
Reduced Order Models and Approximations for Hardware Acceleration of Neural

Networks

by

Elham Azari

A Dissertation Presented in Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy

Approved May 2021 by the
Graduate Supervisory Committee:

Sarma Vrudhula, Chair
Georgios Fainekos

Fengbo Ren
Yezhou Yang

ARIZONA STATE UNIVERSITY

August 2021

ABSTRACT

Many real-world engineering problems require simulations to evaluate the design ob-

jectives and constraints. Often, due to the complexity of the system model, simula-

tions can be prohibitive in terms of computation time. One approach to overcome this

issue is to construct a surrogate model, which approximates the original model. The

focus of this work is on the data-driven surrogate models, in which empirical approx-

imations of the output are performed given the input parameters. Recently neural

networks (NN) have re-emerged as a popular method for constructing data-driven

surrogate models. Although, NNs have achieved excellent accuracy and are widely

used, they pose their own challenges. This work addresses two common challenges,

the need for: (1) hardware acceleration and (2) uncertainty quantification (UQ) in

the presence of input variability.

The high demand in the inference phase of deep NNs in cloud servers/edge devices

calls for the design of low power custom hardware accelerators. The first part of this

work describes the design of an energy-efficient long short-term memory (LSTM) ac-

celerator. The overarching goal is to aggressively reduce the power consumption and

area of the LSTM components using approximate computing, and then use architec-

tural level techniques to boost the performance. The proposed design is synthesized

and placed and routed as an application-specific integrated circuit (ASIC). The re-

sults demonstrate that this accelerator is 1.2X and 3.6X more energy-efficient and

area-efficient than the baseline LSTM.

In the second part of this work, a robust framework is developed based on an al-

ternate data-driven surrogate model referred to as polynomial chaos expansion (PCE)

for addressing UQ. In contrast to many existing approaches, no assumptions are made

on the elements of the function space and UQ is a function of the expansion coeffi-

cients. Moreover, the sensitivity of the output with respect to any subset of the input

i

variables can be computed analytically by post-processing the PCE coefficients. This

provides a systematic and incremental method to pruning or changing the order of the

model. This framework is evaluated on several real-world applications from different

domains and is extended for classification tasks as well.

ii

To my mother and father

for their unconditional love, encouragement and support.

iii

ACKNOWLEDGMENTS

I would like to express my deepest appreciation to my advisor, Prof. Sarma Vrudhula,

for all his guidance and advice throughout the years. Without his persistent help,

this dissertation would not have been possible.

I would like to thank my committee members, Prof. Georgios Fainekos, Prof.

Fengbo Ren and Prof. Yezhou Yang for reviewing my work, attending my presenta-

tions and offering insightful comments.

I would also like to thank the members of the Center for Embedded Systems and

other industry members for their technical support. Specifically, I would like to men-

tion Karam Chatha, Rex Hill and Kambiz Yazdi of Qualcomm and Rudy Beraha

and Salem Emara of Atlazo for offering me summer internships and fantastic oppor-

tunities to learn more about hardware-aware deep learning optimization in practical

settings.

Primary funding support for this work was provided by the sponsoring agencies,

National Science Foundation- grants #1361926, #1701241 and NSF I/UCRC Center

for Embedded Systems. In addition, I would like to thank the school of engineering

for awarding me graduate fellowships.

I would like to thank the CIDSE front office staff, including Pamela Dunn and

Monica Dugan. A special thanks to Lisa Christian for her help over the past several

years.

Finally, and most importantly, I am extremely thankful to my family. My parents

and my siblings have been a constant source of encouragement and support through-

out these many years. I am forever grateful for everything they have done for me.

iv

TABLE OF CONTENTS

Page

LIST OF TABLES . ix

LIST OF FIGURES . xii

CHAPTER

1 INTRODUCTION . 1

1.1 Surrogate Models . 1

1.2 Taxonomy of Surrogate Models . 2

1.3 NNs as Data-Driven Surrogate Models . 4

1.4 Applications of NN as Surrogate Models . 5

1.4.1 Object Detection and Classification . 6

1.4.2 Natural Language Processing . 9

1.5 Challenges in Employing NN Models . 11

1.5.1 Addressing the First Challenge: Need for Hardware Accel-

eration of NNs . 13

1.5.2 Addressing the Second Challenge: Need for Uncertainty

Quantification in the Presence of Input Variability 17

1.6 Novelty and Dissertation Structure . 18

1.6.1 Addressing the Hardware Acceleration Challenge 18

1.6.2 Addressing the UQ Challenge . 19

2 ELSA: A THROUGHPUT OPTIMIZED DESIGN OF AN LSTM AC-

CELERATOR FOR ENERGY-CONSTRAINED DEVICES 23

2.1 Problem Background: The Need for Hardware Acceleration of LSTM 23

2.2 Existing Hardware Accelerators of LSTM . 24

2.3 Problem Statement and Novelty . 26

2.4 Background . 27

v

CHAPTER Page

2.4.1 Long Short-Term Memory . 27

2.5 Architecture of ELSA . 29

2.5.1 Approximate Multiplier (AM) . 29

2.5.2 Extension to AM for a Faster Execution 31

2.5.3 Comparison with an Exact Multiplier . 32

2.5.4 Hardware Challenges and Design Decisions 34

2.5.5 System Overview . 35

2.5.6 Main Computation Units . 35

2.5.7 Controller Units . 38

2.6 Multi-level Elastic Pipelining . 40

2.7 Quantization and Accuracy . 43

2.7.1 Model Description . 43

2.7.2 Quantized Model . 44

2.8 Performance Modeling for ELSA . 48

2.8.1 Pipelined Design . 49

2.8.2 Non-pipelined Design. 50

2.9 A Framework for Pre-hardware Mapping Analysis 52

2.9.1 Accuracy . 53

2.9.2 Speed up . 53

2.9.3 Execution Time . 54

2.10 Experimental Results . 54

2.10.1 ASIC Implementation of ELSA . 54

2.10.2 FPGA Implementation of ELSA . 61

2.10.3 Summary of the Key Features of This Work 64

vi

CHAPTER Page

2.10.4 Opportunities for Further Improvements 65

2.11 Chapter Summary . 65

3 AN ALTERNATE DATA-DRIVEN SURROGATE MODEL FOR UN-

CERTAINTY QUANTIFICATION . 67

3.1 Problem Background: The Need for Uncertainty Quantification and

Sensitivity Analysis . 67

3.2 Challenges in UQ with NN Models . 72

3.3 Overview of Polynomial Chaos Expansion . 76

3.4 A Data-driven Framework . 78

3.4.1 Quantifying Uncertainty with aPC . 80

3.4.2 Global Sensitivity Analysis with aPC . 81

3.5 Motivation . 82

3.6 Incremental Computations to Construct Higher Order Models 87

3.7 Extension to aPC for Classification Tasks. 89

3.7.1 Address the Scalability Issue in Classification Tasks 91

3.8 A Computation Graph for aPC . 94

3.9 Experimental Results . 95

3.9.1 Regression Experiments . 95

3.9.2 Classification Experiments . 99

3.9.3 Uncertainty Evaluation: Test Examples from Known vs Un-

known Classes . 101

3.10 Chapter Summary . 102

4 USE CASE: POST-FABRICATION WEIGHT TUNING IN A BINARY

PERCEPTRON . 104

vii

CHAPTER Page

4.1 Problem Background . 104

4.2 Problem Statement and Novelty . 106

4.3 A Challenging Use Case . 107

4.3.1 A Tunable Binary Perceptron . 107

4.3.2 Sources of Variations in the FTL Circuit 110

4.3.3 Programming the FTL Circuit . 110

4.4 Post Fabrication Weight Tuning . 111

4.4.1 The Issues of On-chip PLA . 111

4.4.2 Alternate Solution to On-chip PLA. 112

4.4.3 Database Construction for FTL Programming. 114

4.5 The Proposed Stochastic Simulator . 116

4.6 Experimental Results . 119

4.6.1 Experimental Setup . 119

4.6.2 Results . 120

4.7 Chapter Summary . 123

5 CONCLUSION . 125

REFERENCES . 127

APPENDIX

A POLYNOMIAL CHAOS EXPANSION . 139

A.1 A Brief History of Polynomial Chaos Theory . 140

A.2 Generalized Polynomial Chaos . 143

A.2.1 General Polynomial Chaos with Finite Series 145

A.3 Arbitrary Polynomial Chaos . 146

viii

LIST OF TABLES

Table Page

1.1 Examples of Surrogate Models. 2

1.2 Taxonomy of Surrogate Models, Adapted from Robinson et al. (2008); Asher

et al. (2015). 3

2.1 Piece-wise Linear Activation Functions Wang et al. (2017). 38

2.2 This Shows the Control Flow and the Data Computation in the Proposed

Pipelining Method. T Is the Total Number of Time Steps. n Is the Total

Number of Hidden Nodes, and j Denotes the jth Component of Its Corre-

sponding Vector. The Output of the Stage Operations as Well as the Mode

of Operation for the MVMs Are Specified Below. The Pipeline Stages Shown

in Columns Are Executed in Parallel and the Stages Shown in Rows Are

Performed Sequentially. 41

2.3 The Relative Error for a Single Multiplication, MAC Operations and an

LSTM Layer, as Well as the Classification Accuracy for an Application (i.e.

LM That Has Two Consecutive LSTM Layers), When the AM Is Employed

in the 8-bit Hardware Design. 47

2.4 The Average Speed-up Achieved by the Pipelining Method over the Non-

pipelined Design for 27 Different LSTM Configurations. This Was Com-

puted by Evaluating Equations 2.17 and 2.22. The Minimum and Maximum

Speedups Were 1.58x and 1.65x, Respectively. 52

ix

Table Page

2.5 Comparison with the Previous ASIC Implementations. All of These Imple-

mentations Are in 65nm Technology. DNPU Is a CNN-RNN Processor, and

This Table Only Includes the RNN Values Reported in Shin et al. (2017).

The LSTM Architecture of DNPU and CHIPMUNK Differ Substantially

among Themselves and Also When Compared with ELSA. Moreover, the

Reported Applications Are Dramatically Different, Making Comparisons in

General Difficult to Judge. 60

2.6 Comparison with Previous Language Modeling Implementations. 62

2.7 Maximum Improvement in Throughput and Energy Efficiency as Com-

pared to Prior Implementations. 63

2.8 Resource Utilization of Our Accelerator. 63

2.9 Energy Efficiency of Different Platforms. 64

3.1 RMSE for the Power Plant. 84

3.2 Comparative Results on Regression Benchmarks. 98

3.3 Comparative Results on Image Classification. 101

4.1 An Example of FabDB That Consists of the Failure-types and Their Re-

spective V tSet. The Order of the Minterms Is [a,b,c,d,e]. For Example, the

Failure Type 10000 Corresponds to the Threshold Function a Instead of

ab+ ac+ ad+ ae. 114

4.2 An Example of CktFT Database for Three Instances of a 5-input FTL and

Their Corresponding Failure Types. 116

4.3 The Number of Saved HSPICE Iterations and the Speed up Achieved by

Employing the Stochastic Simulator. This Experiment Is Performed on 100

Circuit Instances to Find Their Working V tsets. 121

x

Table Page

A.1 Optimal Polynomials for Various Continuous Distributions Eldred and Burkardt

(2012). 144

A.2 Central and Non-central Moments of a Normal Random Variable up to

Order 5. 150

xi

LIST OF FIGURES

Figure Page

1.1 (a) An FFNN with Two Hidden Layers. (b) Multiple-input Neuron with an

Activation Function f . The Output Is Expressed as a = f(
∑n

i=1 xiwi). 6

1.2 Examples of Object Detection and Classification in a Wide Range of Scales

and Aspect Ratios Ren et al. (2015). 7

1.3 The Architecture of VGG-16 Simonyan and Zisserman (2014) That Consists

of 16 Layers With Model Parameters. 8

1.4 The Left Figure Illustrates the Standard RNN. This Network Is Unfolded

Over Multiple Time Steps to Demonstrate the Impact of the Vanishing

Gradient Problem. As the Input at Time Step One Passes Through the

Hidden Layer, it Loses its Sensitivity on the Output, and New Inputs Affect

the Hidden Layer. In This Figure, the Degree of Sensitivity is Proportional

to the Shades of the Nodes and Gradually Decreases as the Shades Fade

Down. 10

1.5 The Structure of an LSTM Layer. It Consists of a Memory Cell (C), an

Input Gate (i), an Output Gate (o), and a Forget Gate (f). MVM =

Matrix-Vector Multiplier; • = Element-wise Multiplier; σ, tanh = Sigmoid

and Hyperbolic Tangent Activation Functions. 11

1.6 Two Distinct Eras of Compute Usage in Training NN Models Amodei and

Hernandez (2018). 13

1.7 Server Demand for Deep Learning Inference Across Data centers Park et al.

(2018b). 14

xii

Figure Page

2.1 The Structure of an LSTM Layer. It Consists of a Memory Cell (C), an

Input Gate (i), an Output Gate (o), and a Forget Gate (f). MVM =

Matrix Vector Multiplier; • = Element-wise Multiplier; σ, tanh = Sigmoid

and Hyperbolic Tangent Activation Functions. 28

2.2 Structure of a 4-bit Signed AM. X and W ∈ [-1,1) Are the Inputs and Z Is

the Product. The Sign bits Are x3 and w3. 30

2.3 The Improved Version of the AM. The Modified Parts Are Shown in Red.

The Number of States in the FSM Is Reduced by Half and the Down Counter

Is Initialized to Half of Its Value as Compared to the One in Figure 2.2. The

Preprocessing Unit Sets the Initial Value of the Up-down Counter to 3 (i.e,

X3 Is One and It Appears Three Times in the Bit-stream in Figure 2.2).

Hence, the Initial Value of the Down-counter Is Set to 3, Half of Its Original

Value. 31

2.4 The Cell Area Improvement (top) and Power Improvement (bottom) of AM-

MAC as Compared to the Exact-MAC for Different Hardware Bit Precision.

Each Plot Demonstrates the Accuracy of the AM-MAC for Different Bit

Precision as Well. 33

2.5 The Block Diagram of ELSA That Consists of the Computation Units and

a Hierarchy of Control Units. 36

2.6 An Example of the MVM Module, in Which It Receives X3×4 and Y4×1 as

Its Inputs and Generates the Output Vector Z3×1. 37

2.7 The Controller Hierarchy That Consists of a Top Controller (Top-C) and

Three Mini Controllers- MVM-C, EMA-C and EM-C. 39

xiii

Figure Page

2.8 The Six Pipeline Stages in the LSTM Layer. Stage − 1: Eight Parallel

MVMs; Stage−2: Three Activation Functions and Ternary Adders; Stage−

3: Two Consecutive Multiplications and an Adder; Stage − 4: a Sigmoid

Function and a Ternary Adder; Stage− 5: One Tanh Function; Stage− 6:

One Element-wise Multiplication. 42

2.9 The LM Network. It Consists of Two 128 Hidden-node LSTM Layers Fol-

lowed by FC and Softmax Layers. The Output of Both LSTM Layers Is a

Vector of Size 128 and Their Inputs Are of Size 65 and 128, Respectively. . . . 44

2.10 Average MSE for the Hidden State (H) Over 1000 Time Steps for Different

Bit-width. The Memory State Demonstrated Similar Behavior, Hence Its

Results Were Removed for Brevity. 46

2.11 The MSE (This Work, FP32) of the Hidden State for the 8-bit Quantization.

The x-Axis Demonstrates the MSE Values Over 1000 Time Steps. The

Dashed Black Line Shows That the Error Does Not Accumulate. The Same

Trend Is True for the Memory State for Which Its Results Are Removed for

Brevity. 47

2.12 Overall Structure of the Framework. It Consists of Three Main LSTM

Implementations in Python That Can Report the Accuracy of This Work

for Different Bit-width, the Speed up Achieved with the Pipelining Method

and the Execution Time of a Given Application in Clock Cycles. 53

2.13 The Physical Layout of ELSA’s Design in 65nm CMOS Technology (Top)

and the ASIC’s Implementation Results (bottom). 55

2.14 Power (Left) and Area (Right) Breakdown of ELSA’s Components Including

the SRAMs. AF Stands for Activation Functions. 56

xiv

Figure Page

2.15 The ASIC Implementation Results of ELSA as Compared to the Baseline-

LSTM. Both of These Designs Were Run at the Same Clock Frequency, the

Highest That the Baseline-LSTM Can Achieve. The Reported Numbers Are

Normalized. The Energy and Area Efficiency of ELSA Exceeds That of the

Baseline-LSTM by Factors of 1.2x. 58

2.16 The ASIC Implementation Results of ELSA as Compared to the Baseline-

LSTM. Both of These Designs Were Run at Their Highest Achievable Clock

Frequency. The Reported Numbers Are Normalized. The Energy and Area

Efficiency of ELSA Exceeds That of the Baseline-LSTM by Factors of 1.2x

and 3.6x, Respectively . 59

3.1 Different Types of Uncertainty Propagation Methods. 68

3.2 An Example of Bayesian Inference, in Which the Posterior Distribution Is

Generated by Multiplying the Prior and Likelihood Distributions. 73

3.3 Implementation of Weight Sampling Method in Deep Learning Models for

Diabetic Retinopathy Detection Leibig et al. (2017). The Images Are Ex-

amples of Fundus Images with Human Label Assignments on Top. Corre-

sponding to Each Image Is the Approximate Predictive Posteriors over the

Softmax Output Values P (diseased|image). Predictions Are Based on the

Mean of the Posteriors (i.e µ) and Uncertainty Is Quantified By σ. 75

3.4 (a) Sample PE Versus the Predicted PE with aPC for the First 100 In-

stances. (b) The Frequency Histogram of the Test Error (%) for the 2nd

Order Expansion. The Maximum Error is Around 16 Standard Deviations

Far From the Mean. 83

xv

Figure Page

3.5 The Bars Represent the Histogram Obtained from the Sample Power Plant

Energy and the Curve Shows the Estimated P.D.F of the Energy Using aPC.

The KL Divergence Value (dKl) Between the Two P.D.Fs Is .04, Which Is

Close to 0. 85

3.6 Identifying Outliers. The Dashed Line and Band Demonstrate the Esti-

mated Mean with One Standard Deviation. 86

3.7 The Orthogonal Projection of y into W . 88

3.8 The Speed up Achieved by Incrementally Adding to the Computation.

This Is Shown up to the 5th Order. Greater Speed-up Is Achieved for

Larger d. 90

3.9 The Proposed Training Procedure for Solving the Scalability Issue and

Applying aPC on Handwritten Digit Recognition. The Number of

Partitions and the Number of Pixels per Partition Are Denoted as

m and n, Respectively. The Output of This Procedure Is m Tuned

Coefficients (C) Which Will Be Used for the Inference Phase. 91

3.10 The Proposed Inference Procedure for Predicting the Digit Label of

a given Test Image Using the Coefficients Computed in the Training

Procedure. 92

3.11 The Overall Structure of the Handwritten Digit/Letter Detection Problem

for the MNIST Dataset. Typically the Computational Model Is Replaced

with LeNet5 as It Has Demonstrated a High Accuracy Of 99.9%. 93

3.12 Computation Graph of aPC for Training. The Inference Graph Has the

Same Operations Except the Computation of the Coeffs Node. Hence

It Is Omitted for Brevity. 97

xvi

Figure Page

3.13 The Normalized Train Time of This Work along with MC Dropout and

Deep Ensembles on the Regression Benchmarks. 99

3.14 The Fraction of Train Data Used for Training Deep Ensembles, MC Dropout

and This Work on the Regression Benchmarks. 100

3.15 Comparison Between the Execution Time and the Amount of Data Used

for Training in This Work and the Other Two Existing Methods For MNIST.101

3.16 Comparison Between the Execution Time and the Amount of Data Used for

Training in This Work and the Other Two Existing Methods For CIFAR-10. 102

3.17 The Percentage of the NotMNIST Images That Are Identified Cor-

rectly as Outliers, given Various Intervals. 102

4.1 The Architecture of the FTL Cell with Four Main Components: The Left

Input Network (LIN), the Right Input Network (RIN), a Sense Amplifier

(SA) and an Output Latch (LA). The LIN and RIN Consist of Two Sets

of Inputs (`1, · · · , `n) and (r1, · · · , rn), Respectively, With Each Input in

Series with a Flash Transistor. 109

4.2 Transformation from Boolean Space to Conductivity Space; Hyperplane

Gets Converted into a Line. 110

4.3 Proposed Procedure for FabDB Construction. Flow-1 Simulates the In-

stances Programmed with the Nominal V tSet and Generates the Failure

Types. This is Stored in CktFT . The Unique Failure Types are Stored

in the First Entry of FabDB. Flow-2 Uses a Combination of Circuit Sim-

ulation and PLA to Find a Working V tSets for the Unique Failure Types

Which Is Stored the Second Entry of FabDB. 115

xvii

Figure Page

4.4 Output Voltage of a 5-input FTL Instance Simulated with the Stochastic

Simulator and HSPICE. The Target Function Is [4,1,1,1,1;5]. The Voltages

Are Then Thresholded to 0 and 1 to Generate The TT 118

4.5 Example Distribution of Threshold Functions When the Instances Were

Programmed with the Nominal V tSet For the Target Function [4,1,1,1,1;5].

The Four Most Frequent Functions Are Used for Model Construction. The

Model Is Evaluated on the Remaining Circuit Instances. This Strategy

Boosts the Accuracy by an Extra 10%. 120

4.6 The Speed up Achieved by Employing the Stochastic Simulator to Reduce

the HSPICE Iterations in PLA. Average Speedup of 8.3x Is Achieved with

the Maximum Being 56.5X. 121

4.7 The Execution Time (Seconds) of Parallel Circuits Simulated in Both HSPICE

and the Stochastic Simulator on the Same Machine. 122

4.8 The Speed up Achieved by Employing the Stochastic Simulator to Reduce

the HSPICE Iterations For FabDB Construction. Average Speedup of 6.1x

Is Achieved with the Maximum Being 37x. Constructing FabDB Using

Only HSPICE Is Impractical Due to the Several Simulations Required to

Generate the Failure Types. 123

A.1 An Optimum Projection of Vector v ∈ V into a Subspace W 142

xviii

Chapter 1

INTRODUCTION

1.1 Surrogate Models

The central problem in the analysis of a physical system is to construct a model of

a system denoted by M : X 7→ Y =M(X), in which the input parameters and the

output response are represented by vectors X ∈ DX ⊂ RM and Y = M(X) ∈ RN ,

respectively. The modelM may be given implicitly by expressingM as a solution to

one or more differential, integral or algebraic equations. In many cases,M is a black

box, in which the model is known through point-wise evaluations, y(i) =M(x(i)) for

a given x(i).

Many real-world engineering problems require simulations to evaluate the design

objectives and constraints. More often than not, due to the complexity of M, simu-

lations can be prohibitive in terms of computation time. One approach to overcome

this issue is to construct surrogate models. A surrogate model (M̃) Sudret (2007), also

known as meta-model, is an approximation of the original computational model (M)

that mimics the behavior of model M. This method is employed when model M is

either infeasible or too complex to be constructed. The most common approach to

constructing a surrogate model for M̃ is to assume a parametric form M̃(x; θ), where

θ is a set of unknown parameters that determine M̃. A few examples of surrogate

models are presented in Table 1.1. In the next section different types of surrogate

models are described.

1

Table 1.1: Examples of Surrogate Models.

Name of the Model Form of the Model Model Parameters θ

Polynomial Chaos Expansions M̃(x; c) =
∑
ciΦi(x) c

Gaussian Process Modeling M̃(x; β, σ2) = βTf(x) + σ2Z(x,w) β, σ2

Support Vector Machines M̃(x;w, b) =
∑N

n=1wnK(xn, x) + b w, b

Feed-forward Neural Networks† M̃(x;w, b) = f ∗(
∑m

i=1 wjxj) + b w, b

† Function of a single neuron for simplicity.

∗ f(.) is a nonlinear activation function in the case of classification and is the identity in the case of regression.

1.2 Taxonomy of Surrogate Models

This section describes the taxonomy of surrogate models which is structured based

on their mathematical form. The surrogate models are categorized into three different

classes, namely, data-driven surrogates, projection-based surrogates and multi-fidelity-

based surrogates. Table 1.2, adapted from Robinson et al. (2008); Asher et al. (2015),

presents the taxonomy along with a few examples for each category. The data-driven

surrogates approximate a complex model based on empirical approximations of the

output given the input parameters. projection-based methods project the governing

equations onto a basis of orthonormal vectors. This leads to reduce the dimensionality

of the parameter space. Multi-fidelity methods are referred to those that simplify

the representation of the physical system by numerical resolution or the underlying

physics.

2

Table 1.2: Taxonomy of Surrogate Models, Adapted from Robinson et al. (2008); Asher

et al. (2015).

Surrogate Category Also Known As Examples

Data-driven surrogates

Response surface

Statistical methods

Black box methods

Polynomials

Neural Networks

Gaussian Processes

Polynomial chaos expansions

Bayesian networks

Projection-based surrogates

Reduced order method

Reduced basis method

Model reduction method

Karhunen-Loeve expansion

Dynamic mode decomposition

Proper orthogonal decomposition

Multi-fidelity-based surrogates

Multi-scale method

Hierarchical method

Physical-based method

Multi-scale finite element method

Variational multi-scale method

The focus of this work is on the data-driven or black-box methods. Some of the

examples are Gaussian processes, neural networks and polynomial chaos expansions.

For any engineering optimization problem, it is typically not clear at first, which

data-driven method is superior to others. Hence, a comprehensive comparison may

need to be performed to analyze the superiority of a method to others for a specific

problem. In this surrogate category, the most common method for model validation,

is to divide the given data into two sets, referred to as training and validation sets.

The training set is used to construct the models and the validation set is to validate

the data-driven model.

In the broad field of ML, recently artificial neural networks (NN) have re-emerged

as a very popular data-driven surrogate model. In the following sections, we describe

the NN models as the principal method for constructing data-driven models.

3

1.3 NNs as Data-Driven Surrogate Models

Machine learning (ML) algorithms are one example of data-driven surrogate mod-

els. ML encompasses many different approaches to model construction. All of them

start by assuming a parametric form for M̃. There are two classes of methods for

estimating (also referred to as training) the parameters, referred to as unsupervised

and supervised learning. Unsupervised learning aims at detecting hidden patterns

in an unlabeled dataset {x(i), i = 1, 2, ..., n}. An example of this category is clus-

ter analysis, which is used for exploratory data analysis for grouping data based

on a pattern. In this method, the clusters are grouped based on a measure of

similarity. On the other hand, supervised learning considers a training data set,

D = {(x(i), y(i)), i = 1, 2, ..., n}, where x(i)s are the input attributes and y(i)s are the

output labels. A learning algorithm aims at finding a function M̃ : X 7→ Y , where

X and Y are the input and output space, respectively. In classification, the output

labels y(i) are discrete (e.g. y(i) ∈ {0, 1}), in which the objective is to predict the class

label of a new point x. In regression, the output labels are continuous, y(i) ∈ DY ⊂ R

and the objective is to predict the output value ŷ of a new point x by evaluating the

constructed model M̃(x; θ). Some of the existing methods for these two classes are

neural networks, Gaussian process models and support vector machines. Among the

existing methods in ML, neural networks (NN) have presented a major paradigm shift

in computing for numerous applications that involve perception, cognition, search and

optimization in very large dimensional spaces.

A NN is a data-driven computing model that consists of a group of connected nodes

(also known as neurons). NN surrogate models are inspired by the way human brain

operates and processes information. Among the many different types of NNs, feed-

forward neural networks (FFNN) (which are also known as multi-layer perceptrons)

4

are the most commonly used models in nearly every modern application. An FFNN

is a directed acyclic graph (DAG) that can be topologically sorted such that the

nodes are assigned a level or layer number, with primary input nodes assigned a

level 0, and every other node assigned a level that is one more than the maximum

level of all its input nodes. In an FFNN, the first and last layers are referred to

as the input and output layers, respectively. All the other layers are referred to as

hidden layers. Figure 1.1a illustrates an example of an FFNN with two hidden layers,

where the nodes in the hidden layers correspond to the multi-input neuron depicted

in Figure 1.1b. The depth of an FFNN is defined as the number of hidden layers,

which is 2 in the example shown in Figure 1.1a. The simplified neuron depicted in

Figure 1.1b takes multiple inputs (xi) and produces an output (a). The activation

function (i.e. f) can differ from one NN model to another and in some models there is

no activation function (e.g. regression). Examples of an activation function is ReLU,

sigmoid and Tanh.

In Leshno et al. (1993); Lu et al. (2017), it was shown that an FFNN with one

hidden layer can approximate any continuous function arbitrarily closely if the hidden

layer has sufficiently large number of neurons. Convolutional neural networks (CNN)

and recurrent neural networks (RNN), which are two other types of NN models, have

also been shown to be universal approximators Zhou (2020); Schäfer and Zimmermann

(2006). These models are explained in details in the next section.

1.4 Applications of NN as Surrogate Models

Nowadays, NNs are being used in numerous applications that involve classifica-

tion, text analysis, search and optimization over very large dimensional spaces. Deep

Neural Networks (DNN) have achieved excellent results in accuracy and performance

for perception, cognition and text understanding. For image recognition, DNNs have

5

Input
Layer

Hidden
Layer 1

Hidden
Layer 2

Output
Layer

(a)

Input r.v.s

Computational
Model (M)

Response
Variability
Methods

Structural
Reliability
Methods

Spectral
Methods
(stochastic finite
element methods)

(b)

Figure 1.1: (a) An FFNN with Two Hidden Layers. (b) Multiple-input Neuron with an

Activation Function f . The Output Is Expressed as a = f(
∑n

i=1 xiwi).

been able to achieve error rates of < 5% on millions of images from a large and

database called ImageNet. This performance equals or exceeds that of humans, and

continues to improve. Equally remarkable results have been demonstrated in numer-

ous other application domains, that involve pattern recognition, search and optimiza-

tion. A few examples are retail, robotics, autonomous driving and health-care. DNNs

have defeated the world champion in the games of GO and Poker, have been used

to detect viruses in software, to conduct transactions on stock markets, and optimize

inventory and supply chain Brynjolfsson and Mcafee (2017).

The two main categories that the existing NN models have been used are (1) object

detection and classification and (2) natural language processing.

1.4.1 Object Detection and Classification

These class of problems are mainly solved by convolutional neural networks (CNNs).

CNNs are one type of data-driven surrogate models that can be expressed as the gen-

eral form M̃(x; θ), where x is the input and θ is the set of model parameters referred

to as weights. The input to a CNN (i.e. x) is an image and the output is the class

6

label that the image belongs to. This is referred to as classification. In object de-

tection, the objective is to detect instances of the semantic objects of a certain class

by delineating their boundaries in a given image or video. Figure 1.2 illustrates the

outputs of a CNN for object detection.

Figure 1.2: Examples of Object Detection and Classification in a Wide Range of Scales

and Aspect Ratios Ren et al. (2015).

A CNN typically consists of one input, one output and many hidden layers. The

hidden layers involve a sequence of convolutional operations which repeatedly com-

pute inner-products of large dimensional vectors. The other operations in CNNs

include activation functions (mainly ReLU), pooling, fully connected and classifica-

tion layers. Figure 1.3 depicts an example of a CNN architecture, referred to as

VGG-16 Simonyan and Zisserman (2014), which consists of 16 layers with model pa-

rameters. The first few layers of CNNs extract the high level features of the input and

the deeper layers extract a combination of these features which are more complex.

In the 2012 ImageNet competition Russakovsky et al. (2015), a CNN design, referred

to as Alexnet, won the competition. Since then, CNNs have become the de facto

standard in a wide variety of computer vision tasks. Many successful attempts have

been made to improve the quality and accuracy and architecture of Alexnet. These

were typically achieved by utilizing wider and deeper networks. For example, VG-

GNet Simonyan and Zisserman (2014) and GoogleNet Szegedy et al. (2015) were two

of the networks that achieved similar performance in ILSVRC 2014 Russakovsky et al.

7

(2015) while demonstrating significantly improved accuracy of classification tasks as

compared to AlexNet. These networks have achieved accuracy close to or even better

than human-level perception. Typically an increase in the size and the computational

cost of CNNs lead to higher accuracy given sufficiently large training data. Different

variety of CNN architectures have been designed for image/video classification Karpa-

thy et al. (2014); Krizhevsky et al. (2012); Lin et al. (2013); Simonyan and Zisserman

(2014); He et al. (2016); Szegedy et al. (2015), object and face detection Liu et al.

(2016); Li et al. (2015), human pose estimation Toshev and Szegedy (2014), object

tracking Wang and Yeung (2013) and many other computer vision tasks.

Convolution and ReLU

Max Pooling

Fully Connected and ReLU

Softmax

Figure 1.3: The Architecture of VGG-16 Simonyan and Zisserman (2014) That Consists

of 16 Layers With Model Parameters.

8

1.4.2 Natural Language Processing

The data in this specific class of problems are sequential, i.e. the individual in-

puts are sequences that have long-term temporal dependencies. Some well known

examples of problems that have temporal dependencies are handwriting recognition

and generation, language modeling and machine translation, speech recognition, pre-

diction of protein structure, audio and video data analysis. In general, data that

have temporal dependencies can be processed by recurrent neural networks (RNNs),

which unlike CNNs, have feedbacks and are not acyclic graphs. However, standard

RNNs have a major drawback that limits their use in a wider range of sequence la-

beling applications, namely, their inability to accommodate long-term dependencies.

This problem arises in situations where the gap between the required information and

the place where it is needed is very large. For example, for predicting an upcoming

word in a text, where the prediction is dependent on many preceding words, standard

RNNs cannot learn to use information so far in the past, which is due to the vanishing

gradient problem Hochreiter et al. (2001). This problem occurs during training RNN

and is due to a recurrent weight and derivative of activation function that could be

less than one. Figure 1.4 illustrates the general structure of an RNN and the impact

of vanishing gradient problem on the output.

To alleviate this problem and be able to learn the patterns over a larger number

of time steps, more advanced RNN models, such as Gated Recurrent Unit (GRU)

and Long-Short Term Memory (LSTM) have been developed. An LSTM Graves and

Schmidhuber (2005); K. Greff et. al. (2017) is a special type of RNN designed to

handle the problem of long-term dependencies more accurately than the standard

RNNs. This is achieved by the gating mechanism in LSTMs. Figure 2.1 depicts the

structure of an LSTM layer.

9

Hidden
Layer

Input

Output

h1 h2 h3 h4 h5 h6

Hidden
Layer

Input

Time
Steps t1 t2 t3 t4 t5 t6

Output

Unfolded
over time

Figure 1.4: The Left Figure Illustrates the Standard RNN. This Network Is Unfolded Over

Multiple Time Steps to Demonstrate the Impact of the Vanishing Gradient Problem. As the

Input at Time Step One Passes Through the Hidden Layer, it Loses its Sensitivity on the

Output, and New Inputs Affect the Hidden Layer. In This Figure, the Degree of Sensitivity

is Proportional to the Shades of the Nodes and Gradually Decreases as the Shades Fade

Down.

In general, one of the limiting factors in RNNs is the recurrency and the sequential

nature. This prevents parallelization during training and batching across examples

due to memory constraints. Recently, more advanced networks have been developed

based on attention mechanism that eliminate the recurrency in RNNs. Attention-

based models take into account several other inputs at the same time and determine

which ones are important by assigning different weights to those inputs. Unlike

RNNs that take the entire sentence as the input, these models predict based on only

a part of the input which has the most relevant information. These networks model

the global dependencies instead of the distances between their distance in the input

or output sequences. Examples of such networks are Transformer Vaswani et al.

(2017), BERT Devlin et al. (2018), XLNET Yang et al. (2019) and RoBERTa Liu

et al. (2019). These networks are used in machine translation, question answering,

sentiment analysis and many other tasks. This is still an active area of research and

10

Figure 1.5: The Structure of an LSTM Layer. It Consists of a Memory Cell (C), an Input

Gate (i), an Output Gate (o), and a Forget Gate (f). MVM = Matrix-Vector Multiplier; • =

Element-wise Multiplier; σ, tanh = Sigmoid and Hyperbolic Tangent Activation Functions.

the accuracy and size of the networks are being improved.

1.5 Challenges in Employing NN Models

Although NN models have achieved excellent accuracy and are used in a wide va-

riety of applications, employing these models pose their own challenges. This section

explains two common challenges in details and the existing techniques that address

these issues. In the next section, our approaches to address these problems are pro-

posed.

The first challenge in deep NN models is that they involve compute-intensive op-

erations. There are two main phases in NN models, which are referred to as training

and inference. After the design of the NN architecture (i.e. deciding on the number of

layers and type of NN), the training phase determines the model parameters. During

the inference phase, the model is used to predict the output. Typically, GPUs are

11

the main platforms for the training due to their high computation power in parallel

computation. Although the training is a costly procedure in terms of computation

time and power consumption, it is typically performed once. However, the inference

phase is executed numerous times. The high demand in the inference phase of deep

NN models, referred to as deep learning (DL), is due to the ubiquitous use of these

models in an expanding range of applications and the continuous improvements in

their quality. These often lead to an increase in the computational cost and the mem-

ory requirements. Figure 1.6 illustrates the two distinct eras of training NN models

in terms of compute usage. It presents the total amount of compute (petaflop/s-days)

used to train the models. Since 2012, the compute usage in the largest trainings has

been exponentially increasing with a 3.4-month doubling time as opposed to Moore’s

law that reported a 2-year doubling time.

The second challenge in NN models is when the input space belongs to a stochastic

domain. Consider a data-driven surrogate model defined as, x ∈ Dx 7→ y = M̃(x; θ),

where x and θ are the input and parameters of a model, respectively. In many real-

world examples, the inputs belong to a stochastic domain and there are uncertainties

in the input. Various sources of uncertainty exist that could arise due to the errors

in the input data measurements, model structure, parameter values, etc. Let fX(x)

denote the probability density function (p.d.f) of a random variable x. The objective

of uncertainty propagation from the input is to estimate the statistics of the output

Y = M(X). Typically NN models only provide point estimates of the parameters

and predictions. Quantifying the uncertainty in a prediction has several practical

uses: handing over the control to a human or transitioning to a safe mode by an

autonomous vehicle or a robot, suggesting further analysis in medical diagnosis, etc.

12

Figure 1.6: Two Distinct Eras of Compute Usage in Training NN Models Amodei and

Hernandez (2018).

1.5.1 Addressing the First Challenge: Need for Hardware Acceleration of NNs

Cloud Servers: Norman P. Jouppi et al. (2017) reported in 2013 that people used

voice search three minutes a day using speech recognition. This would have required

the Google data centers to double to meet computation demands which would have

been costly with conventional CPUs. This led to their first generation of custom

hardware design, referred to as tensor processing unit (TPU). The TPU was deployed

by Google in 2015 and incorporated into their data centers to accelerate the inference

phase of NN models. The second generation of TPU was designed and announced in

2017 to improve the memory bandwidth of the first generation TPU. Later in 2018,

the third generation of TPU was deployed that was equipped with faster processors.

13

Google has employed TPUs for many tasks. For example, in Google street view

text processing, all the text in the database was found in less than five days, and

in Google photos, a single TPU processes over 100 million photos a day. Google

stated that TPUs deliver an order of magnitude higher performance per watt than

all commercially available GPUs and FPGAs Mah Ung (2018).

Deep learning is also used in many social network services. According to Facebook,

their social network services Hazelwood et al. (2018) must deliver high quality visual,

speech, and language models to billions of users. In 2018, they stated that a significant

fraction of the future demand is expected to come from workloads corresponding to

inference. Figure 1.7 depicts the server demand from late 2018 up to mid 2020. As

a result of this trend, the power consumption in the data centers has been rapidly

increasing over time Hazelwood et al. (2018).

Cloud servers equipped with traditional general purpose processors and GPUs

alone cannot accommodate billions of inferences every day. Moreover, transistor scal-

ing has also slowed down and there is a need to design efficient custom hardware

accelerators specialized for the deep learning tasks to significantly improve the per-

formance, power and area of the cloud servers.

2018 2019

2020

Figure 1.7: Server Demand for Deep Learning Inference Across Data centers Park et al.

(2018b).

14

Edge Devices: Computing at the edge brings cloud servers capabilities (in a smaller

scale) closer to the users and the devices that need them. Edge computing performs

the computation near the source of data instead of relying completely on the server.

This leads to improving the response time and saving the communication bandwidth.

Edge devices are the end-points of a system and today they dominate the personal

computing market. Examples of these devices are mobile phones, smart speakers,

AR/VR headsets, automotive, security cameras and drones. Although cloud servers

provide higher amount of computing power, not all the deep learning tasks should

be performed on the cloud servers. Processing at the edge complements the cloud

and is a necessity to reducing the load on the servers and bringing higher reliability,

faster execution, etc. This is due to the reason that a custom accelerator for deep

learning enables the edge device to perform the tasks much faster while consuming

less power. This enhances security and privacy and provides reliability, low latency

and efficient use of network bandwidth as there is no need to wait for the data to be

sent to the cloud, processed and sent back to the device. Thus, it stands to reason

that the next significant step in the evolution and proliferation of ML technology will

be its integration with edge devices.

Performing the compute-intensive NN models on the edge pose their own chal-

lenges. Deep learning workloads are large and compute intensive and are complicated

models with complex concurrencies that have to be executed in real-time. The perfor-

mance of these edge devices are severely limited in their energy capacity and subject

to severe thermal constraints. In addition, edge devices are storage and memory

limited. Hence the only real choice for ML on edge devices is low power custom

accelerator whose architecture is highly optimized for a specific class of ML tasks.

15

Existing Techniques for Executing NN on Hardware Platforms

Today’s NN models involve many layers and nodes. On the other hand, hardware

platforms are limited in terms of memory storage, computation resources and are

energy constrained. Hence, reducing the models storage and computational cost is

essential, and there needs to be holistic system-level solutions for mapping these mod-

els onto specialized hardware platforms. Recent years witnessed significant progress

in the developing techniques for efficient execution of NN models on hardware plat-

forms both in terms of performance and power. Two common techniques that are

used to reduce memory usage and energy consumption and accelerate computation

are (1) Compression and (2) quantization.

Compression Parameter pruning and sharing refers to eliminating parameters

which have a small impact on the accuracy of the network. Some of the main tech-

niques are structured pruning Anwar et al. (2017) and unstructured pruning Han et al.

(2016). In unstructured pruning, the compressed network consists of irregular net-

work connections while the structured pruning results in structured sparsity that is

more advantageous in terms of parallel computation and direct mapping to hardware

accelerators.

Another category of compression methods is Knowledge distillation Hinton et al.

(2015); Bucila et al. (2006). Many of the existing models have billions of parameters

and are intended for complex tasks. Deploying such large and complicated models on

edge devices is often infeasible. In knowledge distillation, a small network is trained

with the help of the larger and more complicated network. After training, the distilled

network is able to produce comparable results and in some cases even reproduce the

output of the larger network.

16

Quantization Another technique for reducing the bit-width of the model param-

eters is quantization. In this approach, the precision of the NN model parameters

and/or the activations are reduced from 32-bit floating-point (FP32) to lower bit

precision. This technique can substantially reduce the storage requirement, power

consumption and custom chip area and hence improve the throughput. However,

aggressive quantization typically leads to severe accuracy loss. This is often compen-

sated by retraining, mixed-precision or non-uniform quantization Choukroun et al.

(2019); Park et al. (2018a).

1.5.2 Addressing the Second Challenge: Need for Uncertainty Quantification in the

Presence of Input Variability

Existing Techniques for Including Uncertainty Quantification in NNs

Neural networks, particularly deep NN (DNN) models are increasingly being deployed

for use in autonomous vehicles, medical diagnosis, robotics, and other safety critical

applications. However, the reported successes hide a severe threat lack of an accurate

measure of uncertainty associated with the prediction. Knowing the uncertainty in a

prediction allows for the handing over control to a human or transitioning to a safe

mode by an autonomous vehicle or a robot or suggesting further analysis in medical

diagnosis.

Existing methods of uncertainty quantification (UQ) are Bayesian methods Ghahra-

mani (2015) and weight space sampling such as dropout Gal and Ghahramani (2016).

Bayesian probability theory provides mathematically grounded tools to reason about

model uncertainty, but these usually come with a prohibitive computational cost. In

weight sampling method, it was shown that the use of dropout (and its variants) in

NNs can be interpreted as a Bayesian approximation of a well known probabilistic

17

model: the Gaussian process (GP). It was shown that an NN with arbitrary depth

and non-linearities, with dropout applied before every weight layer, is mathematically

equivalent to an approximation to the probabilistic deep Gaussian process Damianou

and Lawrence (2012).

Both of these methods incur very high computational cost and are not very ac-

curate. Another significant drawback of DNNs is the difficulty in determining the

sensitivity of the response to any subset of the inputs. This often results in having re-

dundant nodes in the networks, increasing the computational cost and response time,

and reducing the flexibility to deploy these networks for real-time and safety-critical

applications.

1.6 Novelty and Dissertation Structure

1.6.1 Addressing the Hardware Acceleration Challenge

The first part of this work describes the design of an energy-efficient LSTM

accelerator, referred to as ELSA Azari and Vrudhula (2020). The overarching goal

of this work is to aggressively reduce the power consumption and area of the LSTM

components using approximation computing, and then use architectural level tech-

niques to boost the performance. This is achieved by two main steps. First, we design

and employ low power and compact computation units for the LSTM. Some of these

modules use approximate calculations, which require much lower power but incur a

high execution time penalty, i.e. it may take multiple clock cycles to finish one opera-

tion. Moreover, many of these modules are on the critical path which further degrade

the performance. Second, to recover the throughput loss and achieve higher energy

efficiency, we develop efficient scheduling techniques that include overlapping of the

computations at multiple levels – from the lowest level modules up to the application.

18

The main results of this work are summarized below.

• The performance of a low power approximate multiplier (AM) is significantly

improved and incorporated in the compute-intensive units of ELSA. The execu-

tion time of the AM is data-dependent and the number of clock cycles required

to finish a single multiplication depends on the magnitude of the multiplicand.

An intricate hierarchical control with four distinct, interacting controllers are

designed to efficiently synchronize the single-cycle and variable-cycle operations

in ELSA.

• To maximize the throughput and compensate for the performance loss, elastic

pipeline stages are incorporated at three levels. The first one is at the MAC

level as these units are internally pipelined simultaneously. The second and

third levels are at the LSTM layer (overlapping the operations at different time

steps) and application, respectively.

• A general performance model of ELSA as a function of hidden nodes and time

steps is also presented. This is to permit accurate evaluation of ELSA for any

application that includes a network of LSTM layers, such as speech recognition

and image captioning.

• The performance and energy efficiency of the LSTM design are further im-

proved by applying post-training, range-based linear quantization to the model

parameters.

1.6.2 Addressing the UQ Challenge

The second part of this work aims to develop a robust framework for constructing

data driven models using supervised learning. The surrogate model that this work

19

employs in the presence of input variability is referred to as arbitrary polynomial chaos

expansion (aPC) which is a data-driven model based on an extension to polynomial

chaos expansion (PCE). This is an alternate approach to ML regression methods

and is a new approach to training and inference in ML. Consider the model of a

physical system M as explained in Section 1.1, in which the input parameters and

the output response are represented in vectors x ∈ Dx ⊂ RM and y = M(x) ∈ RN ,

respectively. The problem is to estimate or learn a function that best explains the

given set of input-output pairs. This problem is viewed as selecting one function

from among an infinite, uncountable space of continuous functions. However, unlike

all existing approaches, the proposed approach does not impose a probabilistic model

on the function space. Instead, it represents the elements of the function space

as multivariate orthogonal polynomials in the underlying input variables. In such

a representation, known as aPC, the polynomials are constructed directly from the

moments of the inputs. These polynomials serve as the basis functions for representing

the elements of the function space. In contrast to many existing approaches, no

assumptions (e.g., Gaussian processes or prior distributions on the parameters, etc)

are made on the elements of the function space. The proposed method also provides

a direct method to compute the sensitivity of the model output with respect to any

subset of input variables, providing a systematic and incremental method to pruning

the model or changing the order of the model. The key advantages of this method

are summarized below.

• In addition to point-wise prediction, this approach provides as estimate of the

first two moments of the output. Particularly, uncertainty in this method is

a simple function of the expansion coefficients of the model, which depend on

the raw data. As in other methods, the mean here is also used as the point

estimate, and sigma is considered as an estimation to statistical uncertainty.

20

• Higher order moments of the output and its p.d.f can be estimated using Monte

Carlo (MC) methods efficiently. This can be done by evaluating the constructed

aPC model for sufficient samples of input. In this approach, computation of the

p.d.f is very efficient as evaluating the aPC method is not compute-intensive.

• Global sensitivity analysis can also be used to perform inference in using low

accuracy models first, and then switching to higher accuracy models as the need

arises. This approach provides a direct method to compute the sensitivity of the

model output with respect any subset of input variables, providing a systematic

and incremental method to pruning the model or changing the order of the

model. In other words, this model allows for efficient GSA for constructing

robust models, on the fly, allowing real-time training and inference.

• There is no need to tune hyper-parameters as in NN models and the model can

be constructed with limited training data. These are some of the reasons that

lead to substantial reduction in computations compared to existing techniques.

The followings outline the topics covered in this dissertation.

• Chapter 2 describes the design of the hardware accelerator in details, including

the computation units and the controllers that synchronize them. This work

was synthesized and placed and routed in 65nm CMOS technology and it was

also prototyped on a Xilinx FPGA Azari and Vrudhula (2019). The results are

thoroughly discussed in this chapter as well.

• Chapter 3 explains the aPC method and demonstrates its application on a real-

world regression dataset. Then it demonstrates that a constructed model for

expansion order d can be used to construct higher order models (e.g. d+1). This

is shown by incrementally adding to the computation instead of recalculating

21

everything. This allows a much faster training time. The aPC method is further

extended for classification tasks and the scalability issue is also addressed. An

executable computation graph is also explained along with the operations that

can be parallelized for even faster execution time. The functionality of this

approach is then demonstrated on several regression and classification datasets.

• Chapter 4 demonstrates another novel application of aPC – namely, to tune pa-

rameters of individual instances of manufactured circuits to correct failures and

consequently maximize yield. While this scenario is quite general, we demon-

strate this approach on a recently reported mixed-signal circuit, referred to as

Flash Threshold Logic (FTL). This circuit performs the function of a binary

neuron Wagle et al. (2019) – i.e., computes a threshold function which is the

basic computation involved in binary neural networks Courbariaux and Bengio

(2016).

• This dissertation is concluded with a summary of the overall contributions and

major findings.

22

Chapter 2

ELSA: A THROUGHPUT OPTIMIZED DESIGN OF AN LSTM ACCELERATOR

FOR ENERGY-CONSTRAINED DEVICES

2.1 Problem Background: The Need for Hardware Acceleration of LSTM

Among the numerous neural network (NN) models, recurrent neural networks

(RNN), which are distinguished by the presence of feedback connections, have been

shown to be much better suited than feed-forward NNs (e.g. CNN) for many se-

quence labeling tasks in the field of machine learning (ML) Graves (2012); Sutskever

et al. (2014). RNNs are designed to capture the temporal dependencies within data

sequences, and have been shown to learn the long-term trends and patterns inherent

in sequences. To alleviate the vanishing gradient problem Hochreiter et al. (2001) in

standard RNNs, and be able to learn the patterns over a larger number of time steps,

more advanced RNN models, such as Gated Recurrent Unit (GRU) Cho et al. (2014)

and Long-Short Term Memory (LSTM) Hochreiter and Schmidhuber (1997) have

been developed. The LSTM model, which is the focus of this work, has been shown

to be highly robust and accurate for many applications involving time series data, in-

cluding natural language processing Dario Amodei et al. (2016) and video analysis Sri-

vastava et al. (2015). It is now used in virtual assistant user interfaces such as Apple

Siri, Amazon Alexa and Google Assistant. Such applications are typically launched

on mobile devices, but due to their compute-intensive nature, they are executed on

cloud servers. With the emergence of Internet of Things (IoT) and the further prolif-

eration of mobile devices, this approach will not be scalable, and hence there is a need

to move some or all of the NN computations to (energy-constrained, performance-

23

limited) mobile devices. This poses difficult challenges associated with simultaneously

achieving high energy-efficiency and high throughput. These challenges are due to

the recursive structure of the LSTM model and the compute-intensive operations on

very large dimensional data as well as the high memory-bandwidth requirement for

computing on a large number of parameters. The goal of this paper is to achieve

high energy efficiency by employing low power and compact computation units and

aggressively maximizing the overall throughput.

2.2 Existing Hardware Accelerators of LSTM

Implementations of LSTM on CPU-GPU architectures Stollenga et al. (2015);

Hwang and Sung (2015); Das and Han (2015) are not suitable for mobile devices

because of their high power consumption. Although, implementations of LSTM on

FPGAs Chang and Culurciello (2017); Li et al. (2015); Guan et al. (2017b); Lee et al.

(2016); Han et al. (2017); Wang et al. (2018); Rybalkin et al. (2018); Ferreira and

Fonseca (2016); Guan et al. (2017a); Rybalkin et al. (2017); Nurvitadhi et al. (2016);

Fowers et al. (2018); Cao et al. (2019), have been shown to be much more energy-

efficient than GPUs, their power consumption is still too high (usually more than

10W) for energy-constrained systems. This has motivated the design of ASICs for

LSTMs Norman P. Jouppi et al. (2017); Wang et al. (2017); Shin et al. (2017); Conti

et al. (2018).

TPU Norman P. Jouppi et al. (2017) describes a hardware accelerator for infer-

encing at cloud-scale, specialized for CNNs, Multi-Layer Perceptrons and LSTMs.

Despite achieving high throughput (2.8-3.7 TOPS), it consumes up to 40W (not suit-

able for edge devices) and has low utilization when using LSTMs.

ASIC implementations described in Wang et al. (2017); Shin et al. (2017); Conti

et al. (2018) report power consumptions in the tens of milliwatts, while achieving

24

sufficiently high throughput. Wang et al. (2017) present a memory efficient ASIC

design for on-line training and classification and demonstrate its functionality for

language modeling and speech recognition. To eliminate off-chip memory use, the

model parameters are reduced by using circulant matrices along with a compression

technique. The reported results are only at synthesis level. DNPU Shin et al. (2017)

is a reconfigurable CNN-RNN processor with the CNN being its major component

and the LSTM as its secondary unit. Quantization and table-based multiplication

techniques result in significant reduction in on-chip memory storage. However, this

limits its peak performance by requiring the use of external memory even for models

with small number of parameters. CHIPMUNK Conti et al. (2018) is a scalable LSTM

accelerator that is designed to handle applications that operate on large datasets.

It achieves significant reduction in the memory transfer overhead by allowing the

interconnection of multiple LSTM units in a systolic array structure. However, the

power consumption of the systolic array structure is too high at an application level

and not suitable for energy-constrained edge-devices.

There exists CNN ASIC implementations that employ efficient multipliers for

performing the convolution operations Albericio et al. (2017); Judd et al. (2016).

Albericio et al. (2017) present a massively data-parallel architecture for CNNs that

eliminates most of the ineffectual computations by using a serial-parallel shift-and-add

multiplication (Pragmatic unit). The Pragmatic unit as well as its previous bit-serial

version (Stripes Judd et al. (2016)) are designed to efficiently perform the inner prod-

ucts in the convolution layers and also skip the zero bits in the activations. Albericio

et al. (2017) report 92% zero bits in the activation values of CNNs. One of the rea-

sons is due to the rectified linear (ReLU) activation function that converts negative

activations to zero, resulting in many zero activations and no negative activations.

Although the multiplier designs in Albericio et al. (2017) and Judd et al. (2016)

25

lead to improvements in energy efficiency as compared to its equivalent state-of-the-

art CNN accelerators, they cannot be used in the multiplication operations in an

LSTM network because of two main reasons. First, there is no convolution operation

involved in a typical LSTM network. Second, many of the zero bits in the activations

of CNNs as shown in Albericio et al. (2017) are due to the ReLU activation function,

which does not exist in a typical LSTM network. The sigmoid and tanh functions

are used in an LSTM network that have different properties as compared to ReLU.

2.3 Problem Statement and Novelty

Existing ASIC implementations of the LSTM model are based on conventional ar-

chitectures. This paper describes the design of an energy-efficient LSTM accelerator,

referred to as ELSA. The overarching goal of this work is to aggressively reduce the

power consumption and area of the LSTM components, and then use architectural

level techniques to boost the performance. This is achieved by two main steps. First,

we design and employ low power and compact computation units for the LSTM. Some

of these modules use approximate calculations, which require much lower power but

incur a high execution time penalty, i.e. it may take multiple clock cycles to finish one

operation. Moreover, many of these modules are on the critical path which further

degrade the performance. Second, to recover the throughput loss and achieve higher

energy efficiency, we develop efficient scheduling techniques that include overlapping

of the computations at multiple levels – from the lowest level modules up to the

application. The main results of this work are summarized below.

1. The performance of a low power approximate multiplier (AM) is significantly

improved and incorporated in the compute-intensive units of ELSA. The execu-

tion time of the AM is data-dependent and the number of clock cycles required

to finish a single multiplication depends on the magnitude of the multiplicand.

26

An intricate hierarchical control with four distinct, interacting controllers are

designed to efficiently synchronize the single-cycle and variable-cycle operations

in ELSA.

2. To maximize the throughput and compensate for the performance loss, elastic

pipeline stages are incorporated at three levels. The first one is at the MAC

level as these units are internally pipelined simultaneously. The second and

third levels are at the LSTM layer (overlapping the operations at different time

steps) and application, respectively.

3. A general performance model of ELSA as a function of hidden nodes and time

steps is also presented. This is to permit accurate evaluation of ELSA for any

application that includes a network of LSTM layers, such as speech recognition

and image captioning.

2.4 Background

2.4.1 Long Short-Term Memory

Figure 2.1 shows a typical LSTM layer. The input is a temporal sequence X =

(x1, x2, · · · , xT) and the output is a sequence h = (h1, h2, · · · , hT), referred to as the

hidden state, that is generated iteratively over T time steps. The memory cell (C)

stores some part of the past history over a specific period of time. At each iteration,

the input gate controls the fraction of the input data to be remembered and the forget

gate determines how much of the previous history needs to be deleted from the current

memory state (Ct). The output gate decides how much of the processed information

needs to be generated as the output (ht). In a sequence learning task, let X =

(x1, x2, · · · , xT), where xt is the input to the LSTM layer at time step t ∈ [1, 2, ..., T].

The following equations show how the output sequence h = (h1, h2, · · · , hT) of a layer

27

Figure 2.1: The Structure of an LSTM Layer. It Consists of a Memory Cell (C), an Input

Gate (i), an Output Gate (o), and a Forget Gate (f). MVM = Matrix Vector Multiplier; • =

Element-wise Multiplier; σ, tanh = Sigmoid and Hyperbolic Tangent Activation Functions.

is generated iteratively over T time steps:

it = σ(Wxixt +Whiht−1 + bi), (2.1)

ot = σ(Wxoxt +Whoht−1 + bo), (2.2)

ft = σ(Wxfxt +Whfht−1 + bf), (2.3)

Ĉt = tanh(Wxcxt +Whcht−1 + bc), (2.4)

Ct = it � Ĉt + ft � Ct−1, (2.5)

ht = ot � tanh(Ct). (2.6)

The element-wise multiplication is indicated by �. The parameters are the bias

vectors (bs) and the weight matrices (W s) which are tuned during model training.

Ĉt is the new candidate memory which contains the extracted information from the

input. The non-linear activation functions, σ ∈ (0, 1) and tanh ∈ (−1, 1), are defined

in Equations 2.7 and 2.8.

28

σ(x) =
1

1 + e−x
(2.7)

tanh(x) =
ex − e−x

ex + e−x
(2.8)

The main challenges in the design of an LSTM architecture is the large number

of matrix-vector multiplications (MVMs) involving large dimensional vectors, the

element-wise multiplications (EMs) and the data movements from/to the memory.

2.5 Architecture of ELSA

2.5.1 Approximate Multiplier (AM)

The advantages of the approximate multiplier (AM) design in Sim and Lee (2017)

are its low logic complexity and reduced power consumption. The AM generates

an approximate (but sufficiently accurate) product. The inputs and outputs of the

AM are represented as signed, fixed-point fractions, i.e., in a binary fraction X =

xn−1.xn−2xn−3...x0, the sign bit is xn−1 and the fraction is xn−2xn−3...x0. Let N

denote the numerator of a fraction. For example, in a 4 bit number X = 1.010,

N (X) = −6 and its decimal value is −6/8. Let X and W ∈ [−1, 1) be the inputs

of the AM in an n bit multiplication. The exact product is XW . The AM produces

an n-bit Z ≈ XW . The main component of the AM is an FSM (with 2n states) that

generates a specific bit-stream {S}. The generation of this bit-stream depends on the

value of one of the operands, say X and its length is |N (W)|. Specifically, in {S},

Xn−i appears at cycle 2i−1, and then after every 2i cycles, for i ∈ [1, n]. The main

property of {S} is that the difference in the number of ones and zeros is an integer

approximation to XW . The theoretical upper-bound on the approximation error is

n/2n+1, but has been empirically shown to be far smaller, approaching the precision of

floating point for n ≥ 8 Sim and Lee (2017). The structure of a 4-bit signed AM along

29

with an example is illustrated in Figure 2.2. In this example, X = 5/8, W = 6/8

and n = 4. The FSM consists of 24 states. The FSM-MUX combination generates

the bit-stream S = {x3 x2 x3 x1 x3 x2} at cycles {c1 c2 c3 c4 c5 c6}, respectively. The

up-down counter counts up as it receives one and counts down when it receives a zero

and generates the product Z. The down-counter stops the AM after |N (W)| cycles,

which is 6 (i.e. (6/8) × 23), in this example. The XOR gate receives the bit-stream

{S} and the MSB of W (w3), and generates the input of the up-down counter in

sequence. Then, the output of the AM is produced by the up-down counter, which is

0.5. The exact result is 0.46, as shown in the table.

Selector
FSM

Up-Down
Counter

Down
Counter

X

X0

X1

X2

X3

W

W3 W2 W1 W0

Z

Stop
Signal

2n States

X2 X3 X1 X3 X2 X3

Time (cycles)

Initialized to (W×2n-1)

Selector
FSM

Up-Down
Counter

Down
Counter

X

X0

X1

X2

X3

W

W3 W2 W1 W0

Z

Stop
Signal

2n States

X3 X2 X3 X1 X3 X2 X3

Time (cycles)

Initialized to 7 (W×2n-1)

X W
Input of the

Up-Down Counter

Output of

the AM

Exact

Result

x3 x2 x1 x0

0. 1 0 1

w3w2w1w0

0. 1 1 0

c6 c5 c4 c3 c2 c1

1 1 0 1 1 1

4

8
= 0.50

30

64
= 0.46

Init. Value of the Down Counter Init. Value of the Up-Down Counter

6 0

Figure 2.2: Structure of a 4-bit Signed AM. X and W ∈ [-1,1) Are the Inputs and Z Is

the Product. The Sign bits Are x3 and w3.

30

X W
Input of the

Up-Down Counter

Output of

the AM

Exact

Result

x3 x2 x1 x0

0. 1 0 1

w3w2w1w0

0. 1 1 0

c3 c2 c1

1 0 1

4

8
= 0.50

30

64
= 0.46

Init. Value of the Down Counter Init. Value of the Up-Down Counter

3 3

Figure 2.3: The Improved Version of the AM. The Modified Parts Are Shown in Red.

The Number of States in the FSM Is Reduced by Half and the Down Counter Is Initialized

to Half of Its Value as Compared to the One in Figure 2.2. The Preprocessing Unit Sets

the Initial Value of the Up-down Counter to 3 (i.e, X3 Is One and It Appears Three Times

in the Bit-stream in Figure 2.2). Hence, the Initial Value of the Down-counter Is Set to 3,

Half of Its Original Value.

2.5.2 Extension to AM for a Faster Execution

The AM is a compact design with low power consumption, however, its execution

time is high as compared to the fixed-point exact multiplier. Hence, the design of

the original AM is modified to improve its execution time by 2X with negligible logic

overhead (< 0.03%), as shown in Figure 2.3. This is achieved by adding a small

preprocessing unit to extract the FSM patterns for the MSB of the first operand and

31

initializing the up-down counter by the computed value. As the FSM in the original

design selects the MSB every two cycles, this modification leads to decreasing the

latency of the original AM by 50%. The preprocessing unit consists of an inverter, a

shifter and an XOR gate. This unit receives the MSB of X (i.e. X3 in this example)

and W as its inputs, and generates two outputs as the initial values of the down-

counter and the up-down counter. It shifts the value of W to the right by one and

sets it as the initial value of the down-counter. The same operation is performed to

set the initial value of the up-down counter, except that the sign of the computed

value needs to be specified. The sign is determined based on the result of (X3 ⊕W3)

which is computed once in the preprocessing unit. If it is a one, the sign is positive,

otherwise it is negative. For the example shown in Figure 2.2, the FSM-MUX in this

AM generates the bit-stream S = {x2 x1 x2} at cycles {c1 c2 c3}, respectively. This

results in saving 3 (50%) cycles as compared to the one shown in Figure 2.2. The

multipliers in ELSA employ this accelerated AM to achieve higher throughput, while

maintaining low area and power consumption.

2.5.3 Comparison with an Exact Multiplier

Employing AMs to perform the compute-intensive operations (i.e. MVM) can re-

sult in significant savings in both area utilization and power consumption. To explore

this, the AM (labeled AM-MAC) and an exact fixed-point multiplier (labeled Exact-

MAC) were designed and compared when used in MAC units. Each of these MACs

consist of 100 individual multipliers and adders to perform 100 MAC operations in

parallel. These units were synthesized using Cadence R© GENUS running at 200MHz,

for various bit widths ranging from 8 to 16 bits. Figure 2.4 shows the improvement

in power and cell area of AM-MAC as compared to the Exact-MAC. Each plot also

shows the accuracy of the AM-MAC as compared to the Exact-MAC for various bit

32

widths. As the bit precision increases, the accuracy of the AM-MAC improves from

AM-MAC vs. Exact-MAC

Figure 2.4: The Cell Area Improvement (top) and Power Improvement (bottom) of AM-

MAC as Compared to the Exact-MAC for Different Hardware Bit Precision. Each Plot

Demonstrates the Accuracy of the AM-MAC for Different Bit Precision as Well.

97.8% to 99.9%, and the maximum savings in the power consumption and cell area

reaches 79.49% and 63.30%, respectively. Note: Delay comparison of these units in

isolation is not meaningful as the AM requires variable number of cycles (i.e. data-

dependent) for a single multiplication. Delay comparison of an LSTM network for an

application is more meaningful and is described and quantified in Section 2.10.2.

33

2.5.4 Hardware Challenges and Design Decisions

Although employing AM leads to substantial reduction in area and power con-

sumption, this variable-cycle multiplier poses a number of design challenges. One is

the increased latency of the MVM and EM units, both of which lie on the critical

path. ELSA’s modification of the AM includes elimination of one state of the FSM,

and results in improving the AM’s performance by 2X. This in itself is not enough.

Hence, ELSA’s design maximally overlaps the execution of the MVMs with other

computation units and over multiple time steps, resulting in a multi-level pipelined

design. In addition, the control unit is organized as a two-level hierarchy to efficiently

synchronize the AM units and overlap their computations to practically eliminate the

waiting time (e.g. arising from being a variable-cycle multiplier) and hide their la-

tency. Finally the potential loss of accuracy due to the presence of feedback and

use of AMs is addressed by experimentally evaluating the optimal bit precision for

the overall design. The optimal bit precision of ELSA is evaluated by comparing its

accuracy with two corresponding LSTM designs. The first one is the software imple-

mentation with floating-point calculations, and the second one is an LSTM design

with exact fixed-point multiplications. This is performed for the following reasons:

1. to explore the impact of using the AMs in ELSA on error propagation through the

LSTM for different bit precision and to investigate whether the error accumulates

in the hidden and memory states over various time-steps. This is performed by

measuring the mean squared error between the hidden states/memory states of

ELSA and the floating point implementation.

2. to evaluate the best hardware bit-precision for ELSA that is a good trade-off be-

tween its accuracy and its hardware design metrics (i.e. power, area, performance).

This is performed by calculating the classification accuracy of ELSA and compar-

34

ing it with its corresponding exact fixed-point implementation.

2.5.5 System Overview

The top-level block diagram of ELSA is shown in Figure 2.5. It includes the

computation units in LSTM as well as the controllers that synchronize them. The

computation units include: 1) the MVM modules to perform the matrix-vector mul-

tiplications in an LSTM layer in parallel. 2) The ternary adders to perform the

addition on the outputs of the MVMs and the bias vectors. 3) the non-linear activa-

tion functions, i.e., sigmoid and tanh. 4) EMA module to compute the elements of

the memory state. 5) EM module to compute the elements of the hidden state. The

control of the AM units is performed by a top controller in coordination with three

distinct mini controllers-MVM-C, EM-C and EMA-C. The reason to include mini

controllers is that the computation modules that employ the AM units (i.e. MVM,

EM, EMA), involve variable-cycle operations and hence require synchronization with

other single-cycle operations. Moreover, these units have to execute in parallel to

maximize throughput. The required network parameters are loaded into the SRAMs,

and the data transfer for fetching/storing the parameters from memory is controlled

by the controller units. The intermediate results of the computation units are writ-

ten into the buffers to reduce the SRAM access time. Thus, the SRAMs are only

accessed for fetching the parameters and storing the computed values for the hid-

den and memory-states. The components of ELSA as well as the multi-level elastic

pipelining technique are explained in details in the following sections.

2.5.6 Main Computation Units

MVM Module: The MVM module is a compact combination of the AM units that

receives a matrix Xn×m and a vector Ym×1 as inputs. There are totally n AM units

35

Figure 2.5: The Block Diagram of ELSA That Consists of the Computation Units and a

Hierarchy of Control Units.

in an MVM module that all share the same FSM and down-counter, thereby making

the module compact. This unit is internally pipelined with m pipeline stages. The

parallel matrix vector multiplication in the MVM module is performed by multiplying

one column of matrix X with one element of vector Y at a time. To store the MAC

results, the up-down counter performs as an accumulator and its bit-width is increased

by a few bits to preserve the precision. In the example shown in Figure 2.6, at time

t1, the first column-scalar multiplication is performed on column [x11, x21, x31]T and

scalar y1. The latency of these multiplications which execute in parallel is determined

by y1, and the first partial results are accumulated in the up-down counters. Without

reseting the up-down counters, this process is repeated until time t4, at which the

last column-scalar multiplication (i.e. [x14, x24, x34]T × y4) is computed and the final

output vector Z3×1 is generated. As shown in Figure 2.6, the difference between the

start and end times of the operations are not necessarily equal due to their variable

cycle execution.

EM and EMA modules: The Element-wise Multiplier (EM) and Element-wise

Multiplier and Adder (EMA) modules employ the accelerated AM shown in Sec-

36

Figure 2.6: An Example of the MVM Module, in Which It Receives X3×4 and Y4×1 as Its

Inputs and Generates the Output Vector Z3×1.

tion 2.5.2 to compute the components of the h and C vectors, respectively.

Sigmoid and Tanh Modules: The non-linear activation functions can be imple-

mented in hardware using polynomial approximations Muller (2005), look-up tables,

or CORDIC algorithms Hu et al. (1991). These implementations utilize large area

and consume high power. Therefore, σ and tanh in ELSA are implemented as piece-

wise linear functions Wang et al. (2017), as shown in Table 2.1, resulting in a more

compact and lower power design.

37

Table 2.1: Piece-wise Linear Activation Functions Wang et al. (2017).

HSig(x) =

+1 x > 2

x
4

+ 0.5 otherwise

0 x ≤ −2

HTanh(x) =

+1 x > 1

x otherwise

−1 x ≤ −1

2.5.7 Controller Units

Figure 2.7 shows the control flow graph (CFG) of the top-level controller (Top-C).

It consists of three mini controllers – MVM-C, EM-C and EMA-C. The computation

modules that involve variable-cycle operations (i.e. MVM, EM, EMA) require syn-

chronization with other single-cycle operations (e.g. adders). Moreover, these units

have to execute in parallel to maximize throughput. This cannot be accomplished by

Top-C alone. The mini controllers are designed to individually control the AM-based

units.

Top Controller (Top-C): This is responsible for synchronizing the AM-based mod-

ules with other single-cycle units and enabling parallel executions. As shown in Fig-

ure 2.7, it consists of 7 different states, where states S1, S3, S5 and S7 activate the

MVM, EM and EMA modules. For example, when Top-C is in S1, the control token

is passed to the MVM-C to start the MVM operations. The MVM-C operates on one

set of data for multiple cycles and generates a complete detection signal that sends

the control back to the Top-C. This is the case for all the Top-C states that call the

mini controllers.

MVM mini-Controller (MVM-C): This activates the MVM modules and consists

of two major states – partial and full. The full state is responsible for operating on

all the columns of the matrix iteratively to compute the complete results. This state

38

Figure 2.7: The Controller Hierarchy That Consists of a Top Controller (Top-C) and

Three Mini Controllers- MVM-C, EMA-C and EM-C.

is used to generate the initial data for the pipelining flow. The partial state only

operates on one column-scalar multiplication to generate one partial result. This

state is designed to overlap its computation with the EM and EMA units which are

active in S5 of Top-C.

EM mini-Controller (EM-C): The EM-C consists of one multiplication state to

control the EM computation units. Once the operation is done, it sends the control

back to Top-C, which then activates the MVM-C for overlapping the data computa-

tion in time steps t+ 1 and t.

EMA mini-Controller (EMA-C): The EMA-C includes two consecutive multipli-

cation states (i.e. Mult1 and Mult2) to activate the EMandAdder unit for generating

one component of the memory state vector at each iteration.

39

2.6 Multi-level Elastic Pipelining

Some of the computation units in an LSTM network have data dependencies

among themselves. These have to be executed sequentially, while others can execute in

parallel. Although a non-pipelined version is straightforward, the throughput would

be unacceptably low. Pipelining is essential and ELSA incorporates pipelining at

three levels, involving variable-cycle multipliers, various computation units within

the LSTM layer, and across multiple time-steps.

40

Table 2.2: This Shows the Control Flow and the Data Computation in the Proposed Pipelining Method. T Is the Total Number

of Time Steps. n Is the Total Number of Hidden Nodes, and j Denotes the jth Component of Its Corresponding Vector. The

Output of the Stage Operations as Well as the Mode of Operation for the MVMs Are Specified Below. The Pipeline Stages Shown

in Columns Are Executed in Parallel and the Stages Shown in Rows Are Performed Sequentially.

Multiple Cycles One Cycle Multiple Cycles One Cycle Multiple Cycles One Cycle Multiple Cycles

Stage 1 Ops (t)

full

Stage 2 Ops (t)

fj(t) , Ĉj(t) , ij(t)

Stage 3 Ops (t)

Cj(t)

Stage 2 Ops (t)

fj+1(t) , Ĉj+1(t) , ij+1(t)

Stage 4 Ops (t)

oj(t)

Stage 5 Ops (t)

tanhoutj(t)

Stage 6 Ops (t) → Stage 1 Ops (t+1)

hj(t) , partial

Stage 3 Ops (t)

Cj+1(t)

Stage 5 Ops (t)

tanhoutn(t)

Stage 6 Ops (t)

hn(t)

Controller State 1 Controller State 2 Controller State 3 Controller State 4 Controller State 5 Controller State 6 Controller State 7

41

Figure 2.8: The Six Pipeline Stages in the LSTM Layer. Stage − 1: Eight Parallel

MVMs; Stage − 2: Three Activation Functions and Ternary Adders; Stage − 3: Two

Consecutive Multiplications and an Adder; Stage − 4: a Sigmoid Function and a Ternary

Adder; Stage− 5: One Tanh Function; Stage− 6: One Element-wise Multiplication.

ELSA consists of six elastic pipeline stages as shown in Figure 2.8. The latency

of some of these stages are multi-cycle and conventional pipelining methods are not

efficient enough to maximize the throughput of this design. Table 2.2 shows the

control flow of the pipelining method along with the data computations done in each

controller state. The overlapping of the computation units starts in controller state

4 where the operations in pipeline stages 2, 4 and 5 at time step t are performed in

parallel.

In controller state 5, the operations in stage-6 (time step t) and stage-1 (time

step t+ 1) are overlapped with two consecutive multiplications in stage-3 (time step

t). Since the stage-3 operations is independent of the ones in Stages 6 and 1, they

can be executed in parallel. It is worth mentioning that with the proposed scheme,

42

the MVMs are almost completely overlapped with other units, as are the memory

accesses, resulting in near maximum resource and memory utilization. All the in-

termediate results are written into the buffers so the SRAMs are only accessed for

fetching the parameters and writing back the computed values for the hidden-state

(h) and memory-State (C). These result in substantial reduction in the overall design

latency as well as maximizing the throughput. These are quantified in Section 2.8

and Section 2.10.2.

2.7 Quantization and Accuracy

The objective of this section is to address the impact of employing the AM units

on the final output of an LSTM network. While AM is accurate (see description

in Section 2.5.1), it is still necessary to explore the impact of the bit-width and the

feedback in LSTM on error propagation through the entire design. In addition, it

is required to investigate whether the error accumulates in the hidden and memory

states over various time-steps.

2.7.1 Model Description

This work is evaluated on a character-level language modeling (LM) network,

which is one of the most widely used tasks in natural language processing Sunder-

meyer et al. (2015). This model predicts the next character given previous character

sequences and generates a text character by character that captures the style and

structure of the training dataset and generates a text that looks like the original

training set. The LM used in this paper Karpathy (2016) is written in a scientific

computing framework referred to as Torch. For the evaluation, the model is trained

on a subset of Shakespeare’s works by setting the batch size, training sequence and

the learning rate to their default values of 50, 50 and 0.002, respectively Karpathy

43

(2016). The architecture of this network is shown in Figure 2.9.

Figure 2.9: The LM Network. It Consists of Two 128 Hidden-node LSTM Layers Followed

by FC and Softmax Layers. The Output of Both LSTM Layers Is a Vector of Size 128 and

Their Inputs Are of Size 65 and 128, Respectively.

The number of characters used in this network is 65, which includes the lower and

uppercase letters with some special characters. The input is a character formed in

a one-hot vector of size 65. The first LSTM layer receives this input and outputs a

hidden vector of size 128, which is fed as input to the second LSTM layer. Similarly,

the second LSTM layer generates a 128-node hidden vector and passes the output

to the fully connected (FC) and the softmax layer. The output of the final layer is

a 65-node vector whose components represent the likelihood of that corresponding

character being the output.

The primary operations in this model is matrix vector multiplications. The equa-

tions 2.1-2.6 describe the fundamental computations in the LSTM networks.

2.7.2 Quantized Model

Quantization is a method to improve the performance of the workloads for the

inference phase. It involves reducing the number of bits representing a number.

Typically neural network models use floating point 32 (FP32) to represent the weights

and the activations. Model quantization converts FP32 numbers to a target lower

precision integer data type and replaces the FP32 with the corresponding quantized

44

operation. In this work, quantization is applied to the trained LM model. This work

is designed for the inference phase and training is performed off-line with FP32 in

software using Torch7. Therefore, the accuracy measurements are for the inference

phase. A range-based linear quantize operation is applied to the weights as described

in Equation 2.9.

Q(WFP32, n) = round(WFP32 −Min(WFP32).scale) (2.9)

scale =
2n − 1

Max(WFP32)−Min(WFP32)
. (2.10)

WFP32 is the weight matrix in full precision and n is the number of target integer

bits. The Q operation is applied to all the weight matrices and the bias vectors in

the LSTM layers.

In this work, post-training quantization is performed on the model for 5 to 16 bits

and the accuracy of the quantized model implemented with the AMs is then compared

with both FP32 and Fixed-point exact implementations. For a fair comparison, the

same input sequence xt is fed to both FP32 and this work, where t ∈ [1, 2, ..., 1000].

The accuracy is computed as mean squared error (MSE) between this work and FP32.

Due to the recurrent nature of the LSTM and the presence of the feedback on the

memory state (C), and the hidden state (H), the MSE is calculated for both.

Figure 2.10 compares the accuracy of this work with FP32. Each bar is for a

specific bit-width and the average MSE for H is computed over 1000 time-steps. In

the 8-bit design, the magnitude of the MSE becomes stable and very close to zero.

From 8 to 16-bit quantization, there is no significant change in the MSE. Thus, to

achieve a good trade-off between the accuracy and the design metrics (i.e. power,

area and performance), the weights and biases were quantized to 8 bits.

Figure2.11 illustrates the MSE (this work, FP32) of the hidden state for the 8 bit

45

Figure 2.10: Average MSE for the Hidden State (H) Over 1000 Time Steps for Different

Bit-width. The Memory State Demonstrated Similar Behavior, Hence Its Results Were

Removed for Brevity.

quantization. The MSE is reported for 1000 time steps. The fluctuation in the MSE

over the time-steps occurs because of the approximate nature of the AM and its data

dependency, that rounds up/down the final product based on the inputs. This has

the effect of canceling the errors. This shows that the error does not accumulate and

does not grow exponentially when employing the AMs in the design.

To further investigate the accuracy of this work with the corresponding design with

exact fixed-point multipliers, a thorough experiment is conducted to demonstrate how

the accuracy changes from a single AM up to a network of LSTMs. Table 2.3 shows the

accuracy for a single multiplication, a MAC unit, an LSTM layer and an application

(i.e. LM that has two consecutive LSTM layers), when the AM is employed.

46

Figure 2.11: The MSE (This Work, FP32) of the Hidden State for the 8-bit Quantization.

The x-Axis Demonstrates the MSE Values Over 1000 Time Steps. The Dashed Black Line

Shows That the Error Does Not Accumulate. The Same Trend Is True for the Memory

State for Which Its Results Are Removed for Brevity.

Table 2.3: The Relative Error for a Single Multiplication, MAC Operations and an LSTM

Layer, as Well as the Classification Accuracy for an Application (i.e. LM That Has Two

Consecutive LSTM Layers), When the AM Is Employed in the 8-bit Hardware Design.

Relative

Error

One Multiplication 1.5%

MAC Operations 2.2%

LSTM (one layer) 2.3%

Classification

Accuracy

Application (LM) 96%

47

The accuracy for one multiplication and MAC operation was computed as the

fraction of differences between the 8-bit AM and its corresponding 8-bit fixed point

exact multiplier. That is, for each input, the relative error of every pair of corre-

sponding multipliers and MAC units was computed and these values were averaged

over the set of applied inputs. The accuracy for one LSTM layer was measured as

the average accuracy of the hidden states. The last entry of Table 2.3 reports the

classification accuracy for LM. The accuracy degraded by 2.5% moving from an AM

to a full application which consists of a network of consecutive LSTMs. The Top-5

classification accuracy (a standard measure particularly for LM) was 96%.

This work applies an 8-bit quantization on the weights and outputs of the model

and stores the intermediate results up to 11 bits. The outputs of the MVM units

are stored in 10 bits by increasing the bit-width of the up-down counters to avoid

overflow. The outputs of the ternary adders are stored in 11 bits considering the

one bit carry to preserve the precision. As the output of the activation functions is

between -1 and 1, they can be stored in the initial 8-bit quantized format, thereby no

truncation is required for the inputs of the EMs.

2.8 Performance Modeling for ELSA

This section presents a general model for the execution time of ELSA as a function

of hidden nodes and time steps. This is to permit accurate evaluation of ELSA for

any application that includes a network of LSTM layers, e.g., speech recognition,

image captioning, etc. A similar performance model for the non-pipelined version of

ELSA is also constructed to quantify the improvements due to the pipelining strategy

employed in ELSA.

Let X = (X1, X2, · · · , XT) and H = (H1, H2, · · · , HT), where Xt and Ht are the

input and output of ELSA at time step t ∈ [1, 2, · · · , T], respectively. In an LSTM

48

layer with N hidden nodes, Xt = [x1
t , x

2
t , ..., x

N
t] and Ht = [h1

t , h
2
t , ..., h

N
t].

As discussed in Section 2.6, each controller state may contain a single pipeline

stage (e.g. controller state 2) or multiple pipeline stages (e.g. controller state 4). The

execution time (D) of each controller state (CS) is denoted by DCSi , for i ∈ [1, 2, ..., 7].

The execution time is expressed in number of clock cycles. The operations performed

in CS2, CS4 and CS6 are single cycle operations whereas those in CS1, CS3, CS5

and CS7 are multi-cycle operations, whose latency is data-dependent and determined

during run-time. The execution time of these operations is expressed in terms of the

magnitude of their multiplicands (e.g. ‖xjt‖ in stage 1 of Figure 2.8, where t denotes

the time step and j is the jth component of the Xt vector). This is because of the AM

units, in which the multiplicands determine the execution time in number of clock

cycles. In all the equations, j ∈ [1, 2, ..., N], t ∈ [2, ..., T] and i, o and f correspond

to the input, output and forget gates, respectively. Note that the following equations

can be directly derived from Table 2.2 and Figure 2.8.

2.8.1 Pipelined Design

The delay equations for ELSA with multi-level pipelining are shown in Equa-

tions 2.11-2.17, after the initial data is produced to flow through the pipeline stages

(i.e t>2). The quantities in the equations correspond to the variables in Table 2.2.

For example, since the MVM modules execute in parallel and X and H determine

the execution time of these operations, DCS1 in Equation 2.11 is the maximum value

of each component of these vectors.

DCS1(t) = max(‖xNt+1‖, ‖hNt ‖), (2.11)

DCS3(t) =
‖i1t‖+ ‖f 1

t ‖
2

, (2.12)

49

DCS5(j, t) = max

(
‖ojt‖

2
+ max

t6=T

(
‖xjt+1‖, ‖h

j
t‖)
)
,
‖ij+1
t ‖+ ‖f j+1

t ‖
2

)
, (2.13)

DCS7(t) =
‖otN‖

2
, (2.14)

DCS2 = DCS4 = DCS6 = 1. (2.15)

The total execution time of ELSA with pipelining (Dp
Total(j, t)), which is a function

of hidden nodes and time steps is shown in Equation 2.16 and is simplified in Equa-

tion 2.17.

Dp
Total(j, t) =

T∑
t=2

(DCS1(t) +DCS3(t) + 2 +DCS7(t)) +
T∑
t=2

N−1∑
j=1

(DCS5(j, t) + 1)

(2.16)

Dp
Total(j, t) =

T∑
t=2

(DCS1(t) +DCS3(t) +DCS7(t))

+
T∑
t=2

N−1∑
j=1

(DCS5(j, t)) + T +N(T − 1)− 1

(2.17)

2.8.2 Non-pipelined Design

The delay equations for the non-pipelined design are shown in Equations 2.18-

2.22. Note that the same units and structure are used for both the designs. The only

difference between these two designs are the way the operations are executed. In the

non-pipelined version, the stages shown in Figure 2.8 execute in sequence. Hence, the

execution time is expressed in terms of the pipeline stages, and does not correspond

to the control sequence shown in Figure 2.7.

50

Dstage1(j, t) =
N∑
j=1

max(‖xjt‖, ‖h
j
t−1‖), (2.18)

Dstage3(j, t) =
‖ijt‖+ ‖f jt ‖

2
, (2.19)

Dstage6(j, t) =
‖ojt‖

2
, (2.20)

Dstage2 = Dstage4 = Dstage5 = 1. (2.21)

The total execution time of the non-pipelined design, which is denoted byDnp
Total(j, t),

is shown in Equation 2.22.

Dnp
Total(j, t) =

T∑
t=2

(Dstage1(j, t)) + 3N(T − 1)

+
T∑
t=2

N∑
j=1

(Dstage3(j, t) +Dstage6(j, t))

(2.22)

To compute the impact of the pipelining method on the overall execution time

of ELSA, equations 2.17 and 2.22 were evaluated and compared for different bit

precision, hidden nodes and time steps. These are shown in Table 2.4. Thus, a total

of 27 configurations were evaluated. Based on empirical data, the pipelining alone

achieves 1.62X improvement in performance on average as compared to the non-

pipelined design. The speedup achieved for each configuration was close to 1.62X, so

only the average is reported.

51

Table 2.4: The Average Speed-up Achieved by the Pipelining Method over the Non-

pipelined Design for 27 Different LSTM Configurations. This Was Computed by Evaluating

Equations 2.17 and 2.22. The Minimum and Maximum Speedups Were 1.58x and 1.65x,

Respectively.

27 Different LSTM Configurations
Average Speedup (X)

over 27 Configurations

Bit Precision 8 12 16

1.62XHidden Nodes 64 128 256

Time Steps 10 100 1000

2.9 A Framework for Pre-hardware Mapping Analysis

This section describes a Python based framework that allows for analysis and fine

tuning of the input parameters before mapping the design to hardware. Figure 2.12

depicts the overall structure of the framework. It consists of three main implementa-

tions: 1) LSTM AM: an LSTM layer with the exact same architecture as proposed

in Section 2.5 with the AM units; 2) LSTM FixedP Exact: an LSTM layer with

the same design as LSTM AM, except that the AM units are all replaced with exact

fixed-point multipliers. Hence LSTM FixedP Exact does not include variable cycle

operations and is exact; 3) LSTM FP32: an LSTM layer that is the same as the

original software implementation with FP32 operations. The input to this frame-

work and the three implementations is a set of parameters, including the number of

hidden nodes, weights and biases, number of time steps and bit-width. These imple-

mentations can be configured to implement any LSTM network topology. The main

objective is to report the accuracy, speed up and the execution in number of clock

cycles for the LSTM AM design.

52

Figure 2.12: Overall Structure of the Framework. It Consists of Three Main LSTM Imple-

mentations in Python That Can Report the Accuracy of This Work for Different Bit-width,

the Speed up Achieved with the Pipelining Method and the Execution Time of a Given

Application in Clock Cycles.

2.9.1 Accuracy

To find the optimal bit-width for quantization, the accuracy of LSTM AM needs

to be compared against the other two implementations as described in the preceding

section. The framework allows for a thorough exploration of the optimal bit-width

for any given application with any network topology. A layer-wise analysis can also

be done for improving the accuracy even further.

2.9.2 Speed up

The framework includes two versions of the LSTM AM design: pipelined and

non-pipelined. In the non-pipelined version, the stages shown in Figure 2.8 execute

in sequence. This is to compute the impact of the pipelining method over the non-

pipelined version and report the speed up for a given LSTM application with its time

53

steps, hidden nodes and parameters. This allows quantifying the improvements due

to the pipelining strategy. For example, Table 2.4 presents the average speed up

achieved by the 8-bit, pipelined design with two consecutive LSTM layers.

2.9.3 Execution Time

A general performance model of LSTM AM with the pipelining strategy was also

developed in this framework. This performance model is a function of hidden nodes

and time steps with a predefined bit-width These are varied to evaluate the execution

time of the application in terms of the number of clock cycles prior to mapping it

into the hardware. This can be applied to any application that includes a network

of LSTM layers, such as speech recognition and image captioning. This is invaluable

as it can be an iterative procedure to fine-tune the input parameters to achieve a

desirable execution time.

2.10 Experimental Results

2.10.1 ASIC Implementation of ELSA

ELSA’s design was specified in RTL, synthesized and placed and routed (using

Cadence R© tools) in 65nm CMOS technology achieving a peak frequency of 322 MHz.

ELSA’s RTL design, including the controllers, is fully parametrized and can adapt to

any LSTM network topology. Hence, there is no need to do the pipelining again as

the controllers automatically accommodate the change. In addition, no design effort

is required for varying the bit precision and modifying the size of the hidden nodes for

a given application. Figure 2.13 shows the physical layout of ELSA’s design in 65nm

and the characteristics of the ASIC implementation. ELSA has sufficiently small

cell area and low power, making it suitable for use in embedded systems. Moreover,

54

the efficient scheduling and pipelining techniques led to a design with high peak

performance making ELSA also suitable for real-time applications.

ELSA

Core Voltage (V) 1.1

Number of MACs 772

Precision (bit) 8-11

Frequency (MHz) 322

Total Cell Area (mm2)
SRAM area: 2.22

LSTMCell area: 0.4

On-Chip Memory (KB) 106

Peak Performance (GOP/s) 27

Power (mW) 20.4

Energy-Efficiency (GOP/s/mW) 1.32

Figure 2.13: The Physical Layout of ELSA’s Design in 65nm CMOS Technology (Top)

and the ASIC’s Implementation Results (bottom).

ELSA uses an 8-bit fixed-point representation (see Section 2.7) with the interme-

diate results extended to 11 bits to preserve the precision. The SRAMs incorporated

in ELSA were provided by the 65nm library supplier. Unfortunately, the available

SRAMs were larger than necessary and hence their area and power numbers shown

55

in Figure 2.13 should be considered as pessimistic, by as much as ∼6%. The SRAM

area of ELSA is approximately 3X larger than its logic area. Clock gating of the com-

putation units and the mini-controllers and the use of sleep modes for the SRAMs

were employed to further reduce the power consumption. Because of the variable-

cycle pipeline stages, ELSA’s design greatly benefits from clock-gating. The greatest

reduction in power was achieved when the computation units in a multi-cycle pipeline

stage were maximally utilized. Hence, all the other idle units were clock-gated for

several cycles.

Figure 2.14 shows the power and area breakdown of ELSA’s components, including

the SRAMs. The power consumption was measured using data activity information

(*.vcd) obtained from the testbench by simulating the design after placement and

routing. As expected, the SRAMs consume the most power. Among the submodules,

the controllers contribute the least to the power consumption and the MVMs consume

the most as there are 772 MACs in this design. There is substantial difference between

the area utilization of the SRAMs and all the other components. Although there are

772 MACs in this design, the MVMs constitute to only 10.66% of the total area.

Figure 2.14: Power (Left) and Area (Right) Breakdown of ELSA’s Components Including

the SRAMs. AF Stands for Activation Functions.

56

Comparison with the Baseline-LSTM

The LSTM network was also designed with 8-bit exact fixed-point multipliers and

is referred to as the Baseline-LSTM. This is functionally equivalent to ELSA except

that all the AM units were replaced with the exact multipliers. These multipliers were

optimally synthesized by the Cadence tools (i.e. Genus) based on the clock frequency

constraint. This is automatically generated by Genus to meet the timing constraints

corresponding to the given clock frequency. The Baseline-LSTM was also specified in

RTL and synthesized and placed and routed in 65nm technology. The ASIC imple-

mentation results of ELSA are compared with the Baseline-LSTM and the normalized

results are shown in Figures 2.15 and 2.16. In Figure 2.15, ELSA and the Baseline-

LSTM were run at the same clock frequency (the peak frequency of the Baseline-

LSTM). The energy efficiency (GOP/s/mW) and area efficiency (GOP/s/mm2) of

ELSA exceeds that of the Baseline-LSTM by 1.2X. The cell area and power consump-

tion of ELSA are also lower (0.3X), but the peak performance of the Baseline-LSTM

is higher by 3.3X. This is to be expected as the operations in the Baseline-LSTM are

single cycle operations and the Baseline-LSTM was run at its highest clock frequency,

unlike ELSA’s.

For a thorough comparison, both designs were also run at their individual max-

imum achievable clock frequencies. The results are shown in Figure 2.16. Due to

the compactness of the compute-intensive units of ELSA, which are on the critical

path, ELSA can run 3.2X faster in terms of clock frequency. While the ratio of the

energy efficiency is maintained at 1.2X moving from Figure 2.15 to Figure 2.16, the

area efficiency of ELSA is greatly improved and reaches 3.6X. This is mainly due

to the increase in the peak performance as the increase in the cell area was negli-

gible and the ratio remains at 0.3X. Although running ELSA at its highest clock

57

Figure 2.15: The ASIC Implementation Results of ELSA as Compared to the Baseline-

LSTM. Both of These Designs Were Run at the Same Clock Frequency, the Highest That

the Baseline-LSTM Can Achieve. The Reported Numbers Are Normalized. The Energy

and Area Efficiency of ELSA Exceeds That of the Baseline-LSTM by Factors of 1.2x.

frequency increased its power consumption, it is still lower (0.9X) than that of the

Baseline-LSTM.

Comparison with the Existing ASIC Implementations

ELSA is also compared against the existing ASIC implementations of LSTMs –

DNPU Shin et al. (2017) and CHIPMUNK Conti et al. (2018) as shown in Table 3.2.

DNPU is a CNN-RNN processor and its application requires a combination of CNNs

and RNNs. CNN is its major component and RNN was not evaluated as a standalone

component. Although ELSA has twice the bit-precision and uses 10X more SRAMs

than DNPU, it achieves higher peak-performance and consumes less power. DNPU’s

bit-width (4-bits) is half of ELSA’s. Scaling ELSA to 4-bits would increase the peak-

performance (at-least 54 GOPs) and the frequency (∼400MHz), and decrease the

power consumption. These would lead to a much higher energy-efficient design. In

addition, DNPU has only 10KB of on-chip memory which limits its peak-performance

58

Figure 2.16: The ASIC Implementation Results of ELSA as Compared to the Baseline-

LSTM. Both of These Designs Were Run at Their Highest Achievable Clock Frequency. The

Reported Numbers Are Normalized. The Energy and Area Efficiency of ELSA Exceeds That

of the Baseline-LSTM by Factors of 1.2x and 3.6x, Respectively

by requiring the use of external memory even for small networks. The application in

which the functionality of ELSA was evaluated on (even for 4-bits), does not fit on

DNPU and requires a DRAM. This lowers DNPU’s peak-performance substantially.

CHIPMUNK uses 22% smaller SRAMs. It achieves higher peak-performance, but it

consumes 30% more power, making ELSA more energy-efficient. As shown in the last

entry of Table 3.2, ELSA’s energy-efficiency exceeds that of DNPU and CHIPMUNK

by 1.2X and 1.18X, respectively.

59

Table 2.5: Comparison with the Previous ASIC Implementations. All of These Implementations Are in 65nm Technology. DNPU

Is a CNN-RNN Processor, and This Table Only Includes the RNN Values Reported in Shin et al. (2017). The LSTM Architecture

of DNPU and CHIPMUNK Differ Substantially among Themselves and Also When Compared with ELSA. Moreover, the Reported

Applications Are Dramatically Different, Making Comparisons in General Difficult to Judge.

DNPU Shin et al. (2017) CHIPMUNK Conti et al. (2018) ELSA

Precision (bit) 4-7 8-16 8-11

Frequency (MHz) 200 168 322

On-Chip Memory (KB) 10 82 106

Peak Performance

(GOP/s)
25 32.3 27

Power (mW) 21 29.03 20.4

Energy-Efficiency

(GOP/s/mW)
1.10 1.11 1.32

ELSA’s

Energy-Efficiency (X)
1.2 1.18 1

60

2.10.2 FPGA Implementation of ELSA

This work was implemented on Xilinx Zynq XC7Z030 FPGA which consists of

125K logic elements, 78.6k LUTs, 400 DSP blocks, 265 BRAMs and 157.2k FFs.

This RTL design was synthesized and then implemented by Vivado Design Suite

2017.2. Table 3.2 provides a detailed comparison of several design metrics of this

work with prior FPGA implementations for LM. It should be noted that all the three

existing LM implementation use the same network as shown in Figure 2.9. After the

computations in the first and second LSTM layers are completed, the outputs of the

model are read from the BRAMs and are verified by comparing them against the

validation data.

The power consumption of this work on the Zynq XC7Z030 FPGA is estimated

by the Vivado Power Analysis tool using the post-placed netlist. This work does not

use any DSP blocks in the FPGA since it takes advantage of the design of the AM

to increase the energy-efficiency. Not using available resources might be viewed as

inefficient. On the contrary, this is an advantage, as it makes it possible to implement

the proposed design in low-cost, ultra low-power non-DSP commercial FPGAs such

as Lattice Semiconductor (2021) (see section 2.10.3 for more details).

61

Table 2.6: Comparison with Previous Language Modeling Implementations.

Chang et al. (2015) Chang and Culurciello (2017)-DeepStore Chang and Culurciello (2017)-DeepRNN This Work

Application Language Modeling Language Modeling Language Modeling Language Modeling

FPGA Xilinx Zynq XC7Z020 Xilinx Zynq XC7Z020 Xilinx Zynq XC7Z020 Xilinx Zynq XC7Z030

Technology (nm) 28 28 28 28

Design Entry C-language C-language C-language RTL

Frequency (MHz) 142 142 142 100

Precision (bits) 16 fixed 16 fixed 16 fixed 8 fixed

DSP Utilization 50 (23%) NA‡ NA 0

LUT Utilization (K) 7.6 (11%) NA NA 23 (30%)

BRAM Utilization (36KB) 16 (12%) NA NA 180 (68%)

Power (W) 1.94 2.3 1.8 1.19

Throughput (GOPS)∗ 0.29 1.05 0.73 8.08/2.26

Energy Efficiency (GOPS/W)† 0.15 0.46 0.40 6.79/1.89

∗ The throughput of this work is data-dependent. 8.08 is the maximum throughput that it achieves and 2.26 is the average throughput.

† The energy-efficiency of this work for the maximum throughput is 6.79 and for the average throughput is 1.89.

‡ NA = Not Available

62

Table 2.7 shows the maximum improvement of this work over the existing im-

plementations in throughput and energy-efficiency. The overall throughput of this

work outperforms the state-of-the-art designs, Chang et al. (2015), DeepStore Chang

and Culurciello (2017) and DeepRNN Chang and Culurciello (2017) by 27.86X, 7.69X

and 11.06X, respectively.

Table 2.7: Maximum Improvement in Throughput and Energy Efficiency as Compared

to Prior Implementations.

Chang et al. (2015) Chang and Culurciello (2017)-DeepStore Chang and Culurciello (2017)-DeepRNN

Throughput (X) 27.86 7.69 11.06

Energy Efficiency (X) 45.26 14.76 16.97

This work is also more energy-efficient than the existing implementations by fac-

tors of 45.26X, 14.76X and 16.97X, respectively. Table 2.8 shows the resource utiliza-

tion.

Table 2.8: Resource Utilization of Our Accelerator.

Utilization Available Utilization(%)

LUT 23,036 78,600 29.31

FF 28,481 157,200 18.12

BRAM (36KB) 180 265 67.92

Table 2.9 compares the energy-efficiency of this work with CPU and GPU imple-

mentations. The Torch7 implementation of language modeling Karpathy (2016) is

executed on the CPU and GPU platforms. The benchmark platforms in Chang and

Culurciello (2017) are not the state-of-the-art. However, even a 10X improvement

63

over these platforms show that the CPU and GPU are substantially less energy-

efficient than this work.

Table 2.9: Energy Efficiency of Different Platforms.

Platform CPU Chang and Culurciello (2017) GPU Chang and Culurciello (2017) This Work

Energy-Efficiency

(GOPS/W)
0.009 0.02 6.79/1.89

2.10.3 Summary of the Key Features of This Work

Scalability: The RTL design of this work including its controllers is fully parametrized

and can adapt to any LSTM network topology. There is no need to do the pipelining

again as the controllers automatically accommodate the change. Therefore, no design

effort is required for varying the bit-width of the operands and modifying the size of

the network.

Memory-Access Time: As this work is highly pipelined at multiple levels, most of

the memory access time is overlapped by other computation units and the resources

are kept at being maximally utilized. Moreover, all the intermediate results are

written into the buffers so the BRAMs are only accessed for fetching the parameters

and writing back the computed values for the hidden-state (H) and memory-State

(C).

Advantages of Not Using DSPs: There are two types of non-DSP FPGAs that

benefit from this work. The first one is to map this work directly onto one of the

ultra low-power non-DSP lattice FPGAs Lattice Semiconductor (2021). This results

in even lower cost and power implementation. An open-source FPGA Liu (2014) has

recently been developed, which is parameterizable and user expandable with academic

tool-flow support- VPR Betz and Rose (1997) and VTR Rose et al. (2012). Hence,

64

the second way is to exploit this and customize our FPGA all the way to the layout

without adding extra level of complexity caused by DSPs. This enables OpenFPGA

design and reduces the design complexity. The low-cost AM in this work can also

be designed as a hard IP using OpenFPGA. It should be noted that both of these

low-cost FPGAs are very well suited for being incorporated into SoCs.

2.10.4 Opportunities for Further Improvements

The main objective of this work was to design a compact, low power LSTM

processor. One important additional mechanism that is part of our future work is

weight compression. This would result in further significant improvement in area

and power. There has been an extensive body of research on reducing the memory

footprint for various types of neural networks Han et al. (2015); Xu et al. (2018).

Chief among them are techniques that compress weights. In fact, the size of the

required memory can be reduced by up to 90% Han et al. (2017). These techniques

can also be applied to this work, in which case, the relative improvement of this work

would be substantially higher.

2.11 Chapter Summary

This paper presents a novel scalable LSTM hardware accelerator, referred to as

ELSA, that results in small area and high energy-efficiency. This is due to several

architectural features, including the use of an improved low-power, compact approxi-

mate multiplier in the compute-intensive units of ELSA, and the design of two levels

of controllers that are required for handling the variable-cycle multiplications. More-

over, ELSA includes efficient synchronization of the elastic pipeline stages to maximize

the utilization. ELSA achieves promising results in power, area and energy-efficiency

making it suitable for use in embedded systems and real-time applications. This ac-

65

celerator can be further improved by incorporating more compact SRAMs to achieve

a more optimized floor-plan. In addition, the energy-efficiency can be significantly

improved by applying weight compression techniques.

66

Chapter 3

AN ALTERNATE DATA-DRIVEN SURROGATE MODEL FOR UNCERTAINTY

QUANTIFICATION

3.1 Problem Background: The Need for Uncertainty Quantification and Sensitivity

Analysis

Consider a data-driven surrogate model (see section 1.2) defined as, x ∈ Dx 7→

y = M̃(x; θ), where x is the input and θ is a set of parameters. In many real-world

problems, the inputs are random quantities and their value depend on outcomes of

a random phenomena, i.e. they belong to a stochastic domain. Thus, the inputs

must be viewed as distributions rather than singular quantities. For example, an

autonomous vehicle frequently has access to only sparse and uncertain parameter

estimates which are drawn from sensors such as LIDAR and vision. This is referred to

as input uncertainty. In this example, the vehicle parameters such as fuel/electricity

consumption and mechanical wear could also be uncertain. Hence, various sources of

uncertainty exist that could arise due to the errors in the input data measurements,

the model chosen to approximate the input to output mapping, the choice of the

parameter values, etc. An end-to-end analysis of errors due to the imperfect models

with uncertain input and model parameters is referred to as uncertainty quantification

(UQ).

Let fX(x) denote the p.d.f of a random variable x. It is used to model the ran-

domness in the inputs x. The objective of uncertainty propagation (UP) from the

input is to estimate the statistics of the output Y =M(X), where X and Y are the

input and output random variables, respectively. Figure 3.1, adapted from Sudret

67

(2007); Sudret and Kiureghian (2000), depicts different types of UP methods. Re-

sponse variability methods estimate the dispersion of the system response around a

mean when the inputs also vary around their mean. These methods are a type of UP

and the first two moments of the output response are provided and evaluated (i.e.

mean and the variance). Perturbation method, weighted integral method and quadra-

ture method are examples of this type Sudret and Kiureghian (2000). The objective

of structural reliability methods is to determine the tail probability, which represent

the probability that a structure does not perform satisfactorily within a given period

of time and stated conditions Sudret (2007); ChangWu Huang (2017). This is per-

formed by computing the probability of exceeding a predetermined threshold and is

referred to as the probability of failure. The third class of methods is referred to as

spectral methods Ghanem and Spanos (1991) that provide the means to efficiently

compute the empirical joint p.d.f of all the outputs. With these methods, the prob-

lems related to second moment and structural reliability methods can be solved by a

straightforward post-processing of their output Sudret (2007); Sudret and Kiureghian

(2000).

Figure 3.1: Different Types of Uncertainty Propagation Methods.

68

Modeling complex systems usually involves a large number of input parameters.

In many problems, it may be the case that only a subset of the inputs influence the

output response Y significantly. Global sensitivity analysis (GSA) refers to quantify-

ing the sensitivity of the output to some or all subsets of the inputs. The objective

of the GSA is to select the important input parameters and is usually performed by

defining an importance measure. GSA would lead to reducing the model complexity

by eliminating subsets of input variables that are not essential to the output.

Deep learning have achieved excellent results in accuracy and performance for

perception, cognition and problem solving. However, in many real-world applications,

uncertainty plays a significant role in the networks output prediction. Commonly,

the approximation of Bayesian methods is used for estimating the uncertainty of

the prediction, however, these can still have difficulties to reliably approximate the

uncertainty of their output. Moreover, deep neural networks cannot provide the

sensitivity of the predicted output with respect to its inputs. This results in having

redundant nodes in the networks that increase the computational cost and response

time, and hence reduces the flexibility to deploy these networks for real-time and

safety-critical applications.

This work develops a robust framework for constructing data driven models using

supervised learning. The surrogate model that this work employs in the presence of

input variability is referred to as arbitrary polynomial chaos expansion (aPC) which

is a data-driven model based on an extension to polynomial chaos expansion (PCE).

This is a new approach to training and inference in machine learning (ML). This ap-

proach estimates or learns a function that best explains the given set of input-output

pairs. This is viewed as selecting one function from among an infinite, uncountable

space of continuous functions. However, unlike all existing approaches, the proposed

approach does not impose a probabilistic model on the function space. Instead, it

69

represents the elements of the function space as multivariate orthogonal polynomials

in the underlying input variables. In such a representation, known as aPC, the poly-

nomials are constructed directly from the moments of the inputs. These polynomials

serve as the basis functions for representing the elements of the function space. In

contrast to many existing approaches, no assumptions (e.g., Gaussian processes or

prior distributions on the parameters, etc) are made on the elements of the function

space. The proposed method also provides a direct method to compute the sensi-

tivity of the model output with respect to any subset of input variables, providing a

systematic and incremental method to pruning the model or changing the order of

the model. The key advantages of this method are summarized below.

1. In addition to point-wise prediction, this approach provides an estimate of the

first two moments of the output. Particularly, uncertainty in this method is

a simple function of the expansion coefficients of the model, which depend on

the raw data. As in other methods, the mean here is also used as the point

estimate, and sigma is considered as an estimation to statistical uncertainty.

2. Higher order moments of the output and its p.d.f can be estimated using Monte

Carlo (MC) methods efficiently. This can be done by evaluating the constructed

aPC model for sufficient samples of input. In this approach, computation of the

p.d.f is very efficient as evaluating the aPC method is not compute-intensive.

3. GSA can also be used to perform inference in using low accuracy models first,

and then switching to more accurate models as the need arises. This approach

provides a direct method to reducing the complexity of the model or changing

the order of expansion. Particularly, it can rank the model inputs according to

their influence on the variance of the output. This leads to eliminating the least

important inputs and reducing the model complexity.

70

4. There is no need to tune hyper-parameters as in NN models and the model can

be constructed with limited training data. These are some of the reasons that

lead to substantial reduction in computations compared to existing techniques.

This framework is proposed as a general model that can be applied to any regres-

sion and classification workloads. The main contributions of this work are summarized

below.

1. A data-driven methodology based on an extension to PCE is re-established as

a framework for regression tasks, also performed by NN models. In addition to

the point-wise prediction, this framework can provide a measure for quantifying

the uncertainty in the output.

2. This methodology is then extended to address the scalability issue in tasks with

large number of input variables. Moreover, it is extended for discrete outputs

so that it can be applied on classification tasks similar to NN models.

3. This method is also turned into an executable computation graph. The structure

of this graph intuitively demonstrates the sequential and parallel operations.

This leads to even faster training and inference time. All the nodes at one level

can be executed simultaneously, while the tasks from top to bottom are data

dependent and are run in sequence.

4. The accuracy of this framework can be improved by constructing a higher order

model. It is shown that this can be done by incrementally adding to the com-

putation instead of recalculating all the polynomial basis and the coefficients.

This allows a much faster training.

We demonstrate that our framework achieves point-wise predictions comparable to

that of the existing NN models. The comparisons are presented on benchmark

71

datasets widely used in the literature. In addition, this framework provides: 1) a

direct measure for quantifying the uncertainty in the model output by estimating its

first two moments. The p.d.f of the output can also be estimated by using MC. 2) the

sensitivity of the output can be estimated with respect to any subsets of the inputs.

This helps with pruning the model and reducing its complexity.

Section 1.3 described NN models as well-known data-driven surrogate models.

The following sections explain the challenges in UQ when employing NN models and

then present an alternative data-driven surrogate model referred to as polynomial

chaos expansion to address the challenges.

3.2 Challenges in UQ with NN Models

Although deep learning models are increasingly being employed in autonomous

vehicles, medical diagnosis, robotics, and other safety critical applications, the re-

ported successes hide a severe threat–the lack of an accurate measure of uncertainty

associated with the prediction. Hence, UQ has regained attention particularly in the

deep learning domain and new methods have been proposed. In prediction, UQ al-

lows for the handing over control to a human or transitioning to a safe mode by an

autonomous vehicle/robot or suggesting further analysis in medical diagnosis. The

followings briefly discuss the related work.

Classical Bayesian Techniques: Bayesian inference (BI) Ghahramani (2015);

Jaynes (2003) is a statistical inference method which is used for prediction and

UQ. Extensive research has been done in the field of Bayesian machine learning as

well Ghahramani (2015).

Figure 3.2 illustrates an example of BI, in which the posterior distribution is gen-

erated by multiplying the prior and likelihood distributions. In BI, a prior probability

distribution, P (θ), is assumed as the initial uncertainty in the parameters θ, before

72

processing or realizing the input data. Then, the likelihood function, P (data|θ), is

constructed which is the conditional probability of the observed data, given θ values.

The final step is to the construct the posterior distribution, P (θ|data), by multiplying

the prior and likelihood distributions, derived from Bayes’ theorem. The posterior is

the conditional probability of θ, given the observed data. The mean of the posterior

is typically considered as the point estimates and the spread of the distribution is

considered as an estimation to statistical uncertainty.

Posterior Belief

Prior Belief
Likelihood

Figure 3.2: An Example of Bayesian Inference, in Which the Posterior Distribution Is

Generated by Multiplying the Prior and Likelihood Distributions.

The key challenge in BI is the computation of the posterior. Sampling-based

methods are the most widely used for computing the posterior. One class of such

techniques is referred to as Markov chain Monte Carlo (MCMC) Metropolis et al.

(1953); HASTINGS (1970). This is used to approximate the posterior distribution of

the parameter of interest, θ, by systematic random sampling from a high-dimensional

probability distribution. The key idea is to construct a Markov chain and draw

samples such that the next sample is dependent on the current one, unlike Monte

Carlo. Due to the auto-correlation of the samples, this class of methods is less efficient

73

as compared to Monte Carlo simulation. Moreover, employing these methods leads

to a high computational cost that is often infeasible, particularly for deep neural

networks with millions of parameters.

Bayesian Neural Networks: In general, neural networks are powerful surrogate

models that can provide excellent results on point-wise predictions. To enable UQ,

BI calculates the posterior distribution of the network parameters, P (θ|data), given

the training data. This is intractable for neural networks, particularly deep models.

Progress in variational inference (VI) has revived Bayesian neural networks and been

widely used Kingma and Welling (2014); Blundell et al. (2015). VI provides an

analytical approximation to P (θ|data) and are faster than classical sampling methods,

such as MCMC Hinton and van Camp (1993); Graves (2011). VI finds the parameters

of the distributions on the weights that are the closest to the actual posterior of the

weights. Kullback-Leiber (KL) divergence determines the closeness.

Gal and Ghahramani (2016) suggested that using dropout during inference in

deep learning can be interpreted as Bayesian approximation of the Gaussian pro-

cess Rasmussen and Williams (2005), a well-known probabilistic model. Dropout is a

method used in the training phase in which individual neurons are either eliminated

(along with their incoming and outgoing edges) with probability of 1−p or kept with

probability of p during forward and backward passes. This method is shown to be

a useful regularization approach to avoid overfitting (i.e. closely fit to the training

data) Srivastava et al. (2014). In Gal and Ghahramani (2016), it was shown that

dropout integrates over the model parameters approximately, and no change in the

model architecture and optimization is needed. Particularly, for a given input, to

approximate the posterior distribution, the inference phase is executed several times

while sampling from the weight space in every iteration. Figure 3.3 depicts one ex-

ample of the weight sampling method for diabetic retinopathy detection, which is a

74

binary classification tasks with two outputs, healthy or diseased Leibig et al. (2017).

The deep NN models in this example is a network similar to VGG-16 Simonyan and

Zisserman (2014), in which dropout is added after each convolutional layer with prob-

ability of 0.2. The predictions are denoted by µpred and the uncertainty is quantified

by σpred. The left most example shows the highest confidence while the right most

example reports the highest uncertainty.

Figure 3.3: Implementation of Weight Sampling Method in Deep Learning Models for

Diabetic Retinopathy Detection Leibig et al. (2017). The Images Are Examples of Fundus

Images with Human Label Assignments on Top. Corresponding to Each Image Is the

Approximate Predictive Posteriors over the Softmax Output Values P (diseased|image).

Predictions Are Based on the Mean of the Posteriors (i.e µ) and Uncertainty Is Quantified

By σ.

One of the drawbacks of MC dropout is that it is mainly limited to convolutional

layers and architectural choices need to be made Mukhoti and Gal (2018). More-

over, MC dropout requires thousands of iterations for getting a smooth posterior and

is infeasible for real-time scenarios. In addition to the compute-intensive nature of

approximating the posterior and hence UQ, deep learning models have another signif-

icant drawback, that is the difficulty in analyzing the global sensitivity of the output

to any subset of the inputs. This often results in constructing large models with re-

dundant nodes that increase the computational cost and response time, and reducing

the flexibility to deploy these networks for real-time and safety-critical applications.

This is the main reason that techniques such as compression and quantization are

75

often employed to reduce the size of the models (see section 1.5.1).

Ensemble Methods: Ensemble methods have achieved excellent results in quan-

tifying uncertainty and are widely used in various domains Beluch et al. (2018). Lak-

shminarayan et al. Lakshminarayanan et al. (2017) propose an alternative to BNNs to

estimate the predictive uncertainty. They proposed to train an ensemble of networks

each with random initialization of the network parameters. The networks were all

trained random shuffling of the entire training dataset to obtain good performance.

The main drawback of this approach Lakshminarayanan et al. (2017) is the high

computational cost that comes with training multiple networks. This cost becomes

even more significant in deep network architectures used for object detection, semantic

segmentation, etc. Similar to MC dropout, this method does not provide any insight

on the sensitivity of the output with respect to every input and the interactions

between them, which leads to redundancy in the networks. The following sections

describe an alternate data-driven surrogate model for addressing UQ. This is a new

approach to training and inference that provides a method for GSA as well.

The next section describes an alternate data-driven surrogate model for addressing

UQ. This is a new approach to training and inference that provides a method for GSA

as well.

3.3 Overview of Polynomial Chaos Expansion

When analyzing a physical system, a key task is to understand the relationship

between the inputs and outputs. When there is stochasticity in the inputs, the

system’s response will also become a random quantity. Typically, a system with a set

of inputs, X, and outputs, Y , is given in some form of an implicit relation F (X, Y, ξ),

where ξ is a set of parameters that are subject to variations. X, Y and ξ can be

vectors of arbitrary dimensions.

76

Polynomial chaos expansion (PCE) Ghanem and Spanos (1991); Soize and Ghanem

(2004); Augustin et al. (2008) is one approach to approximate Y by replacing the im-

plicit relation F (X, Y, ξ) with an explicit function Ỹ (X, ξ). PCE is a representation of

a 2nd order stochastic process as a multivariate orthogonal polynomial over an infinite

dimensional Hilbert space. The first two moments of the expansion converge to that

of Y in limit. The classical PCE was originated from the Wiener’s work Wiener (1938)

and is known as Wiener-Hermite expansion. It represents a random variable with an

infinite series of Hermite polynomials in independent Gaussian random variables as

shown in equation A.1.

Y (ξ) =
∞∑
i=1

ciHi(ξ), (3.1)

where ci are the coefficients of the Hermite polynomial basis functions, Hi(ξ). In

practice, this sum is truncated to a limited number of basis functions, as expressed

in A.2.

Ỹ (ξ) =
M∑
i=1

ciΦi(ξ), (3.2)

where Φi(ξ) are the basis functions (determined based on a selected method) and ci

are the coefficients that need to be solved. The coefficients ci can be obtained by

Galerkin projection method. This method determines the function Ỹ in such a way

that the error (Y − Ỹ) is orthogonal to the space where Y belongs to.

PCE is not restricted to Gaussian processes and has been generalized for other

standard distributions. Xiu and Karniadakis Xiu and Karniadakis (2002) introduced

generalized polynomial chaos (gPC) involving non-Gaussian random parameters. The

optimal basis is dependent on the underlying distribution of ξ, i.e. the Hermite

77

polynomials are replaced by the sequence of optimal orthogonal basis functions with

respect to the probability distribution of ξ.

3.4 A Data-driven Framework

Previous section explored the model construction for the case in which the dis-

tribution of ξ are assumed or known. However, the underlying distributions of the

parameters in practice may not be known or cannot be determined. This issue was

resolved by the method proposed by Oladyshkin et al. Oladyshkin and Nowak (2012)

and is referred to as arbitrary polynomial chaos (aPC). aPC is a data-driven method

which extends gPC by estimating the probability measure using a finite number of

moments.

Let ξ = {ξ1, ξ2, ..., ξN} be a set ofN input random variables. This section describes

the aPC method which is employed to construct the function Y (ξ). The output

Y (ξ) is expressed as a weighted linear combination of the basis polynomials as in

equation A.13.

Y (ξ) =
M∑
i=1

ciΦi(ξ), (3.3)

where Φi(ξ)s and cis are the orthonormal multivariate basis polynomials, and the

coefficients. The total number of coefficients and the multi-variate polynomials are

M =
(
N+d
d

)
, where d is the degree of the expansion. The coefficients c are computed

using mean-squared (cost function J(c)). This is expressed in equation 3.4, in which

Y
(obs)
s and Ys(ξ), are the observed values of the output in the training data and the

predicted output for sample s, respectively. During inference, the output can be

estimated using equation A.13.

78

J(c) =
1

2S

S∑
s=1

{Y (obs)
s − Ys(ξ)}2 (3.4)

Φi(ξ)s are constructed by only using the moments of ξ and can be constructed with

limited data. No other statistical information including the underlying distributions

is required. The multivariate basis functions can be obtained by taking the cross

product of univariate basis functions as expressed in equation A.15.

Φi(ξ) =
N∏
j=1

P
(αij)

j (ξ), (3.5)

N∑
j=1

αij ≤M, i = 1, 2..., N, (3.6)

where α is an M×N matrix, which contains the corresponding degree for the variable

index j in the expansion term k. Hence, index αij enumerates all possible products

of individual univariate basis functions. P (k) are the orthonormal univariate polyno-

mial basis of order k as shown in equation A.17, where p
(k)
i are their corresponding

coefficients.To compute P (k)(ξ), 2k moments need to be computed.

P (k)(ξ) =
k∑
i=0

p
(k)
i ξi, k = 0, 1, ..., d. (3.7)

By Utilizing the orthogonality of P (k)(ξ) and assuming that the leading coefficient

p
(k)
k = 1, every p

(k)
i can be computed from only the moments of its input Oladyshkin

and Nowak (2012). The kth sample moment of the random variable ξ for S samples

is expressed in equation 3.8. This allows to write the system of linear equations based

on the raw moments, conveniently, in a matrix form as in equation A.27.

µk =
1

S

S∑
s=1

ξks (3.8)

79

µ0 µ1 . . . µk

µ1 µ2 . . . µk+1

...
...

...
...

µk−1 µk . . . µ2k−1

0 0 . . . 1

×

p
(k)
0

p
(k)
1

...

p
(k)
k−1

p
(k)
k

=

0

0

...

0

1

. (3.9)

As a concrete example, consider a system with ξ = {ξ1, ξ2}. Suppose a 2nd order

model needs to be constructed for this system. The first step is to compute the

coefficients of the 0th and 1st order polynomials for each variable as expressed in

equation 3.10. These are functions of the moments (µ) of each variable. Next, the

uni-variate polynomials up to the 2nd degree need to be constructed as expressed in

equation 3.11.

p
(2)
0 = −1, p

(2)
1 = −µ3, p

(2)
2 = 1 (3.10)

P (0)(ξ) = 1, P (1)(ξ) = ξ, P (2)(ξ) = ξ2 − µ3ξ − 1 (3.11)

For the 2nd order model, there are six multivariate polynomial that are obtained

by taking the cross product of the univariate polynomials. This is shown in equa-

tion 3.12. The final step is to compute the six unknown coefficients, ci, which are

solved using least squares.

Φ(ξ1, ξ2) = {1, ξ1, ξ2, ξ1ξ2, ξ
2
1 − µ1

3ξ1 − 1, ξ2
2 − µ2

3ξ2 − 1} (3.12)

3.4.1 Quantifying Uncertainty with aPC

The characteristic statistical quantities of Y (ξ), which are its mean (µ) and vari-

ance (σ2), can be evaluated directly from the coefficients ci. This is expressed in

80

equation A.14.

µY = c0, and σ2
Y =

M∑
i=1

c2
i . (3.13)

The coefficients are computed as a one time cost and remain unchanged during

inference, hence the estimated mean and variance. To detect an out-of-distribution

observation and estimate the uncertainty, the predicted outcome is compared against

the mean and variance of the model Y (ξ). To see how far, the predicted output is

from the mean of Y (ξ), in terms of standard deviation.

3.4.2 Global Sensitivity Analysis with aPC

The Sobol indices Saltelli and Sobol’ (1995); Sobolá (2001); Archer et al. (1997)

have gained more attention as opposed to other measures due to its higher accuracy in

most models. Previous studies introduced PCE models that allow the computation of

Sobol indices analytically as a post-processing of the PCE coefficients Sudret (2008).

Hence, the cost of computing the sensitivity indices is reduced to estimating the PCE

coefficients. This applies to the aPC method as well.

To investigate the influence of all the input parameters on the model output, the

Sobol indices are computed as a measure of sensitivity estimation using equation 3.14.

Si1,i2,...,is =

∑M−1
j=0 χjc

2
j∑M−1

j=1 c2
j

(3.14)

χj =

1, ifαkj > 0, ∀j ∈ (i1, i2, ..., is)

0, ifαkj = 0, ∃j ∈ (i1, i2, ..., is)

where Si1,i2,...,is is the Sobol index that indicates what fraction of the total variance of

PE can be attributed to the contributions of the input parameters i1, i2, ..., is, jointly

81

and individually.

The total Sobol index (STj) expresses the total contribution to the variance of

model output PE due to the uncertainty of an individual input parameter in all

cross-combinations with other parameters.

STj =
∑

(i1,i2,...,is):j∈(i1,i2,...,is)

Si1,i2,...,is (3.15)

where STj sums up all Sobol indices in which an input parameter appears both as

univariate and joint influences.

3.5 Motivation

In this section, the application of this framework is demonstrated on a real-world

regression dataset and its point-wise prediction accuracy is compared against two

common methods, namely, support vector machine (SVM) and NN. The regression

dataset is referred to as the combined cycle power plant (CCPP) Tfekci (2014); Kaya

and Tufekci (2012); Lichman et al. (2013).

This dataset contains 9568 data points collected from a CCPP over 6 years. The

input features consist of hourly average ambient variables temperature (T), ambient

pressure (P), relative humidity (H) and exhaust vacuum (V) and the goal is to predict

the net hourly electrical energy output plant, PE in short. The input uncertainty

in this example comes from the noise in the sensors and data measurements. Hence,

ξ = {T, V, P,H}. The output PE is represented by the polynomial expansion as

expressed in Equation 3.16 and 3.17. For this data set, N = 4 and the polynomials

are expanded up to the 2nd order, i.e. d = 2. Hence, there are 15 polynomial terms,

i.e. M = 15.

82

1 10 19 28 37 46 55 64 73 82 91 100

Instances

420

430

440

450

460

470

480

490

500

P
E

 v
al

ue
s

predicted PE (aPCE) versus sample PE for 2nd order

Predicted PE (aPCE)
Sample PE

(a)

0 2 4 6 8 10 12

Error %

0

20

40

60

80

100

120

140

F
re

qu
en

cy

Test Error for the 2nd order

Mean = 0.74
Std = 0.59

(b)

Figure 3.4: (a) Sample PE Versus the Predicted PE with aPC for the First 100 Instances.

(b) The Frequency Histogram of the Test Error (%) for the 2nd Order Expansion. The

Maximum Error is Around 16 Standard Deviations Far From the Mean.

PE(T, V, P,H) =
15∑
i=1

ciΦi(T, V, P,H), (3.16)

PE(T, V, P,H) ≈ c0 + c1(T) + c2(V) + c3(P) + c4(H) + c5(T 2 − µ3T − 1)+

c6(V 2 − µ3V − 1) + c7(P 2 − µ3P − 1) + c8(H2 − µ3H − 1)+

c9(TV) + c10(TP) + c11(TH) + c12(V P) + c13(V H) + c14(PH)

(3.17)

Figure 3.4a illustrates the actual value of the PE from the dataset and the pre-

dicted value using this approach expanded up to the 2nd order.

Table 3.1 presents the regression errors of aPC, NN and SVM models in terms of

RMSE. In this experiment, the kernels used in the SVM are polynomials and the NN

model is a one layer network with 50 hidden units. The average RMSE of the aPC is

the same as NN and is smaller than that of the SVM model.

83

Table 3.1: RMSE for the Power Plant.

aPC NN SVM Tfekci (2014)

RMSE 4.02 4.02 4.8

The average point-wise prediction error as compared to the sample outputs is

less than 1%, using aPC. The p.d.f of PE is also estimated with MC simulations by

sufficiently sampling from ξ and evaluating the responses with the constructed aPC

model. This is illustrated in Figure 3.5. The evaluation of aPC, which are essentially

polynomials, is computationally inexpensive, hence the MC simulations. To measure

the distance between the sample p.d.f (fPE) and the estimated p.d.f (f̃PE), a common

method referred to as Kullback-Leibler divergence (KL) Kullback and Leibler (1951)

(also known as relative entropy) is employed as expressed in equation 3.18.

DKL(f̃ ||f) =
∑
x∈X

f̃(x)ln(
f̃(x)

f(x)
), (3.18)

In this experiment, since the true p.d.f is not known, the sample p.d.f is considered

as the ground truth. The DKL value for the p.d.fs illustrated in Figure 3.5 is 0.04,

which is close to 0. It should be noted that the methods employed in Tfekci (2014)

cannot efficiently provide the estimated p.d.f and a measure for UQ, in terms of

computation. This is evaluated more in-depth in Section 3.9.

The mean and variance of PE are also computed by evaluating equation A.14.

The computed mean and variance are 453.5 and 205.1, respectively while the sample

mean and variance are 454.3 and 291.2. The interval µ ± σ provided by the aPC

method is generally contained in the interval computed from the sample data.

Figure 3.6 illustrates the use of estimated mean and variance to detect outliers

during inference.. The dashed line and band demonstrate the estimated mean with

84

420 440 460 480 500 520

energy of PE (MWh)

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

f(
en

er
gy

)

Estimated pdf using aPCE
Sample pdf

Figure 3.5: The Bars Represent the Histogram Obtained from the Sample Power Plant

Energy and the Curve Shows the Estimated P.D.F of the Energy Using aPC. The KL

Divergence Value (dKl) Between the Two P.D.Fs Is .04, Which Is Close to 0.

one standard deviation. In this experiment, 200 samples are generated, out of which

143 are outliers, shown with cross-shape points. The remaining data shown in circles

are randomly selected from the original sample data. The outliers are generated by

randomly modifying one or more of the input variables to be sampled from outside of

the original sample data. In this experiment, with one standard deviation, the aPC

model can detect all the outliers, while misrepresenting only 0.05% of the original

samples as outliers.

An experiment is conducted to eliminate the input variables either individually

or jointly based on the computed total Sobol indices. The objective is to find the

largest set of input parameters that can be removed with negligible increase in the

test error and change in the estimated mean and variance. As there are four input

parameters in CCPP, {i1, i2, ..., is} in equation 3.14 correspond to {T, V, P,H}, re-

85

400

450

500

550

600

650

P
re

di
ct

ed
 P

E
 (

M
W

h)

Figure 3.6: Identifying Outliers. The Dashed Line and Band Demonstrate the Estimated

Mean with One Standard Deviation.

spectively. All the possible combinations of the Sobol indices are {ST , SV , SP , SH},

{STV , STP , STH , SV P , SV H , SPH}, {STV P , STV H , STPH , SV PH} and {STV PH}. The to-

tal Sobol indices for the input parameters {T, V, P,H} are expressed in Equations 3.19

- 3.22.

STT = ST + STV + STP + STH + STV P + STV H + STPH + STV PH = 0.902 (3.19)

STV = SV + STV + SV P + SV H + STV P + STV H + SV PH + STV PH = 0.070 (3.20)

STP = SP + STP + SV P + SPH + STV P + STPH + SV PH + STV PH = 0.008 (3.21)

STH = SH + STH + SV H + SPH + STV H + STPH + SV PH + STV PH = 0.020 (3.22)

Hence, the constructed model ranks the influence of the inputs on the variance of

PE as {P,H, V, T}, from lowest to highest. For example, in this dataset, P , which

has the lowest Sobol index can be eliminated with negligible impact on the accuracy

of the model. This increases the test error, estimated mean and variance, by 0.04%,

86

0.02%, and 1.4%, respectively.

3.6 Incremental Computations to Construct Higher Order Models

This section demonstrates that a constructed model for expansion order d can be

used to construct higher order models (e.g. d + 1). This is shown by incrementally

adding to the computation instead of recalculating everything. This allows a much

faster training time.

Let d be the order of expansion that the model is first constructed, and ξ =

{ξ1, ξ2, ..., ξN} be the set of N input random variables. As shown in equation A.13,

Y (d)(ξ) has M =
(
N+d
d

)
coefficients and multi-variate polynomial terms that include

all the polynomials from degree 0 to d.

Suppose the accuracy of Y (d)(ξ) is not sufficient and a higher order model needs

to be constructed which is expressed in equation 3.23.

Y (d+1)(ξ) =

(N+d+1
d+1)∑
i=1

c′iΦ
′
i(ξ), (3.23)

Φ′(ξ) consists of two concatenated vectors, i.e. [Φ(ξ)|Φ∗(ξ)], in which Φ∗(ξ) is the

additional multi-variate polynomials that need to be computed for order d + 1. As

there are
(
N+d+1
d+1

)
terms in Φ′(ξ) and M of which are in Φ(ξ), there are

(
N+d
d+1

)
terms

in Φ∗(ξ)).

As a concrete example, consider a system with two random variables, with N = 2

and ξ = {ξ1, ξ2}. Suppose Y (2)(ξ) needs to be constructed from its preceding model

Y (1)(ξ). Φ′(ξ) in Y (2)(ξ) has 6 terms and Φ(ξ) in Y (1)(ξ) has 3 polynomial terms.

Since the multi-variate polynomials are orthogonal to each other, to construct Φ′, the

3 multi-variate polynomials terms in Φ can be reused and an additional 3 terms in

Φ∗(ξ) need to be computed. This is shown as a vector in equation 3.24, where µ
(j)
i is

87

the ith moment of the jth variable.

Φ′(ξ) =

[
1, ξ0, ξ1︸ ︷︷ ︸

Φ(ξ)

∣∣∣∣ ξ2
0 − µ

(0)
3 ξ0 − 1, ξ0ξ1, ξ

2
1 − µ

(1)
3 ξ1 − 1︸ ︷︷ ︸

Φ∗(ξ)

]
(3.24)

The goal of the aPC model is to construct the polynomials in equations A.15 and

A.17 to form an orthonormal basis for arbitrary distributions. That being said, let

us briefly describe the orthogonal decomposition theorem. This theorem states that

a vector y in IRn can be written uniquely as in equation 3.25.

y = ŷ + z, (3.25)

where ŷ is in W , a subspace of IRn, and z is in W⊥. In fact, if {u1, ..., up} is any

orthogonal basis of W , then ŷ and z are as in equations 3.26 and 3.27.

ŷ =
y.u1

u1.u1

u1 + ...+
y.up
up.up

up, (3.26)

z = y − ŷ (3.27)

Vector ŷ is the orthogonal projection of y onto W as illustrated in figure 3.7.

Figure 3.7: The Orthogonal Projection of y into W .

It is shown in Oladyshkin and Nowak (2012) that any polynomial of degree k in

the aPC model is orthogonal to all lower-order polynomials. This is true for both

88

uni-variate polynomial P (k) and multi-variate polynomial Φ(k). Consequently, poly-

nomials of degree d + 1 and d are orthogonal to each other and belong to subspace

W⊥ and W , respectively. That said, Y (d+1)(ξ) can be written as a linear combination

of Y (d)(ξ) and the additional polynomial terms as shown in the orthogonal decompo-

sition theorem. This is expressed in equation 3.28. This concludes that to construct

a higher order model (e.g. d + 1), the set of polynomials terms that form the model

for only degree d+ 1 need to be additionally computed. The rest of the polynomials

can be directly taken from the precomputed model for order d.

Y (d+1)(ξ) =
M∑
i=1

ciΦi(ξ)︸ ︷︷ ︸
ŷ

+

(N+d+1
d+1)∑

j=M+1

c′jΦ
∗
j(ξ)︸ ︷︷ ︸

z

(3.28)

Y (d+1)(ξ) = Y (d)(ξ) +

(N+d+1
d+1)∑

j=M+1

c′jΦ
∗
j(ξ) (3.29)

To demonstrate the efficiency of the incremental computations, empirically, the

aPC model for the CCPP dataset is constructed for various order of expansions.

Figure 3.8 illustrates the speed-up that is achieved by incrementally adding to the

computations as opposed to recomputing all the polynomial terms from order 1. For

example, for d = 5, the execution time of the aPC model constructed from the 1st

order is 2.57X larger than the model only constructed the additional terms from order

4 to 5.

3.7 Extension to aPC for Classification Tasks

In the previous sections, the aPC method is discussed for regression tasks where

the outputs have continuous values and are solved using least squares as in Equa-

tion 3.4. This cost function cannot be employed for the classification tasks as the

89

1.00

1.38
1.66

1.88

2.57

0.0

1.0

2.0

3.0

1 2 3 4 5

Sp
ee

d-
up

 (X
)

Order of Expansion (d)

Figure 3.8: The Speed up Achieved by Incrementally Adding to the Computation.

This Is Shown up to the 5th Order. Greater Speed-up Is Achieved for Larger d.

outputs are bounded and discrete. Hence, we employ the loss functions used in logis-

tic regression in machine learning methods to extend the applicability of this approach

to tasks with discrete outputs. The cost function J(c) for binary classification, also

used in logistic regression, is presented in Equation 3.30.

J(c) = − 1

m
[
S∑
s=1

Y (obs)
s log(Ys(ξ)) + (1− Y (obs)

s)log(1− Ys(ξ))], (3.30)

where Ys(ξ) is the predicted output for sample s using aPC, Y
(obs)
s is its observed

output and c is the vector of model coefficients. The objective is to minimize the cost

function J with respect to c using algorithms such as gradient descent. For multi-

class classification, where the target outputs belong to more than two categories, the

one-vs-all method is used. Generally in the one-vs-all method, the classifier Y i(ξ) is

trained for each class i to predict the probability that Y i(ξ) = i. During inference,

given a new input, the output class is the one that maximizes Y i(ξ).

90

Compute
Coeffs

Compute
Coeffs

Compute
Coeffs

Training

...
...

Actual
Labels

Actual
Labels

Actual
Labels

...

...

...

Figure 3.9: The Proposed Training Procedure for Solving the Scalability Issue and

Applying aPC on Handwritten Digit Recognition. The Number of Partitions and the

Number of Pixels per Partition Are Denoted as m and n, Respectively. The Output

of This Procedure Is m Tuned Coefficients (C) Which Will Be Used for the Inference

Phase.

3.7.1 Address the Scalability Issue in Classification Tasks

One limitation of aPC is the difficulty in model construction with large number of

input parameters. This limitation leads to either a substantially high computational

cost or becomes infeasible to model. For example, consider constructing an aPC

model for the well-known handwritten digit dataset, referred to as MNIST LeCun

and Cortes (2010). The inputs are handwritten digit images of size 28 × 28 and the

objective is to detect the digits and assign them to their corresponding class labels.

The overall structure of this application is illustrated in Figure 3.11, in which the

computational model is typically replaced with a well-known NN model, referred to

as LeNet5 Lecun et al. (1998).

91

Inference

Test Image

...
...

...

...

...

Mode

...

Predicted
Label

Figure 3.10: The Proposed Inference Procedure for Predicting the Digit Label of a

given Test Image Using the Coefficients Computed in the Training Procedure.

The LeNet5 network consists of two convolutional and two pooling layers which

are followed by two fully connected layers and a classifier (i.e. softmax) as shown in

Figure 3.11. In the handwritten digit problem, the output of the softmax layer is a

10 dimensional vector of probabilities, in which the index of the highest probability

is selected as the output digit.

In real-world examples, the input images are typically noisy and the input pixels

belong to a stochastic domain. Hence, we consider all the input pixels (i.e. 784) to be

random variables. For the 1st order expansion,
(

784+1
1

)
= 785 polynomial terms need

to be constructed which is feasible. However, the first order is often not accurate.

Increasing the order of expansion increases the number of polynomial terms exponen-

tially. For example, for the 2nd and 3rd orders, around 308k and 80 million polynomial

terms need to be constructed, respectively. This incurs high computational cost and

memory footprint and is infeasible. Note that in this example, the input images are

smaller than many other applications which involve larger number of input variables,

92

Handwritten Digits/Letters

Computational
Model

Predicted Labels

4 2 3 5

Input Images

Architecture
of LeNet5

Figure 3.11: The Overall Structure of the Handwritten Digit/Letter Detection Problem

for the MNIST Dataset. Typically the Computational Model Is Replaced with LeNet5 as

It Has Demonstrated a High Accuracy Of 99.9%.

so the scalability issue holds for those applications as well.

To address this issue, this section proposes to partition the input images into

smaller groups of random variables with overlapping regions. The overall training

procedure is depicted in Figure 3.9. Similar to the sliding windows in the convolutional

neural networks, this method uses a fixed-size sliding window with a stride. The

training images are partitioned into smaller blocks. In Figure 3.9, the red, green and

blue boxes are shown as examples of such blocks .

The output of this step is m partitions with n pixels in each partition, denoted

as ξkj , where k ∈ [1, 2, ...,m] and j ∈ [1, 2, ..., n]. The next step is to compute the

sample moments of all the given training images for a given partition and construct

the multi-variate polynomials. This is denoted as Φk. Given Φk and the actual class

labels in the training dataset, the set of coefficients for each partition, denoted as

C(k), are trained using the one-vs-all method.

Figure 3.10 illustrates the proposed inference procedure which is used to predict

93

the digit label of a given test image. The partitioning on a given test image is per-

formed the same as in the training phase. After evaluating the Φk for the test image,

the prediction is performed by simply evaluating the expression in Equation 3.31 for

each partition.

Lk =
M∑
i=1

c
(k)
i Φ

(k)
i , (3.31)

where L is the predicted label. k and M denote the partition and number of polyno-

mial terms, respectively. The output of this step is an m dimensional vector consisting

of the labels predicted by all the m partitions. The mode (i.e. highest count) of that

vector is computed at the end to report the final digit label. As a concrete example,

let m = 10 and the output vector L = [2, 5, 2, 2, 5, 7, 1, 2, 2, 5] for a given test image.

Digit Label 2 appeared the most in the predicted output vector and hence is reported

as the final output.

3.8 A Computation Graph for aPC

This section turns the aPC method into an executable computation graph. In

addition, it explains the operations that can be parallelized for even faster execution

time. Figure 3.12 depicts the computation graph of aPC for training. The ovals

determine the inputs and outputs. The input to this graph is the normalized sample

data with zero mean and unit variance, ξ, given N and S as the number of input

variables and training samples, respectively. Each node in rectangular shape repre-

sents an operation with its output size presented below it. Every edge represents

the data generated by its source node. For example, the first node computes the

sample moments of every input variable as expressed in equation 3.8. The number of

moments that need to be computed for every input is twice the order of expansion d,

94

hence the dimension 2d× 1. Since there are N random variables, there are N edges

with each representing the moments vector for its corresponding input. Computing

the coefficients, C, enables global sensitivity analysis (GSA) (see sections 2.9 and

3.5), UQ and training error computation. If the training error is high, a higher order

model Y (d+1)(ξ) can be constructed with incremental computations as discussed in

section 3.6. The structure of this graph intuitively demonstrates the sequential and

parallel operations. All the nodes at one level can be executed simultaneously, while

the tasks from top to bottom are data dependent and are run in sequence.

3.9 Experimental Results

The proposed data-driven framework is evaluated on a range of tasks and datasets.

For regression, similar to the prior works Gal and Ghahramani (2016); Lakshmi-

narayanan et al. (2017), the regression benchmarks Hernández-Lobato and Adams

(2015) are considered. For classification, the framework is evaluated on MNIST Le-

Cun and Cortes (2010) and CIFAR-10 Krizhevsky (2009). In addition, the out-

of-distribution task for classification is addressed on MNIST/NotMNIST Lakshmi-

narayanan et al. (2017).

3.9.1 Regression Experiments

In these set of experiments for regression benchmarks, the proposed framework is

compared against the state-of-the-art methods for predictive uncertainty estimation

using neural networks. The same experimental setup as in Lakshminarayanan et al.

(2017); Gal and Ghahramani (2016) is used. For each dataset, a neural network with

one hidden layer consisting of 50 hidden units are constructed except the protein

dataset which is larger and contains 100 hidden units. Each dataset is split into 20

train-test folds except the protein dataset which uses 5 folds. The results collected

95

by the proposed framework are compared against MC dropout Gal and Ghahramani

(2016) and deep ensembles Lakshminarayanan et al. (2017) and reported in Table 3.2.

For the deep ensembles approach, five networks are used as reported in Lakshmi-

narayanan et al. (2017). Our method outperforms or is competitive with existing

methods in terms of RMSE.

Figure 3.13 depicts the normalized train time of our method along with MC

dropout and deep ensembles on the regression benchmarks. As compared to deep

ensembles, our method is orders of magnitude faster. As compared to MC dropout,

our method is on average 54X faster with the maximum speed up of 210X.

Figure 3.14 illustrates the fraction of train data used for training deep ensembles,

MC dropout and our method. To achieve the RMSE results reported in Table 3.2,

both deep ensembles and MC dropout need to use all the available training data.

However, our method requires limited train data to compute the coefficients of the

polynomials.

96

ξ1
(j), . . . ξS

(j),

 j ∈ [1, N]

Sample Moments
 Computation

(2d*1)

Alpha
 Construction

(M*N)

Computation of
 Uni-variate
 Basis Coeffs

((d+1)(d+2)/2)*1

 μ(1)

Construction of
 Uni-variate
 Basis Coeffs

((d+1)(d+2)/2)*1

 μ(N)

. . .

Construction of
 Uni-variate
 Basis Coeffs

((d+1)(d+2)/2)*1

 μ(2)

Multi-variate
 Basis

 Construction

(1*M)

 α

GSA

 ST
j, j ∈ [1, N]

 α

Uni-variate
 Basis

 Construction

(d+1)*1

 p(1)

Uni-variate
 Basis

 Construction

(d+1)*1

 p(N)

. . .

Uni-variate
 Basis

 Construction

(d+1)*1

 p(2)

P(1)(ξ) P(N)(ξ) P(2)(ξ)

Multi-variate
 Basis

 Evaluation

(S*M)

 φ(ξ)

Computation of
 Coeffs

(M*1)

 Φ(ξ)

Computation of
 the Output

(S*1)

 Φ(ξ)

 C

UQ
 μ ± σ

 C C

Training
 Error

 Y(d)(ξ)

 High
 Training

 Error

 Incremental
 Construction of

 Y(d+1)(ξ)

Input
 Elimination

Figure 3.12: Computation Graph of aPC for Training. The Inference Graph Has the

Same Operations Except the Computation of the Coeffs Node. Hence It Is Omitted

for Brevity.

97

Table 3.2: Comparative Results on Regression Benchmarks.

RMSE

Datasets MC Dropout Gal and Ghahramani (2016) Deep Ensembles Lakshminarayanan et al. (2017) This Work

Boston Housing 2.97±0.85 3.92±1.01 2.91± 0.67

Concrete Strength 5.23±0.53 6.03±0.47 5.22± 0.46

Energy Efficiency 1.66± 0.19 2.86±0.29 1.50±0.27

Kin8nm 0.10±0.00 0.09±0.00 0.09±0.00

Naval Propulsion Plant 0.01±0.00 0.00±0.00 0.00±0.00

Power Plant 4.02±0.18 4.09±0.16 4.02±0.16

Protein Structure 4.36±0.04 4.71±0.06 4.35±0.04

Wine Quality Red 0.62±0.04 0.64±0.04 0.63±0.03

Yacht Hydrodynamics 1.11±0.38 1.58±0.46 1.17±0.32

98

0.26
0.19

0.33

0.21 0.23 0.25 0.21
0.30

0.26

0.004 0.004 0.012 0.007 0.013 0.007 0.001 0.008 0.011
0

0.2

0.4

0.6

0.8

1

boston
housing

concrete energy kin8nm naval
propulsion

plant

power
plant

protein wine yacht

N
or

m
al

iz
ed

 T
ra

in
 T

im
e

Deep Ensembles MC Dropout This Work

Figure 3.13: The Normalized Train Time of This Work along with MC Dropout and Deep

Ensembles on the Regression Benchmarks.

3.9.2 Classification Experiments

For the classification tasks, the functionality of this work is demonstrated on

the well-known image classification datasets, MNIST LeCun and Cortes (2010) and

CIFAR-10 Krizhevsky (2009). In MNIST, the inputs images of size 28× 28 and the

objective is to detect the digits and assign them to their corresponding class labels.

The well-known NN model for this classification task is LeNet5 Lecun et al. (1998).

In CIFAR-10, there are 10 classes and the images are of size 32× 32.

We aim to replace the computational model (i.e. LeNet5), with our proposed

framework and compare its accuracy and performance. The main reason is due to

the fact that in real-world examples, the input images are typically noisy and the

input pixels belong to a stochastic domain. Since there is uncertainty in the inputs

(e.g. noise), it is important to estimate the response statistics as explained in the

preceding sections. Moreover, unlike NN models, this method does not require hyper-

parameter tuning such as deciding on the number of layers, number of hidden nodes,

99

0.39

0.1
0.14

0.01 0.02 0.01 0.003

0.15

0.82

0

0.2

0.4

0.6

0.8

1

boston
housing

concrete energy kin8nm naval
propulsion

plant

power
plant

protein wine yacht

Fr
ac

tio
n

of
 T

ra
in

 d
at

a
us

ed
 fo

r T
ra

in
in

g

Deep Ensembles MC Dropout This Work

Figure 3.14: The Fraction of Train Data Used for Training Deep Ensembles, MC Dropout

and This Work on the Regression Benchmarks.

etc and is expected to be computationally less expensive for uncertainty propagation

as opposed to its equivalent weight space sampling methods or ensemble methods.

For the classification task, the performance of our approach is evaluated on MNIST

datasets LeCun and Cortes (2010), which consists of 60k images in the train set and

10k in the test set. The images are of size 28× 28. The neural network used for deep

ensembles and MC dropout is LeNet5 Lecun et al. (1998). The accuracy of these

methods are reported in Table 3.3. In terms of final accuracy, our method achieves

comparable results as compared to MC dropout and deep ensembles. The reported

execution times are normalized CPU times.

Figure 3.15 and 3.16 compare the execution time and the amount of data used

for training in this work and the other two existing methods. This work runs 7.1X

and 5.7X faster for MNIST and CIFAR10, as compared to the fastest of the other

models, i.e. deep ensembles. The amount of data required for this work is 33% and

40% of the other models, for MNIST and CIFAR10, respectively. This work takes

longer to train as compared to MC Dropout. Since this network is using only one

100

Table 3.3: Comparative Results on Image Classification.

Accuracy %

Method MNIST CIFAR-10

Deep Ensembles 98.88 95.6

MC Dropout 98.19 95.2

This Work 98.30 94.9

layer of neurons, typically, it requires more neurons to be able to reach the same level

of accuracy.

0.93

0.05

0.17 0.13

0.33

0.0

0.3

0.5

0.8

1.0

train time inference time training data used

N
or

m
al

iz
ed

 V
al

ue
s

Deep Ensembles MC Dropout This work

Figure 3.15: Comparison Between the Execution Time and the Amount of Data Used for

Training in This Work and the Other Two Existing Methods For MNIST.

3.9.3 Uncertainty Evaluation: Test Examples from Known vs Unknown Classes

The uncertainty is evaluated on out-of-distribution test samples. In real-world

applications, when the test samples are not similar to the training datasets, the

model must show higher uncertainty. The model is first trained on MNIST dataset

and then tested on NotMNIST datasets. Figure 3.17 illustrates the percentage of the

NotMNIST images that are identified correctly as outliers, given various intervals.

101

0.92

0.03
0.15 0.16

0.40

0.0

0.3

0.5

0.8

1.0

train time inference time training data used

N
or

m
al

iz
ed

 V
al

ue
s

Deep Ensembles MC Dropout This work

Figure 3.16: Comparison Between the Execution Time and the Amount of Data Used for

Training in This Work and the Other Two Existing Methods For CIFAR-10.

The µ and σ are computed from the original model trained on the MNIST dataset.

As the interval becomes smaller, the number of correct detections increase.

5%

30%

55%

90%

0%

25%

50%

75%

100%

µ ± 4 σ µ ± 3 σ µ ± 2 σ µ ± 1 σ

Id
en

tif
yi

ng
 th

e
O

ut
lie

rs
 C

or
re

ct
ly

Interval

Figure 3.17: The Percentage of the NotMNIST Images That Are Identified Correctly

as Outliers, given Various Intervals.

3.10 Chapter Summary

Uncertainty quantification (UQ) has gained an increasing attention in many real-

world applications. UQ occurs in systems with limited knowledge about its properties

102

where the inputs and hence the system’s output are uncertain. This work develops

a robust framework for constructing data driven models for regression tasks. The

surrogate model that this work employs in the presence of input variability is referred

to as arbitrary polynomial chaos expansion. In addition to the point-wise prediction,

this framework can provide a measure for quantifying the uncertainty in the output.

This methodology is then extended to address the scalability issue in tasks with

large number of input variables. Moreover, it is extended for discrete outputs so

that it can be applied to classification tasks similar to neural network models. The

accuracy of this framework can be improved by constructing a higher order model.

This is shown by incrementally adding to the computation instead of recalculating

all the polynomial basis and the coefficients. This allows a much faster training.

This framework is evaluated on wide range of tasks including the regression and

classification benchmarks. This work achieves competitive results as compared to

the state-of-the-art network models in terms point-wise prediction. Moreover, this

framework provides additional properties, such as faster training with no parameter

tuning, the need for fewer training data to achieve the same level of accuracy, and

the sensitivity of the output with respect to the inputs that can help with reducing

the model complexity by eliminating the least significant inputs.

103

Chapter 4

USE CASE: POST-FABRICATION WEIGHT TUNING IN A BINARY

PERCEPTRON

4.1 Problem Background

Manufacturing variations in integrated circuits have become a significant concern

in nanoscale chip design, particularly at smaller process nodes Yu et al. (2014); Zhang

et al. (2015). At such nodes, ignoring intra-die variations, as is often done in corner-

based analysis, leads to highly pessimistic estimates of performance variables. In

general, a circuit under consideration is given in some form that represents an implicit

relation F (X, Y, ξ), where X, Y and ξ are the set of inputs, set of outputs and a set

of parameters that are subject to manufacturing variations. Each of these quantities

are assumed to be vectors of arbitrary dimensions.

Modeling intra-die variations means that each statistically varying parameter

within each component on a die must be represented by a distinct random vari-

able. This often results in an extremely large space of random variables. Each point

in that space represents a specific value of all the parameters, i.e., it corresponds

to an instance of the circuit. The implicit relation F (X, Y, ξ) is often given in the

form of a large number of equations. Simulation means that the equations have to

be solved to determine the response Y for a given input X and given values of ξ. To

obtain a distribution of a circuit’s response over the space of possible manufactured

outcomes, a large sample of the parameter space is generated and each corresponding

circuit instance is simulated. Sample moments and the empirical distribution function

are then computed from the simulated responses. This standard approach, referred

104

to as Monte Carlo simulation (MCS), becomes computationally prohibitive for most

practical circuits when considering intra-die and inter-variations.

An alternate approach is to replace the implicit relation F (X, Y, ξ) with an ex-

plicit function Ỹ (X, ξ) that approximates the circuit’s response. Then instead of

performing MCS based on F (X, Y, ξ), large number of samples of ξ would be gener-

ated and Ỹ (X, ξ) would be computed. The use of Ỹ (X, ξ) as a proxy for F (X, Y, ξ)

has been shown to result in several order of magnitude speed up over MCS. The

problem of constructing Ỹ (X, ξ) is not very different from how data-driven models

are constructed in the deterministic case. Given data pairs {(xi, yi), i = 1, 2, · · ·n},

which are assumed to be related by some unknown function, i.e. y = f(x), the task

is to select a function f from some space of continuous functions which will yield a

good approximation of yi given the xi (supervised learning), and which can be used

to predict values of y given values of x outside the given sample (inference). For this

problem to be well defined and tractable, the space of functions has to be restricted

to a given class (e.g. linear), elements of which are determined by a set of parame-

ters (e.g. coefficients). The model construction problem then becomes a problem of

determining the optimal set of parameters from the given data set (training).

In the stochastic case, the approach is somewhat similar. The random variables

Y (assume finite variance) can be expressed as an infinite series of multi-variate

orthogonal polynomials of all (infinite) orders, referred to as polynomial chaos (PC)

expansion Ghanem and Spanos (1991); Soize and Ghanem (2004); Augustin et al.

(2008). The meaning of such an expansion is that the mean and variance of the

expansion converge to the mean and variance of Y in limit. The (optimal) choice of the

orthogonal polynomial depends on the distribution of Y . Given a polynomial basis,

the coefficients of the series expansion are estimated using one of several methods

Ghanem and Spanos (1991); Babuška et al. (2010); Zhang et al. (2013). The use

105

of PC expansions to model manufacturing variations in microelectronic circuits have

demonstrated substantial speedups, often one to three orders of magnitude, when

compared to MCS Bhardwaj et al. (2008); Goel et al. (2009); Ghanta and Vrudhula

(2007); Vrudhula et al. (2006); Zhang et al. (2013, 2015); Ince et al. (2017). However,

due to the limited availability of data, lack of knowledge about the underlying physical

phenomena or simply mathematical convenience, these distributions of the individual

random variables are often assumed to be Gaussian, in which case the optimal bases

are Hermite polynomials.

The drawback of having to determine or assume a distribution function of the

random variables was eliminated by the method proposed by Oladyshkin et al. Ola-

dyshkin and Nowak (2012). In the method, referred to as arbitrary polynomial chaos

(aPC), the coefficients of the basis polynomials are given as explicit functions of the

moments of the random variables. In practice, sample moments are used, making the

method completely data-driven. This eliminates the need to assume any particular

distribution and also eliminates the computationally intensive task of solving integrals

for determining the coefficients.

4.2 Problem Statement and Novelty

The use of aPC in microelectronics circuits to model the impact of manufacturing

variations has primarily been aimed at the analysis and estimation of circuit yield

prior to fabrication. In this paper, we demonstrate another novel application of

aPC – namely, to tune parameters of individual instances of manufactured circuits

to correct failures and consequently maximize yield. While this scenario is quite

general, we demonstrate this approach on a recently reported mixed-signal circuit,

referred to as Flash Threshold Logic (FTL). This circuit performs the function of

a binary neuron Wagle et al. (2019) – i.e., computes a threshold function which is

106

the basic computation involved in binary neural networks Courbariaux and Bengio

(2016).

The FTL circuit in Wagle et al. (2019) is a mixed-signal circuit – its inputs and

outputs are binary, but it computes a threshold function in the analog domain. In an

FTL, the weights defining a threshold function are realized by threshold voltages of

flash transistors, which can be tuned after fabrication. The flash transistors effectively

control the conductivity of two input networks, and when the conductivity of one

network exceeds that of the other, the output is a logic one, otherwise it is a logic

zero. An FTL fails when the conductivities of the two networks are too close for the

sense amplifier to distinguish the difference or if they are reversed. Both are possible

due to manufacturing variations. The basic concept here is that when an FTL cell

fails, the threshold voltages of the flash transistors can be tuned to compensate for

the variations in the other devices to fix the failure. There are two main challenges

to address. First, the number of times a flash transistor’s threshold voltage can be

modified (i.e. number of write cycles) is limited. Exceeding that value will result in

a permanent failure. Second, the naive approach of iteratively assigning threshold

voltages and testing the circuit is not only prohibitively time consuming, it will likely

result in exceeding the maximum number of write cycles. This paper presents a novel

solution to these two problems, ensuring that all manufactured circuits that fail in

the manner described above can be corrected and made to function properly.

4.3 A Challenging Use Case

4.3.1 A Tunable Binary Perceptron

In this section we present a brief description of the circuit architecture of a bi-

nary neuron Wagle et al. (2019). Figure 4.1 shows the circuit, which is referred

107

to as flash threshold logic (FTL). It is a digital-analog-digital circuit that imple-

ments a special class of Boolean functions called threshold functions. A Boolean

function f(x1, x2, · · · , xn) is called a threshold function if there exist weights wi for

i = 1, 2, · · · , n and a threshold T 1 such that

f(x1, x2, · · ·xn) = 1 ↔
n∑
i=1

wixi ≥ T, (4.1)

where
∑

denotes the arithmetic sum. Thus, a threshold function can be represented

as (W,T) = [w1, w2, · · · , wn;T]. An example of a threshold function is f(a, b, c, d, e) =

ab ∨ acd ∨ bcd ∨ ace ∨ bce ∨ ade ∨ bde, with [w1, w2, w3, w4, x5;T] = [2, 2, 1, 1, 1; 4].

A 5-input FTL cell can implement all 117 threshold functions of 5 or fewer vari-

ables Muroga (1971).

The FTL circuit shown in Figure 4.1 consists of 4 main functional blocks – (1) a

sense amplifier (SA), (2) an input network consisting of a left input network (LIN), a

right input network (RIN), (3) an output latch (LA) and (4) the programming inter-

face. The programming interface will not be described here as details are available in

Wagle et al. (2019). The LIN and RIN each consist of n pairs of devices in parallel,

each pair consisting of a flash transistor in series with an nFET. The current through

each pair can be controlled by the (tunable) threshold voltage of the flash transistor

in that pair. The threshold voltages of the flash transistors serve a proxy for the

weights of a threshold function defined in Equation 4.1. Note that the weights and

threshold in Equation 4.1 are distributed across both the LIN and RIN.

The inputs (x1, x2, · · ·xn) are mapped to the gate inputs of the LIN (`1, `2, · · · , `n)

and RIN ((r1, r2, · · · , rn). Let GL and GR denote the conductivity of the LIN and

RIN, respectively. Their magnitudes depend on the values of the logic inputs, and the

physical parameters of all the devices. For a given threshold function, the threshold

voltages of the flash transistors ṼT = (V`0, V1, V2, · · · , Vn, Vr0) in the LIN and RIN are

1 W.L.O.G. the weights wi and threshold T can be integers Muroga (1971).

108

set in such a way as to guarantee that GL > GR for f(x1, x2, · · ·xn) = 1, and GL < GR

for f(x1, x2, · · ·xn) = 0. The operation of the circuit is as follows. When CLK = 0,

the circuit is in reset and the outputs are (N1 = 1, N2 = 1). This has no effect on the

output latch. Now suppose inputs are applied to the nFETs in the LIN and RIN, such

that GL > GR, and then CLK : 0 → 1. Then the outputs (N1, N2) = (0, 1). This

will set the output latch, indicating that the function evaluated to a 1. If GL < GR,

then (N1 = 1, N2 = 0), and the output latch will be reset. Note that the mapping

[W,T]→ ṼT is one-to-many. That is, different sets of threshold voltages of the flash

devices can implement the same threshold function. Moreover, the same function

implemented on two different FTLs on a chip might have to be programmed with

different threshold voltages depending on parasitics associated with each FTL cell.

Figure 4.1: The Architecture of the FTL Cell with Four Main Components: The Left Input

Network (LIN), the Right Input Network (RIN), a Sense Amplifier (SA) and an Output

Latch (LA). The LIN and RIN Consist of Two Sets of Inputs (`1, · · · , `n) and (r1, · · · , rn),

Respectively, With Each Input in Series with a Flash Transistor.

109

4.3.2 Sources of Variations in the FTL Circuit

In an ideal circuit, if GL > GR, the SA evaluates to 1, otherwise it evaluates to

0. Manufacturing variations can disrupt this relation. The condition GL = GR is

considered as an erroneous metastable state as shown in Figure 4.2. The robustness

of the implemented function is determined based on how close the GL and GR are

to the metastability line. Even if the GL and GR stay the same in the presence of

process variations, the variations in the SA can change the metastability line. The

FTL cell can be made to be robust to process, voltage and temperature variations by

tuning the threshold voltages of the flash transistors to compensate for the variations

in the other devices.

Figure 4.2: Transformation from Boolean Space to Conductivity Space; Hyperplane Gets

Converted into a Line.

4.3.3 Programming the FTL Circuit

In this section, we describe how the threshold voltages of the flash transistors

are determined to realize a given threshold function. That is, how the mapping

[W,T]→ ṼT is performed.

110

Given the truth table (TT) of a target function f [W,T], the modified Perceptron

Learning Algorithm (PLA), based on Rosenblatt (1958), is employed to determine

the set of V t(s) needed to implement f on an FTL. The operation of PLA is as

follows: First, all minterms are applied as inputs to the FTL, and the response of

the FTL is recorded. This response is compared to the value in TT . If there is a

mismatch in the response for even a single minterm (mi), then for all the ON inputs

in that minterm, the threshold voltages of the corresponding transistors are adjusted

by δ using Equation 4.2.

V k+1
i =

 V k
i − δmi mi ·W ≥ T

V k
i + δmi mi ·W < T.

(4.2)

After adjusting ṼT , the response of the FTL for each minterm is recorded again.

This process continues until the output response matches the TT . In cases where it is

not possible to satisfy the TT using the Vi alone, the PLA will resort to adjusting V`0

and Vr0 using the same principle as in Equation 4.2. V`0 and Vr0 are the transistors

corresponding to the threshold value T in Equation 4.1. The PLA can be used to

find the ṼT for any FTL circuit with process variations as they can be adjusted to

counter the imbalance in the evaluation of the SA. The result of the PLA is a set of

threshold voltages denoted by V tset. This will be referred to as a nominal V tset.

4.4 Post Fabrication Weight Tuning

4.4.1 The Issues of On-chip PLA

An ideal FTL cell can be programmed using the nominal V tset to implement a

target function. Consider several manufactured FTL circuits. At first, the nominal

V tset is applied to all these circuits. The output of some circuits match the intended

111

TT and are considered as passing instances. However, the remaining instances fail

due to process variations. To achieve a 100% yield, the weights of the failed instances

should be re-tuned and a new V tset needs to be generated for every instance using

PLA to counter the variations. From the device perspective, the flash transistors in

the FTL cells have limited write and erase cycles. Using the PLA on-chip to determine

the V tset would require wiping out the stored charges on the flash transistors several

times. This technique is impractical and should therefore be avoided.

It is necessary to determine a working V tset for an FTL without exceeding the

maximum permissible write-erase cycles of the flash. This can be performed by char-

acterizing several failing instances in the presence of process variations in simulation.

A new V tset can then be generated to counter the effect of variations, and applied

directly on the fabricated chip.

4.4.2 Alternate Solution to On-chip PLA

The most efficient way to program the FTL cells on a chip is to identify the

cause of failing instances in one write cycle and fix them using a working V tset in

the next write cycle. To use this approach, a database needs to be constructed with

two entries: the first entry would contain the types of failures and the second entry

contains the V tsets to fix those failures. Such a database needs to be generated using

a statistical methodology, such that it assures a 100% yield upon fabrication. Several

instances of the FTL cell need to be characterized, to thoroughly cover the potential

failures and the corresponding V tset to fix them. This database is called FabDB

(post-Fabrication DataBase).

The construction of FabDB starts with generating the nominal V tSet using PLA

for an FTL cell, assuming the nominal or average values of all the variational pa-

rameters. For example, the V tSet of a 5-input FTL cell consists of 6 V t values:

112

[V ta, V tb, V tc, V td, V te;V tT] that need to be programmed. Although most of the

FTL cells work with the nominal V tSet, some still fail due to process variations. A

failure is identified by observing the minterm(s), whose output does not match with

the output of the target threshold function. Specifically, a failure type is a unique

subset of minterms in a TT that fail. By observing the failure types, one can deter-

mine whether the effective weights of the transistors had increased or decreased due

to process variations, and consequently the cause of failures. For example, consider

a 5-input threshold function 4a+ b+ c+ d+ e >= 5, to be implemented on an FTL

cell. Assume that due to process variations, the effective weight of input a increases

to 1 after programming. The FTL cell would implement 5a+ b+ c+d+ e >= 5. The

minterm [a, b, c, d, e] = [10000] fails but the remaining minterms pass. The failure

type here is {10000}. Since GL > GR for minterm [10000], PLA decreases the weight

of a by increasing the V t of the flash transistor connected to a by δ volts, thereby

making GL < GR. Thus, we have to first identify all the potential failure types before

fabrication and the corresponding working V tSet. These will be stored in a database

called FabDB. Table 4.1 shows a sample FabDB for a 5-input FTL. Here, the V tSets

are generated by running PLA to fix different failure types. In Table 4.1, the failures

occur only due to the variations at input a.

After generating FabDB, the steps to program a fabricated FTL chip is as follows:

1. The FTL cells of the fabricated chip are programmed with the nominal V tSet.

2. The ones that fail, their failure types are extracted according to the target TT .

3. A new V tSet corresponding to each failure type is retrieved from FabDB and

used to program the failed instances again. This new V tSet makes the failed

instances to function correctly.

113

Table 4.1: An Example of FabDB That Consists of the Failure-types and Their Respective

V tSet. The Order of the Minterms Is [a,b,c,d,e]. For Example, the Failure Type 10000

Corresponds to the Threshold Function a Instead of ab+ ac+ ad+ ae.

Unique Failure Type New Vt Solution

[V ta, V tb, V tc, V td, V te;V tT]

{10000, 00011 , ... , 01111} {0.3, 0.5, 0.5, 0.5, 0.5; 0.4}

{10000} {0.4, 0.5, 0.5, 0.5, 0.5; 0.4}

{} (No failure) {0.5, 0.5, 0.5, 0.5, 0.5; 0.4}

4.4.3 Database Construction for FTL Programming

This section proposes an iterative procedure to construct FabDB. This is to

determine a group of V tSets needed to program all the potential FTL instances to

achieve 100% yield for a target function. Figure 4.3 depicts the structure of this

procedure that consists of two consecutive flows.

Flow-1: The flow shown in Figure 4.3 (left) starts with the nominal V tSet and several

FTL instances generated by varying the process parameters. It simulates the circuits

to store all the potential failure types that will be observed when a fabricated chip is

programmed with the nominal V tSet. The circuit instances and their corresponding

failure types are stored in the database CktFT (Circuit-to-Failure-Type). Table 4.2

shows an example of CktFT for three FTL instances. The unique failure types are

then extracted and stored in the first entry of FabDB. Additional information needed

to fix the failure types in FabDB is added to the database in Flow-2.

Flow-2: The flow shown in Figure 4.3 (right) determines the working V tSets for fixing

the unique failure-types extracted in Flow-1. The flow starts with the same nominal

V tSet and circuit instances used in Flow-1. The circuits are simulated to determine

114

Figure 4.3: Proposed Procedure for FabDB Construction. Flow-1 Simulates the Instances

Programmed with the Nominal V tSet and Generates the Failure Types. This is Stored in

CktFT . The Unique Failure Types are Stored in the First Entry of FabDB. Flow-2 Uses

a Combination of Circuit Simulation and PLA to Find a Working V tSets for the Unique

Failure Types Which Is Stored the Second Entry of FabDB.

115

Table 4.2: An Example of CktFT Database for Three Instances of a 5-input FTL and

Their Corresponding Failure Types.

FTL Instances Failure Types

Instance-1 {10000, 00011 , ... , 01111}

Instance-2 {10000}

Instance-3 {} (No Failure)

whether their output responses match the intended TT . If a V tSet makes some/all of

the failed instances to function correctly, it is stored in the second entry of FabDB

as a solution to the unique failure type that is fixed the most. To find the working

V tSets for the remaining failed instances, the most failed minterm is extracted from

the output response. PLA makes appropriate modifications (see Section 4.3.3) and

generates a new V tSet. This procedure is repeated until all the failed instances pass

and all the unique failure types have a working V tSet. At the end this flow, FabDB

can be used to program the FTL cells in a fabricated chip and achieve a 100% yield.

This is performed by observing the failure type of a fabricated cell and program it by

applying a corresponding working V tSet from FabDB.

This procedure is significantly useful for fine-tuning the weights after fabrication.

However, using transient HSPICE for the simulations in both the flows is compute-

intensive and impractical as it needs to be repeated thousands of times. Next section

proposes a significantly smaller and faster simulator to replace HSPICE.

4.5 The Proposed Stochastic Simulator

This section describes an stochastic simulator based on the aPC method Ola-

dyshkin and Nowak (2012) discussed in Section 3.4. Replacing HSPICE with the

116

stochastic simulator not only makes the construction of FabDB feasible but also ex-

pedites the procedure. The variations of the process parameters are first extracted

from the TSMC model. One circuit instance is equivalent to one set of variations

applied on the average process parameters. The stochastic simulator receives the

variations in these parameters and produces the output voltage of node Q in the FTL

cell.

As a concrete example, consider a transistor with two process parameter, ξ1 and

ξ2 that represent L and W. The coefficients of the 0th and 1st order polynomials for

each variable is expressed in Equation 4.3. The second order uni-variate polynomials

whose coefficients are functions of the moments (µ) are expressed in Equation 4.4.

p
(2)
0 = −1, p

(2)
1 = −µ3, p

(2)
2 = 1 (4.3)

P (0)(ξ) = 1, P (1)(ξ) = ξ, P (2)(ξ) = ξ2 − µ3ξ − 1 (4.4)

The multivariate polynomial basis for a 2nd order model are obtained by taking

the cross product of the univariate polynomials as shown in Equation 4.5. There are

six basis polynomials and six unknown coefficients (ci), which are solved using least

squares.

Ψ(ξ1, ξ2) = {1, ξ1, ξ2, ξ1ξ2, ξ
2
1 − µ

(L)
3 ξ1 − 1, ξ2

2 − µ
(W)
3 ξ2 − 1} (4.5)

VQ(ξ) =

(N+d
d)∑
i=1

ciΨi(ξ). (4.6)

In the FTL cell, ξ = [V t1,W1, L1, ..., V tn,Wn, Ln] for n transistors. The voltage

of node Q is modeled using Equation 4.6, where N is the total number of parameters

117

Figure 4.4: Output Voltage of a 5-input FTL Instance Simulated with the Stochastic Sim-

ulator and HSPICE. The Target Function Is [4,1,1,1,1;5]. The Voltages Are Then Thresh-

olded to 0 and 1 to Generate The TT .

(i.e. n × 3) and d is the order of the polynomial expansion. The predicted voltages

are then thresholded to generate the corresponding TT of the target function.

Figure 4.4 illustrates an example of an FTL instance simulated by both the

stochastic simulator and HSPICE to generate VQ. The following observations fur-

ther simplify and enhance the accuracy of the simulator.

Observation 1: During evaluation phase, the SA of an FTL compares the parameters

GL and GR. Hence, the functional correctness of an FTL cell depends only on these

parameters and the position of the metastability line in the SA, and not on the latch

transistors. When FTL finishes its evaluation, voltage at N2 and Q are equal. Hence,

the parameters of the latch transistors can be omitted to simplify the simulator.

Observation 2: The Tox variations (δTox) in the TSMC model were three orders of

magnitude smaller than that of the other parameters. It was observed that δTox was

adding noise to the constructed model. Thus, the prediction accuracy was further

improved by 8% by omitting Tox from ξ.

Observation 3: The nominal V tSet is intended to implement a single threshold func-

118

tion on an FTL cell with average process variations. However, the process variations

can cause the FTL instances to implement a varying set of threshold functions. It

was observed that the typical size of the dominant functions in this function set was

four. In the example shown in Figure 4.5, the nominal V tSet for the target function

[4,1,1,1,1;5] produced a distribution of threshold functions over several FTL instances.

Four functions including the target dominate the set.

Based on the above observations, the variations in L, W and V t of the remaining

30 transistors are modeled in the stochastic simulator leading to a total of 90 random

variables. Based on empirical evaluation, the 2nd order model coefficients produce

the best prediction accuracy. To compute the coefficients (ci) using least squares, the

number of samples need to be slightly more than the number of coefficients. Thus,

8000 samples were used for model construction for
(

92
2

)
coefficients. Computation

of the ci is a one time cost and takes negligible time. Constructing the model by

taking the majority of the samples from the dominant functions improves the accuracy

as it removes the noise from the model. The evaluation of the simulator on the

remaining circuits which were not part of the model construction showed an extra

10% improvement in the accuracy.

4.6 Experimental Results

4.6.1 Experimental Setup

In the conventional PLA, HSPICE is used to simulate the FTL cell repeatedly to

find a working V tset. Although HSPICE predicts the output response accurately, it

requires a large amount of memory and is compute-intensive. Moreover, for FabDB

construction, using HSPICE is not feasible due to thousands of simulations. The pro-

posed stochastic simulator is capable of reducing the dependency on HSPICE without

119

Figure 4.5: Example Distribution of Threshold Functions When the Instances Were Pro-

grammed with the Nominal V tSet For the Target Function [4,1,1,1,1;5]. The Four Most

Frequent Functions Are Used for Model Construction. The Model Is Evaluated on the

Remaining Circuit Instances. This Strategy Boosts the Accuracy by an Extra 10%.

loss of accuracy, and is significantly faster. To demonstrate these advantages, PLA-

based experiments were set up using TSMC 40nm LP Technology. The PVT corner

setting was [P, V, T] = [TT, 0.9V, 25◦C]. The 5-input threshold function [4,1,1,1,1;5]

was set as the target function. It contains inputs of equal and unequal weights and

implements a sophisticated threshold function. These experiments can be extended

to implement other threshold functions as well.

4.6.2 Results

1) Stochastic Simulator vs. HSPICE: In this experiment, PLA is used to

find the working V tSet for 100 FTL cell instances. The stochastic simulator is used

for rapid execution of the PLA iterations. It then uses HSPICE in its final iterations

before converging to the working V tSet. This is to maintain the reliability and accu-

racy of the PLA. The speed up is computed based on the number of iterations when

120

HSPICE is used without the stochastic simulator, over the number of iterations re-

quired with the stochastic simulator. Note that the reported speed-up is based on the

required number of HSPICE iterations and is machine-independent. Figure 4.6 shows

the speed up achieved by employing the stochastic simulator and saving HSPICE it-

erations. This experiment is further summarized in Table 4.3.

Figure 4.6: The Speed up Achieved by Employing the Stochastic Simulator to Reduce the

HSPICE Iterations in PLA. Average Speedup of 8.3x Is Achieved with the Maximum Being

56.5X.

Table 4.3: The Number of Saved HSPICE Iterations and the Speed up Achieved by Em-

ploying the Stochastic Simulator. This Experiment Is Performed on 100 Circuit Instances

to Find Their Working V tsets.

Max Min Average

Saved HSPICE Iterations 222 -9 24.5

Speed-up (X) 56.5 0.8 8.3

121

To compare the execution time of the stochastic simulator against HSPICE, sets of

parallel FTL simulations were run on the same machine. Figure 4.7 shows more than

three orders of magnitude improvement when parallel simulations are performed using

the stochastic simulator. Due to the memory limitations of the machine, simulating

more than 50 parallel circuits in HSPICE was not possible. Additional HSPICE

runs would need to be grouped and scheduled sequentially. However, the stochastic

simulator was able to handle several thousands of parallel runs in negligible time.

Figure 4.7: The Execution Time (Seconds) of Parallel Circuits Simulated in Both HSPICE

and the Stochastic Simulator on the Same Machine.

2) Stochastic Simulator vs. HSPICE for constructing FabDB: An exper-

iment is conducted to construct FabDB for 1000 circuits using Flow-1 and Flow-2.

This was not possible using HSPICE alone. However, with the stochastic simu-

lator’s speed, simplicity and negligible memory requirements, several iterations of

1000-circuit simulations are feasible even on a low-end machine. At first, in Flow-1,

all the circuits were simulated using the stochastic simulator to update CktFT and

the first column of FabDB. The number of unique failure types were found to be

104. Then, the procedure in Flow-2 was followed to simulate the failed instances,

122

find a working V tset for each of them, and update the second column of FabDB,

accordingly. To maintain the accuracy, the V tsets in FabDB is further fine-tuned

with HSPICE. This is done by extracting an FTL instance and its V tSet from CktFT

and FabDB, respectively. Using these as the starting point, an HSPICE-based PLA

is used to generate a new fine-tuned V tSet. This new V tSet is updated in the second

column of FabDB as a solution for that failure type. Figure 4.8 illustrates the speed

up achieved constructing the FabDB with no loss of accuracy.

Figure 4.8: The Speed up Achieved by Employing the Stochastic Simulator to Reduce the

HSPICE Iterations For FabDB Construction. Average Speedup of 6.1x Is Achieved with

the Maximum Being 37x. Constructing FabDB Using Only HSPICE Is Impractical Due to

the Several Simulations Required to Generate the Failure Types.

4.7 Chapter Summary

This paper presents a novel statistical methodology for programming a flash-based

binary perceptron (called FTL cell) after fabrication. In the presence of process vari-

ations, to achieve a 100% yield, the weights of the failed cells can be tuned using

123

the perceptron learning algorithm. Since this is impractical due to limited number

of write and erase cycles in flash, the proposed methodology generates a database to

counter the effect of process variations. The procedure to generate such a database

requires thousands of FTL simulations, which is extremely compute intensive. A

stochastic simulator was designed based on an extension to polynomial chaos expan-

sion to handle such an extreme computation load, which is otherwise infeasible using

HSPICE. The simulator is an extension of the Polynomial Chaos Expansion which

models the intra-die variations of an FTL. Due to the high number of device param-

eters and dimensionality of the problem, thorough exploration of the parameters and

empirical experiments were conducted to extract the important parameters without

sacrificing the accuracy of the simulator. The results demonstrate that the stochastic

simulator can reduce the dependency on the HSPICE for weight tuning without loss

of accuracy while achieving a speedup of 56.5X when compared with HSPICE.

124

Chapter 5

CONCLUSION

To evaluate the design objectives and constraints of many engineering problems,

extensive simulations need to be performed. More often than not, due to the com-

plexity of the system model (M), these simulations can be expensive in terms of

computation time or even infeasible to perform. One approach to overcome this

issue is to construct a surrogate model (M̃), which is an approximation of the orig-

inal model (M) that mimics the behavior of M. The focus of this work is on the

data-driven or black-box surrogate models, in which empirical approximations of the

output are performed given the input parameters. Some of the examples are Gaussian

processes, neural networks and polynomial chaos expansions. In the broad field of

machine learning (ML), recently artificial neural networks (NN) have re-emerged as a

popular method for constructing data-driven surrogate models. Although NN models

have achieved excellent accuracy and are used in a wide variety of applications, they

have their own challenges. In this work, we address two common challenges, namely,

the need for: (1) hardware acceleration and (2) uncertainty quantification (UQ) in

the presence of input variability.

The high demand in the inference phase of deep NN models in both the cloud

servers and edge devices calls for the design of low power custom hardware acceler-

ators. The first part of this work describes the design of an energy-efficient LSTM

accelerator, referred to as ELSA. The overarching goal of this work is to aggressively

reduce the power consumption and area of the LSTM components using approximate

computing, and then use architectural level techniques to boost the performance.

First, we design and employ low power and compact computation units for the LSTM.

125

Some of these modules use approximate calculations, which consume much less power

than conventional implementations but incur a high execution time penalty. Second,

to recover the throughput loss and achieve higher energy efficiency, we develop effi-

cient scheduling techniques that include overlapping of the computations at multiple

levels – from the lowest level modules up to the application level. Our proposed design

was prototyped on a Xilinx FPGA and then synthesized and placed and routed in

65nm CMOS technology as an ASIC. The results demonstrate that ELSA is 1.2X and

3.6X higher energy-efficient and area-efficient, respectively than the baseline LSTM.

Although deep NN models are increasingly being deployed in safety-critical appli-

cations, the reported successes hide a severe threat–the lack of an accurate measure of

uncertainty associated with the prediction. Quantifying the uncertainty in a predic-

tion has several practical uses: handing over the control to a human or transitioning

to a safe mode by an autonomous vehicle or a robot, suggesting further analysis in

medical diagnosis, etc. The second part of this work aims to develop a robust frame-

work based on an alternate data-driven surrogate model referred to as polynomial

chaos expansion (PCE) for addressing uncertainty quantification (UQ). In contrast

to many existing approaches, no assumptions (e.g., Gaussian processes or prior dis-

tributions on the parameters, etc) are made on the elements of the function space

and the UQ is a function of the expansion coefficients. In addition, the sensitivity of

the model output with respect to any subset of the input variables can be computed

analytically by post-processing the PCE coefficients. This provides a systematic and

incremental method to pruning or changing the order of the model. The proposed

method for UQ is applied on several real-world applications from different domains

and is extended for classification tasks as well.

126

REFERENCES

Albericio, J., A. Delmás, P. Judd, S. Sharify, G. O’Leary, R. Genov and A. Moshovos,
“Bit-pragmatic deep neural network computing”, in “Proceedings of the 50th An-
nual IEEE/ACM International Symposium on Microarchitecture”, MICRO-50 ’17,
pp. 382–394 (ACM, New York, NY, USA, 2017), URL http://doi.acm.org/10.
1145/3123939.3123982.

Amodei, D. and D. Hernandez, “Openai”, URL https://openai.com/blog/
ai-and-compute/ (2018).

Anwar, S., K. Hwang and W. Sung, “Structured pruning of deep convolutional neural
networks”, J. Emerg. Technol. Comput. Syst. 13, 3, URL https://doi.org/10.
1145/3005348 (2017).

Archer, G. E. B., A. Saltelli and I. M. Sobol, “Sensitivity measures,anova-like tech-
niques and the use of bootstrap”, Journal of Statistical Computation and Simula-
tion 58, 2, 99–120, URL https://doi.org/10.1080/00949659708811825 (1997).

Asher, M. J., B. F. W. Croke, A. J. Jakeman and L. J. M. Peeters, “A review of
surrogate models and their application to groundwater modeling”, Water Resources
Research 51, 8, 5957–5973, URL https://agupubs.onlinelibrary.wiley.com/
doi/abs/10.1002/2015WR016967 (2015).

Augustin, F., A.Gilg, M. Paffrath, P. Rentrop and U. Wever, “Polynomial chaos
for the approximation of uncertainties: Chances and limits”, European Journal of
Applied Mathematics 19, 149–190 (2008).

Azari, E. and S. Vrudhula, “An energy-efficient reconfigurable lstm accelerator for
natural language processing”, in “2019 IEEE International Conference on Big Data
(Big Data)”, pp. 4450–4459 (2019).

Azari, E. and S. Vrudhula, “Elsa: A throughput-optimized design of an lstm accel-
erator for energy-constrained devices”, ACM Trans. Embed. Comput. Syst. 19, 1,
URL https://doi.org/10.1145/3366634 (2020).

Babuška, I., F. Nobile and R. Tempone, “A stochastic collocation method for elliptic
partial differential equations with random input data”, SIAM Rev. 52, 2, 317–355,
URL http://dx.doi.org/10.1137/100786356 (2010).

Beluch, W. H., T. Genewein, A. Nurnberger and J. M. Kohler, “The power of ensem-
bles for active learning in image classification”, in “2018 IEEE/CVF Conference
on Computer Vision and Pattern Recognition”, pp. 9368–9377 (2018).

Betz, V. and J. Rose, “VPR: a new packing, placement and routing tool for fpga
research”, in “Field-Programmable Logic and Applications”, edited by W. Luk,
P. Y. K. Cheung and M. Glesner, pp. 213–222 (Springer Berlin Heidelberg, Berlin,
Heidelberg, 1997).

127

Bhardwaj, S., S. Vrudhula and A. Goel, “A unified approach for chip statistical timing
and leakage analysis of nanoscale circuits considering intradie process variations”,
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
27, 10, 1812–1825 (2008).

Blundell, C., J. Cornebise, K. Kavukcuoglu and D. Wierstra, “Weight uncertainty
in neural networks”, in “Proceedings of the 32nd International Conference on In-
ternational Conference on Machine Learning - Volume 37”, ICML’15, p. 16131622
(JMLR.org, 2015).

Brynjolfsson, E. and A. Mcafee, “The business of articifial intelligence”, URL http:
//mlr.cs.umass.edu/ml/ (2017).

Bucila, C., R. Caruana and A. Niculescu-Mizil, “Model compression”, in “Proceedings
of the 12th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining”, KDD 06, p. 535541 (Association for Computing Machinery, New
York, NY, USA, 2006), URL https://doi.org/10.1145/1150402.1150464.

Cameron, R. H. and W. T. Martin, “The orthogonal development of non-linear func-
tionals in series of fourier-hermite functionals”, Annals of Mathematics 48, 2, 385–
392, URL http://www.jstor.org/stable/1969178 (1947).

Cao, S., C. Zhang, Z. Yao, W. Xiao, L. Nie, D. Zhan, Y. Liu, M. Wu and
L. Zhang, “Efficient and effective sparse lstm on fpga with bank-balanced spar-
sity”, in “Proceedings of the 2019 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays”, FPGA ’19, pp. 63–72 (ACM, New York, NY, USA,
2019), URL http://doi.acm.org/10.1145/3289602.3293898.

Chang, A. X. M. and E. Culurciello, “Hardware accelerators for recurrent neural net-
works on fpga”, in “2017 IEEE International Symposium on Circuits and Systems
(ISCAS)”, pp. 1–4 (2017).

Chang, A. X. M., B. Martini and E. Culurciello, “Recurrent neural networks hardware
implementation on FPGA”, CoRR URL http://arxiv.org/abs/1511.05552
(2015).

ChangWu Huang, B. R., Abdelkhalak El Hami, “Overview of structural reliability
analysis methods part i: Local reliability methods”, Uncertainties and Reliability
of Multiphysical Systems 1, Optimization and Reliability (2017).

Cho, K., B. van Merriënboer, D. Bahdanau and Y. Bengio, “On the properties of neu-
ral machine translation: Encoder–decoder approaches”, in “Proceedings of SSST-8,
Eighth Workshop on Syntax, Semantics and Structure in Statistical Translation”,
pp. 103–111 (Association for Computational Linguistics, Doha, Qatar, 2014), URL
https://www.aclweb.org/anthology/W14-4012.

Choukroun, Y., E. Kravchik, F. Yang and P. Kisilev, “Low-bit quantization of neural
networks for efficient inference”, (2019).

128

Conti, F., L. Cavigelli, G. Paulin, I. Susmelj and L. Benini, “Chipmunk: A systolically
scalable 0.9 mm2, 3.08gop/s/mw @ 1.2 mw accelerator for near-sensor recurrent
neural network inference”, in “2018 IEEE Custom Integrated Circuits Conference
(CICC)”, pp. 1–4 (2018).

Courbariaux, M. and Y. Bengio, “Binarynet: Training deep neural networks with
weights and activations constrained to +1 or -1”, CoRR abs/1602.02830, URL
http://arxiv.org/abs/1602.02830 (2016).

Damianou, A. C. and N. D. Lawrence, “Deep gaussian processes”, (2012).

Dario Amodei et al., “Deep speech 2: End-to-end speech recognition in english and
mandarin”, in “Proceedings of the 33rd International Conference on International
Conference on Machine Learning - Volume 48”, ICML’16, pp. 173–182 (JMLR.org,
2016), URL http://dl.acm.org/citation.cfm?id=3045390.3045410.

Das, S. and S. Han, “Neuraltalk on embedded system and GPU-accelerated RNN”,
(2015).

Devlin, J., M.-W. Chang, K. Lee and K. Toutanova, “Bert: Pre-training of deep
bidirectional transformers for language understanding”, (2018).

Eldred, M. and J. Burkardt, “Comparison of non-intrusive polynomial chaos and
stochastic collocation methods for uncertainty quantification”, in “47th AIAA
Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Ex-
position”, (2012), URL https://arc.aiaa.org/doi/abs/10.2514/6.2009-976.

Ernst, O. G., A. Mugler, H.-J. Starkloff and E. Ullmann, “On the convergence of
generalized polynomial chaos expansions”, ESAIM: Mathematical Modelling and
Numerical Analysis 46, 2, 317339 (2012).

Ferreira, J. C. and J. Fonseca, “An fpga implementation of a long short-term memory
neural network”, in “2016 International Conference on ReConFigurable Computing
and FPGAs (ReConFig)”, pp. 1–8 (2016).

Fowers, J., K. Ovtcharov, M. Papamichael, T. Massengill, M. Liu, D. Lo, S. Alka-
lay, M. Haselman, L. Adams, M. Ghandi, S. Heil, P. Patel, A. Sapek, G. Weisz,
L. Woods, S. Lanka, S. K. Reinhardt, A. M. Caulfield, E. S. Chung and D. Burger,
“A configurable cloud-scale dnn processor for real-time ai”, in “Proceedings of the
45th Annual International Symposium on Computer Architecture”, ISCA ’18, pp.
1–14 (IEEE Press, Piscataway, NJ, USA, 2018), URL https://doi.org/10.1109/
ISCA.2018.00012.

Gal, Y. and Z. Ghahramani, “Dropout as a bayesian approximation: Representing
model uncertainty in deep learning”, in “Proceedings of the 33rd International Con-
ference on International Conference on Machine Learning - Volume 48”, ICML16,
p. 10501059 (JMLR.org, 2016).

Ghahramani, Z., “Probabilistic machine learning and artificial intelligence”, Nature
521, 7553, 452–459, URL https://www.ncbi.nlm.nih.gov/pubmed/26017444/,
on Probabilistic models (2015).

129

Ghanem, R. and P. Spanos, Stochastic Finite Elements: A Spectral Approach (1991).

Ghanta, P. and S. Vrudhula, “Analysis of power supply noise in the presence of process
variations”, IEEE Design & Test of Computers 24, 3, 256–266 (2007).

Goel, A., S. Vrudhula, F. Taraporevala and P. Ghanta, “Statistical timing models for
large macro cells and IP blocks considering process variations”, IEEE Transactions
on Semiconductor Manufacturing 22, 1, 3–11 (2009).

Graves, A., “Practical variational inference for neural networks”, in “Ad-
vances in Neural Information Processing Systems”, edited by J. Shawe-Taylor,
R. Zemel, P. Bartlett, F. Pereira and K. Q. Weinberger, vol. 24 (Cur-
ran Associates, Inc., 2011), URL proceedings.neurips.cc/paper/2011/file/
7eb3c8be3d411e8ebfab08eba5f49632-Paper.pdf.

Graves, A., Supervised sequence labelling with recurrent neural networks, vol. 385
(Springer, 2012).

Graves, A. and J. Schmidhuber, “Framewise phoneme classification with bidirec-
tional LSTM and other neural network architectures”, Neural Networks 18, 602–
610 (2005).

Guan, Y., H. Liang, N. Xu, W. Wang, S. Shi, X. Chen, G. Sun, W. Zhang and
J. Cong, “Fp-dnn: An automated framework for mapping deep neural networks
onto fpgas with rtl-hls hybrid templates”, in “2017 IEEE 25th Annual International
Symposium on Field-Programmable Custom Computing Machines (FCCM)”, pp.
152–159 (2017a).

Guan, Y., Z. Yuan, G. Sun and J. Cong, “Fpga-based accelerator for long short-term
memory recurrent neural networks”, in “2017 22nd Asia and South Pacific Design
Automation Conference (ASP-DAC)”, pp. 629–634 (2017b).

Han, S., J. Kang, H. Mao, Y. Hu, X. Li, Y. Li, D. Xie, H. Luo, S. Yao, Y. Wang,
H. Yang and W. B. J. Dally, “Ese: Efficient speech recognition engine with sparse
lstm on fpga”, in “Proceedings of the 2017 ACM/SIGDA International Symposium
on Field-Programmable Gate Arrays”, FPGA ’17, pp. 75–84 (ACM, New York,
NY, USA, 2017), URL http://doi.acm.org/10.1145/3020078.3021745.

Han, S., H. Mao and W. J. Dally, “Deep compression: Compressing deep neural
network with pruning, trained quantization and huffman coding”, in “4th Interna-
tional Conference on Learning Representations, ICLR 2016, San Juan, Puerto Rico,
May 2-4, 2016, Conference Track Proceedings”, edited by Y. Bengio and Y. LeCun
(2016), URL http://arxiv.org/abs/1510.00149.

Han, S., J. Pool, J. Tran and W. J. Dally, “Learning both weights and connections
for efficient neural networks”, in “Proceedings of the 28th International Confer-
ence on Neural Information Processing Systems - Volume 1”, NIPS’15 (MIT Press,
Cambridge, MA, USA, 2015).

HASTINGS, W. K., “Monte Carlo sampling methods using Markov chains and their
applications”, Biometrika 57, 1, 97–109 (1970).

130

Hazelwood, K., S. Bird, D. Brooks, S. Chintala, U. Diril, D. Dzhulgakov, M. Fawzy,
B. Jia, Y. Jia, A. Kalro, J. Law, K. Lee, J. Lu, P. Noordhuis, M. Smelyanskiy,
L. Xiong and X. Wang, “Applied machine learning at facebook: A datacenter
infrastructure perspective”, in “2018 IEEE International Symposium on High Per-
formance Computer Architecture (HPCA)”, pp. 620–629 (2018).

He, K., X. Zhang, S. Ren and J. Sun, “Deep residual learning for image recognition”,
in “2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)”,
pp. 770–778 (2016).

Hernández-Lobato, J. M. and R. P. Adams, “Probabilistic backpropagation for scal-
able learning of bayesian neural networks”, in “Proceedings of the 32nd Interna-
tional Conference on International Conference on Machine Learning - Volume 37”,
ICML’15, p. 18611869 (JMLR.org, 2015).

Hinton, G., O. Vinyals and J. Dean, “Distilling the knowledge in a neural network”,
in “NIPS Deep Learning and Representation Learning Workshop”, (2015), URL
http://arxiv.org/abs/1503.02531.

Hinton, G. E. and D. van Camp, “Keeping the neural networks simple by mini-
mizing the description length of the weights”, in “Proceedings of the Sixth An-
nual Conference on Computational Learning Theory”, COLT ’93, p. 513 (As-
sociation for Computing Machinery, New York, NY, USA, 1993), URL https:
//doi.org/10.1145/168304.168306.

Hochreiter, S., Y. Bengio, P. Frasconi and J. Schmidhuber, “Gradient flow in recurrent
nets: the difficulty of learning long-term dependencies”, in “A Field Guide to
Dynamical Recurrent Neural Networks”, (2001).

Hochreiter, S. and J. Schmidhuber, “Long short-term memory”, Neural Comput. 9,
8, 1735–1780, URL http://dx.doi.org/10.1162/neco.1997.9.8.1735 (1997).

Hu, X., R. G. Harber and S. C. Bass, “Expanding the range of convergence of the
cordic algorithm”, IEEE Trans. Comput. 40, 1, 13–21, URL https://doi.org/
10.1109/12.67316 (1991).

Hwang, K. and W. Sung, “Single stream parallelization of generalized lstm-like rnns
on a gpu”, in “2015 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP)”, pp. 1047–1051 (2015).

Ince, M., S. Ozev and S. Vrudhula, “Statistical Library Characterization Using Arbi-
trary Polynomial Chaos”, in “Proc. IEEE Latin American Symp. on Circuits and
Systems (LASCAS)”, (Bariloche, Argentina, 2017).

Jaynes, E. T., Probability Theory: The Logic of Science (Cambridge University Press,
2003).

Judd, P., J. Albericio, T. Hetherington, T. M. Aamodt and A. Moshovos, “Stripes:
Bit-serial deep neural network computing”, in “2016 49th Annual IEEE/ACM In-
ternational Symposium on Microarchitecture (MICRO)”, pp. 1–12 (2016).

131

K. Greff et. al., “LSTM: A search space odyssey”, IEEE Trans. on Neural Networks
and Learning Systems , 99, 1–11 (2017).

Karpathy, A. URL https://github.com/karpathy/char-rnn (2016).

Karpathy, A., G. Toderici, S. Shetty, T. Leung, R. Sukthankar and L. Fei-Fei, “Large-
scale video classification with convolutional neural networks”, in “2014 IEEE Con-
ference on Computer Vision and Pattern Recognition”, pp. 1725–1732 (2014).

Kaya, H. and P. Tufekci, “Local and global learning methods for predicting power of a
combined gas and steam turbine”, in “Proceedings of the International Conference
on Emerging Trends in Computer and Electronics Engineering”, pp. 13 – 18 (2012).

Kingma, D. P. and M. Welling, “Auto-Encoding Variational Bayes”, in “2nd Inter-
national Conference on Learning Representations, ICLR 2014, Banff, AB, Canada,
April 14-16, 2014, Conference Track Proceedings”, (2014).

Krizhevsky, A., “Learning multiple layers of features from tiny images”, Tech. rep.
(2009).

Krizhevsky, A., I. Sutskever and G. E. Hinton, “Imagenet classification with deep
convolutional neural networks”, in “Proceedings of the 25th International Confer-
ence on Neural Information Processing Systems - Volume 1”, NIPS12, p. 10971105
(Curran Associates Inc., Red Hook, NY, USA, 2012).

Kullback, S. and R. A. Leibler, “On information and sufficiency”, Ann. Math. Statist.
22, 1, 79–86, URL https://doi.org/10.1214/aoms/1177729694 (1951).

Lakshminarayanan, B., A. Pritzel and C. Blundell, “Simple and scalable predic-
tive uncertainty estimation using deep ensembles”, in “Proceedings of the 31st
International Conference on Neural Information Processing Systems”, NIPS’17, p.
64056416 (Curran Associates Inc., Red Hook, NY, USA, 2017).

Lattice Semiconductor, URL http://www.latticesemi.com/en/Products (2021).

Lecun, Y., L. Bottou, Y. Bengio and P. Haffner, “Gradient-based learning applied to
document recognition”, Proceedings of the IEEE 86, 11, 2278–2324 (1998).

LeCun, Y. and C. Cortes, “MNIST handwritten digit database”, URL http://yann.
lecun.com/exdb/mnist/ (2010).

Lee, M., K. Hwang, J. Park, S. Choi, S. Shin and W. Sung, “Fpga-based low-power
speech recognition with recurrent neural networks”, in “2016 IEEE International
Workshop on Signal Processing Systems (SiPS)”, pp. 230–235 (2016).

Leibig, C., V. Allken, M. S. Ayhan, P. Berens and S. Wahl, “Leveraging uncertainty
information from deep neural networks for disease detection”, Nature URL https:
//www.ncbi.nlm.nih.gov/pmc/articles/PMC5736701/ (2017).

132

Leshno, M., V. Y. Lin, A. Pinkus and S. Schocken, “Multilayer feedforward networks
with a nonpolynomial activation function can approximate any function”, Neu-
ral Networks 6, 6, 861 – 867, URL http://www.sciencedirect.com/science/
article/pii/S0893608005801315 (1993).

Li, H., Z. Lin, X. Shen, J. Brandt and G. Hua, “A convolutional neural network
cascade for face detection”, in “2015 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR)”, pp. 5325–5334 (2015).

Li, S., C. Wu, H. Li, B. Li, Y. Wang and Q. Qiu, “Fpga acceleration of recurrent neural
network based language model”, in “Proceedings of the 2015 IEEE 23rd Annual
International Symposium on Field-Programmable Custom Computing Machines”,
FCCM ’15, pp. 111–118 (IEEE Computer Society, Washington, DC, USA, 2015),
URL http://dx.doi.org/10.1109/FCCM.2015.50.

Lichman, M. et al., “Uci machine learning repository”, (2013).

Lin, M., Q. Chen and S. Yan, “Network in network”, (2013).

Liu, H. J., Archipelago-An Open Source FPGA with Toolflow Support, Master’s thesis,
EECS Department, University of California, Berkeley, URL http://www2.eecs.
berkeley.edu/Pubs/TechRpts/2014/EECS-2014-43.html (2014).

Liu, W., D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu and A. C. Berg, “Ssd:
Single shot multibox detector”, (2016), URL http://arxiv.org/abs/1512.02325,
to appear.

Liu, Y., M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L. Zettle-
moyer and V. Stoyanov, “Roberta: A robustly optimized bert pretraining ap-
proach”, (2019).

Lu, Z., H. Pu, F. Wang, Z. Hu and L. Wang, “The expressive power of neu-
ral networks: A view from the width”, in “Advances in Neural Information
Processing Systems 30”, edited by I. Guyon, U. V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan and R. Garnett, pp. 6231–6239
(Curran Associates, Inc., 2017), URL http://papers.nips.cc/paper/
7203-the-expressive-power-of-neural-networks-a-view-from-the-width.
pdf.

Mah Ung, G., “Pcworld”, URL https://www.pcworld.com/article/3072256
(2018).

Metropolis, N., A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller and E. Teller,
“Equation of state calculations by fast computing machines”, The Journal of Chem-
ical Physics 21, 6, 1087–1092, URL http://link.aip.org/link/?JCP/21/1087/1
(1953).

Mukhoti, J. and Y. Gal, “Evaluating bayesian deep learning methods for semantic seg-
mentation”, CoRR abs/1811.12709, URL http://arxiv.org/abs/1811.12709
(2018).

133

Muller, J.-M., Elementary Functions: Algorithms and Implementation (Birkhauser,
2005).

Muroga, S., Threshold Logic and its Applications (Wiley-Interscience New York,
1971).

Norman P. Jouppi et al., “In-datacenter performance analysis of a tensor processing
unit”, in “Proceedings of the 44th Annual International Symposium on Computer
Architecture”, ISCA ’17, pp. 1–12 (ACM, New York, NY, USA, 2017), URL http:
//doi.acm.org/10.1145/3079856.3080246.

Nurvitadhi, E., Jaewoong Sim, D. Sheffield, A. Mishra, S. Krishnan and D. Marr,
“Accelerating recurrent neural networks in analytics servers: Comparison of fpga,
cpu, gpu, and asic”, in “2016 26th International Conference on Field Programmable
Logic and Applications (FPL)”, pp. 1–4 (2016).

Oladyshkin, S. and W. Nowak, “Data-driven uncertainty quantification using the
arbitrary polynomial chaos expansion”, Reliability Engineering and System Safety
106, 179–190 (2012).

Park, E., S. Yoo and P. Vajda, “Value-aware quantization for training and inference
of neural networks”, (2018a).

Park, J., M. Naumov, P. Basu, S. Deng, A. Kalaiah, D. S. Khudia, J. Law, P. Malani,
A. Malevich, N. Satish, J. Pino, M. Schatz, A. Sidorov, V. Sivakumar, A. Tulloch,
X. Wang, Y. Wu, H. Yuen, U. Diril, D. Dzhulgakov, K. M. Hazelwood, B. Jia,
Y. Jia, L. Qiao, V. Rao, N. Rotem, S. Yoo and M. Smelyanskiy, “Deep learning
inference in facebook data centers: Characterization, performance optimizations
and hardware implications”, CoRR abs/1811.09886, URL http://arxiv.org/
abs/1811.09886 (2018b).

Rahman, S., “Wiener-hermite polynomial expansion for multivariate gaussian prob-
ability measures”, Journal of Mathematical Analysis and Applications 454,
1, 303 – 334, URL http://www.sciencedirect.com/science/article/pii/
S0022247X17304250 (2017).

Rasmussen, C. E. and C. K. I. Williams, Gaussian Processes for Machine Learning
(Adaptive Computation and Machine Learning) (The MIT Press, 2005).

Ren, S., K. He, R. Girshick and J. Sun, “Faster r-cnn: Towards real-time ob-
ject detection with region proposal networks”, in “Advances in Neural Informa-
tion Processing Systems 28”, edited by C. Cortes, N. D. Lawrence, D. D. Lee,
M. Sugiyama and R. Garnett, pp. 91–99 (Curran Associates, Inc., 2015), URL
https://proceedings.neurips.cc/paper/2015.

Robinson, T. D., M. S. Eldred, K. E. Willcox and R. Haimes, “Surrogate-based op-
timization using multifidelity models with variable parameterization and corrected
space mapping”, AIAA Journal 46, 11, 2814–2822, URL https://doi.org/10.
2514/1.36043 (2008).

134

Rose, J., J. Luu, C. W. Yu, O. Densmore, J. Goeders, A. Somerville, K. B. Kent,
P. Jamieson and J. Anderson, “The VTR project: Architecture and cad for fp-
gas from verilog to routing”, in “Proceedings of the ACM/SIGDA International
Symposium on Field Programmable Gate Arrays”, FPGA ’12, pp. 77–86 (2012).

Rosenblatt, F., “The perceptron: A probabilistic model for information storage and
organization in the brain.”, Psychological Review (1958).

Russakovsky, O., J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpa-
thy, A. Khosla, M. Bernstein, A. C. Berg and L. Fei-Fei, “ImageNet Large Scale
Visual Recognition Challenge”, International Journal of Computer Vision (IJCV)
115, 3, 211–252 (2015).

Rybalkin, V., A. Pappalardo, M. M. Ghaffar, G. Gambardella, N. Wehn and
M. Blott, “FINN-L: library extensions and design trade-off analysis for variable
precision LSTM networks on fpgas”, in “28th International Conference on Field
Programmable Logic and Applications, FPL 2018, Dublin, Ireland, August 27-31,
2018”, pp. 89–96 (2018), URL https://doi.org/10.1109/FPL.2018.00024.

Rybalkin, V., N. Wehn, M. R. Yousefi and D. Stricker, “Hardware architecture of
bidirectional long short-term memory neural network for optical character recog-
nition”, in “Proceedings of the Conference on Design, Automation & Test in Eu-
rope”, DATE ’17, pp. 1394–1399 (European Design and Automation Association,
3001 Leuven, Belgium, Belgium, 2017), URL http://dl.acm.org/citation.cfm?
id=3130379.3130707.

Saltelli, A. and I. M. Sobol’, “About the use of rank transformation in sen-
sitivity analysis of model output”, Reliability Engineering and System Safety
50, 3, 225 – 239, URL http://www.sciencedirect.com/science/article/pii/
0951832095000992 (1995).

Schäfer, A. M. and H. G. Zimmermann, “Recurrent neural networks are universal
approximators”, in “Proceedings of the 16th International Conference on Artificial
Neural Networks - Volume Part I”, ICANN06, p. 632640 (Springer-Verlag, Berlin,
Heidelberg, 2006), URL https://doi.org/10.1007/11840817_66.

Shin, D., J. Lee, J. Lee and H. Yoo, “14.2 dnpu: An 8.1tops/w reconfigurable cnn-rnn
processor for general-purpose deep neural networks”, in “2017 IEEE International
Solid-State Circuits Conference (ISSCC)”, pp. 240–241 (2017).

Sim, H. and J. Lee, “A new stochastic computing multiplier with application to
deep convolutional neural networks”, in “Proceedings of the 54th Annual Design
Automation Conference 2017”, DAC ’17, pp. 29:1–29:6 (ACM, New York, NY,
USA, 2017), URL http://doi.acm.org/10.1145/3061639.3062290.

Simonyan, K. and A. Zisserman, “Very deep convolutional networks for large-scale
image recognition”, (2014).

Sobolá, I. M., “Global sensitivity indices for nonlinear mathematical models and
their monte carlo estimates”, Math. Comput. Simul. 55, 13, 271280, URL https:
//doi.org/10.1016/S0378-4754(00)00270-6 (2001).

135

Soize, C. and R. Ghanem, “Physical systems with random uncertainties: Chaos rep-
resentations with arbitrary probability measure”, SIAM Journal of Scientific Com-
puting 26, 2 (2004).

Srivastava, N., G. Hinton, A. Krizhevsky, I. Sutskever and R. Salakhutdinov,
“Dropout: A simple way to prevent neural networks from overfitting”, Journal of
Machine Learning Research 15, 56, 1929–1958, URL http://jmlr.org/papers/
v15/srivastava14a.html (2014).

Srivastava, N., E. Mansimov and R. Salakhutdinov, “Unsupervised learning of video
representations using lstms”, in “Proceedings of the 32Nd International Conference
on International Conference on Machine Learning - Volume 37”, ICML’15, pp. 843–
852 (JMLR.org, 2015), URL http://dl.acm.org/citation.cfm?id=3045118.
3045209.

Stollenga, M. F., W. Byeon, M. Liwicki and J. Schmidhuber, “Parallel multi-
dimensional lstm, with application to fast biomedical volumetric image segmen-
tation”, in “Proceedings of the 28th International Conference on Neural Informa-
tion Processing Systems - Volume 2”, NIPS’15, pp. 2998–3006 (MIT Press, Cam-
bridge, MA, USA, 2015), URL http://dl.acm.org/citation.cfm?id=2969442.
2969574.

Sudret, B., “Uncertainty propagation and sensitivity analysis in mechanical models
– contributions to structural reliability and stochastic spectral methods”, (2007).

Sudret, B., “Global sensitivity analysis using polynomial chaos expansions”, Relia-
bility Engineering and System Safety 93, 7, 964–979 (2008).

Sudret, B. and A. D. Kiureghian, “Stochastic finite elements and reliability: a state-
of-the-art report”, in “Technical Report UCB/SEMM-2000/08, University of Cali-
fornia, Berkeley”, (2000).

Sundermeyer, M., H. Ney and R. Schlter, “From feedforward to recurrent lstm neural
networks for language modeling”, IEEE/ACM Transactions on Audio, Speech, and
Language Processing 23, 3, 517–529 (2015).

Sutskever, I., O. Vinyals and Q. V. Le, “Sequence to sequence learning with neural
networks”, in “Proceedings of the 27th International Conference on Neural Infor-
mation Processing Systems - Volume 2”, NIPS’14, pp. 3104–3112 (MIT Press, Cam-
bridge, MA, USA, 2014), URL http://dl.acm.org/citation.cfm?id=2969033.
2969173.

Szegedy, C., V. Vanhoucke, S. Ioffe, J. Shlens and Z. Wojna, “Rethinking the inception
architecture for computer vision”, 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR) pp. 2818–2826 (2015).

Szegedy, C., Wei Liu, Yangqing Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke and A. Rabinovich, “Going deeper with convolutions”, in “2015
IEEE Conference on Computer Vision and Pattern Recognition (CVPR)”, pp. 1–9
(2015).

136

Tfekci, P., “Prediction of full load electrical power output of a base load oper-
ated combined cycle power plant using machine learning methods”, International
Journal of Electrical Power and Energy Systems 60, 126 – 140, URL http:
//www.sciencedirect.com/science/article/pii/S0142061514000908 (2014).

Toshev, A. and C. Szegedy, “Deeppose: Human pose estimation via deep neural net-
works”, in “2014 IEEE Conference on Computer Vision and Pattern Recognition”,
pp. 1653–1660 (2014).

Vaswani, A., N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, u. Kaiser
and I. Polosukhin, “Attention is all you need”, in “Proceedings of the 31st In-
ternational Conference on Neural Information Processing Systems”, NIPS17, p.
60006010 (Curran Associates Inc., Red Hook, NY, USA, 2017).

Vrudhula, S., J. Wang and P. Ghanta, “Hermite polynomial based interconnect anal-
ysis in the presence of process variations”, IEEE Transactions on Computer Aided
Design 25, 10, 2001–20011 (2006).

Wagle, A., G. Singh, J. Yang, S. Khatri and S. Vrudhula, “Threshold logic in a flash”,
in “IEEE International Conference on Computer Design (ICCD)”, (2019).

Wang, N. and D.-Y. Yeung, “Learning a deep compact image representation for visual
tracking”, in “Advances in Neural Information Processing Systems 26”, edited by
C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani and K. Q. Weinberger, pp.
809–817 (Curran Associates, Inc., 2013), URL https://proceedings.neurips.
cc/paper/2013.

Wang, S., Z. Li, C. Ding, B. Yuan, Q. Qiu, Y. Wang and Y. Liang, “C-lstm: Enabling
efficient lstm using structured compression techniques on fpgas”, in “Proceedings
of the 2018 ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays”, FPGA ’18, pp. 11–20 (ACM, New York, NY, USA, 2018), URL http:
//doi.acm.org/10.1145/3174243.3174253.

Wang, Z., J. Lin and Z. Wang, “Accelerating recurrent neural networks: A memory-
efficient approach”, IEEE Transactions on Very Large Scale Integration (VLSI)
Systems 25, 10, 2763–2775 (2017).

Wiener, N., “The homogeneous chaos”, American Journal of Mathematics 60, 4,
897–936, URL http://www.jstor.org/stable/2371268 (1938).

Xiu, D. and G. E. Karniadakis, “The wiener–askey polynomial chaos for stochastic
differential equations”, SIAM J. Sci. Comput. 24, 2, 619644, URL https://doi.
org/10.1137/S1064827501387826 (2002).

Xu, Y., Y. Wang, A. Zhou, W. Lin and H. Xiong, “Deep neural network compression
with single and multiple level quantization”, CoRR abs/1803.03289, URL http:
//arxiv.org/abs/1803.03289 (2018).

137

Yang, Z., Z. Dai, Y. Yang, J. Carbonell, R. R. Salakhutdinov and Q. V. Le, “Xlnet:
Generalized autoregressive pretraining for language understanding”, in “Advances
in Neural Information Processing Systems 32”, pp. 5753–5763 (Curran Associates,
Inc., 2019), URL https://proceedings.neurips.cc/paper/2019.

Yazdanbakhsh, A., A. T. Elthakeb, P. Pilligundla, F. Mireshghallah and H. Es-
maeilzadeh, “Releq: A reinforcement learning approach for deep quantization of
neural networks”, (2018), URL https://arxiv.org/pdf/1811.01704.pdf.

Yu, L., S. Saxena, C. Hess, A. Elfadel, D. Antoniadis and D. Boning, “Remembrance
of transistors past: Compact model parameter extraction using bayesian inference
and incomplete new measurements”, in “2014 51st ACM/EDAC/IEEE Design Au-
tomation Conference (DAC)”, pp. 1–6 (2014).

Zhang, Z., T. A. El-Moselhy, I. M. Elfadel and L. Daniel, “Stochastic testing
method for transistor-level uncertainty quantification based on generalized polyno-
mial chaos”, IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems 32, 10, 1533–1545 (2013).

Zhang, Z., X. Yang, I. V. Oseledets, G. E. Karniadakis and L. Daniel, “Enabling
high-dimensional hierarchical uncertainty quantification by anova and tensor-train
decomposition”, IEEE Transactions on Computer-Aided Design of Integrated Cir-
cuits and Systems 34, 1, 63–76 (2015).

Zhou, D.-X., “Universality of deep convolutional neural networks”, Applied and Com-
putational Harmonic Analysis 48, 2, 787 – 794, URL http://www.sciencedirect.
com/science/article/pii/S1063520318302045 (2020).

138

APPENDIX A

POLYNOMIAL CHAOS EXPANSION

139

A.1 A Brief History of Polynomial Chaos Theory

140

When analyzing a physical system, a key task is to understand the relationship
between the system’s inputs and outputs/response. In the event that the inputs are
represented by random variables, stochastic processes or random fields, the system
response will also be a random quantity. In general, a system under consideration is
given in some form that represents an implicit relation F (X, Y, ξ), where X, Y and
ξ are the set of inputs, set of outputs and a set of parameters that are subject to
variations. Each of these quantities are assumed to be vectors of arbitrary dimensions.

One approach is to approximate the system’s response by replacing the implicit

relation F (X, Y, ξ) with an explicit function Ỹ (X, ξ). Then, large number of samples

of ξ would be generated and Ỹ (X, ξ) would be computed. In the stochastic case, the
random variables Y (assume finite variance) can be expressed as an infinite series
of multi-variate orthogonal polynomials of all (infinite) orders, referred to as polyno-
mial chaos expansion (PCE) Ghanem and Spanos (1991); Soize and Ghanem (2004);
Augustin et al. (2008).

PCE is a representation of a 2nd order stochastic process as a multivariate orthog-
onal polynomial over an infinite dimensional Hilbert space. In other words, for any
random process Y ∈ L2, the PCE representation for Y exhibits L2 convergence, i.e.
the first two moments of the expansion converge to the mean and variance of Y in
limit. Based on the Cameron and Martin theorem Cameron and Martin (1947), such
an expansion converges in the L2 sense for any arbitrary stochastic process with finite
second moment.

Definition A.1.1 (Finite Second Moment). For a given probability space (Ω,A, P),
the set of random variables X : Ω → R that satisfy E(X2) < ∞ have finite second
moment and are in L2.

Definition A.1.2 (Hilbert Space). Let H be a vector space over some field F with

inner product 〈f, g〉 f, g ∈ H defined. The norm in H is ‖f‖ =
√
〈f, f〉, and the

metric is d(f, g) = ‖f − g‖. H is called a Hilbert space if it is complete as a metric
space.

Definition A.1.3 (Orthogonality). Two elements, x and y of an inner product space
are said to be orthogonal if 〈x, y〉 = 0. In addition, if ‖x‖ = ‖y‖ = 1, they are
orthonormal.

The classical PCE was originated from the Wiener’s work Wiener (1938) and is
known as Wiener-Hermite expansion. It represents a random variable with an infinite
series of Hermite polynomials in independent Gaussian random variables as shown in
equation A.1.

Y (ξ) =
∞∑
i=0

ciHi(ξ), (A.1)

where ci are the coefficients of the Hermite polynomial basis functions, i.e. Hi(ξ). In
practice, this infinite sum is truncated to a limited number of basis functions and is
referred to as approximated PCE, as expressed in A.2.

141

Ỹ (ξ) =
M∑
i=0

ciΦi(ξ), (A.2)

where Φi(ξ) are the basis functions (determined based on a selected method) and ci
are the coefficients that need to be solved. The coefficients ci can be obtained by

Galerkin projection method. This method determines the function Ỹ in such a way

that the error (Y −Ỹ) is orthogonal to the space where Y belongs to. This is known as
projection and is also referred to as the Galerkin’s method. A set of Galerkin methods
is an example of projection methods with the property of orthogonality principle.

Theorem A.1.1 (Hilbert Projection Theorem). Given a subspace W of estimators
within a Hilbert space V and an element v ∈ V , a vector element w ∈ W achieves
minimum mean squared error among all the elements in W if and only if:

E{(v − w)yT} = 0 for all y ∈ W (A.3)

As an example, Figure A.1 illustrates an optimum projection of vector v ∈ V into
a subspace W , in which the estimation error (v − w) is orthogonal to subspace W
that provides the best approximation.

Figure A.1: An Optimum Projection of Vector v ∈ V into a Subspace W .

Cameron and Martin Cameron and Martin (1947) proved convergence of the
Wiener-Hermite PCE for a general square integrable process. Cameron and Martin-
Cameron and Martin (1947) proved that the polynomial representation has optimal
L2 convergence (i.e. convergence in probability) to the actual process.

Theorem A.1.2 (Cameron-Martin Theorem). For any functional f in a Hilbert
measure space (X ,M, µ), there exist a set of polynomials φi and constants ai such
that:

lim
N→∞

∫
X

(f(x)− f̂N(x))2dµ(x) = 0, (A.4)

where f̂N(x) =
∑N

i=0 aiφi(x) and ai is obtained from the Galerkin projection ai :=
〈f,φi〉
||φ2i ||

.

142

A.2 Generalized Polynomial Chaos

143

PCE is not restricted to Gaussian processes and has been generalized for other
standard distributions. Xiu and Karniadakis Xiu and Karniadakis (2002) introduced
generalized polynomial chaos (gPCE) involving non-Gaussian random parameters.
The optimal basis is dependent on the underlying distribution of the basic random
variables, i.e. the Hermite polynomials are replaced by the sequence of polynomials
orthogonal with respect to the probability distribution of the basic random variables
(ξ). Table A.1 outlines the optimal orthogonal basis functions for some common
distributions. If the distribution is unknown, it is typically assumed as Gaussian.

Table A.1: Optimal Polynomials for Various Continuous Distributions Eldred and Burkardt
(2012).

Distribution Density Function Polynomial Support Range

Uniform 1
2

Legendre Pn(x) [-1,1]
Exponential e−x Laguerre Ln(x) [0, ∞]

Gaussian 1√
2π
e

−x2
2 Hermite Hen(x) [−∞, ∞]

Beta (1−x)a(1+x)β

2α+β+1B(α+1,β+1)
Jacobi P

(α,β)
n (x) [-1, 1]

Gamma xαe−x

Γ(α+1)
Generalized Laguerre L

(α)
n (x) [0, ∞]

Based on the underlying distribution of ξ, the optimal polynomials for the gPC
can be determined. Table A.1 presents the link between a few examples of continuous
distributions and their corresponding optimal polynomials.

If ξis are known to be Gaussian, then the optimal polynomial for the gPC is Her-
mite polynomial as shown in Table A.1. A multivariate Hermite polynomial (Hen(ξ))
of order n is expressed in Equation A.5.

Hen(ξ) = (−1)ne
ξ2

2
∂n

∂ξn
e−

ξ2

2 (A.5)

For example, consider ξ to be a two-dimensional vector, consisting of Gaussian
random variables ξ1 and ξ2. Without loss of generality, the random variables are
considered as standard Gaussian with zero mean and unit variance. The Hermite
polynomials up to the 3rd degree are computed based on Equation A.5 and the results
are shown in Equations A.6-A.9.

0thorder : He0(ξ) = 1 (A.6)

1storder : He1(ξ) = [ξ1 , ξ2] (A.7)

2ndorder : He2(ξ) = [ξ2
1 − 1 , ξ1ξ2 , ξ

2
2 − 1] (A.8)

3rdorder : He3(ξ) = [ξ3
1 − 3ξ1 , ξ

2
1ξ2 − ξ2 , ξ1ξ

2
2 − ξ1 , ξ

3
2 − 3ξ2] (A.9)

Ernst et al. Ernst et al. (2012) proved that the L2 convergence holds true for
general random processes as long as the their second moment is finite.

144

A.2.1 General Polynomial Chaos with Finite Series

Consider the mth order gPCE which contains all the polynomials with the total
degree less than or equal to m ∈ N . This is denoted by ym(ξ), which is an ap-
proximation to the original model with infinite number of polynomials (y(ξ)). Sharif
Rahman Rahman (2017) showed that the probabilistic characteristics of y(ξ), includ-
ing its first two moments and p.d.f, if it exists, can be estimated from the statistical
properties of the truncated gPCE, ym(ξ). Particularly, Sharif Rahman Yazdanbakhsh
et al. (2018) proved that the mean of these two models are the same as the zero de-
gree expansion coefficient (i.e. c0) and are independent of m. This is expressed in
Equation A.10.

E[ym(ξ)] = E[y(ξ)] = c0 (A.10)

Applying the expectation operator on [ym(ξ)− c0]2 and [y(ξ)− c0]2 for computing
the variance results in Equations A.11 and A.12 Rahman (2017).

var[ym(ξ)] =
∑

1≤|j|≤m

c2
j (A.11)

var[y(ξ)] =
∑

1≤|j|≤∞

c2
j (A.12)

Hence, the approximation of the variance (i.e. var[ym(ξ)]) approaches the exact
variance var[y(ξ)] as m→∞. It is worth mentioning that the p.d.f of y(ξ) can also
be estimated with ym(ξ).

145

A.3 Arbitrary Polynomial Chaos

146

The drawback of having to determine or assume a distribution function of the
random variables was eliminated by the method proposed by Oladyshkin et al. Ola-
dyshkin and Nowak (2012). In this method, referred to as arbitrary polynomial chaos
(aPC), the coefficients of the basis polynomials are given as explicit functions of the
moments of the random variables. In practice, sample moments are used, making the
method completely data-driven. This eliminates the need to assume any particular
distribution and also eliminates the computationally intensive task of solving integrals
for determining the coefficients. aPC involves two steps. First, a set of multivariate
orthogonal basis polynomials in the random variables (rvs) ξ is constructed. The
coefficients of each of the basis polynomials are functions of the moments of the rvs
ξ. They are not related to the output Y (ξ), and hence computed once given the data
ξ. Next, the output Y (ξ) is expressed as a weighted linear combination of the basis
polynomials. The weights or coefficients of this series are estimated in the traditional
way – by minimizing the mean-squared error between the polynomial values and the
training data.

Let ξ = {ξ1, ξ2, ..., ξN}. Y (ξ) is represented as

Y (ξ) =
M∑
i=1

ciΦi(ξ). (A.13)

Φi(ξ)s are the orthonormal multivariate basis polynomials, and the ci are the unknown
coefficients to be estimated. Their number is M = (N + d)!/(N !d!), where d is
the degree of the expansion. Ψi(ξ)s are constructed by only using the moments of
the process variables and no other statistical information including the underlying
distributions is required. The sum in Equation A.13 involves an infinite number of
polynomial terms but in practice, the sum is truncated to a finite sum and is an
important step. The truncation needs to avoid removing too many polynomial terms
or adding several extra terms. These would lead to underfitting and overfitting,
respectively and the model would not be generalizable.

The characteristic statistical quantities of Y (ξ) can be evaluated directly from
the coefficients ci. The mean (µ) and variance (σ2) of Y are computed using Equa-
tion A.14.

µY = c0, and σ2
Y =

M∑
i=1

c2
i . (A.14)

Assuming the input parameters are independent, the multivariate basis functions
can be constructed as in Equation A.15.

Φi(ξ) =
N∏
j=1

P
(αij)

j (ξ), (A.15)

N∑
j=1

αij ≤M, i = 1, 2..., N, (A.16)

where α is an M × N matrix, which contains the corresponding degree for process
variable number j in the expansion term k. Hence, αij is an index that contains the

147

combinatoric information on how to enumerate all possible products of individual
univariate basis functions. P (k) are the orthonormal univariate polynomial basis of
order k as shown in Equation A.17, where pki are their corresponding coefficients.

P k(ξ) =
k∑
i=0

pki ξ
i, k = 0, 1, ..., d. (A.17)

Based on the Equation-14 in Oladyshkin and Nowak (2012), the system of linear
equations can be written as in Equations A.18-A.20 for 0th to 2nd degree. The µ and p
are the raw moment and the coefficient of the uni-variate polynomials P , respectively.
The equations for higher orders are eliminated for brevity.

[1]×
[
p

(0)
0

]
= [1] (0thdegree) (A.18)

[
µ0 µ1

0 1

]
×

[
p

(1)
0

p
(1)
1

]
=

[
0
1

]
(1stdegree) (A.19)

[
µ0 µ1 µ2

µ1 µ2 µ3

0 0 1

]
×

p

(2)
0

p
(2)
1

p
(2)
2

 =

[
0
0
1

]
(2nddegree) (A.20)

By solving the linear equations A.18-A.20 for normalized distribution of data with
zero mean and unit variance, the coefficients of the uni-variate polynomials for 0th

degree up to the 2nd degree can be computed as in Equations A.21-A.23.

p0
0 = 1 (A.21)

p1
0 = 0, p1

1 = 1 (A.22)

p2
0 = −1, p2

1 = −µ3, p
2
2 = 1 (A.23)

Equations A.24-A.26 express the uni-variate polynomials up to the 2nd order by
plugging in the coefficients p in equation A.17.

P (0)(ξ) = 1 (A.24)

P (1)(ξ) = ξ (A.25)

P (2)(ξ) = ξ2 − µ3ξ − 1 (A.26)

In general, the system of linear equations can be written in a matrix form as in
Equation A.27. To compute the kth order P (ξ), moments up to 2k − 1 are required.

148

µ0 µ1 . . . µk
µ1 µ2 . . . µk+1
...

...
...

...
µk−1 µk . . . µ2k−1

0 0 . . . 1

×

p

(k)
0

p
(k)
1
...

p
(k)
k−1

p
(k)
k

 =

0
0
...
0
1

 . (A.27)

The multivariate basis polynomials (Φ) can be obtained by taking the cross prod-
uct of univariate basis functions. After computing the coefficients (ci) using least
squares, the response function can be modeled using Equation A.13. The coefficients
are computed as a one time cost and remain unchanged for evaluation, hence the mean
and variance. To estimate the uncertainty in the response, the predicted output is
compared against the mean and variance of Y (ξ).

As a concrete example, consider a system with two input variables, denoted by
ξ1 and ξ2, which are subject to variability. The coefficients of the 0th and 1st order
polynomials for each variable is expressed in Equation A.28. The second order uni-
variate polynomials whose coefficients are functions of the moments (µ) are expressed
in Equation A.29.

p
(2)
0 = −1, p

(2)
1 = −µ3, p

(2)
2 = 1 (A.28)

P (0)(ξ) = 1, P (1)(ξ) = ξ, P (2)(ξ) = ξ2 − µ3ξ − 1 (A.29)

The multivariate polynomial basis for a 2nd order model are obtained by taking
the cross product of the univariate polynomials as shown in Equation A.30 to compute
the output based on Equation A.31. There are six basis polynomials and six unknown
coefficients (ci), which are solved using least squares as in Equation A.32, where S is
the number of samples.

Ψ(ξ1, ξ2) = {1, ξ1, ξ2, ξ1ξ2, ξ
2
1 − µ1

3ξ1 − 1, ξ2
2 − µ2

3ξ2 − 1}, (A.30)

Y (ξ) =

(N+d
d)∑
i=1

ciΨi(ξ). (A.31)

J(c) =
1

2

S∑
s=1

{Y obs
s − Ys(ξ)}2 (A.32)

If the underlying distribution of the random variables are known, then the aPC
and gPC expansion are the same. To demonstrate this, consider the random variables
to be multivariate Gaussian and ξ = [ξ1, ξ2, ..., ξn].

149

Table A.2 presents the central and non-central moments of a normal r.v up to the
5th order. Similar to the gPC case, the central moments are used in here as well. The
odd moments are zero and the even moments are functions of sigma.

Table A.2: Central and Non-central Moments of a Normal Random Variable up to Order
5.

order Non-central Moment Central Moment
1 µ 0
2 µ2 + σ2 σ2

3 µ3 + 3µσ2 0
4 µ4 + 6µ2σ2 + 3σ4 3σ4

5 µ5 + 10µ3σ2 + 15µσ4 0

By solving the system of linear equations shown in Equation A.27, the following
uni-variate polynomials are generated.

P (0)(ξi) = 1 (A.33)

P (1)(ξi) = ξi (A.34)

P (2)(ξi) = ξ2
i − µ3ξi − 1 (A.35)

P (3)(ξi) =ξ3
i +
−(µ3 − µ5 + µ3µ4)

µ2
3 − µ4 + 1

ξ2
i +
−(−µ2

3 + µ5µ3 − µ2
4 + µ4)

µ2
3 − µ4 + 1

ξi+

−(µ3
3 − 2µ4µ3 + µ5)

µ2
3 − µ4 + 1

(A.36)

Based on the central moments for the Hermite polynomials presented in Table A.2,
the uni-variate polynomials are simplified as follows.

P (0)(ξi) = 1 (A.37)

P (1)(ξi) = ξi (A.38)

P (2)(ξi) = ξ2
i − 1 (A.39)

P (3)(ξi) = ξ3
i − 3ξi (A.40)

For the example above for two random variables ξ1 and ξ2, the uni-variate poly-
nomials are as follows.

P (0)(ξ) = [1 , 1] (A.41)

P (1)(ξ) = [ξ1 , ξ2] (A.42)

P (2)(ξ) = [ξ2
1 − 1 , ξ2

2 − 1] (A.43)

P (3)(ξ) = [ξ3
1 − 3ξ1 , ξ

3
2 − 3ξ2] (A.44)

150

Since the uni-variates are orthogonal then the multivariate polynomials are the
products of uni-variate polynomials of all combinations, which are as follows.

0thorder : Φ0(ξ) = 1 (A.45)

1storder : Φ1(ξ) = [ξ1 , ξ2] (A.46)

2ndorder : Φ2(ξ) = [ξ2
1 − 1 , ξ1ξ2 , ξ

2
2 − 1] (A.47)

3rdorder : Φ3(ξ) = [ξ3
1 − 3ξ1 , ξ

2
1ξ2 − ξ2 , ξ1ξ

2
2 − ξ1 , ξ

3
2 − 3ξ2] (A.48)

Hence, the multi-variate for the gPC and aPC are equal when the r.v.s are normal,
as shown in Equations A.6-A.9 and Equations A.45-A.48 .

151

