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ABSTRACT

Autonomous Robots have a tremendous potential to assist humans in environmen-

tal monitoring tasks. In order to generate meaningful data for humans to analyze,

the robots need to collect accurate data and develop reliable representation of the

environment. This is achieved by employing scalable and robust navigation and map-

ping algorithms that facilitate acquiring and understanding data collected from the

array of on-board sensors. To this end, this thesis presents navigation and map-

ping algorithms for autonomous robots that can enable robot navigation in complex

environments and develop real time semantic map of the environment respectively.

The first part of the thesis presents a novel navigation algorithm for an autonomous

underwater vehicle that can maintain a fixed distance from the coral terrain while

following a human diver. Following a human diver ensures that the robot would visit

all important sites in the coral reef while maintaining a constant distance from the

terrain reduces heterscedasticity in the measurements. This algorithm was tested on

three different synthetic terrains including a real model of a coral reef in Hawaii. The

second part of the thesis presents a dense semantic surfel mapping technique based on

top of a popular surfel mapping algorithm that can generate meaningful maps in real

time. A semantic mask from a depth aligned RGB-D camera was used to assign labels

to the surfels which were then probabilistically updated with multiple measurements.

The mapping algorithm was tested with simulated data from an RGB-D camera and

the results were analyzed.
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Chapter 1

INTRODUCTION

1.1 Thesis Statement

Efficient and real time navigation and semantic mapping techniques for autonomous

robots can enable safe and fast mapping and monitoring of environments.

1.2 Overview

This thesis presents navigation and semantic mapping algorithms for autonomous

robots that can assist humans in data acquisition and analysis. A real time semantic

mapping algorithm is presented that can develop meaningful maps from the on-board

RGB-D camera. Chapter 2 presents background and my experiments with Terrain

Relative Navigation on quadrotor drone in a simulated environment. Based on the

lessons learnt from the Terrain Relative Navigation on a drone, I developed Terrain

Relative Diver Following algorithm for an autonomous underwater vehicle that can

follow a human diver while maintaining a fixed distance from the terrain. This work

was presented in the 17th IEEE Conference on Automation Science and Engineering

(IEEE CASE) 2021 and the paper has been included in full in chapter 3. Chapter

4 presents the dense semantic surfel mapping technique that uses semantic masks

obtained from a segmentation pipeline to encode semantic information to the surfels

that are probabilistically updated with new measurements. The algorithm is tested

with simulated data and the results are presented. 5 presents a summary of the work

presented and directions for future work.
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1.3 Contributions

This thesis presents the following contributions:

• Terrain Relative Diver Following algorithm for an autonomous underwater ve-

hicle that enables the robot to follow a human diver while maintaining a fixed

distance from the terrain.

• Extensive analysis of the algorithm on three different terrains including a real

model of a coral reef.

• A Real Time Dense Semantic Surfel Mapping technique that assigns and up-

dates semantic information to surfels using segmentation masks obtained from

color images.

• The code for the navigation algorithm presented has been made available to the

research community.
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Chapter 2

TERRAIN RELATIVE NAVIGATION

2.1 Introduction

Terrain Relative Navigation (TRN) is a navigation approach historically used by

sub-marines and missiles prior to the advent of Global Positioning System (GPS) to

navigate to the target locations. A recent implementation of TRN approach was used

by perseverance rover to land on the target site in mars.

Another popular navigation approach that uses the Terrain information for path

Figure 2.1: Artist’s Depiction of the Mars 2020 Perseverance Rover Landing on Mars

Source: https://science.nasa.gov/technology/technology-highlights/terrain-relative-

navigation-landing-between-the-hazards
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planning is when a robot maintains constant distance from the terrain. For some

environmental monitoring missions, this navigation approach is critical as the terrain

varies tens of meters in altitude. As the depth cameras have a limited range, it be-

comes necessary to vary altitude of the sensor in order to obtain usable data for map-

ping and monitoring applications. This approach also has the advantage of increasing

the consistency of the imagery as the mapping payload stays at approximately con-

stant distance from the terrain which consequently reduces the heteroscedasticity in

the noise of the measurements. In this thesis, I implemented a Terrain Following

approach that obtains terrain information from depth camera and uses that to plan

and track a trajectory to maintain a fixed distance from the terrain. This approach

was tested in Gazebo Simulation Environment (Koenig and Howard (2004)). A 3D

model of a real fault scarp in Bishop, California was used to provide a realistic setting

to test the Terrain Following algorithm.

2.2 Non-Linear Model Predictive Control for Trajectory Tracking

A non linear Model Predictive Control was used for tracking trajectory that main-

tained a constant distance from the terrain. I used the Non-linear MPC implementa-

tion presented in Kamel et al. (2016) in my experiments for testing Terrain Following

on realistic terrains. The non-linear MPC problem can be formulated as an optimal

control problem as shown in equation 2.1

4



Figure 2.2: Terrain Relative Navigation Using Iris Quadrotor in the Simulated Bishop

Terrain

minU ,X

∫ T

t=0
‖x(t)− xref (t)‖2Qx

+ ‖u(t)− uref (t)‖2Ru
dt

+‖x(T )− xref (T )) ‖2P

subject to

v̇ = f(x,u)

u(t) ∈ U

x(0) = x (t0)

(2.1)

where x = (pTvT φ θ ψ)T represents the state of the robot where p denotes the

position of the robot, v denotes the velocity, φ, θ and ψ denote the roll, pitch and yaw

angles of the robot. u is the control vector represented as (φcmd θcmd Tcmd)
T where

φcmd, θcmd and Tcmd are the commanded roll, pitch and thrust values.

The function f denotes the dynamics of the aerial drone and is given by the

equations 2.2

5



ṗ = v,

v̇ =
1

m

(
RIB

Nr∑
i=0

F T,i −RIB

Nr∑
i=0

F aero,i + F ext

)

+


0

0

−g

 ,
ṘIB = RIBbω×c

Jω̇ = −ω × Jω +A


n2
1

...

n2
Nr



(2.2)

where m is the mass of the drone, RIB ∈ R3x3 is the rotation matrix representing

orientation of the body frame of the robot in an inertial frame. Faero,i is the aero-

dynamic forces acting on rotor i, Fext is the external force acting on the robot, g is

the acceleration due to gravity, ω represents the angular velocity of the robot in the

body frame, J is the inertia matrix of the robot, A is the actuation matrix to convert

rotor velocities given by ni to the corresponding force and torque.

The solution to this optimal control problem is obtained using a real time iteration

scheme based on Gauss-Newton to approximate the optimization problem. This is

done by a solver generated by the ACADO toolkit (Houska et al. (2011)).

2.3 Terrain Mapping

In order to maintain a fixed distance from the terrain, the robot needs to have a

decent estimate of the terrain at all times. There are multiple approaches to storing

and accessing the information such as using raw point cloud data, using a range

sensor (e.g. ultrasonic sensors) etc. However using raw data directly can lead to

6



rough trajectories as the sensor data is usually noisy and needs some kind of pre-

processing. Fankhauser et al. (2014) presented a method for terrain mapping for

their quadruped robot that uses raw point cloud data as input to generate real time

robot centric elevation map. I used this method to generate a representation of the

terrain that is passed as input to the trajectory optimization method described in

section 2.2.

The method for terrain mapping as presented by Fankhauser et al. (2014) involves

building an elevation grid map where each cell in the grid stores the height estimate ĥ

and variance σ2
h. The advantage of their method is that the elevation map being built

is robot-centric, and not tied to any inertial frame. Hence the drift acculmulated due

to errors in the pose estimation do not translate to the elevation map.

The height measurement (p, σ2
p) is fused with the existing elevation map estimation

(ĥ, σ2
h) using the following update equations

ĥ+ =
σ2
pĥ

− + σ̂2−
h p̃

σ2
p + σ̂2−

h

, σ̂2+
h =

σ̂2−
h σ2

p

σ̂2−
h + σ2

p

(2.3)

where previous estimates are denoted by − sign and the new estimates are denoted

by the + sign.

Using this approach, the quadrotor drone was able to climb the simulated Bishop

Terrain that is approximately 20m in height. The video showing the terrain following

and the climb is available here.

2.4 Terrain Relative Diver Following with Autonomous Underwater Vehicle

Leveraging the lessons learnt in implementing a terrain following system for an

aerial robot, I developed an algorithm for an underwater vehicle that can follow a

human diver while maintaining a fixed distance from the coral reef terrain. This work

was submitted to the 17th IEEE Conference on Automation Science and Engineering

7
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Conference in August 2021. My contributions to the paper were (i) writing the diver

following algorithm that used position estimates from the diver detection module to

predict pose of the diver, (ii) training YOLOV3 on custom dataset to detect diver,

(iii) developing terrains for simulation experiments in Gazebo and (iv) performing

the experiments in Gazebo on three different terrains. This paper has been presented

in full in chapter 3.
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Chapter 3

TERRAIN RELATIVE DIVER FOLLOWING WITH AUTONOMOUS

UNDERWATER VEHICLE FOR CORAL REEF MONITORING

The work on Terrain Relative Diver Following was published in 17th IEEE Con-

ference on Automation Science and Engineering, 2021. © [2021] IEEE. Reprinted,

with permission, from Lakshmi Gana Prasad Antervedi, Zhiang Chen, Harish Anand,

Roberta Martin, Ramon Arrowsmith, Jnaneshwar Das. Terrain-Relative Diver Fol-

lowing with Autonomous Underwater Vehicle for Coral Reef Mapping, 2021 IEEE

17th International Conference on Automation Science and Engineering (CASE), 08/2021.

DOI: 10.1109/CASE49439.2021.9551624

3.1 Abstract

Coral reef mapping is an indispensable step in coral conservation efforts across the

globe. Monitoring reefs at regular intervals helps conservationists understand and ad-

dress the problems causing coral reef degradation. Autonomous Underwater Vehicles

(AUVs) have a tremendous potential to assist humans in these efforts. Delegating

mapping and measurement acquisition tasks to AUVs would not only limit the num-

ber of human divers required for the missions but could also improve the quality of

the maps developed. Consistency in imagery and spectroscopic measurements could

be significantly improved by keeping the imagery payload at a fixed distance from

the reefs to reduce heteroscedasticity in the measurements. To this end, I present a

Terrain-Relative Diver Following system for an AUV that can follow a human diver

while maintaining a fixed distance from the terrain. The proposed system consists

of separate modules for diver detection, tracking, and terrain following. I extensively

9



tested the system in Gazebo simulation environment with three different terrain mod-

els, including a terrain model of a coral reef in Honaunau Bay, Hawaii. To the best

of my knowledge, this is the first diver following system that also carries out terrain-

relative navigation, ensuring minimal variation of distance to the terrain. I have

released the code for the system, and the datasets used in the detection module.

3.2 Introduction

Underwater Vehicles are deployed in many underwater exploration and inspection

tasks such as ship hull inspection (Vaganay et al. (2006)), monitoring and repairing

underwater infrastructure (Petillot et al. (2002)), etc. Recently, there has been an

increased interest in developing low-cost micro AUVs (< 1m in length) that could

operate completely autonomously underwater (Hackbarth et al. (2015), Edge et al.

(2020)). Also, there has been a push to develop interactive capabilities in such systems

that can assist humans in tasks that are dirty, dull, and dangerous.

I consider the application of coral reef monitoring where an AUV equipped with

the necessary instruments can assist a human diver in collecting measurements, map-

ping, and surveying the reef. The quality of measurements can be significantly im-

proved by keeping the cameras at a constant distance from the reef throughout the

mission. Besides reducing the heteroscedasticity in the measurements, it would also

reduce the cognitive load on the diver who is already in a hostile underwater envi-

ronment.

A typical diver-AUV mission for coral reef monitoring would include a diver guid-

ing the robot to important sites around the reef and the robot gathering the data

while maintaining a fixed distance from the coral terrain.

A major challenge in developing such an algorithm stems from the often conflicting

nature of the two mission objectives: Diver Following and Terrain Following. For

10



Figure 3.1: Detecting (Bottom Left) and Tracking the Diver While Generating Ele-

vation Map (Right) To Maintain a Fixed Distance From the Terrain.

instance, the nature of the terrain often requires the robot to change elevation which

might lead to the diver moving out of the field of view of the robot’s camera. I used a

modular approach for the algorithm that can decouple and satisfy the two objectives

of the target trajectory.

In sum, the following are the contributions of this paper:

• a navigation algorithm that enables an AUV to follow a diver while maintaining

a constant distance from the submarine terrain.

• extensive testing of the algorithm on multiple terrains: (i) Flat, (ii) Sinusoidal,

and (iii) Coral Reef terrain models.

• I have released the the code for the navigation algorithm and the model for

diver detection used in this paper. The code and the material are available at

11



github.com/algprasad/diver follower

3.3 Related Work

The work presented in this document lies at the intersection of two sub-fields of

robotics: Person Following (Gockley et al. (2007), Islam et al. (2019), Müller et al.

(2008)) and Terrain Relative Navigation (TRN) (Johnson and Montgomery (2008),

Krukowski and Rock (2016), Meduna et al. (2010)). Person Following falls under

the broader field of Human-Robot Interaction and is a crucial capability for mobile

robots deployed in the domains of manufacturing, healthcare, etc. Islam et al. (2019)

presented a comprehensive survey of the existing Person Following algorithms in the

operational domains of ground, air and underwater.

A recent survey on TRN approaches for AUV navigation is presented in Melo and

Matos (2017). Most of the literature on TRN for AUVs is addressed for large AUVs

that are designed for long-term and long-range missions (Meduna et al. (2008)). Con-

sequently, a majority of the current algorithms use sophisticated range measurement

sensors that cannot be used for small AUVs.

My approach to TRN uses the elevation mapping technique presented by Fankhauser

et al. (2014) that employs a point cloud to generate an elevation map in real time. I

used the open sourced implementation from Fankhauser et al. (2018) in this work for

generating an elevation map with a stereo camera mounted underneath the AUV.

The past decade has seen an increased interest in developing micro Autonomous

Underwater Vehicles thanks to the proliferation of Micro Aerial Vehicles and the

frameworks (Meier et al. (2015)) supporting their development. Hackbarth et al.

(2015) presented a quadrotor-design based, low-cost autonomous underwater platform

called HippoCampus, which I use for the experiments in this paper. Edge et al. (2020)

designed LoCo AUV, a general-purpose vision guided AUV with human-interaction

12

https://github.com/algprasad/diver_follower


capabilities in the form of diver following and gestural control.

The problem of following a diver with an underwater vehicle has been addressed

by Islam et al. (2019) where the authors used deep neural networks to detect a diver.

They trained their model on images of divers that were obtained in real underwater

settings. The focus of the paper is not to present a better diver detection algorithm,

but to present a complete algorithm that can detect, track, and follow a diver while

also following the terrain. To that end, I used a 3D model of a scuba diver obtained

from Nsfr750 and CGTrader (2014) and trained the diver detection module on the

synthetic diver images of the 3D model.

3.4 Problem Formulation

The goal of the Terrain-Relative Diver Following algorithm is to generate and

track a trajectory that not only follows a diver but also maintains a constant distance

from the terrain. The robot is equipped with two stereo cameras, one pointing forward

to detect and track the diver and the other pointing downward for generating elevation

maps. Also, I assume that the robot has access to it’s pose estimates.

The robot should be able to detect the diver in the image frames, estimate and

track the diver’s position throughout the mission. The robot should also be able to

incorporate terrain information in the trajectory.

3.5 System Description

Fig. 3.2 depicts the pipeline for Terrain-Relative Diver Following algorithm. Each

module in the pipeline is described in the following subsections.
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Figure 3.2: Pipeline for the Terrain-Relative Diver Following Algorithm.

3.5.1 Diver Detection

With the objective to make the simulations in Gazebo (Koenig and Howard

(2004)) as close to real conditions as possible, I used a 3D model of a scuba diver ob-

tained from Nsfr750 and CGTrader (2014). I re-trained a YOLO v3 by Redmon et al.

(2015) model on 300 images of the diver at different orientations. I used the ROS

(Stanford Artificial Intelligence Laboratory et al. (2018)) based implementation of

the YOLO v3 model from Bjelonic (2018) and obtained a detection rate of 20 frames

per second with NVIDIA GTX 1050Ti GPU. Fig. 3.3 shows the diver 3D model and

a successful diver detection with YOLO v3.

3.5.2 Diver Tracking

The diver tracking system consists of a calibrated forward facing stereo camera

that is used to obtain a depth image and the corresponding point cloud. The bounding

box from the detection module is used to determine the points that correspond to

the diver. I sample the points that lie along the orthogonal lines passing through the

centre of the bounding box. Formally, the position of the diver in the global reference
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Figure 3.3: Left Figure Shows the 3D Model of a Diver Used in the Experiments.

Right Figure Shows the Diver Detection From the Front-Facing Camera Using YOLO

v3 in Gazebo.

frame is given as

X̄ =
1

N

N∑
i=1

Xi (3.1)

where N is the number of points in the set X. The set X consists of global positions

of all the points in the point cloud that have the corresponding pixel coordinates

(u, v) satisfying the condition u = (xmin + xmax)/2 or v = (ymin + ymax)/2, where

xmin, xmax, ymin and ymax are the coordinates of the bounding box obtained from the

diver detection step.

The position of the diver so obtained is then fed into a Kalman filter (Kalman

(1960)) that outputs a filtered position of the diver. The purpose of the Kalman filter

is two-fold: firstly, it filters the noisy measurements of the diver’s position obtained

from the raw point cloud, and secondly, it maintains a position of the diver even
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when the diver is out of the view of the camera. The latter happens quite often with

the HippoCampus AUV as it is under-actuated and has to change the pitch angle to

change elevation. This moves the camera as well, thereby making the diver move out

of the robot’s camera frame.

I assume that the diver moves with constant velocity between consecutive steps

of the filter. The predict step of the Kalman filter is formulated as follows

X̃k+1 = AXk

P̃k+1 = APkA
T +Q

(3.2)

where Xk = [xk, yk, zk, ẋk, ẏk, żk] is the vector of the global position and velocity of

the diver, and A =



1 0 0 δt 0 0

0 1 0 0 δt 0

0 0 1 0 0 δt

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


where δt = 0.05 is the time step and

depends on the frequency of the filter. We initialize P0 as a zero matrix and take

Q = diagonal(ε, ε, ε, ε, ε, ε), where ε = 1e− 13.

The measurement update steps are given as

z̃ = z̄ −HX̃k+1

Z = HP̃k+1H
T +R

K = P̃k+1H
TZ−1

Xk+1 = X̃k+1 +Kz̃

Pk+1 = P̃k+1 −KZP̃k+1

(3.3)

where z̄ is the vector containing the measured values of the position of the diver
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obtained from the point cloud and H is given as


1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

 . R is the

measurement noise matrix which I estimated to be equal to


1 0 0

0 1 0

0 0 1

. Figure 3.4

shows that the filter is able to smooth the noisy measurements (shown in blue) and

output the filtered values of the diver’s position (shown in red).
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Figure 3.4: Performance of the Diver Tracking Filter (Red) Compared Against

Ground Truth (Green) and Noisy Measurements (Blue). The Filter Was Able To

Produce Reliable Estimates of Diver’s Position for Generating Trajectory Setpoints

for the AUV.
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3.5.3 Elevation Mapping

The process of building bathymetric (elevation) map is carried out in parallel and

is fed to the trajectory tracker in order to estimate a target position for the AUV that

not only is following the diver but is also at a desired height from the terrain. I used

the method presented by Fankhauser et al. (2018) to generate elevation map using

the point cloud obtained from the downward pointing stereo camera. An instance of

the elevation map obtained with the sinusoidal terrain is shown in Fig. 3.5.

Figure 3.5: Robot-Centric Elevation Map That Was Generated in the Environment

With the Sinusoidal Terrain. The Robot Uses This Map To Estimate the Depth of

the Terrain and Accordingly Position the Setpoints of the Trajectory.

3.5.4 Trajectory Generation

The target position setpoint for the AUV in the world frame, TW
Rtarget

= [x, y, z], is

calculated at each time step using information from the diver tracking and elevation
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Figure 3.6: HippoCampus AUV Model in Gazebo That Was Used To Test the

Pipeline. The Left Figure Shows the Top View and the Right Figure Shows the

Side View.

mapping modules. The position vector TR
D representing the diver’s position in the

robot’s reference frame is obtained from the diver tracking module and provides the

general direction that the robot needs to follow. I calculate the unit vector in this

direction and scale it with a factor depending on the target velocity of the robot. The

vector is then transformed to the world coordinate frame. The x, y coordinates of the

vector so obtained constitute the corresponding coordinates of the target position.

The z-coordinate of the target position is calculated using the elevation value at the

corresponding x, y coordinates of the elevation map. More specifically, I calculate

the depth of the terrain at the target position and add the distance to maintain from

the terrain to it in order to obtain the z coordinate of the target position.

3.5.5 Position Controller

I used the HippoCampus AUV from Hackbarth et al. (2015) for testing the al-

gorithm in Gazebo (shown in Fig. 3.6). The attitude controller for the AUV was
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presented by Duecker et al. (2018) and was made available to be used with the PX4

flight stack. The position controller on top of this attitude controller takes in the

current and desired position and velocity values of the robot and outputs the tar-

get thrust and orientation values to the attitude controller. The attitude controller

from Hackbarth et al. (2015) takes care of transferring the motor commands to the

simulated actuator in Gazebo.

In each iteration of the control loop of the position controller, the target force and

orientation are calculated and sent to the attitude controller, which then generates

motors speeds for the individual motors of the AUV. The approach to calculate thrust

and desired orientation is based on the methods presented by Mohta et al. (2017).

The force vector f required to accelerate the AUV towards target position ptarget is

given by:

epos = ptarget − pcurrent

evel = vtarget − vcurrent

f = Kpepos +Kdevel

(3.4)

where epos is the error between the target position, ptarget and current position, pcurrent.

evel denotes the error between the target velocity, vtarget and the current velocity,

vcurrent. Kp and Kd are the proportional and derivative gains respectively. The

buoyancy is assumed to be equal to the weight of the robot.

In case of the HippoCampus AUV, the thrusters are co-planar and only provide

force along the x-direction of the body frame. Hence in order to calculate the target

thrust, the force obtained from eq. 3.4 is transformed into the body-fixed frame and

only the x-component is extracted as shown in equation 3.5

thrusttarget = Rb
wf ê1 (3.5)

where Rw
b ∈ SO(3) denotes the transformation from the world frame to the body
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frame of the robot and ê = [1 0 0]. The PX4 flight stack only accepts normalized

thrust values between 0 and 1 and hence the thrust obtained is normalized to a value

between 0 and 1, where 1 represents maximum thrust possible.

The thrust vector of the AUV is aligned with the x-axis of the body frame, hence

the target orientation should be aligned with the force vector obtained from equation

3.4. Owing to the bidirectional nature of the propulsion system, there are two possible

alignments. The target orientation Rdes =

[
b1 b2 b3

]
, where b1, b2, b3 ∈ R3 is

calculated as

b1 = sgn(thrusttarget)
f

||f ||
(3.6)

where sgn() denotes the signum function that is 1 or -1 depending on whether

thrusttarget is positive or negative respectively.

The orientation of y-axis, b2 can be calculated separately using the desired roll

angle, θ for the robot as shown in equation 3.7 . I maintained θ = 0 as I want the

camera to be pointing downwards at all times. Once b1 and b2 are obtained, b3 can

be calculated as shown in equation 3.8. Since b1 and b2 are not necessarily orthogonal

to each other, I recalculate b2 as the cross multiplication of b3 and b1, as shown in

equation 3.9

.

b2 =

[
0 cosθ sinθ

]
(3.7)

b3 =
b1 × b2
||b1 × b2||

(3.8)

b2 = b3 × b1 (3.9)
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3.6 Experiments

I tested the system in the Gazebo simulation environment and used the UUV

Simulator plugin from Manhães et al. (2016) to simulate the hydrodynamic and hy-

drostatic effects. I evaluated the algorithm on three different synthetic terrains (i)

Flat, (ii) Sinusoidal, and (iii) Coral Reef model. The Sinusoidal and Coral reef terrain

models used in the experiments are shown in Fig. 3.7.

Figure 3.7: Terrain Models Used in the Experiments. Figure on the Left Shows the

Sinusoidal Terrain That Was Generated in Blender Software from Community (2018).

Figure on the Right Shows the Terrain Model of a Coral Reef in Honaunau Bay in

Hawaii.

Although the flat terrain is overly simplified in comparison to the other two ter-

rains, it validates the algorithm’s ability to follow a diver. The diver was moved in

sinusoidal motion according to the equation y = 5sin(0.2x). Fig. 3.8 presents the y

coordinates of the diver and the robot during the mission. As is evident from the fig-

ure, the robot moves accordingly in the sinusoidal fashion to follow the diver. Fig. 3.9

shows the z coordinate of the robot in the same experiment. The robot was initially

at a lower depth (−2m) and attains a depth of around −3.25m to roughly maintain

a fixed distance of 1.75m from the terrain.
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Figure 3.8: Diver Following on a Flat Terrain
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Figure 3.9: Terrain Following on a Flat Terrain
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Figure 3.10: Diver Following on the Sinusoidal Terrain
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Figure 3.11: Terrain Following on the Sinusoidal Terrain
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Figure 3.12: Diver Following on the Coral Reef Terrain
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Figure 3.13: Terrain Following on the Coral Reef Terrain
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The sinusoidal terrain presented a more challenging setting for both aspects of

the system: Terrain Following and Diver Following. The challenge to the former

aspect is obvious but to the latter is more subtle. Since the AUV has motors in

a planar configuration, changing the elevation requires changing the pitch angle of

the robot. This almost always leads to the diver moving out of the camera frame.

This results in sparse measurement updates of the diver’s position and makes the

system rely on the estimates of diver’s position from the predict step of the filter. I

used a sinusoidal trajectory for the horizontal motion of the diver according to the

equation y = 2sin(0.2x) to test the tracking ability of the system. Fig. 3.10 shows

the trajectories followed by robot and the diver. The robot was able to follow the

diver in spite of the sporadic measurements. The terrain following on the sinusoidal

terrain is shown using Fig. 3.11 which shows that the robot is able to maintain a fixed

distance from the terrain.

Finally, I tested the system in an environment with the terrain model of a coral

reef from Honaunau bay in Hawaii. This terrain presented a more realistic and chal-

lenging setting to test the algorithm as it had aribrary and sudden variations in depth.

Fig. 3.12 shows the performance of diver following aspect of the algorithm in this ter-

rain. The robot was able to keep track of the diver’s position in spite of the sporadic

measurement updates and was able to follow the diver throughout the mission.

The terrain following performance for this terrain is shown in Fig. 3.13. The

roughness of the terrain did not severely affect the trajectory, thanks to the filtering

of the point cloud done by the elevation mapping module. Fig. 3.13 shows that the

robot roughly maintained a constant distance from the terrain.
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Figure 3.14: The Custom AUV, uDrone With a Planar Motor Configuration Similar

to the HippoCampus AUV and Is Equipped With a Pixhawk 2.1, ZED2 Stereo Camera

and NVIDIA Jetson TX2 Companion Computer. A Tether Is Used for Monitoring

and Debugging, and Is Not Needed for Autonomous Operation.

3.7 Conclusion and Future Work

I presented a Terrain-Relative Diver Following algorithm that can enable an AUV

to follow a human diver while maintaining a fixed distance from the terrain. I used a

3D model of a scuba diver to simulate a more realistic setting to test the algorithm.

I presented the challenges associated with developing this system and presented the

methods for addressing the same. The code and the model for diver detection are

made available at github.com/algprasad/diver follower. The future work includes

conducting experiments on the custom AUV (shown in Fig. 3.14) which would require

modifying the detection module of the pipeline.
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Chapter 4

REAL TIME DENSE 3D SEMANTIC MAPPING

4.1 Introduction

Mapping is an essential quality of autonomous robots. In order to effectively oper-

ate in the real world, it is imperative that the robot has an accurate understanding of

the environment. The past two decades have seen a proliferation of efficient mapping

algorithms that can assist robots in localization (Mur-Artal et al. (2015), Engel et al.

(2014), Schöps et al. (2019)), navigation (Hornung et al. (2013)), and reconstructing

the environment (Wang et al. (2019), Labbé (2018)). However, a majority of the al-

gorithms focus on providing a geometric understanding of the environment with the

sole aim to enable ego-motion estimation. The ability to autonomously generate a

map that not only encodes geometric information but also provides semantics about

the environment can accelerate progress in a number of areas such as environmen-

tal monitoring, infrastructure inspection, and agriculture. Such a representation not

only provides the domain experts with meaningful maps but also forms the basis of

intelligent navigation algorithms to explore unknown environments. For instance, an

underwater robot that can generate 3D semantic maps of the coral reef can provide

quantitative estimates of the coral cover that could assist researchers in analyzing

damage. At the same time, the semantic map generated in real time can help iden-

tify the interesting regions in the reef that need to be explored further. One other

advantage of developing semantic maps as shown by McCormac et al. (2017) is that

fusing multiple 2D predictions into a 3D map can directly lead to improvement in the

2D mask estimation as compared to baseline 2D segmentation predictions.

28



In this thesis, I present one such method to develop semantic 3D maps by fusing

robot path, raw depth and RGB images. This was achieved by incorporating semantic

information obtained by running segmentation algorithms on the RGB images into

the dense surfel mapping method presented by Wang et al. (2019). The depth images

are aligned to the RGB images to facilitate the correspondence between the pixel level

classification and the 3D point cloud. That is, for each measurement of the depth

image and the RGB image, a semantic point cloud is generated that has information

about the class to which each point belongs. This is then fused with a local map

extracted from a global representation using the pose information of the robot. The

details of the semantic dense surfel mapping is presented in section 4.3.

The algorithm for incorporating semantic information presented in this thesis

is robot agnostic. That is, the same algorithm can work for aerial, ground, and

underwater robots. All that is needed is RGB image, corresponding depth image and

the robot pose.

The rest of the thesis is organized as follows: Section 4.2 presents the related

work in this domain. This is followed by section 4.3 that provides details on the Dense

Semantic Surfel Mapping technique. The mathematical formulation for incorporation

of semantics on top of the pipeline is given in section 4.4 followed by results in section

4.5.

4.2 Related Work

4.2.1 SemanticFusion

A seminal work in the field of real time dense 3D semantic mapping was pre-

sented by McCormac et al. (2017). Their system comprises of three main compo-

nents: (i) Elasticfusion (Whelan et al. (2016)), a Simultaneous Localization And
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Mapping (SLAM) system for obtaining pose information that is used to provide cor-

respondences between multiple frames and also provides the backbone for a globally

consistent map, (ii) a Convolutional Neural Network to predict per-pixel probabilities

of the objects, and (iii) a Bayesian update scheme to update the probabilities based

on new measurements.

Similar to the work presented in this thesis, a surfel-based representation was used

for the map. A surfel (short for Surface Element) is a surface point that typically

encodes the position, normal and radius of the unit elements in the model. For each

new pose, the surfels observed are added to the map and the existing surfels are

refined. The underlying SLAM system uses a combination of ICP presented by Besl

and McKay (1992) and RGB alignment to estimate the robot pose.

Each surfel in the map encodes its position, normal and discrete probability dis-

tribution over set of classes. This probability is updated when new measurements of

the surfel are observed using the equation 4.1

P (li | I1,...,k) =
1

Z
P (li | I1,...,k−1)P

(
Ou(s,k) = li | Ik

)
(4.1)

where li ∈ L is the set of class labels, Ou is the observation for pixel u and Ik is the

data for image k.

A major limitation of this approach is that of scalability. Although it works

well for room scale environments, the system would not work well for large scale

environmental mapping applications.

4.2.2 Meaningful Maps with Object-Oriented Semantic Mapping

Sünderhauf et al. (2017) presented a object-oriented approach to semantic map-

ping where they used a combination of SLAM, object detection, semantic segmenta-

tion to build a mapping system that maintains a list of objects detected in the map
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and are stored as a collection of points clouds. The underlying SLAM algorithm is

ORB-SLAM2 (Mur-Artal et al. (2015)), a popular SLAM algorithm that fuses RGB-D

images to obtain pose estimates of the robot.

The object detection is done by Single-Shot Multi-box Detector (SSD) presented

by Liu et al. (2016) that provides the bounding boxes for every keyframe. The 3D

segmentation was done using a combination of both color and depth images to increase

accuracy of segmentation.

Updating the map as new measurements arrive requires accurate data association

and efficient update schemes. The former was addressed using a nearest neighbour

search based on Euclidean distance. k-d trees was used for faster nearest neighbour

queries. Each individual object contains the 3D point cloud, a vector with indices of

all poses (from the pose graph) which observed the object, and a vector of confidences

where the size of the vector is equal to the number of classes. The identity of the

object is determined to be the class with largest normalized confidence.

4.2.3 Semantic 3D Mapping from Deep Image Segmentation

More recently, Mart́ın et al. (2021) presented a 3D semantic mapping technique

that uses image segmentation results from an RGB image and uses a voxel based

model for representing the environment. The class of each voxel in the map are

updated as new measurements arrive. This results in a semantic occupancy grid map

which can be incredibly useful for intelligent motion planning algorithms. They also

addressed the boundary pixel problem that arises when a segmented image is directly

projected into the 3D space and the alignment between the RGB and Depth Images

is inaccurate.

Although using a voxel based representation has its merits, the low 3D recon-

struction resolution acts as a barrier for this approach to be used for environmental
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monitoring.

4.3 Semantic Dense Surfel Mapping

I leveraged the dense surfel mapping technique presented by Wang et al. (2019) for

my work and incorporated semantic information to surfels so as to obtain a semantic

dense surfel map of the environment. Their algorithm is scalable and uses only

CPU computation. Moreover, the addition of semantic information (a contribution

of this thesis) to their pipeline adds very little overhead. For the sake of context

and completeness, the following paragraphs describe the work presented in Wang

et al. (2019). Section 4.4 will present the mathematical formulation for incorporating

semantic information to the surfels which is the one of the contributions of this thesis.

The dense surfel mapping system presented by Wang et al. (2019) fuses informa-

tion from depth images (obtained from RGB-D cameras, stereo cameras, monocular

cameras or Solid State Lidars), intensity images and pose information (obtained from

external sources or from the Visual odometry using RGB-D or RGB frames) to gen-

erate consistent 3D map of the environment using surfels. The choice of using surfels

to represent the environment makes it convenient to fuse semantic information using

semantic masks from RGB images.

An interesting feature of their system is that instead of representing every point

from the point cloud as a surfel, they extracted super pixels from the depth and

intensity image and then used a surfel to represent each super pixel. The super pixels

were extracted using the technique presented in Achanta et al. (2012). A detailed

description of this technique is presented in section 4.3. Assigning surfels to super

pixels instead of pixels makes the algorithm scalable with lower loss in information

as compared to sampling based reduction techniques. The use of super pixels is also

conducive to using semantic masks as similar pixels are grouped together. Owing
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to the similarity of these pixels, they are highly likely to belong to the same class.

Section 4.3 contains information about their methods for local map extraction and

fusion of surfels.

Super pixel extraction

The method used for extracting super pixels in their work is adapted from Achanta

et al. (2010). The idea is to group pixels that are similar in intensity and depth values

into one group in order to reduce the amount of redundant data while reducing the

loss of information.

SLIC (Simple Linear Iterative Clustering) Algorithm generates super pixels in an

image by grouping pixels that are similar in intensity and are spatially close. The

similarity is calculated by calculating the Euclidean distance between the two pixels

represented by a 5D vector. This 5D vector encodes the intensity information in the

L*a*b color space and the spatial pixel coordinates.

The normalized distance between two pixels is calculated using the equations given

in 4.2.

Ds = dlab +
m

S
dxy (4.2)

where Ds is the distance measure, dlab is the distance between 3D vectors repre-

senting the intensity of the pixels in l*a*b color space and is calculated as dlab =√
(lk − li)2 + (ak − ai)2 + (bk − bi)2, m is parameter that is calculated empirically

and is used to enforce the fact that spatial similarities are more important that inten-

sity similarities, and S is the normalized grid interval and is equal to
√
N/K where N

is number of pixels in the original image and K denotes the number of super pixels.

In order to assign the pixels to a super pixel cluster, the super pixels seeds are

initialized at regular intervals depending on the pre-defined number of super pixels.
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Figure 4.1: Superpixels Generated in the Custom Image Using the SLIC Algorithm.

Then the pixels are moved to a position such that the gradient of intensity is zero. This

is done to ensure that the super pixel centres are not assigned at an edge in the image.

After that, the iterations of the commonly known k-means clustering are started

wherein each iteration constitutes assigning all pixels to the nearest cluster centre

such that the distance calculated using equation 4.2 is minimum. This is repeated

until the convergence criteria is reached. An example of super pixels generated on a

custom image is shown in figure 4.1 A comparison of SLIC with other state-of-the-art

Super Pixel generation algorithms is presented in Achanta et al. (2012).

4.3.1 Surfel Fusion

For each super pixel in the RGB image, a surfel is initialized. The surfels used in

their work are composed of S = [Sp, Sn, Sc, Sw, Sr, St, Si], where Sp ∈ R3 is the surfel

position, Sn ∈ R3 is the surfel normal, Sc ∈ R is the mean cluster intensity, Sw is the
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weight of the super pixel used in fusion, Sr ∈ R is the radius of the surfel, Si ∈ W

is the index of the reference key frame, St ∈W is the number of times the surfel has

been fused by other frames.

In order to fuse the newly initialized surfels with the surfels in the map, the

relevant surfels need to be extracted from the map. This is done by using the pose

graph and only extracting the surfels that are attached to the pose index. This results

in O(1) update time regardless of the size of the global map leading to high scalability.

The locally consistent keyframes are found using breadth first search technique on

the pose graph.

Once the local map is extracted, the data association is done by back-projecting

the local surfels into the input frame and if they have similar depth and normal, local

surfel is fused with the new surfel using the equations given in 4.3

Sl
p ←

Sl
pS

l
w+Sn

pS
n
w

Sl
w+Sn

w
, Sl

c ← Sn
c

Sl
n ←

Sl
nS

l
w+Sn

nS
n
w

Sl
w+Sn

w
, Sl

i ← Sn
i

Sl
t ← Sl

t + 1, Sl
w ← Sl

w + Sn
w

Sl
r ← min

(
Sn
r , S

l
r

)
.

(4.3)

where Sl
p and Sn

p are the positions of the local and the new surfel, Sl
w and Sn

w are

the weights of the local and the new surfels, Sl
c and Sn

c denote the intesities of the

local and the new surfels, Sl
r and Sn

r denote the radii of the local and new surfels.

4.4 Incorporating Semantic Information

The semantic information is provided in the form of semantic mask images where

the pixels that belong to the class of interest are represented with black color. This

provides the measured value for each surfel which is refined using a probabilistic

framework. This framework facilitates fusing noisy semantic values into the dense

surfel map and obtain real time object segmentation using segmentation from the
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Figure 4.2: Raw Image (Right) and the Semantic Binary Mask for Keyboard (Left).

This Binary Mask Is Then Assigned to the Surfel Which Is Updated Probabilistically

As New Measurements Arrive

RGB images. Each surfel is now represented as S = [Sp, Sn, Sc, Sr, St, Si, Sm], where

Sm is the mask of the surfel initialized by the semantic segmentation pipeline and

defines the class to which the surfel belongs. A typical example of mask generated

from the RGB image is shown in figure 4.2.

The mathematical formulation for incorporating the semantic information into

the dense surfel map is inspired from the mathematical formulation of the occupancy

grid map presented in Thrun et al. (2005), Moravec and Elfes (1985), and Stachniss

(2021).

4.4.1 Problem Formulation

Given the measured mask values of each surfel zi and pose of the camera xi,

estimate the surfel map m∗ such that

m∗ = argmaxmP (m|x1, z1, ......xt, zt); (4.4)
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Assumptions

• Each surfel belongs to only one particular class.

• The surfel map remains static

• There is no dependency between the neighbouring surfels.

4.4.2 Formulation

The map m can be represented as the joint probability distribution p(m) as:

p(m) = p(m1,m2, .....mN); (4.5)

where m1,m2... represent the probabilities of each individual surfel. This can be

represented as

p(m) =
∏
i

p(mi) (4.6)

Given sensor data z1:t and the poses x1:t of the sensor, the map can be estimated

as

p(m|z1:t, x1:t) =
∏
i

p(mi|z1:t, x1:t) (4.7)

Since it is a binary random variable, a binary bayes filter for a static state can be

employed. Following the formulation of occupancy grid map presented in Thrun et al.

(2005), Moravec and Elfes (1985), and Stachniss (2021),

p(mi|z1:t, x1:t) =

[
1 +

1− p(mi|zt, xt)
p(mi|zt, xt)

1− p(mi|z1:t−1, x1:t−1)

p(mi|z1:t−1, x1:t−1)

p(mi)

1− p(mi)

]−1

(4.8)

To make the formulation more efficient, log odds notation is used, which is obtained

by taking the logarithm on both sides of equation 4.8. This would result in equation

4.9

l(mi|z1:t, x1:t) = l(mi|zt, xt) + l(mi|z1:t−1, x1:t−1)− l(−mi) (4.9)
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Analogously,

lt,i = inverse measurement model(mi, xt, zt) + lt−1,i + l0 (4.10)

Inverse Measurement Model for Semantic Masks

In order to incorporate classification measurements obtained from the masks of the

RGB images, the correspondence between the measured mask and the probability

has to be established. This is usually based on the confidence with which the mask is

predicts the image segmentation, which has to be calibrated based on the segmenta-

tion training results. For this work, I assumed that if a particular pixel is predicted

to belong to a particular category, the probability of the prediction is 0.95 and hence

the log odds is 2.994. Similarly, for every pixel that does not belong the class, the

probability of prediction is 0.05 and the log odds is −2.994.

4.5 Results

The code for fusing semantic information to a dense surfel map was written on top

of dense surfel mapping (Wang et al. (2019)). I tested the algorithm in a simulated

environment in Gazebo as shown in the figure 4.3.

The raw image, super pixels generated and the corresponding semantic mask for

this environment are shown in figure 4.4.

For the simulated setting, I used a colour based segmentation mask wherein the

RGB image would generate binary masks for objects that are blue in colour. This

segmentation mask image is then fused with the rest of the dense surfel mapping

pipeline to generate surfels that encode the information of the object class to which

they belong. This mask information is then fused with new information from the new

measurements using equation 4.10. Hence the surfels get updated in terms of their

position, normal and also class. This leads to simple and efficient way of visualizing
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Figure 4.3: Simulated World in Gazebo With Different Object for Testing Dense

Semantic Surfel Mapping Algorithm

the surfels that belong to the objects of interest. The figure 4.5 shows the results

of the semantic segmentation where the objects were segmented and visualized as a

different point cloud.
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Figure 4.4: Top Left Shows the Raw Color Image From the Simulated Camera. Top

Right Shows That Segmented Image Generated by Processing Only the Raw Color

Image. Bottom Left Shows the Super Pixels Generated in the Image. Bottom Right

Shows the Dense Surfel Map Generated Using the Algorithm.
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Figure 4.5: Results of a Semantic Dense Surfel Map in the Gazebo Simulation En-

vironment. The Blue Points Are All the Segmented Surfels That Were Assigned the

Class Based on the Semantic Mask. The Green Lines Show the Path Taken by the

Camera
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Chapter 5

CONCLUSION

This thesis presented efficient navigation and semantic mapping algorithms that can

enable autonomous robots to navigate in complex environments and generate mean-

ingful maps of the environment. The first part of my thesis presented a terrain relative

navigation approach that can maintain a fixed distance from the terrain while fol-

lowing a human diver. This would facilitate collecting consistent data while visiting

important areas in the reef that the expert diver wants to map closely. The second

part of my thesis presented a dense semantic surfel mapping technique that encodes

object classification information from the RGB imagery into surfels that represent

the environment. This would enable extracting meaning from the surfel cloud that

can not only present semantic data in real time but also has the potential to assist

in more informed path planning as part of sophisticated exploration algorithms. The

navigation and mapping algorithms were tested in a simulated setting in Gazebo.

The results were analyzed and the code for the navigation algorithm has been made

available.

5.1 Future Work

There are multiple directions of research that can be pursued to take the research

presented in this thesis to the next level. Firstly, the Terrain Relative Navigation

algorithm can be tested in the in-house pool test-bed. This would require adding a

pre-processing step for the camera data to account for the refraction of light passing

through multiple media in the underwater setting.

Nonlinear Model Predictive Control can be tested on the uDrone. This would
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enable tracking even smoother trajectories and consequently improve the data quality.

As the uDrone is based on PX4 flight stack, transitioning to optimal controllers would

only require changing the top level controller keeping the rest of modules intact.

Semantic Dense Surfel Mapping can be improved to incorporate multiple object

classes instead of a binary mask. This would require modifying the formulation to

include multiple masks from the semantic segmentation on the RGB images.
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