
A Comparative Study of Multi-Agent Reinforcement Learning

on

Real World Problems

by

Sahil Badyal

A Thesis Presented in Partial Fulfillment
of the Requirement for the Degree

Master of Science

Approved April 2021 by the
Graduate Supervisory Committee:

Stephanie Gil, Chair
Dimitri P. Bertsekas

Yingzhen Yang

ARIZONA STATE UNIVERSITY

May 2021

ABSTRACT

This work investigates the multi-agent reinforcement learning methods that have

applicability to real-world scenarios including stochastic, partially observable, and

infinite horizon problems. These problems are hard due to large state and control

spaces and may require some form of intelligent multi-agent behavior to achieve the

target objective. The study also introduces novel rollout-based methods that provide

reasonable guarantees to cost improvements and obtaining a sub-optimal solution to

such problems while being amenable to distributed computation and hence a faster

runtime. These methods, first introduced and developed for single-agent scenarios,

are gradually extended to the multi-agent variants. They have been named multi-

agent rollout methods. The problems studied in this work target one or more aspects

of three major challenges of real-world problems. Spider and Fly problem deals with

stochastic environments, multi-robot repair problem is an example of a partial obser-

vation Markov decision problem or POMDP, whereas the Flatland challenge is an RL

benchmark that aims to solve the vehicle rescheduling problem. The study also in-

cludes comparisons to some existing methods that are used widely for such problems

as POMCP, DESPOT, and MADDPG. The work also delineates and compares differ-

ent behaviors arising out of our methods to other existing methods thereby positing

the efficacy of our rollout-based methods in solving real-world multi-agent reinforce-

ment learning problems. Additionally, the source code and problem environments

have been released for the community to further the research in this field. The source

code and the related research can be found on https://sahilbadyal.com/marl.

i

ACKNOWLEDGMENTS

First and foremost I would like to express my gratitude to my advisor and mentor

Dr. Stephanie Gil for her unwavering support and guidance throughout these years.

Her presence made it possible for me to push my limits, strive for excellence, and

work towards the completion of this work.

I would like to thank Dr. Dimitri Bertsekas for being a major inspiration for this

work. His work and ideas in this field have paved a way for this research. His energy

and zeal towards this work are contagious. Throughout the course of this work, we

have had numerous discussions and his feedback and insights have been immensely

helpful for the advancement of this research. I would also like to thank Dr. Yingzhen

Yang for his support during the past year. I feel incredibly fortunate to have been

associated with great mentors.

I would also like to thank my colleagues from the REACT lab, particularly Sush-

mita Bhattacharya, Siva Kailas, Calvin Norman, and others who have spent their

time discussing and working on the ideas presented in this work. I would also like to

thank Arnav Dhiman, Akarshit Wal and Ishita Thakur for their useful feedback on

the chapters.

Finally, I want to thank my family, especially my parents for their incredible love

and support. This work is dedicated to my grandparents who believed in me from

my very childhood.

Thank you.

Sahil Badyal

ii

TABLE OF CONTENTS

Page

LIST OF TABLES . vii

LIST OF FIGURES . ix

LIST OF SYMBOLS . xi

CHAPTER

1 INTRODUCTION . 1

1.1 Basic Elements of Reinforcement Learning . 2

1.2 Multi-Agent Reinforcement Learning . 5

1.3 General Challenges . 6

1.3.1 RL Challenges . 6

1.3.2 MARL Challenges . 8

1.4 Summary . 9

2 BACKGROUND . 10

2.1 Markov Decision Processes . 10

2.1.1 Infinite Horizon Problems . 14

2.1.2 Partial Observation . 14

2.2 Dynamic Programming (DP) . 15

2.3 Value Iteration (VI) . 18

2.4 Policy Iteration (PI) . 19

2.5 Approximations . 21

2.5.1 Approximation in Value Space . 21

2.5.2 Approximation in Policy Space . 23

2.5.3 Rollout and Policy Improvement . 24

2.6 Monte Carlo (MC) Methods . 27

2.6.1 POMCP . 28

iii

CHAPTER Page

2.6.2 DESPOT. 31

2.7 Temporal-Difference (TD) Learning . 33

2.7.1 Q-Learning . 34

2.7.2 Deep Q-Network (DQN) . 35

2.8 Policy Gradient Methods . 37

2.8.1 Actor Critic Framework . 39

2.9 Multi-Agent Reinforcement Learning Algorithms 40

2.9.1 Multi-Agent Deep Deterministic Policy Gradient (MADDPG) 41

2.9.2 QMIX - Monotonic Factorization of DQN for MARL 42

2.10 Summary . 44

3 ROLLOUT METHODS . 45

3.1 Rollout and Approximate Policy Iteration (API) 47

3.1.1 Partitioned Approximate Policy Iteration (PAPI) 51

Feature State Space Partitioning 51

Asynchronous Computation 53

3.2 Multi-Agent Rollout Methods. 54

3.2.1 Standard Rollout . 55

3.2.2 One-At-A-Time Rollout . 56

3.2.3 Order-Optimized Rollout . 57

3.2.4 Multi-Agent Rollout with PAPI . 61

3.3 Imperfect communication. 62

3.3.1 Signaling . 64

Base Policy Signaling . 64

Neural Network Signaling . 65

iv

CHAPTER Page

Local Communication Case (AMR-LC) 65

Intermittent and Local Communication Case (AMR-ILC) . . . 65

3.4 Summary . 66

4 EXPERIMENTS AND RESULTS . 68

4.1 Spider and Fly Problem . 68

4.1.1 Motivation . 68

4.1.2 Challenges. 69

4.1.3 Description . 69

4.1.4 Evaluation . 70

4.1.5 Experiments . 70

4.2 Multi-Robot Repair Problem . 75

4.2.1 Motivation . 75

4.2.2 Challenges. 76

4.2.3 Description . 76

4.2.4 Evaluation . 77

4.2.5 Experiments . 77

4.3 Flatland Challenge . 83

4.3.1 Motivation . 84

4.3.2 Challenges. 84

4.3.3 Description . 84

4.3.4 Evaluation . 86

4.3.5 Experiments . 87

4.4 Summary . 88

5 CONCLUSION . 89

v

CHAPTER Page

5.1 Performance Summary . 89

5.2 Future . 89

REFERENCES . 93

vi

LIST OF TABLES

Table Page

4.1 Comparison of Base Policy, One-At-A-Time Rollout, Order-Optimized

Rollout, and Standard Rollout for Spider and Fly Problem of Size 5X5,

with 2 Spiders and 2 Flies on 1000 Random Initial States. 71

4.2 Cost Comparison of Base Policy, One-At-A-Time Rollout, Order-Optimized

Rollout, and Standard Rollout for Spider and Fly Problem of Size 5X5,

with 3 Spiders and 3 Flies on 1000 Random Initial States. 71

4.3 Comparison of Base Policy, One-At-A-Time Rollout, Order-Optimized

Rollout, and Standard Rollout for Spider and Fly Problem of Size 5X5,

with 2 Spiders and 4 Flies on 1000 Random Initial States. 72

4.4 Comparison of Base Policy, One-At-A-Time Rollout, and Order-Optimized

Rollout for Spider and Fly Problem of Size 10X10, with 5 Spiders and

3 Flies on 1000 Random Initial States. 72

4.5 Comparison of Base Policy, and One-At-A-Time Rollout for Spider and

Fly Problem of Size 20X20, with 8 Spiders and 4 Flies on 1000 Random

Initial States. 72

4.6 System Specifications for the Experiment on Rollout Using Parallel

Q-factor Computation. 74

4.7 Cost Comparison of One-At-A-Time Rollout with Greedy Base Policy

From [15]. 79

4.8 Cost Comparison of Base, Standard Rollout (4 Agents Only), One-At-

A-Time Rollout, and Different Approximate Multi-Agent Rollout Poli-

cies Involving Imperfect Control Communication (Assuming a Shared

Belief) From [15]. 81

vii

Table Page

4.9 Cost Comparison of Base, One-At-A-Time Rollout, and Approximate

Multi-Agent Rollout Policies with Different Intermittent Communica-

tion Architectures and Connection Probabilities (ρ) From [15]. 83

4.10 Cost Comparison of Shortest Path Base policy, and One-At-A-Time

Rollout on Flatland. 88

4.11 Cost Comparison of DDDQN Base Policy, and AMR-B on Flatland. . . . 88

viii

LIST OF FIGURES

Figure Page

1.1 Reinforcement Learning Overview. 2

2.1 A Non-exhaustive, but Useful Taxonomy of Modern RL Methods Adopted

from [1]. 11

2.2 An MDP with State Transition from Initial State s0. 12

2.3 State Transition in a Finite State, Finite Horizon MDP. 13

2.4 Policy Iteration Starting from Initial Policy µ0. 21

2.5 The Three Approximations in Value Space. 22

2.6 Approximation in Policy Space Emulates a Controller. 24

2.7 Rollout with One-Step Lookahead and Terminal Cost Function Ap-

proximation. 25

2.8 A DQN as Used in [24]. 35

2.9 Actor-Critic Framework as Shown in [33].ˇ . 39

2.10 Illustration of Markov Games. 41

2.11 Illustration of MADDPG as Shown in [23]. 42

2.12 Illustration of QMIX as Shown in [28]. 43

3.1 Illustration of POMDP Solver as Shown in [14]. 47

3.2 Approximate PI Scheme Based on Rollout and Policy Space Approxi-

mation. 50

3.3 Partitioned Architecture for Rollout and Approximate PI with and

Without Truncation [14]. 52

3.4 A Non-Exhaustive Taxonomy of Multi-agent Rollout. 55

3.5 Standard Rollout with 2 Agents Adapted from [15]. 56

3.6 One-At-A-Time Rollout with Agent 1 followed by Agent 2 adapted

from [15]. 58

ix

Figure Page

3.7 MA Rollout with API [15]. 62

3.8 AMR-ILC with Local Communication and Unreliable Cloud. 66

4.1 Spider and Fly Problem with 3 Flies and 5 Spiders. 68

4.2 Results Showing Speedup Achieved Using Ray Vs a Single-Threaded

Implementation of Rollout. 74

4.3 Multi-Robot Repair Problem. 75

4.4 Markov Chain for Each Damaged Location From [15]. 76

4.5 Comparison of Trajectories Generated by Greedy Base Policy and Roll-

out in the Multi-robot Repair Problem From [15]. 78

4.6 Cost Improvements in One-At-A-Time Rollout with API From [15]. . . . 79

4.7 Cost Comparison of Greedy Policy, POMCP, and Other Multi-agent

Variants of Rollout From [15]. 80

4.8 Flatland Environment with 4 Trains. 83

4.9 A Visual Summary of the Three Provided Observations [2]. 85

x

LIST OF SYMBOLS

Symbol Definition

s Denotes the system state.
S Denotes the set of all possible states.
k Denotes the stage or step.
K Denotes the length of horizon for finite horizon problems.
xk Denotes the system state at stage k.
uk Denotes the control or action at stage k.
U Denotes the set of all possible controls.
f Denotes the state transition function.
w Denotes the random variable that models the system disturbance.
p Denotes the transition probability in a MDP.
zk Denotes the current observation in POMDP.
Z Denotes the set of all possible observations.
bk Denotes the belief state at stage k.
yk Denotes the feature state at stage k.
gk Denotes the cost at stage k.
α Denotes the discount factor.
γ Denotes the learning rate in neural netowork approximations.
J Denotes the cost function.
m Denotes the number of agents.
M Denotes the set of all agents.
Q Denotes the Q-factor.
Q̃ Denotes the approximate Q-factor.
µ Denotes the static policy.
µ̃ Denotes the approximate policy.
µ∗ Denotes the optimal policy.
π Denotes the set of policies for an episode.
Π Denotes the set of all possible policies.
J̃ Denotes the approximate cost function.
J∗ Denotes the optimal cost function.
T Denotes the Bellman Operator.
E Denotes the expectation.

xi

Chapter 1

INTRODUCTION

Reinforcement Learning (RL) is one of the major paradigms of machine learning and

artificial intelligence. It aims at the development of methods that can learn behaviors

to optimize the performance of an agent (e.g. a robot) at a task, by maximizing a

reward signal (or minimizing a cost signal) received from the environment. This form

of goal-driven learning paradigm is quite natural to Humans as it is based on the

interaction of an agent with its environment depending upon the stimuli received.

This is unlike other learning paradigms like supervised and unsupervised learning,

where learning is dependent on the collected data. These behaviors, also known as

policies, are defined by the controls or actions of the agent at various system states

of the environment. Most of the ideas in reinforcement learning have been compiled

in books [34],[12], and [35].

Another interesting aspect of RL is observed in the problems that require multiple

agents either due to the scale, complexity, or inherent nature (amenability) of the

environment itself. Examples could be forest fire/disaster management, search and

rescue, mechanical repair of gas pipelines, etc. All these applications require multiple

robots exhibiting some form of intelligent behaviors, for instance, surrounding a target

object in search and rescue problems, divide and conquer to manage the aftermath of

a nuclear disaster, etc., depending upon the state of the environment and objective

of the task. This sub-field of reinforcement learning which deals with the design of

algorithms that use multiple agents for solving an objective is termed as Multi-Agent

Reinforcement Learning (MARL). There are additional challenges to such problems

like large control and state space, communication, partial observation, stochastic

1

environments, etc. This work presents the methods specifically designed to solve

some of these challenges.

In Chapter 1 we present the general background and challenges of RL with a

special focus on MARL. Chapter 2 discusses the key ideas (using consistent mathe-

matical notations) in reinforcement learning which are essential in understanding the

methods discussed in the work. Chapter 3 introduces the our work on rollout based

methods, their taxonomy. and the key ideas that led to their development. Chapter

4 presents the three real-world problems, their detailed definition and the corre-

sponding experimental results on our multi-agent rollout variants. We also prensent

a comparison to the other existing methods. We conclude our discussion and posit a

future direction in Chapter 5.

1.1 Basic Elements of Reinforcement Learning

Figure 1.1: Reinforcement Learning Overview.

There are primarily two basic elements of Reinforcement Learning namely agent,

and an environment. The entire domain of RL works on the interaction between these

2

two elements as we show in figure 1.1. These basic elements further contain some sub-

elements and together they provide a general framework for all reinforcement learning

problems and hence it is important to discuss them here.

Environment is defined by a system that contains the basic building blocks of

the problem like a state (current situation), an interface for the agent to interact,

the manifestation of the task itself, ability to change its state depending upon the

external interactions or internal process. Additionally, it also refers to the world

in which our agent resides and defines the boundaries or limits to the execution of

actions. Mathematically, it is defined as a set of states that are affected both by

some internal known/unknown process and the interactions with the agent. The

objective of an agent is to use its controls or actions to reach a desired goal state in

the environment.

Agent refers to the actor responsible for solving the problem or achieving the

desired objective. It might be a computer, an actuator, a robot, or a virtual game

player. An agent is a complex entity that has four important sub-elements namely

policy, cost/reward, cost/value function, and optionally a model. We now discuss

them in detail.

Policy refers to the mapping of a state to action or control and this defines

the behavior of the agent. Although it is important to note here that it is not

necessary for the agent to know the actual state of the environment, for example

in partially observable Markov decision process (POMDP), the agents just have a

belief state which is a probabilistic estimation of the actual environment state. The

agent estimates the state (perfect or probabilistic) of the environment as observation

through the sensors and then uses the policy learned through the RL algorithm to

reach the goal. It is sufficient to say that the goal of any RL method is to learn an

optimal policy.

3

Cost/Reward is an important signal required to estimate the quality of the

learned policy. Generally, every state transition yields an associated reward or cost

(except the final state that has a terminal cost) that is determined by the agent based

on some pre-defined metric of the problem statement. For instance, in a search and

rescue scenario, the reward could be defined by the proximity to the lost person,

whereas in pipeline repair the cost could be defined by the number and the disrepair

of damaged sites. It is also important to note that reward and cost are essentially the

same signals with their sign reversed i.e cost = −reward. For the sake of simplicity,

we will now use cost during the scope of this work. Designing the cost signal, i.e.

defining the cost of a state transition is of fundamental importance in formulating an

RL problem.

Cost/Value Function defines the overall quality of the state by taking into

account the future course of states that can be reached from the state through the

policy. A state might have a high immediate cost but a low value of cost function

suggesting better suitability. The cost (also known as stage cost) helps to gauge

the immediate desirability of a state, whereas the cost function is used to determine

the long-term desirability. Another noteworthy difference is that cost is a part of

RL problem formulation whereas cost function is dependent on the algorithm used to

estimate it. It would be an understatement to state that the quality of an RL method

depends on the quality of its cost function estimation.

Model is an important but optional sub-element used for planning, that helps us

to predict the state transition of an environment in simulation. While there are some

problems where it may not be required, as the agent can learn through multiple trials

in the real environment, but in most practical applications a model is desired. Most

RL problems can be formulated as Markov Decision Processes (MDP), which will be

introduced and discussed in detail in the next chapter.

4

The agent enters the system and observes the so called initial state, then uses a

policy to reach the desired goal state in the environment. Once the desired state is

reached we terminate the execution of the agent and call this an episode.

1.2 Multi-Agent Reinforcement Learning

The multi-agent reinforcement learning framework is almost similar to the single-

agent counterpart except that the state and consequentially the cost function is not

only dependent on the policy of a single agent rather the policies of a set of agents.

Another way to formulate it is that the control component can be broken down to m

components, where m is the number of agents. Thus the actual state transition and

cost of the environment is dependent on the join control space that is exponential to

the number of agents. Here an agent has to optimize its cost function which is now

dependent on the policies of other agents. Additionally, some interesting scenarios

exist in MARL based on the type of tasks and agent behavior.

Co-operative scenario is probably the simplest and most common setting,

where the agents have a common shared cost and goal. Therefore the agents try

to optimize their local policies, in a way that brings them a step closer to the ob-

jective. The agents can have a local (private) cost which can then be averaged at

the global level, thus enabling a distributed setup. This forms the basis of the most

common sequential multi-agent MDP. Examples include search and rescue problems,

pipeline repair problems, etc.

Competitive scenario arises when there are multiple agents with conflicting

goals. This commonly arises in a lot of computer games and has been studied exten-

sively as two-player games. Such scenarios are typically modeled as zero-sum Markov

games. Here, one agent tries to maximize the cost while the other tries to do the

opposite. The optimum performance is reached at a reward of zero. This can be used

5

to develop robust controllers that can handle adversarial attacks.

Mixed scenario can arise out of the various combinations of both cooperative

and competitive agents. It can also arise in the cases when each agent has its own

goal, that may or may not be conflicting with others and is modeled as a general-sum

game.

1.3 General Challenges

We can summarize the challenges in reinforcement learning in two parts, the ones

common to almost all real-world RL problems, and the ones arising because of multi-

agent scenarios.

1.3.1 RL Challenges

The general RL challenges in real-world problems have been discussed in depth in

[18]. We present a summary of these challenges here.

1. Large State Space

One of the major challenges in reinforcement learning is the size and dimension-

ality of state space (possible situations). Any optimization algorithm operating

in a high dimensional state space suffers from the curse of dimensionality i.e.

the exponential rise of the number of states with an increase in state vari-

ables. This means that the exploration of state space becomes challenging. The

balance between exploration and exploitation is a central theme to almost all

reinforcement learning problems. We need our algorithm to explore the state

space to find favorable states but also to remember and exploit the already ex-

plored states with a low value of cost function. Higher-dimensional state-space

poses a big challenge in exploration and this motivates the use of approximate

6

methods that target sub-optimal solutions to the problems.

2. Environment Modeling

Another challenge in practical reinforcement learning is to model the real envi-

ronment. Modeling a real-world process may be difficult either because of the

complexity of the process or the high variability in the process itself might ren-

der its modeling impractical. Although not necessary in many cases, in general,

a model is required for multiple reasons including risky or harmful environments

like nuclear sites, non-reproducible environments like the aftermath of disasters,

resetting problems (to reset the experiment again for the next episode), to name

a few. But developing an accurate model of any real-world process requires a

lot of data and analysis, which is often not sufficient to yield a reliable model

for the planning phase of RL algorithms.

3. Re-Planning

Re-planning is a crucial aspect of a robust RL algorithm. Based on the new

information presented to the agent, it should be able to re-plan and adjust

its policy to reach the desired goal. But this is not a trivial task as it often

requires re-computations, which are costly and time-consuming. Re-planning is

also required in highly stochastic environments especially when the state space

is large and the environment is difficult to model. One of the very recent and

popular problems in the RL community is the Flatland Challenge [26], which

has been discussed in this work as it addresses the vehicle rescheduling problem

[22] (VRSP), which is essentially a re-planning problem.

4. Partial Observation and Stochasticity

Another issue with most real-world problems is partial observability. The agent

7

might not be able to observe the entire state of the environment due to sensory

or environmental limitations and in such cases has a probability distribution (or

a belief) over the possible states of the system. It is also possible for the system

to be stochastic, for instance, in the case of search and rescue the position

of the missing person might be stochastic due to aimless wandering. Another

big challenge associated with POMDP problems is the curse of history, which

will be discussed in chapter 2. Partial observation may also be related to non-

stationarity which is discussed in the next subsection. These challenges have

been explored in-depth in this work. The pipeline repair, and spider and fly

problems are examples of such systems.

1.3.2 MARL Challenges

The multi-agent nature of the problem, beings about some special challenges which

have been discussed in [39] and [18]. Here are some of the major challenges in the

field.

1. Large Control Space

One of the immediate repercussions of deploying any RL algorithm on multiple

agents is the exponential explosion of control space (possible controls). At every

time step, each agent is free to take a valid control out of its control set and

thus the joint control space grows exponentially to the number of agents. This

causes most MARL algorithms to be bad at scaling to a higher number of agents.

This calls for the development of sophisticated algorithms that can address this

problem. We develop such algorithms as a part of this work which is discussed

in chapter 3.

2. Multi-Dimensional Learning Goals

8

Unlike minimizing the long-term cost, efficiently as in single-agent RL, the

MARL agents might have objectives that are either multi-dimensional, con-

flicting, or at times vaguely defined. It is difficult to understand and even

define the central objective of agents in a MARL problem.

3. Non-stationarity

One problem that is quite commonplace in MARL is the notion of a non-

stationary environment due to the concurrent learning of policies by the agents.

To an agent, the environment might seem stochastic as every agent’s control

impacts the observation of others. This might cause the algorithm to produce

policies that are oscillatory and never converge to an optimal/sub-optimal so-

lution.

4. Communication Constraints

Since the agents should optimize the given task in a joint control space, they

need fast and reliable communication when deployed in the real world. This

is a crucial yet relatively less explored side of MARL algorithms that has been

addressed in a few of our methods discussed in chapter 3.

1.4 Summary

This chapter provides a brief theoretical overview of the basics of RL with a

special focus on the MARL. Our objective was to get familiar with the terminology

and thus fix a common vocabulary on which the entire work is based so that we can

progress towards a more formal definition of these concepts. From the next chapter,

we will introduce the key ideas behind reinforcement learning that are necessary to

understand the work.

9

Chapter 2

BACKGROUND

In this chapter we provide some background on the various methods and ideas in

reinforcement learning and discuss some of them in detail. We do so using the math-

ematical notation that would be introduced and then reused consistently throughout

the course of this work. We begin by first formulating the model of the environ-

ment and pose it as a Markov Decision Process (MDP). We discuss briefly the partial

observation case of MDP, also known as POMDP. We then delve into the basics of

Dynamic Programming (DP) algorithm, moving quickly to value and policy iteration

algorithms. We then introduce a key method that would form the base of this work

i.e. Rollout. Next we talk about various approximations to solve an MDP to get

sub-optimal solutions. We also discuss the Monte-Carlo, Policy Gradient and TD

methods, that have been very effective in solving some POMDP problems and have

been used as a comparison to our novel work. We end by discussing MARL, defining

the basic notations, theory, and some existing solutions like MADDPG and QMIX.

These topics have been carefully chosen as they are fundamental to the work presented

here. Fig. 2.1 presents the general taxonomy of various types of RL methods.

2.1 Markov Decision Processes

Most environments in RL literature can be formulated as a Markov Decision Pro-

cesses (MDP) i.e. the processes that follow Markov assumption. An MDP (shown

in figure 2.2) consists of a set of N 1 states S = {s0, s1, ..., sN}, with a well-defined

probability of transition pij(u) (i denotes state si and j denotes state sj) between the

1It is possible for N to be infinity, making it an infinite state MDP

10

Figure 2.1: A Non-exhaustive, but Useful Taxonomy of Modern RL Methods Adopted

from [1].

states. The agents interact with the environment at discrete time-steps (also known

as stages) denoted by k = 1, 2, 3, ..., K2, where K is the length of horizon. At each

step, the agents observe the environment and get the snapshot of their current state

xk
3 ∈ S. The agent can then choose an optimizing control uk ∈ Uk(xk) and incur a

cost gk(xk, uk, wk) ∈ G while transitioning to a new state xk+1 using a transition prob-

ability pij(uk) and disturbance wk. Here wk is a random variable characterized by the

distribution P (...|xk, uk). Figure 2.3 clearly depicts this definition. Mathematically,

state transition can also be written as:

xk+1 = fk(xk, uk, wk) (2.1)

2K determines the length of horizon of the algorithm i.e. time steps required to reach the goal
state. For some problems this might be infinite and they are termed as infinite horizon problems.

3Note that xk here denotes the state reached at time step k, it takes one of the states in set S.
For instance, it is possible for xk to be equal to xk+1.

11

Figure 2.2: An MDP with State Transition from Initial State s0.

Under Markov assumption, the current state encompasses all the necessary infor-

mation for the agent to make a decision, and thus the history of its interaction with

the environment does not matter. Mathematically,

P (xk+1|x0, u0..., xk, uk) = P (xk+1|xk, uk)

For a finite MDP 4 , the sets S, U and G are finite sets, and the random variables

gk, xk have a well defined discrete probability distribution.

We also define the additive cost J(x0, u0, ..., uK) of the entire trajectory starting

from the initial state x0 and under the control sequence {u0, ..., uK} as

J(x0, u0, ..., uK) = gK(xK) +
K−1∑
k=0

gk(xk, uk, wk) (2.2)

To get an optimal cost we must minimize this cost J over the set of all possible

controls. But in practice the optimization is not performed on control sequence

rather a sequence of functions or policies, π = {µ0(x0), ..., µK(xK)}, where π ∈ Π. As

4MDP is generally assumed to be stochastic but the deterministic version is just a special case
with no noise or disturbance wk.

12

Figure 2.3: State Transition in a Finite State, Finite Horizon MDP.

discussed in chapter 1, the policy is a function that maps a state to a control. This

formulation is more general and hence eq. (2.1) can be re-written as:

xk+1 = fk(xk, µk(xk), wk) (2.3)

Additionally, the cost function now is not just a sum, but an expectation of the

cost through the stochastic trajectories. Consequently eq. (2.2) transforms to:

Jπ(x0) = E
wk

{
gK(xK) +

K−1∑
k=0

gk(xk, µk(xk), wk)

}
(2.4)

J∗(x0) = min
π∈Π

Jπ(x0) (2.5)

Note here that we are now minimizing over a sequence of policies and not just a

single policy or controls, and this significantly increases the complexity of search space.

This propels the need for using Monte Carlo Simulation and approximate methods to

solve such problems. Now we increase the complexity of MDP by introducing a more

realistic and challenging case of partial observation.

13

2.1.1 Infinite Horizon Problems

Now we discuss problems that do not take a finite number of steps to reach the

goal state. In such problems either it is not possible to reach the absolute goal state

and hence the agent keeps on trying to be as close as possible to the target state,

one example could be a continuous state problem where the goal is to survive in the

environment for as long as possible. Other problems could be where the process of

the system causes the states to transition at each step thereby making the goal non-

stationary and hence the optimization process might go on infinitely. An example

of such a process is a pipeline problem, in which even after fixing the pipeline, it

might fall into disrepair after a few steps due to subsequent wear and tear. Since K

is infinite, we aim to minimize the total cost over infinite step using:

Jπ(x0) = lim
K−→∞ E

wk

{
K−1∑
k=0

αkg(xk, µk(xk), wk)

}
(2.6)

where α is the discount factor which lies in the interval (0, 1]. Alpha is known as

discount factor, as for α < 1 as it discounts the cost of the future states and puts

more emphasis on the cost of nearby states. Such settings are quite common in a

lot of real-world problems. We will elaborate more about such problems in future

sections.

2.1.2 Partial Observation

In the previous section, we have assumed that the agents can perfectly sense the

environment and form an accurate estimate of the state. But as we know from real-

world examples this is rarely the case. There are always some variables that are

hidden from sensors that may affect the state, alternatively, the limitations of sensors

might make it impossible to deduce the entire state of the system with certainty.

14

Such processes are what we call the Partially Observable Markov Decision Processes

(POMDP). Since the agent cannot fully observe the system, it observes a partial

information/observation zk ∈ Z with probability p(zk|si, uk). The objective of the

agent is to optimize overall controls given the observation history. Here history refers

to the sequence of observations zk and controls uk i.e. {z0, uo, ..., zk, uk, ...} and as the

observation history can be large (for instance infinite horizon problems), this causes

another significant challenge in POMDPs called the curse of history.

Mathematically speaking a POMDP introduces the notion of belief state bk which

is a probabilistic interpretation of the actual state of the environment. In particular

the belief state is a probability vector bk = {b0(s0), ..., bN−1(sN−1)}, where bk(si) is

the probability of the current state being si. Here it is not difficult to see that a

POMDP becomes intractable in an infinite or continuous state scenario. We will talk

about POMDP in detail in the next chapter, where we introduce our methodology.

2.2 Dynamic Programming (DP)

Since its introduction in the early 1950’s dynamic programming has become an

important optimization technique and also a computer programming method. It is

used widely in a variety of problems ranging from simple and tractable optimiza-

tions to complex and intractable ones. Consequently, it forms the basis for most RL

optimization methods. The algorithm is based on a simple idea of the principle of

optimality.

Principle of Optimality simply states that the tail of an optimal sequence should

be an optimal sequence for tail sub-problem. For RL this translates to, that given

an optimal control sequence {u∗0, ..., u∗K−1} and corresponding optimal state sequence

{x∗0, ..., x∗K−1} if we consider a sub-problem that begins at time k, whereby the optimal

cost to go from step k (tail sub-problem from k) to K − 1 given by

15

min
uj∈Uj(xj)

{
gk(x

∗
k, uk) +

K−1∑
j=k+1

gj(xj, uj) + gK(xK)

}
then the sub-sequence {u∗k, ..., u∗K−1} is an optimal sequence for this tail sub-

problem from k.

For a stochastic finite horizon MDP, the dynamic programming method is the

following:

Begin with:

J∗K(xK) = gK(xK), ∀xK

If we assume that:

J∗k (xk) = min
uk∈Uk(xk)

E
wk

{
gk(xk, uk, wk) + J∗k+1(fk(xk, uk, wk))

}
, ∀xk (2.7)

and u∗k = µ∗k(xk) minimizes this equation, then the set of optimal policy is given

by π∗ = {µ∗0, ..., µ∗K−1}.

This optimal control sequence π∗ is calculated an a minimal argument that gen-

erated this optimal cost. To construct the optimal sequence:

Begin with:

µ∗0(x0) = arg min
µ0(x0)∈U0(x0)

E
w0

{
g0(x0, µ0(x0), w0) + J∗0 (f0(x0, µ0(x0), w0)

}

and

x∗1 = f0(x0, µ
∗
0(x0), w0)

Next go forward, for k = 1, ..., K − 1, set

16

µ∗k(xk) = arg min
µk(xk)∈Uk(x∗k)

E
wk

{
gk(x

∗
k, µk(xk), wk) + J∗k (fk(x

∗
k, µk(xk), wk)

}
and

x∗k+1 = fk(x
∗
k, µ

∗
k(xk), wk)

Q-Factor Minimization

Q-Factor minimization also known as action-value minimization is an equivalent

form of the DP method, the only difference being that instead of minimizing the cost

function J∗k , we generate Q-factors for all combination of state-control pairs.

Mathematically, at step k

Q∗k(xk, µk(xk), wk) = E
wk

{
gk(xk, µk(xk), wk) + J∗k+1(fk(xk, µk(xk), wk))

}
(2.8)

With this definition the equation 2.7 for optimal cost function at step k can be

re-written as:

J∗k (xk) = min
µk(xk)∈Uk(xk)

Q∗k(xk, µk(xk), wk) (2.9)

One of the benefits of this reformulation is that we can get rid of the cost function

J completely and write the recursive definition of Q-factors as:

Q∗k(xk, µk(xk), wk) = E
wk

{
gk(xk, µk(xk), wk)+

min
µk+1(xk+1)∈Uk(xk+1)

Q∗k+1(xk+1, µk(xk+1), wk+1)

} (2.10)

The various forms of methodologies that arise out of this formulation are collec-

tively termed as Q-Learning and will be discussed later. One immediate benefit of

this method as you might see is that Q-factor minimization works on the expectation

of minimization over future Q-factors rather than minimization of multiple expecta-

tions. This is particularly useful in online methods in a model-free setting as Q-factor

can be estimated through multiple runs in the environment.

17

2.3 Value Iteration (VI)

Value iteration algorithm results from the DP formulation, that uses the DP

eq. (2.7) for iterative estimation of the value of each state. N iterations of such

minimization over these values yield the optimal control sequence. The VI algorithm

is based on the Bellman’s Equation (shown below) that holds for each state s ∈ S.

J∗(s) = min
u∈U(s)

E
w

{
g(s, u, w) + αJ∗(f(s, u, w))

}
(2.11)

alternatively in terms of Q-factors as

J∗(s) = min
u∈U(s)

Q(s, u) (2.12)

Many a times this equation is also written using a special symbol T , which is

called the Bellman Operator as follows:

J∗(s) = (TJ∗)(s) ∀s ∈ S (2.13)

We can thus, write the VI algorithm as:

18

Algorithm 1: Value Iteration Algorithm

1 Initialize the value of a state J(s) for all states s ∈ S and define a small

threshold θ > 0 for determining the accuracy of value estimation.

2 δ = +∞

3 while δ >= θ do

4 δ := 0

5 forall s ∈ S do

6 Jold(s) := J(s)

7 Q(s, u) := Ew

{
g(s, u, w) + αJ(f(s, u, w))

}
8 J(s) := minu∈U(s) Q(s, u)

9 µ(s) := arg minu∈U(s) Q(s, u)

10 δ := max(δ, ‖Jold(s)− J(s)‖)

11 end

12 end

It is easy to see that this algorithm scales with the number of states of a system,

which is exponential in system variables. So it is not surprising that VI is unsuitable

for problems with very large state spaces. It is also important to note that this

equation is not dependent on the horizon K and for finite-horizon problems, we can

set α to 1.

2.4 Policy Iteration (PI)

In this section, we introduce the idea of Policy Iteration (PI), an effective and

alternative method of reinforcement learning that works on the principles of policy

evaluation and policy improvement. We start with a random stationary policy µ0

and generate a sequence of improved policies µ1, µ2, ... by the iterative application

19

of policy evaluation and improvement. Under the exact scenario, it has convergence

guarantees to optimal policy µ∗.

Policy Evaluation deals with evaluating the cost of each state by the application

of the Bellman’s Equation using a stationary policy. For a policy µi (i.e. the policy

obtained at ith policy iteration) this can be written as:

Jµi(s) = E
w

{
g(s, µi(s), w) + αJµi(f(s, µi(s), w))

}
(2.14)

Like the VI algorithm, to find Jµi(s), we use multiple iterations to converge to the

final value of the policy µi.

Algorithm 2: Policy Evaluation Algorithm

1 For policy, µi, initialize the value of a state J(s) for all states s ∈ S and a

small threshold θ > 0 for determining the accuracy of value estimation.

2 δ = +∞

3 while δ >= θ do

4 δ := 0

5 forall s ∈ S do

6 Jold(s) := J(s)

7 J(s) := Ew
{
g(s, µi(s), w) + αJ(f(s, µi(s), w))

}
8 δ := max(δ, ‖Jold(s)− J(s)‖)

9 end

10 end

Policy Improvement follows a minimization over all controls on the eq. (2.14)

to find a better and improved policy. Hence we can write:

µi+1(s) = arg min
u∈U(s)

E
w

{
g(s, u, w) + αJµi(f(s, u, w))

}
(2.15)

20

These two processes are repeated in an alternating iterative fashion (see Fig. 2.4) till

convergence i.e. till Jµi+1 = Jµi

Figure 2.4: Policy Iteration Starting from Initial Policy µ0.

2.5 Approximations

We now revisit the standard DP equation, but posit that its direct application

is intractable for most real-world stochastic and POMDP like problems. So it is

imperative to look for some approximate and sub-optimal solutions for solving such

optimizations. There are two major types of such approximations namely value space

and policy space approximations 5 . We will now discuss them one by one.

2.5.1 Approximation in Value Space

Looking at the DP equation (2.11) it is quite intuitive that the intractability arises

out of one or more of the three major operations in the equations. As shown in Fig.

2.5, we can approximate the three operations of minimization, expectation, and the

5There is also another type of approximations like problem space and feature space but omit
their discussion for the scope of this work.

21

Figure 2.5: The Three Approximations in Value Space.

cost function J∗.

Approximation of minimization is suitable for problems with large control spaces,

where it is not feasible to look into all the controls. Such type of approximation has

been done in a few methods [38], which will be discussed later.

Approximation of expectation arises quite frequently in most simulation-based

algorithms including the ones developed in this work. In real-world environments,

the disturbance wk could be continuous and hence the expectation could be carried

out by Monte-Carlo methods. We would discuss such methods in detail in section

2.6.

Approximation of optimal cost also known as approximate cost function denoted

by J̃ is one of the most widely used approximation methodologies. One way to ap-

proximate the cost function is using a neural network, which is known to be universal

approximator [16],[19]. It is appropriate to say that most of the methods in reinforce-

ment learning (including ours) use some form of cost function approximation. One

additional benefit of using J̃ instead of J∗ is that we just need a single approxima-

22

tor J̃ instead of J̃1, ..., J̃k, ..., J̃K for a K step horizon problem. This is particularly

important for infinite horizon cases. Mathematically, we can write

J̃ = g(..., θ)

where g is the approximator function and θ is a set of parameters governing the

output of the function. If we use a neural network as the approximator then θ would

be the weights that can be updated using back-propagation by minimizing the root

mean square error (RMSE) loss between actual optimal cost and the one predicted

by the approximator.

Approximation in q-factor space is also a type of value space approximation, but

instead of the cost of a state, we approximate the action-value or q-factor Q̃. This

might be computationally desirable in a lot of cases, especially because we get away

with the expectation in the later stages. In order words, we combine the expectation

and value approximation in one step. This forms the basis of one of the major RL

methodology called Q-learning, which will be discussed in section 2.7.1.

2.5.2 Approximation in Policy Space

Another type of approximation quite common in the infinite horizon cases is the

approximation in policy space. Here we use a policy from a class of parameterized

policies (which may be restricted). For instance, we can introduce a class of policies

parameterized by variable θk

µ̂k(xk, θk) ∀k ∈ 0, ..., K − 1

We can estimate or learn the variable θk through some learning processes similar

to the value approximator. In a finite control space, this approximator can be a

23

neural network classifier that classifies the state into one of the controls based on the

parameters learned through the application of back-propagation (through gradient

descent like methods) by minimizing the miss-classification rate (cross-entropy loss).

To put it simply, we learn the optimal mapping between state and optimal control in

an approximate setting using a machine learning classifier.

One benefit of this approximation over the value space approximation is that if

we learn the policy, we can omit the minimization while running the approximate

implementation of the policy. This makes the policy space approximation suitable for

running the learned sub-optimal policy, where we would want to avoid online costly

minimization (cases of stationary optimal policies). Fig. 2.6 shows that the policy

space approximation can be viewed as a controller that has been learned using some

machine learning technique.

Figure 2.6: Approximation in Policy Space Emulates a Controller.

2.5.3 Rollout and Policy Improvement

In this section, we try to tie down both approximation in value and policy space

into an ingenious methodology. We postulate that both of these methodologies can

be used to derive the other. This alternating process is the main idea behind rollout,

24

Figure 2.7: Rollout with One-Step Lookahead and Terminal Cost Function Approxi-

mation.

which we will then discuss in detail.

Generation of Policies from Values can be done by minimization of expected

cost over all possible controls. Let us assume we have a cost function approximation

J̃ for all states si ∈ S. Then we can derive a sub-optimal control policy at stage k,

µ̃k as:

µ̃k(xk) = arg min
uk∈U(xk)

E
wk

{
gk(xk, uk, wk) + J̃k+1(fk(xk, uk, wk))

}
(2.16)

Alternatively, if we have approximate q-factors Q̃k(xk, uk), then we can write its

approximate policy as:

µ̃k(xk) = arg min
uk∈U(xk)

Q̃k(xk, uk) (2.17)

It can be seen that it is quite trivial to move from approximation in value or

q-factor space to policy space.

25

Generation of values from policies by running multiple Monte-Carlo simu-

lations using the policy π, especially in stochastic environments. At stage k, each

simulation also known as a trajectory can be run to get the cost, and then an expec-

tation can be taken over multiple such trajectories to find an approximate cost from

that stage. We can say mathematically,

J̃k(xk) = E

{
Jk,π(xk)

}
and,

Jk,π(xk) = gk(xk, µk(xk), wk) + Jk+1,π(xk, µk(xk), wk) where µk ∈ π

(2.18)

Notice here that in the case of an infinite horizon problem it is not possible to

continue simulating the trajectories infinitely. Hence they are usually truncated after

some stages (say stage t as shown in Fig. 2.7) and are replaced by an approximate

terminal cost. This will be elaborated on in the next section.

Generation of new policies from values generated from policies - Rollout

is a method that at stage k uses an l-step lookahead, in combination with the cost of

the tail subproblem from k + lth stage to find the appropriate control for the stage.

Mathematically, this can be written as:

µ̃k(xk) = arg min
uk,...,uk+l−1

E

{
k+l−1∑
i=k

gi(xi, ui, wi) + J̃k+l(xk+l)

}
(2.19)

This cost approximation from the k + lth stage can be computed using a base

policy (or base heuristic), π, and estimating the cost using multiple Monte-Carlo

trajectories. Hence, we can rewrite Eq. (2.19) as:

µ̃k(xk) = arg min
uk,...,uk+l−1

E

{
k+l−1∑
i=k

gi(xi, ui, wi) + Jk+l,π(xk+l)

}
(2.20)

This resulting policy π̃ = {µ̃0, ..., µ̃K−1} is called a rollout policy. If these heuristics

follow the properties of sequential consistency and sequential improvement, we are

26

guranteed to find that the rollout policy improves upon the base policy (defined by

the base heuristic) i.e.,

Jk,π̃(xk) <= Jk,π(xk) ∀xk ∈ S

The proof and the elaborate discussion can be found in [5] (Section 5.1.2), [14], and

[8]. Since most greedy policies follow these properties, we can use rollout to improve

upon the naive policies and get intelligent behaviors in the next iteration. This key

idea forms the basis of the entire work. This property of rollout also makes it an ideal

companion of one of the previously discussed algorithms i.e. policy iteration. We can

use rollout with policy iteration to create a basic framework that can be applied to a

plethora of reinforcement learning problems. We defer this analysis for now and will

again pick it up in Chapter 3.

2.6 Monte Carlo (MC) Methods

We will talk about one of the approximation ideas that utilize a simulator of the

environment to estimate the cost function Jπ using a fixed arbitrary policy π by

running multiple simulated trajectories from the initial state. We already introduced

this idea in section 2.5.3. We showed that the cost can be estimated using Eq. (2.18)

which is:

J̃k(xk) = E

{
Jk,π(xk)

}
and,

Jk,π(xk) = gk(xk, µk(xk), wk) + Jk+1,π(xk, µk(xk), wk) where µk ∈ π

Typically, our objective here is to estimate the cost of state si ∈ S by running

multiple simulated trajectories passing through the state si known as a visit to si.

We average the cost returns through these visits and it can be shown that all these

27

estimates converge to J̃π. In a similar fashion, we can also use MC methods to

estimate the q-factors or action values Q̃π(si, u). We can also use MC methods with

policy iteration algorithm (alternating between policy evaluation and improvement)

which is referred to as Monte Carlo Control.

Monte-Carlo methods are also amenable to parallel computing. This property

makes them highly suitable for large problems as multiple trajectories can be simu-

lated in parallel on a distributed cluster of machines. This method can also be com-

bined with other methods like DP, Temporal-Difference (TD) Learning etc. These

properties are the reason for using this method in our work on rollout methods.

However, one of the major challenges in RL and also with MC Control algorithms

is the trade-off between exploration and exploitation. We want to find new optimal

control and states but also want to exploit the already found optimal controls. Most

of the MC Control algorithms use ε-greedy policies, which means that most of the

time they select the best control (minimum cost control) but with probability ε they

select any action randomly. More in-depth study and discussion can be found in [34].

In general MC methods work well for problems ranging from small state spaces to

large ones like POMDP, but they do not provide any guarantees of performance. In

the domain of POMDP solvers, there have been two major developments POMCP

[30] and DESPOT [38] that use Monte-Carlo Tree Search (MCTS) to find optimal

policy. These algorithms try to strike a favorable trade-off between exploration and

exploitation in large POMDP search spaces, while also pruning the large state spaces.

2.6.1 POMCP

We will now discuss Partially Observable Monte-Carlo Planning (POMCP) [30]

which is an algorithm that works on large POMDP by using Monte-Carlo tree search

(MCTS) for belief update. The method uses sampling to break the curse of dimen-

28

sionality i.e. instead of exploring all state transitions focus on the best regions through

efficient sampling. It also handles the curse of history by sampling the Monte-Carlo

trajectories and using a black-box simulator of the environment.

The method uses MC simulation to evaluate the nodes of the search tree using

the sequential best-fit order. The work claims that if the belief state is correctly

chosen for a problem, this simple process can converge to optimal policy for any finite

horizon POMDP. We now present the algorithm 6 as it is in [30].

Procedure ROLLOUT(s, h, depth)

Input: search tree h, state s, depth

if γdepth < ε then
return 0

a ∼ πrollout(h, .)

(s′, o, r) ∼ G(s, a)

return r + γ.ROLLOUT (s′, hao, depth+ 1))

Algorithm 3: Partially Observable Monte Carlo Planning

Input: search tree h

while Timeout() do

if h == empty then

s ∼ I

else

s ∼ B(h)

end

SIMULATE(s, h, 0)

end

return arg maxb V (hb)

6This ROLLOUT procedure used has a different meaning than what we use in the scope of this
book. This is akin to the base policy used in this work, which is drastically different from our use
of the word.

29

Procedure SIMULATE(s, h, depth)

Input: search tree h, state s, depth

if γdepth < ε then
return 0

if h /∈ T then

forall a ∈ A do

T (ha)← (Ninit(ha), Vinit(ha)), φ)

return ROLLOUT (s, h, depth)

a← arg maxb V (hb) + c
√

logN(h)
N(hb)

(s′, o, r) ∼ G(s, a)

R← r + γ.SIMULATE(s′, hao, depth+ 1))

B(h)← B(h) ∪ {s}

N(h)← N(h) + 1

N(ha)← N(ha) + 1

V (ha)← V (ha) + R−V (ha)
N(ha)

return R

Note here that the algorithm uses different notations that are used in this work.

The Monte-Carlo Tree is represented as h, with the node as T , belief state as B,

observation as o, controls/actions as a, and reward (instead of cost) as R, the value

(instead of cost) function is given by V . The works consider each node of the tree

as a multi-armed bandit and utilize UCT algorithm [20] to improve upon the greedy

selection in MCTS. In particular, the controls are chosen by the use of the UCB1

algorithm [3]. So, N(h) and N(h, a) which denote the visitation count of states, are

used to control the exploration vs exploitation trade-off using the equation:

Q
⊕

(s, a)← Q(s, a) + c

√
logN(s)

N(s, a)

30

Belief updation is performed by choosing Kalman filter particles instead of

a closed form belief update. The algorithm performs well in POMDP games like

POCMAN (partially observable version of PACMAN), battleship and rocksample.

2.6.2 DESPOT

DESPOT [38] (an acronym that stands for Determinized Sparse Partially Ob-

servable Tree) was introduced as an improvement over its predecessor POMCP. In

particular, the work aimed to improve the performance of MCTS by eliminating the

UCT based exploration in POMCP and replacing it with a search on a sparse tree con-

taining belief nodes reachable under K sampled observation scenarios. The method

works by pruning the observation space to improve the running time of MCTS from

O(|A|D|Z|D) to O(|A|DK) where D is the depth of the tree, A is action space, Z

is the observation space. They also provide some cost guarantees that depend on

the value of chosen parameter K. The main algorithm known as AR-DESPOT uses

two bounds U(b) and L(b) to facilitate the search at each node. The objective is to

choose an observation that maximizes the weighted excess uncertainty WEU(b′) at

each child node b′. If φb denotes the set of sampled observations at b, then

WEU(b′) =
|φb′ |
|φb|

excess(b′)

where excess(b′) = U(b′) − L(b′) − εγ−∆(b′). Here ∆ is the depth of tree starting

from b under policy π, whereas ε and γ are constants. The algorithm presented in

[38] is shown below.

31

Procedure RUNTRIAL(b,T)

Input: search tree T , belief node b

if ∆(b) > D then

return b

if b is a leaf node then

expand b one lever deeper and insert all new nodes into T as children of b

a∗ ← arg maxa∈A U(b, a)

z∗ ← arg maxz∈Zb,a∗ WEU(τ(b, a∗, z))

b← τ(b, a∗, z∗)

if WEU(b) ≥ 0 then

return RUNTRIAL(b, T)

else

return b

Procedure BUILDDESPOT(b0)

Input: initial belief node b0

Sample a set φb0 of K random scenarios for b0.

INSERT b0 into T as a root node.

while time permitting do

b← RUNTRIAL(b0, T)

forall n ∈ nodes on path from b to b0 do

backup U(n) and L(n)

return T

32

Algorithm 4: Anytime Regularized - DESPOT

1 Set b0 to inital belief.

2 while TRUE do

3 T ← BUILDDESPOT (b0)

4 Computer an optimal policy π∗ for T using DP eq. (4) in [38]

5 Execute the action a of π∗

6 Receive observation z.

7 Update the belief b0 ← τ(b0, a, z)

8 end

The belief updating step is similar to POMCP. The experiments were performed

on RockSample problem with favorable results. We used both these methods for

comparison on our POMDP sequential pipeline repair problem. We suggest the reader

go through [38] for further study of this method.

2.7 Temporal-Difference (TD) Learning

Now we introduce a popular model-free RL paradigm that has been successful

in robotics, learning to play Atari games, and was the first program to play the

game of Backgammon. The Temporal-Difference method was used to develop the

program TD-Gammon [36]. It uses the combination of both Monte-Carlo and DP

methods. Like MC methods, TD can learn with its interaction with the environment,

from experience (think of the real world as a simulator), whereas like DP, it updates

estimates using previously known estimates of using a mechanism called bootstrapping.

To update its cost function estimate Jπ of a learned/arbitrary policy π for state

xk, the process is not followed till termination, rather only the next few stages (like

truncation in rollout). In its simplest form, known as TD(0) or one-step TD the

33

update rule is written as:

Jπ(xk) = Jπ(xk) + η

[
g(xk, µk(xk), wk) + αJπ(fk(xk, µk(xk), wk))− Jπ(xk)

]
, µk ∈ π

(2.21)

Here η is a step size, which makes it a constant-η MC and the rest symbols have

their usual meaning. g(xk, µk(xk), wk) +αJ(f(xk, µk(xk), wk)) is known as TD target

as it is known only after execution of the policy. The coefficient of η in eq.(2.21) is

called TD error since it measures the error in estimates in relation to the previous

known estimate.

One of the benefits of using TD methods is that it is an online method, for which

modeling an environment is not a necessity, unlike both MC and DP methods. Also,

it is known that both MC and TD methods converge asymptotically to the correct

cost functions for a policy [34].

2.7.1 Q-Learning

Q-learning is an off-policy (does not require any arbitrary policy) reinforcement

learning algorithm that uses the TD method to update the control-value or the Q-

factors of state control pairs i.e. Q(si, u) ∀u ∈ U(si), si ∈ S. This algorithm has

convergence guarantees to optimal q-factor Q∗, provided that the q-factors are up-

dated for all pairs. The algorithm is presented below.

34

Algorithm 5: Q-learning Algorithm (Minimizing Cost)

Input: Step size η, small ε > 0, K =terminal stage

Initialize Q(si, u) ∀u ∈ U(si), si ∈ S arbitrarily except QK(, .) = 0

while True do

k = 0 while k < K do

Choose uk from U(xk) using policy derived from Q (eg. ε-greedy)

Take control uk, observe cost gk

xk+1 = fk(xk, uk, wk)

Q(xk, uk)←

Q(xk, uk) + η[gk(xk, uk, wk) + αminu∈U(xk) Q(xk+1, u)−Q(xk, uk)]

k = k + 1

end

end

2.7.2 Deep Q-Network (DQN)

Figure 2.8: A DQN as Used in [24].

With the success of Deep neural networks, it has become imperative to use them

35

as approximation architectures for various forms of learning methods described be-

fore. We had already introduced their applicability in both value and policy space

approximation in sections 2.5.1 and 2.5.2 respectively. DQN was introduced in [24]

[25] and have been particularly successful in playing Atari 2600 games using the raw

pixels as inputs, intending to reach human-level performance.

There are two techniques that DQN uses for learning: experience replay and target

networks. Experience is defined as a tuple (xk, uk, gk, xk+1). Similar to Q-learning at

step k, the algorithm selects an ε-greedy control by looking at the q-factors and

the entire experience is saved in a replay memory buffer that can store millions of

transitions. Then a neural network as shown in Fig. 2.8 is trained on this data by

using stochastic gradient descent to minimize the following loss:

L(θ) =

(
gk+1 + α min

u∈U(xk)
Q̃θ̄(xk+1, u)− Q̃θ(xk, uk)

)2

(2.22)

where θ denotes the parameters of a deep neural network and θ̄ are the parameters

from the previous iteration. In case of the Atari games the state xk was comprised

of the sequence of image-control pairs denoted by xk = im0, u0, ..., uk−1, imk. Also,

preprocessing is performed by the application of function φ which is then fed to the

neural network.

We now present the algorithm as shown in [24].

36

Algorithm 6: DQN training with Experience Replay (Minimizing Cost)

Input: Discount factor α, small ε > 0, K terminal stage, E episodes.

Initialize replay memory buffer D to capacity N

Initialize Q̃θ with random weights.

while episode < E do

k = 0

Initialize sequence x0 = im0 and pre-processed sequence φ0 = φ(x0)

while k < K do

Choose uk from U(xk) randomly with probability ε

otherwise select uk = minu∈U(xk) Q̃(φk(qk), u; θ)

Take control uk, observe cost gk and image imk+1

xk+1 = xk, uk, imk+1 and pre-process φk+1 = φ(sk+1)

Store transition/experience (φk, uk, gk, φk+1) in D

Sample a random mini-batch of experiences (φj, uj, gj, φj+1) from D

Set yj =

gj for terminal φj+1

gj + αminu′ Q̃(φj+1, u
′; θ) otherwise

Run SGD on loss (yj − Q̃(φj, uj; θ)
2

k = k + 1

end

episode = episode+ 1

end

2.8 Policy Gradient Methods

Policy gradient methods are a family of approximate methods in policy space,

developed for model-free reinforcement learning. Lately, these have been quite suc-

cessful in various tasks including but not limited to Atari games, simulated robotics

37

environments. Their salient feature is that they avoid dealing with cost functions

of the state and hence can scale well to large state spaces especially since the policy

space has been approximated. As discussed in section 2.5.2, we use parameters vector

θ ∈ Rd′ to approximate the policy π̃(u|si, θ) such that at stage k we can write:

π̃(u|si, θ) = µ̃k(xk, θ) = P (uk = u|xk = si, θk = θ) (2.23)

where u ∈ U(xk), si ∈ S. If the control space is discrete then we can model the

probability distribution in eq. (2.23) as a softmax function i.e.

π̃(ui|si, θ) =
eh(si,ui,θ)∑|U |
j=0 e

h(si,uj ,θ)
(2.24)

which h is an action-preference function which could be linear/non-linear to the

input features features. For the linear case we could write:

h(si, ui, θ) = θTφ(si, ui)

Where φ ∈ Rd′ is an input feature vector. There can be three benefits of such

formulation, the first being that we can reach a deterministic policy, unlike ε-greedy

methods. The other is that softmax could potentially allow us to choose an action

based on the probability distribution, which might be better for exploration in im-

perfect scenarios.

But there is a more important benefit of such formulation, the one that makes

this methodology possible. The softmax function is differentiable and can be used to

develop deep artificial neural network classifiers. For differentiable functions, we can

define the gradient of the policy approximation as

∇π̃(ui|si, θ)

38

We now present the MC Policy Gradient control for policy π as derived in [34].

Algorithm 7: REINFORCE: MC Policy Gradient Algorithm

Input: Step size η > 0, a differentiable policy π̃(u|s, θ)

Initialize θ policy parameter

while True do

Generate an episode x0, u0, gk, ..., xK−2, uK−2, gk−2, xK−1, gK−1

k = 0

while k < K do

G =
∑K−1

j=k+1 α
j−k−1gj

θ = θ − ηαkG∇ ln π̃(xk|uk, θ)

k = k + 1

end

end

2.8.1 Actor Critic Framework

Figure 2.9: Actor-Critic Framework as Shown in [33].ˇ

39

The actor-Critic framework arose out of the ideas of both Policy Gradient and TD-

methods. As the name suggests it consists of two components, the actor represents

the parameterized policy as defined by eq. (2.24). The actor uses the parameters to

approximate the policy, is used to select controls given the system state. The critic

on the other hand is a cost function approximator, that uses TD-error as defined by

equation

δTD = gk + αJπ̃(xk+1)− Jπ̃(xk) (2.25)

to evaluate and improve the performance of the actor using the update equation

below:

θ = θ − ηαkδTD
∇π̃(xk|uk, θ)
π̃(xk|uk, θ)

(2.26)

Fig. 2.9 shows the architecture of actor-critic methods. There are two potential

benefits of actor-critic methods over TD and Policy Gradient. They require minimal

computation on control selection as unlike TD we don’t need to update q-factors for

all possible state-control pairs. Also, like PG methods, we can have a probabilistic

action selection and a tendency to converge to deterministic policies. We now direct

the reader to [34] for further analysis on this framework.

2.9 Multi-Agent Reinforcement Learning Algorithms

We now part with general RL and formally introduce the MARL paradigm. We

already discussed that for MARL the MDP’s are generalized to Markov games.

A Markov game is defined by a tuple (M,S, {U `}`∈M , P, {G`}`∈M , α). Let us

assume there are m number of agents, then the M = [1, ...,m] denotes the set of

m > 1 agents, S denotes the state space observed by all the agents, control u consists

40

Figure 2.10: Illustration of Markov Games.

of m components, i.e. u = (u1, ..., um). Here each control component u` belongs to a

finite set U `, which makes the control space a Cartesian product U1×U2× ...×Um.

Also, P : S × U × S → [0, 1]. The cost incurred at each stage by agent ` is given

by G` : S × U × S → R. Note the cost is dependent on the joint control space and

not just individual control space of an agent. This coupling introduces additional

challenges which were discussed in section 1.3.2. Fig. 2.10 shows the general Markov

game. There is a detailed theory on these concepts which has been discussed in [39].

We will now discuss a few MARL algorithms relevant to this work.

2.9.1 Multi-Agent Deep Deterministic Policy Gradient (MADDPG)

MADDPG [23] is an actor-critic-based learning algorithm for MARL that aims to

mitigate the challenges associated with MARL. The Q-learning-based methods suffer

from non-stationarity whereas the policy-gradient methods fail to capture the vari-

ance that grows with the number of agents. To mitigate this actor-critic framework

has been adapted to learn from the policies of other agents while successfully learning

the policy that requires multi-agent coordination.

41

This work extends the DDPG framework, which utilizes a deep neural network

for both actor and critic. The actors work locally and keep an estimate of the policies

of other agents, the critic on the other hand could be centralized or decentralized

depending upon the access to the global information. It is the centralized critic, that

can essentially help agents develop coordination behavior during the training phase

of the algorithm. Fig. 2.11 shows the training process. It can be seen that the actors

are used only during the execution, whereas the critic is used to train the actors.

Figure 2.11: Illustration of MADDPG as Shown in [23].

2.9.2 QMIX - Monotonic Factorization of DQN for MARL

QMix [28] introduces a way to breakdown the Q-factors learned by a centralized

DQN into individual agent DQN. This can be achieved in problems that follow the

monotonicity property i.e.

42

∂Qtot

Q`
> 0 ∀` ∈M (2.27)

Another way to put this is that the problem follows the following equation:

arg min
u∈U(s)

Qtot(s, u) =

(
arg min

u1∈U1(s)
Q1(s, u1), ..., arg min

um∈Um(s)
Qm(s, um)

)

For such problems, they introduced a special type of neural network called a

mixing network, which takes in the q-factors from all m local DQN’s and learns their

monotonic mixing function by limiting the weights of the network to be non-negative.

This is shown in Fig. 2.12. Note here τ is a pre-processed state si and o denotes the

observation.

Figure 2.12: Illustration of QMIX as Shown in [28].

43

2.10 Summary

In this chapter, we formally introduce all basic algorithms that are important to

understanding the algorithms, experiments, and results of this work. Note that the

list of the algorithm is not exhaustive and it is possible that some major paradigms

are not covered but that is because of their irrelevance to the work presented here. In

the next section, we will talk about our methodology in detail and it will frequently

require some of the concepts of partially observable, infinite horizon, stochastic DP

problems, the MC methods, and Approximations discussed in this chapter.

44

Chapter 3

ROLLOUT METHODS

The rollout is an algorithm that utilizes an l-step look-ahead followed by a cost

function approximation using a given base policy π to choose a control that minimizes

the cost function, given the state (exact or partial) information and MDP parameters

of the environment. This method has cost improvement properties and hence is then

used in conjunction with approximate policy iteration scheme, using an approximation

in policy and value space (use of neural networks). Our methods in this work were

developed for infinite horizon discounted dynamic programming problems with finite

state and control space and partial state observations. Although as we will see in the

experiments section, they apply to a broader class of reinforcement learning problems.

In this chapter, we present our methods [14],[15] as they were developed by building

upon the ideas in the book [5].

We begin by revisiting our discussion on Partially Observable Markov Decision

Processes (POMDP) in section 2.1.2. Recall that in absence of the perfect state

information, we need to convert our problem into a perfect state information problem

with the state represented as belief state b = (b(s0), ..., b(sn)), where si ∈ S and

b(si) is the conditional distribution of state si given the prior history of observations

(z0, u0, ..., zk, uk), where zk ∈ Z. It is a known fact that b is a sufficient statistic that

can replace the history i.e. optimal controls can be taken with the knowledge of b.

Furthermore, we can generalize this belief state b to a feature state y which sub-

sumes b.The reason for choosing y is that it can be enriched with additional infor-

mation i.e. in addition to b, we can include a set of features that may be important

to solving a problem. For instance the position of each agent in a multi-agent sce-

45

nario. We also assume that this y can be generated in a sequentially using a feature

estimator F (y, u, z) i.e.

yk+1 = F (yk, uk, zk) (3.1)

The benefit of using y instead of b is that though the optimal policies arising out

of b and y would be the same, y might facilitate the generation of better sub-optimal

policies owing to the additional information. Additionally, the feature space y can

help in achieving distributed computation using state-space partitioning as discussed

in section 3.1.1.

Recall the equation 2.12, which states the optimal cost is given by the application

of Bellman Operator T on the state s. Since, y is the sufficient statistic we can write:

(TJ)(y) = min
µ∈M

(TµJ)(y) (3.2)

(TµJ)(y) = ĝ(y, µ(y)) + α
∑
z∈Z

p̂(z|by, µ(y))J(F (y, µ(y), z)) (3.3)

where by is the belief state corresponding to feature state y, Tµ is the Bellman

Operator under policy µ, M is the set of all stationary policies and ĝ denotes the

expected cost which can be calculates as:

ĝ(y, u) =
N∑
i=1

by(si)
N∑
j=1

pij(u)g(si, u, sj) (3.4)

p̄(z|by, u) is the conditional probability that we observe z under belief by and

control u, F as we already explained is the feature estimator.

As we discussed in section 2.5.1, we can introduce value space approximation

in this formulation i.e. use an approximate estimate of cost J̃ instead of J . The

sub-optimal policy under this approximation can then be written as

46

µ̃(y) ∈ arg min
u∈U

[
ĝ(y, u) + α

∑
z∈Z

p̂(by, u)J̃(F (y, u, z))

]
(3.5)

This equation is for a one-step lookahead scheme, but in an infinite horizon case,

we could go for a more general l-step lookahead, where J̃ is the cost function of some

base policy. We have already discussed this in our discussion of the rollout in the

previous chapter (see Section 2.5.3).

3.1 Rollout and Approximate Policy Iteration (API)

Figure 3.1: Illustration of POMDP Solver as Shown in [14].

We now focus our discussion on the pure form of rollout algorithm, wherein the

cost function J̃ is the cost function of a known policy µ, called the base policy and its

value J̃(y) = Jµ(y) which could be obtained in case of infinite horizon problems by

running a Monte-Carlo simulator of the system model (see Fig. 3.1) from y (which

subsumes by), under policy µ, using feature estimator F to some truncated horizon

state ȳ (which is reached after K steps) where we can use a terminal cost function

approximation Ĵ(ȳ) to yield the final cost of that simulated trajectory. Under a

stochastic system, we would run multiple such trajectories to get an estimated cost

47

of a rollout control. Once we have the estimated cost of all possible controls, we can

choose the control that minimizes the cost using eq. (3.5). This was introduced in

2.5.3 and Fig. 2.7 illustrates the method and we now present the algorithm.

Procedure ROLLOUT(y, µ, l = 1,K, Ĵ , α)

1 if l == 0 then

2 run MC simulation using T on µ

3 return TKµ Ĵ

4 else

5 Set ũ arbitrarily

6 J̃ = +∞

7 for u ∈ U do

8 ĝ =
N∑
i=1

by(si)
N∑
j=1

pij(u)g(si, u, sj)

9 t = 0

10 for z ∈ Z do

11 p = p̂(z|by, µ(y))

12 t = t+ p ∗ROLLOUT (F (y, µ(y), z), µ, l − 1,K, Ĵ , α)

13 J = ĝ + αl ∗ t

14 if J < J̃ then

15 J̃ = J

16 ũ = u

17 return (ũ, J̃)

Now we present without proof two error bounds associated with this methodology.

Let us assume µ̃ is the rollout policy generated by the application of the above-

mentioned method. Then for a general l-step lookahead scheme, with truncated

48

horizon after K stages, we have

||Jµ̃ − J∗|| ≤
2αl

1− α
||TKµ Ĵ − J∗|| (3.6)

where TKµ Ĵ is the result of applying the Bellman operator Tµ, K times for policy

µ and || · || is the sup norm on the space of bounded functions the feature state y.

This implies the fact that the bound on the performance of rollout policy improves

with the length l of lookahead.

Additionally, we have

Jµ̃(y) ≤ Jµ(y) +
2αl−1

1− α
||Ĵ − Jµ|| ∀y (3.7)

which implies that if Ĵ (terminal cost function approximation) and Jµ are close

then the rollout policy µ̃ improves upon the base policy. The proofs and the detailed

discussion can be found in [5] (Section 5.1.2).

With these guarantees, the rollout can be used with policy iteration to obtain a

method that consists of repeated rollout for policy improvement, and thus PI can be

viewed as a perpetual rollout process. The idea is to save the rollout policy of the

previous iteration, and use it as a base policy for the next iteration. For problems

with large state spaces, we can use the approximation power of neural networks

and supervised learning to obtain an approximation in policy space which has been

discussed in 2.5.2. Recall that we used ˆµ(., θ) to denote the parametric approximation

of the policy. Within this framework too, we can easily approximate the rollout

policy by first generating sufficient {y1, ..., yq} samples states and obtaining the sub-

optimal controls by the rollout method. Once we have the dataset, we can train

a neural network for both policy and cost function approximation using stochastic

gradient descent SGD for minimizing the cross-entropy and sum of square errors

49

respectively. The approximation in value space may be required for terminal cost

function approximation in the truncated horizon version of the rollout.

Figure 3.2: Approximate PI Scheme Based on Rollout and Policy Space Approxima-

tion.

Since the approximation networks are only available after the first policy iteration,

we need to choose the initial base policy and terminal cost approximations. For the

base policy, we can choose any heuristic that can guarantee some form of sequential

consistency or the very least sequential improvement. Most greedy heuristics follow

at least one of these properties. The terminal cost function approximation can be

either omitted i.e. no truncation (for finite-horizon problems) or we can simply use a

constant cost (say zero) as an approximation. Fig. 3.2 shows the overall architecture

of approximate policy iteration.

One noteworthy point is that like all RL algorithms, approximate PI schemes are

also prone to issues relating to the exploration of the state space. If the sampling

technique is biased or the sample size does not capture enough variance of the problem,

we might end up getting bad approximations of policy and value. These issues are

50

discussed in detail in [21],[17]. Our partitioned architecture (Section 3.1.1) tries to

mitigate some of these issues. We now present our algorithm below:

Algorithm 8: Rollout API training

Input: Discount factor α, lookahead l = 0, base heuristic µ, truncation steps

K, Ĵ terminal cost function approximation, E policy iterations.

µ0 = µ

j = 0

while j < E do

Initialize dataset Dp and Dj

Generate q random starting states {y0, ..., yq}

foreach y ∈ {y0, ..., yq} do
(ũ, J̃) = ROLLOUT (y, µj, l = 1,K, Ĵ , α)

add (y, ũ) to Dp and (y, J̃) to Dj

end

Initialize parameters θ of a neural network classifier

µj+1 = TRAIN(θp, Dp)

Ĵ = TRAIN(θj, Dj)

end

return µE−1

3.1.1 Partitioned Approximate Policy Iteration (PAPI)

Feature State Space Partitioning

In this section we introduce a method, that partitions the feature state space Y into

disjoint sets Y1, ..., YN , such that Y =
N⋃
ν=1

Yν . We do so to train separate N (local)

policy (and value) networks on these sub-sets. The N local policies approximated by

these networks are then combined into a global rollout policy, defined over the entire

51

feature space Y . We learn the local policies by using approximate policy iteration

and a separate neural network for each local policy, using samples drawn from the

corresponding subset of the feature space partition. The advantage of our partitioned

architecture is that it can be trained in a piecemeal fashion and is well-suited for the

use of distributed computation. We speculate that our methodology requires smaller

training sets, which cover more evenly the feature space, thereby addressing in part

the issue of adequate feature space exploration. This methodology is what we call

Partitioned Approximate Policy Iteration (PAPI). There could be two different cases

depending upon the problem or our choice to truncate the Monte-Carlo trajectories

(shown in Fig. 3.3):

Figure 3.3: Partitioned Architecture for Rollout and Approximate PI with and With-

out Truncation [14].

1. No Truncation (PAPI-NT), where each rollout policy is approximated us-

ing a policy network by the use of rollout trajectories with the large horizon

(stages) (large enough for the discount factor α to make the cost of later stages

52

insignificant). Thus in this scheme, we do not need a value network for cost

approximation. This might also be useful in the finite horizon problems, albeit

maybe computationally more expensive.

2. Truncated (PAPI-T), where the policy network is used to approximate a rollout

policy generated by the use of truncated rollout trajectories that are approxi-

mated after K stages, by some cost approximation technique. The simplest way

would be a zero cost or constant cost approximation, wherein we assume the

cost to be some constant (say zero) after the truncation. A more sophisticated

way could be the use of a neural network (value approximator) trained using

the global rollout policy.

Asynchronous Computation

We now discuss the parallel computation aspect of our algorithm. As we already

discussed, the partitioned architecture is amenable to the use of multiple processors

that can work in parallel to compute the rollout policies for a feature space partition

Yν . We present two methodologies that are based on partitioning and distributed

computation. They involve one virtual processor for each set of the feature space

partition (of course multiple virtual processors can coexist within the same physical

processor).

How processors update and communicate their local policies and cost functions

may lie between two extremes: “fixed sequential order”, or “asynchronous”. In fixed

sequential order, the next iteration of PAPI at every processor waits for all processors

to complete the previous iteration and then proceeds with the rollout for the next

iteration. On the other hand in asynchronous method, each processor uses the latest

communicated local policies and cost functions from other processors.

53

The obvious advantage of the asynchronous variant is that it does not incur a

synchronization penalty, i.e. the cost of waiting for all other processors to complete

and communicate their local computations before starting the computation of the next

global policy. The processors simply use the information latest communicated from

other processors, even if this information is out-of-date. The book [11] (Chapters

6 and 7) contains a detailed analysis of asynchronous distributed algorithms with

examples. We also note that asynchronous distributed PI has been described in the

papers [10] and [9], where proofs of convergence and error bounds of such methods

involving partitions are given. Our partitioned algorithm also bears similarity with

asynchronous distributed hard aggregation, which is described in [4] (Section 6.5.4).

3.2 Multi-Agent Rollout Methods

We now shift our focus to MARL and present the multi-agent variant of the rollout

algorithm which was first conceptualized in [6]. As discussed in the Section 2.9, the

major difference in MARL is the introduction of a joint control space U which is

composed of m individual components i.e. U = U1 × ... × Um. As such one of the

ways to solve MARL problems is to treat them as single-agent problems by treating

the control u as a tuple (u1, ..., um). This is possible in cases where the number of

controls and number of agents is small. It can be seen that the control space grows

exponentially with the number of agents i.e. assuming U = max {|U1|, ..., |Um|} then

the number of controls per stage is given by O(Um). With this formulation, we can

use all the algorithms discussed in chapter 2 as well as our rollout method discussed in

previous sections. Although it is easy to see that all these methods might not scale well

with the increase in the number of agents. This immediately calls for methods that

can solve this scalability issue, without the loss of the cost improvement properties.

We present these ideas in the following sections.

54

Figure 3.4: A Non-Exhaustive Taxonomy of Multi-agent Rollout.

3.2.1 Standard Rollout

We begin by first discussing the standard rollout, which is the application of the

rollout algorithm in the joint control space. At each step k, we minimize over the set

of all possible combinations of controls by first performing an l-step lookahead and

55

then using the base policy, with or without truncation and terminal cost function

approximation, to get an improved rollout policy. The difficulty with this method is

the minimization complexity of O(Um) per stage (where U = max {|U1|, ..., |Um|}).

To alleviate this, we present the next multi-agent rollout variant where we perform

the aforementioned minimization one-agent-at-a-time. Fig. 3.5 shows the standard

form of the rollout for two agents with the truncated horizon and a terminal cost

function approximation.

Figure 3.5: Standard Rollout with 2 Agents Adapted from [15].

3.2.2 One-At-A-Time Rollout

To reduce the minimization complexity, we need to simplify the formulation by

converting it into another equivalent problem. Here the control u = (u1, ..., um) is bro-

ken down into m individual components i.e. given the feature state y, we generate m

number of intermediate states (between y and next state y′) by sequentially minimiz-

ing the control component for each agent and keeping all other controls constant. As

56

discussed in [6], this can be thought of as a trade-off between control-space and state-

space complexity. Thus, the transition between y and y′ would contain intermediate

states {(y, u1), (y, u1, u2), ..., (y, u1, ..., um−1)} assuming the agents choose their con-

trols in a pre-defined order 1 through m. At the last transition from (y, u1, ..., um−1)

to y′ we incur a cost ĝ(y, u) of choosing control u = (u1, ..., um). The cost of other

intermediary transitions is zero.

In this reformulation, we perform a total of m minimization, one over the control

space U ` of each agent `, instead of one large minimization over the joint space U .

This improves the per stage minimization complexity to O(Um). It is also important

to note that when minimizing over the Q-factors for agent `, we set u1, ..., u` to the

rollout controls of earlier agents while set u`+1, ..., um to the base policy controls. So

each agent uses the rollout controls of the predecessor while assuming the base pol-

icy controls of the agents next in order. Our experiments show that we can obtain

substantial computations improvements while suffering from a marginal loss in per-

formance. We direct the reader to [7], [8], that present the discussion and analysis

of VI and PI in the context of one agent at time-based methods, where it is shown

that this method maintains the cost improvement property and the error bounds are

identical to the standard form of the rollout. Fig. 3.6 is the pictorial representation

of this method.

3.2.3 Order-Optimized Rollout

One of the caveats of the one-at-a-time rollout was the assumption of a fixed

and pre-defined order of execution of the overall minimization order m agents. We

can improve the algorithm by relaxing this assumption by a trivial idea involving

optimization of the agent order using a few extra minimizations. It involves assuming

each agent as the potential candidate for the position in the order and then choosing

57

Figure 3.6: One-At-A-Time Rollout with Agent 1 followed by Agent 2 adapted from

[15].

the agent that has the minimal cost among all candidate agents. The position of the

chosen agent is then fixed and it is removed from the candidate agents for the next

position in the optimization order. For instance, for the first position, we would solve

m minimization assuming each as a first agent in the order. Once an agent is selected

based on the minimal cost, we can then remove it from the candidature for the second

position that would involve m − 1 minimization, so and so forth. Once this process

is carried on till the m − 1th position, we have the final optimal order of execution

of one-at-a-time rollout. Thus, overall minimization increase from m to m(m− 1)/2

which though is a polynomial with degree 2, is still less than an exponential number

of minimization per stage as in standard rollout. Our experiments validate that this

process produces modest but consistent improvements over the vanilla one-at-a-time

rollout. We now present both algorithms below.

58

Procedure MAROLLOUT(y, µ, l = 1,K, Ĵ , α, u, `)

1 if l == 0 then

2 run MC simulation using T on µ

3 return TKµ Ĵ

4 else

5 Set ũ arbitrarily

6 J̃ = +∞

7 for c ∈ U ` do

8 u[`] = c

9 ĝ =
N∑
i=1

by(si)
N∑
j=1

pij(u)g(si, u, sj)

10 t = 0

11 for z ∈ Z do

12 p = p̂(z|by, µ(y))

13 t = t+ p ∗MAROLLOUT (F (y, µ(y), z), µ, l − 1,K, Ĵ , α, u, `)

14 J = ĝ + αl ∗ t

15 if J < J̃ then

16 J̃ = J

17 ũ = u

18 return (ũ, J̃)

59

Algorithm 9: One-At-A-Time Rollout

Input: feature state y, base policy µ, lookahead l = 1, truncated horizon

after K steps, Ĵ ,α, fixed order M of agents

#initialize the controls to base policy controls

u = (µ(by)
1, ..., µ(by)

m)

for ` ∈M do

(ũ, J̃) = MAROLLOUT (y, u, l = 1,K, Ĵ , α, u, `)

u = ũ #update the control of agent at `th position

end

return (ũ, J̃)

60

Algorithm 10: Order-Optimized Rollout

Input: feature state y, base policy µ, lookahead l = 1, truncated horizon

after K steps, Ĵ ,α, a set M of agents

#initialize the controls to base policy controls

u = (µ(by)
1, ..., µ(by)

m)

Initialize a set S = M

while |S| > 0 do

Jmin = +∞

bestAgent = 0

ubest = u

for ` ∈ S do

(ũ, J̃) = MAROLLOUT (y, u, l = 1,K, Ĵ , α, u, `)

if J̃ < Jmin then

Jmin = J̃

bestAgent = `

ubest = ũ

end

end

u = ubest

J = Jmin

S = S − {bestAgent}#remove that agent from the set

end

return (u, J)

3.2.4 Multi-Agent Rollout with PAPI

Since the MA rollout methods do not change any basic assumption about the

problem and its formulation and idea are largely the same, we can therefore use

61

the same PAPI framework with all MA rollout variants. The process is almost the

same, except the basic rollout blocks, are replaced by MA rollout blocks during policy

iteration. Additionally, the feature state y may now include the location of each agent

and a shared belief of the system. This is shown in Fig. 3.7.

Figure 3.7: MA Rollout with API [15].

3.3 Imperfect communication

Multi-Agent Rollout methods discussed above assume perfect communication of

controls and beliefs among the agents. In real-world problems in robotics, it is seldom

the case. We now present the methods for approximate multi-agent rollout (AMR)

in an imperfect communication scenario i.e. where the agents do not share the local

information (belief or controls) with other agents at all times, instead they estimate

the likely control or belief of others. We call this estimation signaling [13] (as an

agent though cannot directly communicate but can weakly signal using the system

model and known policy network). We can also achieve higher parallelization and

computational speedup as agents can act independently in the absence of communi-

cated control. We present different communication architectures based upon these

62

settings

We also consider two possible scenarios arising out of the imperfect communication

case which is explained below:

1. Imperfect communication of controls (AMR)

Such a scenario can arise in situations where the frequency of controls is very

high and as such the agents can only communicate with each other after a few

time-steps and probably within a specific distance from each other. We assume

though that the belief is still shared through a cloud that is available to the

agents at all times. This assumption may be valid as the belief communication

only occurs after m−1 intermediate stages of one-at-a-time rollout and as such

is less frequent than the control communication. Additionally, we also assume

a case where the communication is restricted by the (r hop) distance between

agents and the probabilistic communication in the presence of a communication

relay cloud.

2. Intermittent communication of belief states and controls (AMR-I)

Such a scenario assumes the agents cannot communicate the beliefs and controls

to the other agents at all times. However, each agent perfectly knows its location

and can observe its surroundings. It also has a local belief about the state of the

system and the location of other agents. So, its local belief is an estimation of the

global belief state, location, and controls of other agents. We also consider the

presence of a centralized cloud, that acts as a buffer and relay of the messages

to the agents. With a probability ρ the agents can receive the global belief

state and thus can synchronize themselves. We use AMR-I as a suffix to such

scenarios.

63

3.3.1 Signaling

We now discuss the signaling architectures [15] (Appendix) that we considered as a

part of this work. But this list is not exhaustive and is also a work in progress. Fig. 3.4

presents an overall taxonomy of MA rollout including the approximate architectures

being discussed.

Base Policy Signaling

The simplest form of signaling is the assumption that other agents are using their

base policy controls. Mathematically, the control component of agent ` is given by:

ū` = arg min
u`∈U`

ĝ(b, u′) + α
∑
zinZ

p̂(z|b, u′)Jµ(F (b, u′, z)) (3.8)

where u′ = (u1:`−1, u`, u`+1:m) and uk denotes the base policy controls of agent

k 6= `. Recall that earlier the controls of previous agents were given by the rollout

control. This assumption though crude can work surprisingly well in some initial

conditions, on the other hand, may produce poor oscillatory behavior in some other

conditions.

The Base policy signaling in the AMR case (where only controls are not communi-

cated) is denoted as AMR-B whereas, in the AMR-I case, it is denoted as AMR-IB.

In AMR-IB, one-at-a-rollout is performed when the belief when the cloud is available

on the synchronized actual belief. Furthermore, in the case of AMR-IB, we explore

three scenarios depending upon the number of rollout optimizations, 0, 1, or m per-

formed during the independent execution phase (unavailability of cloud), which we

denote by AMR-IB0, AMR-IB1, AMR-IBm respectively.

In AMR-IB0, an agent does not perform a one-at-a-time rollout at all during the

time cloud is unavailable and just executes the base policy. In AMR-IB1, the agent

64

performs only one rollout minimization assuming base policy controls for all agents,

whereas, in AMR-IBm, the agent performs rollout for all m agents. Although it is

important to state that our experimentation was limited to AMR-IB0 and AMR-IB1.

Neural Network Signaling

In this case, we use the policy networks for the estimation of the controls of other

agents. In particular, we explored two schemes:

In AMR-N, m independent optimizations are performed, once over each agent’s

controls, wherein the predecessor’s controls are given by the policy network (the latest

policy iteration), but the controls of agents next in order are given by the base policy.

In AMR-PI, is similar to the previous case but the predecessor’s controls are given

by the best policy network (the best policy iteration), but the controls of agents next

in order are given by the policy network of the previous iteration.

Local Communication Case (AMR-LC)

We also discuss an alternate scenario wherein the absence of a cloud, the agents can

locally communicate with each other in a local distance (say r hops away in a graph).

In such a scenario, we use the communicated rollout controls for agents within the r

hop distance and assume base policy for all others. We use the acronym AMR-LC

for this case as we assume shared belief in this experimentation. There could also be

an unshared belief version of this problem but we did not explore this as a part of

our experimentation.

Intermittent and Local Communication Case (AMR-ILC)

Finally, we also explore a merger of both cloud-based and local communication cases

for a shared belief scenario and call it AMR-ILC. In this scenario, the belief and

65

controls are shared in a r-hop distance with a probability of 1 but for agents farther

away there is a probability ρ of communication at each stage. This architecture strikes

a practical tradeoff as there is a possibility of rich information when a central cloud

is available while at other times relying on the local information. Fig. 3.8 shows this

setup.

Figure 3.8: AMR-ILC with Local Communication and Unreliable Cloud.

3.4 Summary

This chapter provided a detailed overview of the methodologies developed as a

part of this work. Our motivation for these problems lies in the practical applicabil-

ity of RL, particularly MARL in real-world problems. There has been a huge success

of RL in game playing. Starting from TD-Gammon [36] to Alpha Go [32] and Alpha

Zero [31], the world has seen these algorithms involving Monte-Carlo simulation or

self-play to reach new milestones in RL. Our work introduces methods that stem from

mathematical guarantees of performance improvement, extended to include practical

challenges like partial observations, stochasticity, etc., and are designed around the

applicability to real-world problems. As we will see in the next chapter, we carefully

choose three problems that are centered around real-world challenges and show that

66

our methods find reasonable and sub-optimal solutions to these problems with little

or no difficulty in even in practical challenges of stochasticity, intermittent communi-

cation, partial observation, etc.

67

Chapter 4

EXPERIMENTS AND RESULTS

4.1 Spider and Fly Problem

Figure 4.1: Spider and Fly Problem with 3 Flies and 5 Spiders.

Spider and Fly is a problem introduced in [7] which consists of a group of spiders

that aim to catch a group of flies. The flies do not actively evade the spiders, rather

move randomly in a network/grid. The problem is solved when all the flies are

captured. Fig. 4.1 shows the spider and fly environment.

4.1.1 Motivation

The motivation of this problem arises out of search and rescue type problems

where a group of search and rescue robots or drones can be deployed to search people

or a group of people lost in a forest. The people might change position randomly

68

while the search party is trying to rescue them. We might be able to observe their

location at frequent times but they might be not aware and hence continue their

random walk. Another motivation can be to control multiple fires in the forest/city.

Fires can spread locally and thus have a dynamic movement (like flies). There too we

might have an observation through drones/satellites but still might need a strategy

to contain them as fast as possible.

4.1.2 Challenges

The challenges in this problem are twofold - one is the stochastic nature of the

flies, which makes it difficult for each spider to plan their future course of action

on the grid, second is the collaboration in the spider groups to create a strategy for

capturing the group of flies. They should show behaviors like splitting to capture

two distant flies or encircling to capture flies. We deliberately choose a perfect state

observation in this scenario as it is a reasonable assumption in such problems.

4.1.3 Description

Our environment is a grid with both spiders and flies initialized to random loca-

tions. Each fly moves to one of the five possible locations at every time step (or stage)

with a uniform probability distribution. For instance if the fly is on the location (i, j)

at stage k, then it can be on five possible locations {(i+1, j), (i−1, j), (i, j+1), (i, j−

1), (i, j)} at stage k + 1 with a uniform probability of 1
5
.

The state here is represented as the position of flies and spiders on the grid i.e x =<

pos(S), pos(f)) > where pos denoted the position, S and F are sets of spiders and

flies respectively. The spiders can perfectly observe the state but during simulation,

it has to deal with 5|F |+|S| possibilities of observations.

There are five controls of spiders i.e. a unit step movement in any direction if

69

permissible (RIGHT, LEFT, UP, DOWN) and choosing to stay at a position (STAY).

At each time step, the spiders choose control from the five possibilities to catch the

flies in minimum stages. The spiders capture the flies when they land on the same

position in the grid and such flies are removed from the system.

We have chosen a greedy base policy wherein each spider moves towards the nearest

un-captured fly and tries to catch it through direct pursuit in the direction of the fly.

If the fly is captured, it pursues the next available fly. This policy is bound to solve

the problem in an eventuality.

The cost at each stage is defined as the number of remaining flies. The average

cost of the episode is given by the mean of the number of un-captured flies at each

time step. The objective is to reduce the cost by capturing all flies as soon as possible.

4.1.4 Evaluation

We evaluate and compare the performance of our naive base policy with the rollout

variants studied in section 3.2. We do so without the application of the policy iteration

algorithm. We perform standard, one-at-a-time, and order-optimized rollout with 1-

step lookahead and non-truncated rollout with the greedy base policy. The evaluation

is performed over 1000 initial states, and we specifically observe the cost of each

episode, number of steps required to capture all flies, and runtime per stage. We aim

to validate our claims of performance improvement of standard as well as multi-agent

rollout and also hope to see policies that reduce the cost by capturing the entire group

of flies. In doing so we hope to observe natural behaviors like splitting and encircling.

4.1.5 Experiments

The objective of this experimentation is to show the cost improvement property of

rollout and the efficacy of MA rollout to significantly improve the computation time

70

while preserving the cost improvement property to an extent. We chose different grid

sizes like 5× 5, 10× 10, and 20× 20. We also vary the number of spiders and flies for

each experiment (ranging from 2 spiders and flies to 8 spiders and 4 flies). We use a

discount factor α = 0.99 and use the same greedy base policy for all experiments and

perform rollout without truncation. It is important to note that we do not parallelize

the Monte-Carlo simulations because it is irrelevant in the comparison study (as

all variants of the rollout have a similar method of Monte-Carlo simulation). The

evaluation is performed on 1000 random initial states and the aggregated results are

presented in the tables below. Each experiment is performed on an Intel Core i7-

8565U Quad-Core CPU with 8 logical cores and 16 GB RAM. We now present our

results and findings.

Table 4.1: Comparison of Base Policy, One-At-A-Time Rollout, Order-Optimized

Rollout, and Standard Rollout for Spider and Fly Problem of Size 5X5, with 2 Spiders

and 2 Flies on 1000 Random Initial States.

Method Average Cost

per Episode

Average Episode

Length (stages)

Time (s)

Greedy 4.4362 5.384 4.8699× 10−4

One-At-A-Time Rollout 3.9514 4.878 1.6976
Order Optimized MA Rollout 3.9494 4.864 2.5364
Standard Rollout 3.9404 4.874 3.381

Table 4.2: Cost Comparison of Base Policy, One-At-A-Time Rollout, Order-

Optimized Rollout, and Standard Rollout for Spider and Fly Problem of Size 5X5,

with 3 Spiders and 3 Flies on 1000 Random Initial States.

Method Average Cost

per Episode

Average Episode

Length

Time per

Episode (s)
Greedy 5.7995 5.608 1.1556× 10−3

One-At-A-Time Rollout 4.7595 4.817 4.064
Order Optimized MA Rollout 4.6557 4.746 8.0112
Standard Rollout 4.6168 4.737 99.892

71

Table 4.3: Comparison of Base Policy, One-At-A-Time Rollout, Order-Optimized

Rollout, and Standard Rollout for Spider and Fly Problem of Size 5X5, with 2 Spiders

and 4 Flies on 1000 Random Initial States.

Method Average Cost

per Episode

Average Episode

Length

Time (s)

Greedy 12.608 8.217 4.4677× 10−3

One-At-A-Time Rollout 10.3695 6.887 18.5431
Order Optimized MA Rollout 10.2796 6.865 27.6629
Standard Rollout 10.1372 6.775 580.5339

Table 4.4: Comparison of Base Policy, One-At-A-Time Rollout, and Order-Optimized

Rollout for Spider and Fly Problem of Size 10X10, with 5 Spiders and 3 Flies on 1000

Random Initial States.

Method Average Cost

per Episode

Average Episode

Length

Time (s)

Greedy 9.708 7.791 1.8934× 10−3

One-At-A-Time Rollout 8.8191 7.017 32.198
Order Optimized MA Rollout 8.651 6.887 94.9031

Table 4.5: Comparison of Base Policy, and One-At-A-Time Rollout for Spider and

Fly Problem of Size 20X20, with 8 Spiders and 4 Flies on 1000 Random Initial States.

Method Average Cost

per Episode

Average Episode

Length

Time (s)

Greedy 22.3423 12.611 1.03× 10−2

One-At-A-Time Rollout 20.5451 11.102 457.9651

1. Validation of the cost improvement property

Through our experiments as seen in table 4.1, 4.2, 4.3, 4.4 and 4.5, we can

see that in each experiment the rollout variants improve upon the greedy base

policy. This empirical validation strengthens our claims of the efficacy of these

methods. In each experiment, the Multi-Agent one-at-a-time rollout improves

the cost. The cost improvement depends on the size and complexity of these

experiments. Table 4.1 shows a 10.9% cost improvement of one-at-a-time rollout

over greedy, whereas in table 4.3, a scenario with more flies than spiders, the

72

cost improvement is 17.7%. Additionally, in the large experiment consisting of a

grid size 20×20 as shown in table 4.5 we see a cost improvement by only 8% as

the number of spiders is larger than the number of flies making the performance

of greedy quite close but still worse than rollout.

2. Comparison of Multi-Agent Rollout Variants

The experiments also validate our claims about the performance of rollout vari-

ants namely standard, one-at-a-time and order-optimized rollout. In each of

the experiments, we see that the standard rollout performs the best followed by

order-optimized and then one-at-a-time rollout. It is also important to note that

the differences in performance are modest and hence even the worst-performing

method (one-at-a-time) has significant cost improvements over base policy as

discussed before. The average episode length also follows a similar trend with

standard rollout taking minimum steps to catch all flies followed by the order-

optimized and one-at-a-time rollout.

3. Computational improvements of Multi-Agent Rollout vs Standard

Rollout

The experiments also present the huge computational improvements achieved

by using multi-agent rollout methods over the standard form. As seen in table

4.1, 4.2, 4.3, 4.4 and 4.5, the differences betweeen the standard and multi-agent

methods become exponentially more prevalent. For instance for 2 spider case

in 4.1 the time required for standard is approximately 2 times the time required

for one-at-a-time rollout, but for the 3 spider problem in table 4.2 the difference

is about 25 times.

4. Parallel Rollout

73

Table 4.6: System Specifications for the Experiment on Rollout Using Parallel Q-

factor Computation.

CPU Intel(R) Core(TM) i7-7700 CPU
Physical Cores 8
Hyper Threading/Core 34
Frequency 3.6 GHz
Cache 8192
RAM 32 GB

We also experiment with the parallelized version of the standard rollout on

the problem to see the speedup achieved through the application of multi-

processing. We compute each q-factor in parallel by implementing the algo-

rithm using the BAIR’s Ray [27] and use the system specifications as shown in

table 4.6. Fig. 4.2 clearly shows that about 1.5x to 2x performance speedups

can be achieved with the parallel q-factor computation per stage. We also show

the normalized speedups achieved depending on the load average of the sys-

tem. This is important as the system might be under different load settings

throughout the experiment.

Figure 4.2: Results Showing Speedup Achieved Using Ray Vs a Single-Threaded

Implementation of Rollout.

After showing these results we can now move to more complex problems. In

particular, we discuss an infinite horizon, discounted POMDP with on a network-like

environment, and also Flatland - a VRSP problem.

74

4.2 Multi-Robot Repair Problem

Figure 4.3: Multi-Robot Repair Problem.

Multi-Agent Robot repair problem was first introduced in [14] as an infinite hori-

zon, discounted POMDP problem. It consisted of a linear pipeline with multiple

damaged position which needed repair. The damages are divided into levels based

on the degree of disrepair on the position. The damaged position can degrade over

time if not repaired according to a known Markov chain. The agent tries to visit

different positions, observe the damage level, and decides its further course of action

based on its belief about the state of the environment. The objective here is to fix

the pipeline as soon as possible. This problem was generalized to a graph structure

and introduction of multiple robots in the subsequent work [15] (shown in Fig. 4.3).

4.2.1 Motivation

The motivation of such class of problems can be multi-robot repair tasks which

include but are not limited to underground gas pipeline repair in ocean beds, forest

fire management, cab services, etc. Damaged positions in the problem can be proxies

75

for sites damaged in the underground pipeline, forest fire threats, cab pickup of a cus-

tomer, etc. All these problems require effective coordination and intelligent behavior

of agents to achieve the desired cost objective.

4.2.2 Challenges

The main challenges in this problem are partial observability, dynamic environ-

ments (changing damage levels), infinite horizon (the fixed position might fall into

disrepair), and large control and state spaces. Hence, this represents a very rich class

of problems that has the potential to be used as a benchmark problem in reinforce-

ment learning.

4.2.3 Description

Figure 4.4: Markov Chain for Each Damaged Location From [15].

The problem consists of a network of a set of V nodes in an undirected graph,

where each node has a damage level from a set ν = {0, ..., ν − 1}, where ν − 1 is the

highest damage level. These damaged nodes evolve according to a known Markov

Decision Process (MDP) with |ν| states as shown in Fig 4.4. As we can see from

the figure, a fixed state can fall into disrepair with a non-zero probability. This is a

generalized extension of a linear pipeline problem introduced in [14]. The belief state

can be represented as a tuple consisting of the belief of damage at each location. For

76

instance, for a location v the belief is represented as dv = {dv0, ..., dvν−1}. In case of m

agents this is a POMDP with |V |m · |ν||V | states.

At each time step, once an agent at location v has observed its current location,

it can either choose to stay in v and fix the location or move to one of its neighboring

locations. Although the control space is fixed and small for a single agent, the joint

control space is exponential to the number of agents is given by |C|m where C is the

control set of a single agent.

The base policy was a greedy policy that similar to the spider and fly problem i.e.

choose the nearest damaged location (irrespective of the damage level) and moves a

step towards it. We used Dijkstra’s shortest path algorithm to determine the shortest

path from each location and consequentially the next hop.

The cost is incurred at each time step and is dependent on the state of the system.

this is explained in the evaluation section below.

4.2.4 Evaluation

The algorithms are compared based on the average cost incurred by the algorithm

in each episode. Each position is assigned a cost based on the damage level and the

cost is defined as the weighted sum of all the damaged positions at each time step.

Mathematically, at stage k it is given by Ck =
∑

ν∈V d
ν · c, where c is a cost vector

that assigns the weights to each level of damage. The policy needs to minimize the

discounted sum of costs over an infinite horizon i.e.
∑

k α
kCk.

4.2.5 Experiments

The experimentation was performed on a graph topology as shown in Fig. 4.3

with 32 nodes. We used three sets of experiments with 4, 8, and 10 agents. This

corresponds to the state space of 1028,1034, 1037 and control space size of 625, 105.6,

77

Figure 4.5: Comparison of Trajectories Generated by Greedy Base Policy and Rollout

in the Multi-robot Repair Problem From [15].

107 respectively. The discount factor α = 0.99 remained fixed throughout all these

experiments. The MDP damage transition probabilities were fixed with γ0 = 0.01

(0 for 4 agents), γ1 = 0.02, γ2 = 0.03, γ3 = 0.05, γ4 = 0.1. We perform two sets of

experiments: one with the multi-agent rollout, and the other involving multi-agent

rollout with API. Each experiment was performed on MPI enabled ASU Agave cluster

with Intel Xeon E5-2680 v4 CPU (56, 196 cores respectively). Each evaluation is an

aggregated result over 1000 random initial states. We now present the results.

1. Cost Improvement of One-at-a-time rollout

Our experiments validate that significant cost improvement is achieved by the

one-at-a-time rollout over the greedy base policy. Table 4.7 shows that our

method consistently improves the cost achieved by the naive base policy. We

also observe in Fig. 4.5 that where the greedy base policy results in all agents

moving together towards the nearest fly, the rollout policy showing better behav-

ior like splitting up to cover more damaged locations in parallel. Additionally,

the rollout policy also showed prioritizing behaviors, wherein the agents decide

78

to skip a nearby low damaged location in favor of a far highly damaged one.

Table 4.7: Cost Comparison of One-At-A-Time Rollout with Greedy Base Policy

From [15].

Agents Greedy Policy One-at-A-Time Rollout
4 5347 992
8 4667 799

2. Performance of MA Rollout with API

Figure 4.6: Cost Improvements in One-At-A-Time Rollout with API From [15].

For the approximate policy iteration version, we used a 2-layer fully-connected

neural network with 256 and 64 ReLU units, followed by a batch normalization

layer. The output is a softmax layer, which yields probabilities of the controls

given a feature state. The size of the output of the layer is |V |+1 i.e. we predict

the next hop of the agent for each v ∈ V and one is added for the control of

fixing the current location. We use RMSProp optimizer with a learning rate

of 0.001 and use one-at-a-time rollout with 1-step lookahead and 10 simulated

trajectories (to calculate cost expectation) for policy improvement at each policy

iteration. This network is trained with 500,000 state-control pairs obtained

through rollout in each iteration. These training samples contain a mix of

randomly generated states, sampling from a previously generated set of states

79

- a memory buffer. The memory buffer contains the neighboring states of the

previous iteration i.e. states reachable in a few stages from the previously (from

the previous iteration) generated feature states. This is done to ensure a proper

balance of exploration and exploitation which is one of the hard problems in

any RL problem. Fig. 4.6 shows that the cost improvement property holds for

several iterations even for a large state and control space.

3. Performance comparison to other methods

Figure 4.7: Cost Comparison of Greedy Policy, POMCP, and Other Multi-agent

Variants of Rollout From [15].

We now compare the base policy with other variants of multi-agent rollout and

several existing methods. In particular we explore Monte-Carlo methods like

POMCP [30] and DESPOT [38], that are specifically developed to solve large

POMDP. We also look at policy gradient methods for multi-agent scenarios

like MADDPG [23] and a Q-learning-based method QMix [28]. Through our

experiments we found that some of these methods do not scale well with the

number of agents, hence we capped the number of agents to 4. Despite that,

we found that DESPOT and QMix were unable to perform even better than

the greedy base policy. POMCP was able to scale at a maximum of 4 agents

and has been included in the results. Fig. 4.7 shows the comparison of these

80

methods. We can see that as with the spider and fly problem, the rollout

variants follow a similar trend with standard rollout being the best performing

algorithm followed by order-optimized and one-at-a-time. But standard rollout

could not scale up to more than 4 agents. It is important to note that all our

methods performed significantly better than the base greedy policy.

POMCP method in our experiments performed slightly better than the base

policy, at the same time suffering from scalability issues. We believe that the

sparse lookahead of POMCP results in a poor estimation of Q-factors and hence

it fails to perform like our methods. MADDPG on the other hand failed to

perform even comparable to the base policy. We speculate that this might be

because for such methods it is difficult to decide the hyper-parameters and the

sample size to capture enough variance of the problem. It is again important

to state that none of these methods provide any reasonable guarantees of cost

improvement like our methods.

4. Imperfect communication cases

We also experimented with the imperfect communication cases for our rollout-

based methods i.e. AMR and AMR-I.

Table 4.8: Cost Comparison of Base, Standard Rollout (4 Agents Only), One-At-

A-Time Rollout, and Different Approximate Multi-Agent Rollout Policies Involving

Imperfect Control Communication (Assuming a Shared Belief) From [15].

agent base standard

rollout

1-at-a-

time

AMR-

B

AMR-

N

AMR-

PI

AMR-

LC

r=2

AMR-

ILC

ρ=0.8,

r=2

AMR-

ILC

ρ=0.5,

r=2

AMR-

ILC

ρ=0.3,

r=2

4 3277 1879 1925 3187 2635 - 2038 1946 1964 1976
8 5347 - 992 2513 1712 1590 1010 992 998 1005
10 4667 - 799 2487 1533 1428 813 804 807 809

81

Table 4.8 presents the results of different imperfect communication architec-

tures involving unshared controls but shared a belief as discussed in section

3.3. We experiment with 4, 8, and 10 agents and run similar configurations

for all these architectures. We observe that the effectiveness of the methods is

dependent on the quality of signal or information used to estimate other agents’

controls. Consequently, AMR-B performs the worst, even showcasing occasional

oscillatory behaviors, because the base policy signal is not a correct estimation

of other agents’ control. AMR-N performs better than AMR-B as the policy

network from the previous iteration is used as a signal, and AMR-PI is better

than AMR-N due to better base and signal policies. AMR-LC works very well

for our problem as it has a spatial structure that can be exploited by local com-

munication i.e. Q-factors of local agents impact more than Q-factors of agents

far apart. AMR-ILC works the best as it essentially the best of both worlds,

i.e local and probabilistic global communication. But both these methods are

highly dependent on the values of transmission probability ρ and transmission

radius r. All these experiments validate that even in imperfect communica-

tion rollout-based methods can improve performance and generate intelligent

behaviors.

Table 4.9 shows the performance of rollout methods involving both unshared

belief and unshared controls in the presence of a cloud that shares information

with the probability ρ. As seen in the table, the performance of these methods

is dependent on the probability of the availability of complete information from

the cloud. At ρ −→ 1, the methods behave like one-at-a-time rollout while

with ρ −→ 0, behave like base policy. Another interesting observation is that

AMR-IB0 (that assumes base policy) outperforms AMR-IB1, which performs

a single rollout in the stages where the cloud is unavailable assuming base

82

policy for other agents. This might be because AMR-IB0 does not perform any

optimization in the absence of cloud and uses base policy controls till then.

Table 4.9: Cost Comparison of Base, One-At-A-Time Rollout, and Approximate

Multi-Agent Rollout Policies with Different Intermittent Communication Architec-

tures and Connection Probabilities (ρ) From [15].

agents base 1-at-a-

time

AMR-IB1 ρ =

0.8

AMR-IB0 ρ =

0.8

AMR-IB1 ρ =

0.4

AMR-IB0 ρ =

0.4

4 3277 1925 2303.96 2239.67 2793.45 2767.4
8 5347 992 1127.66 1140.21 1512.79 1713.17
10 4667 799 960.104 920.58 1265.49 1398.94

4.3 Flatland Challenge

Figure 4.8: Flatland Environment with 4 Trains.

The Flatland Challenge [26] is an annual competition hosted on AICrowd and a

part of conferences like NeurIPS 2020, AMLD 2021, to advance the progress in MARL

for any re-scheduling problem (RSP). The problem is simplified on a 2D network of

trains that need to reach their destination from a source with minimal delay. This

addresses a major problem of transport and logistic companies i.e vehicle re-scheduling

83

problem (VRSP) first studied in [22]. The central objective is to effectively manage

dense traffic on a complex railway network in a stochastic environment (shown in Fig.

4.8).

4.3.1 Motivation

The vehicle rescheduling problem arises when the previously assigned trip is dis-

rupted either due to a traffic accident/medical emergency, or a breakdown of a vehi-

cle. The Swiss Federal Railways (SBB) manages 10,000 trains daily on a network of

13,000 switches and more than 32,000 signals. In the future, they need to increase

the transportation capacity of approximately 30% on the same network and this is

where efficient VRSP solutions are needed.

4.3.2 Challenges

This problem introduces two major challenges that make vehicle rescheduling

essential. First is stochasticity, which means how often the trains will malfunction.

This malfunctioning forces the agents to reconsider their plans (that can incur high

costs). The second is speed profiles, which entails the different speeds for trains. This

is an important factor, considering we would want to avoid scheduling a fast train

behind a slow train. The other challenges may include scaling up to a large number

of trains and large railway grid environments.

4.3.3 Description

The main goal is to make all the trains arrive at their target destination with

minimal arrival time. The control space of each agent/train is one of the five controls:

• DO NOTHING: If the agent is already moving, keep moving; if it is stopped,

it stays stopped.

84

• MOVE LEFT: The agent’s head moves left if the left turn is possible. If the

agent was stopped then it starts moving to its left, if taking left is possible.

• MOVE RIGHT: The agent’s head moves right if the right turn is possible.

If the agent was stopped then it starts moving to its right, if taking right is

possible.

• MOVE FORWARD: The agent’s head moves forward. If the agent was

stopped then it starts moving in the forward direction.

• STOP MOVING: The agent stops when this action is taken.

Figure 4.9: A Visual Summary of the Three Provided Observations [2].

The state for this problem is fully observable but can be re-modeled according

to the solution. There are three types of observations provided - Global Observation

that consists of all the grid information, Local Observation that only requires local

information (a small grid around the agent’s position), Tree Observation that repre-

sents the grids as the nodes reachable from the current position in the grid using the

actions. It is also highly encouraged to create a custom observation depending upon

the algorithm implemented. Fig. 4.9 shows all the three provided observations. We

are currently using a Tree observation with an observation depth of 3.

The cost structure for an agent i consists of a local reward ri (which is -1 id

agent not at destination else 0) and global reward rg (which is 1 if all agents reach

85

their destination else 0). The cumulative reward is at stage k defined as ri(k) =

αrl(k) + βrg(k), where α and β control the collaborative behavior. The total and

normalized cost of the episode for agent i is given by:

gi =
K∑
k=0

ri(k)

ni =
gi
K

where K is the length of the horizon (number of steps to terminate the episode)

for episode, which has a maximum upper limit depending upon the size of problem.

We choose multiple greedy policies for our experiments. We started with the

shortest path greedy base policy for rollout as we feel it is a simple yet effective

method. The only concern is that it might fall into deadlocks (i.e when two trains

block each other). But we found that it is nevertheless a good base policy to start

the experiments.

Since, it is a global challenge that has matured over the last few years, we are pro-

vided with some baseline algorithms like Dueling-Double Deep Q-Network (DDDQN)

[37] and Proximal Policy Optimizations (PPO) [29]. As these methods use neural net-

works, we can use them as a base policy, with an objective to see some improvements

by the use of MA Rollout.

4.3.4 Evaluation

The algorithm in the original challenge is evaluated with strict time limits (10s

for each step) for planning and increasing the level of complexity and size of the

environment.The objective is to gain the maximum reward across all environments.

For each task, the agents are evaluated on a fixed set of environment configurations

ordered from low to high complexity. The solutions are evaluated using both the

86

mean normalized reward, total normalized reward per agent and mean percentage

completion (percentage of agents reaching destination) across all environments, which

is calculated as follows :

G =
N∑
j=0

(
(
∑mi

i=0 n
j
i)

mi

+ 1)

N =

∑N
j=0(

(
∑mi

i=0 n
j
i)

mi
+ 1)

N

where the scores (G andN) are the accumulated total normalized reward and mean

normalized rewards for N completed environment configurations with mi agents for

the respective configuration/episode. The solutions are ranked by G scores where a

higher score is better.

Moreover, each submission is evaluated on the AICrowd servers making the com-

parison fair.

4.3.5 Experiments

1. Experimentation with Shortest Path Base Policy.

We experiment with one-at-a-time rollout keeping α = 0.99 with the greedy

base policy. Table 4.10 shows that the cost improvement property still holds

in this problem and hence we can move towards completing the next set of

experiments.

2. Experimentation with DDDQN Base Policy.

We experiment with approximate one-at-a-time rollout (AMR-B) keeping α =

0.99 with the DDDQN baseline provided to us by the Flatland team. Table ??

shows that the cost improvement property still holds in this problem and hence

we can move towards completing the next set of experiments.

87

Table 4.10: Cost Comparison of Shortest Path Base policy, and One-At-A-Time

Rollout on Flatland.

Method Mean Normalized Reward Mean Percentage Comple-

tion

Shortest Path Base Policy 0.20 21.7
One-At-A-Time Rollout 0.47 50.0

Table 4.11: Cost Comparison of DDDQN Base Policy, and AMR-B on Flatland.

Method Mean Normalized Reward Mean Percentage Comple-

tion

DDDQN Base Policy 0.54 58.3
AMR-B 0.57 60.7

4.4 Summary

In this chapter, we formally introduced the three problems and the associated

experimentation. Our results prove the cost improvement property and effectiveness

of rollout-based methods in all these problems. In the next chapter, we conclude our

work with a summary of the performance of our methods and also present a future

direction for this research.

88

Chapter 5

CONCLUSION

5.1 Performance Summary

In this work we discussed various multiagent rollout methods and used them in

an approximate PI scheme for challenging real-world problems involving stochasticity,

partial obsersvability and an infinite horizon. We presented three different problems

involving one or more of these challenges - Spider and Fly, Multi-Robot repair problem

and Flatland challenge. In each of these problems, we verified the cost improvement

property of multi-agent rollout variants, similar to standard rollout, with dramati-

cally less computation and communication requirements. Similarly, we showed that

multiagent approximate PI improves the policy at each iteration in order to find the

sub-optimal policy, that is better then the base policy. The agents executing the

resulting policy achieve a high degree of coordination with each other and showcase

intelligent behaviors like splitting up the work, surrounding a target to catch it, and

handling frequent changes in environment etc. We also reported numerical perfor-

mance results on some imperfect communication extensions of our multiagent rollout

methods. Our experimentation posits that these methods work well for robotics prob-

lems especially when a large team of multiple robots need to collaborate on a complex

task with one or more of aforementioned challenges.

5.2 Future

We now present some further directions for our work. These directions arise out of

the possible caveats of our methodology which is the online component of rollout that

89

can be computationally expensive as discussed in the Flatland experimentation. Using

parallel monte-carlo simulation would enable us to apply this methods to settings

where there is a need for real-time response from the agent. We believe that any

algorithm that does not re-plan (for instance a policy network) cannot deal with

rapidly changing environments unlike rollout. We now discuss these caveats and

possible directions one by one.

1. Multi-Agent Rollout with PAPI

One of the extension to our work could be the implementation of MA rollout

variants on the partitioned architecture. We introduced the partitioned ap-

proximate policy iteration (PAPI) in [14], that features the partitioning of the

feature space depending on the problem. This partition enables us to exploit

distributed computation by the use of multiple policy networks (for instance one

for each partition) that can be trained in parallel. We can use this architecture

for our multi-agent rollout variants as well and achieve desired parallelization.

2. Extensive experimentation on imperfect communication cases

We can also perform extensive experimentation with the imperfect communica-

tion and possibly derive some cost improvement guarantees in such scenarios.

We have already seen that such guarantees do not just serve the theoretical

purpose but can be use to advance the methodology itself. Future of robotics

lies in the success of such methods that are robust to imperfect communication

scenarios.

3. Experimentation on real-world problems with real datasets.

Another possible direction is the use of real-world datasets to solve an opti-

mization problem. One such example could be improving the Cab service using

90

reinforcement learning. Many open source datasets are available which can be

used to solve such problems. One immediate benefit of solving this problem

is that we can then deploy our algorithm in the real-wold settings and under-

stand more about their applicability. The focus of this research has been to

make the use of reinforcement learning ubiquitous in the optimization problems

in the world, which is currently dominated by supervised and semi-supervised

learning that do not work well which changing environments.

4. Using Aggregation for approximation in problem space

Aggregation methods [5] are approximations in the problem space, which can

be used to improve the performance of many rollout methods by reducing the

complexity in the state space. This can be useful for some problems that are

amenable to such approximation. These ideas have not been tried on real-world

problems discussed in this work and hence it is a potential direction to explore.

5. Development and release of parallel rollout framework.

This is possibly the most important direction as the rollout methods suffer from

the curse of simulation. It is computationally expensive to run multiple rollout

trajectories to calculate the expectations. With the current state of parallel

computation softwares, I believe it should not be a challenging task. In fact a

groundwork for this has been achieve in our implementation of rollout algorithm

for the Flatland challenge. We also hope to release the parallel version of rollout

to the public, so that it can be applied to multiple applications.

We conclude by noting that most of this work has been done on these three prob-

lems. Like any research, there cannot be a general claim of effectiveness of these

methods to all problems. But our experiments do verify that for some realistic en-

91

vironment settings and even with a simple base policy, we can get guarantee perfor-

mance improvements which is typically not found in the other existing work in this

field.

92

REFERENCES

[1] Achiam, J., “Spinning Up in Deep Reinforcement Learning”, URL https://
spinningup.openai.com/.

[2] AICrowd, “Provided Observations in Flatland”, URL https://flatland.
aicrowd.com/getting-started/env/observations.html.

[3] Auer, P. and Cesa-Bianchi, N. and Fischer, P., “Finite-Time Analysis of the
Multiarmed Bandit Problem”, Machine learning 47, 235–256.

[4] Bertsekas, D. P., Dynamic Programming and Optimal Control (Athena Scientific,
1995).

[5] Bertsekas, D. P., Reinforcement Learning and Optimal Control (Athena Scien-
tific, 2019).

[6] Bertsekas, D. P., “Multiagent Rollout Algorithms and Reinforcement Learning”,
arXiv preprint arXiv:1910.00120, 2020 .

[7] Bertsekas, D. P., “Multiagent Value Iteration Algorithms in Dynamic Program-
ming and Reinforcement Learning”, Results in Control and Optimization 1,
100003.

[8] Bertsekas, D. P., Rollout, Policy Iteration, and Distributed Reinforcement Learn-
ing (Athena Scientific, 2020).

[9] Bertsekas, D. P. and H. Yu, “Q-Learning and Enhanced Policy Iteration in Dis-
counted Dynamic Programming (Revised)”, Tech. rep.

[10] Bertsekas, D. P. and H. Yu, “Q-Learning and Enhanced Policy Iteration in Dis-
counted Dynamic Programming”, Math. Oper. Res. 37, 1, 66–94.

[11] Bertsekas, D. P. and Tsitsiklis, J. N., Parallel and Distributed Computation:
Numerical Methods (Prentice-Hall, 1989).

[12] Bertsekas, D. P. and Tsitsiklis, J. N., “Neuro-Dynamic Programming: An
Overview”, in “Proceedings of 1995 34th IEEE conference on Decision and Con-
trol”, vol. 1, pp. 560–564 (IEEE, 1995).

[13] Bertsekas, D.P., “Multiagent Reinforcement Learning: Rollout and Policy Itera-
tion”, IEEE/CAA Journal of Automatica Sinica 8, 2, 249–272.

[14] Bhattacharya, S., Badyal, S., Wheeler, T., Gil, S. and Bertsekas, D. P., “Rein-
forcement learning for POMDP: Partitioned Rollout and Policy Iteration with

93

Application to Autonomous Sequential Repair Problems”, IEEE Robotics and
Automation Letters 5, 3, 3967–3974.

[15] Bhattacharya, S., Kailas, S., Badyal, S. and Gil, S. and Bertsekas, D. P., “Multi-
agent Rollout and Policy Iteration for POMDP with Application to Multi-Robot
Repair Problems”, arXiv preprint arXiv:2011.04222, 2020 .

[16] Cybenko, G., “Approximation by Superpositions of a Sigmoidal Function”,
Mathematics of Control, Signals and Systems 2, 4, 303–314.

[17] Dimitrakakis, C. and Lagoudakis, M. G., “Rollout Sampling Approximate Policy
Iteration”, Machine Learning 72, 3, 157–171.

[18] Dulac-Arnold, G. and Mankowitz, D. and Hester, T., “Challenges of Real-World
Reinforcement Learning”, arXiv preprint arXiv:1904.12901, 2019 .

[19] Hornik, K., “Approximation Capabilities of Multilayer Feedforward Networks”,
Neural Networks 4, 2, 251–257.

[20] Kocsis, L. and Szepesvári, C., “Bandit Based Monte-Carlo Planning”, in “Ma-
chine Learning: ECML 2006”, pp. 282–293 (Springer Berlin Heidelberg, 2006).

[21] Lagoudakis, M. G. and Parr, R., “Reinforcement Learning as Classification:
Leveraging Modern Classifiers”, in “Proceedings of the 20th International Con-
ference on Machine Learning (ICML-03)”, pp. 424–431 (2003).

[22] Li, J-Q., Mirchandani, P. B. and Borenstein, D., “The Vehicle Rescheduling
Problem: Model and Algorithms”, Networks: An International Journal 50, 3,
211–229.

[23] Lowe, R., Wu, Y., Tamar, A., Harb, J., Abbeel, P. and Mordatch, I., “Multi-
Agent Actor-Critic for Mixed Cooperative-Competitive Environments”, arXiv
preprint arXiv:1706.02275 [cs.LG], 2020 .

[24] Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D.
and Riedmiller, M., “Playing Atari with Deep Reinforcement Learning”, arXiv
preprint arXiv:1312.5602, 2013 .

[25] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G.,
Graves, A., Riedmiller, M., Fidjeland, A. K., Ostrovski, G. et al., “Human-Level
Control through Deep Reinforcement Learning”, nature 518, 7540, 529–533.

[26] Mohanty, S., Nygren, E., Laurent, F., Schneider, M., Scheller, C., Bhattacharya,
N., Watson, J., Egli, A., Eichenberger, C., Baumberger, C., Vienken, G., Sturm,
I., Sartoretti, G. and Spigler, G., “Flatland-RL : Multi-Agent Reinforcement

94

Learning on Trains”, arXiv preprint arXiv:1312.5602 [cs.AI], 2020 .

[27] Moritz, P., Nishihara, R., Wang, S., Tumanov, A., Liaw, R., Liang, E., Elibol,
M., Yang, Z., Paul, W. and Jordan, M. I. et al., “Ray: A Distributed Framework
for Emerging AI Applications”, in “13th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 18)”, pp. 561–577 (2018).

[28] Rashid, T., Samvelyan, M., Schroeder de Witt, C., Farquhar, G., Foerster, J.
and Whiteson, S., “QMIX: Monotonic Value Function Factorisation for Deep
Multi-Agent Reinforcement Learning”, arXiv preprint arXiv:1803.11485 [cs.LG],
2018 .

[29] Schulman, J., Wolski, F., Dhariwal, P., Radford, A. and Klimov, O., “Proximal
policy optimization algorithms”, arXiv preprint arXiv:1707.06347, 2017 .

[30] Silver, D. and Veness, J., “Monte-Carlo Planning in large POMDPs”, (Neural
Information Processing Systems, 2010).

[31] Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A.,
Lanctot, M., Sifre, L., Kumaran, D., Graepel, T. et al., “Mastering Chess and
Shogi by Self-Play with a General Reinforcement Learning Algorithm”, arXiv
preprint arXiv:1712.01815, 2017 .

[32] Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A.,
Hubert, T., Baker, L., Lai, M., Bolton, A. et al., “Mastering the Game of Go
without Human Knowledge”, Nature 550, 7676, 354–359.

[33] Sutton, R., “Actor-Critic Methods”, URL http://incompleteideas.net/
book/first/ebook/node66.html.

[34] Sutton, R.S. and Barto, A.G., Reinforcement Learning: An Introduction, Adap-
tive Computation and Machine Learning series (MIT Press, 2018).

[35] Szepesvári, C., “Algorithms for Reinforcement Learning”, Synthesis Lectures on
Artificial Intelligence and Machine Learning 4, 1, 1–103.

[36] Tesauro, G., “Temporal Difference Learning and TD-Gammon”, J. Int. Comput.
Games Assoc. 18, 88.

[37] Wang, Z., Schaul, T., Hessel, M., Hasselt, H., Lanctot, M. and Freitas, N, “Duel-
ing Network Architectures for Deep Reinforcement Learning”, in “International
Conference on Machine Learning”, pp. 1995–2003 (PMLR, 2016).

[38] Ye, N., Somani, A., Hsu, D. and Lee, W. S., “Despot: Online POMDP Planning
with Regularization”, Journal of Artificial Intelligence Research 58, 231–266.

95

[39] Zhang, K., Yang, Z. and Başar, T., “Multi-Agent Reinforcement Learning: A Se-
lective Overview of Theories and Algorithms”, arXiv preprint arXiv:1911.10635,
2019 .

96

