) and (1.15) are the su�cient conditions

under which the OLS estimators of �⇧i obtained by regressing xxxi⇧ = (xi1, ..., xiT )
0 on

FFF are all consistent and asymptotically normal.

In fact, (A.6) is stronger than what is needed for our asymptotic result. The

weaker conditions that are su�cient for our results are
���(NT )�1/2F 0EF 0EF 0E

��� = Op(1),
���(NT )�1/2�000E 0E 0E 0

��� = Op(1), and
���(NT )�1/2�000E 0FE 0FE 0F

��� = Op(1). It is shown in Appendix

(Lemma C.3) that these conditions hold under (A.6) and (A.1). Part (i) of (A.7) holds

if the error terms ut+1 are not too strongly autocorrelated.

Under (A.7) and (A.8), the optimal forecast for yT+2 is ŷoT+2 = ⌃R
j=1fff

000
(j)T+1���(j).

Strictly speaking, ŷoT+2 is not optimal unless E(ut+1|ut, ut�1, ..., u1) = 0 and

E(u2
t+1|ut, ..., u1) = �2

u. However, for expository convenience, we refer to ŷoT+2 as the

optimal forecast.

(A.8) assumes that only the factors with larger variances are correlated with the

target variable yt+1, and that the other factors with smaller variances have no fore-

casting power. This assumption is just for expository convenience. The condition we

need for our analytical results is that R groups of the factors are correlated with the

target variable, while the other (J �R) groups are not. Kelly and Pruitt (2015) have

considered the cases in which k(j) = 1 for all j = 1, ..., R (i.e., the first R strongest

factors have distinct asymptotic variances). Similar to (iii) of PA in the previous sub-

section, (A.8) allows some factors to have the same asymptotic variances. For each

j  R, not all factors in fff (j)t need to be correlated with yt+1. Only a proper subset

of the factors may be correlated with yt+1.

1.2.3 Spurious Correlation between PLS Factors and Target Variable

One problem in using the PLS factors for forecasting is that if more than the first R

PLS factors are used, the added PLS factors could be spuriously correlated with the
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target variable: they have in-sample explanatory power for the target variable, while

they deteriorate the forecasting power of the regression with them.

To see why, we here consider an extreme case in which no common factors exist

in the predictor variables xit so that K = J = 0 and XXX = EEE. For this case, the

predictor variables xit have no power to forecast yt+1. Nonetheless, the first PLS

factor is positively correlated with the target variable even asymptotically. Observe

that

↵̃̃↵̃↵PLS
1 =

1

T 1/2

E 0uE 0uE 0u

(NT )1/2
;

p̃̃p̃pPLS
1

(NT )1/2
=

1

T 1/2

EEE

N1/2T 1/2
cccL;

y0p̃y0p̃y0p̃PLS
1

N1/2T
=

1

T
ccc0LcccL

where kcccLk2 ⌘
���(NT )�1/2E 0uE 0uE 0u

���
2
= Op(1) by (A.7). In addition,

p̃̃p̃pPLS
1

000
p̃̃p̃pPLS
1

NT
=

1

Tm
ccc⇤L

000⇤⇤
Lccc

⇤
L  1

Tm
�⇤1ccc

⇤
L
000ccc⇤L  1

Tm
�⇤1ccc

000
LcccL

where ⌅⇤
L = ⌅(E 0EE 0EE 0E/M |1 : N), ⇤⇤

L = ⇤(E 0EE 0EE 0E/M |1 : N), ccc⇤L = ⌅⇤
L
000cccL, �⇤1 = �1(E 0EE 0EE 0E/M),

and the last inequality is by the fact that ccc⇤L
000ccc⇤L = ccc000LP(⌅⇤

L)cccL  ccc000LcccL. Then, the R2

from the regression of yyy on p̃̃p̃pPLS
1 yields

R2
PLS,1 ⌘

y0y0y0P(p̃̃p̃pPLS
1 )yyy/T

y0yy0yy0y/T
=

m

T

1

�̂2
u

(ccc000LcccL)
2

ccc⇤L
000⇤⇤

Lccc
⇤
L

� m

T

1

�̂2
u

ccc000LcccL
�⇤1

> 0

where �⇤1 > 0 by (A.5). If m/T ! 0, that is, if T is dominantly larger than N , then,

R2
PLS,1!p0. However, if m/T = O(1), that is, if neither of T and N is dominantly

larger than the other, R2
PLS,1 is asymptotically positive because ccc000LcccL and �⇤1 are

positive by (A.5) and (A.7). This indicates that the PLS factor p̃̃p̃pPLS
1 and the target

vector yyy are “spuriously” correlated unless T is dominantly larger than N .

The spurious correlation problem may also produce poor forecasting outcome.

Notice that

�̃̃�̃�PLS
1:1 =

p̃̃p̃pPLS
1

000
yyy/(NT )

p̃̃p̃pPLS
1

000
p̃̃p̃pPLS
1 /(NT )

=
ccc000LcccL/(TN

1/2)

ccc⇤L
000⇤⇤

Lccc
⇤
L/(Tm)

=
m

N1/2

ccc000LcccL
ccc⇤L

000⇤⇤
Lccc

⇤
L
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Thus, we have

ỹPLS
T+2|1 = xxx000⇧T+1↵̃̃↵̃↵

PLS
1 �̃̃�̃�PLS

1:1 =
m1/2

T 1/2

ccc000LcccL
ccc⇤L

000⇤⇤
Lccc

⇤
L

eee000⇧T+1

N1/2

E 0uE 0uE 0u

M1/2

Using the fact that eee000⇧T+1E
0uE 0uE 0u is a scalar, (A.5) and (A.7), we can also obtain

E

 ����
eee000⇧T+1E

0uE 0uE 0u

N1/2M1/2

����
2

2

!
= O(1)

because

E

 ����
eee000⇧T+1E

0uE 0uE 0u

N1/2M1/2

����
2

2

�����EEE,eee⇧T+1

!

����
eee000⇧T+1

N1/2

����
2

2

����
EEE

M1/2

����
2

2

��E(uu0uu0uu0)
��
2
= Op(1).

These results indicate that
���ỹPLS

T+2|1 � ŷoT+2

��� =
���ỹPLS

T+2|1

��� = Op((m/T )1/2), where ŷoT+2 =

0. Thus, when N/T ! 0,
���ỹPLS

T+2|1 � ŷoT+2

��� !p 0 as m ! 1. In contrast, when

m/T = O(1) > 0 (that is, when m = T or when neither of N and T is dominantly

larger than the other), ỹPLS
T+2|1 is not a consistent estimator of ŷoT+2.

While this example is a special case in which K = 0 and the first PLS factor

is used for the prediction of yT+2, it suggests that in general, the forecast for yT+2

obtained using more than R PLS factors may have poor asymptotic and finite-sample

properties.

1.2.4 Main Results

This subsection reports our main asymptotic results. All of the results hold as

N, T ! 1 jointly. We need some notation to state our results. Set ks(0) = 0. For

j = 1, ..., J , we define

⇤SNT
(j) = ⇤(SNT |ks(j � 1) + 1 : ks(j));

⌅SNT
(j) = ⌅(SNT |ks(j � 1) + 1 : ks(j));

cccSNT
(j) = ⌅SNT

(j)

000
bbbNT
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Here, ⇤SNT
(j) is a diagonal matrix whose diagonal entries are the eigenvalues of SNT

which converge to �2
j , the jth largest largest asymptotic factor variance. The matrix

⌅SNT
(j) is the matrix of the eigenvectors corresponding to the eigenvalues in ⇤SNT

(j) .

Similarly, we also define

⇤SNT
L = ⇤(SNT |K + 1 : m); ⌅SNT

L = ⌅(SNT |K + 1 : m); cccSNT
L = ⌅SNT

L

000
bbbNT .

The matrix ⇤SNT
L is a diagonal matrix that contains the rest of the eigenvalues of SNT

other than the first K largest ones. The matrix ⌅SNT
L is the matrix of the eigenvectors

corresponding to the eigenvalues in ⇤SNT
L . A technical point is worth noting related

to ⌅SNT
L and ⇤SNT

L . When N > T , for all integers h > T , �h(SNT ) = 0, which in turn

implies (NT )�1/2XXX⇠h(SNT ) = 0T⇥1. For this result, we can have

⌅(SNT |K +1 : N)[⇤(SNT |K + 1 : N)]q�1⌅(SNT |K +1 : N)000 = ⌅SNT
L (⇤SNT

L )
q�1
⌅SNT

L

000

for both cases with N > T and T � N .

With the above notation and result, we can show that

↵̃̃↵̃↵PLS
q = (SNT )

q�1bbbNT = ⌃J
j=1⌅

SNT
(j) (⇤SNT

(j) )
q�1

cccSNT
(j) +⌅SNT

L (⇤SNT
L )

q�1
cccSNT
L (1.17)

Thus, the asymptotic property of the qth PLS coe�cient vector ↵̃̃↵̃↵PLS
q depends on

those of the eigenvalues and eigenvectors of the matrix SNT , the vector bbbNT , and the

vectors cccSNT
(j) and cccSNT

L . The asymptotic properties of these terms are given in the

following Lemma.

Lemma 2.4.1: Under (A.1) – (A.8), the following holds.

(i) �h(SNT ) = �2
j +Op(m��), for h = ks(j � 1) + 1, ..., ks(j) and j = 1, ..., J.

(ii) �h(SNT ) = Op(m�1), for h = K + 1, K + 2, ...,m.
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(iii)
��bbbNT � ⌃R

j=1�
2
jN

�1/2�(j)���(j)

��
2
= Op(T��).

For each j = 1, ..., R, there exists some orthonormal matrix OOO⇤
jj such that

(iv)
���⌅SNT

(j) �N�1/2�(j)OOO⇤
jj

���
F
= Op(m��), for j = 1, ..., J ;

(v)
���cccSNT

(j) �OOO⇤
jj
000�2

j���(j)

���
2
= Op(m��), for j = 1, ..., R.

For j = R + 1, ..., J ,

(vi)
���cccSNT

(j)

��� = Op(m��).

Let HHHNT = (NT )�1/2⌅SNT
L

000Q(�)E 0E 0E 0Q(F̃̃F̃F ) and F̃̃F̃F = FFF +EEE�(�000�)�1. Let rrrNT be an

m⇥ 1 random vector with E (krrrNTk2) = Op(1) which is independent of uuu. Then,

(vii)
��cccSNT

L � T�1/2HHHNTuuu
��
2
= Op(m�3/2);

(viii)
��T�1/2HHHNTuuu

��
2
= Op(T�1/2).

(ix)
��T�1/2rrr000NTHHHNTuuu

��
2
= Op((Tm)�1/2).

Some remarks follow on (vii) – (ix) of Lemma 2.4.1. First, (vii) and (viii) of Lemma

2.4.1 imply that
��cccSNT

L

��
2
= Op(T�1/2+m�3/2). Second, the convergency speed of cccSNT

L

depends on the term T�1/2HHHNTuuu, which is a function of the error terms inEEE and uuu. As

it turns out later, the term T�1/2HHHNTuuu is the major source of the spurious correlation

problem discussed in the previous subsection. While individual error terms in eee⇧t are

uncorrelated with the error ut+1, linear combinations of the N error terms in eee⇧t

could appear to be spuriously correlated with ut+1 when N is large. An intuition on

this result is that for a regression estimation, using more regressors for a dependent

variable increases the R-square measure even if the regressors have no explanatory

power.
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We now consider the properties of the PLS coe�cient vectors ↵̃̃↵̃↵PLS
q . In order to

make our asymptotic analysis easier, we need to modify equation (1.17). Define

µSNT
j = �SNT

ks(j�1)+1, for j = 1, ..., R;

ddd0(q) = ((µSNT
1 )

q�1
, (µSNT

2 )
q�1

, ..., (µSNT
R )

q�1
)000;

DDD0(q) = (ddd0(1), ddd0(1), ..., ddd0(1))

Notice that µSNT
j is the largest one in the jth group of the eigenvalues, �SNT

ks(j�1)+1, ... ,

�SNT
ks(j). Notice also that DDD0(q) is a Vandermonde matrix. By construction, DDD0(R) is a

square matrix which is invertible because the µSNT
j (j = 1, ..., R) are all distinct even

asymptotically. By Lemma 2.4.1, µSNT
j !p �2

j as m ! 1.

With the terms defined above, we can easily show that

↵̃̃↵̃↵PLS
q =VVV 0ddd0(q) + vvvH1(q) + vvvH2(q) + vvvL(q), (1.18)

where

VVV 0 = (⌅SNT
(1) cccSNT

(1) , ...,⌅SNT
(R) ccc

SNT
(R) );

vvvH1(q) = ⌃R
j=1⌅

SNT
(j)

h
(⇤SNT

(j) )
q�1 � (⇤̄SNT

(j) )
q�1

i
cccSNT
(j) ;

vvvH2(q) = ⌃J
j=R+1⌅

SNT
(j) (⇤SNT

(j) )
q�1

cccSNT
(j) ;

vvvL(q) = ⌅
SNT
L (⇤SNT

L )
q�1
⌅SNT

L

000
bbbNT = ⌅SNT

L (⇤SNT
L )

q�1
cccSNT
L

where ⇤̄SNT
(j) = µSNT

j IIIk(j). Thus,

Ã̃ÃAPLS
1:q =VVV 0DDD0(q) + VVV H1(q) + VVV H2(q) + VVV L(q) (1.19)

where VVV H1(q) = (vvvH1(1), ..., vvvH1(q)), and VVV H2(q) and VVV L(q)are defined similarly.

The asymptotic property of each term in ↵̃̃↵̃↵PLS
q and Ã̃ÃAPLS

1:q is stated in the following

lemma and corollary. It is shown that VVV 0 is the asymptotically dominant term in ↵̃̃↵̃↵PLS
q .
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Lemma 2.4.2: Define

⇧NT = N�1/2[�(1)���(1),�(2)���(2), ...,�(R)���(R)];

⌃R = diagdiagdiag(�2
1, �

2
2, ..., �

2
R)

Under (A.1) – (A.8), the following holds.

(i) kVVV 0 �⇧NT⌃RkF = Op(m��);

(ii) kvvvH1(q)k2 = Op(m��); kvvvH2(q)k2 = Op(m��);

(iii) kvvvL(q)k2 = Op

�
m�(q�1)(T�1/2 +m�3/2)

�

Corollary 2.4.2: Under (A.1) – (A.8),

(i) kVVV 0DDD0(q)�⇧NT⌃RDDD0(q)kF = Op(m��);

(ii) kVVV H1(q)kF = Op(m��); kVVV H2(q)kF = Op(m��);

(iii) kVVV L(q)kF = Op

�
T�1/2 +m�3/2

�

Lemma 2.4.2 and Corollary 2.4.2 imply our first main result. Stated formally:

Theorem 1: Define gggT+1 = (fff 000
(1),T+1���(1), ..., fff

000
(R),T+1���(R))

000. Under (A.1) – (A.8), for

q = 1, ... , R,

(i)
���Ã̃ÃAPLS

1:q �⇧NT⌃RDDD0(q)
���
F
= Op(m��);

(ii)
���N�1/2Ã̃ÃAPLS

1:q
000
xxx⇧T+1 �DDD0(q)

000⌃RgggT+1

���
F
= Op(m��).
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The first part of Theorem 1 implies that Ã̃ÃAPLS
1:q and ⇧NT⌃RDDD0(q) span the same

linear space asymptotically. When q = R, the matrix DDD0(R) is invertible as we dis-

cussed above. Thus, Ã̃ÃAPLS
1:R and⇧NT span the same space asymptotically. When q = R,

the second part of Theorem 1 implies that
���1000R⌃�1

R [DDD0(R)000]
�1
N�1/2Ã̃ÃAPLS

1:q
000
xxx⇧T+1 � ŷoT+2

���

= Op(m��), because ŷoT+2 = 1000RgggT+1.

We now consider the asymptotic properties of the PLS factors. Define

GGG0 = (NT )�1/2XXXVVV 0;

gggH1(q) = (NT )�1/2XXXvvvH1(q); gggH2(q) = (NT )�1/2XXXvvvH2(q)

gggL(q) = (NT )�1/2XXXvvvL(q)

With this notation, we have

(NT )�1/2p̃̃p̃pPLS
q = (NT )�1/2X↵̃X↵̃X↵̃PLS

q = GGG0ddd0(q) + gggH1(q) + gggH2(q) + gggL(q) (1.20)

Because gggH1(q) = P(GGG0)gggH1(q) +Q(GGG0)gggH1(q), equation (1.20) is equivalent to

(NT )�1/2p̃̃p̃pPLS
q = (NT )�1/2X↵̃X↵̃X↵̃PLS

q = GGG0d̂̂d̂d0(q) + gggcH(q) + gggL(q), (1.21)

where

d̂̂d̂d0(q) = ddd0(q) + (GGG000
0GGG0)

�1
G0G0G0

0gggH1(q);

gggcH(q) = (Q(GGG0)gggH1(q), gggH2(q))

By (1.21), we also have

(NT )�1/2P̃̃P̃P PLS
1:q = GGG0D̂̂D̂D0(q) +GGGc

H(q) +GGGL(q) (1.22)

where

D̂̂D̂D0(q) = (d̂̂d̂d0(1), ..., d̂̂d̂d0(q)) =DDD0(q) + (GGG000
0GGG0)

�1
GGG000

0GGGH1(q);

GGGc
H(q) = Q(GGG0)GGGH1(q) +GGGH2(q)
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and GGGL(q) is similarly defined.

Two remarks follow on equation (1.22). First, by construction, the matrices GGG0,

GGGc
H , and GGGL are mutually orthogonal. This structure facilitates our asymptotic anal-

ysis. Second, we merge Q(GGG0)GGGH1(q) and GGGH2(q) into GGGc
H(q) because the Frobenius

norms of the two matrices are both Op(m��).

Consider the case in which R = K; that is, all of the factors fff ⇧t have distinct

asymptotic variances and are correlated with the target variable yT+2. For the case,

GGGc
H(q) = 0 and GGG0D̂̂D̂D0(q) = GGG0DDD0(q). Thus, the asymptotic property of P̃̃P̃P PLS

1:q depends

on GGG0DDD0(q) and GGGL(q). In contrast, when R < K, that is, when k(j) > 1 for some

j = 1, ..., R and/or R < J , the asymptotic property of P̃̃P̃P PLS
1:q also depends on GGGc

H(q).

The asymptotic properties of the terms that appear in the PLS factors are stated

in the following lemma and corollary.

Lemma 2.4.3: Under (A.1) – (A.8), the following holds for q � 1.

(i)
��GGG0 � T�1/2(FFF (1)���(1), ...,FFF (R)���(R))⌃R

��
F
= Op(m��);

(ii)
��T�1/2y0y0y0GGG0 � (���000

(1)���(1), ...,���
000
(R)���(R))⌃

2
R

��
2
= Op(m��);

(iii) kgggcH(q)k2 = Op(m��); kgggL(q)k2 = Op

�
m�(q�1/2)(T�1/2 +m�3/2)

�
;

(iv)
���d̂̂d̂d0(q)� ddd0(q)

���
2
= Op(m��);

(v)
��T�1/2y0gy0gy0gcH(q)

��
2
= Op(m�2�);

��T�1/2y0y0y0gggL(q)
��
2
= Op

⇣
m�(q�1)(T�1/2 +m�3/2)

2
⌘
.

Corollary 2.4.3: Under (A.1) – (A.8), the following holds for q � 1.

(i) kGGGc
H(q)kF = Op(m��); kGGGL(q)kF = Op(m�1/2(T�1/2 + m�3/2));

���D̂̂D̂D0(q) � DDD0(q)
���
F

= Op(m��);

(ii)
��T�1/2y0Gy0Gy0Gc

H(q)
��
2
= Op(m�2�);

��T�1/2y0y0y0GGGL(q)
��
2
= Op

⇣
(T�1/2 +m�3/2)

2
⌘
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Lemma 2.4.3 and Corollary 2.4.3 indicate that the asymptotically dominant term

in P̃̃P̃P PLS
1:q is GGG0. For q  R, the asymptotic properties of the q PLS factors in P̃̃P̃P PLS

1:R

are determined by GGG0DDD0(q). Thus, we can obtain the following results.

Lemma 2.4.4: Assume that (A.1) – (A.8) hold. When R < K,

(i)
���(NT )�1P̃̃P̃P PLS

1:R
000
P̃̃P̃P PLS

1:R � D̂̂D̂D0(R)GGG000
0GGG0D̂̂D̂D0(R)

���
F
= Op(m��);

(ii)
���N�1/2T�1P̃̃P̃P PLS

1:R
000
yyy � D̂̂D̂D0(R)000T�1/2GGG000

0yyy
���
2
= Op(m�2�).

When R = K,

(iii)
���(NT )�1P̃̃P̃P PLS

1:R
000
P̃̃P̃P PLS

1:R �DDD0(R)GGG000
0GGG0DDD0(R)

���
F
= Op

⇣
m�1(T�1/2 +m�3/2)

2
⌘
;

(iv)
���N�1/2T�1P̃̃P̃P PLS

1:R
000
yyy �DDD0(R)000T�1/2GGG000

0yyy
���
2
= Op

⇣
(T�1/2 +m�3/2)

2
⌘

With Lemma 2.4.4, we can obtain our second main result:

Theorem 2: Under (A.1) – (A.8),

(i)
���N1/2�̃̃�̃�PLS

1:R � [DDD0(R)]�1⌃�1
R 1R

���
2
= Op(m

��);

(ii)
��ỹPLS

T+2|R � ŷoT+2

��
2
= Op(m

��);

(iii) R2
1:R ⌘ y0y0y0P(P̃̃P̃P PLS

1:R )yyy

y0yy0yy0y
!p R2

max ⌘
⌃R

j=1�
2
j���

000
(j)���(j)

⌃R
j=1�

2
j���

000
(j)���(j) + �2

u

Two remarks on Theorem 2 follow. First, the theorem indicates that the forecast

for yT+2 obtained using the first R PLS factors, ỹPLS
T+2|R, is a consistent estimator of

the optimal forecast, ŷoT+2 = ⌃R
j=1fff

000
(j)T+1���(j). We can show that the forecast by a

fewer number of PLS factor is not consistent for ŷoT+2. Thus, the minimum number

of the PLS factors that can produce a consistent estimator of ŷoT+2 is R, the number

of distinct asymptotic variances of the common factors in fff ⇧tthat are correlated yt+1.

For example, if all the factors have the same asymptotic variances, then the first PLS
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factor is su�cient to produce a consistent estimator of ŷoT+2. Given this finding, we

from now on refer to the R factors as “informative” PLS factors.

Second, in (iii) of Theorem 2, R2
max is the probability limit of the in-sample R2

from the regression of yyy on the ks(R) unobservable common factors in FFF (1), ... , FFF (R).

Interestingly, the result in (iii) of Theorem 2 indicates that the in-sample fit of the

regression of yyy on R PLS factors is as good as that of the regression of yyy on ks(R)

relevant latent factors.

We now consider the forecasting with more than R PLS factors. Specifically, we

consider the cases in which the first (R + 1) PLS factors are used. Observe that

P(P̃̃P̃P PLS
1:R+1) = P(P̃̃P̃P PLS

1:R ) + P(Q(P̃̃P̃P PLS
1:R )p̃̃p̃pPLS

R+1)

This implies that the asymptotic properties of the forecast by the first (R + 1) PLS

factors depend on P(P̃̃P̃P PLS
1:R ) andQ(P̃̃P̃P PLS

1:R )p̃̃p̃pPLS
R+1 . More specifically, the asymptotic prop-

erty of ŷPLS
T+2|R+1 depends on the following three terms:

✓̃̃✓̃✓ = (P̃̃P̃P PLS
1:R

000
P̃̃P̃P PLS

1:R )
�1
P̃̃P̃P PLS

1:R
000
p̃̃p̃pPLS
R+1 (1.23)

Y1,NT = p̃̃p̃pPLS
R+1

000Q(P̃̃P̃P PLS
1:R )p̃̃p̃pPLS

R+1/(NT ) (1.24)

Y2,NT = p̃̃p̃pPLS
R+1

000Q(P̃̃P̃P PLS
1:R )yyy/(N1/2T ) (1.25)

The following Lemma states the asymptotic properties of Y1,NT and Y2,NT :

Lemma 2.4.5: Assume that (A.1) – (A.8) hold. When R < K,

(i)
���✓̃̃✓̃✓ � [DDD0(R)]�1ddd0(R + 1)

���
2
= Op(m��);

(ii) Y1,NT = Op(m�2�); Y2,NT = Op(m�2�).

When R = K,

(iii)
���✓̃̃✓̃✓ � [DDD0(R)]�1ddd0(R + 1)

���
2
= Op

⇣
m�1(T�1/2 +m�3/2)

2
⌘
;
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(iv) Y1,NT = Op

⇣
m�1(T�1/2 +m�3/2)

2
⌘
; Y2,NT = Op

⇣
(T�1/2 +m�3/2)

2
⌘
.

Some remarks on Lemma 2.4.5 follow. The R2 from the regression of yyy on the first

(R + 1) PLS factors P̃̃P̃P PLS
1:R depends on both Y1,NT and Y2,NT because

y0y0y0P(P̃̃P̃P PLS
1:R+1)yyy

T
=

y0y0y0P(P̃̃P̃P PLS
1:R )yyy

T
+

y0y0y0P(Q(P̃̃P̃P PLS
1:R )p̃̃p̃pPLS

R+1)yyy

T
=

y0y0y0P(P̃̃P̃P PLS
1:R )yyy

T
+

(Y2,NT )
2

Y1,NT
.

When R < K, m2�Y1,NT and m2�Y2,NT are positive random variables, while

(Y2,NT )
2/Y1,NT = Op(m�2�) =op(1). Thus, using the (R+1)th PLS factor additionally

does not change the asymptotic goodness of fit of the PLS regression. In contrast,

when R = K,

(Y2,NT )
2/Y1,NT = Op

⇣
m(T�1/2 +m�3/2)

2
⌘
= Op(m/T )

If m/T ! 0 as m ! 1, then (Y2,NT )
2/Y1,NT = op(1). Thus, once again, the asymp-

totic goodness of fit of the PLS regression is unaltered when the (R+1)th PLS factor

is added. However, if m/T = O(1) > 0, the ratio (Y2,NT )
2/Y1,NT becomes a positive

Op(1) variable, so that R2
1:R+1 = R2

max +Op(1) > R2
max.

In short, when R = K and T is not dominantly larger than N , use of the p̃̃p̃pPLS
R+1 in

addition to P̃̃P̃P PLS
1:R makes the part of the PLS factors spuriously correlated with the

target variable asymptotically important. We state this result formally:

Theorem 3: Assume that (A.1) – (A.8) hold. When R = K and N/T = O(1) > 0,

(i) T�1y0y0y0P(P̃̃P̃P PLS
1:R+1)yyy = ⌃R

j=1�
2
j���

000
(j)���(j) + |Op(1)| > ⌃R

j=1�
2
j���

000
(j)���(j).

When R < K, or when R = K and N/T ! 0,

(ii) T�1y0y0y0P(P̃̃P̃P PLS
1:R+1)yyy!p⌃R

j=1�
2
j���

000
(j)���(j).

Theorem 3 is for the cases in which the (R + 1)th PLS factor is additionally used.

In fact, it could be shown that the PLS regressions using at least the first R and
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up to K PLS factors produce asymptotically the same R2, R2
max. In contrast, use of

more than K PLS factors may trigger the spurious correlation problem. However,

this asymptotic result does not necessarily imply that using K PLS factors is a safe

bet in case in which R is unknown. Our simulation results reported in section 1.3

indicates that use of more than R PLS factors often increases in-sample R2 sharply

while producing poor forecasting results.

Finally, we investigate the performance of the forecast for yT+2 obtained by using

the first (R + 1) PLS factors. Observe that

N1/2�̃̃�̃�1:R+1 =

 
P̃̃P̃P PLS

1:R+1

000
P̃̃P̃P PLS

1:R+1

NT

!�1
P̃̃P̃P PLS

1:R+1
000
yyy

N1/2T

=

0

B@
P̃̃P̃PPLS

1:R
000
P̃̃P̃PPLS

1:R
NT

P̃̃P̃PPLS
1:R

000
p̃̃p̃pPLS
R+1

NT

p̃̃p̃pPLS
R+1

000
P̃̃P̃PPLS

1:R

NT

p̃̃p̃pPLS
R+1

000
p̃̃p̃pPLS
R+1

NT

1

CA

�10

B@
P̃̃P̃PPLS

1:R
000
yyy

N1/2T

p̃̃p̃pPLS
R+1

000
yyy

N1/2T

1

CA

(1.26)

By the inversion rule for partitioned matrix

0

B@
P̃̃P̃PPLS0

1:R P̃̃P̃PPLS
1:R

NT

P̃̃P̃PPLS
1:R

0
p̃̃p̃pPLS
R+1

NT

p̃̃p̃pPLS
R+1

0
P̃̃P̃PPLS

1:R

NT

p̃̃p̃pPLS
R+1

0
p̃̃p̃pPLS
R+1

NT

1

CA

�1

=

0

B@

✓
P̃̃P̃PPLS0

1:R P̃̃P̃PPLS
1:R

NT

◆�1

0

00 0

1

CA

+

0

B@
✓̃̃✓̃✓

�1

1

CA

 
p̃̃p̃pPLS
R+1

0Q(P̃̃P̃P PLS
1:R )p̃̃p̃pPLS

R+1

NT

!�1
0

B@
✓̃̃✓̃✓

�1

1

CA

0

(1.27)

where ✓̃̃✓̃✓ is defined in (1.23). In addition,

0

B@
✓̃̃✓̃✓

�1

1

CA

0000

B@
P̃̃P̃P PLS

1:R
000
yyy/(N1/2T )

p̃̃p̃pPLS
R+1

000
yyy/(N1/2T )

1

CA = �p̃̃p̃pPLS
R+1

000Q(P̃̃P̃P PLS
1:R )yyy/(N1/2T ) (1.28)

Substituting (1.27) and (1.28) into (1.26), we can obtain

N1/2�̃̃�̃�1:R+1 =

✓
N1/2�̃̃�̃�

000
1:R 0

◆000

�
✓
✓̃̃✓̃✓
000

�1

◆000

YNT (1.29)
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where YNT = Y1,NT/Y2,NT . Using this result and Lemmas 2.4.5, we can obtain our

final main result.

Theorem 4: Under (A.1) – (A.8), the following holds.

(i)
���ỹPLS

T+2|R � ŷoT+2

��� = Op(m��), if R < K.

(ii)
���ỹPLS

T+2|R � ŷoT+2

��� = op(1), if R = K and N/T = o(1);

(iii)
���ỹPLS

T+2|R+1 � ŷoT+2

��� = Op(1), if R = K and either N � T or N/T = O(1) > 0.

Some remarks follow on Theorem 4. First, the asymptotic property of �̃̃�̃�PLS
1:R+1 (the

OLS estimator from the regression of yyy on P̃̃P̃P PLS
1:R+1) depends on YNT . When R < K,

both m2�Y1,NT and m2�Y2,NT are positive Op(1) variables and YNT = Op(1). For this

case, N1/2�̃̃�̃�PLS
1:R+1 is asymptotically a random variable. In addition, it can be shown that

m�(ỹPLS
T+2|R+1 � ŷoT+2) depends on YNT , whose mean is not zero. That is, the forecasts

ỹPLS
T+2|R+1 are asymptotically biased estimators of the ŷoT+1+s. This result suggests that

the finite-sample property of ỹ̃ỹyPLS
T+2|R+1 may not be as good as that of ỹ̃ỹyPLS

T+2|R, even if

R < K.

Second, while not shown here, it could be shown that part (i) of Theorem 4 holds

for the regression with more than R PLS factors and up to K PLS factors. Given

that these factors do not contribute to improve the accuracy of the PLS forecasting,

we from now on refer to them as “uninformative” PLS factors.

Third, when R = K, the PLS forecast ỹPLS
T+2|R+1 is expected to have poor finite-

sample properties if N � T and/or N/T = O(1). The parts of the PLS factors

that are spuriously correlated with the target variable is no longer asymptotically

negligible, and they hurt the accuracy of the PLS forecast. This result does not

necessarily imply that when R < K, use of more than K PLS factors must produce an
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inconsistent estimator of ŷoT+2. However, as shown in the next section, the regressions

with more than K PLS factors almost always produce poor forecasting results unless

T is dominantly larger than N or the variance of the error term in the target variable

is small (that is, the common factors in predictor variables have strong forecasting

power for the target variable). For this reason, we refer to the factors other than the

first K factors as “spurious” PLS factors.

In the next section, we consider the finite sample properties of the “informative,”

the “uninformative,” and the “spurious” PLS factors.

1.3 Simulation Results

In this section, we report our simulation results. Our simulation setups are designed

to investigate the following. First, we examine how the finite-sample in-sample and

out-of-sample performances of the PLS regression changes as the number of PLS

factors used increases to the asymptotically optimal number (R), and as the more

than the optimal number of PLS factors is used. Second, we compare the performances

of the forecasts produced by the regressions with PLS factors, principal component

(PC) factors, and all of predictor variables. Third, we examine whether the actual

number of PLS factors that maximizes forecasting power in finite sample is close to

the asymptotically optimal number (R) of PLS factors that our asymptotic analysis

suggests. Fourth, we consider in-sample and out-of-sample performances of the R

informative, the (K–R) uninformative, and the spurious PLS factors.
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1.3.1 Simulation Setup

We simulate data following Kelly and Pruitt (2015) and Stock and Watson (2002a).

Specifically, we generate data with the following equations:

yt+1 = a1/2y (⌃K
h=1f

⇤
ht�

⇤
h) + (1� ay)

1/2ut+1;

xit = a1/2x (⌃K
h=1f

⇤
ht�hi) + (1� ax)

1/2e⇤it;

f ⇤
ht = ⇢ff

⇤
h,t�1 + wht;

e⇤it = ⇢ee
⇤
i,t�1 + ẽit; ẽit = (1 + ⇢2c)"i+1,t + ⇢c("i,t + "i+2,t)

where the ut+1 (t = 2, ...., T + 2), "it (i = 1, ..., N,N + 1, N + 2), and �hi (h =

1, ..., K, i = 1, ..., N) are all random draws from N(0, 1).

All of the factors f ⇤
ht are generated with the same AR(1) coe�cient ⇢f . The ini-

tial values of the K factors f ⇤
h0 (h = 1, ...., K) are zeros, while the error terms wht

are independently and identically drawn from N(0, (1 � ⇢2f )vh). Under this setup,

var(fht) ⇡ vh for most of di↵erent t.

All the idiosyncratic error components in xit, e⇤it, are generated with the same

AR(1) coe�cient ⇢e. The initial values of the "i0 are independently drawn from

N(0, 1). The idiosyncratic components e⇤it are cross-sectionally correlated. We con-

trol the degree of cross-section correlations by changing the value of the parameter

⇢c. The value of �⇤
h equals one (zero) if the corresponding factor f ⇤

ht is correlated

(uncorrelated) with the target variable yt+1.

After we generate the sum of the common components in xit (⌃K
h=1f

⇤
ht�hi), the

part of yt+1 explained by the common factors (⌃K
h=1f

⇤
ht�

⇤
h), and the idiosyncratic error

components in xit (e⇤it), we normalize them such that they have unit variances. By this

normalization, we can use the two parameters ax and ay to control for the explanatory

power of the common factors fff ⇤
⇧t = (f ⇤

1t, ..., f
⇤
Kt)

0 for the predictors xit and the target
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variable yt+1, respectively. Notice that the parameter ax equals the probability limit

of the average R2 from individual regressions of xit on the common factors fff ⇤
⇧t, while

ay equals the probability limit of the R2 from the regression of yt+1 on fff ⇤
⇧t.

We use ⌦⇤
FFF to denote Var(fff ⇤

⇧t) = diagdiagdiag(v1, ..., vK). The variables with superscripted

star, f ⇤
ht, e

⇤
it, �

⇤
h and ⌦⇤

FFF are not the same as the variables, fht, eit, �h and ⌦FFF , that

are used in section 1.2. However, they are related roughly as follows:

fht ⇡ a1/2x f ⇤
ht/

q
var(⌃K

h=1f
⇤
ht�hi);

eit ⇡ (1� ax)e
⇤
it/
p
var(e⇤it);

�h ⇡ �⇤
h

a1/2y

p
var(⌃K

h=1f
⇤
ht�hi)

a1/2x

p
var(⌃K

k=1f
⇤
ht�

⇤
h)

;

⌦FFF ⇡ ax
var(⌃K

h=1f
⇤
ht�hi)

⌦⇤
F

For each set of the parameter values chosen (T,N,K, ⌦FFF , ax, ay, ⇢f , ⇢e, and ⇢c),

we generate 1,000 di↵erent samples. Each sample contains (T + 1) observations. The

first T observations are used to estimate the parameters that are needed to forecast

yT+2. The PLS factors are computed by the NIPLS algorithm introduced in Appendix

A. The last observation is used to compute the forecasting error by a forecast ŷT+2.

Using the forecasting errors from the 1,000 samples, we compute the following out-

of-sample R2 of a forecast:

R2
OS ⌘ 1�

⌃1000
s=1 (y

[s]
T+2 � ŷ[s]T+2)

2

⌃1000
s=1 (y

[s]
T+2 � ȳ[s])

2

where ȳ[s] = T�1⌃T+1
t=2 y

[s]
t+1 and s indexes simulated samples. The second term of

R2
OS is a ratio of the mean square error (MSE) of the forecast and the MSE of

the target variable’s historical mean. When the forecast is more accurate than the

historical mean, the out-of-sample R2
OS must be a positive number. In contrast, when

the historical mean outperforms, the measure becomes negative. The R2
OS measure is

also used in Kelly and Pruitt (2015).

32



Our benchmark case is the case in which data are generated with N = T = 100,

���⇤ = (�⇤
1 , �

⇤
2 , �

⇤
3 , �

⇤
4)

0 = (1, 0, 1, 0)0, ⌦⇤
FFF= diagdiagdiag(3, 3, 5, 5), ax = 0.2, ay = 0.7, and ⇢f=

⇢e= ⇢c = 0.5. Under this setup, the asymptotically optimal number of PLS factors for

forecasting (R) equals two, because there are two groups of factors the same variance

(the factors whose asymptotic variances equal to 3 and the factors whose asymptotic

variances equal to 5) and at least one factor from each of the two groups is correlated

with the target variable. This is the case in which R = 2 < K = 4 in the notation

used in section 1.2. That is, there are two informative and two uninformative PLS

factors. The rest of the PLS factors are spurious factors.

1.3.2 Simulation Results from the Benchmark Case

We begin by examining how the performances of the forecast by the PLS regression

change as the number of PLS factors used increases. To save space, we denote the

number of factors (PLS or PC factors) used for forecasting by q.

Table A.1 reports the results from our benchmark case. The table shows how

the in-sample fits and out-of-sample forecasting performances of the PLS regression

change as di↵erent numbers of factors are used: from one to ten. For each regression

with a di↵erent number of PLS factors, the table reports the average and standard

error of the in-sample R2’s and the R2
OS’s from individual PLS regressions with 1,000

di↵erent samples. We use the adjusted R2 instead of the usual R2 for the in-sample R2.

We do so because the usual R2 always increases with the number of regressors used,

while the adjusted R2does not. Figure 1 depicts the changes in average in-sample R2

and R2
OS as the number of PLS factors used (q) increases.

Table A.1 and Figure A.1 show that the in-sample R2 from the PLS regression

always increases as more factors are used. In contrast, theR2
OS from the PLS regression

is always peaked at q = 2 = R, the asymptotically optimal number of PLS factors
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for forecasting. As q increases, the R2
OS keeps falling. For example, as q increases to

10, the R2
OS falls to 18 percent points while the in-sample R2 increases to 90 percent

points. Table A.1 and Figure A.1 clearly show that a PLS regression with higher

in-sample R2does not guarantee a more accurate forecasting result.

For our benchmark case, our asymptotic results predict that the forecast obtained

using 2 to 4 PLS factors are consistent estimators of the optimal forecast ŷoT+2 =

⌃K
h=1f

⇤
h,T+1�

⇤
h. Interestingly, however, the simulation results reported in Table A.1

and Figure A.1 indicate that using 3 or 4 PLS factors would rather produce less

accurate forecasts. The results in Table A.1 and Figure A.1 suggest that the PLS

regression with more than R and up to K PLS factors would produce less precise

forecasts.

Our asymptotic results also predict that the regressions using more than 4 PLS

factors would produce spuriously high in-sample R2’s and low R2
OS’s. The results

reported in Table A.1 and Figure A.1 are also consistent with this prediction.

1.3.3 Comparisons of the Forecasting Powers of PLS and PC Factors

We here compare the forecasting performances of the regressions with PLS factors,

principal component (PC) factors, and all of the predictors. For this comparison, we

generate data with five common factors with ⌦⇤
FFF = 5 ⇥ III5 and ���⇤ = (1, 0, 0, 0, 0)0.

For these data, R = 1 < K = 5. That is, the asymptotically optimal number of PLS

factors equals one, while the number of PC factors to be used for optimal forecasting

is five.

Tables A.2 and A.3 report the out-of-sample forecasting performances of the PLS

regressions with the first PLS factor only (PLS1), the PC regression with first five PC

factors (PC5) and the usual OLS regression with all predictor variables (OLS). Table

A.2 reports the results obtained from the data with (N, T ) = (80, 100), while Table
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A.3 reports the results from the data with (N, T ) = (160, 200). For this simulation

exercise, N is chosen to be smaller than T to make the regression with all available

predictors possible. Data are simulated with many di↵erent combinations of the pa-

rameters, ax, ay, ⇢f , ⇢e, and ⇢c. To save space, we only report the results obtained

using the data generated with ⇢f = ⇢e = ⇢c. For each combination of data generating

parameters, the highest R2
OS is marked in bold.

Tables A.2 and A.3 show that the forecasting performance of the OLS regression

is always dominated by those of the PLS1 and PC5 regressions. The R2
OS from the

OLS regression is always negative, indicating that the historical mean of the target

variable is a better forecast than the OLS forecast. This finding is consistent with

the well-known fact that the MSE of the OLS forecast increases with the number of

predictors used; see, for example, Carrasco and Rossi (2016) and Stock and Watson

(2006), among many.

Tables A.2 and A.3 show that when the common factors’ explanatory power for the

predictors is low (ax = 0.1 or 0.2) and their explanatory power for the target variable

is relatively high (ay = 0.5 or 0.7), the PLS1 forecast outperforms the PC5 forecast.

This pattern remains the same even if di↵erent AR(1) coe�cients (⇢f and ⇢e) and

the cross-section correlation parameter (⇢c) are used. In general, the PC5 regression

produces more accurate forecasts when the factors are more weakly autocorrelated and

predictor variables’ idiosyncratic components are less serially and cross-sectionally

correlated.

One interesting observation from Tables A.2 and A.3 is that when the PLS1 re-

gression outperforms the PC5 regression, it does so by a relatively greater margin. For

example, in Table A.2, the R2
OS from the PLS1 regression is almost twice larger than

that from the PC5 regression when ax = 0.1, ay = 0.7, and ⇢c = ⇢e = ⇢f = 0.5: the

R2
OS’s from the PLS1 and PC5 regressions are 39.9 percent points and 20.5 percent
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points, respectively. As shown in Table A.3, when the sample size is doubled while

other parameter values remain unchanged, the R2
OS from the PLS1 regression is still

higher than that from the PC5 regression by 15.3 percent points: the out-of-sample

R2’s from the PLS1 and PC5 regressions are 48.5 percent points and 33.2 percent

points, respectively.

Tables A.2 and A.3 also report the number of common factors (K̃) estimated

by the method of Ahn and Horenstein (2013) (AH, 2013). The tables show that

when ax is low, the AH tends to underestimate the number of common factors in

predictor variables. Not surprisingly, the PC regression with the estimated number of

factors (K̃) significantly underperforms the PL5 regression, especially when ax is low,

although these results are unreported here to save space. When ax is low, the PLS1

regression significantly outperforms the PC regression with the estimated number of

factors more than it does the PC5 regression.

The main findings from Tables A.2 and A.3 can be summarized as follows. First,

the PLS1 regression produces more accurate forecasts than the PC5 regression when

the common factors in predictor variables are relatively weak factors. Second, when

the predictors have stronger factors, the PC5 regression outperforms the PLS1 re-

gression in forecasting, but generally by a small margin. These results indicate that

the PLS regression is a viable forecasting tool which is particularly useful when the

factor structure in predictor variables is weak.

1.3.4 Forecasting with Asymptotically Optimal Number of PLS Factors

We now consider the finite-sample properties of the PLS regression when the asymp-

totically optimal number of PLS factors for forecasting (R) is greater than one. Tables

A.4 – A.7 report the forecasting performances of the PLS regressions with three di↵er-

ent numbers of PLS factors. The R2
OS’s from the PLS regressions with one, two, and
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three are reported in the PLS1, PLS2, and PLS3 columns, respectively. All of the data

used for the results reported in Tables A.4 – A.7 are generated with ⌦⇤
FFF = diagdiagdiag(3, 5, 7)

and ay = 0.7, while di↵erent parameter values are used for ax, ⇢c, ⇢e, and ⇢f . Notice

that for all of the cases considered in Tables A.4 to A.7, the optimal number of PLS

factors for forecasting is three (R = 3).

Table A.4 reports the forecasting results from the data withN = T = 100 andN =

T = 200. Di↵erently from what our asymptotic results predict, the R2
OS from the PLS3

regression is lowest for all cases. When the common factors’ explanatory power for

predictor variables is low (e.g., ax = 0.1), the PLS1 regression more often outperforms

the PLS2 regression. In contrast, as the factors’ explanatory power becomes stronger

(ax = 0.2 or 0.3), the PLS2 regression more often outperforms the PLS1 regression.

Table A.5 reports the forecasting results obtained using larger data: N = T =

1, 000 and N = T = 2, 000. Even for these large data, the R2
OS from the PLS3

regression is highest only once (when ax = 0.3, ⇢c = ⇢e = 0.3, ⇢f = 0, and N = T =

2, 000). For other cases, the PLS2 regression produces the highest R2
OS. As shown in

Table A.6, for the unusually large data with N = T = 7, 000, we can observe that the

PLS3 regression outperforms the PLS1 and PLS2 regressions for some cases. When

we have extremely large data with N = T = 10, 000, as shown in Table A.7, the

PLS3 regression outperforms the PLS1 and PLS2 regressions for all di↵erent data

specifications. However, even for the cases in which the PLS3 regression outperforms

the PLS1 and PLS2 regressions, the prediction gain by the PLS regression is marginal.

The three main implications from Tables A.4 – A.7 are the following. First, when

the asymptotically optimal number of PLS factors for forecasting (R) is greater than

one, the PLS regressions using a fewer number of PLS factors very often produce

more accurate forecasts than the PLS regression using R factors, unless the data

are exceptionally large. Second, the PLS1 regression often produces a more accurate
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forecast than the regressions with PLS factors, especially when the sample size is

small and the common factors in predictor variables are weak.

Third and finally, when larger data are used and R = 1, using more than one PLS

factor could produce more accurate forecasts. However, the accuracy gains by using

additional factors are not substantial. The gains are generally very marginal. This

result indicates that when the optimal number of PLS factors (R) is unknown, using

only one PLS factor for forecasting could be a useful alternative. This is so because,

as shown in Table A.1, using more than R PLS factors can produce much poorer

forecasts than the PLS regression with only one factor.

Why then could the regression with a fewer than R PLS factors produce more

accurate forecasts that the regression with R PLS factors does? There are two possible

answers. The first possible answer is that for the simulated data used for Tables A.4

– A.7, the variances of the three factors (fht) are not su�ciently distinct for PLS

regressions unless exceptionally large data are used. For example, when ax = 0.1 is

chosen, the three factors’ variances are 0.3, 0.5, and 0.7, respectively. It is possible

that in small samples, these di↵erences in factor variances may not be su�cient to

make all of the three PLS factors have independent forecasting power for the target

variable. In unreported experiments, we have tried to use more dispersed variances for

the three factors. However, under our data generating setting, we need to assign very

small variance to one factor to assign much greater variances to two other factors. For

that case, the factor with the smallest variance has too weak explanatory power for

both predictor variables and the target variable. Unless the sample is exceptionally

large, the factor models constructed with such factors are more or less similar to two

or one factor models. For this reason, in the unreported experiments, the PLS1 and

PLS2 regressions very often outperform the PLS3 regression.

The second possible answer is the following. While the PLS factors used for our
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simulation exercises are generated by the NIPLS algorithm, they are the orthogonal-

ized versions of the PLS factors examined in section 1.2. The asymptotically dominant

term in the first R PLS factors (P̃̃P̃P PLS
1:R ) is GGG0DDD0(R), where DDD0(R) is a Vandermonde

matrix. It is well known that Vandermonde matrices are highly ill conditioned ma-

trices in the sense that the columns of a Vandermonde matrix are highly collinear;

see Dax (2017). Thus, the first one or two columns of the matrix GGG0DDD0(R), and cor-

respondingly, the first and second PLS factors may contain most of the forecasting

power for the target variable vector yyy.

1.3.5 Spurious Correlation Problem and Relative Sizes of N and T

Our asymptotic results suggest that depending on whether T is dominantly larger

than N or not, use of more than K PLS factors for forecasting could exaggerate in-

sample goodness of fit of the PLS regression and produce poor forecasting outcomes.

Thus, we now examine how sensitive the finite-sample performances of the regressions

with more than K PLS factors to the N � T ratio. We generate data using the

parameter values for the benchmark case. we investigate how the performances of the

PLS regression change as the ratio N/T varies.

Figure A.2 shows how the out-of-sample forecasting performances of the PLS

regressions with di↵erent numbers of PLS factors change as N increases while T is

fixed at 100. The figure for the case with N = T = 100 is identical to Figure A.1.

Figure A.2 indicates that when N/T is low, the regressions with more than 4 PLS

factors do not significantly underperform the regressions with smaller number of PLS

factors. For example, when N = 20, use of more than 4 PLS factors does not incur

seriously inflated in-sample R2 nor deteriorated R2
OS. It appears that the problem of

spurious correlations between PLS factors and the target variable is not severe when

N is substantially smaller than T . However, Figure A.2 also shows that the spurious
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correlation problem becomes substantial as N increases. For the cases with N closer

to or greater than T , the PLS regression produces more highly inflated in-sample R2’s

and lower R2
OS’s more PLS factors are used.

Figures A.3 and A.4 report the simulation results obtained using di↵erent N with

T = 200 and T = 500. All other data generating parameter values are the same as

those which are used for the benchmark case. While greater T values are used, the

N �T ratios used for the two figures are the same as those which are used for Figure

A.2. The reported results in Figures A.3 and A.4 are not materially di↵erent from

those in Figure A.2. Overall, the results reported in Figures A.2 – A.4 are consistent

with the notion that the severity of the spurious correlation problem and the N � T

are inversely related.

1.3.6 Spurious Correlation Problem and Explanatory Power of Latent Factors

Our asymptotic results indicate that the spurious correlation problem occurs by the

interaction of the error terms in the target variable and predictor variables. Conse-

quently, we can expect that the spurious correlation problem would be mitigated as

the variances of the errors decrease, or equivalently as the explanatory power of the

latent factors for the target variable and predictor variables. Thus, we now examine

how the forecasting performances of the PLS regression would change as ay or ax

increases.

Figure A.5 shows how the significance of the spurious correlation problem of the

PLS regression changes as the value of ay (explanatory power of latent factors for

the target variable) changes. The values of other data generating parameters used for

Figure A.5 are the same as those that are used for Figure A.1. Figure A.5 shows that

the significance of the spurious correlation problem falls as ay increases (the variance

of the error term in the target variable falls). When ay = 0.1, the regression with 10
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PLS factors yields about negative 100 percent points R2
OS. This means that the MSE

of the forecast from the PLS regression is twice as large as the MSE of the historical

mean of the target variable. In contrast, when ay = 1 (no error in the target variable),

the R2
OS is peaked when two PLS factors are used and it remains little changed as

more PLS factors are used. It is clear that the degree of spurious correlation between

PLS factors and the target variable is strongly negatively related to the explanatory

power of the common factors for the target variable (ay).

Figures A.6 – A.7 report the results obtained replicating the simulation exercises

used for Figure A.5, but with greater values of ax (0.5 and 0.7, respectively). The

patterns of the PLS forecasting performance reported in Figures A.6 and A.7 are

virtually identical to those that are reported in Figure A.8.

We now examine how the significance of the spurious correlation problem is related

to the explanatory power of the common factors for predictor variables (ax). To do

so, we generate data with many di↵erent values of ax (from 0.1 to 0.99), but with

the same values for other data generating parameters that are used for Table A.1 and

Figure A.1. Figure A.8 reports the results for the cases with ay = 0.7. When ax = 1,

that is, when the four common factors can perfectly explain predictor variables, the

5th PLS factor is a perfect linear combination of the first 4 PLS factors. For this

reason, the maximum value of ax we use is 0.99. Since ay = 0.7 is used, the regression

with two PLS factors is expected to produce the in-sample and out-of-sample R2’s of

about 70%.

The main findings from Figure A.8 are the following. First, when ax is small (the

explanatory power of the latent factors for predictor variables is weak), the forecasting

power of the regression with the first 2 PLS factors is somewhat lower than what our

asymptotic results suggest. Although it is not clear from the figure, the R2
OS from

the regression with 2 PLS factors is always lower than the expected level of 70%.
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However, as ax increases, the R2
OS from the regression with the two PLS factors rises

close to 70%.

Second, when ay is low, the in-sample R2’s from the regressions with 3 and 4

PLS factors are higher than 70%, while the R2
OS’s from the same regressions are

lower than 70%. This result contradicts our asymptotic results predicting that the

third and fourth PLS factors do not have additional in-sample explanatory power

and additional out-of-sample forecasting power. The result seems to be consistent

with the notion that the uninformative PLS factors (the third and fourth factors)

may also su↵er from the spurious correlation problem in finite samples, especially

when ax is low. The spurious correlation e↵ect on the third and fourth PLS factors

weakens as ax increases. For the extreme case with ax = 0.99, the third and fourth

PLS factors perform as our asymptotic results predict: use of the two factors does

not decrease the forecasting power of the PLS regression. In addition, use of the two

factors does not inflate the in-sample goodness of fit of the regression.

Figure A.8 shows that the regressions with more than 4 PLS factors su↵er from

the spurious correlation e↵ect, even if ax is near to one: the average in-sample R2 are

inflated and the R2
OS deteriorates as more PLS factors are used.

As Figures A.9 and A.10 show, the results from Table A.8 remain unaltered even if

di↵erent values are used for ay (0.5 and 0.3). The patterns of the changes in in-sample

and out-of-sample performances of the PLS regressions by using di↵erent numbers of

factors used are similar across Figure A.8 to A.10.

1.3.7 Forecasting with Uninformative and Spurious PLS Factors

We here consider how the uninformative and spurious PLS factors would influence

the quality of the PLS forecast. Figures A.11 and A.12 highlight the performances of

the uninformative and spurious factors in finite samples. For the figures, we generate
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the data using the benchmark parameter values. For the benchmark case, there are

two informative PLS factors and two uninformative factors, and the rest of the PLS

factors are spurious factors. We focus on how use of the two uninformative factors

and other spurious factors would influence the quality of the PLS forecasts. We have

seen from Figure A.1 and other figures that using more than the informative PLS

factors decreases the accuracy of the PLS forecast.

Figure A.11 zooms up how the patterns of the in-sample and out-of-sample per-

formances of the regressions using uninformative and spurious factors change as the

explanatory power of the latent factors for predictor variables (ax) increases from 0.2

to 0.995. The average in-sample R2’s from the regressions with di↵erent numbers of

PLS factors are marked by red squares connected with dotted line. The R2
OS’s are

marked by blue circles connected with solid line. For both lines, the lighter color is

associated with the greater value of ax. The average in-sample R2’s and the R2
OS’s for

the case with ax = 0.2 are identical to those that are reported in Figure A.1.

When predictors have weak factor structure (low ax), using the two uninforma-

tive factors increases the average in-sample R2 and decreases the R2
OS from the PLS

regression. Using spurious factors additionally inflates the in-sample R2and decreases

the R2
OS even more. When ax is extremely high (0.995), the two uninformative PLS

factors do not inflate the in-sample R2 and do not hurt the forecasting accuracy. Both

the average in-sample R2 and R2
OS match the value of ay (0.7) that is used to gen-

erate data. In contrast, using the spurious PLS factors additionally still inflates the

in-sample R2and deteriorate the forecasting accuracy of the regression. The case of

ax = 0.995 is, of course, an extreme case. For more empirically plausible cases, using

the uninformative PLS factors tends to inflate the in-sample R2 while decreasing the

forecasting power of the regression.

For Figure A.12, we experiment the same simulations conducted for Figure A.11,
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but with larger data. The data are generated with N = T = 2000. In Figure A.12,

using the two uninformative factors no longer hurts the forecasting power of the

regression, even when ax is low. However, using the two uninformative PLS factors

tends to inflate the in-sample fit of the regression unless ax is very high. For any value

of ax, using a larger number of spurious PLS factors inflates the in-sample fit and

weakens the forecasting power of the regression.

In order to check how the results from Figures A.11 and A.12 would change if

more uninformative factors are added to predictor variables, we conduct the same

simulation exercises used for Figures A.11 and A.12, but with a six-factor model with

⌦⇤
FFF = diagdiagdiag(3, 3, 3, 5, 5, 5) and ���⇤ = (1, 0, 0, 1, 0, 0)0. The results from this additional

experiment are reported in Figures A.13 and Figure A.14. For the factor model used

for the figures, there are two informative and four uninformative PLS factors.

Figure A.13 reports the results obtained using the data with N = T = 100

as in Figure A.11. From Figure A.13, we can see that the regression using the 6th

PLS factor, which is the fourth uninformative factor, produces inflated in-sample

R2’s and decreased R2
OS’s, even when the 6 latent factors have extremely strong

explanatory power for predictor variables (ax = 0.995). When ax < 0.5, all of the four

uninformative factors perform as spurious factors do: they inflate the in-sample R2

and deteriorate the R2
OS from the regression.

Figure A.14 reports the result from the data with N = T = 2, 000 as in Fig-

ure A.12. 3 out of 4 uninformative factors perform more consistently with what our

asymptotic results predict. However, the last uninformative factor (the 6th PLS fac-

tor) behaves more like a spurious factor, especially when ax is low. The main point

from Figures A.11 – A.12 and A.13 – A.14 is that using uninformative PLS factors

can significantly lower the accuracy of the PLS forecast, unless data are unusually

large.
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1.3.8 Summary

The main messages from our simulation results so far can be summarized as follows.

First, the forecasting with PLS factors could be a viable alternative to the forecasting

with PC factors, especially when the common factors in predictor variables have

strong explanatory power for the target variable while having weak power for predictor

variables.

Second, the regressions using spurious factors substantially inflate in-sample good-

ness of fit results while producing significantly poorer out-of-sample forecasting re-

sults. Consistent with our asymptotic results, the negative e↵ect of using the spurious

factors is weaker when the data with T substantially larger than N are used for the

regression, and/or when the common factor in predictor variables have strong ex-

planatory power for the target variable.

Third, the asymptotically optimal number of PLS factors for forecasting is R, the

number of the factor groups sharing the same asymptotic variances that are correlated

with the target variables. However, the number of the PLS factors that achieves the

maximum forecasting power in finite samples is often smaller than R, especially when

R is large. This problem does not disappear even if very large data are used (e.g.,

data with N = T = 2000). The optimal number of PLS factors for forecasting in finite

samples is close to the asymptotically optimal number, when T is substantially larger

than N or explanatory power of the common factors in predictor variables for the

target variable is very strong. Interestingly, these cases are precisely the cases in which

the e↵ects of the spurious correlations between PLS factors and the target variable

are weak. It appears that under the environment in which the spurious correlation

between PLS factors and the target variable is not asymptotically negligible, using

the asymptotically optimal number of PLS factors would rather produces poorer
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forecasting results than using a fewer number of PLS factors.

Fourth, using uninformative PLS factors can decrease the forecasting power of the

regressions with PLS factors, especially when the spurious correlation between PLS

factors and the target variable is strong. One important implication is the following.

The total number (K) of factors in predictor variables can be estimated by numerous

estimation methods, e.g., Bai and Ng (2002), Onatski (2010), Alessi et al. (2010), and

Ahn and Horenstein (2013), among many. However, our simulation results indicate

that using the estimates from these methods for the number of the PLS factors for

forecasting may not be a good practice. Many of the K PLS factors could be uninfor-

mative factors for the target variables and using the large number of uninformative

PLS factors can produce poorer forecasting results.

Fifth and finally, using the first PLS factor only may not be a bad alternative

when the optimal number of the PLS factors for forecasting is not readily available.

Our simulation results indicate that a large portion of the information for the target

variable contained in PLS factors is in the first PLS factor. When the asymptotically

optimal number of factors for forecasting is more than one, the forecasting gain by

using more PLS factors in addition to the first PLS factor is not substantial. Also,

the regression using a fewer than the asymptotically optimal number of PLS factors,

often produces more accurate forecasts than the regression using the asymptotically

optimal number of PLS factors. The forecasting loss by using only the first PLS factor

seems to exceed the loss by using too many PLS factors.

1.3.9 Cross-Validation Estimation for the Optimal Number of PLS Factors

One important question we have not addressed yet is how we can determine the opti-

mal number of PLS factors for forecasting. In our asymptotic analysis, the number of

informative PLS factors (R) is the optimal number. However, our simulation results
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indicate that the optimal number of the PLS factors in finite samples is often smaller

than R. As an alternative to determine the optimal number of PLS factors for forecast-

ing in finite sample, we examine the finite-sample performances of a cross-validation

method.

For the cross-validation method we consider, we divide the whole available data

(with T + 1 observations) into two parts, training and test data. Let us use int(⇧)

to denote the integer part of the inside of the parenthesis. The initial training data

consist of the observations from t = 2 to t = int((0.7)(T +1)) ⌘ T ⇤+1, while the test

data set consists of the observations from t = int((0.7)(T +1)) ⌘ T ⇤+2 to t = T +1.

For a given time s 2 [T ⇤ + 2, T + 1], we forecast ys using a given number of PLS

factors and the parameter estimates obtained from the training data from t = 2 to

t = s–1. Let MSE(q) be the MSE of the forecasts for ys obtained using q PLS factors.

The cross-validation estimate of the optimal number of PLS factors, which we denote

by R̂CV , is the value of q that minimizes MSE(q).

In Tables A.8 to A.11, we compare the forecasting performances of the regressions

with di↵erent numbers of PLS factors (q = 1, 2, ..., 10) and the regression using the

estimated number of PLS factors by the cross-validation method. We refer to the

regression with q PLS factors as “PLSq” regression. To save space, we only report the

forecasting results from the PLS1 to PLS6 regressions, while up to 10 PLS factors

were calculated, and cross-validation were conducted over the 10 PLS factors in all

experiments. For the results reported in Tables A.8 to A.10, we use a five-factor

model with ⌦⇤
FFF = diagdiagdiag(3, 3, 5, 5, 7) and ���⇤ = (1, 0, 1, 0, 1)0. For this model, the first 3

PLS factors are informative ones and the next 2 PLS factors are uninformative ones:

R = 3 and K = 5. The other parameters are set at their benchmark values: ax = 0.2,

ay = 0.7, and ⇢f = ⇢e = ⇢c= 0.5.

The main findings from the results reported in Table A.8 – A.10 are as follows.
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First, consistent with the results reported in Tables A.4 and A.5, the PLS2 regression

very often outperforms the PLS3 regression despite that q = 3 is the asymptotically

optimal number of PLS factors for forecasting. Second, the forecasting performance of

the cross-validation augmented PLS (CV-PLS) regression is generally comparable to

that of the PLS2 regression. Third and finally, the performance of the PLS1 regression

is not significantly dominated by that of the CV-PLS regression. In fact, the PLS1

regression often outperforms the CV-PLS regression, especially when the explanatory

power of the factors for the target variable is low, as Table A.10 shows. When the

CV-PLS regression outperforms the PLS 1 regression, the gain by using the CV-PLS

regression instead of the PLS1 regression is generally marginal. In addition, the out-

of-sample performance of the PLS1 regression is not far behind that of the PLS2

regression.

Lastly, we consider a special case that is inspired by Groen and Kapetanios (2016).

They have considered the cases in which all of the predictor variables xit are indi-

vidually directly correlated with the target variables, not just indirectly through the

latent factors fff ⇧t. Our asymptotic analysis does not consider such cases. However, it

would be interesting to see how the CV-PLS regression would perform for such cases.

We here consider a special case in which some predictors have some direct fore-

casting power for the target variable. Specifically, we consider a case in which the first

predictor has some direct forecasting power for the target variable yt+1:

x1t = ⌃5
h=1�hif

⇤
ht + e⇤1t; e⇤1t = ⇢1/2eu u⇤

t+1 + (1� ⇢eu)
1/2v⇤1t (1.30)

where u⇤
t+1 = (1� ay)

1/2ut+1 and the v⇤1t are random draws from N(0, 1). All other

predictors and the target variable are generated by the process explained in subsection

1.3.1. Observe that when ⇢eu = 1, the idiosyncratic component of x1i, e⇤1t, has perfect

information about the error term of the target variable, ut+1. While we only consider
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the case in which only one predictor variable has some direct forecasting power for the

target variable, our simulation results would have some implications for more general

cases in which a small number of predictor variables have some direct forecasting

power for the target variable.

Even if some predictor variables have direct forecasting power for the target vari-

able, the PC factors do not convey such information because they are extracted with-

out using the information about correlations between predictor variables. However,

the PLS factors may contain the information generated by the correlations between

individual predictors and the target variable.

We generate data using the same benchmark data generating parameter values

used for Tables A.8 – A.10, except that the first predictor variable is generated by

(1.30). Table A.11 reports some of the simulation results. When ⇢eu is low, the PLS2

regression outperforms other PLS regressions including the CV-PLS regression. This

result is consistent with the results reported in Tables A.8 – A.10. However, one

interesting observation from Table A.11 is that the spurious correction problem by

using the sixth PLS factor, which is a spurious factor, mitigates as ⇢eu increases.

In fact, for the cases with ⇢eu � 0.8, the PLS6 regression is the best performer for

forecasting, among PLS1 to PLS6. For the cases with ⇢eu � 0.9, the PLS6 regression

significantly outperforms the PLS1 – PLS3 regressions.

The following conjecture seems to be reasonable for these results. When predic-

tors do not have strong direct forecasting power (forecasting power conditional on the

common factors) for the target variable, some parts of the PLS factors become spuri-

ously correlated with the target variables. Using too many PLS factors amplifies the

e↵ect of the spurious correlation and hurts forecasting accuracy. However, when some

predictors have strong direct forecasting power, the spurious components of the PLS

factors are asymptotically dominated by the informative parts of the PLS factors.
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Consequently, the e↵ect of the spurious correlation is no longer prevalent.

Another interesting observation from Table A.11 is that when ⇢eu � 0.9, the CV-

PLS regression outperforms the PLS6 regression, especially when larger data are used.

In addition, the mean of R̂CV exceeds K = 5 (the total number of latent factors in

predictor variables). These results indicate that cross-validation methods are most

useful for the PLS regression when some predictors have strong direct forecasting

power of which economists are not aware. The gain by using the cross-validation

method could be substantial. Our simulation results indicate that PLS users should

be advised to estimate the optimal number of PLS factors by some cross-validation

methods.

1.4 Empirical Application

In this section, we conduct a typical empirical study to demonstrate applicability of

our results. We use actual macroeconomic data. Total 178 monthly variables were

collected from FRED-MD data of McCracken and Ng (2016), FRED and ISM (Insti-

tute for Supply Management) to closely mimic the dataset Stock and Watson (2002b)

used. The data have 732 time series observations, from 1959:01 to 2019:12. Following

Stock and Watson (2002b) and McCracken and Ng (2016), we categorize the vari-

ables in the data into eight major groups: output and income; labor market; housing;

consumption, orders and inventories; money and credit; interest and exchange rates;

prices; and stock market.

We conduct 12-month-ahead forecasting exercises. To do so, we transform the data

to make them stationary. The transformation methods are first or second di↵erencing

(in log form). The detailed information is listed in the appendix. We also standardize

the transformed variables so that they have unit variances and zero means. Finally, we

screen the data for any possible outliers. We drop the outliers from the data and treat
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them as missing values. The final data set contains a balanced panel of 108 variables

and an unbalanced panel of 70 variables. The missing values are estimated by the EM

algorithm of the PC method with the number of common factors estimated by the

method of Ahn and Horenstein (2013).

The following forecasting equation is used for our data analysis:

ŷ12T+12|T = â+ b̂0̂b0̂b0f̂̂f̂f ⇧T + ⌃p
h=1ĉhyT�h+1 (1.31)

where f̂̂f̂f ⇧T is the K ⇥ 1 factor vector estimated by the PC or PLS methods and â,

b̂̂b̂b and ĉh are OLS estimates. The maximum number of the AR coe�cients and the

maximum number of the factors in f̂̂f̂f ⇧T are restricted to be 6 and 12, respectively.

The number of factors used matters for predictive power. We tried several exper-

iments with di↵erent choices of K. For both PLS and PCA, the forecast with given

k, were k = 1, 2, ..., 12 will be tested. (Denoted as PLS k and PCA k) This exer-

cise always chooses the same number of factors in all time series. Tables A.12 and

A.13 display results for PLS k and PCA k, with k = 1, 2, 3, 4. Also, the Bayesian

Information Criteria of Stock and Watson (2002b) will be used for PLS and PCA

to determine k (denoted as PLS BIC and PCA BIC). Finally, the consistent estima-

tor for the number of true factors, Ahn and Horenstein (2013)’s eigenvalue test will

be applied to PCA forecasts (denoted as PCA AH) and Cross-Validation method is

applied to PLS forecast (denoted as PLS CV). The lag of the dependent variable,

p is decided by BIC, following Stock and Watson (2002b) for all factor estimation

methods, except for PLS forecast with cross-validation. For PLS CV, both k and p

were chosen by cross-validation which will be discussed more in detail later.

The target variables y12T+12 are generated as following. We treat real and price

variables as I(1) and I(2) variables in logarithms, respectively, following Stock and

Watson (2002b). For instance, industrial production (IP) is a real variable and hence
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the target variable is generated by the following equation:

y12T+12 = (1200/12) ln(IPT+12/IPT ) and yT = 1200 ln(IPT/IPT�1)

On the other hand, the Consumer Price Index (CPI) is price variable and the target

variable is

y12T+12 = (1200/12) ln(CPIT+12/CPIT )� 1200 ln(CPIT+12/CPIT )

and yT = 1200� ln(CPIT/CPIT�1)

The y12T+12 in the above equations is the target variable being forecasted and yT

and yT�h where h = 1, 2, ..., p are used as lagged dependent variables in the main

forecasting framework (1.31). Since PLS estimate factors by using target variables,

we should have enough time series observations of the target variable when PLS

factors are estimated. Target variables with too much missing values may lead to

unstable PLS factors and hence makes the empirical analysis inaccurate. Therefore,

only the variables whose time-series observations are more than 80% of the first

factor estimation period, are forecasted in the practice. Due to this reason, we have

144 di↵erent target variables.

At time T , the target variables are generated, factors are estimated and a model

with k and p is chosen. Then the forecasting equation (1.31) is estimated by regress-

ing y12t+12 onto the estimated factors f̂̂f̂f ⇧t and other observables, t = 1, 2, ..., T . This

procedure yields the estimated parameters, â, b̂̂b̂b and ĉh. Given the estimated factors,

observables, selected model and parameters, the forecast for y12T+12 is made, which is

denoted as ŷ12T+12|T in (1.31). The same procedure is repeated at T + 1, forecasting

y12T+13. Therefore, this exercise is simulated real-time forecasting practice.

More specifically, the first forecasting starts from T =1970:01 to forecast the target

variable at 1971:01 (T +12). Using predictors from 1959:03 to 1970:01, the factors f̂̂f̂f ⇧T
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are estimated by PLS and PCA, where T =1970:01. The first two-month observations

are dropped due to possible second di↵erence (in log) in the transformation procedure.

Then the model is chosen for k and p. The first 12-months data is used for initial

conditions, hence the parameters â, b̂̂b̂b, and ĉh are estimated using target variable

y12t+12, estimated factors and observable variables, from t =1960:01 to 1970 : 01. Then

the final forecast ŷ12T+12|T is made, following (1.31) to forecast y12T+12. This procedure

repeats until 2018:12. After all the 144 number of {ŷ12t+12|t}2018:12t=1970:01 are generated by all

methods, the mean squared errors (MSE) is calculated by comparing {y12t+12}2018:12t=1970:01

with {ŷ12t+12|t}2018:12t=1970:01.

For PLS, cross-validation is also used for model selection. The training and test

set are 70% and 30% of the available data, respectively. For instance, the first fore-

cast was made in 1970:01. In this case, since y12t+12 is defined as a function of raw

target variables at t + 12 and t as the above equation show, the available infor-

mation of the target variable is {y12t+12}1969:01t=1959:01, while the available predictors are

{xt}1970:01t=1959:01, at 1970:01. The first 70% of these time series is close to 1966:04. There-

fore, we pretend only the data, {xt}1966:04t=1959:01 and {y12t+12}1965:04t=1959:01 are available to us

(training set) and estimate factors, select the model and forecast {ŷ12t+12|t}t=1966:04

using only those available data. Repeat this process at 1966:05 and continue until

1969:01 is reached (test set). Then compare the predicted value {ŷ12t+12|t}1969:01t=1966:04 with

the actual value available to us, {y12t+12}1969:01t=1966:04 and pick the pair (p⇤CV , k⇤
CV ) that

gives the best out-of-sample R2 in this test set. With the pair of (p⇤CV , k⇤
CV ), make a

forecast ŷ12t+12|t=1970:01, using the estimated k⇤
CV ⇥ 1 dimensional PLS factors F̂1970:01

with lagged value y1970:01, ..., y1970:01�p⇤CV +1. This process will give PLS forecasts with

cross-validation.

The results are presented in the following two tables. The entries are the percent-
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age out-of-sample R2, which is

100⇥ [1�RMSE(method)] = 100⇥

1� MSE(method)

MSE(by mean)

�

where the relative mean squared error (RMSE) of the given factor estimation method

is the mean squared errors relative to that of a forecast based on a näıve historical

mean of the target variable.

Table A.12 displays out-of-sample R2 of di↵erent factor estimation methods for

forecasting eight important variables that Stock and Watson (2002b) focused. Table

A.13 is the forecasting results for the whole 144 target variables. For Table A.13, after

all the target variables are forecasted, they are collected according to the category

they belong to. Then the median out-of-sample R2 of each category is reported in

Table A.13. Table A.12 and A.13 reveal interesting findings. First, consistent with

the simulation results, incorporating more PLS factors deteriorates forecasting power

significantly. For some variables, incorporating even the third PLS factor yields worse

forecasting performance than a näıve forecast based on the historical mean of the

target variable, such as Personal Income. Some target variables show improvement

when we use more PLS factors, such as Producer Price Index. However, the predictive

improvement even in this case is marginal and PLS1 still gives a fairly good result.

Second, PLS CV, which is the PLS forecast with cross-validation, does not domi-

nate PLS1. Rather, the PLS CV is very often dominated by forecasting performance of

PLS1. This result is again consistent with the simulation results. Third, PLS BIC show

significantly worse performance. Even forecasts based on a historical mean strictly

dominates PLS BIC forecast in many cases. This is not surprising, because the BIC

choosesk, to maximize the in-sample fit with some penalties. Therefore, the number

of PLS factors that explains the in-sample movements may not necessarily forecast

the future variable well. Rather, it is most likely that the PLS factors that explain
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the in-sample variation well, would give a bad forecasting performance, due to spuri-

ous correlation property of PLS factors. As the tables confirm, PLS forecasts where

the number of PLS factors chosen by BIC, actually poorly performs in the data.

Finally, PLS1 outperforms other alternative methods, from PLS2 to PCA AH. Some-

times PLS1 does not give the best results, but the predictive power between the best

forecasts and PLS1 is similar.

1.5 Conclusion

This paper has considered the PLS regression to forecast a single target variable

using many predictors. Asymptotic and finite-sample properties of the PLS factors

are derived. Our main findings from our asymptotic analysis are the following. First,

the number of the necessary PLS factors for the asymptotically optimal forecasting

crucially depends on the covariance structure of the common factors in predictor vari-

ables. Previous studies routinely assume that all of the factors have distinct asymp-

totic variances. However, our results indicate that the asymptotical optimal number

of the PLS factors for forecasting is determined by the number of distinct asymptotic

variances of the common factors. If all factors have the same asymptotic variances,

the optimal number of PLS factor is one. Second, the regression with more than the

total number of factors could substantially poor forecasting results.

The main findings from our simulation exercises are the following. First, use of

more than the asymptotically optimal number of PLS factors generally reduces fore-

casting power of the PLS factors. Second, the actual optimal number of PLS factors

is often smaller than the asymptotically optimal number, unless unrealistically large

data are used. Third, the first PLS factor contains the most predictive information

about the target variable in finite samples. The additional explanatory power that

can be obtained by the second or more PLS factors is not substantial. Fourth and
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finally, our simulation results indicate that the regression with the number of PLS

factors determined by some cross-validation methods can dramatically increase fore-

casting power, when some predictor variables have strong direct power for the target

variable.
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Chapter 2

FACTOR-AUGMENTED FORECASTING IN BIG DATA

2.1 Introduction

Recent technological improvements lead economists to gain access to larger datasets.

Given that the traditional econometric models, such as Ordinary Least Squares, may

not work properly in a large data set, factor analysis is commonly used to analyze big

data. Factor model assumes that all variables are generated by a few latent reference

variables, or factors. Factor-augmented forecasts, also known as di↵usion index fore-

casts, estimate the latent factors from many predictors and then augment them to

the forecasting equations, along with other observable variables. Many studies have

found empirical evidence that factor-augmented forecasts may produce better fore-

casting performance than traditional forecasting models using autoregression, VAR,

or structural models.1

In this sense, estimating factors accurately is crucial for better forecasting results.

Many factor estimation methods are proposed, but it is di�cult to compare them

comprehensively. Theoretically, they rely on di↵erent assumptions and it may be

hard to expect how these factor estimators behave when these assumptions are not

satisfied. Empirically, they often forecast di↵erent target variables, using di↵erent

dataset, under di↵erent forecasting framework.

The goal of this paper is to analyze comprehensively the predictive performance

of various, widely used factor estimations, in a coherent forecasting framework.2 This

1Stock and Watson (1999) and Stock and Watson (2002b), among many, show empirical evidence

that supports this finding.
2D’Agostino and Giannone (2012) and Boivin and Ng (2005) among many, compare the forecast-
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paper has three contributions to the existing literature. First, it provides a compre-

hensive predictive evaluation of many factor estimation techniques under the same

forecasting framework. Since di↵erent factor estimation methods often estimate fac-

tors in di↵erent ways, incorporating them in the same data and forecasting scheme

is not easy. More specifically, seven di↵erent factor estimation methods are tested:

Principal Component Analysis, Weighted Principal Component by Boivin and Ng

(2006), One-sided Estimation from Forni et al. (2005), Targeted Predictors from Bai

and Ng (2008a), Partial Least Squares from Kelly and Pruitt (2015) and Ahn and

Bae (2020), Two-step Estimation of Doz et al. (2011) and Quasi-Maximum Likelihood

Estimator of Doz et al. (2012). To provide a coherent analysis, I construct big data

that contain major U.S. macroeconomic and finance variables. 148 target variables

are forecasted, under three forecasting equations, across three di↵erent forecasting

horizons, using seven factor estimation methods with 11 information criteria that

determine the number of estimated factors for forecasting.

The second contribution of this paper is to investigate the common properties of

various factor estimation methods and information criteria. I analyze weaknesses and

strengths of each factor estimation method in comprehensive environments. Finally,

this paper contributes to the existing literature by providing an empirical guidance for

forecasting practice. In particular, incorporating di↵erent factor estimation methods

and information criteria gives 101 possible combinations. Among all the combinations,

I find that the first Partial Least Squares factor (PLS1) often outperforms other

methods.

This paper provides four novel findings. First, the number of factors used in fore-

ing performances of di↵erent factor estimation methods. They focus on comparison of the static and

dynamic principal component methods. On the other hand, this paper aims to provide comprehensive

predictive evaluations of commonly used factor estimation methods.
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casting is important for predictive power. Incorporating more factors may not yield

better forecasting performance. Rather, forecasting power often deteriorates after a

certain number of factors are used. The consistency of certain estimated factors to

the true factor space has been proven by many studies.3 The first finding of this pa-

per contributes to the existing literature by providing an empirical evidence that the

forecasting power may deteriorate if we estimate more than those factors.

Second, I find that consistently estimated number of factors in data, may not

lead to the best result in empirical forecasting practice. I investigate the forecasting

performance of 11 information criteria that determine the number of factors used

in forecasting. Inspired by the first finding, this experiment includes number of fac-

tors estimation methods popularly used in practice: Bai and Ng (2002), Bai and Ng

(2007), Onatski (2010), Alessi et al. (2010) and Ahn and Horenstein (2013), as well as

Bayesian Information Criteria implemented by Stock and Watson (2002b). For PLS,

Ahn and Bae (2020) find from simulations that the first PLS factor (PLS1) very often

yields better forecasting performance than forecasting with more PLS factors, even

when PLS1 is not theoretically optimal to achieve the maximum forecasting power

asymptotically. Inspired by this finding, PLS1 is tested as well. Overall, the forecasts

obtained by these information criteria perform well, except for PLS. PLS1, which is

not consistent, often outperforms other forecasts. On the other hand, PLS-augmented

forecasts with other information criteria may have worse predictive power. This find-

ing implies that consistent estimators for the true number of factors in data, may not

lead to the best predictive results in empirical forecasting practice.

3Connor and Korajczyk (1986), Stock and Watson (2002a) and Bai (2003) for Principal Com-

ponent Analysis, Kelly and Pruitt (2015) and Ahn and Bae (2020) for Partial Least Squares, Doz

et al. (2011) for Two-step estimator, Doz et al. (2012) for Quasi-Maximum Likelihood estimator and

Forni et al. (2005) for One-sided estimation.
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Third, the best forecasting performance of each factor estimation, chosen across

di↵erent information criteria is similar. However, forecasting power varies significantly

across di↵erent information criteria, even when the same factor estimation method

is used. Therefore, the choice of factor estimation method, as well as information

criteria, is crucial in the empirical forecasting exercise. More specifically, for each

factor estimation method, I choose the best forecasting performance out of the 11

information criteria. These 7 best results are similar.4 However, there is no dominant

information criterion that gives the best results for all the target variables, other

than PLS1 for PLS. Therefore, the combination of information criteria and factor

estimation method is important for forecasting performance.

Finally, I find that PLS often outperforms many factor estimation methods. More

specifically, PLS1 usually shows significant improvement upon other factor estima-

tions that involve more discretion about the number of factors and parameter values.

Related to the third finding, PLS1 yields the forecasting performance close to the

best result from all combinations of 7 factor estimation methods and 11 information

criteria. The strong predictive power of PLS comes from its factor estimation strategy.

PLS estimates factors using not only predictors but also a target variable, which can

explain the significant forecasting improvement of PLS.

This paper is organized as follows. Section 2 discusses econometric framework and

introduces factor estimation methods used in this article. Section 3 explains the data

and forecasting experiment design. Section 4 reports and interprets empirical results

and Section 5 concludes.

4 This result may be explained by the fact that most of the seven methods have been proven to

be consistent estimators to the true factor space.
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2.2 Forecasting Model and Factor Estimation Methods

2.2.1 Approximate Dynamic Factor Model

Let yt+1 be the one-period ahead future value of yt. yt+1 is a variable being forecasted,

or referred to as a target variable in this paper. xt is N ⇥ 1 vector of predictors. For

all the time series observations, t = 1, · · · , T , denote the T ⇥N matrix of predictors

as X, where X = [x1, x2, · · · xT ]
0. Both forecast target yt+1 and xt have mean zero. If

(yt+1, xt) follow a dynamic factor model, we can write the model as following.

yt+1 = �(L)ft + �(L)yt + "t+1

xit = �i(L)ft + eit

(2.1)

where the dynamic factor ft is a q⇥1 vector and �(L), �(L) and �i(L) are lag polyno-

mials. Unlike static factor model where only the contemporaneous factor ft a↵ects xit

and yt+1, the dynamic factor model allows the past factors to generate predictors and

the target variable. The approximate dynamic factor model allows weak correlation

among idiosyncratic errors, while the exact factor model assumes no correlation be-

tween idiosyncratic errors. It is assumed to satisfy E("t+1|ft, yt, xt, ft�1, yt�1, xt�1, ...) =

0. Therefore, if the factors and parameters, {ft}, �(L) and �(L) are known, the best

forecast for yT+1 is �(L)fT + �(L)yT .

Suppose further that the lag polynomials �(L), �(L) and �i(L) have finite or-

ders of at most s, such that �i(L) =
Ps

j=0 �ijL
j and �(L) =

Ps
j=0 �jL

j. Let Ft =

(f 0
t , f

0
t�1, ..., f

0
t�s)

0 be a r ⇥ 1 vector, where r = (s + 1)q, and ⇤ be a N ⇥ r matrix

whose i-th row is (�i0, �i1, ..., �is). Then we can represent the above dynamic factor

model (2.1) into a static representation.

yt+1 = �Ft + �(L)yt + "t+1

xt = ⇤Ft + et

(2.2)
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where � = (�0, �1, ..., �s) and et is a N ⇥ 1 vector of et = (e1t, e2t, ..., eNt)
0. The

above model (2.2) is referred to as a static representation of dynamic factor model

because the model (2.2) does not involve lag expression of factors.5 A dynamic factor

model with q dynamic factor can be represented by a static factor model with r static

factors. However, it should be noted that the dimension of ft is di↵erent from that of

static factor, Ft. Even though those two models (2.1) and (2.2) are identical, empirical

estimation of the two often involves di↵erent estimation strategies. Empirically, the

static framework in (2.2) estimates factors by time domain analysis and the dynamic

factor models in (2.1) are estimated by frequency domain analysis.6 Most of the factor

models that are implemented in this paper estimate the static representation of the

dynamic factor model, (2.2). On the other hand, One-sided estimation of Forni et al.

(2005) estimates the dynamic factors using (2.1).

The main empirical experiments of this paper focus on h-step forecasts. Following

Stock and Watson (2002b), I adopt a multistep forecast approach which is assumed

to be linear in Ft and yt with lags, and the h-step-ahead projection is used directly

to make the forecast. Therefore, changing the one-step ahead forecast of (2.2) to

multistep ahead version gives

yht+h = �h + �h(L)Ft + �h(L)yt + "ht+h
(2.3)

where yht+h is the target variable, or the h-step-ahead variable to be forecasted. The

subscript h implies the projection changes according to the forecasting horizon h.

Therefore, the forecasting equation (2.3) is the main econometric forecasting frame-

work in this paper.

5 Refer to Stock and Watson (2002b) for detailed explanation.
6 Refer to Bai and Ng (2008b) for more information.
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2.2.2 Factor Estimation Methods

Since the true factor Ft in the main forecasting equation (2.3) is not directly observable

in the data, we need to estimate factors. This paper analyzes comprehensively the

forecasting power of di↵erent estimated factors F̂t proposed by various literature.

Therefore, this chapter briefly introduces the history of factor analysis and explains

the factor estimation methods used in the empirical section.

Following Stock and Watson (2010), this paper categorizes the history of fac-

tor estimations into three generations. The earliest generation of factor estimation

calculates the Gaussian likelihood and estimate factors with the Kalman filter by

representing the factor structure into state space model. This method was used by

early literature of factor analysis: Engle and Watson (1981), Watson and Engle (1983),

Stock and Watson (1989), and Quah and Sargent (1993), among many. However, by

its nature, the number of parameters estimated in this model is increasing with N .

Due to this reason, this method is not commonly used to analyze big data. Therefore,

this method won’t be considered in this paper.

The next generation is nonparametric averaging methods. Nonparametric model

estimates factors directly from (2.2). As the name implies, the nonparametric models

do not require additional assumptions on distribution of disturbance or a model for

the factors. To simplify the problem, suppose that the number of the static factors r

is known. This approach finds N ⇥ r weight matrix ↵ = [↵1, ↵2, ..., ↵r] for a given r.

The weight vector ↵j, j = 1, 2, ..., r, is a N ⇥ 1 vector and the r⇥ 1 estimated factor

F̂t is calculated by F̂t = ↵0xt = [↵1, ↵2, ..., ↵r]
0xt. For all the time series observations,

t = 1, ..., T , the factor estimator F̂ is calculated as F̂ = X↵ = X[↵1, ↵2, ..., ↵r]. The

weight vector ↵j works as a cross-sectional average weight of predictors when the fac-

tors are estimated. Intuitively, nonparametric factor estimations use cross-sectional
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averaging of predictors to filter out the e↵ects of idiosyncratic errors and leave only

the variations from the factors. Since the comovements from factors are stronger than

the cross-sectional correlation among idiosyncratic disturbances, averaging predictors

would remove the e↵ects of idiosyncratic errors by the law of large numbers.7 Here-

after, an arbitrary factor estimator is denoted as F̂ , and F̂ is a general notation for

factor estimator, not restricted to any specific factor estimation method.

Principal Component Analysis (PCA)

Principal Component Analysis (hereafter PCA) is one of the most commonly used fac-

tor estimation techniques in economics, as discussed by Stock and Watson (2002a,b,

2006), Bai and Ng (2002, 2006), Bai (2003), Bernanke et al. (2005), and Ahn and

Horenstein (2013), among many. PCA estimates factor loading ⇤ and factors F1, F2, ...,

FT by solving the following least-squares problem.

min
⇤, {Ft}Tt=1

1

NT

TX

t=1

(xt � ⇤Ft)
0(xt � ⇤Ft) (2.4)

subject to a normalization. The solution of this problem, ⇤̂ boils down to the scaled

r eigenvectors of the sample covariance matrix of predictors ⌃̂X = T�1X 0X, cor-

responding to the largest r eigenvalues. It is noteworthy that N ⇥ r weight ma-

trix ↵ = [↵1, ↵2, ..., ↵r] is the estimated factor loadings, ⇤̂, with the restriction of

⇤0⇤/N = Ir. The estimated factor F̂t is N�1⇤̂xt, which is simply obtained by regress-

ing predictors xt on the estimated factor loading ⇤̂. The estimated factors for all time

series are F̂ = N�1X⇤̂. As equation (2.4) shows, the objective of PCA is to estimate

factors that explains variance of predictors most.

PCA is widely used, because it is easy to estimate factors and the estimated factors

by PCA, F̂ , are consistent estimators for the true factor space up to rotation. (Connor

7 Refer to Stock and Watson (2016) for more information.
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and Korajczyk (1986), Stock and Watson (2002a) and Bai (2003)) However, many

factor estimation methods are proposed to improve upon PCA. This paper will focus

on two major improvements upon PCA among nonparametric factor estimations.

The first methods aim to improve e�ciency, which is a Generalized Principal

Component. The Generalized Principal Component and generalized least squares

(GLS) share the same intuition. If the variance of the idiosyncratic error is di↵erent

across predictors, generalized principal component can improve e�ciency by adjust-

ing weighting matrix in the least square problem of (2.4). Boivin and Ng (2006) and

Forni et al. (2005) among many, will be considered. On the other hand, the second

group aims to improve forecasting performance. Even though PCA is versatile, PCA

may not give the best forecasting result since PCA factors are only obtained from

predictors. If there is a forecast target variable of interest, the second group incor-

porates the information of the target variable when factors are estimated. Targeted

Predictors proposed by Bai and Ng (2008a) and Partial Least Squares investigated

by Kelly and Pruitt (2015), Groen and Kapetanios (2016) and Ahn and Bae (2020)

among many, will be considered.

Generalized Principal Components (Generalized PC)

PCA estimates the factor loading ⇤ and factors F by solving the least-square problems

in (2.4). The intuition of the Generalized Principal Components (hereafter General-

ized PC) is similar to that of Generalized Least Squares (GLS) that can possibly

improve e�ciency of Ordinary Least Squares (OLS) problem. If idiosyncratic errors

have di↵erent variance across predictors, or have cross-correlation, there can be an ef-

ficiency gain by modifying the problem (2.4) as follows. Let ⌃e be the true covariance
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matrix of idiosyncratic errors and solve the following weighted version of (2.3),

min
⇤, {Ft}Tt=1

1

NT

TX

t=1

(xt � ⇤Ft)
0⌃�1

e (xt � ⇤Ft) (2.5)

subject to a normalization. The estimated factor loadings obtained from this problem

are similar with (2.4), which is the r scaled eigenvectors of ⌃�1/2
e ⌃̂X⌃

�1/2
e

0
, corre-

sponding to the r largest eigenvalues. The factors can be estimated by F̂ = N�1X⇤̂.

Similar with (2.4), the N ⇥ r weight matrix ↵ = [↵1, ↵2, ..., ↵r] in the Generalized

PC is ⇤̂. Therefore, the cross-sectional weight matrix ↵ for the Generalized PC is

obtained by the weight-corrected variance matrix, ⌃�1/2
e ⌃̂X⌃

�1/2
e

0
.

However, this above solution is infeasible because the true variance matrix of

idiosyncratic errors, ⌃e is unknown. The feasible Generalized PC estimator is obtained

by replacing ⌃e with the estimated ⌃̂e. This paper will consider two studies that

propose di↵erent ⌃̂e, Boivin and Ng (2006) and Forni et al. (2005).

Boivin and Ng (2006) propose to generate two-step diagonal weight matrix. In the

first step, PCA factors are estimated. In the second step, Generalized PC factors are

estimated that solves (2.5) with a diagonal matrix of ⌃̂e, whose diagonal elements are

the sample variance of estimated idiosyncratic error, êt in the first step. On the other

hand, Forni et al. (2005) propose One-sided Estimation that uses the decomposition

of variance matrix of predictors, ⌃X = ⌃⇤F + ⌃e, where ⌃⇤F is the variance of the

common component ⇤Ft in (2.2). This equality gives ⌃̂e = ⌃̂X � ⌃̂⇤F , where ⌃̂⇤F is

estimated by the dynamic principal component analysis of Forni et al. (2000) which

involves frequency domain analysis. Since the weight matrix is estimated by dynamic

principal component analysis that estimates (2.1), the decomposition of the number of

the dynamic factors (q) from that of the static factors (r) is needed for this estimation.
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Targeted Predictors

On the other hand, several factor estimation methods are propoosed to improve upon

PCA for forecasting performance. PCA does not use the information of the target

variable while factors are estimated and only predictors are used to estimate factors.

There are several factor estimation methods that incorporate the information of the

target variable in factor estimation process. They aim to improve PCA upon its

forecasting power by estimating factors to maximize explanatory power for a certain

target variable. Since this type of factor models estimate factors using the information

of the target variable, the estimated factors are di↵erent across a target variable of

interest. In this sense, I will refer to these estimation methods as ‘target specific factor

estimation’. Two studies among target specific factor estimations will be investigated

in this paper: Targeted Predictors of Bai and Ng (2008a) and Partial Least Squares

investigated by Kelly and Pruitt (2015) and Ahn and Bae (2020).

First, Bai and Ng (2008a) propose Targeted Predictors. They argue PCA does

consider the predictability of each predictor xit for the target variable yt+h while PCA

factors are estimated. In this spirit, they propose to select a group of predictors that

have a strong predictable power for the target variable and estimate PCA factors only

from this subset of predictors. Targeted Predictors estimate factors by two steps. First,

a group of predictive predictors are selected by LASSO (Least Absolute Shrinkage

and Selection Operator;) or LARS (Least-Angle Regression ). Then PCA is applied

over the selected subset of predictors, and the estimated PCA factor is the targeted

predictor factors. Therefore, cross-sectional weight matrix ↵ for targeted predictors

comes from the selected predictors that have higher predictive power for the target

variable than the rest data.
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Partial Least Squares (PLS)

The second method of the target specific factor estimation is Partial Least Squares

(PLS) that estimates factors which has the maximum covariance with the target

variable. PLS is an algorithm that estimates one factor each step, such that the

estimated factors have the maximum covariance with the target variable.

For instance, in the first iteration, PLS estimates the N ⇥ 1 weight vector ↵1 that

solves

max
↵1

1

T

TX

t=1

(↵0
1xtyt+1)

2 (2.6)

subject to a normalization of ↵j
0↵j/N = 1. As the problem (2.6) shows, PLS estimates

the weight vector ↵j to maximize the absolute value of the sample covariance between

the estimated PLS factor F̂1,t = ↵0
1xt and the forecast target yt+1.

The solution ↵1 is the eigenvector of Xyy0X, which is ↵1 = X 0y/
p
y0XXy. Corre-

spondingly, the first estimated PLS factor F̂1 is F̂1 = XX 0y/
p
y0XX 0y. Since a scalar

p
y0XX 0y is just a normalization to make ↵1 unit norm, we can eventually denote

the factor as F̂1 = XX 0y. This is because a scalar
p
y0XX 0y does not change the

projection matrix of the factors and hence does not a↵ect the predictive power of F̂1.

The above equation (2.6) and the estimated factor, F̂1 are important in this paper.

For the rest of the paper, ‘the first PLS factor’ stands for the PLS factor estimated

in the first iteration, F̂1 = XX 0y. When we augment the first PLS factor F̂1 in the

forecasting equation (2.3), it is referred to as ‘the PLS-augmented forecast with the

first PLS factor (PLS1)’. It is noteworthy that PLS1 uses only the first PLS factor,

F̂1, so k = 1 for all time series, t = 1, ..., T . In this sense, PLS1, F̂1 may not be

a consistent estimator for the true factor space with r dimension, F . However, this

simple estimation, or PLS1, often outperforms other factor estimations that involves

more discretion about the number of factors and specifications. Moreover, it will be
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shown that PLS forecast with information criteria that estimates r consistently, may

not necessarily give better forecasting results than PLS1. Also, F̂1 provides strong

forecasting performance very close to the best results from the total combinations of

7 factor estimation methods and 11 information criteria. More detailed results are

presented in the empirical results section.

Since X 0yy0X has rank of 1, there exists only one eigenvector that corresponds

to non-zero eigenvalue. Put di↵erently, N ⇥N matrix X 0yy0X has only one non-zero

eigenvalue and the rest is all zeros. That is why we are able to estimate only one

weight vector ↵̂j and the corresponding factor estimator F̂j, at each j-th algorithm.

For an arbitrary j-th PLS iteration, similar problems are defined and similar

solutions can be obtained. More specifically, denote 1, ..., (j � 1)-th PLS factors as

F̂1, ..., F̂j�1. The j-th PLS iteration uses the j-th updated predictors

X⇤
j = Q(F̂1, ..., F̂j�1)X, where Q(A) = I�A(A0A)�1A0 for arbitrary matrix A. There-

fore, the j-th updated predictorsX⇤
j is the part of predictorsX, which is not explained

by F̂1, ..., F̂j�1. Then j-th PLS estimates N ⇥ 1 weight vector ↵̂j that solves

max
↵j

1

T

TX

t=1

(↵0
jx

⇤
j,tyt+1)

2 (2.7)

subject to a normalization, where X⇤
j = [x⇤

j,1, x
⇤
j,2, ..., x

⇤
j,t, ..., x

⇤
j,T ]

0. Similar to PLS1

from equation (2.6), j-th PLS is obtained as F̂j = X⇤
jX

⇤0
j y. To proceed the next

algorithm, we should first update the predictors such thatX⇤
j+1 = Q(F̂1, ..., F̂j�1, F̂j)X

which filter out all the movement of X explained by the PLS factors F̂1, ..., F̂j�1, F̂j.

Then repeat the same process with the updated predictors, X⇤
j+1.

Therefore, proceeding to r-th PLS iteration produces the N ⇥ r cross-weight ma-

trix ↵ for PLS is obtained by ↵ = [X 0y, X⇤0
2 y, ..., X

⇤0
r y]. Contrary to PCA and other

nonparametric factor estimations, the cross-sectional weight matrix for PLS factors is

obtained as the covariance between (updated) predictors and the target variable. In
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this sense, PLS estimates factor such that the covariance with the target variable is

maximized at each iteration. This is the key di↵erence between PCA or their deriva-

tives with PLS. While PCA estimates the weight vector ↵j to maximizes the variance

of predictors most, the estimated factors by PLS have the maximum covariance with

the target. Therefore, PLS is design to explain the target variables most, not the

predictors. While Targeted Predictors use the information of the target variable, it

is di↵erent from PLS because Targeted Predictors selects a subset of predictors first

to explain the target variables, and then estimate PCA factors from this subset of

predictors.

PLS was first developed by Wold (1966, 1973, 1982). The properties of the PLS

factors under large-N and large-T environment are studied by Kelly and Pruitt (2015),

Groen and Kapetanios (2016) and Ahn and Bae (2020), among many. Groen and

Kapetanios (2016) investigate the forecasting performance of PLS factors under the

model where predictors are directly correlated with a target variable, not through the

latent factors. Since this paper considers factor-augmented forecasting framework, the

model of Groen and Kapetanios (2016) is not considered in this paper.8

Kelly and Pruitt (2015) study the theoretical and finite-sample properties of PLS,

under factor model. They defined ‘relevant factors’, by allowing only a subset of

the total r factors that generates predictors, actually explains the target variables.

Suppose the number of relevant factors is D, where D  r. They showed that when

all the true relevant factors have di↵erent variances, the first D PLS factors estimates

all the relevant factors up to rotation.

Ahn and Bae (2020) investigate the theoretical and finite-sample properties of

PLS, under the model more general than Kelly and Pruitt (2015). The main di↵erence

8 PLS also can be understood as a shrinkage estimation method. For instance, Jong (1993) and

Phatak and de Hoog (2002) consider PLS as a shrinkage estimation method.
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the two studies lies on the asymptotic variance of factor structure.9 While Kelly and

Pruitt (2015) assume that all factors have asymptotically distinct variances, Ahn and

Bae (2020) allow some of their asymptotic variances to identical.

Ahn and Bae (2020) show three important facts about PLS. First, they prove

that the optimal number of PLS factor can be reduced further than D. They show

we only need the same number of PLS factors with that of distinct variances of

the relevant factors. Therefore, the optimal number of PLS factors to achieve the

maximum forecasting power to predict a target variable can be reduced further than

D. Similarly, Kelly and Pruitt (2015) also show that if all the factors have the identical

asymptotic variances, only one PLS factor is needed to span all the factor space

needed for forecasting a target variable. Ahn and Bae (2020) extend this finding in

more general setting.

Second, the number of PLS factors used for forecasting is important. Ahn and

Bae (2020) show that if we use more than the theoretically optimal number of PLS

factors, incorporating those PLS factors deteriorates forecasting performance. If we

use the exact same number of PLS factors with that of the total factors or relevant

factors when some factors share the identical asymptotic variance, it may hurt the

predictive power.

Finally, Ahn and Bae (2020) find by empirical evidence and simulations that often,

9 From equation (2.2), X = F⇤0 + E holds. Note that F⇤0 = FBB
�1⇤0 = F

⇤⇤⇤0
for any r ⇥ r

non-singular matrix B. Therefore, F and ⇤ are not separately identified without any restriction.

In factor analysis literature, B is often chosen to normalize F
⇤ and ⇤⇤ such that the asymptotic

variance of F ⇤ and ⇤⇤ are r ⇥ r diagonal matrix and identity matrix, respectively. Often, B can

be also chosen to satisfy that the asymptotic variance of F ⇤ and ⇤⇤ be r ⇥ r identity matrix and

diagonal matrix, respectively. Kelly and Pruitt (2015) and Ahn and Bae (2020) assume the first

normalization. However, their conclusions are also valid under the normalization assumption of F ⇤

and ⇤⇤ whose asymptotic variance are identity and diagonal matrix, respectively.
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the first PLS factor (PLS1, which is F̂ = XX 0y) achieves the maximum forecasting

power. They find that even when we theoretically may need more PLS factors to

asymptotically span the true relevant factor space, unless the sample size is very

large, the first PLS often gives the best predictive power and incorporating more

decreases forecasting performance.

Their results can explain why PLS1 tends to show strong predictive power in this

paper. Also, their results also explain why consistent number of factor estimations that

estimate r, might not produce the best forecasting results when they are used to PLS.

Often, PLS-augmented forecasts with these consistent number of factor estimation,

tend to underperform than a simple PLS1.

Two-Step Estimation

The hybrid method is a third generation of factor estimation. (Stock and Watson

(2010)) They aim to estimate factors by combining the e�ciency improvement of the

state space approach with the principal component analysis that can be used when

a large number of predictors are available. One of the benefits, along with possible

e�ciency gain, is that this approach can be conducted in real time, updating newly re-

leased data, since the Kalman filter can handle missing data easily. Also, unlike PCA

that implement only cross-sectional average, the Kalman filter and Kalman smoother

estimate factors by both of cross-sectional and time-series average. However, this type

of factor estimations relies on assumptions on factor structure and distribution of id-

iosyncratic errors, contrary to nonparametric factor estimation, since this method

involves state space representation of factor model. Also, since this method incorpo-

rates PCA estimation, the Kalman filter and smoother, factor estimation may take

more time for computation than the nonparametric estimation methods. In this pa-

per, two estimations in the hybrid method are considered, Doz et al. (2011) and Doz
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et al. (2012).

Doz et al. (2011) propose two-step estimation. In the first step, PCA factors are

estimated and the model parameters are obtained using the PCA factors. In the

second step, the factors are updated using the Kalman smoother. In this sense, the

PCA factors and the corresponding parameters are used to initiate the maximum

likelihood estimation algorithm. They prove that the two-step estimation is consistent

for the true factor space.

Quasi-Maximum Likelihood Estimation (QMLE)

As mentioned earlier, maximum likelihood estimation is not feasible for large-dimensional

data since it involves estimation of too many parameters. Doz et al. (2012) propose

to estimate the factors by MLE, assuming the model follows the exact factor model,

where correlation between idiosyncratic errors is zero. Under this assumption, the

number of parameters shrinks and MLE is feasible. They show that the factor es-

timates obtained in this process are consistent for the true factor space, even when

the true model is an approximate factor model where the cross-sectional correlation

among idiosyncratic errors is allowed. In this sense, their model is Quasi-Maximum

Likelihood Estimation (hereafter QMLE) of White (1982). QMLE repeats the process

of the above two-step estimation further. It uses PCA as the initial points but repeats

the Kalman filter and Kalman smoother until convergence.

2.2.3 Parameter Estimation and Factor-Augmented Forecasting

The main forecasting framework, (2.3) involves the estimation of factors {Ft} and

parameters, �h, �h(L) and �h(L), since none of them are directly observable or known.

Due to this reason, forecasts of yhT̄+h in (2.3) are conducted by a two-step procedure

as Stock and Watson (2002b) suggest, at given time period T̄ . First, use all the
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available sample data {xt}T̄t=1 to estimate a sequence of factors, {F̂t}T̄t=1. Contrary

to Stock and Watson (2002b) whose factor estimators {F̂t}T̄t=1 are obtained only by

PCA, this paper estimates the factors by PCA, Generalized PC by Boivin and Ng

(2006), One-sided estimation of Forni et al. (2005), Targeted predictors of Bai and Ng

(2008a), Partial Least Squares of Kelly and Pruitt (2015) and Ahn and Bae (2020),

Two-step estimation of Doz et al. (2011) and QMLE of Doz et al. (2012). Hence the

seven di↵erent factor estimation methods are used to estimate {F̂t}T̄t=1. In the second

step, the estimators for parameters, �̂h, �̂h(L) and �̂h(L) are obtained by regressing

yt+h on a constant, the estimated factors F̂t and the lagged dependent variables,

yt, yt�1, ..., yt�p. The forecast for yhT̄+h, ŷ
h
T̄+h is constructed as ŷhT̄+h = �̂h+ �̂h(L)F̂T̄ +

�̂h(L)yT̄ . Since the seven di↵erent factor estimation methods yield di↵erent estimated

factors, the estimated parameters and forecast of the target variables become di↵erent

across factor methods.

2.3 Data and Forecasting Procedure

2.3.1 Data Description and Transformation

This paper follows forecasting strategies of Stock and Watson (2002b) to make a

comprehensive comparison between factor-augmented forecasts, since their forecasting

framework is one of the most conventional benchmarks. The forecasting experiment

mimics real-time forecasting for 148 monthly macroeconomic target variables in the

United States. This paper simulates real-time forecasting in the sense that factors and

parameters are estimated, and forecasts are made recursively at every time period.

However, it is a pseudo real-time forecasting since the real-time data revision process

is not considered. My forecasting experiment may not mimic the actual real-time fore-

casting completely. But this practice provides us the relative forecasting performance
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between factor estimation methods and investigates common properties of various

factor-augmented forecasts, which are the main interest of this paper.

The main forecasting framework follows that of Stock and Watson (2002b). For

each target variable, three forecasting models are compared at the 6-, 12-, and 24-

moth forecasting horizons. The forecasts are made by regressing h-step-ahead target

variable yht+h on regressors at t, which may include factors, lagged factors and lagged

target variables.10 Some variables are transformed to be stationary, following Stock

and Watson (2002b). More specifically, the real variables are assumed to be I(1) in

logarithms. For instance, since the industrial production (IP) is a real variable, the

target variable and the lagged dependent variables are obtained by

yht+h = (1200/h) ln(IPt+h/IPt) and yt = 1200 ln(IPt/IPt�1) (2.8)

The yht+h and yt obtained from the above transformation (2.8) are used as a target

variable being forecasted and lagged dependent variable, respectively, in the main

forecasting equation, (2.3). On the other hand, the price-related variables are assumed

to be I(2) in logarithms. For example, CPI, along with other nominal variables, are

transformed to construct the target variable and the transformed lagged variables as

10This framework is used to make a consistent comparison across di↵erent factor estimation

methods. However, it comes at a cost, since it entails modification of some factor methods from their

original works. For instance, One-sided estimation of Forni et al. (2005) uses two-step estimation. In

the first step, the covariance matrices of the common and idiosyncratic components are estimated by

the dynamic principal components of Forni et al. (2000). In the second step, they use the estimated

lag-h covariance matrix of the common components, to construct a forecast. This procedure may

lead One-sided estimation to be more e�cient than PCA. However, by adopting Stock and Watson

(2002b)’s h-step ahead projection framework, the second step cannot be implemented in this paper.

Therefore, the possible improvement of One-sided estimation may not be reflected completely in this

paper, due to h-step ahead projection framework.
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following.

yht+h = (1200/h) ln(CPIt+h/CPIt)� 1200 ln(CPIt/CPIt�1)

and yt = 1200� ln(CPIt/CPIt�1)
(2.9)

2.3.2 Factor-Augmented Forecasts

Based on the equation (2.3), the basic factor-augmented forecasts at time t are

ŷht+h|t = �̂h +
mX

j=1

�̂0
hF̂t�j+1+

pX

j=1

�̂hjyt�j+1 (2.10)

where F̂t is k dimensional estimated factors. As mentioned earlier, the estimated

factors, F̂t is obtained from di↵erent factor estimation: PCA, Partial Least Squares,

Targeted predictors, Two-step estimation, QMLE and One-sided estimation. Given

all the other conditions same, di↵erent factor estimation leads to di↵erent forecasts.

Following Stock and Watson (2002b), three di↵erent forecasting equations will be

tested. First, the equation denoted as DI, includes only the k number of contempora-

neous factors in the forecasting, where DI stands for di↵usion index. The DI forecasts

involve a choice of k, where 1  k  12, m = 1 and p = 0. The second forecasting

equation is denoted as DIAR. As the name implies, it combines DI forecast with

AR process, which incorporates k dimensional contemporaneous factors as well as p

lagged dependent variables. In this sense, m = 1, 0  p  6 is chosen by BIC, and

1  k  12. The last forecast is DIAR-LAG, where m lagged estimated factors are

included in DIAR forecast. Therefore, it includes m lagged factors, the lagged target

variables and the contemporaneous factors, where 1  m  3, 0  p  6 are chosen

by BIC, and 1  k  4.

It is noteworthy that all the three forecasting equations, DI, DIAR and DIAR-

LAG involve the choice of the number of contemporaneous factors, k, under a certain
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range. The rest parameters, such as m and p are chosen by BIC, if they are allowed

to be included. Stock and Watson (2002b) implement BIC to choose k as well, along

with other parameters. However, I allow the number of factors ,k, to be estimated

by the estimation methods for the number of latent factors in predictors. In this

sense, two experiments to determine k are conducted. First, given factor estimation

and forecasting equations, the number of factors k will be fixed for all time series,

where k = 1, ..., kmax. This experiment shows how the number of factors a↵ects the

predictive power of factor-augmented forecasts. Second, the forecasts with informa-

tion criteria for k will be conducted. The second experiment implements estimation

methods for the number of factors in the data. Therefore, for each time period, the

number of factors are estimated by information criteria and updated recursively. This

experiment shows the predictive power of information criteria.

2.3.3 Information Criteria

In this paper, number of factors estimation methods will be referred to information

criteria. Information criteria indicate model selection methods only for k, if not men-

tioned otherwise. This practice incorporates important number of factors estimation

methods that are commonly used in practice: Bai and Ng (2002) (hereafter “BN”),

Onatski (2010) (hereafter “ON”), Alessi et al. (2010) (hereafter “ABC”) and Ahn

and Horenstein (2013) (hereafter “AH”), as well as Bayesian Information Criteria

implemented by Stock and Watson (2002b) (hereafter “BIC”).

Since some factor estimations involve distinct information criteria, two information

criteria are applied only to certain factor estimations. “PLS1” is the PLS-augmented

forecasts only with the first PLS factor (k = 1 for all time series), suggested by

Ahn and Bae (2020). One-sided estimation is applied over two di↵erent versions,

static with k = q and dynamic with q(s + 1)  k. Dynamic One-sided estimation
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needs information about both the number of dynamic factors, q, and that of static

factors, k. Bai and Ng (2007) is one of the methods that estimate both q and k at the

same time, hence Bai and Ng (2007) is only applied to dynamic One-sided forecasts.

Therefore, BIC, BN, ON, ABC, and AH are applied to all the factor estimations:

PCA, PLS, Targeted Predictors, Two-step estimation, QMLE and static One-sided

estimation. PLS1 is applied only to PLS, and Bai and Ng (2007) method is used to

dynamic version of One-sided estimation.

2.3.4 Data transformation and Factor Estimation

Some variables are transformed to be stationary. First, depending on the variable,

possible transformation is imposed such as taking log, first or second di↵erence, or

log di↵erence. The decision of a proper transformation for a given variable mostly

follows previous literature, such as Stock and Watson (2002b) or McCracken and

Ng (2016). The list of variables and corresponding transformation is displayed in

Appendix, Section ??. Second, the transformed variables are standardized to have

a unit variance and mean zero. Third, the data is screened for outliers. Following

Stock and Watson (2002b), any observation whose values are exceeding 10 times the

interquartile range from the median is treated as missing values.

Then two sets of empirical factors are constructed. For all the factor estimation

methods, the first strategy is to estimate factors, F̂t, only from the balanced panel

with 108 time series. The second is to estimate factors from the full data set. Since

the full data set involves 70 unbalanced panel, the missing values are estimated by

EM algorithm of PCA. After the whole panel is recovered, factors are estimated from

this data set. Stock and Watson (2002b) also estimate factors from stacked panel,

which stacks 108 current balanced panel and their first lag. However, stacked panel is

not used in this paper, because the factors from stacked panel in Stock and Watson
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(2002b) tend to have weak forecasting power. The empirical section of this paper only

reports the forecasting results based on factor estimation from the balanced panel.

The forecasting performance from the full data set is similar with the balanced panel,

and the results will be provided upon request.

It is noteworthy that target specific factor estimation requires target variables

while factors are estimated, such as Targeted Predictors or PLS. However, some vari-

ables have missing values in their initial observations. Therefore, only the variables

which have more than 80% of observations in the first factor estimation period, are

chosen to be forecasting targets. If we do not have enough target variable obser-

vations, target specific factor estimation may not estimate factors precisely, which

results in inaccurate analysis. Due to this reason, I have 144 target variables for 6-

and 12-months forecasting, and 148 for 24-months predictions.

2.3.5 Recursive Estimation for Simulated Real-Time Forecasting

This paper adopts real-time forecasting strategy, in the sense that the data only

available until t will be used to forecast a variable at t + h. This includes all the

process needed for forecasting, such as factor estimation, parameter estimation, choice

of model by BIC and information criteria, among many.

More specifically, the first out-of-sample forecast is made at 1970:01 for the h-

period ahead target variable at 1970:01+h, where h = 6, 12, 24. Factors are es-

timated according to 7 di↵erent factor estimation methods, using data only from

1959:03 to 1970:01. The first two months are removed due to possible transformation

using second di↵erence (in logarithm). With the estimated factors and target vari-

able yht+h (and their lags), the model is selected by BIC (m and p) and 11 information

criteria (k). After the model is chosen for each of 11 di↵erent information criteria,

the parameters in (2.10) are estimated by regressing the target variable yht+h on the
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regressors including factors and intercept, from t =1960:01 to 1970:01-h. For model

selection and regression, the first 12 months observations from 1959:01 to 1960:01 are

not used, since they are used for initial conditions. The final forecast, ŷh1970:01+h is gen-

erated by the intercept, the factor F̂1970:01, the lag y1970:01, ..., y1970:01�p and possibly

the lagged factors, F̂1970:01, ..., F̂1970:01�m, multiplied by the estimated parameters.

Assuming the true future value yh1970:01+h is not known, repeat this process for the

next month, 1970:02. The factors are estimated by using data from 1959:03 to 1970:02,

according to seven di↵erent factor estimation methods. Then model is selected by 11

di↵erent information criteria and the parameters in (2.10) are estimated by factors and

regressors from 1960:01 to 1970:02-h. Using the factor at 1970:02 with other regressors

and parameters, make a forecast ŷh1970:02+h for the unknown future value yh1970:02+h.

This recursive estimation and forecasting repeats and the last out-of-sample forecast

is made at 2019:12-h. After all the out-of-sample forecasting practice is conducted, the

forecast ŷht+h and the actual value yht+h are compared, from t =1970:01 to 2019:12-h,

to evaluate the forecasting performance of all the 7 factor estimations and 11 di↵erent

information criteria.

2.4 Empirical Results

2.4.1 RMSE and Specifications of Some Factor Estimation Methods

This section reports and interprets the empirical results. The forecasting power of

all forecasting practice is measured by relative mean squared errors (RMSE) of the

given factor-augment forecasts. The RMSE in this paper is defined as mean squared

error (MSE) of the method relative to that of a naive forecast based on a historical

mean of the target variable.

RMSE(method) =
MSE(method)

MSE(mean)
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Hence the RMSE larger than one implies that a forecast with a historical mean of

the given target variable gives better forecasting result than the factor-augmented

forecast.

When those estimations are implemented, I try to follow the original work, on

condition that the econometric model in this paper allows. For instance, Bai and Ng

(2008a) used soft-thresholding using Elastic Net estimator of Zou and Hastie (2005),

to incorporate the case where time-series observation at time t is smaller than cross-

sectional predictor observation N . Elastic Net estimator is a convex combination of

ridge and LASSO regression,

min
�

RSS + �1

NX

j=1

|�j|+ �2

NX

j=1

�j
2

If �1 is larger, the regression becomes closer to the LASSO and if �2 is larger,

it becomes closer to the ridge regression. Bai and Ng (2008) report three sets of �2,

where �2 = 0.25, 0.5, 0.75. Following the original work, the three �2 are implemented

in this article, using Zou and Hastie (2005).

On the other hand, Boivin and Ng (2006) try several weighting matrices used in

(2.5). Among them, the two weighting matrices that outperform others are chosen in

this paper: Rule SWa and SWb. For Rule SWa, the weight matrix ⌃̂e is a diagonal

matrix whose elements are the estimated variances of idiosyncratic errors. Rule SWa

is also considered in Jones (2001). For Rule SWb, the weight matrix is a diagonal

matrix whose elements are the average of estimated covariance of idiosyncratic errors.

Those rules are focused on the e↵ects of residuals. Boivin and Ng (2006) also test to

estimate PCA factors only from a specific groups of predictors, not from the whole

data. Four rules are tested, and the most predictive rule among them, which is Rule

B, is used in this paper. Rule B estimates PCA factors only from nominal variables,

which corresponds to Category 5 (Money and Credit), 6 (Interest and Exchange
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Rates) and 7 (Prices) in this article.11 Therefore, the most predictive three rules in

the original work of Boivin and Ng (2006) are implemented: Rule SWa and SWb for

weight matrix and Rule B that estimates PCA factors only from nominal variables.

For One-sided Estimation of Forni et al. (2005), two versions are tested. Since

One-sided Estimation involves estimation of (2.1), the first is a static version, which

imposes q = r. In this set up, the number of dynamic factors, q is identical to that

of the static factors, r, and it is assumed that no lagged factors in (2.1) generate

data. The second is a dynamic version, which imposes q  r. However, we should

disentangle q from r in this case and there are many possible combinations for fixed

q and r, given that DI and DIAR forecasts allow at maximum r = k = 12 factors

used in forecasting. Allowing q and r fixed for r = 1, 2, ..., 12 generates 12! possible

combinations of q and r. Hence, for the dynamic version of One-sided Estimation, the

information criterion of Bai and Ng (2007) is used since it estimates q and r at the

same time.

2.4.2 Major Findings

Number of Factors and Forecasting Performance

The 12-month-ahead DIAR forecast (h = 12) will be focused in this paper unless

otherwise mentioned. The rest results not discussed in the article will be provided

upon request. Table B.1 and B.2 display DIAR 12-month ahead forecasts for the

eight important variables forecasted in Stock and Watson (2002b), four real and four

nominal variables. Table B.1 and B.2 report factor-augmented forecasts of all the

factor estimation methods by given k = 1, 2, ..., 12. The number of lagged dependent

variables, p, is determined by BIC for all factor-augmented forecasts. For instance,

PCA forecast for industrial production with k = 1 is 0.893, which means the mean

11 The detailed list of those categories are presented in Appendix.
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squared of error of PCA forecast with k = 1 is 89.3% of that of forecast by a historical

mean of industrial production. Therefore, lower RMSE indicates larger forecasting

improvements upon a forecast based on mean. If a naive forecast by mean outperforms

the given method, the RMSE of the corresponding method is greater than one.

Table B.1 and B.2 show the number of contemporaneous factors included in fore-

casting equation, k, is usually important for predictive power for almost all types of

factor-augmented forecasts. Some factor estimation leads to relatively robust fore-

casts to the number of factors used, compared to other factor-augmented forecasts,

such as PLS. However, predictive performance of even these methods still often varies

significantly with the number of contemporaneous factors used in forecasting. Often,

the forecasting power deteriorates as more than a certain number of factors are used.

Table B.3 and B.4 summarize 12-month-ahead DIAR forecasts for the entire 144

target variables.12 All target variables belong to one of the eight categories and Table

B.3 and B.4 first forecast all target variables with the same procedure conducted in

Table B.1 and B.2, with a given k. Then all the 144 forecasts are sorted into the

eight categories according to their target variables. Finally, for each k, the entries

show the median RMSE of the given factor estimation method in the corresponding

category. Consistent with Table B.1 and B.2, the number of contemporaneous factors

incorporated in forecasting equation often matter for the predictive power, for most

of the target variable categories and many factor estimation methods. Furthermore,

incorporating more factors after certain number of factors may increase RMSE, which

12 The target variables are constructed from h-period ahead future values, as the equation 2.8

and 2.9 show. Therefore, missing values of the first h months can eventually decide the number of

target variables. Since target-specific factor estimations require target variables when factors are

estimated, only the variables that have more than 80% of time-series observations in the first factor

estimation period, are considered as target variables. Hence there exists 144 target variables for 6

and 12-months ahead forecasting, and 148 for 24-months ahead forecasting.
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implies lower forecasting improvement, consistent with Table B.1 and B.2.

The PLS forecast by given k from Table B.1 to B.4 is an extreme example of this

tendency: incorporating more PLS factors in the forecasting equation (2.10) drasti-

cally deteriorates forecasting power after a certain k. For some target variables, even

including more than three PLS factors lead PLS-augmented forecasts to perform worse

than a näıve forecasts by historical mean. In many cases, the predictive loss resulted

from incorporating more than the necessary factors in forecasting, is most serious for

PLS among all the factor estimation methods.

Especially the four real variables show very drastic increase of RMSE as the num-

ber of PLS factors used in forecasting, k increases. For instance, 12-month-ahead

DIAR PLS forecasts for Manufacturing and Trade Sales have RMSE over 2, which

implies significantly worse forecasting result compared to a näıve forecast by simple

mean. As the tables display, PLS1 usually gives the lowest RMSE. This drastic RMSE

increase of PLS forecasts across k is prevalent, for many forecasting target, forecasting

models and forecasting horizons.

This finding is also consistent with Ahn and Bae (2020). They find that PLS may

have a significant predictive gain compared to PCA which does not use information

of target and estimate factors only from predictors. However, they theoretically show

that incorporating more than the necessary PLS can hurt the forecasting power. More

specifically, suppose that 1, ..., C number of PLS factors asymptotically span the

true factor space that is needed for forecasting the target variable. They show that

incorporating C + 1 and more PLS factors can deteriorate the forecasting results.

They also show from simulations and empirical results that PLS until C factors,

which is theoretically consistent estimators for the true factor space for the target

variable, are not often needed in the actual data, unless the data size is incredibly

large. They find that PLS1 often tends to give the best results in relatively small
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sample and actual data. Therefore, the empirical results from Table B.1 to B.4 are

consistent with their findings that the best forecasting performance comes from PLS1

and RMSE drastically increases when more PLS factors are used.

Information Criteria and Forecasting Performance

We may not know how many contemporaneous factors should be used in the actual

forecasting practice. The number of factors, k, that minimizes RMSE and gives the

optimal predictive gain di↵ers across factor estimation methods, target variables, as

well as forecasting horizons as Table B.1 to B.4 show. Therefore, analyzing the results

from Table B.1 to B.4 and deciding what a fixed number of factors k should be used

for forecasting, may not be helpful for actual forecasting experiment in practice. This

is because researchers should often decide the number of factors according to her

research design, target variables, forecasting horizons as well as factor estimation

methods, only using available data.

Since some factor estimation involves distinct information criteria, two information

criteria are only applied to two factor estimations. “PLS1” is the PLS-augmented

forecasts with k = 1, suggested by Ahn and Bae (2020). It is noteworthy that the

number of factors by BN, ON, ABC, AH and BIC estimations are estimated at every

t and be used to forecast the target variable at t+h, for all t =1970:01 to 2019:12�h.

However, since PLS1 uses only the first PLS factors, it does not involve this recursive

process to estimate k every time series. Another distinct information criterion is Bai

and Ng (2007) applied to the dynamic version of One-sided Estimation. By the nature

of One-sided Estimation, it requires information about the number of dynamic factors,

q, as well as the number of static factors k. There are many estimation methods

for estimating the number of dynamic factors, q, such as Hallin and Lǐska (2007).

However, in order to implement the main forecasting framework of this paper, we
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need information of both of q and k. Bai and Ng (2007) developed a method that

estimates both of q and k at the same time, hence their method is applied to the

forecasts by One-sided Estimation.

The results are presented in Table B.5 to B.10. k̂BIC denotes RMSE of the

given factor-augmented forecasts, based on BIC estimator used in Stock and Watson

(2002b). Since BN estimator involves choice of penalty function, four penalty func-

tions are tested. k̂BN�p1, k̂BN�p2, k̂BN�p3 and k̂BN�BIC stand for RMSE obtained by

the number of factors estimated by BN estimator, using ICp1, ICp2, ICp3 and BIC3

of Bai and Ng (2002), respectively. k̂AH and k̂ON are AH and ON estimators, k̂ABC�L

and k̂ABC�S are ABC estimators with large and small windows, respectively. PLS1 is

the PLS forecasts with k = 1 for all time series, and BN2007 is the dynamic One-sided

forecasts, obtained by Bai and Ng (2007)’s information criterion.

If the information criterion can’t be applied to a given factor estimation method,

the corresponding result stays blank. For instance, since PLS1 is the PLS forecasts

with k = 1, all the other factor estimation than PLS, such as PCA, Targeted Predic-

tors, Two-Step estimation, QMLE, and One-sided estimation, remain blank for the

PLS1 information criteria. The ‘Mean’ row indicates the mean of the given factor-

augmented forecasts over all the information criteria applied. The ‘Best, Given k’

show the minimum RMSE or the best predictive power of the corresponding factor

estimation by given k, denoted in bold in Table B.1 to B.4.

For example, PCA column for forecasting industrial production in Table B.5 has

a ‘Mean’ row of 0.713, which is the average RMSE of all the PCA forecasts applied

by available information criteria, from k̂BIC to k̂ABC�S. The ‘Best, Given k’ result is

0.699, which is the PCA forecasts for industrial production with k = 3, in Table B.1.

Table B.5 to B.6 display all factor-augmented forecasts by information criteria for

the eight target variables. For Table B.7 to B.8, the whole 144 target variables are
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forecasted by seven factor estimations with 11 di↵erent information criteria, k̂BIC to

k̂ABC�S, along with PLS1 and BN2007. Then the forecasts are sorted into the eight

categories according to their target variables and the median RMSE of each category

is reported, similar to Table B.3 to B.4.

Inspection of the Table B.5 to B.8 reveals that the minimum RMSE of all infor-

mation criteria estimation is often lower than the lowest RMSE of given k presented

in Table B.1 to B.4. It implies that the forecasts obtained by an appropriate number

of factor estimation method may improve upon the ex-post best forecast results with

given k. For instance, Stock and Watson (2002b) show that in most cases, incorpo-

rating BIC factor and lag order selection to PCA provides little or no improvement

over just using two factors, DI with k = 2 for predicting real variables. The above

comparisons imply this conclusion holds only for BIC estimator of PCA-augmented

forecasts. Often the forecasts obtained by BIC estimator for number of factors (k̂BIC)

does not outperform DI with k = 2. However, other information criteria such as ON

estimator may outperform the näıve DI forecasts with k = 2 for real variables.13

The ‘Mean’ rows of Table B.5 to B.8 show that the mean of forecasts based on

information criteria is generally slightly worse than the ex-post best forecasts of a

given k. It implies on average, forecasts obtained by information criteria for k, using

only the data available at t, gives forecasting performance close to the ex-post best

factor-augmented forecasts with given k. In this sense, number of factor estimation

methods generally perform well for many factor estimation methods for forecasting

practice.

However, some factor-augmented forecasts by information criteria may not yield

a good predictive performance. PLS can be the example for this case. Unlike other

13 More detailed results about PCA, including DI PCA forecast with given k and by information

criteria, are presented in Table B.15 to B.26.
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factor forecasts with information criteria, the ‘Mean’ of PLS forecasts by information

criteria are often far from ‘Best, Given k’ forecast. It implies that PLS may be very

sensitive to the choice of information criteria. For instance, information criteria, such

as BIC by Stock and Watson (2002b) (k̂BIC), Information criteria by Bai and Ng

(2007)( k̂BN) or ABC estimator of Alessi et al. (2010)( k̂ABC), often tend to yield

RMSE larger than one for PLS-augmented forecasts. This tendency is more serious

for the real variables.

It is noteworthy that PLS1 very often yields the best forecast result among all

the information criteria for PLS forecasts. The strong predictive power of PLS1 tend

to be prevalent in various target variables and di↵erent forecasting horizons. PLS-

augmented forecasts usually have the best predictive gain when k = 1, which is PLS1.

Due to this reason, PLS1 forecast is usually identical to ‘Best, Given k’ forecast. This

finding again reconfirms the empirical findings of Ahn and Bae (2020), that find PLS1

often shows strong predictive performance in empirical forecasting practice.

This finding also shows that consistently estimated number of factors, may not

always lead to the best result in empirical forecasting practice. For instance, PLS

forecasts by consistent estimators for the true number of factors, such as BN, AH,

ON and ABC estimators, may often give worse predictive power than PLS1. Ahn and

Bae (2020) explain this finding by following three steps. First, suppose that there

are k number of total factors that generates predictors. Assume furthermore that

only D number of the total factors govern the target variable. This incorporates the

case where not all the factors that explain predictors are able to forecast the target

variable. Among the D relevant factors for the target variable, they have C number

of di↵erent or distinct variances, where C  D. Then only C PLS factors are needed

to forecast the target variable asymptotically, where C  D  k.14 Therefore, for

14Notation in Ahn and Bae (2020) has been modified to be consistent with this paper.
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PLS, we may not need the whole number of factors that generates the predictors.

Second, they furthermore show that if we estimate more than C PLS factors,

incorporating C+1 and more PLS factors can hurt the predictive power. Finally, they

find that even though 1, ..., C PLS factors asymptotically give the best forecasting

results, PLS1 often gives the best forecasting power in actual empirical forecasting

practice and simulation. This is a finite property of PLS, and as sample size increases,

we need the whole 1, ..., C PLS factors to achieve the maximum predictive power.

However, unless the sample size is incredibly huge, PLS1 often gives better results in

actual forecasting. Therefore, first, we need only C  k number of PLS, theoretically.

Second, adding C+1 and more PLS factors can hurt the predictive power. Finally, in

finite sample, PLS1 tends to give the best result and often, we don’t need all C PLS

factors. The results of Table B.1 to B.8, as well as Ahn and Bae (2020) confirm that

consistent estimator for the true number of factors in the predictors, may not always

lead to good forecasting performance in practice.

Large Variations on Forecasting Performances, Across Factor Estimation

Methods and Information Criteria

Empirically, there are large variations in terms of factor estimation methods and

information criteria used. Therefore, I compare di↵erent factor-augmented forecasts

by information criteria comprehensively. The first analysis is to compare the average

predictive power of the given factor estimation, across di↵erent information criteria.

Table B.9 and B.11 report the mean RMSE over information criteria of respective

factor estimation method for the eight target variables and the entire 144 variables by

categories, respectively. They simply collect the ’Mean’ rows from Table B.5 to B.8.

On the other hand, the second analysis is presented in Table B.10 and B.12. These

tables report the minimum RMSE, or the best forecasting results of the given factor
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estimation method, chosen across all the information criteria, for eight variables and

the whole 144 variables by categories, respectively. They gather the lowest RMSE in

bold in Table B.5 to B.6 and Table B.7 to B.8, respectively.

For example, PCA forecasts for industrial production in Table B.9 is 0.713, iden-

tical to the ‘mean’ row of PCA forecasts for industrial production in Table B.5. For

the same example of PCA forecasts for industrial production in Table B.10, it shows

0.659. This is the minimum RMSE of PCA forecasts for industrial production, chosen

across di↵erent information criteria, denoted in bold in Table B.5 by k̂ON .

It should be emphasized that since PLS1 is PLS-augmented forecasts with k=1

always, PLS1 does not involve any other information criteria. Due to this reason, the

minimum RMSE of PLS1 in Table B.10 and B.12 are actually identical to the mean

RMSE of PLS1 in Table B.9 and B.11. This is because the minimum in Table B.10

and B.12 and mean in Table B.9 and B.11 are chosen across information criteria.

Table B.9 to B.12 demonstrate the common patterns of all the factor-augmented

forecasts by information criteria. First, the best forecasts of all the seven factor esti-

mation methods in Table B.10 and B.12 are very similar. Even though the best results

are similar, some factor estimations such as PLS, Targeted predictors, and Weighted

Principal Components often achieve the minimum RMSE among other factor estima-

tion methods, hence in bold. This finding that the best forecasting performances are

similar across all the factor estimation methods, may be explained by the fact that

most of the seven methods have been proven consistent estimators to the true factor

space.

Second, the average RMSE over information criteria of respective factor estima-

tion method, as presented in Table B.9 and B.11, varies significantly across factor

estimation methods. This exercise shows how the corresponding factor estimation

method is sensitive to the choice of information criteria, in the actual forecasting
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practice. The average predictive power varies more significantly than the best fore-

casting results in Table B.10 and B.12. This is because often, it is hard to find a

dominant information criterion that gives the best results for all the target variables,

other than PLS1 for PLS. This finding implies the choice of factor estimation method

is crucial in empirical forecasting exercise.

Strong Forecasting Performance of PLS1

Overall, PLS1 often yields a forecasting performance very close to the best result

from the whole combinations of 7 factor estimation methods and 11 information

criteria. The lowest RMSE of PLS1 in Table B.9 and B.11 supports this finding. The

strong forecasting power of PLS1 can be also found from Table B.10 and B.12. PLS1

often yields forecasting performance very close to the best results in bold in those

tables, which are equivalent to the best performance from the whole combinations of

all the factor estimation methods and information criteria. Strong predictive power

of PLS comes from its factor estimation strategy. PLS estimates factors, using not

only predictors but also a target variable, which can explain significant forecasting

improvement of PLS.

To reconfirm the forecasting performance of PLS1, I analyze the forecasting power

of all factor-augmented forecasts by information criteria more in detail. Table B.13

and B.14 are 25, 50, and 75 percentiles of mean and minimum RMSE of each factor-

augmented forecast across di↵erent information criteria, in a given category, respec-

tively. The two tables are generated by following procedure. First, the entire 144 target

variables are forecasted by 7 factor estimation methods with 11 information criteria.

Then for the respective factor estimation method, the mean and minimum RMSE over

di↵erent information criteria are calculated. If the factor estimation method involves

some parameter choice such as �2 of Targeted Predictors, the mean and minimum
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over these specifications are also considered. Therefore, one RMSE is calculated for

the given factor estimation methods for Table B.13 (mean) and Table B.14 (mini-

mum), respectively, for a target variable. Then the entire 144 forecasts are divided

into the eight categories according to their target variables. Finally, the 25, 50 and

75 percentiles of forecast distribution of each category are presented.

In this sense, Table B.13 is the expected RMSE of a respective factor estimation

method for various target variables, for a given percentile. To reconfirm the findings

from previous tables, two ranges are reported: the first is range (the di↵erence between

the best and worst forecast), excluding PLS with other information criteria (‘PLS,

other IC’). This is because PLS with other information criteria tend to have high

RMSE on average. The second is the range of all factor estimation methods, including

PLS with other information criteria. On the other hand, Table B.14 shows the possible

minimum RMSE or the best forecasting results of the factor estimation method for

all the target, for a given percentile.

The above findings are also supported in these two tables. First, when we consider

the best possible forecasts by all the factor-augmented methods, the range is very

small as denoted by Table B.14. The factor estimation methods that gives the lowest

RMSE and in bold is rather dispersed, such that all the seven factor estimation

methods achieve the lowest RMSE at least once. Second, when we consider the average

or expected forecasts in Table B.13, the range becomes significantly larger than that

of Table B.14, even excluding PLS with other IC forecasts. It is noteworthy that

PLS1 tends to give the best results most frequently and shows the largest predictive

improvement, across di↵erent categories and percentiles. As discussed above, PLS1

have the identical values in Table B.13 and B.14. Therefore, these tables show that

PLS1 forecasts often gives the forecasting performance which is very close to the best

results based on all the 7 factor estimation methods with 11 information criteria.
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Given this conclusion, more detailed description about each factor estimation

method will be discussed in the following sections.

2.4.3 PCA

The Table B.15 to B.20 reconfirm some important results from Stock and Watson

(2002b). First, the predictive gain of using lagged target variables is not significant for

real variables. The forecasting improvement in DI and DIAR forecasts are very similar

or DI forecasts even show slightly lower RMSE than DIAR for some real variables.

On the other hand, predictive improvement of incorporating lagged target variable is

notably drastic for price-related variables. This finding is consistent with Stock and

Watson (2002b).

Consistent with Stock and Watson (2002b), this experiment also finds that the

forecasting improvement of DIAR-LAG upon DIAR is not significant for all the im-

portant 8 variables. As they point out, this result may indicate that all the predictive

dynamics of target variables are explained by the estimated factors. Especially for

the four price-related variables, forecasts under DIAR with k = 1 tend to be even

slightly better than the best forecasts of DIAR-LAG.15

It is noteworthy that overall, PCA forecasts are relatively robust to the num-

ber of factors used, k, compared to PLS. Given lagged factors or target variables,

incorporating more contemporaneous factors does not deteriorate forecasting power

drastically as PLS. However, the predictive performance of PCA forecasts still tend

to vary significantly with number of contemporaneous factors used in forecasting.

Predictive improvements of all available information criteria for PCA are similar

for many cases. However, the forecasting power of PCA-augmented forecasts still

15 There is a predictive gain of DIAR-LAG forecast compared to DIAR with k = 1 in forecasting

horizon of h = 24, but the improvement is not significantly large.
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varies across information criteria, for certain target variables and specifications. For

instance, predictive power across di↵erent information criteria varies significantly in

forecasting price-related variables in DI specification. Due to this reason, choice of

appropriate information criteria for each target variable is important. However, as

Table B.21 to B.26 show, it may be hard to find a information criterion for PCA that

dominates in all categories and forecasting equations, DI, DIAR and DIAR-LAG.

2.4.4 PLS

Table B.27 to B.32 show 12-month-ahead PLS-augmented forecasts by given k,

for the eight important variables and whole 144 target variables by categories and

forecasting models, DI, DIAR and DIAR-LAG. For DI forecasts, the number of con-

temporaneous factors in forecasting model, k, that gives ex-post best forecasting result

is smaller for the real variables compared to the nominal variables. For instance, DI

PLS1 forecast gives the lowest RMSE for the real variables. However, DI PLS forecasts

often require more PLS factors to forecast the price-related variables better.

However, PLS forecasts in DIAR and DIAR-LAG forecasting model show that a

lot less PLS factors, k, are needed to achieve the lowest RMSE even for the nominal

variables. Especially PLS1 usually yields the best forecasting improvement for both

four real and nominal variables. Even when PLS1 does not give the best predictive

gain for some target variables in some forecasting, the improvement of PLS-augmented

forecast with more k is not significant from that of PLS1. This is also consistent with

empirical findings of Ahn and Bae (2020), which find PLS1 often gives the best

forecasting outcome in empirical data.

Consistent with the previous findings, incorporating more PLS factors in fore-

casting equation deteriorates forecasting power after a certain point. It implies that

RMSE of the PLS forecasts, regardless of forecasting models such as DI, DIAR and
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DIAR-LAG, increases after certain k. This tendency with lower forecasting gain from

more factors is prevalent in other factor estimations as well. However, the forecast-

ing loss resulted from incorporating more than the necessary factors in forecasting

is more serious for PLS. The predictive loss from incorporating many PLS factors is

more significant for the real variables. For nominal variables, RMSE does not increase

with k as drastically as the real variables.

Table B.33 to B.38 compare the predictive power of PLS1 and PLS forecasts with

other information criteria. There are several features of PLS forecasts by information

criteria, which is distinct from other factor-augmented forecasts with the same criteria.

First, unlike other factor forecasts, the ‘mean’ of those PLS forecasts by IC often tend

to be far from ‘Best, Given k’ forecast. It implies that PLS may be very sensitive to

the choice of information criteria. For instance, BIC ( k̂BIC), BN estimator (k̂BN) or

ABC estimator (k̂ABC), often yield RMSE larger than one, which indicates that PLS

forecasts with those information criteria are worse than a näıve mean forecasts. This

tendency is more obvious for the real variables. The AH and ON estimator (k̂AH , k̂ON)

gives similar forecasts with PLS1. This is because the number of factors estimated by

those estimators are often one, at most two.

Second, overall, PLS1 often yields the best forecast result among all the infor-

mation criteria. For other factor estimation such as PCA forecasts, the number of

PCA factors k that gives the ex-post best predictive outcome varies across forecast-

ing model, forecasting target and forecasting horizons. It is noteworthy that PLS-

augmented forecasts usually tend to achieve the best predictive gain when k=1, which

is PLS1. Due to this reason, PLS1 forecast is usually identical to ‘Best, Given k’ fore-

cast. Even when other information criteria yield better predictive performance than

PLS1, the predictive gain is often marginal and forecast improvement of the two tend

to be similar.
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It is important to determine the best information criteria for PLS-augmented fore-

casting, but another important issue is whether PLS1 has better predictive perfor-

mance than the traditional factor-augmented forecasting, PCA. Since PCA is one of

the most popular factor estimation techniques used for forecasting, PCA-augmented

forecast is set as the benchmark. Given this, I investigate whether PLS1 has the

predictive gain over PCA-augmented forecasts.

Table B.39 to B.44 compare the forecasting performances of PLS1 and PCA fore-

casts by given k. Results from these tables do not involve information criteria for PCA

forecasts, and compare forecasting power of PLS1 with that of PCA1, PCA2, until

PCA12. The lowest RMSE among PCA forecasts with given k is in bold. When PLS1

has lower RMSE than any of the PCA forecasts, the PLS1 forecast is shaded with

green, underlined and bold italic. It is noteworthy that even though PCA forecast

with certain k gives the lowest RMSE, it is the number of factors that show ex-post

best result. The number of factors that produces the ex-post best PCA forecasts vary

across target variables, forecasting models and forecasting horizons. However, PLS1

does not involve choice of k, because k=1 is used for all time series. Considering

this di↵erence, results of Table B.39 to B.44 are very encouraging. PLS1 often shows

significantly lower RMSE than the ex-post best PCA forecasts.

Next, I compare PLS1 with the PCA forecasts obtained by information criteria in

Table B.45 to B.50. These tables show that PLS1 still tend to give better forecasting

performance than the best PCA forecasts chosen across di↵erent information criteria.

Table B.51 and B.52 also support this finding, in more detailed and intensive com-

parison. Table B.51 show PLS 1 and PCA k, k = 1, 2, ..., 12 for the whole 148 target

variables in 6-, 12- and 24-month ahead forecasting.16 Table B.52 compares PLS 1 and

16 144 target variables for 6- and 12-month ahead forecasting, and 148 for 24-month ahead

forecasting.

96



PCA with information criteria, from PCA : BIC (k̂BIC) to PCA : ABC-S (k̂ABC�S) in

all the three forecasting horizons. The frequency counts how often the given method

achieved the minimum RMSE in 436 variable-horizon combinations. The percentage

is the frequency divided by 436 and multiplied by 100. Table B.51 demonstrates that

in this intensive comparison, PLS1 outperforms other PCA-augment forecasts with

given k = 1, 2, ..., 12, around 200 times out of 436 combinations, which accounts for

around 50%. It implies that PLS1 outperformed PCA1, PCA2, ..., PCA12 in this

intensive comparison, around 50%. Table B.52 also shows strong predictive power of

PLS1. PLS1 dominates PCA-augmented forecasts with 9 information criteria, around

180 times out of 436 combinations. These results support stable and significant pre-

dictive improvement of PLS, since PLS1 alone can dominate 12 PCA with given k

and 9 PCA with information criteria, about 50%. Even when some PCA combinations

outperform PLS1, the improvement is often small, as Table B.39 to B.50 show.

2.4.5 Other Factor Estimation Methods

First, the targeted predictor forecasts are similar across di↵erent �2, given that

forecasts in ‘Mean’ column are similar across �2, in Table B.1 to B.12. However, the

dominant information criteria that gives the lowest RMSE tend to vary across �2, as

Table B.5 to B.8 show.

Second, Rule SWa and SWb generally outperform Rule B in Weighted PC fore-

casts. Table B.1 to B.12 supports this finding: even for forecasting the price-related

variables, Rule B is often dominated by either SWa or SWb. Even when Rule B

outperforms the two, the predictive improvement tend to be often marginal.

Finally, Table B.5 to B.8 indicate that the mean of static One-sided forecasts by

information criteria, denoted by ‘mean’ columns, often has higher RMSE than the

dynamic forecasts. It implies that dynamic One-sided forecasts tend to have better
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predictive power than the average static One-sided forecasts by information criteria.

However, the best performance of static One-sided forecasts by information criteria,

RMSE in bold in Table B.5 to B.8, may outperform the dynamic One-sided forecasts.

This result shows that if one chooses the ex-post best performing information criteria,

then a simple static One-sided factor estimation can yield a better forecasting per-

formance than dynamic One-sided forecasts. This tendency is also obvious in Table

B.9 to B.12.

2.5 Conclusion

This paper investigates the empirical predictive performance of factor-augmented

forecasts whose factors are estimated using various, widely used factor estimation

methods. Using 7 factor estimation methods, 148 target variables are forecasted,

according to 11 information criteria, under three forecasting horizons and three fore-

casting equations. This intensive analysis contributes to the existing literature by

providing several new findings.

First, the number of contemporaneous factors used in forecasting is important

for predictive power. Incorporating more factors in the forecasting equation may not

always produce better forecasting results. Rather, the use of more than a certain

number of factors tend to deteriorate forecasting performance. Consistency of certain

estimated factors to the true factor space has been proven by many studies. This

paper contributes to the existing literature by providing an empirical evidence that

forecasting performance often deteriorate when more factors are incorporated in the

forecasting equation.

Second, I find that consistently estimated number of factors in the predictors,

may not necessarily lead to the best predictive performance in the actual forecasting

practice. More specifically, 11 information criteria that estimate the number of factors,
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are tested. Usually, many factor estimation methods give good predictive results when

information criteria are used, except for PLS. PLS1, which is not consistent to the

true factor space relevant for a target variable, often o↵ers a better predictive power.

PLS-augmented forecasts with other information criteria often tend to show worse

forecasting performance.

Third, the best forecasting performance of each factor estimation method across

the 11 di↵erent information criteria is very similar. However, it is often hard to find a

dominant information criterion that gives the best forecasting results for all the target

variables, except for PLS1 for PLS. Even when the same factor estimation method is

used, predictive power tend to vary significantly across information criteria. Therefore,

the choice of factor estimation method, as well as information criterion is important

for forecasting performance.

Finally, PLS1 very often produces the predictive power that is close to the best

forecasting performance of the total combinations of all the factor estimation methods

with all information criteria. PLS1 tend to show robust predictive power and often

outperforms other factor estimation methods that involve more discretion about the

number of factors and parameter values. When we consider the best forecasts of the

whole combinations of 7 factor estimation methods with 11 information criteria, PLS1

generally provides the forecasts very close to the best results in many target variables.

I finish this paper by addressing possible future research. The possible usage of

PLS-augmented forecasting in other economic and financial contexts can be consid-

ered. First, it can be used to construct macroeconomic uncertainty. Uncertainty is

usually defined as the conditional volatility of a disturbance that was not predictable.

Since PLS often yields lower prediction errors, one may eliminate predictable move-

ment more e�ciently with PLS-augmented forecasting when uncertainty measures

are constructed. Second, forecasting with PLS can be used for the market return and

99



cash flow prediction. More specifically, the forecasting performance of various factor-

augmented forecasting, including PLS, along with the predictive variables proposed

by literature, can be investigated.
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A.1 NIPLS algorithm

Let P̂̂P̂P 1:q = (p̂̂p̂p1, ..., p̂̂p̂pq) be the T ⇥ q matrix of the first q PLS factors from the NIPLS

algorithm. Set XXX(1) =XXX, ↵̂̂↵̂↵1 =XXX(1)0yyy, and p̂̂p̂p1 =XXX(1)↵̂̂↵̂↵1. For j= 2, ..., q, we iteratively
create

 ̂̂ ̂ 
(j�1)

=XXX(j�1)0p̂̂p̂pj�1(p̂̂p̂p
0
j�1p̂̂p̂pj�1)

�1
;

XXX(j) =XXX(j�1) � p̂̂p̂pj�1 ̂̂ ̂ 
(j�1)0

;

↵̂̂↵̂↵j =XXX(j)0yyy;

p̂̂p̂pj =XXX(j)↵̂̂↵̂↵j

By construction, the PLS factor vectors p̂̂p̂pj are mutually orthogonal. For forecasting

yT+2, the values of the PLS factors at time (T+1) needs to be predicted. Let �̂̂�̂�1:q be the

OLS estimator from a regression of yyy on P̂̂P̂P 1:q; and let xxx(1)
⇧T+1 = xxx⇧T+1, p̂1,T+1 = xxx(1)

⇧T+1

0
↵̂1,

and

xxx(j)
⇧T+1 = xxx(j�1)

⇧T+1 �  ̂̂ ̂ (j)p̂j�1,T+1; p̂j,T+1 = xxx(j)
⇧T+1

0
↵̂̂↵̂↵j

Then, the PLS forecast of yT+2 using the first q PLS factors is ŷPLS
T+2|q = �̂̂�̂�01:qp̂̂p̂p1:q,T+1,

where p̂̂p̂p1:q,T+1 = (p̂1,T+1, ..., p̂q,T+1)
0.

A.2 Notation and Preliminary Lemmas

All of the asymptotic results in this appendix are obtained as N, T ! 1 jointly. We
use some additional notation. First, the vector notation 1l denotes an l⇥ 1 vector of
ones, while III l denotes an l⇥ l identity matrix. For the matrices, AAA1, ... , AAAl, that are
any size,

DiagDiagDiag(AAA1,AAA2, ...,AAAl) =

0

B@

AAA1 0 ... 0
0 AAA2 ... 0
: : :
0 0 ... AAAl

1

CA

where the “0” matrices are conformable zero matrices. Notice that DiagDiagDiag(AAA1, ... ,AAAl)
is not a square matrix because all of the matrices AAA1, ... , AAAl are square matrices. We
use the more common notation diagdiagdiag(AAA1, ...,AAAl) if all ofAAA1, ... ,AAAl are square matrices
or scalars. In Appendix A.2, n denotes some increasing integer functions of N and/or
T .

The following lemmas are useful to prove the theorems in this paper.
Lemma B.1 (Theorem 2 of Yu, Wang and Samworth (2015)): Let BBB and
AAA 2 Rl⇥l be symmetric matrices. Choose two integers a and b such that 1  a  b  l.
Assume that

min{�a�1(AAA)� �a(AAA),�b(AAA)� �b+1(AAA)} > 0
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where we set �0(AAA) = 1 and �l+1(AAA) = �1. Let d = b � a + 1. Then, there exists
an orthonormal matrix OOOBBB 2 Rd⇥d such that

���⌅(BBB|a : b)OOOBBB �⌅(AAA|a : b)
���
F


23/2 min
�
d1/2kBBB �AAAk2, kBBB �AAAkF

 

min{�a�1(AAA)� �a(AAA),�b(AAA)� �b+1(AAA)}

Remarks on Lemma B.1: (1) Let BBB and AAA be l ⇥ l symmetric random matrices,
where l is a fixed positive integer or an increasing integer function of n. Suppose that
plimm!1�1(AAA) = plimm!1�2(AAA) > plimm!1�3(AAA), and that kBBB �AAAk2 = Op(n�&).
If we choose a = 1 and b = 2 for the above lemma, we can obtain the following result:

��⌅(BBB|1 : 2)OOO2⇥2 �⌅(AAA|1 : 2)
��
F
 22kBBB �AAAk2

min{�0(AAA)� �1(AAA),�2(AAA)� �3(AAA)}

=
4kBBB �AAAk2

�2(AAA)� �3(AAA)
= Op(n

�&)

for some orthonormal matrix OOO2⇥2 2 R2⇥2.
(2) An important implication of the lemma is that when some eigenvalues of a

random matrix have the same probability limits, the eigenvectors corresponding to
the eigenvalues are asymptotically unique up to an orthonormal transformation. The
lemma explains why the PLS method cannot identify what individual factors in fff (j)t

are correlated or uncorrelated with the target variable.

Lemma B.2: Let AAA and BBB be l ⇥ l invertible matrices. Then,

BBB�1 �AAA�1 = BBB�1 (AAA�BBB)AAA�1

Lemma B.3: Let BBB and AAA be l ⇥ l symmetric matrices, where l is a fixed positive
integer or an increasing integer function of n. Suppose that kBBB �AAAk2 = Op(n�&).
Then, for all h = 1, ..., l, �h(BBB) = �h(AAA) +Op(n�&).

Proof: Using Corollary 4.10 of Stewart and Sun (1990, p. 203), we have

|�h(BBB)� �h(AAA)|  max {|�1(BBB �AAA)| , |�l(BBB �AAA)|} = kBBB �AAAk2 Q.E.D.

Lemma B.4: Let BBB and AAA be l ⇥ l symmetric random matrices, where l is a fixed
positive integer or an increasing integer function of n. Define fixed integersK and k(j)
(j = 0, 1, ..., J) such that k(0) = 0 and ⌃J

j=1k(j) = K. Let ks(j) = ⌃j
h=1k(h). Assume

that �h(AAA) = �2
j +Op(n�&) for h =ks(j� 1)+1, ... , k(j) and �2

1 > �2
2 > ... > �2

J . Let
⌅AAA

(j) = ⌅(AAA|ks(j � 1) + 1 : ks(j)); and define ⌅BBB
(j) similarly for BBB = AAA+CCC. Suppose

that kCCCk2=Op(n�&). Then, for each j = 1, ..., J , there exists a k(j)⇥ k(j) matrix OOOBBB
jj

such that
���⌅BBB

(j)OOO
BBB
jj �⌅AAA

(j)

���
F
= Op(n�&).

Proof: Let a = ks(j � 1) + 1 and b = ks(j), such that b � a + 1 = k(j). Let a0 =
ks(j � 1) and b0 = ks(j) + 1. Then, by Lemma B.1,
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��⌅BBB
(j)OOO

BBB
jj �⌅AAA

(j)

��
F
 23/2 min{(k(j))1/2kCCCk2, kCCCkF}

min{�a0(AAA)� �a(AAA),�b(AAA)� �b0(AAA)}

 23/2(k(j))1/2kCCCk2
min{�a0(AAA)� �a(AAA),�b(AAA)� �b0(AAA)}

=
23/2(k(j))1/2kCCCk2

min{�2
j�1 � �2

j +Op(n�&), �2
j � �2

j+1 +Op(n�&)} = Op(n
�&)

which completes the proof. Q.E.D

Lemma B.5: Let BBB and AAA be l1 ⇥ l2 random matrices, where l2 is a fixed positive
integer and and l1 is a fixed positive integers or an increasing integer function of n.
Assume that kBBB �AAAkF = Op(n�&), and that plimm!1A0AA0AA0A is finite and invertible.
Then,

kP(BBB)� P(AAA)kF = Op(n
�&); kQ(BBB)�Q(AAA)kF = Op(n

�&)

Proof: Let CCC = (BBB �AAA)0AAA +A0A0A0(BBB �AAA) + (BBB �AAA)0(BBB �AAA) so that B0BB0BB0B = A0AA0AA0A +
CCC. Observe that kCCCkF = Op(n�&). Thus, plimm!1B0BB0BB0B is also finite and invertible.
Therefore, by Lemma B.2,

���(B0BB0BB0B)
�1 � (A0AA0AA0A)

�1
��� 

���(B0BB0BB0B)
�1
���
���(A0AA0AA0A)

�1
��� kCCCk = Op(n

�&)

Now, observe that

P(BBB)� P(AAA) = AAA[(B0BB0BB0B)
�1 � (A0AA0AA0A)

�1
]A0A0A0 + (BBB �AAA)(B0BB0BB0B)

�1
A0A0A0

+AAA(B0BB0BB0B)
�1
(BBB �AAA)0 + (BBB �AAA)(B0BB0BB0B)

�1
(BBB �AAA)0

⌘ III + IIIIII + IIIIIIIII + IVIVIV .

Here, kIIIk  kAAAk
���(B0BB0BB0B)�1 � (A0AA0AA0A)�1

��� kA0A0A0k = Op(n�&). Similarly, we can show

kIIIIIIk = Op(n�&); kIIIIIIIIIk = Op(n�&); and kIVIVIV k = Op(n�2&). Thus, kP(BBB)� P(AAA)k 
kIIIk + kIIIIIIk + kIIIIIIIIIk + kIVIVIV k = Op(n�&). In addition, kQ(BBB)�Q(AAA)k = Op(n�&),
because Q(BBB)�Q(AAA) = P(AAA)� P(BBB). Q.E.D.

A.3 Proofs of Theorems

Lemma C.1: Define the following orthonormal matrix:

OOO⌦FFF =
⇣
OOO⌦FFF

(1) , ...,OOO
⌦FFF
(J)

⌘
=

0

BB@

OOO⌦FFF
11 0k(1)⇥k(2) ... 0k(1)⇥k(J)

0k(2)⇥k(1) OOO⌦F
22 ... 0k(2)⇥k(J)

: : :
0k(J)⇥k(1) 0k(J)⇥k(2) ... OOO⌦FFF

JJ

1

CCA

K⇥K

=DiagDiagDiag(OOO⌦FFF
11 , ...,OOO⌦FFF

JJ )
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where OOO⌦FFF
(j) is a K ⇥ k(j) matrix and OOO⌦FFF

jj is a k(j) ⇥ k(j) orthonormal matrix for

each j = 1, ..., J . Then, OOO⌦FFF = ⌅(⌦FFF |1 : K).

Proof: The desired result holds because OOO⌦FFF
0
OOO⌦FFF = IIIK ; ⌦FFFOOO

⌦FFF = OOO⌦FFF⌦FFF . Q.E.D.

Remark on Lemma C.1: The matrix OOO⌦FFF is not unique because the OOO⌦FFF
jj matrices

could be any orthonormal matrices.

Lemma C.2: Under (A.2) – (A.4),

(i)
���⌦̂FFF �⌦FFF

���
F
= Op(T��);

���⌦̂� � IIIK
���
F
= Op(N��);

(ii) �h(⌦̂FFF ) = �2
j +Op(T��); �q(⌦̂�) = 1 +Op(N��),

where j = 1, ... , J , h = ks(j� 1)+ 1, ks(j� 1)+ 2, ... , ks(j), and q = 1, 2, ... , K.

Proof: Part (i) holds by (A.4). Observe that with (i),

���⌦̂FFF �⌦FFF

���
2

���⌦̂FFF �⌦FFF

���
F
= Op(T

��);
���⌦̂� � IIIK

���
2

���⌦̂� � IIIK

���
F
= Op(N

��)

Thus, (ii) holds by Lemma B.3. Q.E.D.

Lemma C.3: Under (A.1) and (A.6),

(i)
���(NT )�1/2F 0EF 0EF 0E

���
F
= Op(1);

���(NT )�1/2�000E 0E 0E 0
���
F
= Op(1);

���(NT )�1/2�000E 0FE 0FE 0F
���
F
=

Op(1);

(ii)
���(NT )�1/2EEE

���
F
= Op(1) > 0; m1/2

��(NT )�1E 0EE 0EE 0E
��
F
= Op(1) > 0.

Proof: We can show the first part of (i) by (A.6) because

E
⇣
(NT )�1

��F 0EF 0EF 0E
��2
F

⌘

= E
�
(NT )�1trace(F 0EE 0FF 0EE 0FF 0EE 0F )

�
= E

⇣
(NT )�1trace

h
⌃N

i=1

�
⌃T

t=1fff ⇧teit
� �

⌃T
t=1fff ⇧teit

�0i⌘

= E
⇣
(NT )�1⌃N

i=1trace
h�
⌃T

t=1fff ⇧teit
� �

⌃T
t=1fff ⇧teit

�0i⌘

= E
⇣
N�1⌃N

i=1

��T�1/2⌃T
t=1fff ⇧teit

��2
2

⌘
< c.

Similarly, the second part of (ii) can be shown because

E
⇣
(NT )�1

���000E 0E 0E 0��2
F

⌘
= E

⇣
T�1⌃T

t=1

��N�1/2⌃N
i=1�⇧ieit

��2
2

⌘
< c
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The third part of (iii) holds because

E
⇣
(NT )�1

��F 0EF 0EF 0E�
��2
F

⌘
= N�1⌃N

i=1E
⇣��T�1/2⌃T

t=1fff ⇧t�
0
⇧ieit

��2
F

⌘

 N�1⌃N
i=1E

⇣��T�1/2⌃T
t=1fff ⇧teit

��2
2
k�⇧ik22

⌘

= N�1⌃N
i=1E

⇣��T�1/2⌃T
t=1fff ⇧teit

��2
2

⌘
E
�
k�⇧ik22

�
< c2.

Observe that because rank(EEE)  min{N, T} = m, �h(E 0EE 0EE 0E) = 0 for all h > m. By
this fact,

���(NT )�1/2EEE
���
2

F
= trace

�
(NT )�1E 0EE 0EE 0E

�
= ⌃m

h=1�h
�
(NT )�1E 0EE 0EE 0E

�

= m�1⌃m
h=1�h

�
M�1E 0EE 0EE 0E

�

 m�1 ⇥
�
m⇥ �1

�
M�1E 0EE 0EE 0E

��
= �1

�
M�1E 0EE 0EE 0E

�
;

���(NT )�1/2EEE
���
2

F
= m�1⌃m

h=1�h
�
M�1/2E 0EE 0EE 0E

�
� m�1

�
mc ⇥ �mc

�
M�1/2E 0EE 0EE 0E

��

= (mc/m)⇥ �mc

�
M�1/2E 0EE 0EE 0E

�
= (mc/m)(c+ op(1)).

These two results and (A.5) imply the first part of (ii). Finally, letting AAA = M�1E 0EE 0EE 0E,
we can obtain the second part of (ii) because

m1/2
��(NT )�1E 0EE 0EE 0E

��
F
= m1/2

⇥
m�2 ⇥ trace(AAAAAA)

⇤1/2
= m1/2

⇥
m�2⌃m

h=1(�h (AAA))
2⇤1/2

 m1/2
⇥
m�2m⇥ (�1 (AAA))

2⇤1/2 = �1 (AAA) ;

m1/2
��(NT )�1E 0EE 0EE 0E

��
F
= m1/2

⇥
m�2 ⇥ trace (AAAAAA)

⇤1/2
=
⇥
m�1⌃m

h=1(�h (AAAAAA))
2⇤1/2

�
⇥
(mc/m)⇥ (�mc (AAA))2

⇤1/2 � (mc/m)1/2(c+ op(1))
1/2.

This completes the proof. Q.E.D.

Lemma C.4: Let �̃ = � +E 0FE 0FE 0F (F 0FF 0FF 0F )�1 and ⌦̃� = N�1�̃0�̃. Then, under (A.1) –
(A.6),

(i)
���N�1/2(�̃��)

���
F
= Op(T�1/2);

���(⌦̃� � IIIK)
���
F
=Op(m��);

(ii)
����h(⌦̃���)� 1

��� = Op(m��), for all h = 1, 2, ..., K;

(iii)
���⌦̃1/2

��� � IIIK
���
F
= Op(m��).
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Proof: The first part of (i) holds by Lemma C.3 because

���N�1/2(�̃��)
���
F
 T�1/2

���(NT )�1/2E 0FE 0FE 0F
���
F

���
�
T�1F 0FF 0FF 0F

��1
���
F
= Op(T

�1/2)

For the second part of (ii), let

AAA =
1

N1/2T 1/2

�000E 0FE 0FE 0F

N1/2T 1/2

✓
F 0FF 0FF 0F

T

◆�1

; BBB =
1

T

✓
F 0FF 0FF 0F

T

◆�1 F 0EF 0EF 0E

N1/2T 1/2

E 0FE 0FE 0F

N1/2T 1/2

✓
F 0FF 0FF 0F

T

◆�1

By Lemma C.3,

kAAAkF = Op((TN)�1/2) = Op((mM)�1/2); kBBBkF = Op(T
�1)

Observe that ⌦̃� � IIIK = ⌦̂� � IIIK +AAA+A0A0A0 +BBB, and that
���⌦̂� � IIIK

���
F
= Op(N��)

by (A.4). Thus, we have the second part of (ii) because

���⌦̃� � IIIK
���
F

���⌦̂� � IIIK

���
F
+ 2kAAAkF + kBBBkF  Op(m

��)

Part (ii) holds by the second part of (i) and Lemma B.3.

Finally, let ⇤̃ = diagdiagdiag(�̃1, ..., �̃K) = ⇤(⌦̃�|1 : K); and ⌅̃ = ⌅(⌦̃�). By (ii), �̃1/2h �1

= (�̃k � 1)/(�̃1/2k + 1) = Op(m��), which implies
���⇤̃1/2 � IIIK

���
F
= Op(m��). Thus,

(iii) holds because

���⌦̃1/2
� � IIIK

���
F
=
���⌅̃(⇤̃1/2 � IIIK)⌅̃0

���
F
=
���⌅̃

���
2

F

���⇤̃1/2 � IIIK
���
F
= Op(m

��)

This completes the proof. Q.E.D.
Some matrices are useful for the proofs of the following lemmas and theorem.

Using the matrix �̃ defined in Lemma C.4, we can show that XXX and SNT are of the
following forms:

XXX

N1/2T 1/2
=

FFF

T 1/2

�̃000

N1/2
+

Q(FFF )EEE

N1/2T 1/2
; SNT =

X 0XX 0XX 0X

NT
= ZZZNT +

E 0E 0E 0Q(FFF )EEE

NT

where ZZZNT = (N�1/2�̃)⌦̂FFF (N�1/2�̃000). We define the following matrices:

MMMNT = ⌦̃1/2
� ⌦̂FFF ⌦̃

1/2
� ; ⌅ZZZNT

H = N�1/2�̃⌦̃
�1/2

� ⌅(MMMNT |1 : K)

where ⌦̃� = N�1�̃000�̃.

Lemma C.5: ⇤(MMMNT |1 : K) = ⇤(ZZZNT |1 : K) and ⌅ZZZNT
H = ⌅(ZZZNT |1 : K).
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Proof: We can easily show

ZZZNT⌅
ZZZNT
H =

h
N�1/2�̃⌦̃

�1/2

� ⌦̃1/2
� ⌦̂FFFN

�1/2�̃0
i
N�1/2�̃⌦̃

�1/2

� ⌅(MMMNT |1 : K)

= N�1/2�̃⌦̃
�1/2

� MMMNT⌅(MMMNT |1 : K)

= N�1/2�̃⌦̃
�1/2

� ⌅(MMMNT |1 : K)⇤(MMMNT |1 : K)

= ⌅ZZZNT
H ⇤(MMMNT |1 : K)

This completes the proof. Q.E.D.

Lemma C.6: Under (A.1) – (A.6),

kMMMNT �⌦FFFkF = Op(m
��); �h (ZZZNT ) = �h(MMMNT ) = �2

j +Op(m
��)

for h = ks(j � 1) + 1, ... , ks(j) and j = 1, ..., J .

Proof: Observe that by Lemma C.4 and (A.5),
���⌦̃1/2

� ⌦̂FFF �⌦FFF

���
F

���⌦̃1/2

� � IIIK
���
F
k⌦FFFkF +

���⌦̂FFF �⌦FFF

���
F

+
���⌦̃1/2

� � IIIK
���
F

���⌦̂FFF �⌦FFF

���
F
= Op(m

��)

With this, we can obtain the first result:

kMMMNT �⌦FFFkF =
���⌦̃1/2

� ⌦̂FFF ⌦̃
1/2
� �⌦FFF

���
F

=
���⌦̃1/2

� ⌦̂FFF ⌦̃
1/2
� �⌦FFF ⌦̃

1/2
� +⌦FFF ⌦̃

1/2
� �⌦FFF

���
F


���⌦̃1/2

� ⌦̂FFF �⌦FFF

���
F

���⌦̃1/2
�

���
F
+ k⌦FFFkF

���⌦̃1/2
� � IIIK

���
F
= Op(m

��)

Finally, because �h (ZZZNT ) = �h(MMMNT ) for all h = 1, ..., K, we can obtain the second
result by the first result and Lemma B.3. Q.E.D.

Lemma C.7: Define ⌅MMMNT
(j) = ⌅(MMMNT |ks(j � 1) + 1 : ks(j)). Then, for each j =

1, ..., D, there exists a k(j)⇥ k(j) orthonormal matrix OOOMMMNT
jj such that

���⌅MMMNT
(j) OOOMMMNT

jj �OOO⌦FFF
(j)

���
F
= Op(m

��)

Proof: Because kMMMNT �⌦FFFk2  kMMMNT �⌦FFFkF = Op(m��), we can obtain the
result by Lemma B.4 and Lemma C.6. Q.E.D.

Lemma C.8: Under (A.1) – (A.6),
��M�1E 0E 0E 0Q(FFF )EEE

��
2
= Op(1);

��(NT )�1E 0E 0E 0Q(FFF )EEE
��
F
= Op(m

�1/2)
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Proof: Because E 0E 0E 0Q(FFF )EEE and = E 0E 0E 0P(FFF )EEE are positive semi-definite matrices,

�1
�
M�1E 0E 0E 0Q(FFF )EEE

�
 �1

�
M�1E 0E 0E 0Q(FFF )EEE +M�1E 0E 0E 0P(FFF )EEE

�
= �1

�
M�1E 0EE 0EE 0E

�
= Op(1)

where the first inequality results from Lemma A.6 of Ahn and Horenstein (2013) and
the last equality is due to (A.5). Thus, the first part holds. The second result holds
because

��(NT )�1E 0E 0E 0Q(FFF )EEE
��
F
= m�1

��M�1E 0E 0E 0Q(FFF )EEE
��
F

= m�1
h
⌃m

h=1

�
�h

�
M�1E 0E 0E 0Q(FFF )EEE

��2i1/2

 m�1
h
m
�
�1
�
M�1E 0EE 0EE 0E

��2i1/2
= Op(m

�1/2)

This completes the proof. Q.E.D.

Lemma C.9: Under (A.1) – (A.6),

(i) kSNT �ZZZNTk2 = Op(m�1); kSNT �ZZZNTkF = Op(m�1/2);

(ii) �h(SNT ) = �2
j +Op(m��) for h = ks(j � 1) + 1, ..., ks(j) and j = 1, ... , J ;

(iii) �q(SNT ) = Op(m�1), for q = K + 1, ...,m.

Proof: The results in (i) immediately follow from Lemma C.8. By Lemma B.3 and
(i), �q(SNT ) = �q(ZZZNT ) + Op(m�1) for all q = 1, 2, ... , K. In addition, by Lemma
C.6, �q(ZZZNT ) = �q(MMMNT ) = �q(⌦FFF ) +Op(m��). Thus, (ii) holds because

�h(SNT ) = �h(⌦F ) +Op(m
��) +Op(m

�1) = �2
j +Op(m

��)

For q � K + 1, (iii) holds because �h(ZZZNT ) = 0. Q.E.D.

Lemma C.10: Under (A.1) – (A.6), for each j = 1, ..., J , there exists a k(j) ⇥
k(j) orthonormal matrix OOOSNT

jj such that
���⌅SNT

(j) OOOSNT
jj �⌅ZZZNT

(j)

���
F

= Op(m�1) and
���⌅SNT

(j) �⌅ZZZNT
(j) OOOSNT

jj

000
���
F
= Op(m�1).

Proof: The desired result is obtained by Lemma C.9 and Lemma B.4. Q.E.D.

Lemma C.11: Let OOO⇤
jj = OOO⌦FFF

jj OOOMMMNT
jj

000
OOOSNT

jj

000
, where j = 1, ..., J , and OOO⌦FFF

jj , OOOMMMNT
jj , and

OOOSNT
jj are defined in Lemmas C.1, C.7, and C.10, respectively. Under (A.1) – (A.6),
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Proof: Observe that
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Thus, by Lemma C.4 and C.7, we can have
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With this result and Lemma C.11, we can obtain the desired result because:
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This completes the proof. Q.E.D.

Lemma C.12: Under (A.1) – (A.6),
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2
= Op(1);
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���
2
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Proof: By (A.7) and Lemma C.4,
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This completes the proof because Because at because the Frobenius norms ofE 0E 0E 0Q(FFF )uuu
and �̃000E 0E 0E 0Q(FFF )uuu respectively equal to their spectral norms. Q.E.D.

Lemma C.13: Under (A.1) – (A.7),
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Similarly, (ii) holds because, for j � R + 1,
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Lemma C.14: Under (A.1) – (A.7),
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which completes the proof. Q.E.D.

Lemma C.15: Under (A.1) – (A.7), for j = 1, ... , R,

(i)
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where OOO⇤
jj is defined in Lemma C.11. For j � R + 1,
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Proof: For j  R,
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Applying Lemmas C.11 and C.14 to this result, we can show
�����ccc

SNT
(j) �OOO

⇤
jj
000 �

000
(j)

N1/2

✓
⌃R
j0=1

�(j0)

N1/2
�
2
j0���(j0)

◆�����
F



�����OOO
⇤
jj
000 �

000
(j)

N1/2

�����
F

����bbbNT � ⌃R
j0=1�

2
j0
�(j0)

N1/2
���(j0)

����
F

+

����⌅
SNT
(j) �

�(j)

N1/2
OOO

⇤
jj

����
F

����⌃
R
j0=1�

2
j0
�(j0)

N1/2
���(j0)

����
F

+

����⌅
SNT
(j) �

�(j)

N1/2
OOO

⇤
jj

����
F

����bbbNT � ⌃R
j0=1�

2
j0
�(j0)

N1/2
���(j0)

����
F

= Op(T
��) +Op(m

��) +Op(T
��

m
��)

This implies

(C.1)

�����ccc
SNT
(j) �OOO⇤

jj
000 �

000
(j)

N1/2

✓
⌃R

j0=1

�(j0)

N1/2
�2
j0���(j0)

◆�����
F

= Op(m
��)

In addition, the following holds:

(C.2)

�����
�000

(j)

N1/2

✓
⌃R

j0=1

�(j0)

N1/2
�2
j0���(j0)

◆
�
�000

(j)�(j)

N1/2
�2
j���(j)

�����
F

 ⌃R
j0=1,
j0 6=j

�����
�000

(j)�(j0)

N1/2

�����
F

���2
j���(j)

��
F

= Op(m
��);

(C.3)

�����
�000

(j)�(j)

N
�2
j���(j) � �2

j���(j)

�����
F



�����
�000

(j)�(j)

N
� IIIk(j)

�����
F

���2
j���(j)

��
F
= Op(m

��)

Thus, by (C.1) – (C.3), we can obtain (i) because
���cccSNT

(j) �OOO⇤
jj�

2
j���(j)

���
F
=
���cccSNT

(j) �OOO⇤
jj�

2
j���(j)

���
F



�����ccc
SNT
(j) �OOO⇤

jj
0 �

000
(j)

N1/2

✓
⌃R

j0=1

�(j0)

N1/2
�2
j0���(j0)

◆�����
F

+
��OOO⇤

jj

��
F

�����
�000

(j)

N1/2

✓
⌃R

j0=1

�(j0)

N1/2
�2
j0���(j0)

◆
�
�000

(j)�(j)

N1/2
�2
j���(j)

�����
F

+
��OOO⇤

jj

��
F

�����
�000

(j)�(j)

N
�2
j���(j) � �2

j���(j)

�����
F

119



Part can be shown for j � R + 1, similarly. Q.E.D.

Lemma C.16: Under (A.1) – (A.6), for j = 1, ..., J ,
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which, with (C.4) and (C.5) imply the desired result. Q.E.D.

Lemma C.17: Under (A.1) – (A.8), the following holds. Let ⌅SNT
H = (⌅SNT

(1) , ...,⌅SNT
(J) )

= ⌅(SNT |1 : K). Then,
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NT |1 : K); and F̃̃F̃F = FFF +EEE�(�000�)�1. Then,
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(ii)
���Q(⌅⇤

H)�Q(T�1/2F̃̃F̃F )
���
F
= Op(m�1).

Proof: Let ⌅ZZZNT
H = ⌅(ZZZNT |1 : K). Observe that ⌦̃�1/2

� ⌅(MMMNT |1 : K) is an invertible

matrix, and that ⌅ZZZNT
H = N�1/2�̃⌦̃

�1/2

� ⌅(MMMNT |1 : K). Thus,

(C.6) Q(⌅ZZZNT
H ) = Q(N�1/2�̃).

By Lemmas A.1 and C.9 and the fact that �K(ZZZNT ) > 0 and �K+1(ZZZNT ) = 0, there
exists an orthonormal matrix OOOSNT such that

���⌅SNT
H OOOSNT �⌅ZZZNT

H

���
F
 23/2K1/2kSNT �ZZZNTk2

�K(ZZZNT )
= Op(m

�1)

where the last equality is due to Lemma C.9. Thus, by Lemma B.5, we have

(C.7)
���Q(⌅SNT

H )�Q(⌅ZZZNT
H )

���
F
=
���Q(⌅SNT

H OOOSNT )�Q(⌅ZZZNT
H )

���
F
= Op(m�1)

which, with (C.6) implies the result in (i). We can show (ii) similarly. It is straight-
forward to show that

S⇤
NT = ZZZ⇤

NT + (NT )�1EEEQ(N�1/2�)E 0E 0E 0

where ZZZ⇤
NT = (T�1/2F̃̃F̃F )(N�1�000�)�1(T�1/2F̃̃F̃F ). Thus, by the same methods used to
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for some orthonormal matrix OOO⇤⇤. These results imply (ii). Q.E.D.

Lemma C.18: Let HHHNT = (NT )�1/2⌅SNT
L

0Q(�)E 0E 0E 0Q(F̃̃F̃F ), where F̃̃F̃F is defined in
Lemma C.17. Assume that (A.1) – (A.7) hold. Then, the following holds.
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Proof: Let ⌅⇤
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For (i), it is su�cient to show that kIIIk2 = Op(m�3/2), and kIIIIIIk2 = Op(m�3/2).
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For (ii), observe that
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which implies (iii). Q.E.D.

Proof of Lemma 2.4.1: The results (i) and (ii) hold by Lemma C.9. The result (iii)
holds by Lemma C.14. The result (iv) holds by Lemma C.11. Finally, the results (v)
and (vi) hold by Lemmas C.15. Finally, the parts (vii) – (ix) hold by Lemma C.18.
Q.E.D.

Lemma C.19: Under (A.1) – (A.8), for q � 1,
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which implies the last part of the lemma. Q.E.D.

Corollary C.19: Under (A.1) – (A.6), for q � 1,

kVVV H1(q)kF = Op(m
��); kVVV H2(q)kF = Op(m

��); kVVV L(q)kF = Op(T
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Proof of Lemma 2.4.2: The parts (ii) – (iii) hold by Lemma C.19. For (i), observe
that for each j = 1, ..., R,

⌅SNT
(j) cccSNT

(j) =

✓
�(j)

N1/2
OOO⇤

jj +

✓
⌅SNT

(j) �
�(j)

N1/2
OOO⇤

jj

◆◆⇣
OOO⇤

jj
000�2

j���(j) +
⇣
cccSNT
(j) �OOO⇤

jj
000�2

j���(j)

⌘⌘

=
�(j)

N1/2
�2
j���(j) +

✓
⌅SNT

(j) �
�(j)

N1/2
OOO⇤

jj

◆
OOO⇤

jj
000�2

j���(j)

+
�(j)

N1/2
OOO⇤

jj

⇣
cccSNT
(j) �OOO⇤

jj
000�2

j���(j)

⌘
+

✓
⌅SNT

(j) �
�(j)

N1/2
OOO⇤

jj

◆⇣
cccSNT
(j) �OOO⇤

jj
000�2

j���(j)

⌘
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Proof of Corollary 2.4.2: By Lemma 2.4.2 and Corollary C.19.

Proof of Theorem 1: By Lemma 2.4.1 and Corollary 2.4.2, kVVV L(q)kF = Op(m�1/2).
This result and Corollary 2.4.2 implies (i) because
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For (ii), observe that
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With this result and part (i), we can show
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Proof: We can easily show (i) – (iii) using the fact that ⌅SNT
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Proof: Observe that for j = 1, ..., R,
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Lemma C.22: Under (A.1) – (A.8), for q � 1,
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by Lemma 2.4.2. The same lemma also implies
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These results imply (i). Part (ii) holds by Lemma 2.4.2 because

(C.9)
���d̂̂d̂d0(q)� ddd0(q)
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2

���(GGG000

0GGG0)
�1
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���
2
kgggH1(q)k2 = Op(m��)

Part (ii) holds by Lemma 2.4.1 because
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(NT )1/2
⌅SNT

L
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L
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2
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L
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2
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This completes the proof. Q.E.D.

Corollary C.22: Under (A.1) – (A.8), for q � 1,

(i) kGGGc
H(q)kF = Op(m��);

(ii)
���D̂̂D̂D0(q)�DDD0(q)

���
F
= Op(m��);

(iii) kGGGL(q)kF = Op

�
m�1/2(T�1/2 +m�3/2)

�

Proof: Parts (i) and (ii) hold by Lemma C.22 because

kGGGc
H(q)kF  ⌃q

j=1kgggcH(j)k2;
���D̂̂D̂D0(q)�DDD0(q)
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F

 ⌃q
j=1
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Part (iii) also holds by Lemma C.22 because kGGGL(q)kF  ⌃q
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Lemma C.23: Let

⇢j,q =
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(j)
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Under (A.1) – (A.8), for j = 1, 2, ..., R and q = 1, 2, ....,
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(j)
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(j)

i
/µSNT

j +Op(m
�2�)

Proof: Observe that by Lemma 2.4.1,
���⇤SNT

(j) � ⇤̄SNT
(j)

���
F
= Op(m��) for j = 1, ..., R.

With this result, we can show

⇢q,j �
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(j) )
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j
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= ccc
SNT

(j)
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SNT
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⇣
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(j)
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A
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⌘
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which completes the proof. Q.E.D.

Lemma C.24: Under (A.1) – (A.8), for q � 1,

(i)
��T�1/2y0gy0gy0gcH(q)

��
2
= Op(m�2�);

(ii)
��T�1/2y0y0y0gggL(q)
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2
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�
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�
;

Proof: We can obtain (i) by showing that
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2
= Op(m
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Consider ⌧q defined in Lemma C.20. By Lemma C.23 and Lemma 2.4.1, for q =
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j
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Thus, (C.10) holds because, by Lemma C.20, T�1/2y0y0y0Q(GGG0)gggH1(q) = ⌧q. Finally, by
Lemma C.20 and Lemma 2.4.1, (C.11) also holds because

��T�1/2y0y0y0gggH2(q)
��
2
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We can obtain (ii) because
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Q.E.D.

Corollary C.24: Under (A.1) – (A.8), for q � 1,
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(i)
��T�1/2y0Gy0Gy0Gc

H(q)
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2
= Op(m�2�);

(ii)
��T�1/2y0y0y0GGGL(q)
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⌘

Proof: Observe that
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 q ⇥
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Thus, (i) and (ii) hold by Lemma C.23. Q.E.D.

Proof of Lemma 2.4.3: Parts (i) and (ii) hold by Lemma C.21. Parts (iii) and (iv)
hold by Lemma C.22. Part (vi) holds by Lemma C.23. Q.E.D.

Proof of Corollary 2.4.3: The results hold by Corollaries C.22 and C.24. Q.E.D.

Lemma C.25:Under (A.1) – (A.8),
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Lemma C.26: Under (A.1) – (A.8),
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(C.12)

�����
cccSNT
(j)

000
cccSNT
(j)

cccSNT
(j)

000
⇤SNT

(j) cccSNT
(1)

�
cccSNT
(j)

000
cccSNT
(j)

µSNT
j cccSNT

(j)

000
cccSNT
(j)

����� = Op(m
��)

because
�����

cccSNT
(j)

000
cccSNT
(j)

cccSNT
(j)

000
⇤SNT

(j) cccSNT
(1)

�
cccSNT
(j)

000
cccSNT
(j)

µSNT
j cccSNT

(j)

0
cccSNT
(j)

�����



���µSNT
j cccSNT

(j)

000
cccSNT
(j) � cccSNT

(j)

000
⇤SNT

(j) cccSNT
(1)

���

(cccSNT
(j)

000
⇤SNT

(j) cccSNT
(1) )µSNT

j



�����
1

(cccSNT
(j)

000
⇤SNT

(j) cccSNT
(1) )µSNT

j

�����
2

���⇤̄SNT
(j) �⇤SNT

(j)

���
F

���cccSNT
(j)

���
2

2

= Op(1)⇥Op(m
��)⇥Op(1) = Op(m

��)

131



With (C.12), we have
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By Lemma 2.4.1, 1/µSNT
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j = (�2
j � µSNT

j )/(µSNT
j �2

j ) = Op(m��). Thus,
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By (C.13) and (C.14), we can obtain the desired result because
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Q.E.D.

Remark: Because GGG0, GGGc
H(q), and GGGL(q) are mutually orthogonal by construction,

we can obtain the following results:
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Lemma C.27: Under (A.1) – (A.8),
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��
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Proof: The results hold by Lemma 2.4.3 and Corollary 2.4.3. Q.E.D.

Lemma C.28: Under (A.1) – (A.8),
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F
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⇣
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2
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Proof: The results hold by Lemma 2.4.3 and Corollary 2.4.3. Q.E.D.

Proof of Lemma 2.4.4: All the results hold by Lemmas C.27 and C.28. Q.E.D.

Lemma C.29: Let ddd⇤0(q) = ⌃q�1
R 1R and DDD⇤
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⇤
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Proof: By Lemma 2.4.1, for j = 1, ..., R, we have

(C.15) ⇤̂SNT
(j) !p �

2
jIIIk(j); cccSNT

(j) !p OOO
⇤
jj�

2
j���(j)

In addition, it is straightforward to show

(C.16) GGG000
0GGG0 = VVV 000

0⇤
SNT
H1 VVV 0 =DiagDiagDiag(cccSNT

(1)

000
⇤SNT

(1) cccSNT
(1) , ..., cccSNT

(R)

000
⇤SNT

(R) ccc
SNT
(R) );

(C.17)
GGG000

0yyy

T 1/2
=

0

B@
cccSNT
(1)

000
⌅SNT

(1)

000

:

cccSNT
(R)

000
⌅SNT

(R)

000

1

CA
X 0yX 0yX 0y

N1/2T
=

0

B@
cccSNT
(1)

000
cccSNT
(1)

:

cccSNT
(R)

000
cccSNT
(R)

1

CA

By Lemmas 2.4.1 and 2.4.3,
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Then, the desired results can be obtained by (C.15) – (C.18) and Lemma 2.4.1.Q.E.D.

Proof of Theorem 2: We begin by considering the cases in which R < K. Observe
that
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When R = K, we have D̂̂D̂D0(R) = DDD0(R). With this result, (C.19) and Lemma 2.4.4,
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The part (ii) is obtained by Theorem 1 and the part (i) because
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����
2

=
��ggg000T+1⌃RDDD0(R)[DDD0(R)]�1⌃�1

R 1R � ŷoT+2
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Finally, for (iii), observe that by Lemmas 2.4.4 and C.29, we have
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0yyy +GGGc
H(R)000yyy +GGGL(R)000yyy)

!p DDD
⇤
0(R)

�
�4
1���

000
(1)���(1), ..., �

4
1���

000
(1)���(1)

�000
;

P̃̃P̃P PLS
1:R

000
P̃̃P̃P PLS

1:R

NT
= D̂̂D̂D0(R)000GGG000

0GGG0D̂̂D̂D0(R) +GGGc
H(R)000GGGc

H(R) +GGGL(R)000GGGL(R)

!p DDD
⇤
0(R)000DiagDiagDiag(�6

1���
000
(1)���(1), ..., �

6
1���

000
(1)���(1))DDD

⇤
0(R)

By these two results, we can obtain

y0y0y0P(P̃̃P̃P PLS
1:R )yyy

T
=

y0P̃y0P̃y0P̃ PLS
1:R

N1/2T

 
P̃̃P̃P PLS

1:R
000
P̃̃P̃P PLS

1:R

NT

!�1
P̃̃P̃P PLS

1:R
000
yyy

N1/2T
!p⌃

R
j=1�

2
j���

000
(j)���(j)

which implies (iii). Q.E.D.

Lemma C.30: Let ✓̃̃✓̃✓ ⌘ (P̃̃P̃P PLS
1:R

000
P̃̃P̃P PLS

1:R )
�1
P̃̃P̃P PLS

1:R
000
p̃̃p̃pPLS
R+1 . Then,

(i)
���✓̃̃✓̃✓ � [DDD0(R)]�1ddd0(R + 1)

���
2
= Op(m��), if R < K;

(ii)
���✓̃̃✓̃✓ � [DDD0(R)]�1ddd0(R + 1)

���
2
= Op

⇣
m�1(T�1/2 +m�3/2)

2
⌘
, if R = K.

Proof: Using Lemma B.2 and some algebra, we can show
 
P̃̃P̃P PLS

1:R
000
P̃̃P̃P PLS

1:R

NT

!�1
P̃̃P̃P PLS

1:R
000
p̃̃p̃pPLS
R+1

NT

= [D̂̂D̂D0(R)]
�1
d̂̂d̂d0(R + 1) +AAA1

�
GGGc

H(R)000gggcH(R + 1) +GGGL(R)000gggL(R + 1)
�

+AAA1

�
GGGc

H(R)000GGGc
H(R) +GGGL(R)000GGGL(R)

�
aaa2

where

AAA1 =
⇣
D̂̂D̂D0(R)GGG000

0GGG0D̂̂D̂D0(R)
⌘�1

;

aaa2 =
⇣
D̂̂D̂D0(R)GGG000

0GGG0DDD0(R) +GGGc
H(R)000GGGc

H(R) +GGGL(R)000GGGL(R)
⌘�1

⇥
⇣
D̂̂D̂D0(R)GGG000

0GGG0d̂̂d̂d0(R + 1) +GGGc
H(R)000gggcH(R + 1) +GGGL(R)000gggL(R + 1)

⌘

135



By Lemmas C.29 and 2.4.3, AAA1 !p ( ⇤)�1 and aaa2 !p ( ⇤)�1   ⇤. Thus, we can have

(C.21)
���✓̃̃✓̃✓ � [D̂̂D̂D0(R)]

�1
d̂̂d̂d0(R + 1)

���
2
= Op

���GGGc
H(R)000GGGc

H(R) +GGGL(R)000GGGL(R)
��
F

�

We begin by proving (ii). When R = K, we have D̂̂D̂D0(R) = DDD0(R), d̂̂d̂d0(R + 1) =
ddd0(R+1), and GGGc

H(R)000GGGc
H(R)+GGGL(R)000GGGL(R) = GGGL(R)000GGGL(R). By substituting these

results into (C.21) and applying Lemma C.28, we can obtain (ii).
For (i), observe that

��GGGc
H(R)000GGGc

H(R) +GGGL(R)000GGGL(R)
��
F

= Op(m�2�) because

GGGc
H(R)000GGGc

H(R) asymptotically dominates GGGL(R)000GGGL(R). Thus, from (C.20), we have

(C.22)
���✓̃̃✓̃✓ � [D̂̂D̂D0(R)]

�1
d̂̂d̂d0(R + 1)

���
2
= Op(m

�2�)

Now, by Lemma C.25 and Corollary 2.4.3, we can show
���[D̂̂D̂D0(R)]

�1
d̂̂d̂d0(R + 1)� [DDD0(R)]�1ddd0(R + 1)

���
2


���[D̂̂D̂D0(R)]

�1
d̂̂d̂d0(R + 1)� [D̂̂D̂D0(R)]

�1
ddd0(R + 1)

���
2

+
���[D̂̂D̂D0(R)]

�1
ddd0(R + 1)� [DDD0(R)]�1ddd0(R + 1)

���
2


���[D̂̂D̂D0(R)]

�1
���
F

���d̂̂d̂d0(R + 1)� ddd0(R + 1)
���
2
+
���[D̂̂D̂D0(R)]

�1
� [DDD0(R)]�1

���
F
kddd0(R + 1)k2

= Op(m
��)

which, with (C.26), implies

���✓̃̃✓̃✓ � [DDD0(R)]�1ddd0(R + 1)
���
2


���✓̃̃✓̃✓ � [D̂̂D̂D0(R)]

�1
d̂̂d̂d0(R + 1)

���
2
+
���[D̂̂D̂D0(R)]

�1
d̂̂d̂d0(R + 1)� [DDD0(R)]�1ddd0(R + 1)

���
2

= Op(m
�2�) +Op(m

��) = Op(m
��)

This completes the proof. Q.E.D.

Lemma C.31: Define Y1,NT = p̃̃p̃pPLS
R+1

000Q(P̃̃P̃P PLS
1:R )p̃̃p̃pPLS

R+1/(NT ). Under (A.1) – (A.8),

Y1,NT = gggcH(R + 1)000gggcH(R + 1) + gggL(R + 1)000gggL(R + 1)

�
�
gggcH(R + 1)000GGGc

H(R) + gggL(R + 1)000GGGL(R)
�
aaa3

� aaa0004
�
GGGc

H(R)000gggcH(R + 1) +GGGL(R)000gggL(R + 1)
�

+ aaa0004
�
GGGc

H(R)000GGGc
H(R) +GGGL(R)000GGGL(R)

�
aaa2

where aaa2 is defined in Lemma C.30, aaa3 !p ( ⇤)�1   ⇤, and aaa4 !p ( ⇤)�1   ⇤.
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Proof: Using Lemma B.2, we can show

Y1,NT =
p̃̃p̃pPLS
R+1

000
p̃̃p̃pPLS
R+1

NT
�

p̃̃p̃pPLS
R+1

000
P̃̃P̃P PLS

1:R

NT

 
P̃̃P̃P PLS

1:R
000
P̃̃P̃P PLS

1:R

NT

!�1
P̃̃P̃P PLS

1:R
000
p̃̃p̃pPLS
R+1

NT

= gggcH(R + 1)000gggcH(R + 1) + gggL(R + 1)000gggL(R + 1)

�
�
gggcH(R + 1)000GGGc

H(R) + gggL(R + 1)000GGGL(R)
� ⇣

D̂̂D̂D0(R)GGG000
0GGG0D̂̂D̂D0(R)

⌘�1

⇥ D̂̂D̂D0(R)GGG000
0GGG0d̂̂d̂d0(R + 1)

�
⇣
d̂̂d̂d0(R + 1)GGG000

0GGG0D̂̂D̂D0(R) + gggcH(R + 1)000GGGc
H(R) + gggL(R + 1)000GGGL(R)

⌘

⇥
⇣
D̂̂D̂D0(R)GGG000

0GGG0D̂̂D̂D0(R)
⌘�1 �

GGGc
H(R)000gggcH(R + 1) +GGGL(R)000gggL(R + 1)

�

+
⇣
d̂̂d̂d0(R + 1)GGG000

0GGG0D̂̂D̂D0(R) + gggcH(R + 1)000GGGc
H(R) + gggL(R + 1)000GGGL(R)

⌘

⇥
⇣
D̂̂D̂D0(R)GGG000

0GGG0D̂̂D̂D0(R)
⌘�1 �

GGGc
H(R)000GGGc

H(R) +GGGL(R)000GGGL(R)
�

⇥
⇣
D̂̂D̂D0(R)GGG000

0GGG0DDD0(R) +GGGc
H(R)000GGGc

H(R) +GGGL(R)000GGGL(R)
⌘�1

⇥
⇣
D̂̂D̂D0(R)GGG000

0GGG0d̂̂d̂d0(R + 1) +GGGc
H(R)000gggcH(R + 1) +GGGL(R)000gggL(R + 1)

⌘

= gggcH(R + 1)000gggcH(R + 1) + gggL(R + 1)000gggL(R + 1)

�
�
gggcH(R + 1)000GGGc

H(R) + gggL(R + 1)000GGGL(R)
�
aaa3

� aaa0004
�
GGGc

H(R)000gggcH(R + 1) +GGGL(R)000gggL(R + 1)
�

+ aaa0004
�
GGGc

H(R)000GGGc
H(R) +GGGL(R)000GGGL(R)

�
aaa2

where

aaa3 =
⇣
D̂̂D̂D0(R)GGG000

0GGG0D̂̂D̂D0(R)
⌘�1

D̂̂D̂D0(R)GGG000
0GGG0d̂̂d̂d0(R + 1)!p( 

⇤)�1   ⇤;

a0a0a04 =
⇣
d̂̂d̂d0(R + 1)GGG000

0GGG0D̂̂D̂D0(R) + ggg⇤H(R + 1)000GGG⇤
H(R) + gggL(R + 1)000GGGL(R)

⌘

⇥
⇣
D̂̂D̂D0(R)GGG000

0GGG0D̂̂D̂D0(R)
⌘�1

!p    
⇤0( ⇤)�1

by Lemmas C.29 and 2.4.3. Q.E.D.

Corollary C.31: Assume that (A.1) – (A.8) hold. When R < K,

(i) Y1,NT = Op(m�2�) if R < K;

(ii) Y1,NT = Op

⇣
m�1(T�1/2 +m�3/2)

2
⌘
, if R = K.
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Proof: When R < K,
��gggcH(R + 1)000gggcH(R + 1) + gggL(R + 1)000gggL(R + 1)

��
2


��gggcH(R + 1)000gggcH(R + 1)

��
2
+
��gggL(R + 1)000gggL(R + 1)

��
2

= Op(m
�2�) +Op(m

�2(R+1/2))Op

⇣
(T�1/2 +m�3/2)

2
⌘
= Op(m

�2�);

��gggcH(R + 1)000GGGc
H(R) + gggL(R + 1)000GGGL(R)

��
2


��gggcH(R + 1)000GGGc

H(R)
��
2
+
��gggL(R + 1)000GGGL(R)

��
2

= Op(m
�2�) +Op(m

�R�1)Op

⇣
(T�1/2 +m�3/2)

2
⌘
= Op(m

�2�);

��GGGc
H(R)000GGGc

H(R) +GGGL(R)0GGGL(R)
��
F


��GGGc

H(R)000GGGc
H(R)

��
F
+
��GGGL(R)000GGGL(R)

��
F

= Op(m
�2�) +Op

⇣
m�1(T�1/2 +m�3/2)

2
⌘
= Op(m

�2�)

which imply (i). When R = K,

��gggcH(R + 1)000gggcH(R + 1) + gggL(R + 1)000gggL(R + 1)
��
2

=
��gggL(R + 1)000gggL(R + 1)

��
2
= Op(m

�2(R+1/2))Op

⇣
(T�1/2 +m�3/2)

2
⌘
;

��gggcH(R + 1)000GGGc
H(R) + gggL(R + 1)000GGGL(R)

��
2


��gggL(R + 1)000GGGL(R)

��
2
= Op(m

�R�1)Op

⇣
(T�1/2 +m�3/2)

2
⌘
;

��GGGc
H(R)000GGGc

H(R) +GGGL(R)000GGGL(R)
��
2

=
��GGGL(R)000GGGL(R)

��
2
= Op(m

�1)Op

⇣
(T�1/2 +m�3/2)

2
⌘

which imply (ii). Q.E.D.

Lemma C.32: Define Y2,NT = y0y0y0Q(P̃̃P̃P PLS
1:R )p̃̃p̃pPLS

R+1/(N
1/2T ). Under (A.1) – (A.8),

Y2,NT = T�1/2y0gy0gy0gcH(R + 1) + T�1/2y0y0y0gggL(R + 1)� T�1/2
�
y0Gy0Gy0Gc

H(R) + y0y0y0GGGL(R)
�
aaa3

� aaa0005
�
GGGc

H(R)000gggcH(R + 1) +GGGL(R)000gggL(R + 1)
�

+ aaa0005(GGG
c
H(R)000GGGc

H(R) +GGGL(R)000GGGL(R))aaa2

where aaa2 and aaa3 are defined in Lemmas C.30 and C.31, and aaa5 !p ( ⇤)�1⇡⇡⇡⇤.
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Proof: Using Lemma B.2, we can show

Y2,NT =
y0p̃y0p̃y0p̃PLS

R+1

N1/2T
� y0P̃y0P̃y0P̃ PLS

1:R

N1/2T

 
P̃̃P̃P PLS

1:R
000
P̃̃P̃P PLS

1:R

NT

!�1
P̃̃P̃P PLS

1:R
000
yyy

NT 1/2

=
y0gy0gy0g⇤H(R + 1)

T 1/2
+

y0y0y0gggL(R + 1)

T 1/2

�
✓
y0Gy0Gy0Gc

H(R)

T 1/2
+

y0y0y0GGGL(R)

T 1/2

◆⇣
D̂̂D̂D0(R)GGG000

0GGG0D̂̂D̂D0(R)
⌘�1 ⇣

D̂̂D̂D0(R)GGG000
0GGG0d̂̂d̂d0(R + 1)

⌘

�
✓
y0y0y0GGG0

T 1/2
D̂̂D̂D0(R) +

y0Gy0Gy0Gc
H(R)

T 1/2
+

y0y0y0GGGL(R)

T 1/2

◆⇣
D̂̂D̂D0(R)GGG000

0GGG0D̂̂D̂D0(R)
⌘�1

⇥
�
GGGc

H(R)000gggcH(R + 1) +GGGL(R)000gggL(R + 1)
�

+

✓
y0y0y0GGG0

T 1/2
D̂̂D̂D0(R) +

y0Gy0Gy0Gc
H(R)

T 1/2
+

y0y0y0GGGL(R)

T 1/2

◆

⇥
⇣
D̂̂D̂D0(R)G0G0G0

0GGG0D̂̂D̂D0(R)
⌘�1

(GGG⇤
H(R)0GGG⇤

H(R) +GGGL(R)0GGGL(R))

⇥
⇣
D̂̂D̂D0(R)GGG000

0GGG0DDD0(R) +GGG⇤
H(R)000GGG⇤

H(R) +GGGL(R)000GGGL(R)
⌘�1

⇥
⇣
D̂̂D̂D0(R)GGG000

0GGG0d̂̂d̂d0(R + 1) +GGG⇤
H(R)000ggg⇤H(R + 1) +GGGL(R)000gggL(R + 1)

⌘

=
y0gy0gy0gcH(R + 1)

T 1/2
+

y0y0y0gggL(R + 1)

T 1/2
�
✓
y0Gy0Gy0Gc

H(R)

T 1/2
+

y0y0y0GGGL(R)

T 1/2

◆
aaa3

� aaa0005
�
GGG⇤

H(R)000ggg⇤H(R + 1) +GGGL(R)000gggL(R + 1)
�

+ aaa0005(GGG
⇤
H(R)000GGG⇤

H(R) +GGGL(R)000GGGL(R))aaa2

where

aaa5 =
⇣
D̂̂D̂D0(R)GGG000

0GGG0D̂̂D̂D0(R)
⌘�1

✓
D̂̂D̂D0(R)

GGG000
0yyy

T 1/2
+

GGG⇤
H(R)000yyy

T 1/2
+

GGGL(R)000yyy

T 1/2

◆
!p ( ⇤)�1⇡⇡⇡⇤

by Lemmas C.29 and 2.4.3. Q.E.D.

Corollary C.32: Under (A.1) – (A.8), When R < K,

(i) Y2,NT = Op(m�2�), if R < K;

(ii) Y2,NT = Op

⇣
(T�1/2 +m�3/2)

2
⌘
, if R = K.

Proof: When R < K,
����
y0gy0gy0gcH(R + 1)

T 1/2
+

y0y0y0gggL(R + 1)

T 1/2

����
2


����
y0gy0gy0gcH(R + 1)

T 1/2

����
2

+

����
y0y0y0gggL(R + 1)

T 1/2

����
2

= Op(m
�2�) +Op(m

�R)Op((T
�1 +m�3/2)

2
) = Op(m

�2�);
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����
y0Gy0Gy0Gc

H(R)

T 1/2
+

y0y0y0GGGL(R)

T 1/2

����
2


����
y0Gy0Gy0Gc

H(R)

T 1/2

����
2

+

����
y0y0y0GGGL(R)

T 1/2

����
2

= Op(m
�2�) +Op((T

�1 +m�3/2)
2
) = Op(m

�2�);

��GGGc
H(R)000gggcH(R + 1) +GGGL(R)000gggL(R + 1)

��
2


��GGGc

H(R)000gggcH(R + 1)
��
2
+
��GGGL(R)000gggL(R + 1)

��
2

= Op(m
�2�) +Op(m

�R�1)Op((T
�1 +m�3/2)

2
) = Op(m

�2�);

��GGGc
H(R)000GGGc

H(R) +GGGL(R)000GGGL(R)
��
F


��GGGc

H(R)000GGGc
H(R)

��
F
+
��GGGL(R)000GGGL(R)

��
F

= Op(m
�2�) +Op(m

�1)Op((T
�1 +m�3/2)

2
) = Op(m

�2�)

which imply (i). When R = K,
����
y0gy0gy0gcH(R + 1)

T 1/2
+

y0y0y0gggL(R + 1)

T 1/2

����
2

=

����
y0y0y0gggL(R + 1)

T 1/2

����
2

= Op(m
�R)Op

⇣
(T�1/2 +m�3/2)

2
⌘

����
y0Gy0Gy0Gc

H(R)

T 1/2
+

y0y0y0GGGL(R)

T 1/2

����
2

=

����
y0y0y0GGGL(R)

T 1/2

����
2

= Op

⇣
(T�1/2 +m�3/2)

2
⌘
;

��GGGc
H(R)000gggcH(R + 1) +GGGL(R)000gggL(R + 1)

��
2

=
��GGGL(R)000gggL(R + 1)

��
2
= Op(m

�R�1)Op

⇣
(T�1/2 +m�3/2)

2
⌘
;

��GGGc
H(R)000GGGc

H(R) +GGGL(R)000GGGL(R)
��
F
= Op(m

�1)Op

⇣
(T�1/2 +m�3/2)

2
⌘

which imply (ii). Q.E.D.

Proof of Lemma 2.4.5: The parts (i) and (iii) hold by Lemma C.30. The parts (ii)
and (vi) hold by Corollaries C.31 and C.32.

Proof of Theorem 3: Observe that

y000y000y000P(P̃̃P̃P PLS
1:R+1)yyy

T
=

y000y000y000P(P̃̃P̃P PLS
1:R )yyy

T

+
y000Q(P̃̃P̃P PLS

1:R )p̃̃p̃pPLS
R+1

N1/2T

 
p̃̃p̃pPLS
R+1

000Q(P̃̃P̃P PLS
1:R )p̃̃p̃pPLS

R+1

NT

!�1
p̃̃p̃pPLS
R+1

000Q(P̃̃P̃P PLS
1:R )yyy

N1/2T

=
y000y000y000P(P̃ PLS

1:R )yyy

T
+

(Y1,NT )
2

Y2,NT
= ⌃R

j=1�
2
j���

000
(j)���(j) +

(Y1,NT )
2

Y2,NT
+ op(1)

where the last equality is due to Theorem 2. When R = K,

(Y2,NT )
2/Y1,NT = Op(((m/T )1/2 +m�1)

2
) = Op(m/T )
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by Corollaries C.31 and C.32. If m/T ! 1, (Y2,NT )
2/Y1,NT = op(1). If m/T =

O(1) > 0, (Y2,NT )
2/Y1,NT = |Op(1)| > 0. Finally, when R < K, (Y2,NT )

2/Y1,NT =
Op(m�2�) = op(1). This completes the proof of the theorem. Q.E.D.

Lemma C.33: Let YNT = Y2,NT/Y1,NT . Then,
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By the inversion rule for partitioned matrix,

(C.24)

 
P̃̃P̃PPLS

1:R
000
P̃̃P̃PPLS

1:R
NT

P̃̃P̃PPLS
1:R

000
p̃̃p̃pPLS
R+1

NT
p̃̃p̃pPLS
R+1

000
P̃̃P̃PPLS

1:R

NT

p̃̃p̃pPLS
R+1

000
p̃̃p̃pPLS
R+1

NT

!�1

=

0

@
✓

P̃̃P̃PPLS
1:R

000
P̃̃P̃PPLS

1:R
NT

◆�1

0

00 0

1

A

+

✓
✓̃̃✓̃✓
�1

◆ 
p̃̃p̃pPLS
R+1

000Q(P̃̃P̃P PLS
1:R )p̃̃p̃pPLS

R+1

NT

!�1✓
✓̃̃✓̃✓
�1

◆000

where ✓̃̃✓̃✓ is defined in Lemma 2.4.5. In addition,
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We can obtain the desired result by substituting (C.24) and (C.25) into (C.23).
Q.E.D.

Proof of Theorem 4: The part (i) holds by Lemma C.34. For (ii), observe that
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Using this fact and (i), we can easily show
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When R < K,

YNT = Op(1);
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With these results, we have
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Notice that by Lemma C.18,
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By (C.26) and (C.28), we can have
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which implies the parts (ii) and (iii). Q.E.D.
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A.4 Tables and Figures

Number of PLS
factors used (q) Mean in-sample R2 Standard error of

in-sample R2
Out-of-sample

R2

PLS1 62.55 4.58 50.64
PLS2 72.88 3.74 53.03
PLS3 78.68 3.24 49.32
PLS4 82.02 3.00 46.36
PLS5 84.35 2.78 41.10
PLS6 86.08 2.61 36.91
PLS7 87.40 2.50 33.10
PLS8 88.48 2.40 28.87
PLS9 89.39 2.33 24.45
PLS10 90.17 2.25 18.77

Table A.1: In-Sample and Out-of-Sample Percentage R2 of PLS Regressions (R = 2,
K = 4)

Figure A.1: Graphical Representation of Table A.1

Notes: Spurious correlation as PLS iteration proceeds. There are four total factors and two informa-
tive factors, so the forecasting power is maximized at the second iteration. After the second iteration,
the out-of-sample forecasting power significantly decreases while the adjusted in-sample fit always
increases as more PLS factors are used.
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T = 100, N = 80
ax ay ⇢c ⇢e ⇢f PLS1 PC5 OLS ãx ãy K̃
0.1 0.3 0 0 0 0.137 0.162 -2.851 0.102 0.116 2.015
0.1 0.3 0.3 0.3 0.3 0.112 0.08 -3.043 0.147 0.095 2.629
0.1 0.3 0.5 0.5 0.5 0.112 0.072 -2.871 0.207 0.098 3.191
0.1 0.5 0 0 0 0.241 0.245 -2.268 0.102 0.181 1.999
0.1 0.5 0.3 0.3 0.3 0.292 0.169 -1.671 0.15 0.142 2.679
0.1 0.5 0.5 0.5 0.5 0.287 0.151 -2.034 0.203 0.141 3.139
0.1 0.7 0 0 0 0.35 0.321 -1.79 0.102 0.247 2.001
0.1 0.7 0.3 0.3 0.3 0.394 0.25 -1.23 0.151 0.197 2.687
0.1 0.7 0.5 0.5 0.5 0.399 0.205 -0.815 0.196 0.179 3.012
0.2 0.3 0 0 0 0.21 0.23 -2.691 0.216 0.222 3.336
0.2 0.3 0.3 0.3 0.3 0.214 0.222 -2.925 0.185 0.167 2.531
0.2 0.3 0.5 0.5 0.5 0.233 0.216 -2.763 0.192 0.142 2.402
0.2 0.5 0 0 0 0.359 0.377 -1.835 0.216 0.342 3.33
0.2 0.5 0.3 0.3 0.3 0.366 0.359 -1.831 0.181 0.26 2.457
0.2 0.5 0.5 0.5 0.5 0.354 0.297 -1.719 0.188 0.22 2.325
0.2 0.7 0 0 0 0.518 0.525 -1.135 0.213 0.467 3.279
0.2 0.7 0.3 0.3 0.3 0.522 0.482 -0.883 0.18 0.356 2.451
0.2 0.7 0.5 0.5 0.5 0.547 0.479 -0.619 0.193 0.309 2.405
0.3 0.3 0 0 0 0.23 0.239 -2.706 0.364 0.295 4.748
0.3 0.3 0.3 0.3 0.3 0.205 0.218 -3.044 0.312 0.246 3.69
0.3 0.3 0.5 0.5 0.5 0.254 0.25 -3.158 0.276 0.208 2.921
0.3 0.5 0 0 0 0.404 0.405 -1.559 0.363 0.457 4.737
0.3 0.5 0.3 0.3 0.3 0.364 0.368 -1.892 0.311 0.393 3.665
0.3 0.5 0.5 0.5 0.5 0.396 0.389 -1.914 0.277 0.335 2.934
0.3 0.7 0 0 0 0.599 0.611 -0.889 0.363 0.624 4.743
0.3 0.7 0.3 0.3 0.3 0.595 0.589 -0.692 0.313 0.539 3.678
0.3 0.7 0.5 0.5 0.5 0.586 0.578 -0.551 0.275 0.45 2.895
0.4 0.3 0 0 0 0.244 0.254 -2.456 0.462 0.309 4.987
0.4 0.3 0.3 0.3 0.3 0.278 0.277 -2.504 0.456 0.303 4.735
0.4 0.3 0.5 0.5 0.5 0.31 0.302 -2.964 0.417 0.27 3.984
0.4 0.5 0 0 0 0.406 0.428 -1.599 0.462 0.482 4.987
0.4 0.5 0.3 0.3 0.3 0.434 0.443 -1.643 0.454 0.472 4.704
0.4 0.5 0.5 0.5 0.5 0.442 0.443 -1.558 0.417 0.43 3.992
0.4 0.7 0 0 0 0.588 0.603 -0.54 0.462 0.661 4.993
0.4 0.7 0.3 0.3 0.3 0.617 0.623 -0.661 0.459 0.651 4.776
0.4 0.7 0.5 0.5 0.5 0.626 0.632 -0.659 0.42 0.591 4.024
0.5 0.3 0 0 0 0.282 0.278 -2.553 0.551 0.315 5
0.5 0.3 0.3 0.3 0.3 0.266 0.275 -2.174 0.556 0.32 4.987
0.5 0.3 0.5 0.5 0.5 0.245 0.243 -3.096 0.554 0.312 4.781
0.5 0.5 0 0 0 0.454 0.466 -1.531 0.551 0.495 5
0.5 0.5 0.3 0.3 0.3 0.446 0.447 -1.646 0.556 0.5 4.973
0.5 0.5 0.5 0.5 0.5 0.489 0.5 -1.459 0.557 0.493 4.825
0.5 0.7 0 0 0 0.622 0.639 -0.575 0.551 0.678 4.999
0.5 0.7 0.3 0.3 0.3 0.627 0.64 -0.602 0.555 0.678 4.963
0.5 0.7 0.5 0.5 0.5 0.628 0.645 -0.864 0.555 0.668 4.806
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0.6 0.3 0 0 0 0.256 0.255 -2.348 0.641 0.326 5
0.6 0.3 0.3 0.3 0.3 0.198 0.196 -2.848 0.645 0.324 4.998
0.6 0.3 0.5 0.5 0.5 0.279 0.275 -2.562 0.652 0.321 4.985
0.6 0.5 0 0 0 0.477 0.495 -1.417 0.641 0.506 5
0.6 0.5 0.3 0.3 0.3 0.486 0.497 -1.511 0.645 0.509 5
0.6 0.5 0.5 0.5 0.5 0.433 0.45 -1.728 0.652 0.508 4.981
0.6 0.7 0 0 0 0.641 0.66 -0.591 0.641 0.688 5
0.6 0.7 0.3 0.3 0.3 0.631 0.646 -0.636 0.645 0.692 4.999
0.6 0.7 0.5 0.5 0.5 0.65 0.673 -0.542 0.651 0.692 4.977

Table A.2: Forecasting Performances of PLS, PC, and OLS Regressions (R = 1,
K = 5, T = 100, N = 80))

Notes: This table shows the forecasting performances of the PLS1, PC5 and OLS regressions under
di↵erent data processes. For all cases, data are generated with N = 80 and T = 100. For each case,
the best performance is marked by bold. The total number of factors in predictor variables is five and
⌦⇤

FFF = 5⇥III5, so that the optimal number of PLS and PC factors are respectively one and five (R = 1
and K = 5). The term K̃ denotes the estimated number of the factors in predictor variables by Ahn
and Horenstein (2013), ãx is the average in-sample R

2 from regressions of individual predictors on
the K̃ PC factors, and ãy is the average in-sample R

2 from regressions of the target variable on the
K̃ PC factors.
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T = 200, N = 160
ax ay ⇢c ⇢e ⇢f PLS1 PC5 OLS ãx ãy K̃
0.1 0.3 0 0 0 0.175 0.207 -2.989 0.132 0.209 4.168
0.1 0.3 0.3 0.3 0.3 0.197 0.181 -2.664 0.082 0.111 2.15
0.1 0.3 0.5 0.5 0.5 0.185 0.132 -2.608 0.095 0.1 2.203
0.1 0.5 0 0 0 0.354 0.364 -1.847 0.134 0.339 4.228
0.1 0.5 0.3 0.3 0.3 0.369 0.306 -1.676 0.084 0.186 2.181
0.1 0.5 0.5 0.5 0.5 0.287 0.206 -2.252 0.095 0.16 2.211
0.1 0.7 0 0 0 0.524 0.514 -1.212 0.136 0.468 4.291
0.1 0.7 0.3 0.3 0.3 0.496 0.406 -1.17 0.083 0.256 2.16
0.1 0.7 0.5 0.5 0.5 0.485 0.332 -0.752 0.094 0.22 2.192
0.2 0.3 0 0 0 0.207 0.225 -2.326 0.244 0.281 5
0.2 0.3 0.3 0.3 0.3 0.269 0.271 -2.538 0.246 0.272 4.894
0.2 0.3 0.5 0.5 0.5 0.209 0.208 -2.993 0.214 0.222 3.862
0.2 0.5 0 0 0 0.436 0.441 -1.849 0.244 0.452 5
0.2 0.5 0.3 0.3 0.3 0.407 0.403 -1.653 0.246 0.437 4.88
0.2 0.5 0.5 0.5 0.5 0.389 0.393 -2.01 0.208 0.352 3.741
0.2 0.7 0 0 0 0.605 0.624 -0.743 0.244 0.629 5
0.2 0.7 0.3 0.3 0.3 0.547 0.556 -0.7 0.246 0.598 4.873
0.2 0.7 0.5 0.5 0.5 0.562 0.553 -0.616 0.21 0.489 3.777
0.3 0.3 0 0 0 0.262 0.264 -2.221 0.337 0.294 5
0.3 0.3 0.3 0.3 0.3 0.282 0.283 -2.49 0.341 0.292 5
0.3 0.3 0.5 0.5 0.5 0.272 0.279 -2.941 0.349 0.292 4.988
0.3 0.5 0 0 0 0.473 0.472 -1.495 0.337 0.479 5
0.3 0.5 0.3 0.3 0.3 0.433 0.456 -1.68 0.341 0.472 5
0.3 0.5 0.5 0.5 0.5 0.441 0.458 -1.542 0.349 0.47 4.982
0.3 0.7 0 0 0 0.636 0.656 -0.817 0.337 0.661 5
0.3 0.7 0.3 0.3 0.3 0.626 0.647 -0.617 0.341 0.655 5
0.3 0.7 0.5 0.5 0.5 0.605 0.62 -0.7 0.347 0.643 4.959
0.4 0.3 0 0 0 0.306 0.305 -2.691 0.431 0.302 5
0.4 0.3 0.3 0.3 0.3 0.256 0.249 -2.986 0.434 0.303 5
0.4 0.3 0.5 0.5 0.5 0.291 0.302 -2.56 0.44 0.3 5
0.4 0.5 0 0 0 0.467 0.496 -1.485 0.431 0.491 5
0.4 0.5 0.3 0.3 0.3 0.438 0.447 -1.412 0.434 0.49 5
0.4 0.5 0.5 0.5 0.5 0.475 0.496 -1.75 0.44 0.485 5
0.4 0.7 0 0 0 0.641 0.668 -0.567 0.431 0.677 5
0.4 0.7 0.3 0.3 0.3 0.634 0.655 -0.722 0.434 0.673 5
0.4 0.7 0.5 0.5 0.5 0.627 0.645 -0.733 0.44 0.67 5
0.5 0.3 0 0 0 0.27 0.278 -2.359 0.526 0.308 5
0.5 0.3 0.3 0.3 0.3 0.285 0.282 -2.689 0.528 0.31 5
0.5 0.3 0.5 0.5 0.5 0.268 0.279 -2.978 0.532 0.305 5
0.5 0.5 0 0 0 0.429 0.439 -1.447 0.526 0.497 5
0.5 0.5 0.3 0.3 0.3 0.479 0.496 -1.525 0.527 0.497 5
0.5 0.5 0.5 0.5 0.5 0.501 0.516 -1.756 0.532 0.496 5
0.5 0.7 0 0 0 0.641 0.669 -0.738 0.526 0.686 5
0.5 0.7 0.3 0.3 0.3 0.644 0.665 -0.632 0.528 0.685 5
0.5 0.7 0.5 0.5 0.5 0.65 0.666 -0.788 0.533 0.685 5
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0.6 0.3 0 0 0 0.264 0.278 -2.522 0.621 0.31 5
0.6 0.3 0.3 0.3 0.3 0.314 0.324 -2.55 0.622 0.311 5
0.6 0.3 0.5 0.5 0.5 0.311 0.315 -3.382 0.626 0.31 5
0.6 0.5 0 0 0 0.493 0.503 -1.552 0.62 0.504 5
0.6 0.5 0.3 0.3 0.3 0.464 0.485 -1.78 0.622 0.499 5
0.6 0.5 0.5 0.5 0.5 0.465 0.472 -1.994 0.626 0.5 5
0.6 0.7 0 0 0 0.649 0.672 -0.542 0.621 0.694 5
0.6 0.7 0.3 0.3 0.3 0.668 0.688 -0.582 0.622 0.693 5
0.6 0.7 0.5 0.5 0.5 0.671 0.693 -0.768 0.626 0.691 5

Table A.3: Forecasting Performances of PLS, PC, and OLS Regressions (R = 1,
K = 5, T = 200, N = 160))

Notes: This table shows the forecasting performances of the PLS1, PC5 and OLS regressions under
di↵erent data processes. For all cases, data are generated with N = 160 and T = 200. For each case,
the best performance is marked by bold. The total number of factors in predictor variables is five and
⌦⇤

FFF = 5⇥III5, so that the optimal number of PLS and PC factors are respectively one and five (R = 1
and K = 5). The term K̃ denotes the estimated number of the factors in predictor variables by Ahn
and Horenstein (2013), ãx is the average in-sample R

2 from regressions of individual predictors on
the K̃ PC factors, and ãy is the average in-sample R

2 from regressions of the target variable on the
K̃ PC factors.
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Data generating
parameters T = N = 100 T = N = 200

ax ⇢d ⇢e ⇢f PLS1 PLS2 PLS3 PLS1 PLS2 PLS3
0.1 0 0 0 0.462 0.397 0.29 0.612 0.549 0.5
0.1 0 0 0.3 0.445 0.374 0.243 0.6 0.511 0.457
0.1 0 0 0.5 0.484 0.421 0.3 0.593 0.517 0.455
0.1 0.3 0.3 0 0.431 0.421 0.359 0.612 0.569 0.519
0.1 0.3 0.3 0.3 0.458 0.45 0.376 0.598 0.561 0.52
0.1 0.3 0.3 0.5 0.424 0.395 0.333 0.603 0.56 0.51
0.1 0.5 0.5 0 0.426 0.455 0.446 0.604 0.59 0.517
0.1 0.5 0.5 0.3 0.448 0.462 0.423 0.604 0.594 0.536
0.1 0.5 0.5 0.5 0.416 0.427 0.397 0.581 0.565 0.524
0.2 0 0 0 0.567 0.569 0.448 0.643 0.624 0.556
0.2 0 0 0.3 0.573 0.574 0.485 0.664 0.639 0.577
0.2 0 0 0.5 0.562 0.561 0.471 0.646 0.612 0.568
0.2 0.3 0.3 0 0.561 0.576 0.524 0.662 0.649 0.595
0.2 0.3 0.3 0.3 0.585 0.592 0.528 0.672 0.654 0.624
0.2 0.3 0.3 0.5 0.565 0.567 0.5 0.664 0.644 0.599
0.2 0.5 0.5 0 0.554 0.55 0.506 0.632 0.595 0.573
0.2 0.5 0.5 0.3 0.55 0.551 0.513 0.64 0.613 0.582
0.2 0.5 0.5 0.5 0.559 0.58 0.53 0.634 0.623 0.582
0.3 0 0 0 0.616 0.612 0.525 0.665 0.638 0.584
0.3 0 0 0.3 0.632 0.64 0.56 0.696 0.668 0.609
0.3 0 0 0.5 0.629 0.636 0.54 0.677 0.671 0.611
0.3 0.3 0.3 0 0.598 0.613 0.545 0.654 0.627 0.585
0.3 0.3 0.3 0.3 0.574 0.605 0.54 0.67 0.653 0.603
0.3 0.3 0.3 0.5 0.621 0.637 0.581 0.698 0.682 0.641
0.3 0.5 0.5 0 0.596 0.608 0.566 0.686 0.666 0.626
0.3 0.5 0.5 0.3 0.568 0.596 0.538 0.651 0.643 0.605
0.3 0.5 0.5 0.5 0.61 0.626 0.6 0.662 0.643 0.594

Table A.4: Forecasting by PLS Regressions with Di↵erent Numbers of Factors (R =
K = 3, N = T = 100 and N = T = 200)

Notes: This table reports the forecasting performances of three regressions with three di↵erent
numbers of informative PLS factors: one (PLS1), two (PLS2), and three (PLS3). For each data
specification, the highest out-of-sample R-square is in bold. The other parameters used to generate
the data are set at ay = 0.7 and ⌦⇤

FFF = diagdiagdiag(3, 5, 7).
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Data generating
parameters T = N = 1000 T = N = 2000

ax ⇢d ⇢e ⇢f PLS1 PLS2 PLS3 PLS1 PLS2 PLS3
0.1 0 0 0 0.651 0.669 0.614 0.703 0.719 0.692
0.1 0 0 0.3 0.667 0.684 0.648 0.657 0.672 0.624
0.1 0 0 0.5 0.67 0.7 0.664 0.696 0.704 0.666
0.1 0.3 0.3 0 0.631 0.663 0.612 0.641 0.654 0.63
0.1 0.3 0.3 0.3 0.681 0.68 0.637 0.692 0.701 0.669
0.1 0.3 0.3 0.5 0.627 0.651 0.611 0.667 0.676 0.644
0.1 0.5 0.5 0 0.635 0.652 0.618 0.68 0.695 0.67
0.1 0.5 0.5 0.3 0.681 0.703 0.672 0.716 0.723 0.697
0.1 0.5 0.5 0.5 0.646 0.666 0.628 0.684 0.695 0.668
0.2 0 0 0 0.674 0.694 0.678 0.667 0.68 0.665
0.2 0 0 0.3 0.701 0.719 0.7 0.683 0.691 0.676
0.2 0 0 0.5 0.655 0.685 0.666 0.657 0.666 0.649
0.2 0.3 0.3 0 0.7 0.722 0.708 0.714 0.727 0.721
0.2 0.3 0.3 0.3 0.673 0.704 0.686 0.687 0.704 0.685
0.2 0.3 0.3 0.5 0.685 0.707 0.681 0.698 0.703 0.693
0.2 0.5 0.5 0 0.651 0.688 0.674 0.688 0.709 0.702
0.2 0.5 0.5 0.3 0.657 0.682 0.657 0.683 0.691 0.681
0.2 0.5 0.5 0.5 0.664 0.692 0.666 0.719 0.73 0.724
0.3 0 0 0 0.626 0.656 0.648 0.686 0.699 0.696
0.3 0 0 0.3 0.651 0.687 0.677 0.701 0.715 0.714
0.3 0 0 0.5 0.65 0.683 0.678 0.681 0.69 0.689
0.3 0.3 0.3 0 0.664 0.7 0.686 0.695 0.712 0.71
0.3 0.3 0.3 0.3 0.643 0.674 0.675 0.675 0.693 0.685
0.3 0.3 0.3 0.5 0.666 0.696 0.686 0.665 0.689 0.681
0.3 0.5 0.5 0 0.67 0.695 0.687 0.689 0.71 0.71
0.3 0.5 0.5 0.3 0.653 0.678 0.666 0.69 0.705 0.697
0.3 0.5 0.5 0.5 0.666 0.676 0.667 0.676 0.692 0.689

Table A.5: Forecasting by PLS Regressions with Di↵erent Numbers of Factors (R =
K = 3, N = T = 1000 and N = T = 2000)

Notes: This table reports the forecasting performances of three regressions with three di↵erent
numbers of informative PLS factors: one (PLS1), two (PLS2), and three (PLS3). For each data
specification, the highest out-of-sample R-square is in bold. The other parameters used to generate
the data are set at ay = 0.7 and ⌦⇤

FFF = diagdiagdiag(3, 5, 7).
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Data generating
parameters T = N = 7000

ax ⇢d ⇢e ⇢f PLS1 PLS2 PLS3
0.1 0 0 0 0.612 0.617 0.613
0.1 0 0 0.3 0.58 0.59 0.586
0.1 0 0 0.5 0.579 0.591 0.589
0.1 0.3 0.3 0 0.61 0.616 0.613
0.1 0.3 0.3 0.3 0.579 0.589 0.586
0.1 0.3 0.3 0.5 0.578 0.591 0.59
0.1 0.5 0.5 0 0.611 0.617 0.615
0.1 0.5 0.5 0.3 0.579 0.591 0.588
0.1 0.5 0.5 0.5 0.578 0.593 0.592
0.2 0 0 0 0.611 0.615 0.614
0.2 0 0 0.3 0.579 0.588 0.587
0.2 0 0 0.5 0.578 0.59 0.59
0.2 0.3 0.3 0 0.61 0.615 0.614
0.2 0.3 0.3 0.3 0.578 0.588 0.587
0.2 0.3 0.3 0.5 0.577 0.59 0.59
0.2 0.5 0.5 0 0.61 0.616 0.616
0.2 0.5 0.5 0.3 0.578 0.589 0.589
0.2 0.5 0.5 0.5 0.577 0.591 0.592
0.3 0 0 0 0.61 0.615 0.614
0.3 0 0 0.3 0.578 0.587 0.587
0.3 0 0 0.5 0.577 0.589 0.59
0.3 0.3 0.3 0 0.609 0.615 0.614
0.3 0.3 0.3 0.3 0.577 0.587 0.587
0.3 0.3 0.3 0.5 0.576 0.589 0.59
0.3 0.5 0.5 0 0.61 0.615 0.615
0.3 0.5 0.5 0.3 0.577 0.588 0.588
0.3 0.5 0.5 0.5 0.576 0.59 0.591

Table A.6: Forecasting by PLS Regressions with Di↵erent Numbers of Factors (R =
K = 3, N = T = 7000)

Notes: This table reports the forecasting performances of three regressions with three di↵erent
numbers of informative PLS factors: one (PLS1), two (PLS2), and three (PLS3). For each data
specification, the highest out-of-sample R-square is in bold. The other parameters used to generate
the data are set at ay = 0.7 and ⌦⇤

FFF = diagdiagdiag(3, 5, 7). To save computation time, only 100 di↵erent
data sets are generated for each specification.
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Data generating
parameters T = N = 10, 000

ax ⇢d ⇢e ⇢f PLS1 PLS2 PLS3
0.1 0 0 0 0.731 0.734 0.736
0.1 0 0 0.3 0.731 0.735 0.738
0.1 0 0 0.5 0.739 0.744 0.747
0.1 0.3 0.3 0 0.729 0.733 0.734
0.1 0.3 0.3 0.3 0.729 0.734 0.736
0.1 0.3 0.3 0.5 0.738 0.742 0.745
0.1 0.5 0.5 0 0.729 0.733 0.734
0.1 0.5 0.5 0.3 0.729 0.734 0.736
0.1 0.5 0.5 0.5 0.737 0.743 0.745
0.2 0 0 0 0.732 0.736 0.738
0.2 0 0 0.3 0.732 0.737 0.74
0.2 0 0 0.5 0.741 0.746 0.748
0.2 0.3 0.3 0 0.731 0.735 0.737
0.2 0.3 0.3 0.3 0.731 0.736 0.739
0.2 0.3 0.3 0.5 0.74 0.745 0.747
0.2 0.5 0.5 0 0.731 0.735 0.737
0.2 0.5 0.5 0.3 0.731 0.736 0.739
0.2 0.5 0.5 0.5 0.739 0.745 0.747
0.3 0 0 0 0.733 0.737 0.738
0.3 0 0 0.3 0.733 0.738 0.74
0.3 0 0 0.5 0.741 0.746 0.749
0.3 0.3 0.3 0 0.732 0.736 0.738
0.3 0.3 0.3 0.3 0.732 0.737 0.739
0.3 0.3 0.3 0.5 0.74 0.746 0.748
0.3 0.5 0.5 0 0.732 0.736 0.738
0.3 0.5 0.5 0.3 0.732 0.737 0.739
0.3 0.5 0.5 0.5 0.74 0.746 0.748

Table A.7: Forecasting by PLS Regressions with Di↵erent Numbers of Factors (R =
K = 3, N = T = 10, 000)

Notes: This table reports the forecasting performances of three regressions with three di↵erent
numbers of informative PLS factors: one (PLS1), two (PLS2), and three (PLS3). For each data
specification, the highest out-of-sample R-square is in bold. The other parameters used to generate
the data are set at ay = 0.7 and ⌦⇤

FFF = diagdiagdiag(3, 5, 7). To save computation time, only 100 di↵erent
data sets are generated for each specification.
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Figure A.2: Performances of PLS Regression and Spurious Correlation (T = 100)

Notes: The other parameters for data generating processes are set at ⌦⇤
FFF = diagdiagdiag(3, 3, 5, 5), R =

2,K = 4, ax = 0.2, ay = 0.7, and ⇢f = ⇢e = ⇢c = 0.5.
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Figure A.3: Performances of PLS Regression and Spurious Correlation (T = 200)

Notes: The other parameters for data generating processes are set at ⌦⇤
FFF = diagdiagdiag(3, 3, 5, 5), R =

2,K = 4, ax = 0.2, ay = 0.7, and ⇢f = ⇢e = ⇢c = 0.5.
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Figure A.4: Performances of PLS Regression and Spurious Correlation (T = 500)

Notes: The other parameters for data generating processes are set at ⌦⇤
FFF = diagdiagdiag(3, 3, 5, 5), R =

2,K = 4, ax = 0.2, ay = 0.7, and ⇢f = ⇢e = ⇢c = 0.5.
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Figure A.5: Performance of PLS Regression and Spurious Correlation (ax = 0.2)

Notes: The other parameters for data generating processes are set at ⌦⇤
FFF = diagdiagdiag(3, 3, 5, 5), R =

2,K = 4, ax = 0.2, ⇢f = ⇢e = ⇢c = 0.5, and N = T = 100.
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Figure A.6: Performance of PLS Regression and Spurious Correlation (ax = 0.5)

Notes: The other parameters for data generating processes are set at ⌦⇤
FFF = diagdiagdiag(3, 3, 5, 5), R =

2,K = 4, ax = 0.5, ⇢f = ⇢e = ⇢c = 0.5, and N = T = 100.
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Figure A.7: Performance of PLS Regression and Spurious Correlation (ax = 0.7)

Notes: The other parameters for data generating processes are set at ⌦⇤
FFF = diagdiagdiag(3, 3, 5, 5), R =

2,K = 4, ax = 0.7, ⇢f = ⇢e = ⇢c = 0.5, and N = T = 100.
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Figure A.8: Performance of PLS Regression and Spurious Correlation (ay = 0.7)

Notes: The other parameters for data generating processes are set at ⌦⇤
FFF = diagdiagdiag(3, 3, 5, 5), R =

2,K = 4, ay = 0.7, ⇢f = ⇢e = ⇢c = 0.5, and N = T = 100.
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Figure A.9: Performance of PLS Regression and Spurious Correlation (ay = 0.5)

Notes: The other parameters for data generating processes are set at ⌦⇤
FFF = diagdiagdiag(3, 3, 5, 5), R =

2,K = 4, ay = 0.5, ⇢f = ⇢e = ⇢c = 0.5, and N = T = 100.
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Figure A.10: Performance of PLS Regression and Spurious Correlation (ay = 0.3)

Notes: The other parameters for data generating processes are set at ⌦⇤
FFF = diagdiagdiag(3, 3, 5, 5), R =

2,K = 4, ay = 0.3, ⇢f = ⇢e = ⇢c = 0.5, and N = T = 100.
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Figure A.11: Forecasting with Uninformative and Spurious Factors (N = T = 100)

Notes: The other parameters for data generating processes are set at ⌦⇤
FFF = diagdiagdiag(3, 3, 5, 5), R =

2,K = 4, ay = 0.7, ⇢f = ⇢e = ⇢c = 0.5, and N = T = 100.
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Figure A.12: Forecasting with Uninformative and Spurious Factors (N = T = 2000)

Notes: The other parameters for data generating processes are set at ⌦⇤
FFF = diagdiagdiag(3, 3, 5, 5), R =

2,K = 4, ay = 0.7, ⇢f = ⇢e = ⇢c = 0.5, and N = T = 2, 000.
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Figure A.13: Forecasting with Uninformative and Spurious Factors (K = 6, R =
2, N = T = 100)

Notes: The parameters for data generating processes are set at ⌦⇤
FFF= diagdiagdiag(3, 3, 3, 5, 5, 3), ���⇤ =

(1, 0, 0, 1, 0, 0)0, R = 2,K = 6, ay = 0.7, ⇢f = ⇢e = ⇢c = 0.5, and N = T = 100.
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Figure A.14: Forecasting with Uninformative and Spurious Factors (K = 6, R =
2, N = T = 2000)

Notes: The parameters for data generating processes are set at ⌦⇤
FFF= diagdiagdiag(3, 3, 3, 5, 5, 3), ���⇤ =

(1, 0, 0, 1, 0, 0)0, R = 2,K = 6, ay = 0.7, ⇢f = ⇢e = ⇢c = 0.5, and N = T = 2, 000.
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Sample
specification

Cross-
validation Forecasting with each PLS factors Statistics of R̂CV

T N ratio CV PLS1 PLS2 PLS3 PLS4 PLS5 PLS6 ave(R̂CV ) st(R̂CV )
100 20 0.2 0.40 0.26 0.32 0.36 0.39 0.42 0.43 6.32 3.00
100 60 0.6 0.44 0.47 0.48 0.46 0.42 0.39 0.36 2.45 1.74
100 100 1 0.48 0.48 0.52 0.49 0.44 0.41 0.37 2.08 1.14
100 160 1.6 0.58 0.57 0.59 0.56 0.51 0.45 0.39 1.92 1.16
100 200 2 0.62 0.62 0.64 0.59 0.52 0.47 0.42 1.87 1.01

Sample
specification

Cross-
validation Forecasting with each PLS factors Statistics of R̂CV

T N ratio CV PLS1 PLS2 PLS3 PLS4 PLS5 PLS6 ave(R̂CV ) st(R̂CV )
200 40 0.2 0.42 0.32 0.38 0.43 0.45 0.45 0.45 6.15 2.76
200 120 0.6 0.56 0.53 0.58 0.56 0.55 0.52 0.50 2.11 1.14
200 200 1 0.64 0.62 0.64 0.61 0.55 0.51 0.46 1.86 0.67
200 320 1.6 0.64 0.63 0.65 0.60 0.55 0.49 0.45 1.67 0.58
200 400 2 0.65 0.62 0.66 0.62 0.59 0.55 0.51 1.85 0.56

Sample
specification

Cross-
validation Forecasting with each PLS factors Statistics of R̂CV

T N ratio CV PLS1 PLS2 PLS3 PLS4 PLS5 PLS6 ave(R̂CV ) st(R̂CV )
500 100 0.2 0.60 0.57 0.61 0.61 0.61 0.60 0.61 4.42 2.66
500 300 0.6 0.65 0.62 0.66 0.63 0.61 0.59 0.56 1.96 0.42
500 500 1 0.68 0.64 0.69 0.65 0.61 0.58 0.54 1.93 0.36
500 800 1.6 0.67 0.66 0.68 0.64 0.60 0.56 0.51 1.88 0.36
500 1000 2 0.68 0.65 0.68 0.65 0.63 0.58 0.54 1.84 0.41

Table A.8: Relative Forecasting Power of the Cross-Validation Augmented PLS Regression Across Di↵erent Sample Sizes

Notes: This table reports the forecasting performances of the regressions with di↵erent numbers of the PLS factors and the estimated
optimal number of PLS factors by the cross-validation method we consider. The data used are simulated using a five-factor model with
⌦⇤

F = diagdiagdiag(3, 3, 5, 5, 7) and ���
⇤ = (1, 0, 1, 0, 1)0. The other data-generating parameters are set at ax = 0.2, ay = 0.7, and ⇢f = ⇢e = ⇢c = 0.5.
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Sample
specification

Cross-
validation Forecasting with each PLS factors Statistics of R̂CV

T N ax CV PLS1 PLS2 PLS3 PLS4 PLS5 PLS6 ave(R̂CV ) st(R̂CV )
100 100 0.1 0.37 0.39 0.40 0.40 0.37 0.34 0.31 2.34 1.71
100 100 0.3 0.59 0.58 0.61 0.59 0.56 0.52 0.49 2.15 1.18
100 100 0.5 0.62 0.61 0.64 0.63 0.58 0.54 0.49 2.04 0.98
100 100 0.7 0.66 0.60 0.67 0.66 0.62 0.60 0.56 2.47 1.05
100 100 0.9 0.69 0.64 0.70 0.70 0.67 0.65 0.64 2.98 1.20

Sample
specification

Cross-
validation Forecasting with each PLS factors Statistics of R̂CV

T N ax CV PLS1 PLS2 PLS3 PLS4 PLS5 PLS6 ave(R̂CV ) st(R̂CV )
200 200 0.1 0.49 0.47 0.51 0.48 0.45 0.42 0.38 1.95 0.78
200 200 0.3 0.66 0.65 0.66 0.63 0.61 0.57 0.54 1.81 0.64
200 200 0.5 0.69 0.68 0.70 0.67 0.62 0.60 0.55 1.94 0.68
200 200 0.7 0.69 0.66 0.71 0.70 0.65 0.63 0.60 2.26 0.80
200 200 0.9 0.69 0.64 0.69 0.69 0.67 0.63 0.62 2.87 0.98

Table A.9: Relative Forecasting Power of the Cross-Validation Augmented PLS Regression Across Di↵erent ax

Notes: This table reports the forecasting performances of the regressions with di↵erent numbers of the PLS factors and the estimated
optimal number of PLS factors by the cross-validation method we consider. The data used are simulated using a five-factor model with
⌦⇤

F = diagdiagdiag(3, 3, 5, 5, 7) and ���
⇤ = (1, 0, 1, 0, 1)0. The other data-generating parameters are set at ay = 0.7, and ⇢f = ⇢e = ⇢c = 0.5.
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Sample
specification

Cross-
validation Forecasting with each PLS factors Statistics of R̂CV

T N ay CV PLS1 PLS2 PLS3 PLS4 PLS5 PLS6 ave(R̂CV ) st(R̂CV )
100 100 0.1 0.01 0.04 -0.12 -0.27 -0.41 -0.55 -0.69 1.16 0.67
100 100 0.3 0.20 0.23 0.16 0.06 -0.05 -0.16 -0.26 1.25 0.63
100 100 0.5 0.32 0.36 0.31 0.22 0.12 0.03 -0.05 1.43 0.85
100 100 0.7 0.46 0.47 0.50 0.48 0.43 0.38 0.34 2.24 1.20
100 100 0.9 0.70 0.64 0.73 0.73 0.72 0.72 0.71 4.18 2.15

Sample
specification

Cross-
validation Forecasting with each PLS factors Statistics of R̂CV

T N ay CV PLS1 PLS2 PLS3 PLS4 PLS5 PLS6 ave(R̂CV ) st(R̂CV )
200 200 0.1 0.02 0.02 -0.11 -0.25 -0.39 -0.50 -0.63 1.07 0.27
200 200 0.3 0.25 0.26 0.17 0.09 0.00 -0.10 -0.23 1.11 0.33
200 200 0.5 0.44 0.43 0.40 0.31 0.21 0.14 0.05 1.29 0.49
200 200 0.7 0.62 0.61 0.63 0.58 0.53 0.49 0.44 1.65 0.65
200 200 0.9 0.80 0.75 0.81 0.80 0.79 0.79 0.78 3.06 1.20

Table A.10: Relative Forecasting Power of the Cross-Validation Augmented PLS Regression Across Di↵erent ay

Notes: This table reports the forecasting performances of the regressions with di↵erent numbers of the PLS factors and the estimated
optimal number of PLS factors by the cross-validation method we consider. The data used are simulated using a five-factor model with
⌦⇤

F = diagdiagdiag(3, 3, 5, 5, 7) and ���
⇤ = (1, 0, 1, 0, 1)0. The other data-generating parameters are set at ax = 0.2, and ⇢f = ⇢e = ⇢c = 0.5.
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Sample
specification

Cross-
validation Forecasting with each PLS factors Statistics of R̂CV

T N ⇢eu CV PLS1 PLS2 PLS3 PLS4 PLS5 PLS6 ave(R̂CV ) st(R̂CV )
100 100 0 0.51 0.51 0.53 0.50 0.45 0.43 0.39 2.18 1.23
100 100 0.1 0.57 0.58 0.59 0.56 0.51 0.48 0.43 1.99 1.09
100 100 0.2 0.55 0.55 0.57 0.53 0.48 0.43 0.38 2.33 1.28
100 100 0.3 0.55 0.53 0.56 0.54 0.51 0.47 0.42 2.25 1.33
100 100 0.4 0.61 0.57 0.63 0.60 0.57 0.53 0.49 2.54 1.42
100 100 0.5 0.57 0.54 0.57 0.57 0.57 0.56 0.55 2.72 1.68
100 100 0.6 0.58 0.55 0.61 0.59 0.57 0.55 0.53 2.96 1.71
100 100 0.7 0.55 0.52 0.55 0.55 0.56 0.54 0.54 3.70 2.37
100 100 0.8 0.60 0.56 0.60 0.62 0.61 0.62 0.62 4.74 2.54
100 100 0.9 0.60 0.53 0.58 0.58 0.60 0.60 0.61 5.71 3.25
100 100 1 0.88 0.60 0.68 0.71 0.75 0.78 0.81 9.83 0.73

Table A.11: Relative Forecasting Power of the Cross-Validation Augmented PLS Regression When Some Predictor Has
Direct Forecasting Power (N = T = 100)

Notes: This table reports the forecasting performances of the regressions with di↵erent numbers of the PLS factors and the estimated optimal
number of PLS factors by the cross-validation method we consider. (N = T = 100) The first predictor’s idiosyncratic component is correlated

with the error term of the target variable: e⇤1t = ⇢
1/2
eu u

⇤
t+1 + (1� ⇢eu)

1/2
v
⇤
1t, where the v1t are random draws from N(0, 1). When ⇢eu = 1,

the idiosyncratic component of x1t, e⇤1t is perfectly correlated with the error term of the target variable. Other than this, the data generating
processes used for this table are identical to those which ae used for Table A.8.
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Sample
specification

Cross-
validation Forecasting with each PLS factors Statistics of R̂CV

T N ⇢eu CV PLS1 PLS2 PLS3 PLS4 PLS5 PLS6 ave(R̂CV ) st(R̂CV )
200 200 0 0.61 0.60 0.61 0.59 0.55 0.52 0.50 1.79 0.64
200 200 0.1 0.65 0.64 0.66 0.62 0.59 0.56 0.53 1.79 0.73
200 200 0.2 0.60 0.58 0.62 0.58 0.56 0.51 0.47 2.05 0.82
200 200 0.3 0.62 0.62 0.64 0.61 0.58 0.54 0.50 1.99 0.79
200 200 0.4 0.62 0.62 0.64 0.62 0.60 0.57 0.55 2.23 0.93
200 200 0.5 0.63 0.61 0.64 0.62 0.60 0.58 0.57 2.23 1.16
200 200 0.6 0.63 0.57 0.64 0.64 0.63 0.63 0.62 3.07 1.60
200 200 0.7 0.58 0.56 0.60 0.61 0.60 0.61 0.60 3.32 2.02
200 200 0.8 0.66 0.61 0.65 0.65 0.66 0.68 0.68 5.04 2.69
200 200 0.9 0.72 0.54 0.64 0.65 0.66 0.67 0.69 7.87 2.77
200 200 1 0.85 0.62 0.68 0.69 0.70 0.73 0.76 9.98 0.28

Table A.12: Relative Forecasting Power of the Cross-Validation Augmented PLS Regression When Some Predictor Has
Direct Forecasting Power (N = T = 200)

Notes: This table reports the forecasting performances of the regressions with di↵erent numbers of the PLS factors and the estimated optimal
number of PLS factors by the cross-validation method we consider. (N = T = 200) The first predictor’s idiosyncratic component is correlated

with the error term of the target variable: e⇤1t = ⇢
1/2
eu u

⇤
t+1 + (1� ⇢eu)

1/2
v
⇤
1t, where the v1t are random draws from N(0, 1). When ⇢eu = 1,

the idiosyncratic component of x1t, e⇤1t is perfectly correlated with the error term of the target variable. Other than this, the data generating
processes used for this table are identical to those which ae used for Table A.8.
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Variables PLS1 PLS2 PLS3 PLS4 PC1 PC2 PC3 PC4
PLS
BIC

PLS
CV

PC
BIC

PC
AH

Industrial Production 34.6 30.6 7.5 -56.7 7.7 22 24.9 29.1 -520.2 33.8 32.3 27.9
Personal Income 34.5 21.9 -14.4 -96.5 11.2 13.8 9.6 10.4 -319.1 30.4 13.7 16.8
Mfg & Trade Sales 30.8 26 -4.6 -54.5 2.7 30.6 26.9 29.1 -559.1 29.6 26 23.7
Nonag. Employment 46.1 40.2 -0.5 -80.4 38.3 45.7 43.7 43.4 -403 49.9 51.3 46.2
CPI 60.7 60.1 58.3 60.4 59.2 58.6 56.3 54.9 48.8 54.6 55.4 58.4
Consumption Deflator 50.3 48.1 46 47.8 51.4 49.1 45.7 43.2 26.5 45.3 41.6 48.9
CPI exc. Food 56.9 54.2 52.9 54.5 54.6 52.6 49.6 48.9 42.7 49.8 48.3 51.9
Producer Price Index 65.9 66.2 63.7 66.4 65.3 65.9 65.4 64.9 59.7 65.1 65.1 65.4

Table A.13: Forecasting Results for Eight Major Macroeconomic Variables

Notes: The eight target variables are forecasted. The method that gives the highest out-of-sample R
2 is in bold.
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Category PLS1 PLS2 PLS3 PLS4 PC1 PC2 PC3 PC4
PLS
BIC

PLS
CV

PC
BIC

PC
AH

Overall 35 34.3 15.6 0.5 24.1 33.8 32.4 33 -79.1 30.3 34.2 28.2
Output and Income 34.1 32.7 9.5 -52.5 4.3 16.1 16.5 17.3 -433.6 30.6 29.9 19.4
Labor Market 39.2 41.8 20.4 15.4 28 41.5 39.9 38.7 -82.6 40.2 43.5 38.2
Housing 45.5 46.8 27.4 44 51.6 52 52.4 53.2 35.5 33.6 52 54.6
Consumption 13.6 2.8 -46 -126.8 -0.4 11.6 10.4 10.6 -598.9 9.5 11.9 6.8
Money and Credit 44.6 47.6 42.3 42.4 39.9 49.2 48.1 46.7 20.3 27 42 44.3
Interest and Exchange Rates 11 -1.8 -16.6 -27.5 11.6 11.1 11 8.9 -122.8 5.3 -0.9 12.1
Prices 60 57.2 55.6 57.4 59.2 58.9 56.6 54.8 44.2 53.9 55.3 58.4
Stock Market 6.8 -1.6 -23.4 -26.7 8 3.2 2.1 -0.8 -150.7 -2.6 1 1.5

Table A.14: Forecasting Results for 144 Macroeconomic Variables

Notes: The whole 144 target variables are forecasted. The entries are median out-of-sample R
2 of each category. The method that gives the

highest out-of-sample R
2 is in bold. The category Consumption includes consumption, orders, and inventory variables.172
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B.1 Tables

Industrial Production

PCA PLS
Targeted Predictors Weighted PC Two

Step QMLE
One-sided

�2 = 0.25 �2 = 0.5 �2 = 1.5 SWa SWb Rule B Static
k = 1 0.893 0.638 0.777 0.731 0.727 0.722 0.833 0.775 0.898 0.902 0.877
k = 2 0.714 0.682 0.786 0.768 0.724 0.76 0.708 0.777 0.743 0.806 0.767
k = 3 0.699 0.838 0.759 0.726 0.699 0.775 0.749 0.771 0.732 0.799 0.765
k = 4 0.719 0.935 0.717 0.719 0.743 0.804 0.786 0.802 0.76 0.82 0.786
k = 5 0.747 1.018 0.733 0.741 0.788 0.767 0.741 0.802 0.782 0.845 0.741
k = 6 0.729 1.129 0.756 0.743 0.76 0.741 0.733 0.803 0.785 0.803 0.752
k = 7 0.725 1.188 0.762 0.765 0.775 0.75 0.738 0.81 0.779 0.81 0.786
k = 8 0.736 1.326 0.759 0.765 0.767 0.748 0.735 0.809 0.791 0.821 0.792
k = 9 0.732 1.467 0.775 0.774 0.786 0.756 0.732 0.817 0.788 0.843 0.772
k = 10 0.738 1.592 0.785 0.784 0.792 0.793 0.737 0.808 0.8 0.891 0.767
k = 11 0.75 1.718 0.789 0.794 0.789 0.801 0.751 0.82 0.815 0.893 0.783
k = 12 0.737 1.818 0.792 0.804 0.794 0.79 0.745 0.822 0.803 0.911 0.781

Real Personal Income

PCA PLS
Targeted Predictors Weighted PC Two

Step QMLE
One-sided

�2 = 0.25 �2 = 0.5 �2 = 1.5 SWa SWb Rule B Static
k = 1 0.854 0.68 0.848 0.776 0.778 0.768 0.833 0.925 0.861 0.875 0.838
k = 2 0.842 0.787 0.865 0.882 0.882 0.863 0.825 0.956 0.856 0.892 0.868
k = 3 0.846 0.842 0.834 0.818 0.852 0.895 0.881 0.965 0.86 0.896 0.873
k = 4 0.869 1.065 0.846 0.85 0.864 0.895 0.885 0.977 0.887 0.925 0.884
k = 5 0.874 1.171 0.857 0.862 0.874 0.874 0.866 0.983 0.895 0.946 0.874
k = 6 0.862 1.278 0.878 0.874 0.892 0.877 0.864 0.979 0.889 0.934 0.896
k = 7 0.874 1.385 0.894 0.869 0.903 0.862 0.859 0.979 0.896 0.941 0.903
k = 8 0.869 1.475 0.897 0.909 0.911 0.86 0.865 0.977 0.883 0.921 0.908
k = 9 0.866 1.572 0.939 0.916 0.892 0.866 0.865 0.975 0.882 0.903 0.896
k = 10 0.884 1.668 0.915 0.938 0.899 0.898 0.881 1.008 0.909 0.925 0.905
k = 11 0.888 1.765 0.916 0.922 0.884 0.914 0.892 1.029 0.921 0.942 0.912
k = 12 0.888 1.834 0.934 0.953 0.885 0.909 0.889 1.02 0.917 0.96 0.915

Table B.1: 12-Month-Ahead DIAR Forecasts by All Factor Estimations With Given k, k = 1, 2, ..., 12: Real Variables
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Real Manufacturing & Trade Industries Sales

PCA PLS
Targeted Predictors Weighted PC Two

Step QMLE
One-sided

�2 = 0.25 �2 = 0.5 �2 = 1.5 SWa SWb Rule B Static
k = 1 0.95 0.648 0.767 0.732 0.719 0.674 0.917 0.761 0.95 0.948 0.927
k = 2 0.681 0.722 0.739 0.744 0.746 0.703 0.663 0.736 0.688 0.738 0.711
k = 3 0.665 0.863 0.74 0.733 0.706 0.714 0.694 0.733 0.674 0.726 0.718
k = 4 0.678 0.985 0.75 0.752 0.733 0.736 0.699 0.782 0.693 0.743 0.715
k = 5 0.676 1.116 0.797 0.797 0.769 0.697 0.682 0.777 0.7 0.772 0.691
k = 6 0.683 1.282 0.784 0.766 0.791 0.693 0.686 0.777 0.701 0.779 0.721
k = 7 0.698 1.421 0.772 0.779 0.756 0.688 0.675 0.785 0.708 0.771 0.745
k = 8 0.71 1.606 0.783 0.797 0.742 0.688 0.69 0.783 0.727 0.794 0.753
k = 9 0.707 1.792 0.796 0.787 0.75 0.706 0.692 0.796 0.729 0.795 0.735
k = 10 0.715 1.946 0.791 0.777 0.75 0.754 0.707 0.807 0.745 0.834 0.741
k = 11 0.717 2.088 0.799 0.771 0.743 0.753 0.722 0.816 0.759 0.848 0.755
k = 12 0.718 2.191 0.806 0.78 0.763 0.74 0.716 0.809 0.754 0.876 0.758

Nonagriculture Employment

PCA PLS
Targeted Predictors Weighted PC Two

Step QMLE
One-sided

�2 = 0.25 �2 = 0.5 �2 = 1.5 SWa SWb Rule B Static
k = 1 0.586 0.498 0.538 0.475 0.543 0.498 0.571 0.539 0.592 0.593 0.591
k = 2 0.515 0.528 0.538 0.534 0.529 0.531 0.519 0.538 0.521 0.553 0.542
k = 3 0.503 0.673 0.482 0.476 0.498 0.528 0.524 0.539 0.511 0.544 0.562
k = 4 0.518 0.871 0.513 0.51 0.531 0.552 0.543 0.549 0.525 0.546 0.555
k = 5 0.518 1.031 0.504 0.507 0.509 0.51 0.501 0.547 0.53 0.555 0.519
k = 6 0.504 1.096 0.504 0.492 0.504 0.515 0.505 0.546 0.519 0.557 0.532
k = 7 0.516 1.194 0.506 0.506 0.502 0.51 0.507 0.549 0.528 0.565 0.56
k = 8 0.528 1.324 0.508 0.509 0.491 0.521 0.516 0.547 0.535 0.567 0.565
k = 9 0.525 1.439 0.506 0.499 0.493 0.53 0.527 0.555 0.537 0.602 0.535
k = 10 0.513 1.545 0.527 0.505 0.486 0.53 0.527 0.558 0.536 0.625 0.512
k = 11 0.521 1.648 0.517 0.5 0.473 0.54 0.516 0.565 0.541 0.655 0.523
k = 12 0.511 1.74 0.513 0.505 0.492 0.534 0.521 0.568 0.521 0.646 0.535
Notes: The entries are relative mean squared errors (RMSE) of respective factor estimation method relative to a forecast based on the target variable’s historical mean.
This experiment is recursive out-of-sample forecast. 12-month-ahead DIAR forecasting for the four real target variables (Industrial Production, Real Personal Income,
Real Manufacturing & Trade Industries Sales, Nonagriculture Employment) by all factor estimations methods, with given k, k = 1, 2, ..., 12, is presented. The lag of
target variables, p, is determined by BIC. The forecast with the minimum RMSE for corresponding factor estimation method is in bold.
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CPI

PCA PLS
Targeted Predictors Weighted PC Two

Step QMLE
One-sided

�2 = 0.25 �2 = 0.5 �2 = 1.5 SWa SWb Rule B Static
k = 1 0.405 0.392 0.483 0.441 0.425 0.419 0.404 0.448 0.405 0.405 0.407
k = 2 0.41 0.397 0.466 0.435 0.402 0.406 0.408 0.439 0.413 0.413 0.413
k = 3 0.405 0.412 0.406 0.4 0.398 0.385 0.4 0.441 0.408 0.409 0.398
k = 4 0.395 0.409 0.409 0.407 0.4 0.402 0.398 0.446 0.399 0.402 0.4
k = 5 0.396 0.421 0.407 0.405 0.401 0.403 0.4 0.45 0.399 0.398 0.409
k = 6 0.405 0.412 0.408 0.405 0.409 0.405 0.406 0.45 0.408 0.407 0.408
k = 7 0.409 0.418 0.417 0.414 0.411 0.4 0.405 0.453 0.413 0.415 0.415
k = 8 0.408 0.42 0.416 0.416 0.408 0.403 0.406 0.454 0.412 0.415 0.416
k = 9 0.407 0.429 0.421 0.419 0.406 0.404 0.407 0.457 0.41 0.416 0.413
k = 10 0.42 0.442 0.411 0.425 0.408 0.416 0.411 0.458 0.424 0.452 0.419
k = 11 0.423 0.458 0.416 0.43 0.408 0.432 0.42 0.459 0.428 0.45 0.434
k = 12 0.424 0.48 0.429 0.431 0.408 0.43 0.422 0.464 0.43 0.457 0.435

Consumption Deflator

PCA PLS
Targeted Predictors Weighted PC Two

Step QMLE
One-sided

�2 = 0.25 �2 = 0.5 �2 = 1.5 SWa SWb Rule B Static
k = 1 0.483 0.492 0.534 0.543 0.523 0.495 0.48 0.518 0.48 0.482 0.484
k = 2 0.496 0.502 0.49 0.516 0.503 0.492 0.494 0.511 0.496 0.497 0.499
k = 3 0.496 0.504 0.496 0.507 0.499 0.475 0.49 0.516 0.5 0.498 0.482
k = 4 0.485 0.507 0.508 0.511 0.503 0.502 0.492 0.528 0.489 0.488 0.492
k = 5 0.49 0.527 0.514 0.517 0.511 0.507 0.5 0.531 0.492 0.489 0.509
k = 6 0.511 0.523 0.511 0.515 0.518 0.515 0.515 0.534 0.51 0.505 0.52
k = 7 0.516 0.551 0.516 0.527 0.534 0.51 0.513 0.539 0.515 0.513 0.522
k = 8 0.518 0.566 0.517 0.532 0.531 0.513 0.516 0.54 0.52 0.518 0.527
k = 9 0.512 0.573 0.523 0.529 0.528 0.509 0.512 0.549 0.512 0.515 0.517
k = 10 0.529 0.594 0.528 0.531 0.53 0.526 0.521 0.547 0.529 0.55 0.527
k = 11 0.532 0.609 0.533 0.531 0.52 0.543 0.529 0.546 0.533 0.555 0.544
k = 12 0.534 0.63 0.54 0.527 0.512 0.542 0.53 0.553 0.535 0.566 0.544

Table B.2: 12-Month-Ahead DIAR Forecasts by All Factor Estimations With Given k, k = 1, 2, ..., 12: Nominal Variables
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CPI excluding Food

PCA PLS
Targeted Predictors Weighted PC Two

Step QMLE
One-sided

�2 = 0.25 �2 = 0.5 �2 = 1.5 SWa SWb Rule B Static
k = 1 0.453 0.427 0.452 0.49 0.449 0.476 0.455 0.497 0.453 0.453 0.455
k = 2 0.463 0.441 0.417 0.483 0.475 0.464 0.459 0.495 0.463 0.461 0.469
k = 3 0.464 0.465 0.464 0.466 0.473 0.452 0.466 0.494 0.465 0.463 0.457
k = 4 0.459 0.466 0.48 0.47 0.477 0.471 0.463 0.493 0.46 0.459 0.461
k = 5 0.464 0.477 0.48 0.467 0.483 0.473 0.474 0.498 0.465 0.458 0.474
k = 6 0.48 0.474 0.484 0.464 0.476 0.475 0.48 0.498 0.48 0.47 0.479
k = 7 0.479 0.478 0.478 0.47 0.471 0.469 0.478 0.5 0.479 0.472 0.479
k = 8 0.478 0.475 0.482 0.467 0.472 0.474 0.476 0.502 0.479 0.474 0.481
k = 9 0.479 0.484 0.484 0.469 0.479 0.477 0.479 0.509 0.479 0.487 0.479
k = 10 0.488 0.499 0.485 0.462 0.477 0.482 0.482 0.51 0.488 0.513 0.485
k = 11 0.489 0.513 0.493 0.458 0.472 0.494 0.488 0.506 0.488 0.51 0.494
k = 12 0.488 0.535 0.5 0.462 0.479 0.495 0.49 0.509 0.488 0.512 0.495

Producer Price Index

PCA PLS
Targeted Predictors Weighted PC Two

Step QMLE
One-sided

�2 = 0.25 �2 = 0.5 �2 = 1.5 SWa SWb Rule B Static
k = 1 0.342 0.342 0.365 0.359 0.364 0.34 0.339 0.339 0.342 0.342 0.34
k = 2 0.338 0.337 0.358 0.357 0.355 0.336 0.341 0.335 0.34 0.342 0.34
k = 3 0.336 0.353 0.35 0.345 0.345 0.333 0.335 0.335 0.339 0.341 0.336
k = 4 0.333 0.34 0.354 0.347 0.346 0.336 0.336 0.336 0.337 0.339 0.342
k = 5 0.335 0.34 0.351 0.356 0.353 0.335 0.335 0.336 0.338 0.339 0.337
k = 6 0.337 0.335 0.352 0.357 0.356 0.338 0.338 0.337 0.34 0.343 0.339
k = 7 0.341 0.334 0.351 0.358 0.35 0.34 0.339 0.34 0.346 0.35 0.346
k = 8 0.343 0.34 0.352 0.359 0.349 0.342 0.343 0.34 0.349 0.352 0.349
k = 9 0.339 0.352 0.35 0.356 0.35 0.338 0.338 0.342 0.343 0.347 0.344
k = 10 0.343 0.36 0.352 0.352 0.35 0.345 0.339 0.341 0.348 0.371 0.346
k = 11 0.347 0.361 0.351 0.348 0.347 0.356 0.343 0.342 0.353 0.372 0.357
k = 12 0.348 0.371 0.353 0.34 0.35 0.353 0.346 0.344 0.354 0.369 0.357
Notes: The entries are relative mean squared errors (RMSE) of respective factor estimation method relative to a forecast based on the target variable’s historical mean.
This experiment is recursive out-of-sample forecast. 12-month-ahead DIAR forecasting for the four nominal target variables (CPI, Consumption Deflator, CPI excluding
Food, Producer Price Index) by all factor estimations methods, with given k, k = 1, 2, ..., 12, is presented. The lag of target variables, p, is determined by BIC. The
forecast with the minimum RMSE for corresponding factor estimation method is in bold.
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1. Output and Income

PCA PLS
Targeted Predictors Weighted PC Two

Step QMLE
One-sided

�2 = 0.25 �2 = 0.5 �2 = 1.5 SWa SWb Rule B Static
k = 1 0.928 0.685 0.835 0.78 0.76 0.755 0.875 0.851 0.931 0.934 0.913
k = 2 0.793 0.704 0.836 0.824 0.803 0.822 0.767 0.837 0.808 0.854 0.82
k = 3 0.783 0.814 0.776 0.777 0.769 0.834 0.813 0.841 0.798 0.847 0.837
k = 4 0.798 0.942 0.769 0.753 0.772 0.844 0.83 0.873 0.82 0.867 0.84
k = 5 0.793 1.034 0.744 0.761 0.779 0.805 0.79 0.877 0.819 0.876 0.801
k = 6 0.779 1.127 0.759 0.753 0.76 0.803 0.782 0.876 0.807 0.861 0.82
k = 7 0.798 1.173 0.762 0.773 0.771 0.793 0.779 0.876 0.816 0.86 0.833
k = 8 0.799 1.296 0.764 0.771 0.766 0.795 0.788 0.875 0.822 0.85 0.837
k = 9 0.793 1.446 0.774 0.775 0.78 0.787 0.798 0.884 0.818 0.845 0.806
k = 10 0.771 1.585 0.781 0.785 0.786 0.802 0.781 0.888 0.82 0.888 0.767
k = 11 0.768 1.695 0.784 0.793 0.788 0.804 0.755 0.897 0.823 0.892 0.781
k = 12 0.745 1.811 0.796 0.81 0.791 0.789 0.746 0.896 0.806 0.917 0.782

2. Labor Market

PCA PLS
Targeted Predictors Weighted PC Two

Step QMLE
One-sided

�2 = 0.25 �2 = 0.5 �2 = 1.5 SWa SWb Rule B Static
k = 1 0.763 0.633 0.708 0.691 0.704 0.676 0.751 0.741 0.768 0.772 0.77
k = 2 0.646 0.656 0.688 0.671 0.661 0.676 0.682 0.706 0.659 0.682 0.659
k = 3 0.631 0.81 0.656 0.645 0.662 0.686 0.659 0.713 0.649 0.675 0.699
k = 4 0.658 0.848 0.686 0.675 0.685 0.693 0.681 0.724 0.664 0.686 0.69
k = 5 0.656 0.876 0.683 0.692 0.674 0.658 0.648 0.727 0.666 0.688 0.658
k = 6 0.653 0.922 0.68 0.679 0.684 0.66 0.652 0.739 0.663 0.705 0.695
k = 7 0.672 0.908 0.682 0.685 0.679 0.668 0.662 0.739 0.672 0.708 0.721
k = 8 0.69 0.936 0.694 0.702 0.674 0.676 0.678 0.74 0.7 0.734 0.721
k = 9 0.686 0.989 0.692 0.703 0.684 0.685 0.686 0.751 0.701 0.753 0.691
k = 10 0.678 1.036 0.701 0.706 0.682 0.709 0.685 0.754 0.704 0.791 0.68
k = 11 0.689 1.085 0.712 0.711 0.687 0.72 0.685 0.761 0.719 0.8 0.694
k = 12 0.688 1.148 0.717 0.716 0.681 0.711 0.685 0.758 0.714 0.84 0.696

Table B.3: 12-Month-Ahead DIAR Forecasts by All Factor Estimations With Given k, k = 1, 2, ..., 12: Whole 144 Target
Variables by Category
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3. Housing

PCA PLS
Targeted Predictors Weighted PC Two

Step QMLE
One-sided

�2 = 0.25 �2 = 0.5 �2 = 1.5 SWa SWb Rule B Static
k = 1 0.956 0.981 0.932 0.924 0.959 0.993 0.986 0.906 0.953 0.954 0.964
k = 2 0.931 0.941 0.953 0.948 0.94 0.922 0.86 0.925 0.919 0.922 0.934
k = 3 0.921 1.054 0.973 0.968 0.987 0.915 0.908 0.926 0.911 0.913 0.95
k = 4 0.925 0.874 0.995 0.993 0.997 0.921 0.932 0.935 0.909 0.919 0.938
k = 5 0.929 0.853 0.983 0.983 0.979 0.929 0.934 0.926 0.921 0.928 0.944
k = 6 0.939 0.892 0.979 0.971 0.964 0.937 0.943 0.917 0.933 0.952 0.972
k = 7 0.972 0.907 0.981 0.965 0.953 0.929 0.938 0.927 0.954 0.968 0.981
k = 8 0.956 0.9 0.977 0.954 0.947 0.942 0.94 0.939 0.946 1.001 0.948
k = 9 0.969 0.946 0.964 0.963 0.938 0.947 0.95 0.962 0.96 1.011 0.946
k = 10 0.957 0.976 0.96 0.962 0.932 0.93 0.955 0.972 0.952 1.022 0.937
k = 11 0.945 1.012 0.979 0.968 0.936 0.923 0.951 0.98 0.933 1.02 0.936
k = 12 0.934 1.072 0.981 0.982 0.946 0.938 0.928 0.971 0.923 1.041 0.945

4. Consumption, Orders, Inventories

PCA PLS
Targeted Predictors Weighted PC Two

Step QMLE
One-sided

�2 = 0.25 �2 = 0.5 �2 = 1.5 SWa SWb Rule B Static
k = 1 0.988 0.862 0.891 0.924 0.907 0.912 0.977 0.912 0.99 0.988 0.983
k = 2 0.865 1.1 0.883 0.885 0.892 0.878 0.835 0.902 0.873 0.892 0.878
k = 3 0.862 1.268 0.871 0.888 0.894 0.894 0.867 0.918 0.871 0.897 0.893
k = 4 0.873 1.381 0.898 0.899 0.927 0.911 0.876 0.943 0.882 0.911 0.902
k = 5 0.884 1.53 0.912 0.916 0.909 0.888 0.878 0.94 0.898 0.931 0.883
k = 6 0.867 1.704 0.922 0.926 0.919 0.888 0.874 0.947 0.885 0.908 0.893
k = 7 0.874 1.83 0.927 0.927 0.914 0.869 0.865 0.948 0.885 0.901 0.922
k = 8 0.89 1.976 0.931 0.931 0.918 0.884 0.88 0.957 0.901 0.942 0.923
k = 9 0.905 2.087 0.952 0.941 0.936 0.894 0.899 0.968 0.908 0.951 0.913
k = 10 0.906 2.21 0.96 0.952 0.943 0.933 0.898 0.97 0.928 1.024 0.926
k = 11 0.909 2.31 0.966 0.957 0.955 0.941 0.913 0.974 0.932 1.028 0.931
k = 12 0.904 2.357 0.985 0.958 0.965 0.929 0.901 0.965 0.93 1.052 0.94

Notes: The entries are median relative mean squared errors (RMSE) in the 8 categories: 1. Output and Income, 2. Labor Market, 3. Housing, 4. Consumption, Orders, Inventories, 5. Money
and Credit, 6. Interest and Exchange Rates, 7. Prices, 8. Stock Market. RMSE is defined relative to a forecast based on the target variable’s historical mean. This experiment is recursive
out-of-sample forecast. 12-month-ahead DIAR forecasting for the whole 144 target variables by all factor estimations methods, with given k, k = 1, 2, ..., 12, is considered. The 144 forecasts are
divided into eight categories according to the target variable and the median RMSE of each category is presented. The lag of target variables, p, is determined by BIC. The forecast with the
minimum RMSE for corresponding factor estimation method is in bold.
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5. Money and Credit

PCA PLS
Targeted Predictors Weighted PC Two

Step QMLE
One-sided

�2 = 0.25 �2 = 0.5 �2 = 1.5 SWa SWb Rule B Static
k = 1 0.592 0.555 0.593 0.581 0.548 0.558 0.596 0.543 0.592 0.59 0.585
k = 2 0.516 0.53 0.533 0.522 0.553 0.516 0.515 0.523 0.521 0.541 0.516
k = 3 0.517 0.553 0.526 0.526 0.548 0.518 0.517 0.533 0.517 0.535 0.517
k = 4 0.522 0.569 0.541 0.548 0.566 0.519 0.519 0.539 0.521 0.534 0.519
k = 5 0.522 0.581 0.566 0.561 0.589 0.521 0.522 0.537 0.521 0.535 0.526
k = 6 0.524 0.615 0.571 0.576 0.578 0.526 0.526 0.536 0.524 0.535 0.531
k = 7 0.534 0.633 0.563 0.582 0.583 0.529 0.529 0.537 0.537 0.537 0.541
k = 8 0.534 0.655 0.575 0.593 0.577 0.534 0.535 0.536 0.542 0.552 0.544
k = 9 0.537 0.676 0.583 0.591 0.584 0.547 0.535 0.541 0.543 0.574 0.545
k = 10 0.543 0.699 0.595 0.597 0.579 0.553 0.536 0.559 0.546 0.581 0.554
k = 11 0.551 0.715 0.599 0.592 0.576 0.557 0.551 0.563 0.558 0.591 0.568
k = 12 0.557 0.74 0.599 0.587 0.577 0.563 0.555 0.567 0.569 0.613 0.568

6. Interest and Exchange Rates

PCA PLS
Targeted Predictors Weighted PC Two

Step QMLE
One-sided

�2 = 0.25 �2 = 0.5 �2 = 1.5 SWa SWb Rule B Static
k = 1 0.93 0.915 0.97 0.98 0.956 0.926 0.927 1.004 0.926 0.918 0.923
k = 2 0.931 0.964 0.933 0.944 0.952 0.898 0.907 0.973 0.912 0.902 0.903
k = 3 0.916 1.048 0.912 0.895 0.9 0.89 0.883 0.995 0.913 0.903 0.918
k = 4 0.916 1.177 0.956 0.944 0.944 0.874 0.875 0.993 0.92 0.921 0.919
k = 5 0.928 1.262 0.982 0.949 0.948 0.879 0.881 0.979 0.931 0.949 0.912
k = 6 0.889 1.287 0.98 0.97 0.979 0.877 0.879 0.976 0.874 0.881 0.892
k = 7 0.864 1.309 1.007 1.03 1.002 0.825 0.862 0.99 0.862 0.881 0.908
k = 8 0.903 1.36 1.017 1.045 1.022 0.869 0.887 0.993 0.911 0.931 0.927
k = 9 0.917 1.416 1.01 1.042 1.017 0.904 0.897 1.008 0.928 0.956 0.939
k = 10 0.952 1.438 1.029 1.033 1.028 0.939 0.909 1.004 0.948 1.014 0.959
k = 11 0.955 1.495 1.034 1.036 1.044 0.966 0.913 0.991 0.957 1.019 0.99
k = 12 0.95 1.519 1.052 1.048 1.043 0.958 0.956 1.01 0.949 1.089 0.985

Table B.4: 12-Month-Ahead DIAR Forecasts by All Factor Estimations With Given k, k = 1, 2, ..., 12: Whole 144 Target
Variables by Category
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7. Prices

PCA PLS
Targeted Predictors Weighted PC Two

Step QMLE
One-sided

�2 = 0.25 �2 = 0.5 �2 = 1.5 SWa SWb Rule B Static
k = 1 0.404 0.4 0.418 0.421 0.414 0.415 0.403 0.444 0.405 0.405 0.406
k = 2 0.408 0.42 0.414 0.421 0.404 0.406 0.397 0.438 0.411 0.412 0.412
k = 3 0.403 0.434 0.412 0.411 0.4 0.385 0.399 0.441 0.405 0.407 0.397
k = 4 0.396 0.437 0.414 0.416 0.404 0.4 0.402 0.447 0.399 0.402 0.399
k = 5 0.4 0.448 0.424 0.422 0.418 0.401 0.399 0.447 0.401 0.398 0.409
k = 6 0.412 0.443 0.428 0.426 0.423 0.406 0.41 0.448 0.413 0.412 0.409
k = 7 0.417 0.448 0.439 0.434 0.426 0.406 0.409 0.45 0.418 0.415 0.424
k = 8 0.416 0.448 0.438 0.431 0.43 0.409 0.411 0.45 0.418 0.42 0.427
k = 9 0.418 0.459 0.443 0.436 0.433 0.417 0.411 0.453 0.419 0.427 0.425
k = 10 0.432 0.465 0.447 0.44 0.432 0.428 0.422 0.453 0.434 0.457 0.43
k = 11 0.44 0.475 0.448 0.444 0.437 0.442 0.432 0.456 0.44 0.457 0.443
k = 12 0.439 0.487 0.453 0.446 0.44 0.443 0.436 0.46 0.439 0.461 0.445

8. Stock Market

PCA PLS
Targeted Predictors Weighted PC Two

Step QMLE
One-sided

�2 = 0.25 �2 = 0.5 �2 = 1.5 SWa SWb Rule B Static
k = 1 0.923 0.903 1.012 0.933 0.885 0.986 0.951 1.018 0.921 0.917 0.928
k = 2 0.917 0.905 0.873 0.85 0.888 0.893 0.896 1.021 0.915 0.929 0.902
k = 3 0.921 1.025 0.895 0.869 0.9 0.881 0.894 1.024 0.919 0.927 0.917
k = 4 0.928 1.147 0.944 0.902 0.915 0.906 0.91 1.009 0.925 0.932 0.923
k = 5 0.93 1.225 0.982 0.941 0.966 0.913 0.929 1.006 0.928 0.937 0.936
k = 6 0.943 1.289 1.017 1.003 1.023 0.918 0.934 1.009 0.941 0.947 0.931
k = 7 0.903 1.362 1.036 1.005 1.014 0.886 0.893 1.012 0.905 0.927 0.939
k = 8 0.899 1.471 1.043 1.016 1.055 0.878 0.887 1.015 0.903 0.94 0.893
k = 9 0.902 1.568 1.045 1.02 1.074 0.879 0.89 1.03 0.9 0.939 0.898
k = 10 0.922 1.654 1.04 1.032 1.084 0.914 0.893 1.033 0.92 0.988 0.939
k = 11 0.935 1.725 1.057 1.07 1.078 0.935 0.924 1.05 0.947 0.997 0.986
k = 12 0.934 1.775 1.072 1.083 1.072 0.927 0.937 1.042 0.946 1.009 0.981

Notes: The entries are median relative mean squared errors (RMSE) in the 8 categories: 1. Output and Income, 2. Labor Market, 3. Housing, 4. Consumption, Orders, Inventories, 5. Money
and Credit, 6. Interest and Exchange Rates, 7. Prices, 8. Stock Market. RMSE is defined relative to a forecast based on the target variable’s historical mean. This experiment is recursive
out-of-sample forecast. 12-month-ahead DIAR forecasting for the whole 144 target variables by all factor estimations methods, with given k, k = 1, 2, ..., 12, is considered. The 144 forecasts are
divided into eight categories according to the target variable and the median RMSE of each category is presented. The lag of target variables, p, is determined by BIC. The forecast with the
minimum RMSE for corresponding factor estimation method is in bold.
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Industrial Production

PCA PLS
Targeted Predictors Weighted PC Two

Step QMLE
One-sided

�2 = 0.25 �2 = 0.5 �2 = 1.5 SWa SWb Rule B Static Dynamic
PLS1 0.638
k̂BIC 0.75 1.326 0.765 0.752 0.761 0.777 0.743 0.781 0.817 0.903 0.751
k̂BN�p1 0.744 1.297 0.766 0.804 0.794 0.768 0.74 0.791 0.801 0.847 0.782
k̂BN�p2 0.713 1.009 0.757 0.804 0.794 0.73 0.716 0.794 0.768 0.777 0.731
k̂BN�p3 0.737 1.818 0.781 0.804 0.794 0.79 0.745 0.83 0.803 0.911 0.781
k̂BN�BIC 0.685 0.847 0.701 0.757 0.808 0.757 0.723 0.774 0.721 0.784 0.77
k̂AH 0.687 0.694 0.767 0.707 0.692 0.706 0.694 0.789 0.721 0.768 0.711
k̂ON 0.659 0.677 0.759 0.741 0.706 0.671 0.659 0.776 0.685 0.709 0.658
k̂ABC�L 0.708 0.945 0.734 0.727 0.729 0.74 0.719 0.789 0.757 0.807 0.719
k̂ABC�S 0.731 1.348 0.76 0.776 0.78 0.765 0.739 0.808 0.785 0.835 0.756
BN2007 0.733
Mean 0.713 1.06 0.754 0.764 0.762 0.745 0.72 0.792 0.762 0.816 0.74 0.733
Best k 0.699 0.638 0.717 0.719 0.699 0.722 0.708 0.771 0.732 0.799 0.741 0.741

Table B.5: 12-Month-Ahead DIAR Forecasts by All Factor Estimations With Information Criteria: Real Variables
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Real Personal Income

PCA PLS
Targeted Predictors Weighted PC Two

Step QMLE
One-sided

�2 = 0.25 �2 = 0.5 �2 = 1.5 SWa SWb Rule B Static Dynamic
PLS1 0.68
k̂BIC 0.89 1.363 0.878 0.917 0.921 0.902 0.899 0.953 0.924 0.966 0.901
k̂BN�p1 0.876 1.496 0.901 0.967 0.885 0.873 0.87 0.995 0.898 0.931 0.905
k̂BN�p2 0.86 1.308 0.886 0.965 0.884 0.863 0.858 0.979 0.883 0.912 0.889
k̂BN�p3 0.888 1.834 0.944 0.953 0.885 0.909 0.889 0.999 0.917 0.96 0.915
k̂BN�BIC 0.826 0.922 0.848 0.851 0.906 0.861 0.843 0.963 0.842 0.879 0.865
k̂AH 0.821 0.757 0.841 0.789 0.797 0.829 0.818 0.954 0.838 0.869 0.836
k̂ON 0.772 0.736 0.863 0.881 0.874 0.764 0.761 0.964 0.783 0.805 0.769
k̂ABC�L 0.834 1.161 0.859 0.846 0.871 0.846 0.84 0.989 0.857 0.904 0.844
k̂ABC�S 0.867 1.44 0.898 0.905 0.914 0.865 0.866 0.981 0.889 0.918 0.878
BN2007 0.857
Mean 0.848 1.17 0.88 0.897 0.882 0.857 0.849 0.975 0.87 0.905 0.867 0.857
Best k 0.745 0.685 0.744 0.753 0.76 0.755 0.746 0.837 0.798 0.845 0.767 0.767
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Real Manufacturing & Trade Industries Sales

PCA PLS
Targeted Predictors Weighted PC Two

Step QMLE
One-sided

�2 = 0.25 �2 = 0.5 �2 = 1.5 SWa SWb Rule B Static Dynamic
PLS1 0.648
k̂BIC 0.694 1.64 0.789 0.771 0.785 0.776 0.706 0.784 0.776 0.918 0.795
k̂BN�p1 0.711 1.473 0.741 0.78 0.763 0.719 0.701 0.757 0.74 0.797 0.743
k̂BN�p2 0.69 1.067 0.729 0.779 0.763 0.691 0.676 0.764 0.705 0.768 0.7
k̂BN�p3 0.718 2.191 0.765 0.78 0.763 0.74 0.716 0.835 0.754 0.876 0.758
k̂BN�BIC 0.652 0.861 0.778 0.801 0.773 0.705 0.681 0.736 0.662 0.714 0.713
k̂AH 0.655 0.717 0.765 0.741 0.729 0.649 0.646 0.744 0.667 0.7 0.655
k̂ON 0.644 0.702 0.728 0.732 0.707 0.625 0.629 0.736 0.647 0.663 0.626
k̂ABC�L 0.674 0.98 0.802 0.779 0.796 0.678 0.665 0.769 0.693 0.76 0.68
k̂ABC�S 0.688 1.615 0.782 0.786 0.752 0.706 0.696 0.794 0.715 0.779 0.718
BN2007 0.702
Mean 0.681 1.189 0.764 0.772 0.759 0.699 0.68 0.769 0.707 0.775 0.71 0.702
Best k 0.631 0.633 0.656 0.645 0.661 0.658 0.648 0.706 0.649 0.675 0.658 0.658
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Nonagriculture Employment

PCA PLS
Targeted Predictors Weighted PC Two

Step QMLE
One-sided

�2 = 0.25 �2 = 0.5 �2 = 1.5 SWa SWb Rule B Static Dynamic
PLS1 0.498
k̂BIC 0.494 1.178 0.527 0.518 0.486 0.522 0.494 0.544 0.505 0.611 0.5
k̂BN�p1 0.529 1.326 0.511 0.504 0.492 0.515 0.521 0.548 0.543 0.587 0.535
k̂BN�p2 0.506 0.971 0.528 0.504 0.492 0.5 0.506 0.549 0.517 0.548 0.507
k̂BN�p3 0.511 1.74 0.5 0.505 0.492 0.534 0.521 0.569 0.521 0.646 0.535
k̂BN�BIC 0.484 0.67 0.505 0.509 0.492 0.516 0.507 0.54 0.49 0.52 0.55
k̂AH 0.511 0.531 0.512 0.495 0.543 0.512 0.511 0.543 0.517 0.535 0.523
k̂ON 0.5 0.545 0.537 0.518 0.545 0.502 0.498 0.541 0.503 0.509 0.511
k̂ABC�L 0.509 0.877 0.517 0.512 0.517 0.506 0.508 0.543 0.522 0.552 0.525
k̂ABC�S 0.503 1.297 0.521 0.51 0.49 0.523 0.512 0.554 0.524 0.59 0.518
BN2007 0.5
Mean 0.505 0.963 0.518 0.508 0.505 0.514 0.509 0.548 0.516 0.566 0.523 0.5
Best k 0.921 0.853 0.932 0.924 0.932 0.915 0.86 0.906 0.909 0.913 0.934 0.934

Notes: The entries are relative mean squared errors (RMSE) of respective factor estimation method relative to a forecast based on the target
variable’s historical mean. This experiment is recursive out-of-sample forecast. 12-month-ahead DIAR forecasting for the four real target
variables (Industrial Production, Real Personal Income, Real Manufacturing & Trade Industries Sales, Nonagriculture Employment) by all
factor estimations methods is considered. The number of contemporaneous factors, k is determined by 11 information criteria, PLS1, k̂BIC , to
BN2007. The two information criteria, PLS1 and BN2007 are only applied to PLS and One-sided estimation, respectively. Therefore the other
factor estimations for those two criteria remain blank. The lag of target variables, p, is determined by BIC. The row Mean is the mean of the
method over 11 information criteria. Best k is the best results in bold in Table B.1. The forecast with the minimum RMSE for corresponding
factor estimation method is in bold.

185



CPI

PCA PLS
Targeted Predictors Weighted PC Two

Step QMLE
One-sided

�2 = 0.25 �2 = 0.5 �2 = 1.5 SWa SWb Rule B Static Dynamic
PLS1 0.392
k̂BIC 0.407 0.436 0.43 0.426 0.412 0.401 0.399 0.445 0.411 0.446 0.427
k̂BN�p1 0.409 0.426 0.406 0.411 0.406 0.406 0.406 0.444 0.413 0.415 0.415
k̂BN�p2 0.406 0.405 0.413 0.416 0.406 0.403 0.404 0.449 0.409 0.405 0.416
k̂BN�p3 0.424 0.48 0.417 0.414 0.408 0.43 0.422 0.456 0.43 0.457 0.435
k̂BN�BIC 0.41 0.398 0.409 0.404 0.403 0.399 0.416 0.441 0.413 0.414 0.406
k̂AH 0.412 0.395 0.452 0.439 0.401 0.406 0.409 0.443 0.413 0.411 0.414
k̂ON 0.411 0.393 0.423 0.415 0.396 0.403 0.407 0.44 0.412 0.41 0.412
k̂ABC�L 0.406 0.413 0.402 0.403 0.401 0.402 0.407 0.449 0.409 0.408 0.411
k̂ABC�S 0.407 0.427 0.419 0.421 0.412 0.405 0.405 0.458 0.411 0.419 0.409
BN2007 0.408
Mean 0.41 0.417 0.419 0.417 0.405 0.406 0.408 0.447 0.413 0.421 0.416 0.408
Best k 0.862 0.862 0.871 0.885 0.892 0.869 0.835 0.902 0.871 0.892 0.878 0.878

Table B.6: 12-Month-Ahead DIAR Forecasts by All Factor Estimations With Information Criteria: Nominal Variables
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Consumption Deflator

PCA PLS
Targeted Predictors Weighted PC Two

Step QMLE
One-sided

�2 = 0.25 �2 = 0.5 �2 = 1.5 SWa SWb Rule B Static Dynamic
PLS1 0.492
k̂BIC 0.492 0.595 0.514 0.521 0.504 0.515 0.5 0.514 0.499 0.55 0.528
k̂BN�p1 0.515 0.57 0.513 0.512 0.506 0.513 0.51 0.518 0.516 0.515 0.52
k̂BN�p2 0.497 0.511 0.507 0.51 0.506 0.5 0.497 0.521 0.498 0.492 0.512
k̂BN�p3 0.534 0.63 0.523 0.526 0.501 0.542 0.53 0.539 0.535 0.566 0.544
k̂BN�BIC 0.497 0.496 0.504 0.515 0.519 0.489 0.507 0.514 0.5 0.495 0.49
k̂AH 0.497 0.504 0.528 0.521 0.501 0.492 0.496 0.512 0.496 0.496 0.501
k̂ON 0.497 0.503 0.522 0.536 0.501 0.489 0.495 0.514 0.495 0.496 0.498
k̂ABC�L 0.502 0.528 0.506 0.514 0.505 0.496 0.505 0.529 0.504 0.5 0.505
k̂ABC�S 0.514 0.575 0.522 0.53 0.522 0.514 0.515 0.542 0.515 0.519 0.517
BN2007 0.5
Mean 0.505 0.54 0.515 0.521 0.507 0.506 0.506 0.523 0.506 0.514 0.513 0.5
Best k 0.516 0.53 0.526 0.522 0.548 0.516 0.515 0.523 0.517 0.534 0.516 0.516
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CPI excluding Food

PCA PLS
Targeted Predictors Weighted PC Two

Step QMLE
One-sided

�2 = 0.25 �2 = 0.5 �2 = 1.5 SWa SWb Rule B Static Dynamic
PLS1 0.427
k̂BIC 0.468 0.515 0.489 0.478 0.486 0.471 0.473 0.5 0.468 0.51 0.476
k̂BN�p1 0.48 0.486 0.493 0.467 0.482 0.476 0.479 0.498 0.48 0.476 0.48
k̂BN�p2 0.474 0.459 0.492 0.473 0.482 0.471 0.474 0.505 0.474 0.464 0.476
k̂BN�p3 0.488 0.535 0.492 0.46 0.479 0.495 0.49 0.508 0.488 0.512 0.495
k̂BN�BIC 0.468 0.454 0.479 0.471 0.482 0.459 0.474 0.491 0.469 0.466 0.463
k̂AH 0.458 0.437 0.422 0.494 0.489 0.458 0.46 0.495 0.458 0.454 0.464
k̂ON 0.454 0.437 0.478 0.477 0.469 0.454 0.456 0.491 0.454 0.451 0.46
k̂ABC�L 0.464 0.461 0.483 0.474 0.475 0.462 0.466 0.501 0.466 0.458 0.47
k̂ABC�S 0.478 0.488 0.481 0.465 0.476 0.473 0.478 0.504 0.479 0.482 0.477
BN2007 0.469
Mean 0.47 0.47 0.479 0.473 0.48 0.469 0.472 0.499 0.471 0.475 0.473 0.469
Best k 0.864 0.915 0.912 0.895 0.9 0.825 0.862 0.973 0.862 0.881 0.892 0.892
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Producer Price Index

PCA PLS
Targeted Predictors Weighted PC Two

Step QMLE
One-sided

�2 = 0.25 �2 = 0.5 �2 = 1.5 SWa SWb Rule B Static Dynamic
PLS1 0.342
k̂BIC 0.341 0.345 0.354 0.345 0.35 0.343 0.341 0.335 0.345 0.374 0.352
k̂BN�p1 0.339 0.346 0.354 0.34 0.348 0.337 0.337 0.334 0.343 0.347 0.345
k̂BN�p2 0.339 0.337 0.349 0.341 0.349 0.34 0.34 0.334 0.345 0.345 0.349
k̂BN�p3 0.348 0.371 0.353 0.341 0.349 0.353 0.346 0.34 0.354 0.369 0.357
k̂BN�BIC 0.339 0.34 0.349 0.358 0.354 0.339 0.343 0.333 0.342 0.343 0.341
k̂AH 0.343 0.335 0.355 0.355 0.362 0.339 0.341 0.335 0.344 0.344 0.343
k̂ON 0.345 0.334 0.355 0.355 0.349 0.339 0.342 0.334 0.345 0.345 0.344
k̂ABC�L 0.341 0.344 0.354 0.353 0.351 0.339 0.341 0.336 0.345 0.346 0.342
k̂ABC�S 0.337 0.348 0.35 0.354 0.351 0.338 0.336 0.339 0.34 0.344 0.339
BN2007 0.345
Mean 0.341 0.344 0.353 0.349 0.351 0.341 0.341 0.336 0.345 0.351 0.346 0.345
Best k 0.396 0.4 0.412 0.411 0.4 0.385 0.397 0.438 0.399 0.398 0.397 0.397

Notes: The entries are relative mean squared errors (RMSE) of respective factor estimation method relative to a forecast based on the target
variable’s historical mean. This experiment is recursive out-of-sample forecast. 12-month-ahead DIAR forecasting for the four nominal target
variables (CPI, Consumption Deflator, CPI excluding Food, Producer Price Index) by all factor estimations methods is considered. The number
of contemporaneous factors, k is determined by 11 information criteria, PLS1, k̂BIC , to BN2007. The two information criteria, PLS1 and BN2007
are only applied to PLS and One-sided estimation, respectively. Therefore the other factor estimations for those two criteria remain blank. The
row Mean is the mean of the method over 11 information criteria. Best k is the best results in bold in Table B.2. The lag of target variables,
p, is determined by BIC. The forecast with the minimum RMSE for corresponding factor estimation method is in bold.

189



1. Output and Income

PCA PLS
Targeted Predictors Weighted PC Two

Step QMLE
One-sided

�2 = 0.25 �2 = 0.5 �2 = 1.5 SWa SWb Rule B Static Dynamic
PLS1 0.685
k̂BIC 0.749 1.327 0.764 0.755 0.762 0.789 0.757 0.855 0.813 0.888 0.766
k̂BN�p1 0.804 1.28 0.774 0.809 0.794 0.807 0.798 0.865 0.835 0.865 0.82
k̂BN�p2 0.787 1.014 0.767 0.803 0.793 0.789 0.78 0.869 0.805 0.856 0.797
k̂BN�p3 0.745 1.811 0.793 0.809 0.793 0.789 0.746 0.887 0.806 0.917 0.782
k̂BN�BIC 0.765 0.827 0.748 0.756 0.793 0.826 0.797 0.847 0.782 0.832 0.829
k̂AH 0.761 0.713 0.816 0.779 0.757 0.772 0.752 0.842 0.775 0.801 0.759
k̂ON 0.73 0.708 0.825 0.814 0.789 0.715 0.712 0.839 0.742 0.759 0.719
k̂ABC�L 0.77 0.937 0.775 0.761 0.782 0.786 0.77 0.866 0.8 0.856 0.776
k̂ABC�S 0.781 1.321 0.772 0.777 0.783 0.801 0.786 0.873 0.812 0.848 0.79
BN2007 0.769
Mean 0.766 1.062 0.782 0.785 0.783 0.786 0.766 0.86 0.797 0.847 0.782 0.769
Best k 0.745 0.685 0.744 0.753 0.76 0.755 0.746 0.837 0.798 0.845 0.767 0.767

Table B.7: 12-Month-Ahead DIAR Forecasts by All Factor Estimations With Information Criteria: Whole 144 Target
Variables by Category
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2. Labor Market

PCA PLS
Targeted Predictors Weighted PC Two

Step QMLE
One-sided

�2 = 0.25 �2 = 0.5 �2 = 1.5 SWa SWb Rule B Static Dynamic
PLS1 0.633
k̂BIC 0.667 1.016 0.694 0.693 0.665 0.693 0.669 0.714 0.678 0.789 0.681
k̂BN�p1 0.687 0.968 0.682 0.708 0.681 0.687 0.679 0.723 0.696 0.752 0.688
k̂BN�p2 0.659 0.905 0.684 0.705 0.685 0.652 0.656 0.726 0.671 0.713 0.672
k̂BN�p3 0.688 1.148 0.686 0.713 0.681 0.711 0.685 0.746 0.714 0.84 0.696
k̂BN�BIC 0.621 0.813 0.69 0.674 0.67 0.673 0.646 0.714 0.627 0.657 0.684
k̂AH 0.666 0.659 0.672 0.67 0.705 0.673 0.672 0.711 0.678 0.691 0.684
k̂ON 0.665 0.644 0.679 0.659 0.683 0.654 0.658 0.718 0.663 0.665 0.664
k̂ABC�L 0.645 0.869 0.679 0.669 0.671 0.645 0.646 0.722 0.657 0.692 0.678
k̂ABC�S 0.661 0.927 0.693 0.693 0.673 0.682 0.669 0.75 0.685 0.729 0.67
BN2007 0.666
Mean 0.662 0.858 0.684 0.687 0.679 0.674 0.664 0.725 0.674 0.725 0.68 0.666
Best k 0.631 0.633 0.656 0.645 0.661 0.658 0.648 0.706 0.649 0.675 0.658 0.658
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3. Housing

PCA PLS
Targeted Predictors Weighted PC Two

Step QMLE
One-sided

�2 = 0.25 �2 = 0.5 �2 = 1.5 SWa SWb Rule B Static Dynamic
PLS1 0.981
k̂BIC 0.949 0.975 0.965 0.956 0.947 0.943 0.964 0.932 0.929 1.018 0.95
k̂BN�p1 0.967 0.937 0.986 0.979 0.946 0.952 0.951 0.926 0.965 1.003 0.942
k̂BN�p2 0.99 0.993 0.994 0.983 0.946 0.955 0.969 0.938 0.998 1.022 0.963
k̂BN�p3 0.934 1.072 0.981 0.985 0.946 0.938 0.928 0.979 0.923 1.041 0.945
k̂BN�BIC 0.934 0.927 0.982 0.972 0.989 0.943 0.929 0.928 0.918 0.923 0.961
k̂AH 0.858 0.97 0.93 0.944 0.96 0.829 0.848 0.92 0.853 0.85 0.84
k̂ON 0.875 0.983 0.968 0.971 0.957 0.842 0.863 0.918 0.858 0.85 0.858
k̂ABC�L 0.938 0.905 1.007 0.983 0.991 0.941 0.935 0.952 0.928 0.951 0.958
k̂ABC�S 0.956 0.922 0.968 0.951 0.94 0.943 0.953 0.951 0.952 0.997 0.967
BN2007 0.966
Mean 0.933 0.966 0.976 0.969 0.958 0.921 0.927 0.938 0.925 0.962 0.932 0.966
Best k 0.921 0.853 0.932 0.924 0.932 0.915 0.86 0.906 0.909 0.913 0.934 0.934
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4. Consumption, Orders, Inventories

PCA PLS
Targeted Predictors Weighted PC Two

Step QMLE
One-sided

�2 = 0.25 �2 = 0.5 �2 = 1.5 SWa SWb Rule B Static Dynamic
PLS1 0.862
k̂BIC 0.899 1.763 0.936 0.924 0.924 0.914 0.88 0.909 0.938 1.037 0.937
k̂BN�p1 0.904 1.946 0.945 0.95 0.958 0.905 0.895 0.925 0.923 0.948 0.924
k̂BN�p2 0.864 1.664 0.936 0.955 0.955 0.865 0.865 0.925 0.886 0.918 0.895
k̂BN�p3 0.904 2.357 0.975 0.964 0.964 0.929 0.901 0.959 0.93 1.052 0.94
k̂BN�BIC 0.848 1.255 0.901 0.916 0.926 0.881 0.879 0.914 0.861 0.881 0.89
k̂AH 0.835 1.045 0.865 0.907 0.921 0.832 0.832 0.902 0.844 0.863 0.845
k̂ON 0.838 1.048 0.849 0.858 0.879 0.827 0.823 0.915 0.848 0.856 0.836
k̂ABC�L 0.864 1.454 0.925 0.91 0.918 0.862 0.865 0.937 0.882 0.9 0.868
k̂ABC�S 0.892 1.949 0.929 0.936 0.946 0.888 0.887 0.953 0.899 0.934 0.911
BN2007 0.889
Mean 0.872 1.534 0.918 0.924 0.932 0.878 0.87 0.927 0.89 0.932 0.894 0.889
Best k 0.862 0.862 0.871 0.885 0.892 0.869 0.835 0.902 0.871 0.892 0.878 0.878

Notes: The entries are median relative mean squared errors (RMSE) in the 8 categories: 1. Output and Income, 2. Labor Market, 3. Housing,
4. Consumption, Orders, Inventories, 5. Money and Credit, 6. Interest and Exchange Rates, 7. Prices, 8. Stock Market. RMSE is defined
relative to a forecast based on the target variable’s historical mean. This experiment is recursive out-of-sample forecast. 12-month-ahead DIAR
forecasting for the whole 144 target variables by all factor estimations methods is considered. The 144 forecasts are divided into eight categories
according to the target variable and the median RMSE of each category is presented. The number of contemporaneous factors, k is determined
by 11 information criteria, PLS1, k̂BIC , to BN2007. The two information criteria, PLS1 and BN2007 are only applied to PLS and One-sided
estimation, respectively. Therefore the other factor estimations for those two criteria remain blank. The row Mean is the mean of the method
over 11 information criteria. Best k is the best results in bold in Table B.3. The lag of target variables, p, is determined by BIC. The forecast
with the minimum RMSE for corresponding factor estimation method is in bold.
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5. Money and Credit

PCA PLS
Targeted Predictors Weighted PC Two

Step QMLE
One-sided

�2 = 0.25 �2 = 0.5 �2 = 1.5 SWa SWb Rule B Static Dynamic
PLS1 0.555
k̂BIC 0.54 0.677 0.574 0.568 0.57 0.54 0.519 0.53 0.55 0.58 0.559
k̂BN�p1 0.53 0.643 0.543 0.57 0.578 0.53 0.532 0.541 0.539 0.567 0.544
k̂BN�p2 0.53 0.594 0.546 0.56 0.577 0.534 0.531 0.546 0.535 0.555 0.558
k̂BN�p3 0.557 0.74 0.574 0.578 0.577 0.563 0.555 0.553 0.569 0.613 0.568
k̂BN�BIC 0.52 0.547 0.536 0.541 0.573 0.516 0.517 0.532 0.52 0.531 0.519
k̂AH 0.515 0.534 0.587 0.582 0.56 0.519 0.514 0.52 0.515 0.534 0.515
k̂ON 0.523 0.554 0.532 0.522 0.532 0.528 0.524 0.527 0.529 0.536 0.521
k̂ABC�L 0.522 0.597 0.543 0.544 0.564 0.521 0.522 0.536 0.521 0.535 0.524
k̂ABC�S 0.536 0.663 0.574 0.592 0.587 0.535 0.536 0.551 0.544 0.559 0.544
BN2007 0.544
Mean 0.53 0.61 0.557 0.562 0.569 0.532 0.528 0.537 0.536 0.557 0.539 0.544
Best k 0.516 0.53 0.526 0.522 0.548 0.516 0.515 0.523 0.517 0.534 0.516 0.516

Table B.8: 12-Month-Ahead DIAR Forecasts by All Factor Estimations With Information Criteria: Whole 144 Target Variables by
Category
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6. Interest and Exchange Rates

PCA PLS
Targeted Predictors Weighted PC Two

Step QMLE
One-sided

�2 = 0.25 �2 = 0.5 �2 = 1.5 SWa SWb Rule B Static Dynamic
PLS1 0.915
k̂BIC 0.939 1.463 1.001 1 0.966 0.965 0.968 1.004 0.935 1.066 0.951
k̂BN�p1 0.92 1.37 0.991 1.037 1.044 0.907 0.89 1.01 0.925 0.923 0.936
k̂BN�p2 0.926 1.278 0.979 1.017 1.036 0.915 0.916 1.01 0.92 0.941 0.923
k̂BN�p3 0.95 1.519 1.041 1.048 1.043 0.958 0.956 1.014 0.949 1.089 0.985
k̂BN�BIC 0.932 1.086 0.941 0.985 0.999 0.922 0.916 0.994 0.929 0.918 0.903
k̂AH 0.923 0.96 0.955 0.952 0.931 0.899 0.904 0.976 0.904 0.899 0.904
k̂ON 0.917 0.916 0.924 0.908 0.9 0.904 0.911 0.985 0.914 0.911 0.912
k̂ABC�L 0.926 1.249 0.943 0.948 0.936 0.914 0.917 0.995 0.924 0.941 0.915
k̂ABC�S 0.904 1.382 1.019 1.023 1.027 0.908 0.895 0.994 0.921 0.951 0.925
BN2007 0.965
Mean 0.926 1.214 0.977 0.991 0.987 0.921 0.919 0.998 0.925 0.96 0.928 0.965
Best k 0.864 0.915 0.912 0.895 0.9 0.825 0.862 0.973 0.862 0.881 0.892 0.892
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7. Prices

PCA PLS
Targeted Predictors Weighted PC Two

Step QMLE
One-sided

�2 = 0.25 �2 = 0.5 �2 = 1.5 SWa SWb Rule B Static Dynamic
PLS1 0.4
k̂BIC 0.425 0.463 0.442 0.441 0.428 0.42 0.417 0.446 0.422 0.451 0.425
k̂BN�p1 0.42 0.454 0.409 0.414 0.424 0.418 0.411 0.442 0.421 0.423 0.426
k̂BN�p2 0.405 0.433 0.408 0.416 0.426 0.402 0.403 0.445 0.408 0.404 0.414
k̂BN�p3 0.439 0.487 0.421 0.429 0.433 0.443 0.436 0.452 0.439 0.461 0.445
k̂BN�BIC 0.407 0.426 0.408 0.41 0.411 0.397 0.412 0.44 0.409 0.412 0.405
k̂AH 0.398 0.416 0.416 0.422 0.401 0.401 0.398 0.441 0.399 0.4 0.405
k̂ON 0.395 0.412 0.412 0.409 0.399 0.397 0.395 0.439 0.396 0.397 0.401
k̂ABC�L 0.405 0.437 0.408 0.411 0.41 0.4 0.405 0.449 0.408 0.407 0.409
k̂ABC�S 0.417 0.453 0.44 0.433 0.436 0.419 0.413 0.453 0.419 0.427 0.421
BN2007 0.407
Mean 0.412 0.438 0.418 0.421 0.419 0.411 0.41 0.445 0.413 0.42 0.417 0.407
Best k 0.396 0.4 0.412 0.411 0.4 0.385 0.397 0.438 0.399 0.398 0.397 0.397
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8. Stock Market

PCA PLS
Targeted Predictors Weighted PC Two

Step QMLE
One-sided

�2 = 0.25 �2 = 0.5 �2 = 1.5 SWa SWb Rule B Static Dynamic
PLS1 0.903
k̂BIC 0.908 1.703 1.074 1.049 1.006 0.924 0.901 1.003 0.941 1.043 0.98
k̂BN�p1 0.899 1.496 1.053 1.084 1.072 0.873 0.889 1.004 0.898 0.946 0.895
k̂BN�p2 0.944 1.383 1.053 1.082 1.071 0.926 0.941 1.006 0.951 0.961 0.945
k̂BN�p3 0.934 1.775 1.071 1.089 1.072 0.927 0.937 1.043 0.946 1.009 0.981
k̂BN�BIC 0.924 1.065 1.004 0.97 1.013 0.889 0.904 1.021 0.925 0.932 0.924
k̂AH 0.915 0.913 1.007 0.908 0.849 0.901 0.899 1.005 0.916 0.926 0.905
k̂ON 0.873 0.894 0.895 0.875 0.885 0.862 0.869 1.027 0.864 0.875 0.864
k̂ABC�L 0.937 1.188 0.948 0.94 0.945 0.92 0.93 1.033 0.933 0.945 0.942
k̂ABC�S 0.915 1.419 1.027 1.034 1.054 0.893 0.901 1.017 0.918 0.936 0.919
BN2007 0.964
Mean 0.917 1.274 1.015 1.003 0.996 0.902 0.908 1.018 0.921 0.953 0.928 0.964
Best k 0.899 0.903 0.873 0.85 0.885 0.878 0.887 1.006 0.9 0.917 0.893 0.893

Notes: The entries are median relative mean squared errors (RMSE) in the 8 categories: 1. Output and Income, 2. Labor Market, 3. Housing,
4. Consumption, Orders, Inventories, 5. Money and Credit, 6. Interest and Exchange Rates, 7. Prices, 8. Stock Market. RMSE is defined
relative to a forecast based on the target variable’s historical mean. This experiment is recursive out-of-sample forecast. 12-month-ahead DIAR
forecasting for the whole 144 target variables by all factor estimations methods is considered. The 144 forecasts are divided into eight categories
according to the target variable and the median RMSE of each category is presented. The number of contemporaneous factors, k is determined
by 11 information criteria, PLS1, k̂BIC , to BN2007. The two information criteria, PLS1 and BN2007 are only applied to PLS and One-sided
estimation, respectively. Therefore the other factor estimations for those two criteria remain blank. The row Mean is the mean of the method
over 11 information criteria. Best k is the best results in bold in Table B.4. The lag of target variables, p, is determined by BIC. The forecast
with the minimum RMSE for corresponding factor estimation method is in bold.
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DIAR : Mean PCA PLS1
PLS,

other IC
Targeted Predictors Weighted PC Two

Step QMLE
One-sided

�2 = 0.25 �2 = 0.5 �2 = 1.5 SWa SWb Rule B Static Dynamic
Industrial Production 0.713 0.638 1.107 0.754 0.764 0.762 0.745 0.72 0.792 0.762 0.816 0.74 0.733
Personal Income 0.848 0.68 1.224 0.88 0.897 0.882 0.857 0.849 0.975 0.87 0.905 0.867 0.857
Mfg & Trade Sales 0.681 0.648 1.25 0.764 0.772 0.759 0.699 0.68 0.769 0.707 0.775 0.71 0.702
Nonag. Employment 0.505 0.498 1.015 0.518 0.508 0.505 0.514 0.509 0.548 0.516 0.566 0.523 0.5
CPI 0.41 0.392 0.419 0.419 0.417 0.405 0.406 0.408 0.447 0.413 0.421 0.416 0.408
Consumption Deflator 0.505 0.492 0.546 0.515 0.521 0.507 0.506 0.506 0.523 0.506 0.514 0.513 0.5
CPI exc. Food 0.47 0.427 0.475 0.479 0.473 0.48 0.469 0.472 0.499 0.471 0.475 0.473 0.469
Producer Price Index 0.341 0.342 0.344 0.353 0.349 0.351 0.341 0.341 0.336 0.345 0.351 0.346 0.345

Table B.9: 12-Month-Ahead DIAR Forecasts For 8 Target Variables: Mean of All Factor-Augmented Forecasts by Infor-
mation Criteria

Notes: The entries are mean relative mean squared errors (RMSE) of the method relative to a forecast based on the target’s historical mean.
12-month-ahead DIAR forecasting by all factor estimations methods is considered, for the eight target variables: (Industrial Production, Real
Personal Income, Real Manufacturing & Trade Industries Sales, Nonagriculture Employment, CPI, Consumption Deflator, CPI excluding Food,
Producer Price Index) The number of contemporaneous factors, k is determined by 11 information criteria, PLS1, k̂BIC , to BN2007. The mean
over 11 information criteria for the given method is presented. The entries are identical to the Mean rows in Table B.5 to Table B.6. This
experiment is recursive out-of-sample forecast. The lag of target variables, p, is determined by BIC. The forecast with the minimum RMSE for
corresponding factor estimation method is in bold.
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DIAR : Mean PCA PLS1
PLS,

other IC
Targeted Predictors Weighted PC Two

Step QMLE
One-sided

�2 = 0.25 �2 = 0.5 �2 = 1.5 SWa SWb Rule B Static Dynamic
Industrial Production 0.659 0.638 0.677 0.701 0.707 0.692 0.671 0.659 0.774 0.685 0.709 0.658 0.733
Personal Income 0.772 0.68 0.736 0.841 0.789 0.797 0.764 0.761 0.953 0.783 0.805 0.769 0.857
Mfg & Trade Sales 0.644 0.648 0.702 0.728 0.732 0.707 0.625 0.629 0.736 0.647 0.663 0.626 0.702
Nonag. Employment 0.484 0.498 0.531 0.5 0.495 0.486 0.5 0.494 0.54 0.49 0.509 0.5 0.5
CPI 0.406 0.392 0.393 0.402 0.403 0.396 0.399 0.399 0.44 0.409 0.405 0.406 0.408
Consumption Deflator 0.492 0.492 0.496 0.504 0.51 0.501 0.489 0.495 0.512 0.495 0.492 0.49 0.5
CPI exc. Food 0.454 0.427 0.437 0.422 0.46 0.469 0.454 0.456 0.491 0.454 0.451 0.46 0.469
Producer Price Index 0.337 0.342 0.334 0.349 0.34 0.348 0.337 0.336 0.333 0.34 0.343 0.339 0.345

Table B.10: 12-Month-Ahead DIAR Forecasts For 8 Target Variables: The Best Results of All Factor-Augmented Forecasts
by Information Criteria

Notes: The entries are minimum relative mean squared errors (RMSE) of the method relative to a forecast based on the target’s historical
mean. 12-month-ahead DIAR forecasting by all factor estimations methods is considered, for the eight target variables: (Industrial Production,
Real Personal Income, Real Manufacturing & Trade Industries Sales, Nonagriculture Employment, CPI, Consumption Deflator, CPI excluding
Food, Producer Price Index) The number of contemporaneous factors, k is determined by 11 information criteria, PLS1, k̂BIC , to BN2007.
The minimum RMSE, or the best result, over 11 information criteria for the given method is presented. The entries are identical to the best
results in bold in Table B.5 to Table B.6. This experiment is recursive out-of-sample forecast. The lag of target variables, p, is determined by
BIC. The forecast with the minimum RMSE for corresponding factor estimation method is in bold.
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DIAR : Mean PCA PLS1
PLS,

other IC
Targeted Predictors Weighted PC Two

Step QMLE
One-sided

�2 = 0.25 �2 = 0.5 �2 = 1.5 SWa SWb Rule B Static Dynamic
Overall 0.756 0.716 0.991 0.788 0.788 0.781 0.768 0.758 0.82 0.774 0.806 0.763 0.758
Output and Income 0.766 0.685 1.104 0.782 0.785 0.783 0.786 0.766 0.86 0.797 0.847 0.782 0.769
Labor Market 0.662 0.633 0.883 0.684 0.687 0.679 0.674 0.664 0.725 0.674 0.725 0.68 0.666
Housing 0.933 0.981 0.965 0.976 0.969 0.958 0.921 0.927 0.938 0.925 0.962 0.932 0.966
Consumption, Orders, Inventories 0.872 0.862 1.609 0.918 0.924 0.932 0.878 0.87 0.927 0.89 0.932 0.894 0.889
Money and Credit 0.53 0.555 0.617 0.557 0.562 0.569 0.532 0.528 0.537 0.536 0.557 0.539 0.544
Interest and Exchange Rates 0.926 0.915 1.247 0.977 0.991 0.987 0.921 0.919 0.998 0.925 0.96 0.928 0.965
Prices 0.412 0.4 0.442 0.418 0.421 0.419 0.411 0.41 0.445 0.413 0.42 0.417 0.407
Stock Market 0.917 0.903 1.315 1.015 1.003 0.996 0.902 0.908 1.018 0.921 0.953 0.928 0.964

Table B.11: 12-Month-Ahead DIAR Forecasts For The Whole 144 Target Variables by Categories: Mean of All Factor-
Augmented Forecasts by Information Criteria

Notes: The entries are mean relative mean squared errors (RMSE) of the method relative to a forecast based on the target’s historical
mean. 12-month-ahead DIAR forecasting by all factor estimations methods is considered, for the whole 144 target variables. The number of
contemporaneous factors, k is determined by 11 information criteria, PLS1, k̂BIC , to BN2007. The mean RMSE over 11 information criteria
for the given method for each target variable is calculated. Then the whole 144 mean RMSE for each factor estimation methods are divided
into eight categories, according to target variables. The median of given method in the category is presented. The entries are identical to the
Mean rows in Table B.7 to Table B.8. This experiment is recursive out-of-sample forecast. The lag of target variables, p, is determined by BIC.
The forecast with the minimum RMSE for corresponding factor estimation method is in bold.
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DIAR : Minimum PCA PLS1
PLS,

other IC
Targeted Predictors Weighted PC Two

Step QMLE
One-sided

�2 = 0.25 �2 = 0.5 �2 = 1.5 SWa SWb Rule B Static Dynamic
Overall 0.736 0.716 0.74 0.77 0.768 0.763 0.748 0.744 0.795 0.75 0.761 0.741 0.758
Output and Income 0.73 0.685 0.708 0.748 0.755 0.757 0.715 0.712 0.839 0.742 0.759 0.719 0.769
Labor Market 0.621 0.633 0.644 0.672 0.659 0.665 0.645 0.646 0.711 0.627 0.657 0.664 0.666
Housing 0.858 0.981 0.905 0.93 0.944 0.94 0.829 0.848 0.918 0.853 0.85 0.84 0.966
Consumption, Orders, Inventories 0.835 0.862 1.045 0.849 0.858 0.879 0.827 0.823 0.902 0.844 0.856 0.836 0.889
Money and Credit 0.515 0.555 0.534 0.532 0.522 0.532 0.516 0.514 0.52 0.515 0.531 0.515 0.544
Interest and Exchange Rates 0.904 0.915 0.916 0.924 0.908 0.9 0.899 0.89 0.976 0.904 0.899 0.903 0.965
Prices 0.395 0.4 0.412 0.408 0.409 0.399 0.397 0.395 0.439 0.396 0.397 0.401 0.407
Stock Market 0.873 0.903 0.894 0.895 0.875 0.849 0.862 0.869 1.003 0.864 0.875 0.864 0.964

Table B.12: 12-Month-Ahead DIAR Forecasts For The Whole 144 Target Variables by Categories: The Best Results of
All Factor-Augmented Forecasts by Information Criteria

Notes: The entries are minimum relative mean squared errors (RMSE) of the method relative to a forecast based on the target’s historical
mean. 12-month-ahead DIAR forecasting by all factor estimations methods is considered, for the whole 144 target variables. The number of
contemporaneous factors, k is determined by 11 information criteria, PLS1, k̂BIC , to BN2007. The minimum RMSE, or the best result, over 11
information criteria for the given method for each target variable is calculated. Then the whole 144 minimum RMSE for each factor estimation
methods are divided into eight categories, according to target variables. The median of given method in the category is presented. The entries
are identical to the best results in bold in Table B.7 to Table B.8. This experiment is recursive out-of-sample forecast. The lag of target
variables, p, is determined by BIC. The forecast with the minimum RMSE for corresponding factor estimation method is in bold.
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DIAR : Mean PCA PLS1
PLS,

other IC
Targeted
Predictors

Weighted
PC

Two
Step QMLE One-sided

Range
exc. PLS,
other IC

Range

Percentile = 25
Overall 0.468 0.459 0.537 0.479 0.482 0.469 0.488 0.476 0.069 0.078
Output and Income 0.695 0.646 0.984 0.746 0.745 0.746 0.796 0.723 0.289 0.338
Labor Market 0.467 0.449 0.595 0.462 0.524 0.464 0.512 0.479 0.133 0.146
Housing 0.403 0.365 0.414 0.446 0.406 0.399 0.417 0.406 0.047 0.081
Consumption, Orders, Inventories 0.745 0.675 1.273 0.781 0.775 0.767 0.81 0.762 0.528 0.598
Money and Credit 0.451 0.43 0.503 0.467 0.45 0.454 0.456 0.453 0.053 0.073
Interest and Exchange Rates 0.795 0.753 1.106 0.861 0.847 0.789 0.837 0.808 0.317 0.353
Prices 0.346 0.342 0.344 0.351 0.345 0.35 0.356 0.351 0.012 0.014
Stock Market 0.796 0.785 0.893 0.799 0.85 0.804 0.83 0.797 0.097 0.108

Percentile = 50
Overall 0.657 0.628 0.862 0.691 0.697 0.668 0.701 0.667 0.205 0.234
Output and Income 0.786 0.68 1.111 0.769 0.815 0.809 0.862 0.793 0.342 0.431
Labor Market 0.561 0.553 0.792 0.6 0.604 0.577 0.625 0.58 0.231 0.239
Housing 0.459 0.497 0.49 0.466 0.46 0.451 0.469 0.46 0.039 0.046
Consumption, Orders, Inventories 0.856 0.805 1.55 0.907 0.86 0.874 0.913 0.868 0.694 0.745
Money and Credit 0.517 0.555 0.619 0.556 0.525 0.531 0.561 0.531 0.102 0.102
Interest and Exchange Rates 0.908 0.906 1.209 0.986 0.922 0.914 0.946 0.926 0.301 0.303
Prices 0.414 0.4 0.444 0.421 0.425 0.414 0.421 0.414 0.03 0.044
Stock Market 0.912 0.903 1.315 1.008 0.938 0.92 0.952 0.929 0.403 0.412

Table B.13: 12-Month-Ahead DIAR Forecasts For The Whole 144 Target Variables by Categories: Mean of All Factor-
Augmented Forecasts by Information Criteria, 25th, 50th and 75th Percentiles

202



Percentile = 75
Overall 0.846 0.788 1.248 0.889 0.862 0.858 0.897 0.859 0.402 0.46
Output and Income 0.856 0.733 1.231 0.816 0.865 0.87 0.905 0.865 0.415 0.498
Labor Market 0.661 0.624 0.955 0.686 0.727 0.675 0.718 0.674 0.294 0.331
Housing 0.495 0.569 0.554 0.51 0.495 0.487 0.502 0.49 0.067 0.082
Consumption, Orders, Inventories 0.987 0.99 1.74 1.004 1.013 1.002 1.031 0.991 0.753 0.753
Money and Credit 0.701 0.696 0.742 0.718 0.705 0.713 0.717 0.707 0.041 0.046
Interest and Exchange Rates 1.044 1.021 1.394 1.141 1.032 1.027 1.074 1.051 0.367 0.373
Prices 0.487 0.458 0.539 0.514 0.483 0.49 0.497 0.489 0.056 0.081
Stock Market 1.004 0.991 1.539 1.14 1.007 1.014 1.044 1.032 0.535 0.548

Notes: The entries are relative mean squared errors (RMSE) of the respective method relative to a forecast based on the target’s historical
mean. First, 12-month-ahead DIAR forecasting by all factor estimations methods is considered, for the whole 144 target variables. The number
of contemporaneous factors, k is determined by 11 information criteria, PLS1, k̂BIC , to BN2007. Second, the mean RMSE over 11 information
criteria for the given method for each target variable is calculated. Third, then the whole 144 mean RMSE for each factor estimation methods
are divided into eight categories, according to target variables. Finally, the 25th, 50th and 75th percentiles of each method in the category is
presented. The Rnage exc. PLS, other IC column is the range of each row, excluding PLS, other IC. The Range column is the range of each
row This experiment is recursive out-of-sample forecast. The lag of target variables, p, is determined by BIC. The forecast with the minimum
RMSE for corresponding factor estimation method is in bold.
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DIAR : Mean PCA PLS1
PLS,

other IC
Targeted
Predictors

Weighted
PC

Two
Step QMLE One-sided Range

Percentile = 25
Overall 0.442 0.459 0.455 0.451 0.434 0.441 0.448 0.451 0.021
Output and Income 0.659 0.646 0.666 0.682 0.659 0.683 0.704 0.66 0.045
Labor Market 0.424 0.449 0.44 0.436 0.436 0.416 0.453 0.466 0.05
Housing 0.385 0.365 0.375 0.413 0.374 0.38 0.379 0.378 0.039
Consumption, Orders, Inventories 0.695 0.675 0.728 0.726 0.671 0.701 0.728 0.676 0.057
Money and Credit 0.431 0.43 0.429 0.436 0.423 0.431 0.432 0.429 0.013
Interest and Exchange Rates 0.765 0.753 0.784 0.735 0.75 0.759 0.764 0.763 0.049
Prices 0.341 0.342 0.334 0.34 0.336 0.344 0.347 0.345 0.013
Stock Market 0.732 0.785 0.716 0.738 0.704 0.741 0.752 0.72 0.048

Percentile = 50
Overall 0.613 0.628 0.639 0.62 0.617 0.619 0.626 0.617 0.026
Output and Income 0.726 0.68 0.679 0.706 0.706 0.748 0.767 0.706 0.088
Labor Market 0.529 0.553 0.552 0.56 0.537 0.543 0.561 0.549 0.032
Housing 0.424 0.497 0.458 0.428 0.407 0.416 0.414 0.41 0.051
Consumption, Orders, Inventories 0.808 0.805 0.861 0.833 0.801 0.826 0.843 0.819 0.06
Money and Credit 0.493 0.555 0.528 0.517 0.495 0.509 0.531 0.5 0.038
Interest and Exchange Rates 0.872 0.906 0.897 0.847 0.842 0.88 0.881 0.881 0.055
Prices 0.393 0.4 0.412 0.396 0.39 0.395 0.394 0.396 0.022
Stock Market 0.867 0.903 0.894 0.84 0.849 0.863 0.874 0.856 0.054

Table B.14: 12-Month-Ahead DIAR Forecasts For The Whole 144 Target Variables by Categories: The Best Results of
All Factor-Augmented Forecasts by Information Criteria, 25th, 50th and 75th Percentiles
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Percentile = 75
Overall 0.795 0.788 0.819 0.795 0.784 0.803 0.809 0.783 0.036
Output and Income 0.814 0.733 0.736 0.761 0.784 0.83 0.813 0.78 0.094
Labor Market 0.616 0.624 0.638 0.626 0.626 0.627 0.665 0.63 0.049
Housing 0.442 0.569 0.521 0.477 0.425 0.435 0.432 0.429 0.096
Consumption, Orders, Inventories 0.932 0.99 1.087 0.941 0.941 0.94 0.952 0.94 0.155
Money and Credit 0.67 0.696 0.69 0.672 0.658 0.663 0.679 0.641 0.049
Interest and Exchange Rates 0.983 1.021 1.029 1.012 0.969 0.98 0.967 0.975 0.062
Prices 0.454 0.458 0.458 0.471 0.454 0.459 0.473 0.46 0.019
Stock Market 0.962 0.991 0.993 0.894 0.937 0.954 0.96 0.94 0.099

Notes: The entries are relative mean squared errors (RMSE) of the respective method relative to a forecast based on the target’s historical
mean. First, 12-month-ahead DIAR forecasting by all factor estimations methods is considered, for the whole 144 target variables. The number
of contemporaneous factors, k is determined by 11 information criteria, PLS1, k̂BIC , to BN2007. Second, the minimum RMSE, or the best
results, over 11 information criteria for the given method for each target variable is calculated. Third, then the whole 144 minimum RMSE for
each factor estimation methods are divided into eight categories, according to target variables. Finally, the 25th, 50th and 75th percentiles of
each method in the category is presented. The Range column is the range of each row This experiment is recursive out-of-sample forecast. The
lag of target variables, p, is determined by BIC. The forecast with the minimum RMSE for corresponding factor estimation method is in bold.
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DI : PCA k =1 k =2 k =3 k =4 k =5 k =6 k =7 k =8 k =9 k =10 k =11 k =12
Industrial Production 0.893 0.699 0.684 0.7 0.703 0.666 0.664 0.669 0.663 0.668 0.68 0.672
Personal Income 0.845 0.841 0.846 0.869 0.873 0.862 0.875 0.869 0.866 0.884 0.888 0.888
Mfg & Trade Sales 0.95 0.698 0.683 0.694 0.677 0.697 0.716 0.722 0.72 0.724 0.727 0.716
Nonag. Employment 0.583 0.565 0.561 0.553 0.53 0.516 0.527 0.538 0.545 0.538 0.543 0.533
CPI 0.992 0.909 0.746 0.745 0.749 0.763 0.773 0.755 0.749 0.772 0.769 0.759
Consumption Deflator 1 0.957 0.829 0.835 0.85 0.873 0.872 0.858 0.846 0.863 0.859 0.843
CPI exc. Food 0.999 0.963 0.827 0.839 0.849 0.853 0.856 0.851 0.859 0.869 0.866 0.864
Producer Price Index 1.001 0.937 0.759 0.761 0.754 0.762 0.764 0.763 0.76 0.752 0.747 0.731

Table B.15: 12-Month-Ahead DI Forecasts by PCA With Given k, k = 1, 2, ..., 12: 8 Target Variables

Notes: The entries are relative mean squared errors (RMSE) of PCA factor estimation method relative to a forecast based on the target
variable’s historical mean. This experiment is recursive out-of-sample forecast. 12-month-ahead DI forecasting for the eight target variables by
PCA, with given k, k = 1, 2, ..., 12, is presented. The forecast with the minimum RMSE for the method is in bold.

DIAR : PCA k =1 k =2 k =3 k =4 k =5 k =6 k =7 k =8 k =9 k =10 k =11 k =12
Industrial Production 0.893 0.714 0.699 0.719 0.747 0.729 0.725 0.736 0.732 0.738 0.75 0.737
Personal Income 0.854 0.842 0.846 0.869 0.874 0.862 0.874 0.869 0.866 0.884 0.888 0.888
Mfg & Trade Sales 0.95 0.681 0.665 0.678 0.676 0.683 0.698 0.71 0.707 0.715 0.717 0.718
Nonag. Employment 0.586 0.515 0.503 0.518 0.518 0.504 0.516 0.528 0.525 0.513 0.521 0.511
CPI 0.405 0.41 0.405 0.395 0.396 0.405 0.409 0.408 0.407 0.42 0.423 0.424
Consumption Deflator 0.483 0.496 0.496 0.485 0.49 0.511 0.516 0.518 0.512 0.529 0.532 0.534
CPI exc. Food 0.453 0.463 0.464 0.459 0.464 0.48 0.479 0.478 0.479 0.488 0.489 0.488
Producer Price Index 0.342 0.338 0.336 0.333 0.335 0.337 0.341 0.343 0.339 0.343 0.347 0.348

Table B.16: 12-Month-Ahead DIAR Forecasts by PCA With Given k, k = 1, 2, ..., 12: 8 Target Variables

Notes: The entries are relative mean squared errors (RMSE) of PCA factor estimation method relative to a forecast based on the target
variable’s historical mean. This experiment is recursive out-of-sample forecast. 12-month-ahead DIAR forecasting for the eight target variables
by PCA, with given k, k = 1, 2, ..., 12, is presented. The lag of target variables, p, is determined by BIC. The forecast with the minimum RMSE
for the method is in bold.
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DIAR-LAG : PCA k =1 k =2 k =3 k =4
Industrial Production 0.885 0.716 0.707 0.685
Personal Income 0.904 0.838 0.845 0.867
Mfg & Trade Sales 0.944 0.659 0.659 0.653
Nonag. Employment 0.595 0.522 0.527 0.507
CPI 0.406 0.407 0.409 0.404
Consumption Deflator 0.485 0.502 0.503 0.485
CPI exc. Food 0.459 0.47 0.467 0.459
Producer Price Index 0.347 0.341 0.337 0.333

Table B.17: 12-Month-Ahead DIAR-LAG Forecasts by PCA With Given k, k = 1, 2, ..., 4: 8 Target Variables

Notes: The entries are relative mean squared errors (RMSE) of PCA factor estimation method relative to a forecast based on the target
variable’s historical mean. This experiment is recursive out-of-sample forecast. 12-month-ahead DIAR-LAG forecasting for the eight target
variables by PCA, with given k, k = 1, 2, ..., 4, is presented. The lag of target variables, p, and the lag of the factors, m, are determined by
BIC. The forecast with the minimum RMSE for the method is in bold.207



DI : PCA k =1 k =2 k =3 k =4 k =5 k =6 k =7 k =8 k =9 k =10 k =11 k =12
Overall 0.998 0.947 0.899 0.902 0.905 0.883 0.878 0.895 0.901 0.912 0.918 0.909
Output and Income 0.947 0.773 0.767 0.785 0.781 0.764 0.787 0.79 0.783 0.76 0.758 0.735
Labor Market 0.921 0.754 0.749 0.751 0.723 0.751 0.771 0.773 0.781 0.784 0.777 0.773
Housing 2.004 2.077 2.073 1.955 1.866 1.744 1.622 1.558 1.534 1.362 1.266 1.235
Consumption, Orders, Inventories 0.984 0.915 0.9 0.913 0.93 0.916 0.91 0.906 0.915 0.925 0.922 0.92
Money and Credit 1.013 0.995 1.006 1 1.003 1.006 1.003 1.012 1.01 1.022 1.035 1.036
Interest and Exchange Rates 1.007 0.927 0.93 0.911 0.932 0.895 0.882 0.914 0.924 0.958 0.964 0.958
Prices 0.999 0.958 0.87 0.876 0.878 0.88 0.878 0.873 0.88 0.881 0.876 0.864
Stock Market 0.923 0.882 0.883 0.889 0.895 0.906 0.895 0.889 0.898 0.914 0.918 0.928

Table B.18: 12-Month-Ahead DI Forecasts by PCA With Given k, k = 1, 2, ..., 12: The Whole 144 Variables by Categories

Notes: The entries are median relative mean squared errors (RMSE) in the 8 categories: 1. Output and Income, 2. Labor Market, 3. Housing,
4. Consumption, Orders, Inventories, 5. Money and Credit, 6. Interest and Exchange Rates, 7. Prices, 8. Stock Market. The Overall row is
the median RMSE across all the 144 target variables. RMSE is defined relative to a forecast based on the target variable’s historical mean.
This experiment is recursive out-of-sample forecast. 12-month-ahead DI forecasting for the whole 144 target variables by PCA, with given k,
k = 1, 2, ..., 12, is considered. The 144 forecasts are divided into eight categories according to the target variable and the median RMSE of each
category is presented. The forecast with the minimum RMSE for the method is in bold.
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DIAR : PCA k =1 k =2 k =3 k =4 k =5 k =6 k =7 k =8 k =9 k =10 k =11 k =12
Overall 0.859 0.757 0.754 0.725 0.744 0.741 0.754 0.777 0.773 0.771 0.775 0.767
Output and Income 0.928 0.793 0.783 0.798 0.793 0.779 0.798 0.799 0.793 0.771 0.768 0.745
Labor Market 0.763 0.646 0.631 0.658 0.656 0.653 0.672 0.69 0.686 0.678 0.689 0.688
Housing 0.956 0.931 0.921 0.925 0.929 0.939 0.972 0.956 0.969 0.957 0.945 0.934
Consumption, Orders, Inventories 0.988 0.865 0.862 0.873 0.884 0.867 0.874 0.89 0.905 0.906 0.909 0.904
Money and Credit 0.592 0.516 0.517 0.522 0.522 0.524 0.534 0.534 0.537 0.543 0.551 0.557
Interest and Exchange Rates 0.93 0.931 0.916 0.916 0.928 0.889 0.864 0.903 0.917 0.952 0.955 0.95
Prices 0.404 0.408 0.403 0.396 0.4 0.412 0.417 0.416 0.418 0.432 0.44 0.439
Stock Market 0.923 0.917 0.921 0.928 0.93 0.943 0.903 0.899 0.902 0.922 0.935 0.934

Table B.19: 12-Month-Ahead DIAR Forecasts by PCA With Given k, k = 1, 2, ..., 12: The Whole 144 Variables by
Categories

Notes: The entries are median relative mean squared errors (RMSE) in the 8 categories: 1. Output and Income, 2. Labor Market, 3. Housing,
4. Consumption, Orders, Inventories, 5. Money and Credit, 6. Interest and Exchange Rates, 7. Prices, 8. Stock Market. The Overall row is the
median RMSE across all the 144 target variables. RMSE is defined relative to a forecast based on the target variable’s historical mean. This
experiment is recursive out-of-sample forecast. 12-month-ahead DIAR forecasting for the whole 144 target variables by PCA, with given k,
k = 1, 2, ..., 12, is considered. The 144 forecasts are divided into eight categories according to the target variable and the median RMSE of each
category is presented. The lag of target variables, p, is determined by BIC. The forecast with the minimum RMSE for the method is in bold.
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DIAR-LAG : PCA k =1 k =2 k =3 k =4
Overall 0.861 0.741 0.751 0.735
Output and Income 0.915 0.788 0.802 0.79
Labor Market 0.788 0.635 0.644 0.643
Housing 0.969 0.937 0.924 0.931
Consumption, Orders, Inventories 0.991 0.87 0.879 0.88
Money and Credit 0.593 0.516 0.517 0.522
Interest and Exchange Rates 0.963 0.937 0.916 0.916
Prices 0.405 0.405 0.406 0.403
Stock Market 0.917 0.918 0.918 0.933

Table B.20: 12-Month-Ahead DIAR-LAG Forecasts by PCA With Given k, k = 1, 2, ..., 4: The Whole 144 Variables by
Categories

Notes: The entries are median relative mean squared errors (RMSE) in the 8 categories: 1. Output and Income, 2. Labor Market, 3. Housing,
4. Consumption, Orders, Inventories, 5. Money and Credit, 6. Interest and Exchange Rates, 7. Prices, 8. Stock Market. The Overall row is the
median RMSE across all the 144 target variables. RMSE is defined relative to a forecast based on the target variable’s historical mean. This
experiment is recursive out-of-sample forecast. 12-month-ahead DIAR-LAG forecasting for the whole 144 target variables by PCA, with given
k, k = 1, 2, ..., 4, is considered. The 144 forecasts are divided into eight categories according to the target variable and the median RMSE of
each category is presented. The lag of target variables, p, and the lag of the factors, m, are determined by BIC. The forecast with the minimum
RMSE for the method is in bold.
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DI : PCA k̂BIC k̂BN�p1 k̂BN�p2 k̂BN�p3 k̂BN�BIC k̂AH k̂ON k̂ABC�L k̂ABC�S Mean Best k
Industrial Production 0.691 0.672 0.668 0.672 0.658 0.678 0.646 0.686 0.663 0.67 0.663
Personal Income 0.89 0.876 0.86 0.888 0.826 0.82 0.771 0.834 0.867 0.848 0.841
Mfg & Trade Sales 0.689 0.723 0.707 0.716 0.668 0.682 0.655 0.689 0.703 0.692 0.677
Nonag. Employment 0.522 0.55 0.526 0.533 0.535 0.545 0.499 0.521 0.526 0.529 0.516
CPI 0.753 0.759 0.77 0.759 0.786 0.952 0.974 0.784 0.769 0.812 0.745
Consumption Deflator 0.86 0.859 0.837 0.843 0.849 0.988 1.005 0.86 0.862 0.885 0.829
CPI exc. Food 0.842 0.861 0.85 0.864 0.831 0.998 1.014 0.834 0.869 0.885 0.827
Producer Price Index 0.751 0.764 0.772 0.731 0.791 0.976 0.987 0.794 0.757 0.814 0.731

Table B.21: 12-Month-Ahead DI Forecasts by PCA With Information Criteria: 8 Target Variables

Notes: The entries are relative mean squared errors (RMSE) of respective factor estimation method relative to a forecast based on the target
variable’s historical mean. This experiment is recursive out-of-sample forecast. 12-month-ahead DI forecasting for the eight target variables by
PCA is considered. The number of contemporaneous factors, k is determined by 9 information criteria, k̂BIC , to k̂ABC�S . The Mean column
is the mean of the method over 9 information criteria. Best k is the best results in bold in Table B.15. The forecast with the minimum RMSE
for the method is in bold.211



DIAR : PCA k̂BIC k̂BN�p1 k̂BN�p2 k̂BN�p3 k̂BN�BIC k̂AH k̂ON k̂ABC�L k̂ABC�S Mean Best k
Industrial Production 0.75 0.744 0.713 0.737 0.685 0.687 0.659 0.708 0.731 0.713 0.699
Personal Income 0.89 0.876 0.86 0.888 0.826 0.821 0.772 0.834 0.867 0.848 0.842
Mfg & Trade Sales 0.694 0.711 0.69 0.718 0.652 0.655 0.644 0.674 0.688 0.681 0.665
Nonag. Employment 0.494 0.529 0.506 0.511 0.484 0.511 0.5 0.509 0.503 0.505 0.503
CPI 0.407 0.409 0.406 0.424 0.41 0.412 0.411 0.406 0.407 0.41 0.395
Consumption Deflator 0.492 0.515 0.497 0.534 0.497 0.497 0.497 0.502 0.514 0.505 0.483
CPI exc. Food 0.468 0.48 0.474 0.488 0.468 0.458 0.454 0.464 0.478 0.47 0.453
Producer Price Index 0.341 0.339 0.339 0.348 0.339 0.343 0.345 0.341 0.337 0.341 0.333

Table B.22: 12-Month-Ahead DIAR Forecasts by PCA With Information Criteria: 8 Target Variables

Notes: The entries are relative mean squared errors (RMSE) of respective factor estimation method relative to a forecast based on the target
variable’s historical mean. This experiment is recursive out-of-sample forecast. 12-month-ahead DIAR forecasting for the eight target variables
by PCA is considered. The number of contemporaneous factors, k is determined by 9 information criteria, k̂BIC , to k̂ABC�S . The lag of target
variables, p, is determined by BIC. The Mean column is the mean of the method over 9 information criteria. Best k is the best results in bold
in Table B.16. The forecast with the minimum RMSE for the method is in bold.212



DIAR-LAG : PCA k̂BIC k̂BN�p1 k̂BN�p2 k̂BN�p3 k̂BN�BIC k̂AH k̂ON k̂ABC�L k̂ABC�S Mean Best k
Industrial Production 0.682 0.685 0.682 0.685 0.726 0.678 0.652 0.703 0.706 0.689 0.685
Personal Income 0.844 0.867 0.851 0.867 0.85 0.82 0.774 0.836 0.838 0.839 0.838
Mfg & Trade Sales 0.637 0.653 0.643 0.653 0.691 0.632 0.634 0.653 0.66 0.651 0.653
Nonag. Employment 0.512 0.508 0.509 0.507 0.522 0.515 0.475 0.515 0.522 0.509 0.507
CPI 0.407 0.404 0.408 0.404 0.404 0.414 0.414 0.406 0.408 0.408 0.404
Consumption Deflator 0.493 0.485 0.486 0.485 0.501 0.507 0.506 0.491 0.495 0.494 0.485
CPI exc. Food 0.463 0.459 0.46 0.459 0.469 0.469 0.466 0.466 0.466 0.464 0.459
Producer Price Index 0.345 0.333 0.334 0.333 0.341 0.349 0.351 0.337 0.336 0.34 0.333

Table B.23: 12-Month-Ahead DIAR-LAG Forecasts by PCA With Information Criteria: 8 Target Variables

Notes: The entries are relative mean squared errors (RMSE) of respective factor estimation method relative to a forecast based on the target
variable’s historical mean. This experiment is recursive out-of-sample forecast. 12-month-ahead DIAR-LAG forecasting for the eight target
variables by PCA is considered. The number of contemporaneous factors, k is determined by 9 information criteria, k̂BIC , to k̂ABC�S . The lag
of target variables, p, and the lag of the factors, m, are determined by BIC. The Mean column is the mean of the method over 9 information
criteria. Best k is the best results in bold in Table B.17. The forecast with the minimum RMSE for the method is in bold.213



DI : PCA k̂BIC k̂BN�p1 k̂BN�p2 k̂BN�p3 k̂BN�BIC k̂AH k̂ON k̂ABC�L k̂ABC�S Mean Best k
Overall 0.891 0.898 0.886 0.909 0.901 0.96 0.956 0.896 0.895 0.91 0.878
Output and Income 0.736 0.79 0.767 0.735 0.734 0.738 0.708 0.757 0.772 0.749 0.735
Labor Market 0.75 0.792 0.783 0.773 0.743 0.782 0.774 0.723 0.765 0.765 0.723
Housing 1.285 1.459 1.562 1.235 1.946 1.914 1.921 1.863 1.629 1.646 1.235
Consumption, Orders, Inventories 0.917 0.906 0.893 0.92 0.916 0.902 0.877 0.905 0.914 0.906 0.9
Money and Credit 1.012 1.006 1.004 1.036 0.998 0.995 0.993 1.007 1.01 1.007 0.995
Interest and Exchange Rates 0.934 0.926 0.949 0.958 0.944 0.966 0.998 0.93 0.931 0.948 0.882
Prices 0.877 0.879 0.875 0.864 0.882 0.989 0.995 0.889 0.881 0.903 0.864
Stock Market 0.885 0.891 0.914 0.928 0.888 0.892 0.864 0.897 0.89 0.894 0.882

Table B.24: 12-Month-Ahead DI Forecasts by PCA With Information Criteria: Whole 144 Target Variables by Category

Notes: The entries are median relative mean squared errors (RMSE) in the 8 categories: 1. Output and Income, 2. Labor Market, 3. Housing,
4. Consumption, Orders, Inventories, 5. Money and Credit, 6. Interest and Exchange Rates, 7. Prices, 8. Stock Market. The Overall row is
the median RMSE across all the 144 target variables. RMSE is defined relative to a forecast based on the target variable’s historical mean.
This experiment is recursive out-of-sample forecast. 12-month-ahead DI forecasting for the whole 144 target variables by PCA is considered.
The 144 forecasts are divided into eight categories according to the target variable and the median RMSE of each category is presented. The
number of contemporaneous factors, k is determined by 9 information criteria, k̂BIC , to k̂ABC�S . The Mean column is the mean of the method
over 9 information criteria. Best k is the best results in bold in Table B.18. The forecast with the minimum RMSE for corresponding factor
estimation method is in bold.
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DIAR : PCA k̂BIC k̂BN�p1 k̂BN�p2 k̂BN�p3 k̂BN�BIC k̂AH k̂ON k̂ABC�L k̂ABC�S Mean Best k
Overall 0.75 0.767 0.742 0.767 0.744 0.766 0.756 0.736 0.775 0.756 0.725
Output and Income 0.749 0.804 0.787 0.745 0.765 0.761 0.73 0.77 0.781 0.766 0.745
Labor Market 0.667 0.687 0.659 0.688 0.621 0.666 0.665 0.645 0.661 0.662 0.631
Housing 0.949 0.967 0.99 0.934 0.934 0.858 0.875 0.938 0.956 0.933 0.921
Consumption, Orders, Inventories 0.899 0.904 0.864 0.904 0.848 0.835 0.838 0.864 0.892 0.872 0.862
Money and Credit 0.54 0.53 0.53 0.557 0.52 0.515 0.523 0.522 0.536 0.53 0.516
Interest and Exchange Rates 0.939 0.92 0.926 0.95 0.932 0.923 0.917 0.926 0.904 0.926 0.864
Prices 0.425 0.42 0.405 0.439 0.407 0.398 0.395 0.405 0.417 0.412 0.396
Stock Market 0.908 0.899 0.944 0.934 0.924 0.915 0.873 0.937 0.915 0.917 0.899

Table B.25: 12-Month-Ahead DIAR Forecasts by PCAWith Information Criteria: Whole 144 Target Variables by Category

Notes: The entries are median relative mean squared errors (RMSE) in the 8 categories: 1. Output and Income, 2. Labor Market, 3. Housing,
4. Consumption, Orders, Inventories, 5. Money and Credit, 6. Interest and Exchange Rates, 7. Prices, 8. Stock Market. The Overall row is the
median RMSE across all the 144 target variables. RMSE is defined relative to a forecast based on the target variable’s historical mean. This
experiment is recursive out-of-sample forecast. 12-month-ahead DIAR forecasting for the whole 144 target variables by PCA is considered.
The 144 forecasts are divided into eight categories according to the target variable and the median RMSE of each category is presented. The
number of contemporaneous factors, k is determined by 9 information criteria, k̂BIC , to k̂ABC�S . The Mean column is the mean of the method
over 9 information criteria. Best k is the best results in bold in Table B.19. The lag of target variables, p, is determined by BIC. The forecast
with the minimum RMSE for corresponding factor estimation method is in bold.
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DIAR-LAG : PCA k̂BIC k̂BN�p1 k̂BN�p2 k̂BN�p3 k̂BN�BIC k̂AH k̂ON k̂ABC�L k̂ABC�S Mean Best k
Overall 0.734 0.735 0.733 0.735 0.749 0.756 0.756 0.735 0.743 0.742 0.735
Output and Income 0.76 0.789 0.773 0.79 0.802 0.749 0.722 0.79 0.796 0.775 0.788
Labor Market 0.646 0.643 0.641 0.643 0.646 0.661 0.677 0.639 0.64 0.648 0.635
Housing 0.944 0.931 0.946 0.931 0.928 0.871 0.88 0.928 0.929 0.921 0.924
Consumption, Orders, Inventories 0.876 0.88 0.87 0.88 0.888 0.834 0.853 0.866 0.876 0.869 0.87
Money and Credit 0.515 0.522 0.521 0.522 0.515 0.515 0.526 0.516 0.516 0.519 0.516
Interest and Exchange Rates 0.922 0.916 0.941 0.916 0.906 0.933 0.941 0.932 0.923 0.926 0.916
Prices 0.411 0.403 0.406 0.403 0.404 0.405 0.404 0.404 0.405 0.405 0.403
Stock Market 0.924 0.933 0.936 0.933 0.919 0.918 0.872 0.917 0.918 0.919 0.917

Table B.26: 12-Month-Ahead DIAR-LAG Forecasts by PCA With Information Criteria: Whole 144 Target Variables by
Category

Notes: The entries are median relative mean squared errors (RMSE) in the 8 categories: 1. Output and Income, 2. Labor Market, 3. Housing,
4. Consumption, Orders, Inventories, 5. Money and Credit, 6. Interest and Exchange Rates, 7. Prices, 8. Stock Market. The Overall row is the
median RMSE across all the 144 target variables. RMSE is defined relative to a forecast based on the target variable’s historical mean. This
experiment is recursive out-of-sample forecast. 12-month-ahead DIAR-LAG forecasting for the whole 144 target variables by PCA is considered.
The 144 forecasts are divided into eight categories according to the target variable and the median RMSE of each category is presented. The
number of contemporaneous factors, k is determined by 9 information criteria, k̂BIC , to k̂ABC�S . The Mean column is the mean of the method
over 9 information criteria. Best k is the best results in bold in Table B.20. The lag of target variables, p, and the lag of the factors, m, are
determined by BIC. The forecast with the minimum RMSE for corresponding factor estimation method is in bold.
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DI : PLS k =1 k =2 k =3 k =4 k =5 k =6 k =7 k =8 k =9 k =10 k =11 k =12
Industrial Production 0.594 0.662 0.772 0.98 1.083 1.2 1.31 1.472 1.63 1.801 1.952 2.074
Personal Income 0.681 0.789 0.846 1.07 1.178 1.285 1.394 1.484 1.581 1.678 1.776 1.841
Mfg & Trade Sales 0.631 0.717 0.839 0.989 1.113 1.274 1.424 1.61 1.796 1.955 2.094 2.191
Nonag. Employment 0.469 0.535 0.648 0.884 1.038 1.103 1.199 1.338 1.455 1.569 1.683 1.771
CPI 0.762 0.677 0.687 0.635 0.63 0.629 0.639 0.643 0.656 0.677 0.703 0.739
Consumption Deflator 0.851 0.757 0.748 0.721 0.721 0.739 0.759 0.778 0.794 0.817 0.842 0.869
CPI exc. Food 0.854 0.776 0.777 0.724 0.709 0.713 0.725 0.727 0.742 0.761 0.78 0.802
Producer Price Index 0.738 0.651 0.648 0.612 0.605 0.618 0.62 0.634 0.651 0.674 0.69 0.712

Table B.27: 12-Month-Ahead DI Forecasts by PLS With Given k, k = 1, 2, ..., 12: 8 Target Variables

Notes: The entries are relative mean squared errors (RMSE) of PLS factor estimation method relative to a forecast based on the target
variable’s historical mean. This experiment is recursive out-of-sample forecast. 12-month-ahead DI forecasting for the eight target variables by
PLS, with given k, k = 1, 2, ..., 12, is presented. The forecast with the minimum RMSE for the method is in bold.

DIAR : PLS k =1 k =2 k =3 k =4 k =5 k =6 k =7 k =8 k =9 k =10 k =11 k =12
Industrial Production 0.638 0.682 0.838 0.935 1.018 1.129 1.188 1.326 1.467 1.592 1.718 1.818
Personal Income 0.68 0.787 0.842 1.065 1.171 1.278 1.385 1.475 1.572 1.668 1.765 1.834
Mfg & Trade Sales 0.648 0.722 0.863 0.985 1.116 1.282 1.421 1.606 1.792 1.946 2.088 2.191
Nonag. Employment 0.498 0.528 0.673 0.871 1.031 1.096 1.194 1.324 1.439 1.545 1.648 1.74
CPI 0.392 0.397 0.412 0.409 0.421 0.412 0.418 0.42 0.429 0.442 0.458 0.48
Consumption Deflator 0.492 0.502 0.504 0.507 0.527 0.523 0.551 0.566 0.573 0.594 0.609 0.63
CPI exc. Food 0.427 0.441 0.465 0.466 0.477 0.474 0.478 0.475 0.484 0.499 0.513 0.535
Producer Price Index 0.342 0.337 0.353 0.34 0.34 0.335 0.334 0.34 0.352 0.36 0.361 0.371

Table B.28: 12-Month-Ahead DIAR Forecasts by PLS With Given k, k = 1, 2, ..., 12: 8 Target Variables

Notes: The entries are relative mean squared errors (RMSE) of PLS factor estimation method relative to a forecast based on the target
variable’s historical mean. This experiment is recursive out-of-sample forecast. 12-month-ahead DIAR forecasting for the eight target variables
by PLS, with given k, k = 1, 2, ..., 12, is presented. The lag of target variables, p, is determined by BIC. The forecast with the minimum RMSE
for the method is in bold.
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DIAR-LAG : PLS k =1 k =2 k =3 k =4
Industrial Production 0.636 0.651 0.791 0.968
Personal Income 0.671 0.796 0.858 1.163
Mfg & Trade Sales 0.646 0.688 0.884 1.043
Nonag. Employment 0.494 0.534 0.684 0.998
CPI 0.382 0.382 0.414 0.422
Consumption Deflator 0.489 0.499 0.528 0.529
CPI exc. Food 0.434 0.441 0.483 0.476
Producer Price Index 0.339 0.334 0.359 0.345

Table B.29: 12-Month-Ahead DIAR-LAG Forecasts by PLS With Given k, k = 1, 2, ..., 4: 8 Target Variables

Notes: The entries are relative mean squared errors (RMSE) of PLS factor estimation method relative to a forecast based on the target
variable’s historical mean. This experiment is recursive out-of-sample forecast. 12-month-ahead DIAR-LAG forecasting for the eight target
variables by PLS, with given k, k = 1, 2, ..., 4, is presented. The lag of target variables, p, and the lag of the factors, m, are determined by BIC.
The forecast with the minimum RMSE for the method is in bold.218



DI : PLS k =1 k =2 k =3 k =4 k =5 k =6 k =7 k =8 k =9 k =10 k =11 k =12
Overall 0.86 0.847 0.973 1.062 1.132 1.19 1.232 1.286 1.328 1.356 1.394 1.434
Output and Income 0.679 0.707 0.816 0.978 1.062 1.164 1.272 1.411 1.548 1.684 1.802 1.889
Labor Market 0.705 0.674 0.803 0.852 0.911 0.942 0.979 1.026 1.093 1.151 1.192 1.22
Housing 1.435 1.473 1.678 1.289 1.247 1.315 1.294 1.301 1.358 1.283 1.235 1.309
Consumption, Orders, Inventories 0.891 1.111 1.301 1.479 1.586 1.711 1.928 2.105 2.219 2.349 2.452 2.535
Money and Credit 1.02 0.995 1.071 1.137 1.155 1.172 1.202 1.222 1.242 1.258 1.275 1.288
Interest and Exchange Rates 0.956 0.929 1.046 1.182 1.262 1.287 1.309 1.358 1.416 1.438 1.446 1.459
Prices 0.85 0.776 0.762 0.723 0.715 0.726 0.732 0.739 0.756 0.773 0.786 0.807
Stock Market 0.905 0.881 1.022 1.144 1.223 1.288 1.36 1.471 1.568 1.654 1.725 1.775

Table B.30: 12-Month-Ahead DI Forecasts by PLS With Given k, k = 1, 2, ..., 12: The Whole 144 Variables by Categories

Notes: The entries are median relative mean squared errors (RMSE) in the 8 categories: 1. Output and Income, 2. Labor Market, 3. Housing,
4. Consumption, Orders, Inventories, 5. Money and Credit, 6. Interest and Exchange Rates, 7. Prices, 8. Stock Market. The Overall row is
the median RMSE across all the 144 target variables. RMSE is defined relative to a forecast based on the target variable’s historical mean.
This experiment is recursive out-of-sample forecast. 12-month-ahead DI forecasting for the whole 144 target variables by PLS, with given k,
k = 1, 2, ..., 12, is considered. The 144 forecasts are divided into eight categories according to the target variable and the median RMSE of each
category is presented. The forecast with the minimum RMSE for the method is in bold.
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DIAR : PLS k =1 k =2 k =3 k =4 k =5 k =6 k =7 k =8 k =9 k =10 k =11 k =12
Overall 0.716 0.746 0.842 0.93 0.968 1.042 1.081 1.119 1.18 1.229 1.265 1.276
Output and Income 0.685 0.704 0.814 0.942 1.034 1.127 1.173 1.296 1.446 1.585 1.695 1.811
Labor Market 0.633 0.656 0.81 0.848 0.876 0.922 0.908 0.936 0.989 1.036 1.085 1.148
Housing 0.981 0.941 1.054 0.874 0.853 0.892 0.907 0.9 0.946 0.976 1.012 1.072
Consumption, Orders, Inventories 0.862 1.1 1.268 1.381 1.53 1.704 1.83 1.976 2.087 2.21 2.31 2.357
Money and Credit 0.555 0.53 0.553 0.569 0.581 0.615 0.633 0.655 0.676 0.699 0.715 0.74
Interest and Exchange Rates 0.915 0.964 1.048 1.177 1.262 1.287 1.309 1.36 1.416 1.438 1.495 1.519
Prices 0.4 0.42 0.434 0.437 0.448 0.443 0.448 0.448 0.459 0.465 0.475 0.487
Stock Market 0.903 0.905 1.025 1.147 1.225 1.289 1.362 1.471 1.568 1.654 1.725 1.775

Table B.31: 12-Month-Ahead DIAR Forecasts by PLSWith Given k, k = 1, 2, ..., 12: TheWhole 144 Variables by Categories

Notes: The entries are median relative mean squared errors (RMSE) in the 8 categories: 1. Output and Income, 2. Labor Market, 3. Housing,
4. Consumption, Orders, Inventories, 5. Money and Credit, 6. Interest and Exchange Rates, 7. Prices, 8. Stock Market. The Overall row is
the median RMSE across all the 144 target variables. RMSE is defined relative to a forecast based on the target variable’s historical mean.
This experiment is recursive out-of-sample forecast. 12-month-ahead DIAR forecasting for the whole 144 target variables by PLS, with given
k, k = 1, 2, ..., 12, is considered. The 144 forecasts are divided into eight categories according to the target variable and the median RMSE of
each category is presented. The lag of target variables, p, is determined by BIC. The forecast with the minimum RMSE for the method is in
bold.
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DIAR-LAG : PLS k =1 k =2 k =3 k =4
Overall 0.709 0.753 0.861 0.952
Output and Income 0.691 0.69 0.821 1.022
Labor Market 0.637 0.661 0.827 0.883
Housing 1.022 0.99 1.103 0.879
Consumption, Orders, Inventories 0.869 1.102 1.284 1.448
Money and Credit 0.538 0.519 0.567 0.582
Interest and Exchange Rates 0.916 0.983 1.083 1.203
Prices 0.393 0.411 0.443 0.444
Stock Market 0.909 0.907 1.1 1.252

Table B.32: 12-Month-Ahead DIAR-LAG Forecasts by PLS With Given k, k = 1, 2, ..., 4: The Whole 144 Variables by
Categories

Notes: The entries are median relative mean squared errors (RMSE) in the 8 categories: 1. Output and Income, 2. Labor Market, 3. Housing,
4. Consumption, Orders, Inventories, 5. Money and Credit, 6. Interest and Exchange Rates, 7. Prices, 8. Stock Market. The Overall row is the
median RMSE across all the 144 target variables. RMSE is defined relative to a forecast based on the target variable’s historical mean. This
experiment is recursive out-of-sample forecast. 12-month-ahead DIAR-LAG forecasting for the whole 144 target variables by PLS, with given
k, k = 1, 2, ..., 4, is considered. The 144 forecasts are divided into eight categories according to the target variable and the median RMSE of
each category is presented. The lag of target variables, p, and the lag of the factors, m, are determined by BIC. The forecast with the minimum
RMSE for the method is in bold.
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DI : PLS PLS1 k̂BIC k̂BN�p1 k̂BN�p2 k̂BN�p3 k̂BN�BIC k̂AH k̂ON k̂ABC�L k̂ABC�S Mean Best k
Industrial Production 0.594 1.375 1.385 0.997 2.074 0.774 0.652 0.628 0.926 1.492 1.09 0.594
Personal Income 0.681 1.37 1.505 1.318 1.841 0.927 0.757 0.736 1.169 1.448 1.175 0.681
Mfg & Trade Sales 0.631 1.611 1.475 1.062 2.191 0.834 0.693 0.673 0.966 1.618 1.175 0.631
Nonag. Employment 0.469 1.176 1.329 0.971 1.771 0.664 0.533 0.513 0.87 1.315 0.961 0.469
CPI 0.762 0.719 0.655 0.618 0.739 0.646 0.721 0.737 0.623 0.656 0.688 0.629
Consumption Deflator 0.851 0.825 0.779 0.697 0.869 0.716 0.809 0.84 0.719 0.786 0.789 0.721
CPI exc. Food 0.854 0.754 0.73 0.699 0.802 0.729 0.825 0.851 0.689 0.74 0.767 0.709
Producer Price Index 0.738 0.67 0.642 0.609 0.712 0.621 0.714 0.727 0.619 0.636 0.669 0.605

Table B.33: 12-Month-Ahead DI Forecasts by PLS With Information Criteria: 8 Target Variables

Notes: The entries are relative mean squared errors (RMSE) of respective factor estimation method relative to a forecast based on the target
variable’s historical mean. This experiment is recursive out-of-sample forecast. 12-month-ahead DI forecasting for the eight target variables by
PLS is considered. The number of contemporaneous factors, k is determined by 9 information criteria, k̂BIC , to k̂ABC�S . The Mean column is
the mean of the method over 9 information criteria. Best k is the best results in bold in Table B.27. The forecast with the minimum RMSE
for the method is in bold.222



DIAR : PLS PLS1 k̂BIC k̂BN�p1 k̂BN�p2 k̂BN�p3 k̂BN�BIC k̂AH k̂ON k̂ABC�L k̂ABC�S Mean Best k
Industrial Production 0.638 1.326 1.297 1.009 1.818 0.847 0.694 0.677 0.945 1.348 1.06 0.638
Personal Income 0.68 1.363 1.496 1.308 1.834 0.922 0.757 0.736 1.161 1.44 1.17 0.68
Mfg & Trade Sales 0.648 1.64 1.473 1.067 2.191 0.861 0.717 0.702 0.98 1.615 1.189 0.648
Nonag. Employment 0.498 1.178 1.326 0.971 1.74 0.67 0.531 0.545 0.877 1.297 0.963 0.498
CPI 0.392 0.436 0.426 0.405 0.48 0.398 0.395 0.393 0.413 0.427 0.417 0.392
Consumption Deflator 0.492 0.595 0.57 0.511 0.63 0.496 0.504 0.503 0.528 0.575 0.54 0.492
CPI exc. Food 0.427 0.515 0.486 0.459 0.535 0.454 0.437 0.437 0.461 0.488 0.47 0.427
Producer Price Index 0.342 0.345 0.346 0.337 0.371 0.34 0.335 0.334 0.344 0.348 0.344 0.334

Table B.34: 12-Month-Ahead DIAR Forecasts by PLS With Information Criteria: 8 Target Variables

Notes: The entries are relative mean squared errors (RMSE) of respective factor estimation method relative to a forecast based on the target
variable’s historical mean. This experiment is recursive out-of-sample forecast. 12-month-ahead DIAR forecasting for the eight target variables
by PLS is considered. The number of contemporaneous factors, k is determined by 9 information criteria, k̂BIC , to k̂ABC�S . The lag of target
variables, p, is determined by BIC. The Mean column is the mean of the method over 9 information criteria. Best k is the best results in bold
in Table B.28. The forecast with the minimum RMSE for the method is in bold.223



DIAR-LAG : PLS PLS1 k̂BIC k̂BN�p1 k̂BN�p2 k̂BN�p3 k̂BN�BIC k̂AH k̂ON k̂ABC�L k̂ABC�S Mean Best k
Industrial Production 0.636 0.931 0.968 0.93 0.968 0.606 0.675 0.658 0.762 0.788 0.792 0.636
Personal Income 0.671 1.133 1.163 1.12 1.163 0.789 0.76 0.73 0.88 0.868 0.928 0.671
Mfg & Trade Sales 0.646 1.021 1.042 0.94 1.043 0.637 0.698 0.688 0.808 0.852 0.837 0.646
Nonag. Employment 0.494 0.919 0.998 0.915 0.998 0.502 0.529 0.539 0.653 0.667 0.721 0.494
CPI 0.382 0.422 0.422 0.411 0.422 0.373 0.389 0.392 0.409 0.42 0.404 0.382
Consumption Deflator 0.489 0.534 0.529 0.511 0.529 0.488 0.509 0.511 0.522 0.53 0.515 0.489
CPI exc. Food 0.434 0.479 0.476 0.473 0.476 0.433 0.448 0.45 0.478 0.481 0.463 0.434
Producer Price Index 0.339 0.344 0.345 0.346 0.345 0.337 0.34 0.341 0.356 0.356 0.345 0.334

Table B.35: 12-Month-Ahead DIAR-LAG Forecasts by PLS With Information Criteria: 8 Target Variables

Notes: The entries are relative mean squared errors (RMSE) of respective factor estimation method relative to a forecast based on the target
variable’s historical mean. This experiment is recursive out-of-sample forecast. 12-month-ahead DIAR-LAG forecasting for the eight target
variables by PLS is considered. The number of contemporaneous factors, k is determined by 9 information criteria, k̂BIC , to k̂ABC�S . The lag
of target variables, p, and the lag of the factors, m, are determined by BIC. The Mean column is the mean of the method over 9 information
criteria. Best k is the best results in bold in Table B.29. The forecast with the minimum RMSE for the method is in bold.224



DI : PLS PLS1 k̂BIC k̂BN�p1 k̂BN�p2 k̂BN�p3 k̂BN�BIC k̂AH k̂ON k̂ABC�L k̂ABC�S Mean Best k
Overall 0.86 1.316 1.293 1.147 1.434 0.949 0.873 0.873 1.085 1.276 1.111 0.847
Output and Income 0.679 1.355 1.32 1.01 1.889 0.81 0.705 0.696 0.932 1.418 1.081 0.679
Labor Market 0.705 1.105 1.034 0.896 1.22 0.794 0.682 0.689 0.892 1.052 0.907 0.674
Housing 1.435 1.246 1.333 1.397 1.309 1.453 1.59 1.487 1.326 1.28 1.386 1.235
Consumption, Orders, Inventories 0.891 1.802 1.995 1.733 2.535 1.267 1.026 1.021 1.511 2.058 1.584 0.891
Money and Credit 1.02 1.184 1.216 1.179 1.288 1.068 0.995 1.006 1.147 1.236 1.134 0.995
Interest and Exchange Rates 0.956 1.463 1.365 1.278 1.459 1.087 0.933 0.9 1.251 1.382 1.207 0.929
Prices 0.85 0.761 0.748 0.698 0.807 0.723 0.824 0.842 0.716 0.75 0.772 0.715
Stock Market 0.905 1.703 1.496 1.379 1.775 1.062 0.891 0.883 1.189 1.419 1.27 0.881

Table B.36: 12-Month-Ahead DI Forecasts by PLS With Information Criteria: Whole 144 Target Variables by Category

Notes: The entries are median relative mean squared errors (RMSE) in the 8 categories: 1. Output and Income, 2. Labor Market, 3. Housing,
4. Consumption, Orders, Inventories, 5. Money and Credit, 6. Interest and Exchange Rates, 7. Prices, 8. Stock Market. The Overall row is
the median RMSE across all the 144 target variables. RMSE is defined relative to a forecast based on the target variable’s historical mean.
This experiment is recursive out-of-sample forecast. 12-month-ahead DI forecasting for the whole 144 target variables by PCA is considered.
The 144 forecasts are divided into eight categories according to the target variable and the median RMSE of each category is presented. The
number of contemporaneous factors, k is determined by 9 information criteria, k̂BIC , to k̂ABC�S . The Mean column is the mean of the method
over 9 information criteria. Best k is the best results in bold in Table B.30. The forecast with the minimum RMSE for corresponding factor
estimation method is in bold.
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DIAR : PLS PLS1 k̂BIC k̂BN�p1 k̂BN�p2 k̂BN�p3 k̂BN�BIC k̂AH k̂ON k̂ABC�L k̂ABC�S Mean Best k
Overall 0.716 1.118 1.125 0.999 1.276 0.857 0.748 0.74 0.93 1.13 0.964 0.716
Output and Income 0.685 1.327 1.28 1.014 1.811 0.827 0.713 0.708 0.937 1.321 1.062 0.685
Labor Market 0.633 1.016 0.968 0.905 1.148 0.813 0.659 0.644 0.869 0.927 0.858 0.633
Housing 0.981 0.975 0.937 0.993 1.072 0.927 0.97 0.983 0.905 0.922 0.966 0.853
Consumption, Orders, Inventories 0.862 1.763 1.946 1.664 2.357 1.255 1.045 1.048 1.454 1.949 1.534 0.862
Money and Credit 0.555 0.677 0.643 0.594 0.74 0.547 0.534 0.554 0.597 0.663 0.61 0.53
Interest and Exchange Rates 0.915 1.463 1.37 1.278 1.519 1.086 0.96 0.916 1.249 1.382 1.214 0.915
Prices 0.4 0.463 0.454 0.433 0.487 0.426 0.416 0.412 0.437 0.453 0.438 0.4
Stock Market 0.903 1.703 1.496 1.383 1.775 1.065 0.913 0.894 1.188 1.419 1.274 0.903

Table B.37: 12-Month-Ahead DIAR Forecasts by PLS With Information Criteria: Whole 144 Target Variables by Category

Notes: The entries are median relative mean squared errors (RMSE) in the 8 categories: 1. Output and Income, 2. Labor Market, 3. Housing,
4. Consumption, Orders, Inventories, 5. Money and Credit, 6. Interest and Exchange Rates, 7. Prices, 8. Stock Market. The Overall row is the
median RMSE across all the 144 target variables. RMSE is defined relative to a forecast based on the target variable’s historical mean. This
experiment is recursive out-of-sample forecast. 12-month-ahead DIAR forecasting for the whole 144 target variables by PCA is considered.
The 144 forecasts are divided into eight categories according to the target variable and the median RMSE of each category is presented. The
number of contemporaneous factors, k is determined by 9 information criteria, k̂BIC , to k̂ABC�S . The Mean column is the mean of the method
over 9 information criteria. Best k is the best results in bold in Table B.31. The lag of target variables, p, is determined by BIC. The forecast
with the minimum RMSE for corresponding factor estimation method is in bold.
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DIAR-LAG : PLS PLS1 k̂BIC k̂BN�p1 k̂BN�p2 k̂BN�p3 k̂BN�BIC k̂AH k̂ON k̂ABC�L k̂ABC�S Mean Best k
Overall 0.709 0.952 0.952 0.928 0.952 0.75 0.752 0.746 0.828 0.849 0.842 0.709
Output and Income 0.691 0.976 1.021 0.928 1.022 0.671 0.705 0.704 0.792 0.815 0.832 0.69
Labor Market 0.637 0.885 0.884 0.872 0.883 0.653 0.651 0.632 0.754 0.803 0.765 0.637
Housing 1.022 0.916 0.88 0.935 0.879 1.066 1.028 1.022 1.165 1.135 1.005 0.879
Consumption, Orders, Inventories 0.869 1.431 1.447 1.39 1.448 1.057 1.052 1.048 1.271 1.276 1.229 0.869
Money and Credit 0.538 0.581 0.584 0.589 0.582 0.51 0.528 0.551 0.566 0.56 0.559 0.519
Interest and Exchange Rates 0.916 1.184 1.204 1.145 1.203 0.961 0.969 0.91 1.064 1.073 1.063 0.916
Prices 0.393 0.441 0.444 0.437 0.444 0.403 0.407 0.41 0.436 0.442 0.426 0.393
Stock Market 0.909 1.253 1.252 1.205 1.252 0.918 0.912 0.896 1.022 1.065 1.068 0.907

Table B.38: 12-Month-Ahead DIAR-LAG Forecasts by PLS With Information Criteria: Whole 144 Target Variables by
Category

Notes: The entries are median relative mean squared errors (RMSE) in the 8 categories: 1. Output and Income, 2. Labor Market, 3. Housing,
4. Consumption, Orders, Inventories, 5. Money and Credit, 6. Interest and Exchange Rates, 7. Prices, 8. Stock Market. The Overall row is the
median RMSE across all the 144 target variables. RMSE is defined relative to a forecast based on the target variable’s historical mean. This
experiment is recursive out-of-sample forecast. 12-month-ahead DIAR-LAG forecasting for the whole 144 target variables by PCA is considered.
The 144 forecasts are divided into eight categories according to the target variable and the median RMSE of each category is presented. The
number of contemporaneous factors, k is determined by 9 information criteria, k̂BIC , to k̂ABC�S . The Mean column is the mean of the method
over 9 information criteria. Best k is the best results in bold in Table B.32. The lag of target variables, p, and the lag of the factors, m, are
determined by BIC. The forecast with the minimum RMSE for corresponding factor estimation method is in bold.
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PLS 1 PCA 1 PCA 2 PCA 3 PCA 4 PCA 5 PCA 6 PCA 7 PCA 8 PCA 9 PCA 10 PCA 11 PCA 12
Industrial Production 0.594 0.893 0.699 0.684 0.7 0.703 0.666 0.664 0.669 0.663 0.668 0.68 0.672
Personal Income 0.681 0.845 0.841 0.846 0.869 0.873 0.862 0.875 0.869 0.866 0.884 0.888 0.888
Mfg & Trade Sales 0.631 0.95 0.698 0.683 0.694 0.677 0.697 0.716 0.722 0.72 0.724 0.727 0.716
Nonag. Employment 0.469 0.583 0.565 0.561 0.553 0.53 0.516 0.527 0.538 0.545 0.538 0.543 0.533
CPI 0.762 0.992 0.909 0.746 0.745 0.749 0.763 0.773 0.755 0.749 0.772 0.769 0.759
Consumption Deflator 0.851 1 0.957 0.829 0.835 0.85 0.873 0.872 0.858 0.846 0.863 0.859 0.843
CPI exc. Food 0.854 0.999 0.963 0.827 0.839 0.849 0.853 0.856 0.851 0.859 0.869 0.866 0.864
Producer Price Index 0.738 1.001 0.937 0.759 0.761 0.754 0.762 0.764 0.763 0.76 0.752 0.747 0.731

Table B.39: 12-Month-Ahead DI Forecasts by PLS 1 and PCA With Given k, k = 1, 2, ..., 12: 8 Target Variables

Notes: The entries are relative mean squared errors (RMSE) of respective method relative to a forecast based on the target variable’s historical
mean. This experiment is recursive out-of-sample forecast. 12-month-ahead DI forecasting for the eight target variables by PLS 1 and PCA,
with given k, k = 1, 2, ..., 12, is presented. If PLS 1 gives lower RMSE than the best PCA forecast in bold, the PLS forecast is shaded with
green, underlined and in bold italic.

PLS 1 PCA 1 PCA 2 PCA 3 PCA 4 PCA 5 PCA 6 PCA 7 PCA 8 PCA 9 PCA 10 PCA 11 PCA 12
Industrial Production 0.638 0.893 0.714 0.699 0.719 0.747 0.729 0.725 0.736 0.732 0.738 0.75 0.737
Personal Income 0.68 0.854 0.842 0.846 0.869 0.874 0.862 0.874 0.869 0.866 0.884 0.888 0.888
Mfg & Trade Sales 0.648 0.95 0.681 0.665 0.678 0.676 0.683 0.698 0.71 0.707 0.715 0.717 0.718
Nonag. Employment 0.498 0.586 0.515 0.503 0.518 0.518 0.504 0.516 0.528 0.525 0.513 0.521 0.511
CPI 0.392 0.405 0.41 0.405 0.395 0.396 0.405 0.409 0.408 0.407 0.42 0.423 0.424
Consumption Deflator 0.492 0.483 0.496 0.496 0.485 0.49 0.511 0.516 0.518 0.512 0.529 0.532 0.534
CPI exc. Food 0.427 0.453 0.463 0.464 0.459 0.464 0.48 0.479 0.478 0.479 0.488 0.489 0.488
Producer Price Index 0.342 0.342 0.338 0.336 0.333 0.335 0.337 0.341 0.343 0.339 0.343 0.347 0.348

Table B.40: 12-Month-Ahead DIAR Forecasts by PLS 1 and PCA With Given k, k = 1, 2, ..., 12: 8 Target Variables

Notes: The entries are relative mean squared errors (RMSE) of respective method relative to a forecast based on the target variable’s historical
mean. This experiment is recursive out-of-sample forecast. 12-month-ahead DIAR forecasting for the eight target variables by PLS 1 and PCA,
with given k, k = 1, 2, ..., 12, is presented. The lag of target variables, p, is determined by BIC. If PLS 1 gives lower RMSE than the best PCA
forecast in bold, the PLS forecast is shaded with green, underlined and in bold italic.
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PLS 1 PCA 1 PCA 2 PCA 3 PCA 4
Industrial Production 0.636 0.885 0.716 0.707 0.685
Personal Income 0.671 0.904 0.838 0.845 0.867
Mfg & Trade Sales 0.646 0.944 0.659 0.659 0.653
Nonag. Employment 0.494 0.595 0.522 0.527 0.507
CPI 0.382 0.406 0.407 0.409 0.404
Consumption Deflator 0.489 0.485 0.502 0.503 0.485
CPI exc. Food 0.434 0.459 0.47 0.467 0.459
Producer Price Index 0.339 0.347 0.341 0.337 0.333

Table B.41: 12-Month-Ahead DIAR-LAG Forecasts by PLS 1 and PCA With Given k, k = 1, 2, ..., 4: 8 Target Variables

Notes: The entries are relative mean squared errors (RMSE) of respective method relative to a forecast based on the target variable’s historical
mean. This experiment is recursive out-of-sample forecast. 12-month-ahead DIAR-LAG forecasting for the eight target variables by PLS 1 and
PCA, with given k, k = 1, 2, ..., 4, is presented. The lag of target variables, p, and the lag of the factors, m, are determined by BIC. If PLS 1
gives lower RMSE than the best PCA forecast in bold, the PLS forecast is shaded with green, underlined and in bold italic.229



DI : PLS 1 & PCA kkk PLS 1 PCA 1 PCA 2 PCA 3 PCA 4 PCA 5 PCA 6 PCA 7 PCA 8 PCA 9 PCA 10 PCA 11 PCA 12
Overall 0.86 0.998 0.947 0.899 0.902 0.905 0.883 0.878 0.895 0.901 0.912 0.918 0.909
Output and Income 0.679 0.947 0.773 0.767 0.785 0.781 0.764 0.787 0.79 0.783 0.76 0.758 0.735
Labor Market 0.705 0.921 0.754 0.749 0.751 0.723 0.751 0.771 0.773 0.781 0.784 0.777 0.773
Housing 1.435 2.004 2.077 2.073 1.955 1.866 1.744 1.622 1.558 1.534 1.362 1.266 1.235
Consumption, Orders, Inventories 0.891 0.984 0.915 0.9 0.913 0.93 0.916 0.91 0.906 0.915 0.925 0.922 0.92
Money and Credit 1.02 1.013 0.995 1.006 1 1.003 1.006 1.003 1.012 1.01 1.022 1.035 1.036
Interest and Exchange Rates 0.956 1.007 0.927 0.93 0.911 0.932 0.895 0.882 0.914 0.924 0.958 0.964 0.958
Prices 0.85 0.999 0.958 0.87 0.876 0.878 0.88 0.878 0.873 0.88 0.881 0.876 0.864
Stock Market 0.905 0.923 0.882 0.883 0.889 0.895 0.906 0.895 0.889 0.898 0.914 0.918 0.928

Table B.42: 12-Month-Ahead DI Forecasts by PLS 1 and PCA With Given k, k = 1, 2, ..., 12: The Whole 144 Variables
by Categories

Notes: The entries are median relative mean squared errors (RMSE) in the 8 categories: 1. Output and Income, 2. Labor Market, 3. Housing,
4. Consumption, Orders, Inventories, 5. Money and Credit, 6. Interest and Exchange Rates, 7. Prices, 8. Stock Market. The Overall row is
the median RMSE across all the 144 target variables. RMSE is defined relative to a forecast based on the target variable’s historical mean.
This experiment is recursive out-of-sample forecast. 12-month-ahead DI forecasting for the whole 144 target variables by PLS 1 and PCA
with given k, k = 1, 2, ..., 12, is considered. The 144 forecasts are divided into eight categories according to the target variable and the median
RMSE of each category is presented. If PLS 1 gives lower RMSE than the best PCA forecast in bold, the PLS forecast is shaded with green,
underlined and in bold italic.
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DIAR : PLS 1 & PCA kkk PLS 1 PCA 1 PCA 2 PCA 3 PCA 4 PCA 5 PCA 6 PCA 7 PCA 8 PCA 9 PCA 10 PCA 11 PCA 12
Overall 0.716 0.859 0.757 0.754 0.725 0.744 0.741 0.754 0.777 0.773 0.771 0.775 0.767
Output and Income 0.685 0.928 0.793 0.783 0.798 0.793 0.779 0.798 0.799 0.793 0.771 0.768 0.745
Labor Market 0.633 0.763 0.646 0.631 0.658 0.656 0.653 0.672 0.69 0.686 0.678 0.689 0.688
Housing 0.981 0.956 0.931 0.921 0.925 0.929 0.939 0.972 0.956 0.969 0.957 0.945 0.934
Consumption, Orders, Inventories 0.862 0.988 0.865 0.862 0.873 0.884 0.867 0.874 0.89 0.905 0.906 0.909 0.904
Money and Credit 0.555 0.592 0.516 0.517 0.522 0.522 0.524 0.534 0.534 0.537 0.543 0.551 0.557
Interest and Exchange Rates 0.915 0.93 0.931 0.916 0.916 0.928 0.889 0.864 0.903 0.917 0.952 0.955 0.95
Prices 0.4 0.404 0.408 0.403 0.396 0.4 0.412 0.417 0.416 0.418 0.432 0.44 0.439
Stock Market 0.903 0.923 0.917 0.921 0.928 0.93 0.943 0.903 0.899 0.902 0.922 0.935 0.934

Table B.43: 12-Month-Ahead DIAR Forecasts by PLS 1 and PCA With Given k, k = 1, 2, ..., 12: The Whole 144 Variables
by Categories

Notes: The entries are median relative mean squared errors (RMSE) in the 8 categories: 1. Output and Income, 2. Labor Market, 3. Housing,
4. Consumption, Orders, Inventories, 5. Money and Credit, 6. Interest and Exchange Rates, 7. Prices, 8. Stock Market. The Overall row is the
median RMSE across all the 144 target variables. RMSE is defined relative to a forecast based on the target variable’s historical mean. This
experiment is recursive out-of-sample forecast. 12-month-ahead DIAR forecasting for the whole 144 target variables by PLS 1 and PCA with
given k, k = 1, 2, ..., 12, is considered. The 144 forecasts are divided into eight categories according to the target variable and the median RMSE
of each category is presented. The lag of target variables, p, is determined by BIC. If PLS 1 gives lower RMSE than the best PCA forecast in
bold, the PLS forecast is shaded with green, underlined and in bold italic.
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DIAR-LAG : PLS 1 & PCA kkk PLS 1 PCA 1 PCA 2 PCA 3 PCA 4
Overall 0.709 0.861 0.741 0.751 0.735
Output and Income 0.691 0.915 0.788 0.802 0.79
Labor Market 0.637 0.788 0.635 0.644 0.643
Housing 1.022 0.969 0.937 0.924 0.931
Consumption, Orders, Inventories 0.869 0.991 0.87 0.879 0.88
Money and Credit 0.538 0.593 0.516 0.517 0.522
Interest and Exchange Rates 0.916 0.963 0.937 0.916 0.916
Prices 0.393 0.405 0.405 0.406 0.403
Stock Market 0.909 0.917 0.918 0.918 0.933

Table B.44: 12-Month-Ahead DIAR-LAG Forecasts by PLS 1 and PCA With Given k, k = 1, 2, ..., 4: The Whole 144
Variables by Categories

Notes: The entries are median relative mean squared errors (RMSE) in the 8 categories: 1. Output and Income, 2. Labor Market, 3. Housing,
4. Consumption, Orders, Inventories, 5. Money and Credit, 6. Interest and Exchange Rates, 7. Prices, 8. Stock Market. The Overall row is the
median RMSE across all the 144 target variables. RMSE is defined relative to a forecast based on the target variable’s historical mean. This
experiment is recursive out-of-sample forecast. 12-month-ahead DIAR-LAG forecasting for the whole 144 target variables by PLS 1 and PCA
with given k, k = 1, 2, ..., 4, is considered. The 144 forecasts are divided into eight categories according to the target variable and the median
RMSE of each category is presented. The lag of target variables, p, and the lag of the factors, m, are determined by BIC. If PLS 1 gives lower
RMSE than the best PCA forecast in bold, the PLS forecast is shaded with green, underlined and in bold italic.
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DI : PLS 1 & PCA by IC
PLS PCA
PLS 1 k̂BIC k̂BN�p1 k̂BN�p2 k̂BN�p3 k̂BN�BIC k̂AH k̂ON k̂ABC�L k̂ABC�S

Industrial Production 0.594 0.691 0.672 0.668 0.672 0.658 0.678 0.646 0.686 0.663
Personal Income 0.681 0.89 0.876 0.86 0.888 0.826 0.82 0.771 0.834 0.867
Mfg & Trade Sales 0.631 0.689 0.723 0.707 0.716 0.668 0.682 0.655 0.689 0.703
Nonag. Employment 0.469 0.522 0.55 0.526 0.533 0.535 0.545 0.499 0.521 0.526
CPI 0.762 0.753 0.759 0.77 0.759 0.786 0.952 0.974 0.784 0.769
Consumption Deflator 0.851 0.86 0.859 0.837 0.843 0.849 0.988 1.005 0.86 0.862
CPI exc. Food 0.854 0.842 0.861 0.85 0.864 0.831 0.998 1.014 0.834 0.869
Producer Price Index 0.738 0.751 0.764 0.772 0.731 0.791 0.976 0.987 0.794 0.757

Table B.45: 12-Month-Ahead DI Forecasts by PLS 1 and PCA With Information Criteria: 8 Target Variables

Notes: The entries are relative mean squared errors (RMSE) of respective factor estimation method relative to a forecast based on the
target variable’s historical mean. This experiment is recursive out-of-sample forecast. 12-month-ahead DI forecasting for the eight target
variables by PLS 1 and PCA with information criteria is considered. For PCA, the number of contemporaneous factors, k is determined by 9
information criteria, k̂BIC , to k̂ABC�S . If PLS 1 gives lower RMSE than the best PCA forecast in bold, the PLS forecast is shaded with green,
underlined and in bold italic.
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DIAR : PLS 1 & PCA by IC
PLS PCA
PLS 1 k̂BIC k̂BN�p1 k̂BN�p2 k̂BN�p3 k̂BN�BIC k̂AH k̂ON k̂ABC�L k̂ABC�S

Industrial Production 0.638 0.75 0.744 0.713 0.737 0.685 0.687 0.659 0.708 0.731
Personal Income 0.68 0.89 0.876 0.86 0.888 0.826 0.821 0.772 0.834 0.867
Mfg & Trade Sales 0.648 0.694 0.711 0.69 0.718 0.652 0.655 0.644 0.674 0.688
Nonag. Employment 0.498 0.494 0.529 0.506 0.511 0.484 0.511 0.5 0.509 0.503
CPI 0.392 0.407 0.409 0.406 0.424 0.41 0.412 0.411 0.406 0.407
Consumption Deflator 0.492 0.492 0.515 0.497 0.534 0.497 0.497 0.497 0.502 0.514
CPI exc. Food 0.427 0.468 0.48 0.474 0.488 0.468 0.458 0.454 0.464 0.478
Producer Price Index 0.342 0.341 0.339 0.339 0.348 0.339 0.343 0.345 0.341 0.337

Table B.46: 12-Month-Ahead DIAR Forecasts by PLS 1 and PCA With Information Criteria: 8 Target Variables

Notes: The entries are relative mean squared errors (RMSE) of respective factor estimation method relative to a forecast based on the target
variable’s historical mean. This experiment is recursive out-of-sample forecast. 12-month-ahead DIAR forecasting for the eight target variables
by PLS 1 and PCA with information criteria is considered. For PCA, the number of contemporaneous factors, k is determined by 9 information
criteria, k̂BIC , to k̂ABC�S . The lag of target variables, p, is determined by BIC. If PLS 1 gives lower RMSE than the best PCA forecast in
bold, the PLS forecast is shaded with green, underlined and in bold italic.
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DIAR-LAG : PLS 1 & PCA by IC
PLS PCA
PLS 1 k̂BIC k̂BN�p1 k̂BN�p2 k̂BN�p3 k̂BN�BIC k̂AH k̂ON k̂ABC�L k̂ABC�S

Industrial Production 0.636 0.682 0.685 0.682 0.685 0.726 0.678 0.652 0.703 0.706
Personal Income 0.671 0.844 0.867 0.851 0.867 0.85 0.82 0.774 0.836 0.838
Mfg & Trade Sales 0.646 0.637 0.653 0.643 0.653 0.691 0.632 0.634 0.653 0.66
Nonag. Employment 0.494 0.512 0.508 0.509 0.507 0.522 0.515 0.475 0.515 0.522
CPI 0.382 0.407 0.404 0.408 0.404 0.404 0.414 0.414 0.406 0.408
Consumption Deflator 0.489 0.493 0.485 0.486 0.485 0.501 0.507 0.506 0.491 0.495
CPI exc. Food 0.434 0.463 0.459 0.46 0.459 0.469 0.469 0.466 0.466 0.466
Producer Price Index 0.339 0.345 0.333 0.334 0.333 0.341 0.349 0.351 0.337 0.336

Table B.47: 12-Month-Ahead DIAR-LAG Forecasts by PLS 1 and PCA With Information Criteria: 8 Target Variables

Notes: The entries are relative mean squared errors (RMSE) of respective factor estimation method relative to a forecast based on the target
variable’s historical mean. This experiment is recursive out-of-sample forecast. 12-month-ahead DIAR-LAG forecasting for the eight target
variables by PLS 1 and PCA with information criteria is considered. For PCA, the number of contemporaneous factors, k is determined by 9
information criteria, k̂BIC , to k̂ABC�S . The lag of target variables, p, and the lag of the factors, m, are determined by BIC. If PLS 1 gives
lower RMSE than the best PCA forecast in bold, the PLS forecast is shaded with green, underlined and in bold italic.
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DI :
PLS 1 & PCA by IC

PLS PCA
PLS 1 k̂BIC k̂BN�p1 k̂BN�p2 k̂BN�p3 k̂BN�BIC k̂AH k̂ON k̂ABC�L k̂ABC�S

Overall 0.86 0.891 0.898 0.886 0.909 0.901 0.96 0.956 0.896 0.895
Output and Income 0.679 0.736 0.79 0.767 0.735 0.734 0.738 0.708 0.757 0.772
Labor Market 0.705 0.75 0.792 0.783 0.773 0.743 0.782 0.774 0.723 0.765
Housing 1.435 1.285 1.459 1.562 1.235 1.946 1.914 1.921 1.863 1.629
Consumption, Orders, Inventories 0.891 0.917 0.906 0.893 0.92 0.916 0.902 0.877 0.905 0.914
Money and Credit 1.02 1.012 1.006 1.004 1.036 0.998 0.995 0.993 1.007 1.01
Interest and Exchange Rates 0.956 0.934 0.926 0.949 0.958 0.944 0.966 0.998 0.93 0.931
Prices 0.85 0.877 0.879 0.875 0.864 0.882 0.989 0.995 0.889 0.881
Stock Market 0.905 0.885 0.891 0.914 0.928 0.888 0.892 0.864 0.897 0.89

Table B.48: 12-Month-Ahead DI Forecasts by PLS 1 and PCA With Information Criteria: Whole 144 Target Variables by
Category

Notes: The entries are median relative mean squared errors (RMSE) in the 8 categories: 1. Output and Income, 2. Labor Market, 3. Housing,
4. Consumption, Orders, Inventories, 5. Money and Credit, 6. Interest and Exchange Rates, 7. Prices, 8. Stock Market. The Overall row is
the median RMSE across all the 144 target variables. RMSE is defined relative to a forecast based on the target variable’s historical mean.
This experiment is recursive out-of-sample forecast. 12-month-ahead DI forecasting for the whole 144 target variables by PLS 1 and PCA with
information criteria is considered. The 144 forecasts are divided into eight categories according to the target variable and the median RMSE
of each category is presented. For PCA, the number of contemporaneous factors, k is determined by 9 information criteria, k̂BIC , to k̂ABC�S .
If PLS 1 gives lower RMSE than the best PCA forecast in bold, the PLS forecast is shaded with green, underlined and in bold italic.
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DIAR :
PLS 1 & PCA by IC

PLS PCA
PLS 1 k̂BIC k̂BN�p1 k̂BN�p2 k̂BN�p3 k̂BN�BIC k̂AH k̂ON k̂ABC�L k̂ABC�S

Overall 0.716 0.75 0.767 0.742 0.767 0.744 0.766 0.756 0.736 0.775
Output and Income 0.685 0.749 0.804 0.787 0.745 0.765 0.761 0.73 0.77 0.781
Labor Market 0.633 0.667 0.687 0.659 0.688 0.621 0.666 0.665 0.645 0.661
Housing 0.981 0.949 0.967 0.99 0.934 0.934 0.858 0.875 0.938 0.956
Consumption, Orders, Inventories 0.862 0.899 0.904 0.864 0.904 0.848 0.835 0.838 0.864 0.892
Money and Credit 0.555 0.54 0.53 0.53 0.557 0.52 0.515 0.523 0.522 0.536
Interest and Exchange Rates 0.915 0.939 0.92 0.926 0.95 0.932 0.923 0.917 0.926 0.904
Prices 0.4 0.425 0.42 0.405 0.439 0.407 0.398 0.395 0.405 0.417
Stock Market 0.903 0.908 0.899 0.944 0.934 0.924 0.915 0.873 0.937 0.915

Table B.49: 12-Month-Ahead DIAR Forecasts by PLS 1 and PCA With Information Criteria: Whole 144 Target Variables by
Category

Notes: The entries are median relative mean squared errors (RMSE) in the 8 categories: 1. Output and Income, 2. Labor Market, 3. Housing,
4. Consumption, Orders, Inventories, 5. Money and Credit, 6. Interest and Exchange Rates, 7. Prices, 8. Stock Market. The Overall row is the
median RMSE across all the 144 target variables. RMSE is defined relative to a forecast based on the target variable’s historical mean. This
experiment is recursive out-of-sample forecast. 12-month-ahead DIAR forecasting for the whole 144 target variables by PLS 1 and PCA with
information criteria is considered. The 144 forecasts are divided into eight categories according to the target variable and the median RMSE
of each category is presented. For PCA, the number of contemporaneous factors, k is determined by 9 information criteria, k̂BIC , to k̂ABC�S .
The lag of target variables, p, is determined by BIC. If PLS 1 gives lower RMSE than the best PCA forecast in bold, the PLS forecast is
shaded with green, underlined and in bold italic.
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DIAR-LAG :
PLS 1 & PCA by IC

PLS PCA
PLS 1 k̂BIC k̂BN�p1 k̂BN�p2 k̂BN�p3 k̂BN�BIC k̂AH k̂ON k̂ABC�L k̂ABC�S

Overall 0.709 0.734 0.735 0.733 0.735 0.749 0.756 0.756 0.735 0.743
Output and Income 0.691 0.76 0.789 0.773 0.79 0.802 0.749 0.722 0.79 0.796
Labor Market 0.637 0.646 0.643 0.641 0.643 0.646 0.661 0.677 0.639 0.64
Housing 1.022 0.944 0.931 0.946 0.931 0.928 0.871 0.88 0.928 0.929
Consumption, Orders, Inventories 0.869 0.876 0.88 0.87 0.88 0.888 0.834 0.853 0.866 0.876
Money and Credit 0.538 0.515 0.522 0.521 0.522 0.515 0.515 0.526 0.516 0.516
Interest and Exchange Rates 0.916 0.922 0.916 0.941 0.916 0.906 0.933 0.941 0.932 0.923
Prices 0.393 0.411 0.403 0.406 0.403 0.404 0.405 0.404 0.404 0.405
Stock Market 0.909 0.924 0.933 0.936 0.933 0.919 0.918 0.872 0.917 0.918

Table B.50: 12-Month-Ahead DIAR-LAG Forecasts by PLS 1 and PCA With Information Criteria: Whole 144 Target Variables
by Category

Notes: The entries are median relative mean squared errors (RMSE) in the 8 categories: 1. Output and Income, 2. Labor Market, 3. Housing,
4. Consumption, Orders, Inventories, 5. Money and Credit, 6. Interest and Exchange Rates, 7. Prices, 8. Stock Market. The Overall row is the
median RMSE across all the 144 target variables. RMSE is defined relative to a forecast based on the target variable’s historical mean. This
experiment is recursive out-of-sample forecast. 12-month-ahead DIAR-LAG forecasting for the whole 144 target variables by PLS 1 and PCA
with information criteria is considered. The 144 forecasts are divided into eight categories according to the target variable and the median
RMSE of each category is presented. For PCA, the number of contemporaneous factors, k is determined by 9 information criteria, k̂BIC , to
k̂ABC�S . The lag of target variables, p, and the lag of the factors, m, are determined by BIC. If PLS 1 gives lower RMSE than the best PCA
forecast in bold, the PLS forecast is shaded with green, underlined and in bold italic.
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DI DIAR DIAR-LAG
Frequency Percentage Frequency Percentage Frequency Percentage

PLS 1 199 45.64% 184 42.2% 193 44.27%
PCA 1 47 10.78% 61 13.99% 69 15.83%
PCA 2 13 2.98% 18 4.13% 43 9.86%
PCA 3 26 5.96% 40 9.17% 61 13.99%
PCA 4 37 8.49% 43 9.86% 70 16.06%
PCA 5 16 3.67% 19 4.36%
PCA 6 11 2.52% 21 4.82%
PCA 7 23 5.28% 20 4.59%
PCA 8 8 1.83% 5 1.15%
PCA 9 4 0.92% 10 2.29%
PCA 10 1 0.23% 0 0%
PCA 11 11 2.52% 0 0%
PCA 12 40 9.17% 15 3.44%

Table B.51: PLS & PCA k: Whole 148 Variables, 6-,12- and 24-month-ahead DI, DIAR, DIAR-LAG forecast

Notes: PLS 1 and PCA k, k = 1, 2, ..., 12, for the whole 148 target variables in 6-, 12- and 24-month ahead DI, DIAR and DIAR-LAG forecasting
are considered. For DIAR-LAG, the maximum k is 4, so k = 1, 2, ..., 4 are considered. DIAR-LAG PCA k forecasts with 4 < k are left empty.
The frequency is how many times the given method achieved the minimum RMSE in 436 variable-horizon combinations. Forecast results for
148 target variables (144 for 6- and 12-month ahead forecasts) are counted. The percentage is the frequency divided by 436.
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DI DIAR DIAR-LAG
Frequency Percentage Frequency Percentage Frequency Percentage

PLS 1 202 46.33% 183 41.97% 161 36.93%
PCA : BIC 26 5.96% 18 4.13% 28 6.42%
PCA : BN � p1 11 2.52% 11 2.52% 44 10.09%
PCA : BN � p2 12 2.75% 9 2.06% 26 5.96%
PCA : BN � p3 48 11.01% 8 1.83% 3 0.69%
PCA : BN � BIC 37 8.49% 67 15.37% 29 6.65%
PCA : AH 15 3.44% 30 6.88% 34 7.8%
PCA : ON 41 9.4% 61 13.99% 58 13.3%
PCA : ABC � L 23 5.28% 32 7.34% 31 7.11%
PCA : ABC � S 21 4.82% 17 3.9% 22 5.05%

Table B.52: PLS & PCA by Information Criteria: Whole 148 Variables, 6-,12- and 24-month-ahead DI, DIAR, DIAR-LAG
forecast

Notes: PLS 1 and PCA by information criteria, for the whole 148 target variables in 6-, 12- and 24-month ahead DI, DIAR and DIAR-
LAG forecasting are considered. The frequency is how many times the given method achieved the minimum RMSE in 436 variable-horizon
combinations. Forecast results for 148 target variables (144 for 6- and 12-month ahead forecasts) are counted. The percentage is the frequency
divided by 436.
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B.2 Data Appendix

The variables used in this study and their categories are presented here. The tcode column denotes the transformation
type. Denote the time-series at t as xt. 1 = no transformation, 2 = first di↵erence, 3 = second di↵erence, 4 = logarithm,
5 = first di↵erence of logarithms 6 = second di↵erence of logarithms, 7 = �(xt/xt�1 � 1). The following abbrevation is
used to denote seasonality of a series. SA = Seasonally Adjusted, SSAR = Seasonally Adjusted Annual Rate, NSA = Not
Seasonally Adjusted. The data is taken from FRED, FRED-MD (McCracken and Ng (2016)) and ISM. The source column
indicates where the variable is taken from. If a variable belongs to both FRED and FRED-MD, the source is denoted
as FRED. If a variable in FRED-MD is adjustmented from the raw data available in FRED, the source is denoted as
FRED-MD.
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ID Variable tcode Description Period Seasonality Source
1 RPI 5 Real Personal Income 1959:01-2019:12 SAAR FRED
2 W875RX1 5 Real personal income excluding current transfer receipts 1959:01-2019:12 SAAR FRED
6 INDPRO 5 Industrial Production Index 1959:01-2019:12 SA FRED
7 IPFPNSS 5 Industrial Production: Final Products and Nonindustrial Supplies 1959:01-2019:12 SA FRED
8 IPFINAL 5 Industrial Production: Final Products (Market Group) 1959:01-2019:12 SA FRED
9 IPCONGD 5 Industrial Production: Consumer Goods 1959:01-2019:12 SA FRED
10 IPDCONGD 5 Industrial Production: Durable Consumer Goods 1959:01-2019:12 SA FRED
11 IPNCONGD 5 Industrial Production: Nondurable Consumer Goods 1959:01-2019:12 SA FRED
12 IPBUSEQ 5 Industrial Production: Business Equipment 1959:01-2019:12 SA FRED
13 IPMAT 5 Industrial Production: Materials 1959:01-2019:12 SA FRED
14 IPDMAT 5 Industrial Production: Durable Materials 1959:01-2019:12 SA FRED
15 IPNMAT 5 Industrial Production: Nondurable Materials 1959:01-2019:12 SA FRED
16 IPMANSICS 5 Industrial Production: Manufacturing (SIC) 1959:01-2019:12 SA FRED
17 IPB51222S 5 Industrial Production: Residential utilities 1959:01-2019:12 SA FRED
18 IPFUELS 5 Industrial Production: Fuels 1959:01-2019:12 SA FRED
19 CUMFNS 2 Capacity Utilization: Manufacturing (SIC) 1959:01-2019:12 SA FRED
129 IPNMAN 5 Industrial Production: Nondurable Manufacturing (NAICS) 1972:01-2019:12 SA FRED
130 IPDMAN 5 Industrial Production: Durable Manufacturing (NAICS) 1972:01-2019:12 SA FRED
131 IPMINE 5 Industrial Production: Mining 1959:01-2019:12 SA FRED
132 TCU 1 Capacity Utilization: Total Industry 1967:01-2019:12 SA FRED
133 CAPUTLGMFDS 1 Capacity Utilization: Durable manufacturing 1967:01-2019:12 SA FRED
134 CAPUTLGMFNS 1 Capacity Utilization: Nondurable manufacturing 1967:01-2019:12 SA FRED
135 CAPUTLG21S 1 Capacity Utilization: Mining 1967:01-2019:12 SA FRED
136 CAPUTLG2211A2S 1 Capacity Utilization: Electric and gas utilities 1967:01-2019:12 SA FRED
173 ISM \MAN PROD 1 Manufacturing Production Index 1959:01-2019:12 SA ISM

Table B.53: Category 1. Output and income
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ID Variable tcode Description Period Seasonality Source
20 HWI 2 Help-Wanted Index for United States 1959:01-2019:12 FRED-MD
21 HWIURATIO 2 Ratio of Help Wanted/No. Unemployed 1959:01-2019:12 FRED-MD
22 CLF16OV 5 Civilian Labor Force Level 1959:01-2019:12 SA FRED
23 CE16OV 5 Employment Level 1959:01-2019:12 SA FRED
24 UNRATE 2 Unemployment Rate 1959:01-2019:12 SA FRED
25 UEMPMEAN 2 Average Weeks Unemployed 1959:01-2019:12 SA FRED
26 UEMPLT5 5 Number Unemployed for Less Than 5 Weeks 1959:01-2019:12 SA FRED
27 UEMP5TO14 5 Number Unemployed for 5-14 Weeks 1959:01-2019:12 SA FRED
28 UEMP15OV 5 Number Unemployed for 15 Weeks & Over 1959:01-2019:12 SA FRED
29 UEMP15T26 5 Number Unemployed for 15-26 Weeks 1959:01-2019:12 SA FRED
30 UEMP27OV 5 Number Unemployed for 27 Weeks & Over 1959:01-2019:12 SA FRED
31 CLAIMSx 5 Initial Claims 1959:01-2019:12 FRED-MD
32 PAYEMS 5 All Employees, Total Nonfarm 1959:01-2019:12 SA FRED
33 USGOOD 5 All Employees, Goods-Producing 1959:01-2019:12 SA FRED
34 CES1021000001 5 All Employees, Mining 1959:01-2019:12 SA FRED
35 USCONS 5 All Employees, Construction 1959:01-2019:12 SA FRED
36 MANEMP 5 All Employees, Manufacturing 1959:01-2019:12 SA FRED
37 DMANEMP 5 All Employees, Durable Goods 1959:01-2019:12 SA FRED
38 NDMANEMP 5 All Employees, Nondurable Goods 1959:01-2019:12 SA FRED
39 SRVPRD 5 All Employees, Service-Providing 1959:01-2019:12 SA FRED
40 USTPU 5 All Employees, Trade, Transportation, and Utilities 1959:01-2019:12 SA FRED
41 USWTRADE 5 All Employees, Wholesale Trade 1959:01-2019:12 SA FRED
42 USTRADE 5 All Employees, Retail Trade 1959:01-2019:12 SA FRED
43 USFIRE 5 All Employees, Financial Activities 1959:01-2019:12 SA FRED
44 USGOVT 5 All Employees, Government 1959:01-2019:12 SA FRED
45 CES0600000007 1 Average Weekly Hours of Production and Nonsupervisory Employees, Goods-Producing 1959:01-2019:12 SA FRED
46 AWOTMAN 2 Average Weekly Overtime Hours of Production and Nonsupervisory Employees, Manufacturing 1959:01-2019:12 SA FRED
47 AWHMAN 1 Average Weekly Hours of Production and Nonsupervisory Employees, Manufacturing 1959:01-2019:12 SA FRED
120 CES0600000008 6 Average Hourly Earnings of Production and Nonsupervisory Employees, Goods-Producing 1959:01-2019:12 SA FRED
121 CES2000000008 6 Average Hourly Earnings of Production and Nonsupervisory Employees, Construction 1959:01-2019:12 SA FRED
122 CES3000000008 6 Average Hourly Earnings of Production and Nonsupervisory Employees, Manufacturing 1959:01-2019:12 SA FRED
137 USPRIV 5 All Employees, Total Private 1959:01-2019:12 SA FRED
138 CES5552000001 5 All Employees, Finance and Insurance 1990:01-2019:12 SA FRED
139 CES5553100001 5 All Employees, Real Estate 1990:01-2019:12 SA FRED
140 SRVPRD 5 All Employees, Service-Providing 1959:01-2019:12 SA FRED
141 AWHNONAG 1 Average Weekly Hours of Production and Nonsupervisory Employees, Total Private 1964:01-2019:12 SA FRED
166 AHETPI 6 Average Hourly Earnings of Production and Nonsupervisory Employees, Total Private 1964:01-2019:12 SA FRED
167 CES4000000008 6 Average Hourly Earnings of Production and Nonsupervisory Employees, Trade, Transportation, and Utilities 1964:01-2019:12 SA FRED
168 CES4200000008 6 Average Hourly Earnings of Production and Nonsupervisory Employees, Retail Trade 1972:01-2019:12 SA FRED
169 CES4142000008 6 Average Hourly Earnings of Production and Nonsupervisory Employees, Wholesale Trade 1972:01-2019:12 SA FRED
170 CES5500000008 6 Average Hourly Earnings of Production and Nonsupervisory Employees, Financial Activities 1964:01-2019:12 SA FRED
171 CES0800000008 6 Average Hourly Earnings of Production and Nonsupervisory Employees, Private Service-Providing 1964:01-2019:12 SA FRED
174 ISM \MAN EMPL 1 Manufacturing Employment Index 1959:01-2019:12 SA ISM

Table B.54: Category 2. Labor market
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ID Variable tcode Description Period Seasonality Source
48 HOUST 4 Housing Starts: Total: New Privately Owned Housing Units Started 1959:01-2019:12 SAAR FRED
49 HOUSTNE 4 Housing Starts in Northeast Census Region 1959:01-2019:12 SAAR FRED
50 HOUSTMW 4 Housing Starts in Midwest Census Region 1959:01-2019:12 SAAR FRED
51 HOUSTS 4 Housing Starts in South Census Region 1959:01-2019:12 SAAR FRED
52 HOUSTW 4 Housing Starts in West Census Region 1959:01-2019:12 SAAR FRED
53 PERMIT 4 New Private Housing Units Authorized by Building Permits 1960:01-2019:12 SAAR FRED
54 PERMITNE 4 New Private Housing Units Authorized by Building Permits in the Northeast Census Region 1960:01-2019:12 SAAR FRED
55 PERMITMW 4 New Private Housing Units Authorized by Building Permits in the Midwest Census Region 1960:01-2019:12 SAAR FRED
56 PERMITS 4 New Private Housing Units Authorized by Building Permits in the South Census Region 1960:01-2019:12 SAAR FRED
57 PERMITW 4 New Private Housing Units Authorized by Building Permits in the West Census Region 1960:01-2019:12 SAAR FRED
150 HSN1F 4 New One Family Houses Sold: United States 1963:01-2019:12 SAAR FRED
151 HSN1FNE 4 New One Family Houses Sold in Northeast Census Region 1973:01-2019:12 SAAR FRED
152 HSN1FMW 4 New One Family Houses Sold in Midwest Census Region 1973:01-2019:12 SAAR FRED
153 HSN1FS 4 New One Family Houses Sold in South Census Region 1973:01-2019:12 SAAR FRED
154 HSN1FW 4 New One Family Houses Sold in West Census Region 1973:01-2019:12 SAAR FRED
155 MSACSR 4 Monthly Supply of Houses in the United States 1963:01-2019:12 SA FRED
156 HNFSEPUSSA 4 New One Family Homes for Sale in the United States 1963:01-2019:12 SA FRED
157 UNDCONTSA 4 New Privately-Owned Housing Units Under Construction: Total 1970:01-2019:12 SA FRED

Table B.55: Category 3. Housing
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ID Variable tcode Description Period Seasonality Source
3 DPCERA3M086SBEA 5 Real personal consumption expenditures (chain-type quantity index) 1959:01-2019:12 SA FRED
4 CMRMTSPLx 5 Real Manu. and Trade Industries Sales 1959:01-2019:12 FRED-MD
5 RETAILx 5 Retail and Food Services Sales 1959:01-2019:12 FRED-MD
58 ACOGNO 5 Manufacturers’ New Orders: Consumer Goods 1992:02-2019:12 SA FRED
59 AMDMNOx 5 New Orders for Durable Goods 1959:01-2019:12 FRED-MD
60 ANDENOx 5 New Orders for Nondefense Capital Goods 1968:02-2019:12 FRED-MD
61 AMDMUOx 5 Unfilled Orders for Durable Goods 1959:01-2019:12 FRED-MD
62 BUSINVx 5 Total Business Inventories 1959:01-2019:12 FRED-MD
63 ISRATIOx 2 Total Business: Inventories to Sales Ratio 1959:01-2019:12 FRED-MD
123 UMCSENTx 2 Consumer Sentiment Index 1959:05-2019:12 FRED-MD
142 USASLMNTO02MLSAM 5 Sales: Manufacturing: Total manufacturing: Value for the United States 1960:01-2019:12 SA FRED
143 USASLRTTO02MLSAM 5 Sales: Retail trade: Total retail trade: Value for the United States 1960:01-2019:12 SA FRED
144 USASLWHTO02MLSAM 5 Sales: Wholesale trade: Total wholesale trade: Value for the United States 1960:01-2019:12 SA FRED
145 USASARTMISMEI 1 Total Retail Trade in United States 1960:01-2019:12 SA FRED
146 DDURRA3M086SBEA 5 Real personal consumption expenditures: Durable goods (chain-type quantity index) 1959:01-2019:12 SA FRED
147 DNDGRA3M086SBEA 5 Real personal consumption expenditures: Nondurable goods (chain-type quantity index) 1959:01-2019:12 SA FRED
148 DSERRA3M086SBEA 5 Real personal consumption expenditures: Services (chain-type quantity index) 1959:01-2019:12 SA FRED
149 DGDSRA3M086SBEA 5 Real personal consumption expenditures: Goods (chain-type quantity index) 1959:01-2019:12 SA FRED
158 INVCMRMTSPL 5 Real Manufacturing and Trade Inventories 1967:01-2019:12 SA FRED
159 SOANDI 1 Chicago Fed National Activity Index: Sales, Orders and Inventories 1967:03-2019:12 NSA FRED
160 USAODMNTO02MLSAM 5 Orders: Manufacturing: Total orders: Value for the United States 1960:01-2019:12 SA FRED
172 ISM \MAN PMI 1 PMI Composite Index 1959:01-2019:12 SA ISM
175 ISM \MAN NEWORDERS 1 Manufacturing New Orders Index 1959:01-2019:12 SA ISM
176 ISM \MAN DELIV 1 Manufacturing Supplier Deliveries Index 1959:01-2019:12 SA ISM
177 ISM \MAN INVENT 1 Manufacturing Inventories Index 1959:01-2019:12 NSA ISM

Table B.56: Category 4. Consumption, orders, and inventories
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ID Variable tcode Description Period Seasonality Source
64 M1SL 6 M1 Money Stock 1959:01-2019:12 SA FRED
65 M2SL 6 M2 Money Stock 1959:01-2019:12 SA FRED
66 M2REAL 5 Real M2 Money Stock 1959:01-2019:12 SA FRED
67 BOGMBASE 6 Monetary Base; Total 1959:01-2019:12 NSA FRED
68 TOTRESNS 6 Total Reserves of Depository Institutions 1959:01-2019:12 NSA FRED
69 NONBORRES 7 Reserves of Depository Institutions, Nonborrowed 1959:01-2019:12 NSA FRED
70 BUSLOANS 6 Commercial and Industrial Loans, All Commercial Banks 1959:01-2019:12 SA FRED
71 REALLN 6 Real Estate Loans, All Commercial Banks 1959:01-2019:12 SA FRED
72 NONREVSL 6 Total Nonrevolving Credit Owned and Securitized, Outstanding 1959:01-2019:12 SA FRED
73 CONSPI 2 Nonrevolving consumer credit to Personal Income 1959:01-2019:12 FRED-MD
124 MZMSL 6 MZM Money Stock 1959:01-2019:12 SA FRED
125 DTCOLNVHFNM 6 Consumer Motor Vehicle Loans Owned by Finance Companies, Outstanding 1959:01-2019:12 NSA FRED
126 DTCTHFNM 6 Total Consumer Loans and Leases Owned and Securitized by Finance Companies, Outstanding 1959:01-2019:12 NSA FRED
127 INVEST 6 Securities in Bank Credit, All Commercial Banks 1959:01-2019:12 SA FRED
162 USGSEC 5 Treasury and Agency Securities, All Commercial Banks 1959:01-2019:12 SA FRED

Table B.57: Category 5. Money and credit
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ID Variable tcode Description Period Seasonality Source
78 FEDFUNDS 2 E↵ective Federal Funds Rate 1959:01-2019:12 NSA FRED
79 CP3Mx 2 3-Month AA Financial Commercial Paper Rate 1959:01-2019:12 FRED-MD
80 TB3MS 2 3-Month Treasury Bill: Secondary Market Rate 1959:01-2019:12 NSA FRED
81 TB6MS 2 6-Month Treasury Bill: Secondary Market Rate 1959:01-2019:12 NSA FRED
82 GS1 2 1-Year Treasury Constant Maturity Rate 1959:01-2019:12 NSA FRED
83 GS5 2 5-Year Treasury Constant Maturity Rate 1959:01-2019:12 NSA FRED
84 GS10 2 10-Year Treasury Constant Maturity Rate 1959:01-2019:12 NSA FRED
85 AAA 2 Moody’s Seasoned Aaa Corporate Bond Yield 1959:01-2019:12 NSA FRED
86 BAA 2 Moody’s Seasoned Baa Corporate Bond Yield 1959:01-2019:12 NSA FRED
87 COMPAPFFx 1 3-Month Commercial Paper Minus FEDFUNDS 1959:01-2019:12 FRED-MD
88 TB3SMFFM 1 3-Month Treasury Bill Minus Federal Funds Rate 1959:01-2019:12 NSA FRED
89 TB6SMFFM 1 6-Month Treasury Bill Minus Federal Funds Rate 1959:01-2019:12 NSA FRED
90 T1YFFM 1 1-Year Treasury Constant Maturity Minus Federal Funds Rate 1959:01-2019:12 NSA FRED
91 T5YFFM 1 5-Year Treasury Constant Maturity Minus Federal Funds Rate 1959:01-2019:12 NSA FRED
92 T10YFFM 1 10-Year Treasury Constant Maturity Minus Federal Funds Rate 1959:01-2019:12 NSA FRED
93 AAAFFM 1 Moody’s Seasoned Aaa Corporate Bond Minus Federal Funds Rate 1959:01-2019:12 NSA FRED
94 BAAFFM 1 Moody’s Seasoned Baa Corporate Bond Minus Federal Funds Rate 1959:01-2019:12 NSA FRED
95 TWEXAFEGSMTHx 5 Trade Weighted U.S. Dollar Index 1973:01-2019:12 FRED-MD
96 EXSZUSx 5 Switzerland / U.S. Foreign Exchange Rate 1959:01-2019:12 FRED-MD
97 EXJPUSx 5 Japan / U.S. Foreign Exchange Rate 1959:01-2019:12 FRED-MD
98 EXUSUKx 5 U.S. / U.K. Foreign Exchange Rate 1959:01-2019:12 FRED-MD
99 EXCAUSx 5 Canada / U.S. Foreign Exchange Rate 1959:01-2019:12 FRED-MD
161 RNUSBIS 5 Real Narrow E↵ective Exchange Rate for United States 1964:01-2019:12 NSA FRED

Table B.58: Category 6. Interest and exchange rates
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ID Variable tcode Description Period Seasonality Source
100 WPSFD49207 6 Producer Price Index by Commodity: Final Demand: Finished Goods 1959:01-2019:12 SA FRED
101 WPSFD49502 6 Producer Price Index by Commodity: Final Demand: Personal Consumption Goods (Finished Consumer Goods) 1959:01-2019:12 SA FRED
102 WPSID61 6 Producer Price Index by Commodity: Intermediate Demand by Commodity Type: Processed Goods for Intermediate Demand 1959:01-2019:12 SA FRED
103 WPSID62 6 Producer Price Index by Commodity: Intermediate Demand by Commodity Type: Unprocessed Goods for Intermediate Demand 1959:01-2019:12 SA FRED
104 OILPRICEx 6 Crude Oil, spliced WTI and Cushing 1959:01-2019:12 FRED-MD
105 PPICMM 6 Producer Price Index by Commodity: Metals and Metal Products: Primary Nonferrous Metals 1959:01-2019:12 NSA FRED
106 CPIAUCSL 6 Consumer Price Index for All Urban Consumers: All Items in U.S. City Average 1959:01-2019:12 SA FRED
107 CPIAPPSL 6 Consumer Price Index for All Urban Consumers: Apparel in U.S. City Average 1959:01-2019:12 SA FRED
108 CPITRNSL 6 Consumer Price Index for All Urban Consumers: Transportation in U.S. City Average 1959:01-2019:12 SA FRED
109 CPIMEDSL 6 Consumer Price Index for All Urban Consumers: Medical Care in U.S. City Average 1959:01-2019:12 SA FRED
110 CUSR0000SAC 6 Consumer Price Index for All Urban Consumers: Commodities in U.S. City Average 1959:01-2019:12 SA FRED
111 CUSR0000SAD 6 Consumer Price Index for All Urban Consumers: Durables in U.S. City Average 1959:01-2019:12 SA FRED
112 CUSR0000SAS 6 Consumer Price Index for All Urban Consumers: Services in U.S. City Average 1959:01-2019:12 SA FRED
113 CPIULFSL 6 Consumer Price Index for All Urban Consumers: All Items Less Food in U.S. City Average 1959:01-2019:12 SA FRED
114 CUSR0000SA0L2 6 Consumer Price Index for All Urban Consumers: All Items Less Shelter in U.S. City Average 1959:01-2019:12 SA FRED
115 CUSR0000SA0L5 6 Consumer Price Index for All Urban Consumers: All Items Less Medical Care in U.S. City Average 1959:01-2019:12 SA FRED
116 PCEPI 6 Personal Consumption Expenditures: Chain-type Price Index 1959:01-2019:12 SA FRED
117 DDURRG3M086SBEA 6 Personal consumption expenditures: Durable goods (chain-type price index) 1959:01-2019:12 SA FRED
118 DNDGRG3M086SBEA 6 Personal consumption expenditures: Nondurable goods (chain-type price index) 1959:01-2019:12 SA FRED
119 DSERRG3M086SBEA 6 Personal consumption expenditures: Services (chain-type price index) 1959:01-2019:12 SA FRED
163 WPSFD49209 6 Producer Price Index by Commodity: Final Demand: Finished Goods, Excluding Foods 1967:01-2019:12 SA FRED
164 CPIUFDSL 6 Consumer Price Index for All Urban Consumers: Food in U.S. City Average 1959:01-2019:12 SA FRED
165 CPIHOSSL 6 Consumer Price Index for All Urban Consumers: Housing in U.S. City Average 1967:01-2019:12 SA FRED
178 ISM \MAN PRICES 1 Manufacturing Prices Index 1959:01-2019:12 NSA ISM

Table B.59: Category 7. Prices

ID Variable tcode Description Period Seasonality Source
74 SP 500 5 S&P’s Common Stock Price Index: Composite 1959:01-2019:12 FRED-MD
75 SP indust 5 S&P’s Common Stock Price Index: Industrials 1959:01-2019:12 FRED-MD
76 SP div yield 2 S&P’s Composite Common Stock: Dividend Yield 1959:01-2019:12 FRED-MD
77 SP PE ratio 5 S&P’s Composite Common Stock: Price-Earnings Ratio 1959:01-2019:12 FRED-MD
128 VXOCLSx 1 VXO 1962:07-2019:12 FRED-MD

Table B.60: Category 8. Stock market
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