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ABSTRACT

Over the past decades, the amount of data required to be processed and ana-
lyzed by computing systems has been increasing dramatically to exascale (10 bytes/s
or ops). However, modern computing platforms™ inability to deliver both energy-
eficient and high-performance computing solutions leads to a gap between meets
and needs, especially in resource-constraint Internet of Things (IoT) devices. Un-
fortunately, such a gap will keep widening mainly due to limitations in both de-
vices and architectures. With this motivation, this dissertation’s focus is on cross-
layer (device/circuit/architecture/application) co-design of energy-efficient and high-
performance Processing-in-Memory (PIM) platforms for implementing complex big
data applications, i.e., deep learning, bioinformatics, graph processing tasks, and data
encryption. The dissertation shows how to leverage innovations from device, circuit,
and architecture to integrate memory and logic to break the existing memory and power
walls and dramatically increase computing efficiency of today’s non-Von-Neumann
computing systems.

The proposed PIM platforms transform current volatile and non-volatile random
access memory arrays to computational units capable of working as both memory and
low-area-overhead, massively parallel, fast, reconfigurable in-memory logic. Instead of
integrating complex logic units in cost-sensitive memory, the explored designs exploit
hardware-friendly bit-line computing methods to implement complete Boolean logic
functions between operands within a memory array in a reduced clock cycle, overcom-
ing the multi-cycle logic issue in modern PIM platforms. Besides, new customized
in-memory algorithms and mapping methods are developed to convert the crucial
iteratively-used big data application’s functions to bit-wise PIM-supported logic. To

quantitatively analyze the performance of various PIM platforms running big data ap-



plications, a generic and comprehensive evaluation framework is presented. The over-
all system computing performance (throughput, latency, energy efficiency) for each
application is explored through the developed framework. The device-to-algorithm
co-simulation results on neural network acceleration demonstrate that the proposed
platforms can obtain 36.8x higher energy-efficiency and 22x speed-up compared to
state-of-the-art Graphics Processing Unit (GPU). In accelerating bioinformatics tasks
such as biological sequence alighment, the presented PIM designs result in ~2x, 43.8,
458 x more throughput per Watt compared to state-of-the-art Application-Specific In-
tegrated Circuit (ASIC), Field-Programmable Gate Array (FPGA), and GPU platforms,

respectively.
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Chapter 1

INTRODUCTION

In the past decades, the amount of data required to be processed by computing sys-
tems has been dramatically increasing to exascale (10'® bytes/s or flops) [11], [12]. How-
ever, the incapacity of modern computing platforms to deliver both energy-efficient
and high-performance computing solutions leads to a gap between meets and needs
[13], [14]. Unfortunately, with current Boolean logic and Complementary Metal Ox-
ide Semiconductor (CMOS)-based computing platforms, such gap will keep widen-
ing mainly due to limitations in both devices and architectures. First, at device level,
the computing efficiency and performance of CMOS Boolean systems is beginning
to stall due to approaching the end of Moore’s law and also reaching its power wall,
i.e., huge leakage power consumption limits the performance growth when technology
scales down [11], [15]. For example, the highest power efliciency of modern CPU
and GPU systems is only ~10GFLOPS/W, which is difficult to substantially improve
in the predictable scaled technology node [16]. Second, at the architecture level, as
depicted in Fig. 1a, today’s computers are based on Von-Neumann architecture with
separate computing and memory units connecting via buses, which leads to memory
wall imposing long memory access latency, limited memory bandwidth, energy-hungry
data transfer, and huge leakage power for holding data in volatile memory [14], [17].
This comes from the fact that there is a massive number of instruction fetch and data
transfer between computing and memory units. Therefore, there is a great need to lever-

age innovations from both device and architecture to build intelligent, reconfigurable,



instruction fetct

CPU 1 sata ransrer |
Sequential |= = = = = = >
Computation
gyt
(a) - Multiple instruction fetch « Single instruction fetch
« Multiple data transfer « Multiple data transfer
PIM (Memory +Logic) —
| ~
k) e )|Operand Row #1
| |
§ e Operand Row #2
Sequential 2
Computation S| il [ Result R
€ esult Row
C
SJ( [Mbdified SA )
(b) - Single instruction fetch - C F—F—F )
« No data transfer N

Figure 1: (a) General von-Neumann computing architecture in CPU and GPU vs. (b)
Processing-in-Memory architecture.

energy-efficient, and high-performance computing platforms integrating memory and
logic to break the existing memory and power walls.

In the last three decades, Processing-in-Memory (PIM) architecture, as a potentially
viable way to solve the memory wall challenge, has been well explored [14], [15], [18]-
[22]. The key concept behind PIM, as depicted in Fig. 1b, is to embed logic units
within memory to process data by leveraging the inherent parallel computing mech-
anism and exploiting large internal memory bandwidth. It could lead to remarkable
savings in off-chip data communication energy and latency. Ideally, the PIM architec-
tures must be capable of performing bulk bit-wise operations that are needed in many
big data applications [23], [24]. Generally, at the sub-array level, a PIM holds the
operand rows, e.g., #1 and #2 shown in Fig. 1b in two target rows of the memory. By

receiving a particular instruction from the CPU side, the PIM’s row decoder simulta-



neously activates the target rows and performs the bit-wise logic function between all
the bit-cells in two rows, storing two operands. This could be achieved by modifying
memory components at Sense Amplifiers (SA) level [23], memory bit-cell level [25],
[26], or even adding combinational circuits after SA [8], [27], [28]. The proposals for
exploiting SRAM-based [29], [30] PIM architectures can be found in recent literature.
However, PIM in the context of main memory (DRAM- [15], [19]) has drawn much
more attention in recent years mainly due to larger memory capacities and off-chip
data transfer reduction as opposed to SRAM-based PIM. However, existing DRAM-
based PIM architectures have major shortcomings, e.g., high refresh/leakage power,
multi-cycle logic operations, operand data overwritten, operand locality, etc.

The PIM architecture has become even more intriguing when integrated with
emerging Non-Volatile Memory (NVM) technology, such as Phase Change Memory
(PCM) [31] and resistive RAM (ReRAM) [14]. ReRAM and PCM offer more packing
density (~ 2 — 4x) than DRAM and hence appear to be competitive alternatives to
DRAM. However, they suffer from slower and more power-hungry writing operations
than DRAM [31]. In emerging NVM technologies, Magnetic RAM (MRAM) tech-
nology is another promising high-performance candidate for both last level cache and
main memory due to its ultra-low switching energy, non-volatility, superior endurance,
excellent retention time, high integration density, and compatibility with CMOS tech-
nology [32]. Meanwhile, MRAM technology is in the process of commercialization
[33]. Hence, PIM in the context of different NVMs, without sacrificing memory ca-

pacity, can open a new way to realize efficient in-memory computing paradigms [14],

[23], [34].



1.1

Processing-in-Memory Opportunities and Challenges

1.1.1 PIM Opportunities

The PIM architecture offers two important opportunities:

* First, it can exploit the large internal memory bandwidth that gets larger when

moving towards the memory bit-cell. Such bandwidth is otherwise wasted. Fig.
2a depicts the potential of internal bandwidth for DDR3-1600 and Hybrid Mem-
ory Cube (HMC). It can be observed that as moving from chip/die IO to bank
row buffer, DDR and HMC achieve 57x and 222x bandwidth improvements,
respectively [35], [36].

Second, PIM eliminates data movement between the memory and processing
host by performing the computation in the memory side. Fig. 2b reports
energy consumption of performing integer (INT) and floating-point (FP) op-
erations in the host as well as data movement energy between a host with a
L1:32K/1.2:256K/L3:4M/Main Memory:8G hierarchy at 45nm. It is reported
that the data movement energy for the main memory is ~100x larger than an

FP operation, which shows the significance of data movement reduction.

1.1.2  PIM Challenges

There are two high-level challenges with PIM designs that need to be addressed:

* First, on the one hand, the memory industry is highly cost-sensitive. Therefore,

inserting customized processing units with high-reconfigurability on the memory



(

1,E+05 1.E+05
- [ CDDR3-1600 mHMC
31-5*“ S 1E+D4 |
o (=1
= 1.E+03 | >
% 91.E+03 E
g 1.E+02 | ]
i ul 1,E+02
© 1,E+01 | T
2]

1,E+00 1.E+01

L1 L2 L3

Bus (Serdes) Chip/Die 10 Bank Row Buffer INT FP Main
(a) (b) Comp. Comp. Cache Cache Cache Memory

Figure 2: (a) The internal bandwidth for DDR3-1600 and HMC at chip/bank hier-
archy, (b) Energy consumption for CPU data processing and data movement with a
L1:32K/1.2:256K/L3:4M/Main Memory:8G hierarchy at 45nm [35], [36].

side could not be accepted if it would incur large area-overhead [23]. On the
other hand, for PIM to considerably reduce the data movement between memory
and host processor, it has to be reconfigurable and supports a wide range of logic
operations. Unfortunately, the existing PIM architectures have been limited to
basic logic operations such as AND, OR, and XOR so far [23], [37], which are
not necessarily applicable to a wide variety of tasks except by imposing multi-
cycle operations to realize specific functions such as addition [19], [38]. This
dual requires a synergic study at both device and circuit levels to realize a low-
overhead and reconfigurable PIM platform.

* Second, to accelerate big data applications such as deep learning, graph process-
ing, bioinformatics, etc., within the content of PIM, a synergic study at both
architecture and algorithm levels is also needed to assure various applications can
work with the provided PIM instructions. The existing big data processing algo-
rithms are developed to work with von-Neumann computing architecture that
will not necessarily fit the PIM concept. On the other side, the PIM architecture
typically deals with a massive number of write-back operations that eventually

may even fade the PIM benefits while working on the big data tasks. This prob-



lem is intensified when it comes to NVMs with costly write operations. Therefore,
there is a great need for architecture and algorithm co-design and co-optimization

on top of device and circuit levels.

1.2 Contributions

Motivated by the aforementioned opportunities and challenges, this dissertation
focuses on hardware and software co-design and co-optimization of energy-efficient and
high-performance PIM platforms for big data applications, leveraging innovations from
circuit and architecture to integrate memory and logic to break the existing memory
and power walls and to bridge memory and computing unit. The dissertation follows
two main directions to address the discussed challenges, summarized in the following

subsections.

1.2.1 Device-to-Architecture Co-Design for Reconfigurable PIM Logic Circuits

In this research direction, the dissertation explores how to exploit and redesign the
existing NVM/VM circuits and architectures with minimal change to simultaneously
work as a memory to store data and as new, intrinsic, parallel, fast, reconfigurable in-

memory logic to process data within memory directly.

1.2.1.1 Processing-in-non-volatile Memories

In emerging resistive NVMs, like ReRAM and MRAM, the data are stored in terms

of resistive states of memory cells. For a traditional NVM read operation, one selected



memory cell will be activated and compared with a reference resistance through mem-
ory SA to read out data value. In the presented computational NVM designs, multiple
resistive memory cells (i.e., data operands) could be activated and sensed simultane-
ously, leading to different parallel resistive levels at the SA side through modifying
peripheral circuits. By carefully selecting different reference resistance levels, various
Boolean logic outputs could be intrinsically ‘read out’ based on input operand data in
the memory array. The device-to-architecture level contributions to NVMs are thor-
oughly discussed in Chapter 2. The evolution of proposed PIMs based on NVMs is
shown starting from basic structures supporting bulk bit-wise (N)AND/(N)OR oper-
ations all the way to fully reconfigurable PIMs supporting X(N)OR and addition. The
design scope and the selected publications related to this chapter are indicated in Table

1 under Technology: STT-MRAM and SOT-MRAM. Table 1 also lists the supported

functions and applications regrading each work.

1.2.1.2  Processing-in-volatile Memories

In the VM domain, novel reconfigurable processing-in-DRAM platforms are de-
signed in this dissertation, which transform current DRAM architecture to massively
parallel computational units exploiting the high internal bandwidth of modern mem-
ory chips. The proposed DRAM-based designs utilize the analog operation of DRAM
sub-arrays and elevate it to implement a full set of 1- and 2-input bulk bit-wise oper-
ations in a single memory cycle based on a new dual-row activation mechanism. The
circuit/architecture level contributions for VMs is presented in Chapter 3. The design
scope and the selected publications related to this chapter are indicated in Table 1 under

Technology: DRAM.



Table 1: Taxonomy of the proposed Processing-in-Platforms.

Reference [39] [40] [1] [20] [10] [41]
STT-/SOT-/ReRAM/
Technology DWM DWM STTMRAM SOT-MRAM SOT-MRAM
DRAM/SRAM
Supported MAJ3/MIN3 MAJ3/MIN3 full set 1-/2- full set 1-/2-input Ops | full set 1-/2-/3-input Ops | full set 1-/2-/3-input Ops
Functions | MAJ5/MIN5/Add | MAJ5/MIN5/Add input Ops./MAJ3 MAJ3 MAJ3/Add MA]J3/Add
Applications image image/DNN encrypt./DNN DNN DNA Alignment DNN
Reference [42] [38] [5] [28] [2] [6]
Technology DWM SHEDWM SOT-MRAM SOT-MRAM SOT-MRAM DRAM
Supported MAJa/MINn full set (N)AND2/(N)OR2 full set full set 1-/2-input Ops full set 1-/2-input Ops
Functions 1-/2- input Ops./MAJ3 MAJ3/MAJ5 1-/2-input Ops MAJ3/Add MAJ3/Add
Applications image encrypt. encrypt. DNN DNA Alignment encrypt./graph
Reference [43] [44] [45] [46] [47] [48]
Technology DWM SHEDWM SOT-MRAM SOT-MRAM SOT-MRAM DRAM
Supported MAJ3/MIN3 full set (N)AND2/(N)OR2 full set 1-/2- XNOR2/MAJ3/
(N)AND2/(N)OR2
Functions | MAJ5/MIN5/Add | 1-/2-input Ops/MA]J3 Add/Sub input Ops Add
Applications image - DNN DNN DNN DNA assembly
Reference [49] [50] [8] [4] [9] [71
STT-/SOT-/ReRAM/
Technology SHEDWM DWM+SOTMRAM SOT-MRAM SOT-MRAM DRAM
DRAM/SRAM
MAJn/MINn/ full set full set 1-/2-/3-input Ops | full set 1-/2-/3-input Ops | (N)AND2/(N)OR2/
Functions (N)AND2/(N)OR2
Add 1-/2-input Ops MAJ3/Add MAJ3/Add MA]J3/MAJ5/Add
Applications encrypt. graph DNN graph DNN graph




1.2.2  Big Data Applications and Algorithms

In this research direction, new customized PIM-friendly algorithms are explored for
big data applications based on the proposed computational NVM and VM circuits and
architectures i