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ABSTRACT  

   

The Deep Neural Network (DNN) is one type of a neuromorphic computing approach 

that has gained substantial interest today. To achieve continuous improvement in accuracy, 

the depth, and the size of the deep neural network needs to significantly increase. As the 

scale of the neural network increases, it poses a severe challenge to its hardware 

implementation with conventional Computer Processing Unit (CPU) and Graphic 

Processing Unit (GPU) from the perspective of power, computation, and memory. To 

address this challenge, domain specific specialized digital neural network accelerators 

based on Field Programmable Gate Array (FPGAs) and Application Specific Integrated 

Circuits (ASICs) have been developed. However, limitations still exist in terms of on-chip 

memory capacity, and off-chip memory access. As an alternative, Resistive Random 

Access Memories (RRAMs), have been proposed to store weights on chip with higher 

density and enabling fast analog computation with low power consumption. Conductive 

Bridge Random Access Memories (CBRAMs) is a subset of RRAMs, whose conductance 

states is defined by the existence and modulation of a conductive metal filament. Ag-

Chalcogenide based Conductive Bridge RAM (CBRAM) devices have demonstrated 

multiple resistive states making them potential candidates for use as analog synapses in 

neuromorphic hardware. In this work  the use of Ag-Ge30Se70 device as an analog synaptic 

device has been explored. Ag-Ge30Se70 CBRAM crossbar array was fabricated. The 

fabricated crossbar devices were subjected to different pulsing schemes and conductance 

linearity response was analyzed. An improved linear response of the devices from a non-

linearity factor of 6.65 to 1 for potentiation and -2.25 to -0.95 for depression with non-

identical pulse application is observed. The effect of improved linearity was quantified by 
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simulating the devices in an artificial neural network. Simulations for area, latency, and 

power consumption of the CBRAM device in a neural accelerator was conducted. Further, 

the changes caused by Total Ionizing Dose (TID) in the conductance of the analog response 

of Ag-Ge30Se70 Conductive Bridge Random Access Memory (CBRAM)-based synapses 

are studied. The effect of irradiation was further analyzed by simulating the devices in an 

artificial neural network. Material characterization was performed to understand the change 

in conductance observed due to TID.  
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CHAPTER 1 

INTRODUCTION 

1.1.Overview of Deep Neural Networks (DNN)  

Deep Neural Network (DNNs), one class of Artificial Neural Networks (ANNs), have 

recently had a major impact on how smart devices interpret, respond, and interact to large 

amounts and different types of information. DNN technologies are being developed for 

sophisticated cognitive applications that utilize interfaces more intuitive than the traditional 

keyboard and mouse or even the popular approach of touchscreen. The most famous, recent 

examples of DNN applications are Virtual Personal Assistants like the Apple’s Siri, 

Microsoft’s Cortana, and Google’s Assistant [1]-[3]. These applications use efficient deep 

learning algorithms that are used on daily basis by millions of people. Nowadays almost 

every high-technology industry is influenced by the field of deep learning. Some examples 

include automotive, defense, manufacturing, and gaming industries  [4]. DNNs have been 

shown to be well suited for performing a broad range of classification and decision-making 

tasks such as speech recognition [5], image processing [6], and machine translations [7].  

Deep Neural Networks (DNNs) are neural networks inspired by the biological neural 

networks in the human brain. They consist of a collection of nodes, called artificial neurons, 

and connections between the nodes, called artificial synapses. The neurons are organized 

in layers. Typically, a DNN consists of an input layer (layer 0) and an output layer. Any 

layers between the two layers are called hidden layers. Figure 1 represents a 2-layer DNN, 

where the black dots represent neurons and the lines connecting the dots are synapses. 
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Figure 1. A simple deep neural network (DNNs).  

For a fully connected DNN system, each neuron in a layer receives signal xj from all 

neurons in the previous layer. The signal is then weighted by a scaling factor known as 

synaptic weight wj. Mathematically, it can be represented as- 

𝑦 =  ∑ 𝑥𝑗𝑤𝑗
𝑗=𝑛
𝑗=0                                                                  (1.1) 

The weighted output signal, y, is then passed through a non-linear activation function 

as shown in Figure 2. The non-linear function, also known as squashing function, is 

typically a sigmoid function, but can also be a hyperbolic tangent [8] or a ReLU (rectified 

linear unit) [9] function. Mathematically, the output for a sigmoid non-linear activation 

function can be expressed as 
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𝑂𝑢𝑡𝑝𝑢𝑡 =  
1

1+ 𝑒−𝑦      .                                                   (1.2) 

 

 

Figure 2. Model of a neuron 

1.2.  Backpropagation Algorithm 

One of the most popular algorithms used to train a neural network for supervised 

learning has been the backpropagation algorithm [10], [11],[12]. For training the neural 

network, the number of input (layer 0) neurons is typically chosen to match the size of 

incoming data set (e.g., pixel of an image or an audio sequence etc.). In simple terms, the 

meaning of training is optimization. We need to optimize the neural network to minimize 

the error between the target output and the output produced after forward propagation of 

the input signal. The training typically begins with random weight values assigned to the 

synapses. The backpropagation algorithm adjusts the synaptic weights with gradient 

descent to minimize the sum squared error between the network’s targeted values and the 

values at the given iteration step. Consider the 2-layer network in Figure 3 showing a 

hidden layer sandwiched between with the input and output layers. 
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Figure 3. A multi-layer perceptron neural network, showing a single hidden layer. A feed forward network 

propagates activations to produce an output and the error is backward propagated to determine the weight 

adjustments.  

In the network illustrated Figure 3,  𝑊(1) represents the weight set between the hidden 

and output layers, 𝑊(0)denotes the weights between the input and hidden layers. The 



  5 

activation functions are denoted as f. Signals at the input layer neurons, x (0), are mapped 

converted to the hidden layer values, x(1) , by the general activation function 

𝑥(1) = 𝑓(𝑊(0)𝑥(0)),                                                                    (1.3) 

where 𝑊(0) is a M (column) x N (row) matrix of synaptic weights connecting layer 0 

with M neurons to layer 1 with N neurons. Similarly, this can be extended to the output 

layer 2, where the activation function can be mathematically represented as- 

𝑥 (2) = 𝑓(𝑊(1)𝑥(1)) .                                                                   (1.4) 

The non-linear activation function, 𝑓,  ensures that the multiple layers in the network do 

not collapse trivially into an equivalent single-layer network. The propagation of input data 

through the network which produces an output prediction is termed as inference step. The 

neural network is trained by to make accurate predictions by iteratively updating weights 

𝑊(𝑖) so that the outputs approach the target values over repeated training steps. 

Backpropagating the error is the most widely used algorithm for training. For a given 

training example set, first an inference step is carried out. Next, an error value, δ, is 

obtained at the output layer (2) which is a usually a mean squared function that can be 

mathematically represented as 

𝛿2 = 𝑥(2) − 𝑦  ,                                                             (1.5) 

where 𝑦 is the initially obtained output after first inference step. Similarly, the error at the 

hidden layer (1) can be calculated as – 

𝛿1 =  (𝑊(1)) 𝑇 𝛿2 ʘ 𝑓′(𝑊(1)𝑥(1)),                                                        (1.6) 

where 𝑓′ is the derivative of f and ʘ is the element - wise dot product . One can observed 

that the above expression involves the multiplication of the transpose of the weight matrix 
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with an error value. This operation is referred toa s the Matrix Vector Multiplication 

(MVM). There is no error value associated with the layer (0) because it corresponds to the 

given input  signals.  

Once error vectors are obtained at each layer in the network, these values are used to 

update the weights. The update applied to each weight matrix in the output layer (2) is 

given by – 

𝛥𝑊(1) =  −𝜂𝛿(2)(𝑥(2))𝑇,                                               (1.7) 

Similarly for the hidden layer (1), the weight update to be applied is given by – 

𝛥𝑊(0) =  −𝜂𝛿(1)(𝑥(1))𝑇,                                              (1.8) 

where 𝜂 is the learning rate. The optimal update to the weights is termed as the outer 

product update of the two vectors.  

The weight update is carried out after each training step. This type of gradient descent 

is known as stochastic gradient descent.  To speed up training, various methods such as 

batch gradient descent or mini batch gradient descent are utilized. For batch gradient 

descent, the entire training dataset is feedforwarded through the network and the gradient 

is calculated for the entire training dataset. Mini batch gradient descent is a type of gradient 

descent in which only part of training dataset is utilized for calculating the gradient descent. 

Parameters such as the number of hidden layers and the learning rates are typically fixed 

during training. The goal of the designer is to have a network which is well adapted to the 

test set.  
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CHAPTER 2 

HARDWARE FOR NEUROMORPHIC COMPUTING 

The recent advances in the field of machine learning have led to a tremendous increase 

in the depth and the size of the neural network. Neural networks developed for computer 

vision can now have on the order of 105 - 1010 weights [14], [15]. The training of such 

large-scale networks becomes difficult due to the demands placed on computational 

resources. It is also very challenging to deploy inference applications for such networks on 

the edge devices (such as mobile phones) which lack the required infrastructure like- the 

storage, computational capacity as well as the power requirement. Progress made in 

algorithms which have made the neural networks compact without losing accuracy. One 

such approach is quantization; we reduce the need for high bit precision for the weights 

and activation functions. Quantization not only reduces the size of the network but also 

makes significant gains in component density and memory capacity [16]. Such advances 

still suffer from the need to process large amounts of data [17]. Hence it becomes necessary 

to develop hardware innovations to achieve large and high-performance neural networks. 

The use of conventional computing architecture like CPU which is specialized for handling 

only one or few complicated instructions at one time, is not very well suited for tasks like 

training or inference for large-scale neural networks. 

The use of conventional computing architecture like CPU which is specialized for 

handling   only one or few complicated instructions at one time, is not very well suited for 

tasks like training or inference for large-scale neural networks. The use of Graphic 

Processing Units (GPUs) with its multiple cores that compute in parallel has helped to 

improve for the neural network processing throughput [18]. But despite having significant 
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advantages over a CPU, the GPU too suffers from memory transfer which is a bottleneck 

in processing large data sets [19]. 

2.1. Digital Neuromorphic Architecture  

The difficulties posed using conventional CPUs or GPUs for data-centric applications 

has led to research and development of customized domain-specific hardware for machine 

learning. Field Programmable Gate Arrays (FPGA’s) is one suggested platform for deep 

learning networks [20]-[24]. The reconfigurability advantage of the FPGA enables greater 

flexibility in hardware and algorithm design. However, multiple FPGA’s might need to be 

implemented to support this reconfigurability which lead to increase in area and power 

consumption. The above shortcomings have been balanced out using arrays of FPGA’s 

interconnected by high-speed reconfigurable networks [25]. One such example is the 

Microsoft’s Brainwave project that uses multiple FPGAs to perform inference with 

relatively low latency [26].  

Another example in digital neuromorphic architecture is Google’s Tensor Processing 

Units (TPUs) [27]. Figure 4 shows a representative system diagram of Google’s TPU. The 

TPU v1 is an inference accelerator which contains at its core a 256 X 256 block of 8-bit 

multiply-accumulate (MAC) units that perform individual multiplication and addition 

operations. As depicted in Figure 4 the block is operated as systolic array where the input 

data is fed into the array horizontally and VMM partial sums are accumulated from the top 

to downward approach. A systolic array, a term used in parallel computation, is a 

homogeneous network of tightly coupled data processing units (DPUs) called cells or 

nodes. Each node or DPU independently computes a partial result as a function of the data 

received from its upstream neighbors, stores the result within itself and passes it 
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downstream [28]. For every clock cycle, each MAC unit receives an input and partial sum 

from its neighbors, performs a computation and then forwards the updated partial sum to 

the next unit. This architecture provides the advantage of higher compute density and 

reduces the number of intermediate reads and writes to a buffer unit during VMM operation 

[29].  

 

Figure 4. A systolic array of 8-bit MAC units in the Google TPU v1 [29] [13]. 

The main bottleneck for digital neuromorphic hardware is the off-chip memory access. 

One way the issue is addressed is to place the memory bank optimally close to the 

processing element to initiate quick transfer of intermediate results. Examples are 

DaDianNao [30] and Neurocube [31]. 
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By performing computation inside modified digital memory array, the problem of the 

memory access bottleneck can be addressed. This is done by exploiting the internal 

bandwidth of dynamic random access memory (DRAM) and static random access memory 

(SRAM) technology. The most prominent example of digital process in memory (PIM) is 

Ambit, which implements a logically complete set of operations within a DRAM array 

with minimal additional area overhead [32]. Ambit exploits the analog operation of DRAM 

technology to perform the bitwise operations completely inside DRAM, thus using the full 

internal DRAM bandwidth. Ambit constitutes two main components – (a). It uses 

simultaneous activation of three DRAM rows that share the same set of sense amplifiers 

that enables the system to perform the bitwise AND and OR operations. (b). It uses the 

inverters present inside the sense amplifiers, with modest changes to perform bitwise NOT 

operations. Although the bitwise operations in Ambit are logically complete, many cycles 

are needed to execute multi-bit arithmetic operations – hundreds of cycles to compute 

multiplications with three bits or more [32]. The disadvantage is the latency which is 

introduced due to the need to have multiple cycles to execute multi-bit operations. Another 

disadvantage associated with DRAM is that it suffers from scalability limitations. 

 

2.2. Analog Neuromorphic Architecture  

Analog neuromorphic accelerators can significantly improve the energy and latency 

costs associated with data movement by embedding the neural network computations 

directly inside the memory elements. This type of analog architecture is inherently parallel 

and can perform the neural network basic operations like the VMM, MVM and outer 

product update as discussed in Chapter 1. Therefore, this architecture is efficient for 
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enabling both inference and training.  A generalized conductance/resistance-based memory 

array circuit is depicted in Figure 5 can be realized using various types of NVM devices. 

The vector matrix multiplication (VMM) operation is performed within the array by 

activating all the rows (or word lines) simultaneously with voltage Vi on row ith. The total 

current is collected by the jth column. Mathematically represented as – 

𝐼𝑗 =  ∑ 𝐺𝑖𝑗𝑉𝑖                             0 < 𝑗 < 𝑁𝑐 − 1                        (2.1)

𝑁𝑐−1

𝑖=0

 

Here, 𝐺𝑖𝑗 is the conductance of the memory element at the array position (i, j) and Nc 

represents the number of rows. With the above equation, the implementation of a vector 

dot product is realized using the Ohm’s law and the summation is executed by using the 

Kirchhoff’s current law down each column. This crossbar architecture can execute the 

VMM operation in a single step. The transpose MVM operations can be executed driving 

the columns and reading the currents on the rows. The outer product update which 

constitutes an important aspect of training a neural network is carried out by applying 

programming pulses simultaneously to all the rows and columns of a crossbar which is 

executed in a parallel fashion [13],[33].  
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Figure 5. A basic representation of resistive array architecture performing dot product and summation in 

parallel.  

The resistive crossbar array has more favorable energy scaling compared to digital 

accelerators. The latency of a crossbar array is dependent on the time it takes to charge 

each row of the array. As the number of columns increase for an array, the resistance and 

capacitance of the rows increase as well hence scaling the latency by O (N2) for an N X N 

array [31]. The resistive crossbar array has much more favorable energy scaling as 

compared to the digital accelerators. For VMM computation on the digital accelerators 

(i.e., DRAM arrays), requires charging one row at a time and then one column at a time for 
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each cell. Hence, computing a VMM using a SRAM or DRAM memory is energy intensive 

as it scales N3 while for an analog memory it scales as N2 [32]. It is interesting to note that 

the in case of analog accelerators, the area and energy consumption is dominated by the 

peripheral circuitry and not the crossbar itself [31].  

2.3. Desirable performance metrics for analog synaptic devices  

a. Device dimensions  

One of the key requirements for synaptic devices is the potential scalability of the 

devices to nanometer regime. To integrate large scale neural networks, synaptic devices 

with small device footprints is necessary. Today synaptic devices with scalability down to 

sub-10 -nm regime is preferred. Among different synaptic devices, Phase change memory 

(PCM) and Resistive RAM (RRAM) devices have shown the capability to scale to sub-

10nm regime [33], [34] for digital memory applications. However, here we can argue that 

a tradeoff can exist between the analog synaptic characteristics and scalability.  

b. Multilevel conductance states  

The synaptic plasticity showed by a biological synapse shows multilevel states. Pattern 

recognition and learning are implemented using neuro inspired algorithm and require 

multilevel conductance states for accuracy and fast learning. In brief we can say that the 

higher the level of conductance the better the learning accuracy and robustness of the 

system. Ideally a device to be implemented as a synaptic device in neural hardware should 

show >100 conductance states [35]-[37]. 
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c. Dynamic Range  

Dynamic Range is the ratio of maximum conductance and minimum conductance. An 

ideal synaptic device should show a dynamic range of 100 or greater [38]. This is important 

from the point of view of mapping the weights in a neural network. The weights in the 

algorithm are normalized. For example, if the dynamic range of a given device is 1000, 

therefore, the lowest weight can be represented as 0.001. For online training it is important 

that there are many available weights for accurate training. 

d. Symmetry and Linearity in Weight Update 

The linearity refers to linear behavior between conductance and increasing pulse 

number. This linear and symmetric behavior is important from the point of view weight 

mapping in algorithms and to improve the accuracy in pattern recognition. This linear and 

symmetric behavior is an ideal characteristic. The real devices show asymmetry and 

nonlinear weight update characteristics. For all most all present RRAM devices, there is an 

asymmetry between potentiation and depression characteristics which impede their 

application for pattern recognition and online training. The present devices show an 

increase in conductance for initial pulse train but tend to saturate at the end. Recent results 

have shown that this nonlinearity/asymmetry has caused the learning accuracy loss in the 

neural networks [39], [40].  
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Figure 6. An ideal linear response of synaptic device. 

 

e. Energy Consumption 

 

For an ideal synaptic device, the energy consumption should be < f J per synaptic event 

if we want to implement the synaptic characteristics shown by a biological synapse. Most 

RRAM devices show a programming energy around 100 fJ~10 pJ, while most PCM 

devices may have even higher programming energy of 10~100 pJ. To get close to a 

biological synapse, engineering efforts need to be implemented in the current RRAM 

devices to reduce energy consumption and have faster programming speeds of several ns. 

f.  Data retention  

The data retention of RRAM devices should be somewhere around 10 years at an operating 

temperature of about 85. The number of cycling endurances is very application dependent, 

relying on how many weight updates are required in the training processes. For a relatively 
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simple task (i.e., the MNIST handwritten digit recognition [41]), 60000 training images 

with 50 training epochs give a maximum weight update possibility to be 3 × 106 updates. 

Not every synapse is updated in training in each cycle, thus the endurance of ~ 104 cycles 

is enough for training MNIST data set [42]. However, considering more challenging tasks 

(i.e., ImageNet Challenge [43]), much higher endurance may be required. 

Table 1. Summary of performance metrics for analog synaptic devices [ 44]. 

PARAMETERS TARGETS 

Device dimension <10nm 

Multilevel conductance >100 

Dynamic range >100 

Non-Linearity 0/0 

On-state Resistance (RON) 100 kΩ -1 MΩ 

Write Voltage 0.5 V-1V 

Retention >10 years 

Endurance >109 
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2.4. Conductive bridge random access memories (CBRAMs) 

Resistive random access memories (RRAMs) have emerged as the most popular choice 

for the analog neuromorphic architectures. RRAM devices have shown interesting 

properties like scalability to sub lithographic limit, multilevel conductance characteristics, 

low power operation, data retention and endurance. The RRAM devices can be fabricated 

in the X - bar architecture which helps in the implementation of matrix multiplication 

functions. The conductance states of the RRAM devices are used to store the synaptic 

weights within the neural network. The computing power efficiency of an x-point RRAM 

array has been estimated to be 31000 times than the state-of-the-art microprocessor, with 

ultra-low power requirement and real time pattern recognition capability [44].  

RRAMs are simple metal-insulator-metal structures that show a controllable resistance 

change. The resistance change of these devices relies on the movement of ions within the 

material sandwiched between the electrodes. Depending on the applied electric potential, 

the devices can be set/programmed into low resistance state (LRS) or reset to a high 

resistance state (HRS). RRAM are filamentary in nature and divided into two main 

categories: anion based also known as OxRAM and cation based CBRAM devices.  

Conductive Bridge RAM (CBRAM) is a subclass of RRAM. These are cation -based 

devices that are based on redox reactions leading to the formation of positively charged 

ions i.e., cations. The migration of such metallic cations from the anode to the cathode 

enables the growth of a metallic filament with nanometric dimensions [45]. The anode is 

made up of an electrochemically active metal which can be easily oxidized or reduced (e.g., 

Cu or Ag) and the cathode is made of a relatively inert metal (e.g., Ni, W, Pt). The layer 

sandwiched between the electrodes is a solid-state electrolyte in which the ions can 
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drift/diffuse through it. Examples of solid-state electrolytes used are germanium selenides 

(GexSey), germanium sulfides (GexSy), SiO2, Al2O3 implemented successfully with Ag or 

Cu anodes to form ReRAM cells [46]-[52].  

In this work, we focus on the Ag-Ge30Se70 CBRAM devices. The growth conductive 

filament across the Ag-Ge30Se70 CBRAM devices is illustrated in Figure 7.  

 

Figure 7. Schematic representation of mechanism of resistive switching in Ag-Ge30Se70 CBRAM devices.  

(a). Pristine condition –OFF state (b). On application of positive bias, redox reaction takes place leading to 

formation of conductive filament. (c). On continuous application of positive bias, the conductive filament 

begins to thicken. (d). Reverse bias leads to removal of the filament – Erase operation.   

 

Referring to Figure 2.4, the device is in a high resistance state (HRS) initially. When a 

positive voltage is applied to the anode, the metal on the anode i.e., Ag gets oxidized (i.e., 

it loses electron) and Ag+ cations are generated. The cations start drifting towards to the 

cathode under the influence of an electric field. As the positive potential on the device is 

increased, the more Ag+ ions are generated, and they drift through the solid-state 

electrolyte. These Ag+ cations transport across the electrolyte layer and are reduced to Ag 

at the cathode leading to the formation of a conductive filament.  Once the filament bridges 

the anode and the cathode, the devices can be modulated over a range of “low resistance 

states” (LRS) by increasing or decreasing the average cross-sectional area (width) of the 
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filament. On application of negative bias on the anode, the Ag which constitutes the 

filament gets oxidized within the filament on the cathode side. The Ag+ ions formed start 

drifting toward the anode under the influence of the electric field. This process continues 

till the metallic filament is completely broken and the device resistance switches back to 

HRS. In this work, the use of Ag-Ge30Se70 CBRAM devices as an analog synapse for 

crossbar array type architecture is explored. 

2.5. Dissertation Outline  

Chapter 1 gives an overview of Deep Neural Networks (DNN). The computational 

fundamentals of deep learning i.e., inference and training the deep neural networks with 

backpropagation algorithm is presented. Chapter 2 begins with the needs of a deep learning 

hardware architectures. It provides a brief review of the digital architectures as well as 

analog based resistive crossbar-array based architectures specialized for deep neural 

networks. The requirements of an ideal resistive synaptic device for analog crossbar array 

architecture are also discussed. An introduction to Resistive Random Access Memories 

(RRAMs), a popular choice for analog resistive devices, with focus on Ag-Ge30Se70 

Conductive Bridge RAM (CBRAM) is presented.  

Chapter 3 discusses the fabrication of Ag-Ge30Se70 CBRAM crossbar arrays. Chapter 4 

presents the DC IV characteristics of the devices. The analog response of the fabricated 

crossbar array to two different pulsing schemes - constant and increasing amplitude is 

studied. Beyond this analysis, we model, using Cross-Sim [53], an open-source software, 

developed by Sandia National Laboratories, how various degrees of non-linearity affect 

the classification accuracy of a neural accelerator that utilizes these RRAM synapses. 
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Using Neurosim [54], the circuit level performance of the device to the different pulsing 

scheme is compared.  

In Chapter 5, the impact of Total Ionizing Dose (TID)on the conductance of Ag-

Ge30Se70 CBRAM devices developed for use as analog synapses in DNN designs is 

analyzed. Material characterization is performed to better understand the effect the TID on 

the analog conductance response of these devices. Finally, in Chapter 6 the summary of 

this work and conclusion is offered.  
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CHAPTER 3 

DEVICE FABRICATION 

3.1. CBRAM ARRAY DEVICE FABRICATION  

The NVM devices for the in-memory computing that are studied in this thesis are 

conductive-bridging RAM (CBRAM). These devices were fabricated at the NanoFab class 

100 cleanroom facility at the at Arizona State University NanoFab. The CBRAM 

fabrication process is described in this chapter.  

For the initial processing step, depicted in Figure 8, a Si wafer is coated with a 170 nm 

layer of low-pressure chemical vapor deposited (LPCVD) Si3N4. This layer serves as a 

passivation layer between the Si substrate and the CBRAM structure. 

 

Figure 8. LPCVD deposition of Si3N4. 

In the second step, a nickel cathode is created by evaporating 65nm Ni using a Lesker 

PVD electron-beam (e-beam) evaporator. The chamber pressure prior to deposition was 

107 Torr. The deposition rate for nickel was 0.5 Ǻ/s to ensure smooth and even deposition 

of the metal. 
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Figure 9. Deposition of Cathode (Ni) metal. 

To pattern the nickel electrode, hexamethyldisilazane (HMDS) is spin coated at 3500 

rpm for 30sec and baked at 100 °C for 60 s to facilitate photoresist adhesion. AZ 3312 was 

then spin coated on the substrate at 3500 rpm for 30 sec and baked at 100 °C for 60 seconds.  

The photoresist coated wafer is then patterned using EVG 620 lithography aligner set to 

45mJ/cm 2 to create Ni cathode bars as shown in Figure 10, which is a top view of the 

crossbar tile. After exposure, the resist is developed for 60 seconds using Az 300 MIF 

developer.  The resist is hard baked at 110 °C post developing to create an etch mask. The 

exposed nickel is chemically etched using Nickel Etchant TBF (20 % Nitric Acid solution) 

for 4 minutes. The remaining resist is removed by soaking the wafer in acetone solution 

followed by methanol and isopropyl alcohol rinse. 
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. Figure 10. Mask # 1 creating Nickel cathode bar. 

To create isolation between the CBRAM devices, 100nm of SiO2 is deposited using an 

Oxford Enhanced Chemical Vapor Deposition (PECVD) tool. To create the device vias, a 

double layer resist recipe was used to pattern the SiO2 layer. First, HMDS is spun on at 

4000 rpm for 30 sec followed by a bake at 120 °C for 1 minute.  Next, OCG 825 is spun at 

4000 rpm for 30sec followed by a bake at 105 °C for 1 minute. The first resist layer is 

followed by AZ 3312 spun on at 4000 rpm for 30 sec and baked at 95 °C for 1 minute. 

Mask # 2 was used to create device vias for etching. The resist is developed at 45 mJ / cm-

2 and developed in AZ 300 MIF for 1 minute. The device vias are etched using anisotropic 

reactive ion etching (RIE) for 4 mins 30 secs. 
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Figure 11. Ni layer chemically etched to create cathode bar followed by oxide deposition. 

 
Figure 12. Mask # 2 used to etch via through SiO2. 
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Figure 13. Dry etching used to create vias through SiO2 to Ni. 

Double layer resist is also used as a lift -off layer.  The chalcogenide lift-off mask i.e., 

Mask # 3 is used to pattern the resist with UV exposure to 45 mJ/cm-2 and it is developed 

for 1 minute using AZ 300 MIF. Next, the wafer is placed in a Cressington 308R thermal 

evaporator where 60nm of Ge30Se70 is thermally evaporated followed by 30nm Ag at a 

deposition rate of 0.75 Ǻ/s. The chalcogenide layer (Ge30Se70) layer us photodoped with 

Ag by exposing the wafer to UV light for 1 hour to a dose of 5.3 J/cm2. The photo-doping 

process is used to drive the Ag into the chalcogenide layer to attain a saturation 

concentration of 33 .at% concentration [55], [56].  After the doping process, the wafer is 

placed back into the Cressington evaporator where additional 35nm of Ag was deposited 

to form the top active metal electrode layer. Next, the resist is thermally cracked by placing 

the wafer on a thermal hot plate at 150 °C. The thermal shock breaks the resist film and 

allows a clean lift-off. The wafer is then placed in acetone to remove the metal as well as 

the resist layers.  
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Figure 14. Mask # 3 used to for chalcogenide -Ag lift off layer. 

 

 

Figure 15. Active metal electrode deposition. 
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Figure 16. Lift-off patterning of top active metal electrode layer. 

The final step is to create a top Al crossbar electrode. To create the Al metal contact, 

double layer lift-off resist recipe is used.  Mask # 4 is used to pattern the resist with UV 

exposure to 45 mJ/cm-2 and it is developed for 1 minute using AZ 300 MIF.  The wafer is 

then placed in the Lesker PVD sputtering machine and 250 nm of Al is deposited at a 

deposition rate of 1.5 Ǻ/sec. After deposition the resist is thermally cracked to allow clean 

lift off and placed in acetone. Figure 19 depicts the final device structure.   
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Figure 17. Mask #4 used for patterning the top contact metal electrode. 

 
Figure 18. Contact metal (Al) deposition. 
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Figure 19. Final device structure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 



  30 

CHAPTER 4 

STUDY OF CBRAM AS AN ANALOG SYNAPSE 

4.1. Introduction 

The main advantage of the analog crossbar array architecture is that it can perform the 

inference and training efficiently. The most popular choice for an analog crossbar 

accelerator has been the Resistive RAM (RRAM) devices. However, for neuromorphic 

computing applications, these devices must meet several stringent requirements. For 

inference applications it is necessary that the devices have at least two conductance states, 

low cycle-cycle variability, low read noise as well as good retention. To accelerate training, 

the RRAM elements should be able to switch between a wide range of analog conductance 

states [13]. One desirable device characteristic for training is a gradual and symmetric 

response to different programming pulses which are used for weight update [57], [58],[59].  

In this chapter, we investigate the response of Ag-Ge30Se70 CBRAM crossbar devices to 

different programming pulse schemes. We analyse the important synaptic properties like 

conductance linearity response, device-to-device variability, and conductance on/off ratio 

of Ag-Ge30Se70 CBRAM. In addition to understanding the device synaptic behaviour of 

these devices, it is necessary to understand the circuit level performance of these devices 

in an analog neural accelerator. We demonstrate the circuit level performance of Ag-

Ge30Se70 CBRAM analog accelerator using NeuroSim [54],[60]. NeuroSim is an open-

source software to evaluate   Cross-Sim, an open-source software, developed by Sandia 

National Laboratory, is used to analyse the classification accuracy of the fabricated devices 

for two different datasets [53].  
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4.2. DC I-V Characterization 

The current-voltage (I-V) characteristic of one fabricated CBRAM synapse is shown 

Figure 20. The figure shows the characteristic hysteresis DC switching behaviour over 

three voltage sweep cycles. It is important to note that Ag-Ge30Se70 CBRAM devices are 

forming-free devices since Ag is introduced in the switching layer by the process of photo 

dissolution [61]. The DC sweep was performed using Agilent 4156 C analyser. Bipolar 

switching behaviour was observed reproducibly over 50 cycles. It should be noted that 

these large-scale DC characterizations which toggle the CBRAM cell between HRS and 

LRS are performed to assess general operational integrity not the incremental LRS 

switching required for use as a synaptic element. Cumulative distributions for all HRS and 

LRS measurements are shown in Figure 4.2. The distributions show a minimum HRS to 

LRS ratio above 20, well above the target minimum of 10 [38].  
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Figure 20.I-V characteristics of Ag-Ge30Se70 CBRAM device cycled at 100µA compliance. 
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Figure 21. High Resistance State (HRS) and Low Resistance State (LRS) distribution of the device 

extracted @0.03V for 50 cycles. 

Another important requirement of the synaptic device is to have multilevel conductance 

characteristics. The multilevel conductance characteristics of crossbar Ag-Ge30Se70 

CBRAM is demonstrated in Figure 22 by increasing the current compliance limit for each 

consecutive DC cycle. The compliance current is the maximum allowable current through 

the device. A higher the compliance current causes more ion flow through the device 

leading to a thicker conductive filament and lower resistance states. This characteristic of 

the CBRAM is well established in earlier works [62], [63]. 
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Figure 22. Multi-level conductance demonstration of Ag-Ge30Se70 CBRAM with increasing compliance 

current. 

4.3. Constant Pulse Programming  

Multilevel conductance switching is demonstrated by applying voltage pulses to top 

electrode (Ag anode) while the bottom electrode (Ni cathode) is grounded. The 

measurements are performed using the Keithley 4200 SCS parameter analyser with a built-

in 4225 PMU module. To achieve gradual switching behaviour, we applied 100 

consecutive SET pulses (0.35V for 100ns) and 50 consecutive RESET pulses (-0.25V for 

100ns). Each write and erase pulse was followed by read voltage of 30 mV to extract 

conductivity. The change in conductance of the device is plotted as a function of pulse 

number in Figure 23 for 20 cycles of SET/RESET operations. For these input pulse 
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parameters, the results indicate a highly non-linear response in device conductance, where 

the incremental change in conductance is greatest for the early SET/RESET signals in each 

sequence, saturating quickly to a to a maximum/minimum level. We observe a 10x change 

in conductivity for the 100ns pulse width. 

 

Figure 23. The potentiation and depression cycling of Ag – Ge30Se70 CBRAM with P.W. = 100 ns. 

The effect of pulse width on the switching response is observed in Figure 24. For these 

data, the SET/RESET pulses have a longer pulse width of 100µs. An increase in maximum 

and minimum conductance range is observed for higher pulse width, which can be 

attributed to the greater widening of the conductive filament during the longer voltage 

stress time. 

 
Figure 24.  Repeated pulse cycling Ag-Ge30Se70 CBRAM with P.W =100 µs. 
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Figure 25 plots the response for both pulse widths over one cycle and shows that for 

shorter pulses, i.e., 100ns, we observe a larger GMAX /GMIN ratio and lower conductance 

levels. When considering the use of these devices for parallel VMM programming lower 

conductance levels are preferred since this will reduce the energy required for both VMM 

programming and inference [64].  

 

Figure 25. The analog response of the Ag-Ge30Se70 CBRAM device to different pulse-widths. 

The conductance update response for both pulse widths was compared by normalizing 

the conductance range as depicted in Figure 26. The conductance update for the 

potentiation is identical for both the pulse-widths. The depression behaviour for 100ns 

pulse width seems to be better. A detailed study of the linearity response is provided in the 

following subsections. 
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Figure 26. Normalized conductance of the device to different pulse widths. 

 

4.4. Variable Pulse Programming  

An increasing amplitude pulses were applied to the anode of the device. Increasing 

amplitude voltage pulses from 0.2 V to 1.5 V (pulse width = 100 µs and 50 mV step) for 

potentiation and -0.2 V to -1.2 V (pulse width = 100 µs and 50 mV step) for depression 

were applied. Each pulse was accompanied by a read pulse of 50 mV with a pulse width 

of 100 µs. Figure 27 shows the potentiation and depression characteristics of the device. 

Figure 28 displays the response of the devices to multiple pulse cycles. Unlike the 

characteristics above, these devices are shown to exhibit good linearity over a suitable 

conductance range. This linear response is realized by careful control of the thickness of 
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the metallic filament. One should however note that using varying amplitude pulses 

eliminates the advantage of parallelism since it necessitates addressing each analog 

resistive element in a crossbar, individually. 

 

Figure 27. Conductance response of Ag-Ge30Se70 CBRAM to incremental amplitude pulses. 
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Figure 28. Potentiation and depression cycling to increasing amplitude pulses.  

4.5. Study of important synaptic properties for Ag-Ge30Se70 CBRAM device  

a. Non-Linearity Response Study 

The linearity metric refers to the linear behavior of the conductance vs. pulse number 

curve. The linearity metric is important in the weight mapping algorithms. Linear and 

symmetric behavior is an ideal characteristic. Actual devices typically show some degree 

of asymmetry and nonlinearity in the weight update characteristics. Asymmetry between 

potentiation and depression characteristics can degrade pattern recognition and online 

training by the neural network. The Ag-Ge30Se70 CBRAM devices studied in this show an 

increase in conductance for initial pulse train but tend to saturate at the end. Recent results 

have shown that this nonlinearity/asymmetry has caused the learning accuracy loss in the 

neural networks [65]. 
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To mathematically extract the non-linearity factor, the potentiation and depression 

response of the device to the 2-pulse scheme response are fit to the following equations 

[54]: 

𝐺𝐿𝑇𝑃 = 𝐵 (1 − 𝑒(−
𝑃
𝐴

)) + 𝐺𝑚𝑖𝑛                                                                 (4.1) 

𝐺𝐿𝑇𝐷 = 𝐵 (1 − 𝑒
(𝑃−

𝑃𝑚𝑎𝑥
𝐴

)) + 𝐺𝑚𝑎𝑥                                                          (4.2) 

𝐵 =
𝐺𝑚𝑎𝑥 − 𝐺𝑚𝑖𝑛

1 − 𝑒−
𝑃𝑚𝑎𝑥

𝐴

    ,                                                                       (4.3) 

where, G, P, and A are the conductance value, pulse number, and nonlinear behaviour of 

weight update, respectively. Gmax and Pmax are the maximum conductance and pulse widths, 

respectively, obtained from the experimental data. The different nonlinearity factors for 

potentiation and depression are obtained by simulating the curves using MATLAB with 

equations (1) and (2) respectively [54]. The non-linearity factor A for the potentiation and 

depression are found to be 6.65 and -2.5, respectively, for the constant amplitude (P.W.= 

100 ns) as shown in Figure 29. 

Similarly, for the increasing amplitude pulses, the non-linearity factors the potentiation and 

depression was found to be 1 and -0.96 respectively as depicted in Figure 30.   
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Figure 29. Non-linearity fitting factors -Constant Amplitude pulses (100 ns). 

 
Figure 30. Non-linearity fitting factors - Increasing Amplitude pulses (100 µs). 
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b. Device - Device Variation 

The operation of Ag-Ge30Se70 CBRAM devices involves the drift and diffusion of metal 

ions to form a filament and hence these devices are prone to variation in conductance 

update from device-to-device across the crossbar array. Different devices will tend to have 

different non-linearity baselines [66]. The device-device variability is studied by 

measuring the weight update behaviour of 10 devices in the crossbar array. Here the 

variability is calculated as the deviation in the non-linearity factor for different devices. 

The device-device variability is seen to be ±1.05 as shown in Figure 31. 

 

Figure 31. Device to device weight update variation for Ag-Ge30Se70 CBRAM devices. 
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c. On/Off Conduction Ratio 

Ideally the weight values in the training algorithms are represented as normalized 

conductance, ranging from 0 to 1. However, the minimum conductance can be zero only if 

the ratio of maximum and minimum conductance i.e. On/Off ratio approached infinity 

which is practically not feasible. The learning accuracy has been observed to degrade with 

a small on/off conductance ratio [66] because for calculations on a small weight update 

value will lead to significant distortions. The on/off conduction ratio for Ag-Ge30Se70 

CBRAM devices for identical pulse application i.e., Figure 32, is 16.  

 

Figure 32. Conductance on/off ratio for Ag-Ge30Se70 CBRAM device for constant amplitude pulses 

(100ns). 
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4.7. Modelling Effect of Linearity on Pattern Recognition Accuracy  

The impact of linearity and weight update behavior on system response to different 

pulse schemes is studied by modelling these devices in an analog neural training 

accelerator. An artificial neural network was simulated using the device properties of the 

Ag-Ge30Se70 CBRAM. The CrossSim simulator was used to perform the supervised 

learning [31], [53],[67]. A three-layer neural networks depicted in Figure 33 were trained 

using a backpropagation algorithm. This algorithm is a computationally intensive 

algorithm that uses the two important kernels:   vector matrix multiply (VMM) and outer 

product update. For this work, we have used two datasets:  a small image version (8 X 8 

pixels) of handwritten digits from the ‘Optical Recognition Handwritten Digits’ dataset 

[68] and a large image version (28 X 28 pixels) of handwritten digits from the MNIST 

dataset [69]. A two-layer neural network consisting of 64 input, 36 hidden and 10 output 

nodes are used for small image dataset. The larger MNIST dataset was trained on a network 

of dimensions 784x300x10. A crossbar array is simulated using the analog synaptic 

properties. The crossbar a part of the neural core performs the required kernel operations. 

To perform the vector matrix multiplications, the conductance states of the synaptic devices 

are programmed by applying input voltages or input pulse lengths to each row and the 

corresponding output vector is read in the form of current. Parallel read, multiplication and 

summation operations are performed in this single step. This helps in reducing the total 

energy of vector-matrix multiply (VMM) and highlights the main advantage of using 

analog resistive memories for these operations. 
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Figure 33. Mapping the neural network layers to crossbar array. 

 

Data set #Training 

Examples 

#Test Examples Network size 

UCI Small images  3823 1797 64X36X10 

MNIST large images  60000 10000 784X300X10 

 

To simulate the response of the Ag-Ge30Se70 CBRAM devices in the neural network, a 

lookup table is created containing ∆𝐺/𝐺 response of the devices to multiple potentiation 

and depression cycles at a given pulse widths using data from Figures 23 and 28 [70]. For 

small image dataset, we observe the training accuracy of 85% for constant amplitude 

pulsing as depicted in Figure 34(a) while the training accuracy for the same dataset with 

increasing pulse amplitude was found to be 92% as seen in Figure 34(b). For large digits 

the accuracy was seen to be improved from 79% to 87% for increasing pulse amplitude as 

seen in Figure 35a & 35b. The ideal training accuracy using a double-precision CPU or 

GPU is 98%. 
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Figure 34. Classification accuracy for small image dataset.  

 

Figure 35. Classification accuracy for large image MNIST dataset.  
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4.6. Circuit level performance of Ag-Ge30Se70 CBRAM in a Crossbar Array    

To benchmark the circuit level performance of Ag-Ge30Se70 CBRAM device we use 

NeuroSim, a neuro-inspired architecture at circuit level, to estimate the area, latency, 

dynamic energy of a neuromorphic hardware accelerator. NeuroSim utilizes the 

circuit/device model parameters on a small but realistic neuro-inspired architecture, 

enabling fast early-stage design exploration [54], [60]. The overview of neuromorphic 

hardware design utilized by NeuroSim module is depicted in Figure 36.  

 
 

Figure 36. An overview high level neuromorphic accelerator design used in NeuroSim to implement neural 

network. [Adapted from [54]]. 



  48 

To estimate the circuit level performance of Ag-Ge30Se70 CBRAM, a 2-layer MLP 

network with 400 input neurons, 100 hidden neurons and 10 output neurons is mapped to 

the analog eNVM crossbar array architecture. Each synaptic layer consists of synaptic core 

and neuron periphery. The synaptic core consists of a crossbar array architecture as 

depicted in Figure 37. 

 

Figure 37. Circuit block diagram of analog eNVM synaptic core. © 2017 IEEE 
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In this type of array structure, each CBRAM device is located at the cross point of a 

word line (WL) and a bit line (BL). This is the most compact and simplest form of array 

structure. This layout can achieve the highest integration density of 4F2/cell. The input 

vector can be coded in read voltage signals and the weighted sum operation (i.e., MVM) 

can be performed in a parallel fashion. A word line (WL) switch matrix can be used to 

switch multiple rows or columns at a time thus enabling parallel read voltage input for the 

weighted sum operation or selecting a rows or columns to perform weight update scheme 

that require different voltage biases. Adder and shift registers are used to perform the shift 

and the addition on all the bits cycles to obtain the final weighted results. To convert the 

analog weighted sum currents to digital outputs, read circuitry is used [71]. The read circuit 

uses the principle of integrate-and-fire neuron model. The neuron peripheral circuitry 

performs the non-linear activation function on the digital outputs and is also responsible 

for the communication between different synaptic cores [54]. 

A list of the simulation parameters is provided in Table 2. The parameters are extracted 

from the synaptic response of the Ag-Ge30Se70 CBRAM to constant amplitude pulses. 
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Table 2.Simulation circuit and device parameters -Constant Amplitude Pulses 

Parameters Values 

Technology node (F) 32 nm 

Clock frequency 2 GHz 

Assigned height of cell 2 F 

Assigned width of cell 2 F 

Crossbar eNVM cell area 4 F2 (F = tech node) 

Max. Conductance 6 E-4 

Min. Conductance 3.8 E-5 

Write Voltage 0.35V / -0.25V 

Read Voltage 30 mV 

Write pulse width (P.W.) 100 ns 

Read pulse width (P.W.) 100 µs 

Non-linearity 6.65 / -2.5 

 

4.6.1. Simulation Results 

 The simulated results for NeuroSim for constant amplitude pulses are depicted in Table 

3. The total area is calculated as the summation of the synaptic core area and the total 

neuron peripheral circuit area. The latency in a crossbar array is caused by wire parasitics 

(R & C) and the peripheral circuitry. The power consumption is mainly due to the static 

energy consumption in an eNVM synaptic array. The power consumption is directly 

proportional to the conductance of the cell, write voltage used for conductance increase 

and decrease, number of applied write pulses and the pulse widths used [54]. 
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Table 3.Represents the circuit level performance of Ag-Ge30Se70 CBRAM device at 32nm. 

Area (µm2) Read Energy (J) Write Energy (J) Read Latency (s) Write Latency (s) 

1.4028E5 1.0176E-01 5.0520E-02 1.5796E-02 4.5121 

 

One should note that when using variable amplitude scheme that yields highly linear weight 

update behavior, a read-before-write verify step is necessary to determine the current 

conductance state. After the conductance state is read, a correct pulse amplitude is applied. 

This increases the peripheral circuit complexity along with increasing the latency and 

energy consumption. Figure 38 depicts the crossbar array circuitry used for non-identical 

pulse application. 
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Figure 38. Block diagram of Ag-Ge30Se70 CBRAM crossbar array with peripheral circuitry used for 

variable amplitude pulse application [72]. 

Additional circuitry like pulse controller and multilevel sense amplifier are added to the 

crossbar array to feed back the current state to choose appropriate pulse amplitude. Circuit 

simulation was performed using the variable pulse amplitude response of the Ag-Ge30Se70 

CBRAM devices as depicted in Figure 4.9.  The simulated results are shown in Table 4. 
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Table 4.Represents the circuit level performance of Ag-Ge30Se70 CBRAM device at 32nm with Variable 

pulse amplitude. 

Area 

(µm2) 

Read Energy 

(J) 

Write Energy 

(J) 

Read Latency 

(s) 

Write 

Latency (s) 

1.53297E5 5.2522E-01 4.3830E-01 1.9796E-02 4.8107 

 

 

 



  54 

 

 

 



  55 

 

 

Figure 39. Comparing the circuit level performance of Constant amplitude and Variable amplitude pulses.  
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Comparing the performances, we observe that there is 9.28% area overhead, 6.62 % write 

latency, and 768% write energy, 426 % read energy penalty is introduced when using 

variable amplitude pulses as compared to constant amplitude pulses. 

The overhead energy and latency problem can be resolved by using combination of 

resistors in series with RRAM device as suggested in some previous works [73], [74]. K. 

Moon et.al suggest using a voltage divider arrangement in which a fixed resistor is 

connected in series with the CBRAM device as shown in Figure 40 [73]. However, for 

potentiation, i.e., increasing the CBRAM conductance (i.e., reducing the resistance), it will 

not be possible to use a fixed voltage divider to realize an increase in the pulse voltage 

across RCBRAM. To increase the VCBRAM pulse while RCBRAM switches to a lower resistor a 

more sophisticated design is required.  

 

Figure 40. Two resistor circuit to implement increasing amplitude effect. 

One proposed design is shown in Figure 41. In this design, the constant voltage pulse 

input, VIN, toggles a custom 4-bit mixed signal counter, CNTR1, which selects eight 

different bias currents to CBRAM device. When the 4th bit of CNTR1 is set low, a second 
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4-bit counter, CNTR2, is enabled. The first 3 output bits of CNTR2 combine with the 

CNTR1 currents to add another four monotonically increasing currents to the sequence (the 

last three 3-bit outputs of CNTR 2 can be neglected as the CBRAM device will have 

reached a level close to its minimum value by that step). The 4th bit of CNTR2 is fed back 

to the enable switch of CNTR1. When the 4th bit on CNTR2 is toggled, CNTR1 is disabled, 

and the pulse sequence terminated.  The currents are set by biasing a select combination of 

p-channel transistors in saturation mode. The counter outputs are toggled between VDD 

(off-state) and VDD-Vref (saturation), where Vref is a tunable voltage slightly larger than 

the p-channel threshold voltage, which ensures the p-channel transistors are biased in 

saturation. When the input voltage is low, an n-channel transistor in parallel with RCBRAM 

is activated to shunt current to ground, which debiases the RCBRAM during that half cycle 

of the input pulse. 

 

Figure 41. Switched current design for potentiation. 

CNTR
1

(4bit)

CNTR
2

(4bit) VDD

VCBRAM
RCBRAM

VIN
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The increasing current magnitude sequence selected by the counter is determined as 

follows. To achieve a VCBRAM that increases approximately linearly as RCBRAM is reduced, 

the following condition must be satisfied: 

𝑉𝐶𝐵𝑅𝐴𝑀,𝑖 = 𝑅𝐶𝐵𝑅𝐴𝑀,𝑖𝐼𝑖  ≈ 𝑀𝑅𝐶𝐵𝑅𝐴𝑀,𝑖 + 𝐵.                                    (4.4) 

In Eq. 1, Ii is the selected current at pulse number i. M is a negative value and B is positive 

value set to match the targeted (VCBRAM, RCBRAM) order pairs, e.g., (0.2V,2kΩ) and (1.36V, 

730Ω). By rearranging Eq. 1, the targeted Ii is therefore, 

𝐼𝑖  ≈ 𝑀 +
𝐵

𝑅𝑖
                                                                       (4.5) 

Figure 4.26 shows the simulated response of RCBRAM and VCBRAM with the input voltage 

pulse sequence for VIN. It should be noted that using switch programming, the hardware of 

the potentiation circuit (Figure 42) can be reconfigured for use in RCBRAM depression.  

 

Figure 42. Reducing Resistance and increasing VCBRAM for input voltage pulse sequence. 
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CHAPTER 5 

IMPACT OF TID ON THE ANALOG CONDUCTANCE AND ACCURACY OF 

CBRAM-BASED NEURAL ACCELERATOR 

5.1. Introduction 

Apart from acting as storage class memories as this thesis has shown, resistive random-

access memories (RRAM) can be used train deep neural networks (DNN) [75]. Training a 

DNN is computationally intensive and difficult to implement in edge devices such as 

spacecrafts, rovers, or satellites. A special purpose accelerator based on analog RRAM 

crossbars, has shown to potentially enable real-time training on embedded systems 

[31],[32]. The conductance states of the RRAM devices are used to store the synaptic 

weights within the neural network. Vector-matrix multiplication can be performed within 

the crossbar array by driving the rows of the array with appropriate input activation 

functions. Conductive Bridge RAM (CBRAM), one class of RRAM, have demonstrated 

synaptic capability for neuromorphic applications in [76], [77]. CBRAM devices fabricated 

with Ag-Ge30Se70 material stacks and operating as digital (binary) memory elements have 

shown excellent tolerance to total ionizing dose (TID) up to 10 Mrad [78], [79]. With such 

high radiation tolerance, these devices could potentially be used in a variety of systems for 

space applications.  

Though the above-mentioned studies have indicated high TID tolerance levels, these 

results do not completely rule out the radiation sensitivity of the same CBRAM devices in 

an analog neural accelerator. The operation of CBRAMs acting as digital devices might 

not be affected by small radiation-induced changes in conductance but when the same 

device is used in an analog accelerator a small change in conductance might bring about a 
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large degradation in training accuracy. Indeed, in a neural accelerator the RRAM device is 

often changed by a small fraction of the entire conductance range during every neural 

weight update. Hence it becomes crucial to study the impact of cumulation radiation dose 

on the analog device characteristics of RRAM, specifically CBRAM in this thesis, and the 

impact this would have on training a neuromorphic computing accelerator. Only one study 

to date has investigated the effect of TID exposure on the operation of CBRAM used as a 

neuromorphic synapse [80]. This chapter explores the effect of TID on the specific analog 

behavior of Ag-Ge30Se70 CBRAM devices. The experimental results are further used to 

model the training accuracy on an analog accelerator before and after irradiation. 

 

5.2. Experimental Setup 

  CBRAM tiles were diced from the wafer and crossbar rows and columns were wire-

bonded in a pin grid array (PGA) package, as shown in Figure 43. One package was used 

as a control test chip and the other was exposed to ionizing radiation. Control and exposed 

CBRAM devices were subjected to identical DC cycling using an Agilent 4156C parameter 

analyzer to verify functionality. The devices were swept from 0V to 0.5V and back to 0V 

in 10mV steps for programming and from 0V to -0.5V to erase the devices. The I-V 

characteristics of the control and the exposed CBRAM devices are depicted in Figure 44 

& Figure 45 respectively. For this experiment, two devices were tested on both the control 

and exposed test chips.  
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Figure 43. Grid array package used for radiation testing. 

 
Figure 44. I-V characteristics of Control sample prior to irradiation. 
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Figure 45. I-V characteristics of exposed device prior to irradiation. 

The exposed chip was irradiated with 60Co gamma-rays in the Gamma Cell 220 

irradiator at ASU. The package was placed into a socket which was connected to a test 

board. All device terminals were grounded while the test board was placed inside the 

irradiation chamber. Figure 36 is a picture of the experimental setup. The dose level inside 

the chamber was 185.91 rad (Ge30Se70)/min. The devices were removed from the chamber 

after a fixed dose and tested at room temperature. A summary of the dose step and exposure 

time is shown Table 5. The devices were tested for TID of up to 1Mrad (Ge30Se70). 
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Figure 46. Experimental test setup for irradiation experiments. 
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Table 5.Dose step and exposure times. 

STEP STRESS LEVELS 

(krad (Ge30Se70)) 

EXPOSURE TIME 

(hrs.) 

50 4.56 

100 4.56 

250 13.29 

500 22.41 

700 17.93 

1000 26.89 

 

 

After irradiation, the test and control devices were subjected to pulse testing. Pulse 

measurements were performed using the Keithley 4200 SCS parameter analyzer with built-

in 4225 PMU module. To achieve gradual switching behavior, we applied 100 consecutive 

SET (potentiation) pulses (0.35V for 100µs) and 50 consecutive RESET (depression) 

pulses (-0.25V for 100µs). Each write and erase pulse was followed by read voltage of 30 

mV to extract conductivity. At each dose step, 20 cycles of potentiation and depression 

were performed. 
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6.3. Experimental Results 

The pulse responses of the control and the test devices prior to irradiation are shown in 

Figures. 47 and 48, respectively. The pulse amplitude and the pulse width were chosen to 

obtain a smooth monotonic change in conductance for both potentiation and depression. 

The exposed CBRAM devices were tested at the six TID levels listed in Table 5. The 

programming responses at each TID level except 1Mrad (Ge30Se70) are shown in Figures. 

49-53. The maximum conductance level for the control sample obtained at the same time 

as the step stress measurements on exposed devices is indicated by the red line on Figures. 

48-53. For clear observability of the conductance change profile vs. pulse number, only 5 

of the 20 potentiation/depression cycles are shown. Exposed responses after 1Mrad 

(Ge30Se70) are not provided since those devices failed to switch at that dose level. 

 

Figure 47. Potentiation and depression characteristics of the device of the control sample. 
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Figure 48. Potentiation and depression characteristics of the pre-rad device. 

 
Figure 49. Potentiation and depression characteristics of the device at 50kRad. 
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Figure 50. Potentiation and depression characteristics of the device at 100kRad. 



  68 

 
Figure 51. Potentiation and depression characteristics of the device at 250kRad. 

 

Figure 52. Potentiation and depression characteristics of the device at 500kRad. 
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Figure 53. Potentiation and depression characteristics of the device at 700kRad. 
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Figure 54. Effect of Dose step on the Gmin and Gmax of Ag-Ge30Se70 device. 

As is typical for many RRAM technologies, even prior to irradiation, the pulsed 

conductance response is highly non-linear. As the figures show, the conductance change 

per pulse is large at the beginning of each pulse cycle, then the rate of change slows 

substantially until the conductance converges to a maximum or minimum value. While 

linear potentiation/depression characteristics are the most ideal for analog synapses, and 

indeed, some devices can show this (see Figure 27 in previous chapter), recent RRAM-

based accelerator studies have presented algorithms for achieving good accuracy even with 

non-linear characteristics. What is critical to training accuracy is that the range and cycle-

to-cycle variation of the conductance behavior does not change significantly over time and 

stress. It is evident from the post-irradiation data that the range of conductance change is 

altered by TID. For potentiation (thickening of the conductive filament) the maximum 
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conductance achieved decreases monotonically with increasing TID. This effect becomes 

pronounced for TID levels of 100 krad (Ge30Se70) and above. The depression programming 

(thinning of the conductive filament) is also affected with increasing TID levels. We 

observe that the minimum conductance is monotonically decreasing with increasing TID 

as well.  

 

5.4. Modelling Radiation Effects on CBRAM-based Neural Accelerator  

The TID impact on Ag-Ge30Se70 CBRAM devices is further studied by modelling these 

devices in an analog neural training accelerator. Here we use the open-source CrossSim 

simulator developed at Sandia National Laboratories to perform the training [81]. An 

artificial two-layer neural network, shown in Figure. 54, was simulated using the pre- and 

post-rad data shown in Figures. 48-53. The neural network was trained using a 

backpropagation algorithm. This algorithm uses three important kernels:  vector matrix 

multiply (VMM), matrix vector multiply (MVM) and outer product update to train the 

neural network. For this study, we use a small version (8 X 8 pixels) of handwritten digits 

from the ‘Optical Recognition Handwritten Digits’ dataset [68]. This two-layer neural 

network consisting of 64 input, 36 hidden and 10 output nodes for small image dataset was 

used for training. 
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Figure 54. Simulated 2-layer neural network. 

To simulate the response of the Ag-Ge30Se70 CBRAM devices in the neural network, a 

look up table is created containing ∆𝐺/𝐺 response of the devices to multiple potentiation 

and depression cycles at a given TID level [70]. The training accuracy of the neural network 

was seen to degrade monotonically from 86 % prior to irradiation to 15 % at the 700 krad 

(Ge30Se70) dose level. A plot of classification accuracy versus the neural network iteration 

(epoch) for the test device at various TID levels is shown in Figure. 55. 
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Figure 55. Training accuracy of Ag-Ge30Se70 CBRAM devices at different TID levels. 
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6.5. Characterization of Ag-Ge30Se70 CBRAM devices after exposure to gamma rays  

To investigate the monotonic reduction in conductance after irradiation, Field Emission 

Scanning Electron Microscopy (FESEM) was performed on the samples. FESEM is a 

scanning electron microscope used for detailed image analysis of devices and circuits. It 

can magnify images up to 500,000X and can resolve features down to 2nm. Figure. 56(a) 

shows the FESEM image of a biased un-irradiated sample and Figure 56(b) shows the 

image of a biased irradiated sample at 1MRad. The white dots in the post-irradiation image 

reveal TID-induced crystallization across the tile, which is more pronounced above the 

active device. Previous studies have revealed that such crystallization can result in 

resistance state locking in CBRAM cells [82] and [83]. In our case, the devices seem to be 

converging to a high resistance, locked state. 
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Figure 56. FESEM images (a) biased pre-radiated and (b) biased irradiated device. 

 

 



  76 

It has been observed in previous studies that for pristine Se-rich films, Ag introduced 

by photodoping is seen to form Ag2Se crystalline phases throughout the chalcogenide glass 

[84], [85]. These Ag2Se nanocrystals exist in two phases – α- Ag2Se and β- Ag2Se. The α 

phase of Ag2Se is a body centered cubic with high ionic conductivity while the β phase of 

Ag2Se is an orthorhombic structure with low ionic conductivity [86], [87], [88]. In previous 

XRD studies [86], it was observed that at a high TID level of 4.5 Mrad, creation of β- 

Ag2Se occurs. The reduction in ionic conductivity of Ag-Ge30Se70 material can be 

attributed to the increasing percentage of β- Ag2Se as depicted in Figure 57. 

 

Figure 57. XRD results depicting the formation of β - Ag2Se with increasing TID levels [15] Copyright © 

2014 AIP Publishing LLC. 

The formation of crystallites on top of the electrode reduces the availability of active 

Ag, which is necessary for making contact to and for broadening the existing filament. 

EDS mapping results of Ag-Ge30Se70 PCM devices shown in [89] confirm that the clusters 

or crystals appearing on the top of the devices are silver-rich coming from the depleted Ag 

regions. Hence maximum conductance is not reached for the same train of applied pulses 
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after irradiation. In addition to reducing the available active metal, another deleterious 

impact of the buildup of these phases is that they increase the resistivity of the top electrode, 

which leads to a large voltage drop at the contact. Therefore, the pulse amplitude is not 

large enough to bring about the required change in the conductance. Another potential 

cause of reduced conductivity is the oxidation of Ge to GeO2 in a radiation environment as 

was previously studied in [90]. Due to oxidation, the conductivity of the switching layer is 

reduced. Hence the switching layer becomes more insulative and is not able to transport 

Ag+ ions to the filament. Under these post-irradiated conditions, the neuromorphic pulse 

response of the device is severely impacted due to the formation of different Ag phases as 

well as the reduction in the conductivity of the switching layer. 
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CHAPTER 6 

CONCLUSION 

In conclusion, we have demonstrated the response of Ag-Ge30Se70 CBRAM to two 

different pulse schemes-constant amplitude and increasing amplitude pulse scheme. Also, 

the effect of varying pulse width was studied. The device shows a 10x increase in 

conductance for shorter pulse width but for longer pulse width we observe an increase in 

conductance range attributed to widening of the filament. A more linear and symmetric 

synaptic response of the device to increasing amplitude pulse response was observed. 

Further, an artificial neural network was simulated based on the measured device properties 

to demonstrate supervised learning abilities. The training accuracy was found to improve 

from 80% to 92% for small image dataset and from 79% to 87% for large image dataset 

using the increasing pulse amplitude scheme. The area, latency, energy consumption of the 

crossbar array architecture using Ag-Ge30Se70 devices was simulated and compared for the 

two different pulse schemes. To address the issue of overhead latency and energy 

consumption associated with using variable amplitude scheme, a new circuit design 

approach is proposed. The impact of total ionizing dose (TID) on the analog conductance 

behavior for the fabricated devices was performed. The devices were exposed to 60Co 

gamma rays up to radiation levels of 1 Mrad (Ge30Se70). The maximum and minimum 

conductance ranges were impacted by radiation exposure. Up to a TID level of 100 krad 

(Ge30Se70), the minimum and maximum conductance show some reduction, but above 100 

krad (Ge30Se70), we observe a large decrease in the conductance range. FESEM imaging 

of irradiated samples indicated the formation of Ag phases that has led to a reduction of 

maximum and minimum conductance for the device. From the simulation of a neural 
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accelerator using the pre- and post-rad data, it was seen that the training accuracy is 

significantly degraded by ionizing radiation. 
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