
Revisiting the Transonic Area Rule for Conceptual Aerodynamic Design 

by 

Francisco X. Armenta, Jr. 

 

 

 

 

A Thesis Presented in Partial Fulfillment 

of the Requirements for the Degree of 

Master of Science 

 

 

 

 

Approved April 2021 by the 

Graduate Supervisory Committee: 

 

Timothy Takahashi, Chair 

Jeonglae Kim 

Patrick Rodi 

 

 

 

 

 

 

 

 

ARIZONA STATE UNIVERSITY 

 

May 2021



i 
 

ABSTRACT 

 The Transonic Area Rule, developed by Richard T. Whitcomb in the early 1950s, 

revolutionized high-speed flight because its insight allowed engineers to reduce and/or 

delay the transonic drag rise. To this day, it is the rationale behind “coke-bottle” 

sculpturing (indenting the aircraft fuselage at the wing-fuselage junction) to alter the 

cross-sectional area development of the body. According to Whitcomb, this indentation is 

meant to create a smoother transition of cross-sectional area development of the body and 

consequently would reduce the number of shocks on the body, their intensity, and their 

shock pattern complexity. Along with this, modeling of a geometry’s transonic drag rise 

could be simplified by creating a comparable body of revolution with the same cross-

sectional area development as the original geometry. Thus, the Transonic Area Rule has 

been advertised as an aerodynamic multitool.  

 This new work probes the underlying mechanics of the Transonic Area Rule and 

determines just how accurate it is in producing its advertised results. To accomplish this, 

several different wave-drag approximation methods were used to replicate and compare 

the results presented in Whitcomb’s famous 1952 report16. These methods include EDET 

(Empirical Drag Estimation Technique)4, D2500 (Harris Wave Drag program)6, and CFD 

(Computational Fluid Dynamics) analysis through SU25. Overall drag increment data was 

collected for comparison with Whitcomb’s data. More in-depth analysis was then done 

on the flow conditions around the geometries using CFD solution plots.  

 After analysis of the collected data was performed, it was discovered that this data 

argued against Whitcomb’s comparable body of revolution claim as no cases were 
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demonstrated where the comparable body and original body yielded similar drag rise 

characteristics. Along with this, shock structures and patterns were not simplified in two 

of the three cases observed and were instead complicated even further. The only 

exception to this observation was the swept wing, cylindrical body in which all shocks 

were virtually eliminated at all observed Mach numbers. For the reduced transonic drag 

rise claim, the data argued in favor of this as the drag rise was indeed reduced for the 

three observed geometries, but only for a limited Mach number range. 
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CHAPTER 1 

INTRODUCTION 

 The Transonic Area Rule revolutionized high-speed flight since its development 

by Richard T. Whitcomb in the early 1950s16. The main purpose behind this method was 

to provide insight to reduce the transonic drag rise of an aircraft as it flies in the transonic 

regime (the Mach number range of approximately 0.8-1.2), thus allowing aircraft to 

travel at higher Mach numbers that it could not otherwise attain.  Application of this area 

rule is shown in examples like that of the YF-102A3 where, in conjunction with other 

propulsive system changes (larger engines, revised inlets), it became operable at 

supersonic conditions up to a verified speed of M~1.22. 

 When an aircraft moves through the air, it alters the flow passing over it. As the 

freestream flow approaches the aircraft it must either stop or change direction to pass 

over its surface. The points where the flow stops are high-static-pressure stagnation 

points. The flow that passes over the body, however, generally increases in speed often 

exceeding the freestream speed. When this occurs, the localized increase in speed is 

called a “super-velocity;” they cause a reduction in the local pressure of the fluid in 

comparison to the freestream pressure.  

 As the freestream Mach number increases, getting closer to the transonic regime, 

the local super-velocities over the surface of the aircraft may reach a point where they 

meet the speed of sound. When this occurs, the aircraft has reached its “critical Mach 

number.” Flight above this speed will develop regions of locally supersonic flow; which 
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may lead to the formation of shock waves where flow decelerates rapidly from 

supersonic speeds. This drastic change in flow is also associated with changes in 

pressures; projections of these pressure gradients in the fore-aft direction lead to what is 

known as “wave drag.” Note that not many but not all flows that decelerate from 

supersonic to subsonic speeds form a shock wave; a clever geometry can maximize the 

amount shock-free locally supersonic flow experienced by an aircraft. 

 It is this rapid increase in drag that Whitcomb sought to reduce and allow for a 

smoother transition to supersonic flight. He posited that the body of the aircraft would 

need to be made in such a way that the development of its cross-sectional area would 

need to be “smoother” to allow for this drag reduction. The claim was that this smoother 

cross-sectional area development would reduce the shock intensity and number of shocks 

experienced on an aircraft. In doing this, the aircraft would then experience a less drastic 

increase of wave drag16.  

 Another claim of Whitcomb’s Transonic Area Rule is that two bodies of 

equivalent cross-sectional area development should exhibit the same transonic drag rise 

independent of where this area is placed (i.e. in the fuselage or wing sections)16. It is this 

concept that became the basis of the creation of wave drag estimation methods such as 

EDET and D2500 that will be discussed in further detail in this report.  

 Thus, it can be seen that the idea behind the “area rule” and the “equivalent body 

of revolution” has become the basis for many useful methods. This thesis asks “how 

accurate are Whitcomb’s claims.” More precisely, the purpose is to understand what is 

actually happening on the surface of aircraft with these rules applied. This thesis will 
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explore these concepts and develop more insight into how the Transonic Area Rule 

actually functions. It is with this in mind that this thesis then presents the following 

overarching questions: 

1. Does the Transonic Area Rule achieve what it claims it does, and is it exact or 

approximate? 

a. Does an equivalent body of revolution produce the same transonic drag 

rise characteristics as the original wing-body combination? 

b. Does indenting the fuselage of a wing-body combination reduce the 

transonic drag rise experienced in a meaningful manner? 

c. Does indenting the fuselage of a wing-body combination reduce the 

number of shocks experienced and the intensity of them? 

2. Are there any telltale signs of shock formation in subsonic solutions? 

3. Are the shocks encountered able to be predicted by Küchemann’s CP* 

predictions? 

This thesis will demonstrate that application of this area ruling to the original Whitcomb 

geometries does not yield the predicted results by using modern CFD and wave drag 

estimation methods. Along with this, it will explore the possibility of predicting shock 

formation by other means. 
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CHAPTER 2 

PRIOR ART 

  In the field of aerodynamics, all concepts build on top of one another, 

gradually progressing the knowledge of fluid flow and how it can be used to our 

advantage. In the past there have been many new concepts added to this collection of 

knowledge in an attempt to simplify modeling, further understand flow behavior, or 

provide advantages to design. The Transonic Area Rule presented by Whitcomb is no 

different in this regard as it used many of the aerodynamics building blocks in its 

creation. It is for this reason that this report touches on all of the building blocks 

necessary to understand the depth of the Transonic Area Rule’s functioning and the other 

concepts explored within this report. 

a. Sources of Drag 

 At the very base level, drag can be defined as a force acting on an object in the 

opposite direction of its movement through a fluid. In the case of a stationary object 

within a fluid flow, drag is the force acting in the direction of the fluid flow on the object 

within it. The total drag experienced by this object can be broken up into several different 

contribution sources. At subcritical speeds, where there are no shock waves formed on 

the object, the sources of drag fall into two categories: viscous and inviscid. The viscous 

source of drag is called skin friction and relates to what can essentially be treated as 

“roughness” of the surface of the body. This “roughness,” just as in any other source of 

friction, catches on the flow over the object’s surface and distorts the flow so that it 
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experiences pressure and momentum losses downstream. The inviscid mechanisms that 

contribute to drag come from object geometry characteristics such as thickness, camber, 

and incidence. This kind of drag can be referred to as pressure drag and is generally 

found by integrating the pressures projected onto the object’s surfaces and determining 

the net force acting in the opposite direction of movement through the fluid1,9.  

 

Figure 1. Drag Build-Up at Supersonic Speeds9 

 At supercritical speeds, however, the object travelling through the fluid has a 

possibility of developing shock waves on its surface which drastically alters flow 

conditions as the flow passes through it. Thus, these shock waves impact the pressure 

field around the object greatly, contributing more to the pressure drag referred to above. 

However, this extra drag contribution due to the presence of shock waves is typically 

referred to as “wave drag” and is the main quantity of interest in this report1,9. As shown 
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in Fig. (1) above, this can also be split into several different sources of contribution such 

as lift wave drag and volume wave drag. In the case of this report, only volume wave 

drag is taken into consideration as all models are at zero-lift angle of attacks. 

b. Shock Waves 

 A shock wave is a very small region within a gas over which the flow conditions 

change drastically. The flow conditions that change are velocity, static pressure, total 

pressure, static temperature, and static density which are referred to as “jump conditions” 

in the NACA 1135 report. The types of shock waves demonstrated in NACA 1135 are 

normal shock waves, oblique shock waves, and the non-shock Prandtl-Meyer expansion 

fan.  

 A detached normal shock wave occurs when an inbound supersonic flow is forced 

to decelerate to subsonic speeds. This happens when the inbound flow suddenly 

encounters a “blunt” surface where the flow does not have enough time to easily travel 

around and must either slow to a stop (a stagnation point) or be slowed and travel around 

the surface at subsonic speeds. When this occurs, a detached normal shock develops 

forward of the blunt surface as is demonstrated in Fig. (2) below. These detached normal 

shocks may also occur in duct flows when supersonic inbound flows encounter 

“aerodynamically blunt” surfaces such as inlets lead to enforced subsonic conditions. 

This is demonstrated by the duct flow in Fig. (2) where the engine fan enforces a flow 

speed at a Mach number of approximately 0.3. A detached normal shock then develops 

forward of the engine inlet.  
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Figure 2. Development of Detached Normal Shock Waves Due to Aerodynamic Features 

 Normal shocks alter flow conditions in several ways as the flow passes over them, 

such as: increasing static pressure, increasing static temperature, increasing static density, 

and decreasing total pressure. The total temperature over a shock does not change, 

however, as the flow is compressed adiabatically over the shock (no heat is added or 

removed from the system). Along with this, the more supersonic the flow is before the 

shock, the more subsonic the flow is after the shock. This can be used to define the 

strength of a normal shock in comparison to others. These behaviors are shown in Fig. (3) 

below. 

 

Figure 3. Normal Shock Table1 
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 Oblique shock waves occur when an inbound supersonic flow is forced to turn 

outward and compress, as is demonstrated in Fig. (4). In this figure, the delta angle refers 

to the turning angle of the flow and the theta angle refers to the shock angle. On an 

aircraft body the flow can be forced to turn by the geometric features of it such as the 

fuselage, wing, or many others. Unlike the normal shocks shown in Fig. (2), oblique 

shock waves will typically remain attached to the feature causing deflection. These types 

of shocks behave similarly to the normal shocks in that they cause sharp changes in the 

flow conditions, but there are two directions in which these changes can go. First, there 

are weak oblique shock waves, which are more common, over which the supersonic 

inbound flow becomes less supersonic. The more supersonic the inbound flow is, the less 

supersonic the flow downstream of the shock is. Then there are strong oblique shock 

waves over which the supersonic inbound flow becomes subsonic (similar to a normal 

shock). These solutions are typically plotted as shown in Fig. (5) below. 

 

Figure 4. Development of an Oblique Shock Wave due to Turning of a Supersonic Flow1 
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Figure 5. Strong vs. Weak Oblique Shock Waves 

 In Fig. (5) above, there is the mu equation which refers to the Mach cone angle 

which is modeled by the inverse sine of the reciprocal of the upstream (freestream) Mach 

number. Typically, it is the weak oblique shock waves that have shock angles that 

coincide with the expected Mach cone angle. Strong oblique shock waves, however, have 

greater shock angles that can reach up to 90 degrees (i.e. a normal shock). In either of 

these cases, however, the same flow condition changes occur: the static pressure rises, the 

static density rises, the static temperature rises, the total temperature remains unchanged, 

and the total pressure decreases. Another interesting aspect of these oblique shock waves 

is when supersonic flow is made to turn around a 3-D object such as a cone. In this case, 
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as is stated in NACA 1135, “if the bow shock wave is attached to an uninclined circular 

cone, the shock wave too has the form of a circular cone1.” The behavior of these shocks 

is also governed by the oblique-shock relations. This is of particular interest for cases of 

aircraft with fuselages that have near circular cone noses. 

 Finally, though the Prandtl-Meyer Expansion fan is not a shock, it is a concept 

that is important for understanding the behavior of supersonic flows. These occur when 

an inbound supersonic flow is forced to turn inward around a sharp corner and expand 

isentropically, as is shown in Fig. (6) below. A feature that may cause this to occur is a 

fuselage boat-tail. These expansion fans alter flow conditions by: increasing the speed 

(i.e. downstream Mach number is greater than upstream), decreasing the static pressure 

(due to expansion), decreasing the static density, but the total pressure remains constant 

due to the isentropic nature of expansion fans1. 

 

Figure 6. Prandtl-Meyer Expansion Shock Waves1 
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c. Flows That Trigger Shock Waves 

 In the previous section there was discussion of general types of flows that could 

trigger shock waves such as turning supersonic inbound flows outward (causing an 

oblique shock) or inward (causing a Prandtl-Meyer expansion shock). However, there are 

other features used on aircraft that can develop shock waves. 

 In Fig. (7) below, shock development is shown on the surface of a 2-D airfoil as 

Mach number is increased. In column b of this figure, there are plots of the ratio of local 

velocity to speed of sound vs the chordwise location on the airfoil. The O on these plots 

refers to the upper surface of the airfoil and the U refers to the lower surface. In the Mach 

0.75 case, it can be seen that the surfaces both create super-velocities along their surfaces 

(local flow speeds greater than freestream) with the upper surface having some 

supersonic flow and smoothly becoming subsonic once more with no shock being 

created. In the Mach 0.81 solution a shock appears at the aft portion of the upper surface 

correlating with a local Mach number of approximately 1.2. This is demonstrated in the 

velocity plot as there is a rapid reduction in the local velocity to subsonic. As the 

freestream Mach number continues to increase, there is eventually shocks on both 

surfaces that gradually move aft to the tail of the airfoil. Once the shock waves have 

moved this far back, the local velocity over the whole surface of the airfoil is supersonic. 

Finally, at the Mach 1.4 case, a bow shock (detached normal shock) is developed forward 

of the nose of the airfoil with oblique shocks at the trailing edge of the airfoil and nearly 

all the airfoil surface having supersonic flow over it. Thus, it can be seen that 2-D airfoils 
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having area that blocks the inbound flow causes local velocities on the surface to increase 

beyond that of the freestream until shocks are developed. 

 

Figure 7. Shock Wave Development on a 2-D Airfoil12 

 If instead the case of a 3-D finite swept wing such as that shown in Fig. (8) below 

is considered, more complex behavior comes to light. In this case, Schlichting12 discusses 

the correlation between Mach cone angles (a table showing the relation between Mach 

cone angles and freestream Mach number is shown in Fig. (8) below), leading and 

trailing edge conditions, and the types of shocks that coincide with these conditions. 

Schlichting shows that if the leading edge of a finite 3-D wing is swept far back enough 
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behind the Mach line and the trailing edge is also swept behind the Mach line, both edges 

would be subsonic with a shock developing toward the trailing edge. This shock would 

then coincide with the Mach line angle as is shown in case a in Fig. (8) below. In case b, 

there is a subsonic leading edge (behind the Mach line) and a supersonic trailing edge 

(ahead of the Mach line), where there appears to be no shock developing on the wing 

surface. Finally, case c shows a supersonic leading edge (not swept far enough to be 

behind the Mach line) and a supersonic trailing edge as well. In this case, a shock occurs 

toward the leading edge and coincides with the Mach line again12. Thus, 3-D wings with 

sweep complicate the development of shock waves even further as geometries can be 

adjusted to help avoid development of shocks even when freestream flow speeds exceed 

the speed of sound.  

 

Figure 8. Shock Wave Development on a 3-D Swept Wing12 
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Figure 9. Mach Cone Angle as a Function of Freestream Mach Number 

d. Critical Pressure Coefficient Predictions 

 It is beneficial to understand what aircraft geometries would cause development 

of shocks so that a real predictive capability may be developed. By understanding when a 

shock would occur for a given geometry at a given cruise Mach number, one could 

reshape the design of the aircraft to reduce the possibility of shock development and 

effectively increase the capable cruise Mach number. To obtain this understanding, von 

Karman15 began by observing the concept of a “Critical Mach number.” This critical 

Mach number would refer to the freestream Mach number that would coincide with the 

first occurrence of locally sonic flow on an object surface. Thus, at a certain Mach 

number, the object being observed would create local super-velocities that reach a Mach 

number of 1. The idea would then become that one could calculate the pressure 

coefficient that would coincide with the locally sonic flow. Eventually, further 
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development of this concept would lead to the critical pressure coefficient equation for 2-

D flow: 

𝐶𝑝
∗ =

𝑝 − 𝑝0
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 Thus, for 2-D flow, one could predict the onset of locally sonic flow by using this 

equation. The trend of this equation is shown in Fig. (10) below and shows that as the 

freestream Mach number is increased, the critical pressure coefficient value decreases 

until it reaches a value of 0 at a Mach number of 1. For 3-D flow, however, Küchemann 

explored the concept of how to predict the critical pressure coefficient of an infinitely 

long swept wing8. He developed his idea for an equation that would accurately predict 

this, and it is confirmed to be accurate by Kirkman and Takahashi7. This equation the 

becomes: 
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𝛾
𝛾−1
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This equation is modeled in Fig. (11) below and shows that the original critical pressure 

coefficient equation is “corrected” by the cosine of the wing sweep angle. This equation 

is meant to be an approximation of when a shock might occur due to a local pressure 

coefficient becoming more negative than the critical pressure coefficient. Thus, this does 

not guarantee a shock wave will form exactly once this pressure coefficient is reached on 

the surface of the observed object. 
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Figure 10. Cp* for 2-D Flow 

 

Figure 11. Cp* for Infinite Swept Wings – after Küchemann8 
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e. The Transonic Area Rule 

 The basic idea behind the Transonic Area Rule is that an aircraft can avoid 

premature transonic drag rise, or at least delay it, by indented the body at the wing-body 

junction to create a body having equivalent cross-sectional area development to the 

original body. Another claim of this ruling is that the wing-body combination being 

observed has the same transonic drag rise characteristics as a body of equivalent cross-

sectional area development, or a comparable body of revolution in this case16. To create a 

comparable body of revolution, cutting planes perpendicular to the flow of a zero-angle 

of attack body are passed through the areas where a wing is present. The cross-sectional 

area of the wing is then conglomerated into the body as a circular cross-section of greater 

area. This is demonstrated in Fig. (12) below where the original body on the left becomes 

the comparable body of revolution on the left due to the added cross-sectional area of the 

wings. To indent the bodies, the opposite process is done. Instead, the added cross-

sectional area from the wings are subtracted from the body, leaving circular cross-

sections with less area. This is shown in Fig. (13) below and the idea would be that the 

dark blue cross-sectional area in Fig. (14) would be equal to the cross-sectional area of 

the teal section. So, then the example shown for the unswept wing case shows that the 

comparable body on the right of Fig. (12) has the same cross-sectional area development 

as the indented body geometry on the right of Fig. (13). It should be noted, however, that 

though this is how the Transonic Area Rule is intended to work for indentation, it is not 

necessarily the “ideal” body for reduced wave drag. For the highest possible reduction in 

transonic drag rise, one would instead indent the body in such a way that the comparable 
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body of revolution from this new geometry would yield the Sears-Haack body (the 

commonly known aerodynamic shape for the lowest theoretical wave drag in supersonic 

flow).  

 

Figure 12. Unswept Wing, Cylindrical Body and Comparable Body Geometries16 

 

Figure 13. Unswept Wing, Cylindrical Body and Indented Body Geometries16 
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Figure 14. Transonic Area Rule2 

 The idea is then that the indented body creates a geometry with the required wing 

characteristics, but with a smoother transition cross-sectional area development. By doing 

this, Whitcomb then claims that the transonic drag rise of the geometry will now be 

reduced compared to the original body.  
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CHAPTER 3 

TOOLS & METHODS FOR COMPUTATIONAL FLUID DYNAMICS 

 To obtain a more in-depth look into the shock wave patterns described by the area 

rule, 3-D versions of the original geometries included in NACA Report 1273 

(Whitcomb’s 1952 report introducing the Transonic Area Rule) were mocked up and 

CFD solutions were obtained for them. This section then begins with the descriptions of 

these geometries provided in the report. 

a. Whitcomb’s 1952 Geometries 

To demonstrate the application of the Transonic Area Rule, Whitcomb created four 

base wing-body geometries which he named: 1) Unswept wing with cylindrical body; 2) 

Delta wing with cylindrical body; 3) Swept wing with cylindrical body; and 4) Swept 

wing with a curved body. Whitcomb described each loft with a dimensioned planform 

sketch, wing airfoil section descriptions and fuselage ordinates. The geometry planforms 

are as shown in Fig. (15) and Fig. (16) below, where all dimensions are in-in. 
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Figure 15. Planform Descriptions: Unswept Wing, Cylindrical Body (left) & Delta 

Wing, Cylindrical Body (right).16 

 

Figure 16. Planform Description: Swept Wing, Cylindrical Body (left) & Swept 

Wing, Curved Body (right).16 
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 For the unswept wing, Whitcomb described it as having a “0-degree sweep of the 

quarter-chord line, an aspect ratio of 4.0, and a taper ratio of 0. The streamwise sections 

of the wing are symmetrical, are 4 percent thick, and consist of circular arcs with the 

maximum thickness at the 40-percent-chord stations16.” 

 The delta wing is described simply as the reverse of the unswept wing “so that the 

75-percent-chord line is unswept… The leading-edge sweep of this wing is 37 degrees16.” 

 Finally, the swept wing was described as “a wing which has 45-degree sweep of 

the quarter-chord line, an aspect ratio of 4.0, a taper ratio of 0.6, and an NACA 65A006 

airfoil section parallel to the airstream16.” 

 Three types of bodies are then described by several tables of ordinates: the basic 

bodies (cylindrical and curved), comparable bodies of revolution (one for each of the four 

base geometries), and indented bodies (only bodies a-c in Fig. (15) and Fig. (16) above 

get these). These tables are included in Appendix A at the end of this report. 

b. Modeling Geometries in SolidWorks 

 With this information, the modeling process began with a need to create 3-D 

models to represent the given geometries. To obtain the bodies for each of the 

geometries, the ordinate data was inserted into SolidWorks as a polyline and revolved. As 

for the wings, wing sections were created at the root and tip and material was extruded 

between the two sections. Once these were completed, they were combined in 

SolidWorks Assembly at the dimensions shown in Fig. (15) and Fig. (16) above. The 

results of this process are shown in the following figures: 
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Figure 17. SolidWorks Base Body Geometries 

 In Fig. (18) are the comparable bodies of revolution designed using the Transonic 

Area Rule. Each of these bodies has an equivalent cross-sectional area development to 

their original wing-body combinations. For example, in the unswept and delta wing 

cases, the peak cross-sectional area points in the comparable bodies can be seen to 

coincide close to the location of the tip of the wing longitudinally. However, it should be 

noted that the location of maximum thickness on the wings will alter this location as 

greater thickness adds greater cross-sectional area. 

 

Figure 18. SolidWorks Comparable Bodies of Revolution 

 Similarly, in Fig. (19) below, there are the indented bodies. As explained in 

Chapter 2 of this report, the indentation of the body is simply the opposite process of the 
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comparable bodies above. Rather than adding the cross-sectional area of the wings to the 

bodies, it is instead subtracted from the body. Thus, the bodies in Fig. (18) have the same 

cross-sectional area development as the respective bodies in Fig. (19). 

 

Figure 19. SolidWorks Indented Bodies 

c. Pointwise Surface & Volume Meshes 

 Once the 3-D models were created, they could be transferred into a software 

called Pointwise which is used to create volume meshes. These volume meshes are then 

used in CFD codes to produce solutions based on the desired variables. The general 

process begins with creating a surface mesh on the body as is shown below.  In 

Pointwise, a delta s value is chosen to create the surface mesh. This value refers to the 

average grid point spacing on selected connectors (shown as the blue lines outlining the 

model). The delta s value used for every model’s body is 0.0025-m, which equates to 

approximately 0.01-in. The wings, however, use a value of 0.0015-m (~0.06-in) due to 

the complexity of the flow on this portion in comparison. Given the length of the 

cylindrical body, this equates to approximately 4,300 points along a connector of the 

body. Given that the curved body is shorter, this equates to approximately 3,260 points 
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along the body length. The unswept and delta wings then end up with approximately 

30,000 points total over their whole surface. The swept wing has approximately 35,000 

points total over its whole surface. 

 

Figure 20. Example Unswept Wing, Cylindrical Body Surface Mesh 

 A point to note is that there is a boat-tail added to the back of the geometry as 

seen in Fig. (20). This feature was added to all models to improve code convergence 

when fed to the SU2 solver, which will be discussed in further detail in the next section. 

Continuing the meshing process, however, a volume grid could then be created stemming 

off the surface mesh. After properly initializing this grid, a mesh like the one shown in 

Fig. (21) is created. The total points in each of these volume grids is shown in Table 5 in 

Chapter 7 of this report. Each of the volume grids created is hybrid in terms of the types 

of elements used (i.e. tetrahedrals, pyramids, etc.) and can be seen in Fig. (21). Along 

with this, the far-field was extended out in every direction approximately 35 body lengths 

(~35m). 
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Figure 21. Symmetry Wall View of Volume Mesh 

 Once all these steps are completed, the boundary conditions could be set for 

recognition in SU2. The boat-tail added to the back of the geometry is referred to as 

“sting,” the fuselage and wing as “body,” the symmetry wall as “symm,” and the far-field 

as “farfield.” The mesh file is the converted to an SU2 file type to be run through the 

solver. 

d. SU2 CFD Code 

 SU2 (v7.1.1 “Blackbird”) is an open-source CFD code chosen to use for analysis 

of these geometries. Given the number of geometries, desired Mach number runs, and the 

computational intensity of these solutions, an inviscid “Euler” solution was used. This 

means that the surfaces defined as Euler boundaries in the SU2 input file have a slip 

condition (i.e. no skin friction is included in these solutions). The reduction in 

computation time, however, is mainly attributed to dropping all viscous terms anywhere 

else in the flow that would have had to be calculated otherwise. This shouldn’t be an 
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issue for comparison purposes as Whitcomb normalized his drag rise results by 

subtracting the drag coefficient measurements at a Mach of approximately 0.85 from the 

other solutions. According to Whitcomb “this subtraction nearly eliminated the effects of 

differences in the skin friction of the comparable configurations on the comparisons of 

the drag characteristics for these configurations16.” It will be noted later, however, that 

the results presented in this report are normalized to a lower Mach number of 0.5.  

 Returning to explanation of the boat-tail at the end of the geometries, it should 

have no impact on the drag measurements as it is excluded from evaluation of 

coefficients. Whitcomb also does something like this by correcting the data to “a 

condition at which the base pressure is equal to the stream static pressure16.” Given that 

SU2 obtains its drag coefficient by integrating the pressures projected onto the surface of 

the geometry, the effect should be the same. 

 Finally, once the Euler boundaries (body and sting), far field (farfield), and 

symmetry wall (symm) are defined, the free-stream Mach number can be input. As the 

solution is computed, a history file is updated with the progressing drag coefficient and 

rms values. For convergence, the column on the far left (rms[Rho]) in Fig. (22) below 

must reach a value of -11. Convergence generally isn’t an issue between columns as they 

generally follow the same trend. The exceptions to this are typically the RhoW and RhoE 

terms. For context, “Rho” refers to density, the “U, V, and W” terms refer to velocity 

components and the “E” terms refers to energy. To demonstrate this convergence, Fig. 

(23) and Fig. (24) below show the rms values, and lift and drag coefficient values versus 

iteration number, respectively. The lift values should be expected to remain around zero 
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given that the geometries are at zero-lift angle of attack (zero degrees given symmetry of 

upper and lower surfaces for all cases). 

 

Figure 22. Convergence History of Unswept Wing, Cylindrical Body at M=0.88. 

 

Figure 23. RMS Values vs. Iteration Number 
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Figure 24. Lift and Drag Coefficients vs. Iteration Number 

 All solutions are made sure to converge before being included in any data within 

this report. Once the solutions are completed, the calculated data from SU2 is transferred 

to TecPlot output files for the surface flow and 3-D volume flow solutions. Each run of 

SU2 to output these files is for a geometry at a single Mach number. Thus, for 11 

geometries and 8 Mach numbers each, this code had to be run 88 times. 

e. TecPlot CFD Solution Modeling 

 TecPlot is a simple CFD solution visualizer that is used to present the flow 

characteristics modeled by the SU2 solutions discussed above. This includes some 

planform views of the models with either pressure coefficient or Mach number data 

shown on the surface of the bodies or 3-D flow solutions showing shock waves coming 

off the body. It should be noted that the flow and surface solutions will be in reversed 

directions, so it is important to pay attention to the coordinate system that will be 
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included in all these solution images. In these solutions, there will be some data probing 

for pressure coefficients at Mach numbers at locations determined to be shocks. 

 The determination of shocks in this thesis are subjective as they are determined by 

locations where the local flow goes from supersonic to subsonic over a distance where 

the probes are close together and the measured variables change drastically. An example 

of what is determined to be a shock is shown in Fig. (25) and Table 1 below. The probes 

here go from top to bottom in ascending order (i.e. probe 1 is closer to the root of the 

wing and probe 3 is near the wing-tip). In these solutions the flow is moving along the 

positive x-axis. Thus, the “a” probes are the upstream points and the “b” probes are 

downstream (after the shock). It should also be mentioned here that the black band 

regions will always show layers of Mach numbers between 0.9875 and 1. This is to keep 

consistency of determining shocks between solutions and gives a clear enough threshold 

to define a shock. In the example case below, it has been determined that probes 1 and 3 

are located at shocks whereas probe 2 is not. In Fig. (25) it can be seen that the probes in 

1 and 3 are kept quite close together before and after the black band, whereas the probes 

at 2 are separated a considerable distance. Then, in Table 1, it can be seen that even at the 

short distances at locations 1 and 3, they are still jumping from supersonic to subsonic a 

considerable amount (as demonstrated by the Mach number data). Location 2, however, 

has a short, smooth jump between supersonic to subsonic over a much greater distance. 

This becomes the basis of defining shocks in these solutions. 
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Figure 25. Swept Wing Cylindrical Body at M=0.95. 

Table 1. Non-Shock & Shock Example Data Probes 

Probes (Wing) CP Mach Shock/Non-Shock 

1a -0.176 1.014 Shock 

1b -0.096 0.964 

2a -0.157 1.002 Non-Shock 

2b -0.127 0.984 

3a -0.181 1.014 Shock 

3b -0.116 0.975 

 

Top-Down View 
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 Finally, as shock patterns become more complex, keeping track of data probe 

locations also gets complicated, so a general template is defined for the order and 

location of probes. In Fig. (26) below, the general order is demonstrated. As discussed in 

the shock determination, regions of very thing black band regions will generally be 

determined to be a shock, but they will be differentiated by whether they are on the 

fuselage or the wing. Thus, probe locations 1 and 6 in Fig. (26) are body shocks, whereas 

all other probes refer to wing shocks. The other level of separation is then if these regions 

are connected along the same thin black band. Thus, probe locations 2 and 3 refer to the 

same shock, whereas probe locations 4 and 5 refer to a difference shock. Probe locations 

1 and 2 would refer to the same shock if not differentiated by body vs wing. Then, the 

order of probing goes from left to right in all cases (even in flow solutions where the 

coordinate system is reversed). If the shock is vertical along a surface (i.e. no left-right 

separation), then the priority is from top to bottom. This is presented in Fig. (26) in 

ascending order from 1 to 6. These formats are then the general way that these solutions 

will be presented throughout the report. 
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Figure 26. Example of Probe Placement 

 

 

 

 

 

 

 

Top-Down View 
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CHAPTER 4 

COMMON WAVE DRAG ESTIMATION METHODS 

 Though CFD analysis is a relatively new tool growing in popularity, it is time 

consuming in its development process (as was demonstrated in the previous chapter) and 

is generally computationally intensive. It is for these reasons that there are still other 

wave drag estimation methods in use that require far less information to provide a 

relatively accurate approximation of the wave drag produced by a geometry. Thus, it 

becomes dependent on the steps of the design process one is in. The simpler wave drag 

estimation methods allow for a quick test of multiple geometries while CFD analysis 

allows for a more in depth look into the flow conditions of a chosen geometry. 

 Brenda Kulfan9 discusses some of the differences between these two types of 

methods of drag approximation. A list of these differences is shown in Fig. (27) where 

Planar Linear Theory Analyses refer to analyses performed using methods derived from 

linear potential flow theory with planar boundary conditions. According to Kulfan9, these 

planar linear theory analyses tend to underestimate compression pressures and 

overestimate expansion pressures, but they tend to be insignificant for drag 

measurements. Another behavior is that the disturbances modeled by linear theory 

propagate along freestream Mach lines which may cause issue in accurately prediction 

the development of shocks. Regarding the point on interference between lift and volume, 

Kulfan states that “these differences typically are not significant effects for long slender, 

thin configurations at low lift coefficients9.” The last point is very important to take into 

consideration as viscous effects can cause major differences from realistic flows. 
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Methods developed using linear potential flow theory will neglect viscous interaction 

effects and thus the contribution of viscous effects to lift and drag values. 

 

Figure 27. Planar Linear Theory Analyses vs CFD Analyses9 

 Another advantage to using these linear theory analyses is that total drag 

approximations can be broken into several different sources of drag through drag 

decomposition. Many of these methods function by approximating each component of 

drag through different applications of many of the same theories and then essentially 

combing the contributions into a single drag value. Thus, each component has its own 

separate development and can be singled out to observe values of particular interest. 

 With this in mind, two very common wave drag estimation methods were used to 

approximate the wave drag produced by Whitcomb’s geometries in an attempt to match 
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the data provided in his report. Thus, in this work there are then three sources of 

approximation to allow for more in-depth comparison of results and further validation of 

accuracy if there is consistency. 

a. EDET 

 EDET stands for “Empirical Drag Estimation Technique” and functions exactly as 

its name states. This code was designed to “use information already known about existing 

aircraft to predict the characteristics of future designs4.” The general idea was not 

necessarily to completely accurately predict the total drag experienced by a geometry, but 

to instead provide a fairly accurate approximation early in the design process to guide 

decision making. This code provides drag coefficient approximations for many types of 

drag sources, including skin friction drag. However, given the Euler solution used for the 

CFD results (i.e. inviscid), the only term used from EDET results is the wave drag. 

According to the report by Feagin & Morrison, the wave drag is separated into drag due 

to volume (zero-lift drag) and drag due to lift. In Whitcomb’s report, he is testing 

symmetrical wing sections with the models being at zero angle-of-attack, and thus at 

zero-lift. Thus, the only term of concern from EDET’s wave drag is the zero-lift wave 

drag. This portion is itself split into components being the contribution from the fuselage, 

wing, and a wing-body interference effect4. Thus, there is only focus on the zero-lift 

wave drag term that could be found in the EDET table of values for the conditions of 

interest.  

 To determine the estimated value of zero-lift wave drag, one must first calculate 

the contribution from the fuselage. To do this the trends of Fig. (29) and Fig. (30) below 
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are used. It should be noted that these trends were extended as in Table 2 below to 

account for the values needed for Whitcomb’s geometries. However, to determine the 

correct trends to be following, one must calculate the fuselage length to diameter ratio, 

body closure ratio (the base area of the fuselage), the reference area (typically wing area), 

and the maximum effective body cross-sectional area (referred to as Sπ). An example of 

the area values determined is shown in Fig. (28) below. Thus, the correlation of input 

geometry to the empirical data used in EDET is based on the “equivalent fineness ratio” 

of said geometry and is used to estimate the value of CDπ.  

 

Figure 28. Cross-Sectional Area vs. Length of Geometry4 
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Figure 29. Subsonic Fuselage Compressibility Drag4 
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Figure 30. Supersonic Fuselage Compressibility Drag4 
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Table 2. Extended EDET Table 

 

 Finally, to determine the value of the fuselage contribution zero-lift drag due to 

slender body compressibility effects, the following equation is used: 

𝐶𝐷𝐶 = 𝐶𝐷𝜋 ∗
𝑆𝑟𝑒𝑓

𝑆𝜋
 (3) 

To determine the zero-lift wave drag from EDET for the Whitcomb geometries, the 

following values in Table 3 must then be used with Eq. (3) and Table 2 above. 

Table 3. Necessary Fuselage Values for Use in EDET Corrections 

CONFIG Sref (ft2) S (ft2) (L/D) 1+Sb/S 

All Cylindrical 

Body Cases 

1 0.077 11.47 2 
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 The next step of the process is then to apply the wing wave-drag contribution 

correction. This starts with a variable referred to as MDES which is an empirical function 

of leading-edge sweep, camber, and aspect ratio of a wing. It is determined by finding the 

2-D drag divergence Mach number (found using Fig. (32)) correlated with the geometry’s 

design lift coefficient (determined using the curves in Fig. (31) below) and corrected to 

be 3-D by including corrections for the sweep and aspect ratio effects. Then, for an 

uncambered wing, the wave drag increment for the wing can be calculated using Eq. (4) 

below. 

∆𝐶𝐷𝐶𝑤𝑖𝑛𝑔 = 𝐾2 ∗ (
𝑡

𝑐
)

5
3

 (4) 

Thus, the wing wave drag contribution depends on the thickness ratio of the wing and this 

K2 value. As is shown in Fig. (33) below, K2 is related to the wing thickness as well 

along with the difference between the analysis Mach number and the design Mach 

number. Once the K2 value has been taken from that table, then it can be used in Eq. (4) 

to determine the wing’s contribution. The values used for the wing wave drag 

contribution for Whitcomb’s geometries are as shown in Fig. (34) below. Once both 

contributions are calculated, they can simply be summed to get the total approximated 

zero-lift wave drag for the geometry. 
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Figure 31. Design Lift Coefficient Curves4 
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Figure 32. Two-Dimensional Drag Divergence Mach Number4 

 

Figure 33. K2 Values Table4,14 
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Figure 34. Necessary Wing Values for Use in EDET Corrections 

b. D2500 

 D2500, also known as the Harris Wave Drag Code, produces estimates of 

inviscid, supersonic pressure drag of shapes with fully attached flow. The whole basis of 

this code is making use of the Supersonic Area Rule (very similar to the Transonic Area 

Rule). The idea behind the Supersonic Area Rule is to take cutting planes parallel to each 

other through the configuration, all at the Mach angle for the freestream Mach number 

observed. The area distributions at each station from these cutting planes is then projected 

onto the plane normal to the freestream flow at their respective stations. The cross-

sectional area development from combining the areas from the cutting planes is then 

made into the profile for equivalent bodies of revolution. However, the cutting planes can 

also be oriented at different angles as is shown by theta in Fig. (35) below. Several 

different angles for theta are then observed and equivalent bodies of revolution are 

created for each. Thus, for each Mach number observed, several different equivalent 

bodies are created corresponding to several values of theta. Then, “the wave drag of each 

equivalent body is determined by the von Kármán slender-body formula which gives the 

drag as a function of the free-stream conditions and the equivalent-body area 

distribution6.” Finally, the results from the calculated wave drag values for each of the 

observed angles at a single Mach number is integrated to provide an average of these 

values. This is then the wave drag approximation by the Supersonic Area Rule6,17. 
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Figure 35. Wave-Drag Computing Procedure in Supersonic Area Rule6 

 However, it should be noted that the Supersonic Area Rule does not account for 

wave reflections due to interactions of flow between the fuselage and wing. Thus, more 

complicated geometries may prove to be more trouble for D2500, but it is not meant to be 

an exact method. Instead, the use of the Supersonic Area Rule is advised for early design 

processes to allow for quick trade studies before making permanent design choices. Thus, 

D2500 proves to be a quick, efficient method of making decisions early in the design 

process.  

 As might be expected, describing the geometry of a complex aircraft can be done 

many different ways, so the method D2500 uses has been documented extensively. The 

general idea is demonstrated in Fig. (36) below. Essentially, all components of the 
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aircraft are broken down into sections as shown in the mathematical model. The fuselage 

is described by the radii of equivalent circles at stations along the body, where the 

connection between stations (i.e. variation in radii) is assumed to be linear. The wings are 

then described by airfoil sections distributed along the span of the wing where the airfoil 

sections themselves are described by ordinate data. Once again, the connections between 

ordinate points are assumed to be linear. Horizontal and vertical tails to be included are 

described in a similar manner to the wings6. Given the simplicity of the Whitcomb 

geometries, no further complication is necessary. 

 

Figure 36. D2500 Method of Mathematically Modeling an Illustrated Airplane6 

 The input file for the D2500 code requires the ordinates for the fuselage, the 

leading-edge location of the wing, wind chords, and wing airfoil sections. Thus, the input 

for D2500 fits the geometry of Whitcomb’s models in a lot more detail than EDET and 
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functions by reducing the geometry to a comparable body of revolution. Once the 

program is given the necessary information in the input file like that shown in Fig. (37), it 

performs the process described by the Supersonic Area Rule above and yields an output 

file similar to that in Fig. (38) where the approximation of wave drag can be retrieved 

(the CDW terms). 

 

Figure 37. Unswept Wing, Cylindrical Body D2500 Input File 
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Figure 38. Unswept Wing, Cylindrical Body Section of D2500 Output File 
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CHAPTER 5 

WAVE DRAG RESULTS & COMPARISON 

 In this section there will be data presented on the normalized wave drag 

approximations produced by the SU2, EDET, and D2500 in comparison with the 

digitized results from Whitcomb’s report. It should be noted that Whitcomb’s results are 

normalized to the drag coefficient values produced at a freestream Mach number of 0.85, 

but the results in this report are normalized to those at a freestream Mach number of 0.5. 

This is done in an attempt to create a better comparison between the geometries observed 

because of their very different configurations. The idea behind this is that at a Mach 

number of 0.85, one may still expect compressibility effects to come into play (i.e. shocks 

and the like) here that may impact each of the geometries differently. At a Mach number 

of 0.5, flow can generally be treated as “incompressible” and thus establish a good point 

of comparison between each of the models. The drag coefficient and normalized drag 

coefficient data collected is included in Appendix B. The data taken from Whitcomb’s 

report will also include error bars ranging +/- 0.0005 according to the report’s claim of 

accuracy16. 
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Figure 39. Unswept Wing Cylindrical Body Wave Drag Approximations 

 

Figure 40. Full EDET Prediction for Unswept Wing Cylindrical Body 
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 In the case of the unswept wing, cylindrical body geometry, Whitcomb’s data 

shows that the base wing-body configuration has drag rise characteristics that nearly 

completely resemble that of the equivalent body of revolution, which fits the first claim 

of Whitcomb’s Transonic Area Rule. The SU2 results, however, do not seem to fit the 

claim with the drag rise of the comparable body being greater than that of the base 

geometry. It should be noted, however that the SU2 wing-body solution appears to fit 

quite well with Whitcomb’s wing-body measurements. Thus, SU2 appears to have done 

well at matching the wind tunnel data for the full configuration but does not agree with 

the comparable body configuration. The TecPlot visualizations of the flow may shed 

some light on this. As for the D2500 approximation, it seems to be pessimistic at the 

lower range of Mach numbers observed (M=1.05), but gradually aligns with the wing-

body cases for both SU2 and Whitcomb’s data (though the further trend of Whitcomb’s 

data up to higher Mach numbers cannot be predicted). Finally, EDET appears to be 

greatly pessimistic at all Mach numbers observed for the drag rise of this geometry. 

There is no agreement whatsoever between this method and any others. 
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Figure 41. Delta Wing Cylindrical Body Wave Drag Approximations 

 In the case of the delta wing, cylindrical body geometry, Whitcomb’s data again 

argues in favor of the first claim as both the wing-body and comparable body curves 

coincide for most of the Mach numbers observed. The only odd occurrence in this case is 

around a Mach number of 1 where the comparable body appears to yield greater values. 

In comparison to the SU2 data, the wing-body solution appears to agree quite well with 

the wind tunnel data up until a Mach number of approximately 1, after which the SU2 

solution appears to underpredict. For the comparable body, however, the SU2 solution 

appears to predict higher values for all observed Mach numbers than the Whitcomb data 

or the SU2 wing-body solution. The D2500 prediction appears to start off higher than any 

other prediction until it gradually falls into place with the end of the Whitcomb data and 

fits in between the SU2 wing-body and comparable body cases. Finally, the EDET 

approximation seems to predict higher values up until a Mach number of approximately 

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

Δ
C

D
0

M

Delta Wing - Cylindrical Body

SU2 Wing-Body SU2 Comparable Body WC Wing-Body

WC Comp. Body D2500 Prediction EDET Prediction



53 
 

0.95, where it is exceeded by the SU2 comparable body case. In a rather loose way, the 

EDET solution appears to agree with the SU2 wing-body case for a range of Mach 

numbers between 0.95 and 1.1. 

 

Figure 42. Swept Wing Cylindrical Body Wave Drag Approximations 

 The swept wing, cylindrical body geometry does not appear to argue the first 

claim like the unswept and delta cases did as even in Whitcomb’s data, the wing-body 

and comparable body cases do not agree. Another interesting characteristic of this data is 

that the comparable body appears to produce lower values than that of the wing-body. 

This holds true for the SU2 cases as well, but the wing-body case appears to agree with 

Whitcomb’s data more than the comparable body case. The SU2 comparable body 

produces greater values than that of Whitcomb’s. The D2500 approximation in this case 

is interesting because it agrees almost perfectly with three of the values from the SU2 
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wing-body case and appears to approximate the Whitcomb data quite well at the end of it. 

Thus, the wing-body cases appear to agree quite well for the Whitcomb data, SU2 

solution, and D2500 approximation. Finally, EDET, much like in the unswept case 

appears to predict much greater values than any other approximation used. There is once 

again no agreement between this method and any others. 

 

Figure 43. Swept Wing Curved Body Wave Drag Approximations 

 The final base geometry is that of the swept wing, curved body which, like the 

cylindrical body case, does not argue in favor of the first claim. Again, the comparable 

body of Whitcomb’s data seems to produce values less than the wing-body. The only 

approximation method used for this geometry was SU2 and though they seem to agree 

that the comparable body produces less of a drag rise, the Whitcomb data and SU2 

approximations do not appear to agree very well.  
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Figure 44. Unswept Wing Indented Body Wave Drag Approximations 

 In the second claim of the Transonic Area Rule, the indented body configuration 

should be expected to produce less of a transonic drag rise than the original wing-body 

configuration. However, as is seen in Fig. (16) for the unswept wing, this only appears to 

be true up to some Mach numbers. SU2 does indeed predict a lower transonic drag rise 

for the indented case up to a Mach number of approximately 1.05 and eventually exceeds 

the drag rise of the wing-body for greater Mach numbers. Along with this, the SU2 

approximation appears to predict less of a reduction in the transonic drag rise than 

Whitcomb’s data demonstrates. 
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Figure 45. Delta Wing Indented Body Wave Drag Approximations 

 Similar to the unswept wing case, SU2 appears to predict a reduction in drag rise 

only up until certain Mach numbers, where again it exceeds the wing-body for Mach 

numbers higher than this. The SU2 prediction also seems to predict less reduction than 

Whitcomb’s data demonstrates again. However, it does appear that the delta wing case 

does yield more of a reduction than the unswept case with a peak reduction of 

approximately 0.005 vs 0.002 both at a Mach number of 0.98. 
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Figure 46. Swept Wing Indented Body Wave Drag Approximations 

 The case of the swept wing stands alone in its characteristics as it appears to argue 

Whitcomb’s claim fairly well. In this case, the SU2 prediction appears to agree with 

Whitcomb’s data for the indented body case fairly well. Along with this, the SU2 

indented body appears to yield a lower drag rise than the SU2 wing-body all the way up 

to a Mach number of 1.2. The peak reduction in this case appears to happen at a Mach 

number of 1.05 and is approximately 0.003. It should also be noted that the swept wing 

case, whether or not it is indented at the body, produces a less extreme drag rise than the 

other cases. 

 Thus, concludes the results of the drag rise approximations, which have shown 

some major disagreement with both of Whitcomb’s Transonic Area Rule claims. 

However, these values do not paint the whole picture of all the mechanisms taking place 
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in these solutions. This is where the questions arise, what is causing these differences, 

and how are shock patterns affecting what is seen here? It is for this reason that the 

surface pressure and local Mach number results of the SU2 solutions were produced.  

 

 

 

 

 

 

 

 

 

 

 



59 
 

CHAPTER 6 

SURFACE PRESSURE & LOCAL MACH NUMBER RESULTS 

 In this section there will be many figures of TecPlot solutions with a black band 

used to demonstrate where the flow either goes from subsonic to supersonic or vice-

versa. Data probes are placed a very short distance before and after the shock for each of 

these cases to collect data on the surface pressure coefficients and local Mach numbers. 

Along with this, the shock angles will be measured from the line perpendicular to the 

incoming flow (freestream flows in the positive-x direction). Shocks located directly on 

the body have their angles measured from the 3-D flow solution vs the surface flow 

solutions. These shock angles are then used as “sweep” in the table of Küchemann CP* 

values discussed in Chapter 2 to determine what Küchemann’s CP* equation would 

predict to be the pressure coefficients that would cause a shock. It should be noted, 

however, that there are some CP measurements that appear to exceed the range of 

prediction from the CP* table. When this occurs, the CP* column of a table will be filled 

in with a “N/A.” For the measure pressure coefficient values to agree with Küchemann’s 

predictions, one should expect the CP* value to be at about the halfway point between 

the CP measurements upstream and downstream of the shock. 

a. Unswept Wing, Cylindrical Body 

 In this section are the CFD solutions (mostly surface and some flow) for the 

Unswept Wing, Cylindrical Body geometry. This section consists of Fig. (47)-Fig. (53) 

which include figures and the tabulated values of the probe data collected. Refer to 

Chapter 3, Part e. for instructions on how to read these. 
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Figure 47.  Unswept Wing, Cylindrical Body M=0.5 Solution 

 

Figure 48.  Unswept Wing, Cylindrical Body M=0.88 Solution 

Top-Down View 

Top-Down View 
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Probes CP Mach # Shock Angle (º) CP* 

1a -0.178 1.042 2.3 -0.09 

1b -0.035 0.957 

2a -0.176 1.038 

2b -0.050 0.963 

Side View 

Top-Down View 
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3a -0.185 1.036 5.9 -0.09 

3b -0.022 0.940 

4a -0.167 1.027 

4b -0.038 0.952 

5a -0.186 1.036 15.8 ~-0.14 

5b -0.067 0.967 

 

Figure 49.  Unswept Wing, Cylindrical Body M=0.95 Solution 

 

Side View 
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Probes CP Mach # Shock Angle (º) CP* 

1a -0.106 1.027 8.4 (-0.04)-(-

0.06) 1b 0.055 0.930 

2a -0.107 1.029 

2b 0.068 0.924 

3a -0.134 1.037 7.6 (-0.04)-(-

0.06) 3b 0.050 0.925 

4a -0.107 1.024 

4b 0.051 0.930 

5a -0.096 1.020 

5b 0.036 0.938 

 

Figure 50.  Unswept Wing, Cylindrical Body M=0.98 Solution 

Top-Down View 
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Probes CP Mach # Shock Angle (º) CP* 

1a 0.024 1.023 9.5 N/A 

1b 0.125 0.959 

2a 0.038 1.014 

Side View 

Top-Down View 
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2b 0.132 0.953 

3a 0.029 1.010 6.1 N/A 

3b 0.097 0.967 

4a 0.025 1.013 

4b 0.108 0.960 

 

Figure 51.  Unswept Wing, Cylindrical Body M=1.05 Solution 

 

Probes CP Mach # Shock Angle (º) CP* 

1a 0.086 1.018 4.6 N/A 

1b 0.160 0.968 

2a 0.098 1.010 

2b 0.173 0.959 

 

Figure 52.  Unswept Wing, Cylindrical Body M=1.1 Solution 

Top-Down View 
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Figure 53.  Unswept Wing, Cylindrical Body M=1.15 Solution 

 Looking at the solutions above, it can be seen that a shock does develop across the 

wing and on the body starting at the Mach 0.95 solution and appearing to disappear at the 

Mach 1.15 solution. The shock appears to develop across most of the wing and as the 

freestream Mach number increases, it moves further toward the trailing edge of the wing. 

The shock seems to disappear at the trailing edge junction of the wing and body. Along 

with this, the body does not appear to yield a body shock at the same location for the 

Mach 1.05 solution. Instead, another body shock appears to form forward of the wing, 

which again dissipates at higher Mach numbers. Though not shown here, the Mach 1.05 

solution also appears to demonstrate the starts of a small bow shock at the nose. As the 

Mach number is increased however, this bow shock shrinks in size to a point where it is 

hard to see. Eventually, it appears as though there are no shocks on the body at all. This 

behavior at the nose is shown in the comparable body section of this geometry. 

Top-Down View 
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 Looking at the tables of data probe values, it can be seen that there is some odd 

behavior. When looking at the shock angles for the given freestream Mach numbers, it 

can be seen that expected Mach cone angles are not recovered. Another interesting 

behavior is that Küchemann’s CP* equation does appear to predict pressure coefficient 

values before development of a shock quite well for subsonic freestream solutions. At the 

supersonic solutions, the equation is no longer able to predict pressure coefficient values 

as it only covers negative pressure coefficient values. This is relatively odd because a 

negative pressure coefficient value would go in hand with a local Mach number greater 

than freestream. Given the way super-velocities function, it would be expected that the 

flow over the wing before the shock would be greater than freestream. Instead, in every 

supersonic case, right before the shock, the flow appears to slow down to slightly below 

freestream. 

b. Unswept Wing, Comparable Body 

 In this section are the CFD solutions (all flow) for the Unswept Wing, 

Comparable Body geometry. This section consists of Fig. (54)-Fig. (61) which include 

figures and the tabulated values of the probe data collected. Refer to Chapter 3, Part e. for 

instructions on how to read these. 
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Figure 54.  Unswept Wing, Comparable Body M=0.5 Solution 

 

Probes CP Mach # Shock Angle (º) CP* 

1a -0.378 1.055 4.3 ~-0.19 

Side View 

Side View 
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1b -0.234 0.976 

2a -0.361 1.046 

2b -0.212 0.962 

 

Figure 55.  Unswept Wing, Comparable Body M=0.88 Solution 

 

Probes CP Mach # Shock Angle (º) CP* 

1a -0.278 1.093 6.9 (-0.09)-(-

0.11) 1b -0.018 0.931 

2a -0.256 1.077 

2b -0.010 0.928 

 

Figure 56.  Unswept Wing, Comparable Body M=0.95 Solution 

Side View 
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Probes CP Mach # Shock Angle (º) CP* 

1a -0.141 1.048 11.4 (-0.06)-(-

0.07) 1b 0.033 0.944 

2a -0.138 1.046 

2b 0.033 0.943 

 

Figure 57.  Unswept Wing, Comparable Body M=0.98 Solution 

Side View 
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Probes CP Mach # Shock Angle (º) CP* 

1a 0.028 1.031 7.5 N/A 

1b 0.162 0.947 

2a 0.003 1.036 

2b 0.128 0.953 

3a 0.021 1.035 9.5 N/A 

3b 0.114 0.977 

4a 0.003 1.047 

4b 0.167 0.943 

 

Figure 58.  Unswept Wing, Comparable Body M=1.05 Solution 

Side View 



72 
 

 

Probes CP Mach # Shock Angle (º) CP* 

1a 0.083 1.043 13.8 N/A 

1b 0.209 0.961 

2a -0.014 1.109 

2b 0.243 0.938 

3a 0.027 1.068 

3b 0.225 0.933 

4a 0.016 1.088 20.4 N/A 

4b 0.203 0.965 

5a 0.005 1.096 

5b 0.228 0.934 

 

Figure 59.  Unswept Wing, Comparable Body M=1.1 Solution 

Side View 
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Probes CP Mach # Shock Angle (º) CP* 

1a 0.108 1.071 16.9 N/A 

1b 0.257 0.970 

2a 0.061 1.105 

2b 0.288 0.949 

3a 0.129 1.047 

3b 0.292 0.935 

 

Figure 60.  Unswept Wing, Comparable Body M=1.15 Solution 

Side View 
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Probes CP Mach # Shock Angle (º) CP* 

1a 0.202 1.049 22.6 N/A 

1b 0.315 0.972 

2a 0.213 1.036 

2b 0.307 0.972 

 

Figure 61.  Unswept Wing, Comparable Body M=1.2 Solution 

 For the comparable body case the shock appears to occur aft of the point of 

maximum cross-sectional area and progresses aft as the freestream Mach number is 

increased. However, transitioning from the Mach 0.95 solution to the 1.05 solution, it can 

be seen that the shock moves forward of the area ruling cross-sectional area development 

and gradually moves closer to it as the freestream Mach number is increased even more. 

However, at the Mach 1.05 solution, a bow shock can be seen to develop at the nose of 

Side View 
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the body which progressively shrinks. This nose behavior is also present in the base and 

indented bodies. 

 Just as in the base body case, this geometry does not return the expected values of 

Mach cone angles when comparing the measured shock angles. And again, Küchemann’s 

equation appears to predict the pressure coefficients before a shock fairly well with the 

exception of the Mach 0.88 solution where the predicted CP* does not fall within the 

measured range. The most accurate case appears to be the Mach 0.98 case where the 

predicted value falls almost perfectly at the halfway point of the probe data. At the 

supersonic solutions, there is an issue of not being able to predict CP* values again. 

c. Unswept Wing, Indented Body 

 In this section are the CFD solutions (mostly surface and some flow) for the 

Unswept Wing, Indented Body geometry. This section consists of Fig. (62)-Fig. (69) 

which include figures and the tabulated values of the probe data collected. Refer to 

Chapter 3, Part e. for instructions on how to read these. 



76 
 

 

Figure 62.  Unswept Wing, Indented Body M=0.5 Solution 

 

Side View 

Top-Down View 
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Probes CP Mach # Shock Angle (º) CP* 

1a -0.326 1.019 12.8 ~(-0.22)-(-

0.24) 1b -0.201 0.947 

2a -0.320 1.017 

2b -0.216 0.956 

 

Figure 63.  Unswept Wing, Indented Body M=0.88 Solution 

Top-Down View 
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Probes CP Mach # Shock Angle (º) CP* 

1a -0.253 1.059 8.2 (-0.09)-(-

0.11) 1b -0.026 0.917 

2a -0.255 1.066 13.8 

Side View 

Top-Down View 
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2b -0.013 0.916 (-0.13)-(-

0.14) 3a -0.173 1.027 

3b -0.061 0.959 

4a -0.184 1.032 7.2 (-0.09)-(-

0.11) 4b -0.047 0.951 

5a -0.212 1.042 

5b -0.037 0.938 

6a -0.207 1.023 4.4 -0.09 

6b -0.063 0.939 

 

Figure 64.  Unswept Wing, Indented Body M=0.95 Solution 

 

Side View 
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Probes CP Mach # Shock Angle (º) CP* 

1a -0.240 1.088 15.9 (-0.09)-(-

0.11) 1b 0.051 0.895 

2a -0.233 1.087 22.4 -0.15 

2b 0.085 0.886 

3a -0.128 1.033 

3b -0.022 0.969 

4a -0.106 1.019 15.7 (-0.09)-(-

0.11) 4b -0.005 0.958 

5a -0.161 1.051 

5b 0.029 0.935 

6a -0.131 1.018 ~0 -0.03 

6b -0.031 0.957 

 

Figure 65.  Unswept Wing, Indented Body M=0.98 Solution 

Top-Down View 
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Probes CP Mach # Shock Angle (º) CP* 

1a -0.108 1.079 15.6 N/A 

1b 0.143 0.903 

2a -0.112 1.081 27.7 -0.1 

Side View 

Top-Down View 
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2b 0.168 0.890 

3a -0.008 1.027 

3b 0.091 0.964 

4a 0.004 1.020 27.4 -0.1 

4b 0.096 0.961 

 

Figure 66.  Unswept Wing, Indented Body M=1.05 Solution 

 

Side View 
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Probes CP Mach # Shock Angle (º) CP* 

1a -0.043 1.086 23.8 ~0 

1b 0.209 0.906 

2a -0.060 1.093 33.1 (-0.09)-(-

0.11) 2b 0.197 0.910 

3a 0.051 1.033 

3b 0.157 0.962 

 

Figure 67.  Unswept Wing, Indented Body M=1.1 Solution 

Top-Down View 
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Probes CP Mach # Shock Angle (º) CP* 

1a 0.068 1.062 Unknown N/A 

1b 0.301 0.901 

2a 0.024 1.084 33.7 N/A 

2b 0.233 0.934 

3a 0.122 1.020 

3b 0.195 0.971 

 

Figure 68.  Unswept Wing, Indented Body M=1.15 Solution 

Top-Down View 



85 
 

 

 

Probes CP Mach # Shock Angle (º) CP* 

1a 0.182 1.035 31.8 N/A 

1b 0.326 0.938 

 

Figure 69.  Unswept Wing, Indented Body M=1.2 Solution 

Side View 

Top-Down View 
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 In the case of the indented body, the flow conditions are more complex than the 

base body. A shock first appears on the body forward of the indentation and at a lower 

Mach number than the base body (0.88 vs 0.95). This shock then appears to “spill” onto 

the wing along with another shock near the wing-tip. This is seen in the Mach 0.95 

solution along with a small body shock aft of the indentation. As the freestream Mach 

number is increased, the shocks appear to propagate farther and a range of supersonic 

flow spills over an odd portion of the wing, connecting all regions of shock locations. 

Eventually the wing shock disappears toward the trailing edge of the wing just as in the 

base body version, but the shock located forward of the indentation remains even to the 

Mach number of 1.2. The intensity of the shock appears to be increasing in magnitude as 

shown by the large drops in Mach number over the shocks at the higher freestream Mach 

solutions. 

 In this case there is only one point in which the shock angle does appear to at least 

coincide with the Mach angle fitted to the local Mach number before the shock. This can 

be seen in probe 2 of the Mach 0.98 solution. However, given that no other data points 

seem to agree with this, this point may be just coincidentally fitted. As for the critical 

pressure coefficient estimates, again the supersonic solutions do not have their shocks 

predicted. The subsonic solutions do seem to have the predictions fall within the range of 

measured values, but they are not very centered between said points like they were in the 

base and comparable body cases.  
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d. Delta Wing, Cylindrical Body 

 In this section are the CFD solutions (mostly surface and some flow) for the Delta 

Wing, Cylindrical Body geometry. This section consists of Fig. (70)-Fig. (75) which 

include figures and the tabulated values of the probe data collected. Refer to Chapter 3, 

Part e. for instructions on how to read these. 

 

Figure 70.  Delta Wing, Cylindrical Body M=0.5 Solution 

Top-Down View 
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Figure 71.  Delta Wing, Cylindrical Body M=0.88 Solution 

 

Probes CP Mach # Shock Angle (º) CP* 

1a -0.150 1.024 ~0 -0.09 

1b -0.029 0.952 

2a -0.163 1.027 

2b 0.021 0.917 

Top-Down View 

Top-Down View 
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3a -0.226 1.058 5.5 -0.09 

3b 0.057 0.889 

4a -0.313 1.114 

4b 0.083 0.866 

5a -0.374 1.151 

5b 0.091 0.852 

 

Figure 72.  Delta Wing, Cylindrical Body M=0.95 Solution 

 

Side View 
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Probes CP Mach # Shock Angle (º) CP* 

1a -0.119 1.034 9.7 -0.06 

1b 0.040 0.936 

2a -0.110 1.032 

2b 0.018 0.953 

3a -0.146 1.048 

3b 0.054 0.930 

4a -0.234 1.094 9.9 -0.06 

4b 0.139 0.851 

5a -0.289 1.134 

5b 0.155 0.817 

 

Figure 73.  Delta Wing, Cylindrical Body M=0.98 Solution 

Top-Down View 
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Figure 74.  Delta Wing, Cylindrical Body M=1.05 Solution 

 

Figure 75.  Delta Wing, Cylindrical Body M=1.1 Solution 

 The base body delta wing solutions show a shock appear across the body and the 

wing at the Mach 0.95 solution. As the Mach number is increased, the shock appears to 

Top-Down View 

Top-Down View 
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move further down the body and wing seem to be attached until the shock just about 

disappears at the Mach 1.05 solution. Past this point, there are no shocks on the aft body 

or the wing. A bow shock is demonstrated in the comparable body solution later, 

however. 

 The story is the same here as for the other bodies in that the Mach cone angles 

and the shock angles do not coincide for freestream or local Mach numbers. The critical 

pressure coefficient prediction is somewhat the same in that the CP* prediction values do 

appear to fall within the ranges of measured data points and are fairly close to being 

within the middle. However, there are no shocks in the supersonic solutions to predict 

any critical pressure coefficients here, so a comparison cannot be made. 

e. Delta Wing, Comparable Body 

 In this section are the CFD solutions (all flow) for the Delta Wing, Comparable 

Body geometry. This section consists of Fig. (76)-Fig. (83) which include figures and the 

tabulated values of the probe data collected. Refer to Chapter 3, Part e. for instructions on 

how to read these. 



93 
 

 

Figure 76.  Delta Wing, Comparable Body M=0.5 Solution 

 

Probes CP Mach # Shock Angle (º) CP* 

1a -0.316 1.043 ~0 -0.19 

Side View 

Side View 
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1b -0.142 0.950 

2a -0.462 1.087 

2b -0.196 0.930 

 

Figure 77.  Delta Wing, Comparable Body M=0.88 Solution 

 

Probes CP Mach # Shock Angle (º) CP* 

1a -0.223 1.076 4.4 -0.09 

1b 0.047 0.921 

2a -0.392 1.180 18.3 (-0.16)-(-

0.18) 2b 0.129 0.863 

3a -0.423 1.175 

3b 0.035 0.871 

 

Figure 78.  Delta Wing, Comparable Body M=0.95 Solution 

Side View 



95 
 

 

Probes CP Mach # Shock Angle (º) CP* 

1a -0.162 1.075 23.1 (-0.15)-(-

0.18) 1b 0.042 0.952 

2a -0.285 1.151 

2b 0.099 0.913 

3a -0.272 1.133 

3b 0.096 0.903 

 

Figure 79.  Delta Wing, Comparable Body M=0.98 Solution 

Side View 
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Probes CP Mach # Shock Angle (º) CP* 

1a -0.045 1.071 30 -0.13 

1b 0.136 0.955 

2a -0.053 1.073 

2b 0.137 0.950 

3a 0.038 1.025 8.2 N/A 

3b 0.119 0.974 

4a 0.028 1.019 

4b 0.102 0.973 

5a 0.001 1.049 10.2 N/A 

5b 0.150 0.954 

 

Figure 80.  Delta Wing, Comparable Body M=1.05 Solution 

Side View 
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Probes CP Mach # Shock Angle (º) CP* 

1a 0.043 1.070 20.7 N/A 

1b 0.185 0.976 

2a 0.027 1.081 

2b 0.161 0.987 

 

Figure 81.  Delta Wing, Comparable Body M=1.1 Solution 

Side View 
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Figure 82.  Delta Wing, Comparable Body M=1.15 Solution 

 

Figure 83.  Delta Wing, Comparable Body M=1.2 Solution 

Side View 

Side View 
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 The delta wing comparable body appears to behave similarly to the unswept case 

in that the shock begins aft of the point of maximum cross-sectional area at the Mach 

0.88 solution and moves further aft as the Mach number is increased. However, when the 

freestream Mach number becomes supersonic, the shock moves forward of that point but 

with multiple regions that could nearly be shock waves. Along with this, in the Mach 

1.05 solution, there appears to still be a shock aft of that point. Thus, there are two shocks 

on the aft body, one in front of the point of maximum cross-sectional area and one aft. It 

is in this solution that the bow shock at the nose first appears as well. The behavior of the 

bow shock appears in the base body and indented body cases as well. As the Mach 

number is increased further, the bow shock shrinks and there are no longer any shocks on 

the aft body. 

 There is another outlier in the data where the Mach cone angle and shock angle 

for the local Mach number before the shock agree with some accuracy. This is shown in 

probe 1 of the Mach 1.1 solution where the Mach cone angle for a Mach number of 1.07 

would be 20.84 degrees and the measured shock angle was 20.7 degrees. Again, however, 

no other data points within this collection appear to argue this case. As for the critical 

pressure coefficient prediction, the subsonic solutions are predicted fairly accurately. As 

points are collected further off the body, however, the accuracy appears to drop off as 

they steer away from the center of the range of collected data. The supersonic solutions 

are not able to be predicted once more as in all of the previous cases. 
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f. Delta Wing, Indented Body 

 In this section are the CFD solutions (some surface and some flow) for the Delta 

Wing, Indented Body geometry. This section consists of Fig. (84)-Fig. (91) which include 

figures and the tabulated values of the probe data collected. Refer to Chapter 3, Part e. for 

instructions on how to read these. 

 

Figure 84.  Delta Wing, Indented Body M=0.5 Solution 

Top-Down View 
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Probes CP Mach # Shock Angle (º) CP* 

1a -0.318 1.012 Unknown N/A 

1b -0.239 0.968 

2a -0.307 1.005 

2b -0.237 0.966 

 

Figure 85.  Delta Wing, Indented Body M=0.88 Solution 

Top-Down View 
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Probes CP Mach # Shock Angle (º) CP* 

1a -0.220 1.044 ~0 -0.09 

1b -0.036 0.935 

2a -0.193 1.041 4.1 -0.09 

Side View 

Top-Down View 
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2b -0.024 0.939 

3a -0.269 1.079 

3b 0.026 0.891 

4a -0.214 1.036 14.8 -0.14 

4b -0.015 0.917 

5a -0.225 1.037 

5b 0.006 0.894 

6a -0.163 1.021 5.4 -0.09 

6b -0.026 0.934 

 

Figure 86.  Delta Wing, Indented Body M=0.95 Solution 

 

Probes CP Mach # Shock Angle (º) CP* 

1a -0.116 1.028 Unknown N/A 

1b -0.004 0.959 

2a -0.172 1.049 Unknown N/A 

2b 0.019 0.933 

Top-Down View 
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3a -0.126 1.034 10.8 (-0.06)-(-

0.07) 3b 0.035 0.935 

4a -0.084 1.011 27.4 -0.2 

4b 0.000 0.959 

5a -0.155 1.052 6.3 (-0.04)-(-

0.06) 5b 0.028 0.937 

6a -0.154 1.033 Unknown N/A 

6b 0.001 0.937 

 

Figure 87.  Delta Wing, Indented Body M=0.98 Solution 

 

Side View 
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Probes CP Mach # Shock Angle (º) CP* 

1a (Flow) 0.001 1.049 6.7 N/A 

1b (Flow) 0.146 0.957 

2a 0.008 1.030 30 -0.13 

2b 0.119 0.967 

3a 0.013 1.021 12.8 N/A 

3b 0.115 0.951 

4a -0.011 1.034 19 N/A 

4b 0.135 0.939 

5a -0.005 1.037 

5b 0.109 0.964 

6a -0.029 1.048 12.9 N/A 

6b 0.153 0.923 

 

Figure 88.  Delta Wing, Indented M=1.05 Solution 

Top-Down View 
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Probes CP Mach # Shock Angle (º) CP* 

1a 0.068 1.029 Unknown N/A 

1b 0.220 0.929 

2a 0.055 1.033 25.3 0 

2b 0.188 0.942 

3a 0.086 1.021 

3b 0.175 0.962 

 

Figure 89.  Delta Wing, Indented M=1.1 Solution 

Top-Down View 
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Probes CP Mach # Shock Angle (º) CP* 

1a 0.150 1.030 21.6 N/A 

1b 0.246 0.966 

2a 0.136 1.024 28.2 N/A 

2b 0.224 0.962 

Side View 

Top-Down View 
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3a 0.156 1.016 

3b 0.228 0.968 

 

Figure 90.  Delta Wing, Indented M=1.15 Solution 

 

Probes CP Mach # Shock Angle (º) CP* 

1a 0.227 1.019 Unknown N/A 

1b 0.306 0.963 

2a 0.196 1.022 24.9 N/A 

2b 0.281 0.961 

3a 0.197 1.026 

3b 0.281 0.968 

 

Figure 91.  Delta Wing, Indented M=1.2 Solution 

 In the delta wing indented solutions, the situation is very similar to the indented 

body unswept case in that a shock first occurs in the Mach 0.88 solution and has a very 

Top-Down View 
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similar shape. However, instead of forward of the indentation, the shock now begins aft 

of it. In the Mach 0.95 solution, another similarity is seen with the three bands of 

supersonic flow forward of the indentation. Something similar is seen developing in the 

unswept case behind the indentation. As the Mach number is increased multiple shocks 

appear on this body. In the Mach 0.98 solution, three different shocks are seen on the 

body and two on the wing with several different regions of supersonic flow all over the 

wing. Like the unswept case again, as the Mach number is increased, all other shocks 

seem to disappear with the only shock remaining being one forward of the indentation. 

However, given the drops in Mach number over the shocks at the Mach 1.2 solutions for 

both the delta indented and unswept indented cases, it appears that the delta indented 

geometry produces a weaker shock forward of the indentation. The Mach number drop 

over the shock for the delta case is approximately 0.061 whereas the unswept case is 

approximately 0.097. This would be an interesting point of conversation in comparison to 

the drag reduction due to body indentations as shown in Chapter 5. 

 Probe 4 and 5 of the Mach 0.95 solution do seem to have a shock angle 

measurement that fits the Mach cone angle for the local Mach numbers measured. The 

Mach cone angle equation says that between a Mach number of 1.03 and 1.04 would 

yield an angle of 13.86 or 15.94 degrees, respectively. Probes 4 and 5 correspond to an 

angle of approximately 14.8 degrees. Once again, this is a single occurrence within this 

collection. For the critical pressure coefficient predictions the subsonic solutions are 

predicted fairly well, but they are not quite at the midpoint between the range of 

measured values. The supersonic solutions are again not able to be predicted. 
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g. Swept Wing, Cylindrical Body 

 In this section are the CFD solutions (some surface and some flow) for the Swept 

Wing, Cylindrical Body geometry. This section consists of Fig. (92)-Fig. (97) which 

include figures and the tabulated values of the probe data collected. Refer to Chapter 3, 

Part e. for instructions on how to read these. 

 

Figure 92.  Swept Wing, Cylindrical Body M=0.5 Solution 

Top-Down View 
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Figure 93.  Swept Wing, Cylindrical Body M=0.88 Solution 

 

Side View 

Top-Down View 
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Probes CP Mach # Shock Angle (º) CP* 

1a -0.127 1.013 1.9 -0.09 

1b -0.051 0.968 

2a -0.183 1.022 16.8 (-0.14)-(-

0.16) 2b -0.081 0.960 

3a -0.185 1.016 

3b -0.111 0.972 

4a -0.187 1.018 11.7 (-0.11)-(-

0.13) 4b -0.110 0.971 

5a -0.181 1.016 6.8 (-0.09)-(-

0.11) 5b -0.109 0.976 

 

Figure 94.  Swept Wing, Cylindrical Body M=0.95 Solution 

Top-Down View 
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Probes CP Mach # Shock Angle (º) CP* 

1a -0.135 1.027 32.8 -0.26 

1b -0.039 0.968 

2a -0.107 1.006 

2b -0.061 0.979 

3a -0.122 1.011 15.2 -0.09 

3b -0.035 0.958 

4a -0.167 1.040 

4b 0.004 0.933 

 

Figure 95.  Swept Wing, Cylindrical Body M=0.98 Solution 

Top-Down View 
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Probes CP Mach # Shock Angle (º) CP* 

1a -0.003 1.016 37 -0.22 

1b 0.054 0.975 

2a -0.001 1.010 25.1 -0.07 

2b 0.060 0.969 

3a -0.010 1.017 

3b 0.066 0.968 

 

Figure 96.  Swept Wing, Cylindrical Body M=1.05 Solution 

Top-Down View 
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Probes CP Mach # Shock Angle (º) CP* 

1a 0.063 1.016 30 -0.13 

1b 0.132 0.969 

 

Figure 97.  Swept Wing, Cylindrical Body M=1.1 Solution 

 In this geometry, a shock first develops in the Mach 0.95 solution with one 

occurring on the body and appearing to spill onto the wing while another occurs at the 

wing-tip almost normal to the wing-tip edge. As the freestream Mach number is 

increased, the two wing shocks appear to merge, and the body shock disappears. As will 

be shown in the comparable body geometry, a bow shock forms at the nose of the body in 

the Mach 1.05 solution. Thus, for the Mach 0.98 solution, there are no body shocks at all. 

The shocks then progress further toward the trailing edge of the wing until the shocks are 

no longer visible.  

Top-Down View 
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 The only case that appears to be relatively close at having the shock angle and 

local Mach number Mach cone angle coinciding is probe 4 of the Mach 0.98 solution. 

The Mach cone angle would be 15.94 degrees whereas the shock angle there is 

approximately 15.2 degrees. As for critical pressure coefficient predictions, the subsonic 

solution data appears to agree quite well with the exception of the probe data closer to the 

body on the wing. Given the thickness of the black region here and the relatively tame 

Mach number drop, this may not be a shock. 

h. Swept Wing, Cylindrical Comparable Body 

 In this section are the CFD solutions (all flow) for the Swept Wing, Comparable 

Body geometry. This section consists of Fig. (98)-Fig. (105) which include figures and 

the tabulated values of the probe data collected. Refer to Chapter 3, Part e. for 

instructions on how to read these. 

 

Figure 98.  Swept Wing, Cylindrical Comparable Body M=0.5 Solution 

Side View 
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Figure 99.  Swept Wing, Cylindrical Comparable Body M=0.88 Solution 

 

Probes CP Mach # Shock Angle (º) CP* 

1a -0.200 1.064 6.6 

Side View 

Side View 
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1b -0.003 0.951 (-0.09)-(-

0.11) 2a -0.166 1.033 

2b -0.053 0.965 

 

Figure 100.  Swept Wing, Cylindrical Comparable Body M=0.95 Solution 

 

Probes CP Mach # Shock Angle (º) CP* 

1a -0.083 1.028 2.3 (-0.03)-(-

0.04) 1b 0.005 0.975 

2a -0.107 1.031 

2b 0.011 0.959 

 

Figure 101.  Swept Wing, Cylindrical Comparable Body M=0.98 Solution 

Side View 
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Probes CP Mach # Shock Angle (º) CP* 

1a 0.008 1.044 17.8 N/A 

1b 0.115 0.977 

2a 0.025 1.026 

2b 0.115 0.970 

3a 0.013 1.041 9.7 N/A 

3b 0.117 0.975 

4a 0.003 1.047 

4b 0.177 0.937 

 

Figure 102.  Swept Wing, Cylindrical Comparable Body M=1.05 Solution 

Side View 
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Probes CP Mach # Shock Angle (º) CP* 

1a 0.006 1.095 30 N/A 

1b 0.187 0.974 

 

Figure 103.  Swept Wing, Cylindrical Comparable Body M=1.1 Solution 

Side View 
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Figure 104.  Swept Wing, Cylindrical Comparable Body M=1.15 Solution 

 

Figure 105.  Swept Wing, Cylindrical Comparable Body M=1.2 Solution 

Side View 

Side View 
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 This geometry behaves somewhat similarly to the unswept case in that at subsonic 

freestream conditions, a shock occurs aft of the point of maximum cross-sectional area 

which eventually moves forward of this point at supersonic conditions. However, this 

geometry does not appear to produce a shock at the Mach 0.88 conditions. The Mach 

1.05 solution does also seem to show a region of supersonic flow aft of the maximum 

cross-sectional area similar to that of the delta comparable body case. As the Mach 

number is increased to supersonic, there also appears to be a bow shock that develops and 

is present in the base and indented body cases as well. Eventually, all shocks seem to 

disappear on the body.  

 No shock angles measured in these solutions appear to coincide with any 

predicted Mach cone angles. The subsonic solutions have their critical pressure 

coefficients quite well by Küchemann’s critical pressure coefficient equation here. No 

predictions could be made for the supersonic cases. 

i. Swept Wing, Indented Body 

 In this section are the CFD solutions (some surface and some flow) for the Swept 

Wing, Indented Body geometry. This section consists of Fig. (106)-Fig. (112) which 

include figures and the tabulated values of the probe data collected. Refer to Chapter 3, 

Part e. for instructions on how to read these. 
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Figure 106.  Swept Wing, Indented Body M=0.5 Solution 

 

Figure 107.  Swept Wing, Indented Body M=0.88 Solution 

Top-Down View 

Top-Down View 
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Figure 108.  Swept Wing, Indented Body M=0.95 Solution 

 

Probes CP Mach # Shock Angle (º) CP* 

1a -0.116 1.010 14.7 (-0.07)-(-

0.09) 1b -0.049 0.969 

2a -0.129 1.016 

Top-Down View 

Top-Down View 



125 
 

2b -0.047 0.966 

 

Figure 109.  Swept Wing, Indented Body M=0.98 Solution 

 

 

Side View 

Top-Down View 
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Probes CP Mach # Shock Angle (º) CP* 

1a (Flow) 0.003 1.047 12.5 N/A 

1b (Flow) 0.136 0.963 

2a (Flow) 0.001 1.049 

2b (Flow) 0.108 0.980 

3a -0.005 1.014 25.9 (-0.07)-(-

0.10) 3b 0.053 0.976 

4a -0.002 1.010 21.9 (-0.02)-(-

0.04) 4b 0.051 0.976 

 

Figure 110.  Swept Wing, Indented Body M=1.05 Solution 

 

Side View 
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Probes CP Mach # Shock Angle (º) CP* 

1a (Flow) 0.029 1.080 20.4 N/A 

1b (Flow) 0.187 0.975 

2a (Flow) 0.002 1.098 

2b (Flow) 0.125 1.011 

3a 0.071 1.010 19 N/A 

3b 0.127 0.971 

 

Figure 111.  Swept Wing, Indented Body M=1.1 Solution 

Top-Down View 
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Figure 112.  Swept Wing, Indented Body M=1.15 Solution 

 This geometry appears to be one of the only cases of simplifying the flow by 

indenting the body. Rather than developing shocks on the body and across the wing at the 

Mach 0.95 solution, this geometry appears to only develop some points of supersonic 

Side View 

Top-Down View 
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flow on the wing. Even at the Mach 0.98 solution, the only shock developed is at the 

wing-tip, in a similar manner to the base body case. As the freestream Mach number 

increases, some relatively unclear shocks develop along the wing and eventually 

disappear. As shown in the comparable body cases, however, a bow shock develops at 

the Mach 1.05 case; this is unsurprising at this point. So, it is shown here that the number 

of and intensity of shocks developed is actually reduced by indenting the body. 

 Once again, expected Mach cone angles do not coincide with measured shock 

angles. For the only subsonic solution with shocks present, the critical pressure 

coefficients are predicted very well as is demonstrated in the Mach 0.98 solution probe 

data. The supersonic predictions once again do not work. 

j. Swept Wing, Curved Body 

 In this section are the CFD solutions (some surface and some flow) for the Swept 

Wing, Curved Body geometry. This section consists of Fig. (113)-Fig. (118) which 

include figures and the tabulated values of the probe data collected. Refer to Chapter 3, 

Part e. for instructions on how to read these. 
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Figure 113.  Swept Wing, Curved Body M=0.5 Solution 

 

Figure 114.  Swept Wing, Curved Body M=0.88 Solution 

Top-Down View 

Top-Down View 
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Probes CP Mach # Shock Angle (º) CP* 

1a -0.130 1.012 4.2 -0.09 

1b -0.067 0.976 

2a -0.175 1.017 21.7 (-0.18)-(-

0.20) 2b -0.105 0.974 

Side View 

Top-Down View 
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3a -0.208 1.026 

3b -0.102 0.965 

4a -0.171 1.006 10.4 -0.11 

4b -0.110 0.969 

5a -0.172 1.009 

5b -0.118 0.977 

 

Figure 115.  Swept Wing, Curved Body M=0.95 Solution 

 

Side View 
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Probes CP Mach # Shock Angle (º) CP* 

1a -0.097 1.022 ~0 -0.03 

1b 0.005 0.961 

2a -0.110 1.009 35.6 -0.29 

2b -0.056 0.976 

3a -0.129 1.015 16.7 (-0.09)-(-

0.11) 3b -0.044 0.963 

 

Figure 116.  Swept Wing, Curved Body M=0.98 Solution 

Top-Down View 
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Probes CP Mach # Shock Angle (º) CP* 

1a (Flow) 0.000 1.049 9 N/A 

1b (Flow) 0.153 0.951 

2a (Flow) 0.013 1.041 

Side View 

Top-Down View 
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2b (Flow) 0.130 0.967 

3a 0.040 1.011 14.1 N/A 

3b 0.081 0.985 

4a 0.006 1.004 27.7 -0.10 

4b 0.046 0.977 

 

Figure 117.  Swept Wing, Curved Body M=1.05 Solution 

 

Figure 118.  Swept Wing, Curved Body M=1.1 Solution 

 The swept wing, curved body case is interesting in that it develops shocks in a 

similar manner to the cylindrical body case. The patterns are almost all the same except 

that the body shock starts farther back from the wing and the wing shocks are closer to 

one another. However, at the Mach 0.98 solution, another body shock is seen toward the 

end of the body. As the Mach number is increased, the shock on the wing eventually 

disappears. The curved body appears to develop a bow shock at the nose at the Mach 1.05 

Top-Down View 
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solution as well. Other than these things, not much else is different between the 

cylindrical body and curved body cases. 

 No shock angles measured coincide with any expected Mach cone angles here. 

The subsonic solutions have the CP* predictions fall in range of the data collected only 

for the Mach 0.98 solution and not very fitted to the center of the ranges. This is the first 

occurrence of the predictions not fitting the data very well. 

k. Swept Wing, Curved Comparable Body 

 In this section are the CFD solutions (some surface and some flow) for the Swept 

Wing, Curved Comparable Body geometry. This section consists of Fig. (119)-Fig. (126) 

which include figures and the tabulated values of the probe data collected. Refer to 

Chapter 3, Part e. for instructions on how to read these. 

 

Figure 119.  Swept Wing, Curved Comparable Body M=0.5 Solution 

Side View 
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Figure 120.  Swept Wing, Curved Comparable Body M=0.88 Solution 

 

Probes CP Mach # Shock Angle (º) CP* 

1a -0.151 1.037 6.6 

Side View 

Side View 
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1b -0.034 0.969 (-0.09)-(-

0.11) 2a -0.207 1.069 

2b -0.006 0.952 

3a -0.156 1.027 

3b -0.044 0.961 

 

Figure 121.  Swept Wing, Curved Comparable Body M=0.95 Solution 

 

Probes CP Mach # Shock Angle (º) CP* 

1a -0.123 1.053 9.2 (-0.09)-(-

0.11) 1b 0.044 0.953 

2a -0.178 1.086 

2b 0.079 0.932 

3a -0.113 1.031 

3b 0.009 0.953 

 

Figure 122.  Swept Wing, Curved Comparable Body M=0.98 Solution 

Side View 
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Probes CP Mach # Shock Angle (º) CP* 

1a 0.000 1.049 11.8 N/A 

1b 0.120 0.974 

2a 0.004 1.035 

2b 0.102 0.974 

3a 0.009 1.043 7.6 N/A 

3b 0.094 0.989 

4a 0.002 1.048 

4b 0.112 0.978 

 

Figure 123.  Swept Wing, Curved Comparable Body M=1.05 Solution 

Side View 
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Probes CP Mach # Shock Angle (º) CP* 

1a 0.026 1.081 19.6 N/A 

1b 0.218 0.954 

 

Figure 124.  Swept Wing, Curved Comparable Body M=1.1 Solution 

Side View 
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Figure 125.  Swept Wing, Curved Comparable Body M=1.15 Solution 

 

Figure 126.  Swept Wing, Curved Comparable Body M=1.2 Solution 

Side View 

Side View 
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 The curved comparable body case behaves similarly to many of the other 

comparable body cases in that the shock begins aft of the point of maximum cross-

sectional area and moves forward of it when the freestream Mach becomes supersonic. 

This solution is not very different in comparison to the cylindrical body case. 

 Once again, no angles coincide for this geometry.  The subsonic solutions are 

once again fairly accurately predicted by Küchemann’s CP* equation. The supersonic 

solutions are also once again not able to be predicted given that all the CP values 

obtained are positive (before and after the shock).  

 There are many similarities between the solutions for the geometries presented by 

Whitcomb. In terms of Mach cone angles correlating with measured shock angles, there 

appears to be no consistent correlation. As for the prediction capabilities of Küchemann’s 

CP* equation, it appears to predict the development of shocks in subsonic conditions but 

does not appear to do so for any supersonic conditions. However, this is an odd 

occurrence as none of the Mach values before the shocks develop are greater than the 

freestream Mach number at supersonic conditions. This would imply positive pressure 

coefficient values, which the table used here does not cover. This pattern is consistent for 

all geometries shown arguing in favor of the equation’s prediction capabilities at least for 

a subsonic range of solutions.  

 In regard to amount of shocks observed and their observed complexity, it would 

seem that the indented bodies for the unswept and delta cases produce more shocks than 

the base bodies and in more complex patterns. Along with this, neither of these indented 

body cases seem to have the shocks disappear at higher Mach numbers like the other 
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solutions demonstrate. In fact, the shock that does remain in these indented solutions only 

appears to grow stronger as the freestream Mach number is increased. The only indented 

case that appears to simplify the surface flow is the swept wing case. In this solution, 

there is almost never a shock and where there are possible shocks, the intensity is very 

weak demonstrated by the local Mach number drop over it. These behaviors are an 

interesting point to compare with the total drag measurements shown in Chapter 5. 
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CHAPTER 7 

VERIFICATION OF RESULTS 

 There were several questions raised during the production of solutions from SU2 

about the reliability of the results because of the complexity of the steps taken. Some of 

these were answered with solutions such as the boat-tails at the end of the geometries to 

help with convergence. The two main questions that arose about the accuracy of the 

results are whether the volume grid has enough points and whether the Mach angles off 

certain components on the body would cause a contamination of flow on the body 

downstream. There was particular concern about the swept wing, cylindrical body as the 

wing-tip could alter the flow downstream. These concerns were addressed with relatively 

simple solutions. 

 First, to determine whether a grid had enough points, a grid convergence study 

was performed for the unswept wing, cylindrical body geometry at a Mach number of 

1.2. Three grids were used to determine whether a grid was accurate enough. The grids 

had total point numbers of ~500,000, ~1,000,000, and ~3,600,000 points. To decide a 

grid was accurate enough, the grids above and below in size would need to produce 

values within +/-0.5% in difference. After performing this study, the results in Table 4 

were produced showing that the grid size of ~1,000,000 for this model was accurate 

enough. All other models, however, yielded grid sizes with far more points than the 

unswept wing, cylindrical body case. So, there is no concern about the reliability of the 

results from any of the other geometries. Their grid sizes are listed in Table 5 below. 
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Table 4. Grid Convergence Study of Unswept Wing Cylindrical Body at M=1.2 

# of Points CD0 % Difference 

506,108 0.01235 -0.31% 

1,009,115 0.01239  

3,624,555 0.01242 0.23% 

 

Table 5. Grid Sizes for Observed Geometries 

Model # of Points 

Unswept Wing, Cylindrical Body 1,009,115 

Unswept Wing, Comparable Body 3,447,111 

Unswept Wing, Indented Body 3,741,469 

Delta Wing, Cylindrical Body 3,622,030 

Delta Wing, Comparable Body 3,462,535 

Delta Wing, Indented Body 3,713,519 

Swept Wing, Cylindrical Body 3,853,534 

Swept Wing, Comparable Body 3,525,580 

Swept Wing, Indented Body 3,884,699 

Swept Wing, Curved Body 3,123,678 

Swept Wing, Curved Comparable Body 2,491,163 
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 The downstream flow contamination was dealt with by making another model of 

the swept wing, cylindrical body geometry with an additional three body lengths after the 

end of the original model. The idea here was that if there were to be any downstream 

flow contamination, its impact would be reflected in the drag value produced in 

comparison to the original body. This model was then run at most of the same Mach 

numbers that the original body was run at and the results of this are shown in comparison 

in Fig. (127) below. As can be seen there, the two models produce almost exactly the 

same results and therefore there is no concern about downstream contamination of the 

flow. 

 

Figure 127. Original Swept Wing, Cylindrical Body & Extended Body Comparison 
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CHAPTER 8 

CONCLUSION 

 To conclude this report, the questions presented in Chapter 1 are addressed 

beginning with: 1) asking if the Transonic Area Rule achieves what it claims it does 2) 

seeking any telltale signs of transonic shock formation that might be found in purely 

subsonic solutions and 3) determining if any shocks encountered are able to be predicted 

by Küchemann’s CP* predictions. 

a. Does an equivalent body of revolution produce the same transonic drag rise 

characteristics as the original wing-body combination? 

 If the Transonic Area Rule were exact, an equivalent body of revolution would produce 

the same transonic drag rise characteristics as the original wing-body combination. The 

Transonic Area Rule is clearly not exact based on the results from Chapter 5. It was 

shown that none of the geometries appear to have had their comparable bodies and base 

bodies coincide in terms of their drag rise characteristics. In fact, the unswept wing and 

delta wing cases appear to have had comparable bodies that produced even more drastic 

drag rise characteristics than the base bodies. The two swept wing cases, however, had 

comparable bodies that produced a reduced drag rise in comparison. The swept wing 

behavior is relatively unsurprising in comparison to Whitcomb’s results as they too 

demonstrated this. The interesting trend shown in the SU2 results in comparison to 

Whitcomb’s results are that three of the four base body cases (i.e. not the swept wing, 

curved body) seem to match data quite well. In all three of these cases, SU2 seems to 
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have done a fairly good job of matching Whitcomb’s data. The comparable bodies of 

revolution, however, appear to be skewed from Whitcomb’s data in all cases. 

 Using other common wave drag estimation methods to help identify some 

consistency proved to be somewhat helpful. As discussed before, EDET approximates 

this wave drag by using empirical data, but appears to overpredict in two of the three 

cases it was used in. The only exception to this behavior is the delta wing, cylindrical 

body case where its approximation at Mach numbers between 1 and 1.1 appear to 

coincide somewhat well with the SU2 results for the base body. The Harris Wave Drag 

program, on the other hand, seems to have done consistently well at matching data with 

the SU2 base body data for all cases. It should be noted, however, that the unswept wing 

and delta wing cases only seem to have data start to coincide at Mach numbers 1.1 and 

above. Thus, the SU2 solutions match Whitcomb’s base body cases fairly well and 

D2500 follows right behind. EDET overpredicts in most cases and does not coincide with 

any data particularly well. In all cases the comparable bodies of revolution do not appear 

to coincide with the base body solutions from SU2. 

 With these behaviors in mind, it appears that this report would argue that the 

Transonic Area Rule’s first claim does not hold true based on the methods used here. 

However, it should be noted that the D2500 program makes use of the Supersonic Area 

Rule, an extension to the Transonic Area Rule. The comparable bodies made by the 

Supersonic Area Rule, then seem to match the base body data fairly well at Mach 

numbers 1.1 and slightly greater. Given the results from the surface pressure coefficient 

measurements as well, it would appear that the unswept wing and delta wing cases have 
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comparable bodies that yield even stronger shocks than on the base bodies. This may be 

cause for the increased drag rise.  

b. Does indenting the fuselage of a wing-body combination reduce the transonic 

drag rise experienced in a meaningful manner? 

 Indenting the body according to the Transonic Area Rule, however, does appear 

to function similar to how Whitcomb described in terms of reduced drag rise. Though the 

SU2 indented body does not match Whitcomb’s all that well, the comparison between 

base body and indented body SU2 data shows that over a range of Mach numbers around 

1, there is a reduction in drag rise. The exception to this is the swept wing indented body 

case as the reduction appears to carry on even until the Mach 1.2 case. In the unswept 

wing and delta wing cases, this reduction stops between a Mach of 1.05 and 1.1 where 

the indented bodies instead start producing greater drag increments than the base bodies. 

Thus, SU2 does seem to argue in favor of Whitcomb’s advised indentations reducing the 

transonic drag rise of geometries. However, SU2 does not show this reduction for as high 

of Mach numbers and the reduction does not seem to be as intense as Whitcomb’s.  

c. Does indenting the fuselage of a wing-body combination reduce the number of 

shocks experienced and the intensity of them? 

 The final claim of the Transonic Area Rule is that the indented bodies reduce the 

transonic drag rise by reducing the number of shocks, decreasing their intensity, and 

reducing the complexity of shock patterns. The surface Mach number plots from Chapter 

6 show this to not be true for the unswept wing and delta wing cases. In both of these 
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cases there appear to be more shocks on the body with a far more complex pattern than in 

the base body case. Along with this, the strength of the shocks produced at the 

indentation (as demonstrated by the Mach number drop intensities before and after the 

shock) are stronger than almost any shocks produced on the base bodies. As the 

freestream Mach number is increased, the base bodies appear to shed their shocks 

whereas the indented bodies appear to keep the shocks at the indentation and only seem 

to grow in strength. For the swept wing case, however, almost all of the shocks seem to 

disappear for any of the Mach number solutions observed (except for the bow shock at 

the nose of the body). This is interesting to see because the comparable body of 

revolution demonstrates shock development like the base body does. But once this area 

development is removed from the body to “cancel” the cross-sectional area added by the 

wings, the shocks seem to disappear. The flow patterns appear to be similar to the base 

body case, but no shocks develop. So, although there does appear to be a reduction in the 

transonic drag rise and a more linear rise at that for the indented bodies, Whitcomb’s 

claim does not appear to hold true for the unswept and delta wing cases. The swept wing 

case, however, does argue this claim quite well. Given that schlieren surveys are used in 

Whitcomb’s report, this may not be all that surprising and the limited technology of the 

time may not have allowed as in depth of a look into shock patterns.  

d. Are there any telltale signs of shock formation in subsonic solutions? 

 In terms of telltale signs of shock development from subsonic solutions, there 

doesn’t appear to be much happening. Given how drastically the isobar patterns change 

from solution to solution, the subsonic isobar patterns do not tell us much more than the 
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assumed general shape of the isobar patterns at higher Mach number solutions. For 

example, looking at where the first shock develops in the delta wing, cylindrical body 

case (Mach 0.95 solution), one can assume this is where a shock would first develop 

based on the patterns in the Mach 0.5 solution. However, this is purely qualitative and has 

no real backing. Instead, it may be possible to get an approximate idea of what the shock 

angle may be whenever it develops based on the subsonic solution isobar patterns. 

Perhaps more in-depth analysis of these solutions would provide more insight. 

e. Are the shocks encountered able to be predicted by Küchemann’s CP* 

predictions? 

 Küchemann’s CP* equation does appear to do a good job of predicting shock 

formation at the subsonic solutions. However, the interesting behavior for these is that the 

shock formations do not appear to coincide with any particular sweep angle consistently 

nor the expected Mach cone angle for either the freestream or local Mach numbers. As 

was demonstrated from Schlichting, when the leading or trailing edge sweeps interact 

with the expected Mach lines to develop shocks on the wing surface, the shocks are 

expected to coincide with the expected Mach cone angle12. In all cases within this report, 

shock patterns did not coincide with any expected sweep angle or Mach cone angle. The 

local pressure coefficient values measured around the shocks fitted to the shock angles in 

the CP* equation, however, do seem to agree. Thus, it seems it could be possible to get a 

general idea of what a shock angle may develop to be from a subsonic solution and 

determine critical pressure coefficient values fitted to these approximations.  
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 To summarize, it would appear Whitcomb’s claim about the Transonic Area Rule 

comparable bodies of revolution producing similar drag rise characteristics to the base 

geometries is not backed by CFD solutions or Supersonic Area Rule comparable bodies 

of revolution (from Harris Wave Drag program). The reduction of transonic drag rise by 

indenting the body at the wing-body junction does appear to be true, though not as 

dramatically as Whitcomb’s data shows. The complexity of shock patterns does not 

appear to be simplified due to the indentation, actually becoming more numerous, 

complex, and intense with the indentation in some cases. For the swept wing case, 

however, there is a strong claim in favor of this. It would appear that the Transonic Area 

Rule may favor longitudinally longer wings or something of the like to make the 

indentation seem less severe in its cross-sectional area change. The subsonic solutions 

shown seem like they may provide a good idea for approximating at least shock angles 

for future Mach solutions (more analysis is required). Finally, Küchemann’s CP* 

equation does appear to yield accurate critical pressure coefficient values based on 

measured pressure coefficient values for subsonic solutions. At supersonic solutions, 

however, the predictive capabilities are no longer there. Thus, it appears to do well at 

predicting initial development of shocks fitted to shock angles rather than Mach cone 

angles or geometric feature sweeps.  
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APPENDIX A 

WHITCOMB FUSELAGE ORDINATES 
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APPENDIX B 

TABULATED SU2 CD0 DATA 
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APPENDIX C 

SU2 INPUT CFG FILE 
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