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ABSTRACT

Over the past decades, the amount of data required to be processed and ana-

lyzed by computing systems has been increasing dramatically to exascale (1018 bytes/s

or ops). However, modern computing platforms’ inability to deliver both energy-

efficient and high-performance computing solutions leads to a gap between meets

and needs, especially in resource-constraint Internet of Things (IoT) devices. Un-

fortunately, such a gap will keep widening mainly due to limitations in both de-

vices and architectures. With this motivation, this dissertation’s focus is on cross-

layer (device/circuit/architecture/application) co-design of energy-efficient and high-

performance Processing-in-Memory (PIM) platforms for implementing complex big

data applications, i.e., deep learning, bioinformatics, graph processing tasks, and data

encryption. The dissertation shows how to leverage innovations from device, circuit,

and architecture to integrate memory and logic to break the existing memory and power

walls and dramatically increase computing efficiency of today’s non-Von-Neumann

computing systems.

The proposed PIM platforms transform current volatile and non-volatile random

access memory arrays to computational units capable of working as both memory and

low-area-overhead, massively parallel, fast, reconfigurable in-memory logic. Instead of

integrating complex logic units in cost-sensitive memory, the explored designs exploit

hardware-friendly bit-line computing methods to implement complete Boolean logic

functions between operands within a memory array in a reduced clock cycle, overcom-

ing the multi-cycle logic issue in modern PIM platforms. Besides, new customized

in-memory algorithms and mapping methods are developed to convert the crucial

iteratively-used big data application’s functions to bit-wise PIM-supported logic. To

quantitatively analyze the performance of various PIM platforms running big data ap-
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plications, a generic and comprehensive evaluation framework is presented. The over-

all system computing performance (throughput, latency, energy efficiency) for each

application is explored through the developed framework. The device-to-algorithm

co-simulation results on neural network acceleration demonstrate that the proposed

platforms can obtain 36.8× higher energy-efficiency and 22× speed-up compared to

state-of-the-art Graphics Processing Unit (GPU). In accelerating bioinformatics tasks

such as biological sequence alignment, the presented PIM designs result in∼2×, 43.8×,

458×more throughput per Watt compared to state-of-the-art Application-Specific In-

tegrated Circuit (ASIC), Field-Programmable Gate Array (FPGA), and GPU platforms,

respectively.
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Chapter 1

INTRODUCTION

In the past decades, the amount of data required to be processed by computing sys-

tems has been dramatically increasing to exascale (1018 bytes/s or flops) [11], [12]. How-

ever, the incapacity of modern computing platforms to deliver both energy-efficient

and high-performance computing solutions leads to a gap between meets and needs

[13], [14]. Unfortunately, with current Boolean logic and Complementary Metal Ox-

ide Semiconductor (CMOS)-based computing platforms, such gap will keep widen-

ing mainly due to limitations in both devices and architectures. First, at device level,

the computing efficiency and performance of CMOS Boolean systems is beginning

to stall due to approaching the end of Moore’s law and also reaching its power wall,

i.e., huge leakage power consumption limits the performance growth when technology

scales down [11], [15]. For example, the highest power efficiency of modern CPU

and GPU systems is only ∼10GFLOPS/W, which is difficult to substantially improve

in the predictable scaled technology node [16]. Second, at the architecture level, as

depicted in Fig. 1a, today’s computers are based on Von-Neumann architecture with

separate computing and memory units connecting via buses, which leads to memory

wall imposing long memory access latency, limited memory bandwidth, energy-hungry

data transfer, and huge leakage power for holding data in volatile memory [14], [17].

This comes from the fact that there is a massive number of instruction fetch and data

transfer between computing and memory units. Therefore, there is a great need to lever-

age innovations from both device and architecture to build intelligent, reconfigurable,
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Figure 1: (a) General von-Neumann computing architecture in CPU and GPU vs. (b)
Processing-in-Memory architecture.

energy-efficient, and high-performance computing platforms integrating memory and

logic to break the existing memory and power walls.

In the last three decades, Processing-in-Memory (PIM) architecture, as a potentially

viable way to solve the memory wall challenge, has been well explored [14], [15], [18]–

[22]. The key concept behind PIM, as depicted in Fig. 1b, is to embed logic units

within memory to process data by leveraging the inherent parallel computing mech-

anism and exploiting large internal memory bandwidth. It could lead to remarkable

savings in off-chip data communication energy and latency. Ideally, the PIM architec-

tures must be capable of performing bulk bit-wise operations that are needed in many

big data applications [23], [24]. Generally, at the sub-array level, a PIM holds the

operand rows, e.g., #1 and #2 shown in Fig. 1b in two target rows of the memory. By

receiving a particular instruction from the CPU side, the PIM’s row decoder simulta-
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neously activates the target rows and performs the bit-wise logic function between all

the bit-cells in two rows, storing two operands. This could be achieved by modifying

memory components at Sense Amplifiers (SA) level [23], memory bit-cell level [25],

[26], or even adding combinational circuits after SA [8], [27], [28]. The proposals for

exploiting SRAM-based [29], [30] PIM architectures can be found in recent literature.

However, PIM in the context of main memory (DRAM- [15], [19]) has drawn much

more attention in recent years mainly due to larger memory capacities and off-chip

data transfer reduction as opposed to SRAM-based PIM. However, existing DRAM-

based PIM architectures have major shortcomings, e.g., high refresh/leakage power,

multi-cycle logic operations, operand data overwritten, operand locality, etc.

The PIM architecture has become even more intriguing when integrated with

emerging Non-Volatile Memory (NVM) technology, such as Phase Change Memory

(PCM) [31] and resistive RAM (ReRAM) [14]. ReRAM and PCM offer more packing

density (∼ 2 − 4×) than DRAM and hence appear to be competitive alternatives to

DRAM. However, they suffer from slower and more power-hungry writing operations

than DRAM [31]. In emerging NVM technologies, Magnetic RAM (MRAM) tech-

nology is another promising high-performance candidate for both last level cache and

main memory due to its ultra-low switching energy, non-volatility, superior endurance,

excellent retention time, high integration density, and compatibility with CMOS tech-

nology [32]. Meanwhile, MRAM technology is in the process of commercialization

[33]. Hence, PIM in the context of different NVMs, without sacrificing memory ca-

pacity, can open a new way to realize efficient in-memory computing paradigms [14],

[23], [34].
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1.1 Processing-in-Memory Opportunities and Challenges

1.1.1 PIM Opportunities

The PIM architecture offers two important opportunities:

• First, it can exploit the large internal memory bandwidth that gets larger when

moving towards the memory bit-cell. Such bandwidth is otherwise wasted. Fig.

2a depicts the potential of internal bandwidth for DDR3-1600 and Hybrid Mem-

ory Cube (HMC). It can be observed that as moving from chip/die IO to bank

row buffer, DDR and HMC achieve 57× and 222× bandwidth improvements,

respectively [35], [36].

• Second, PIM eliminates data movement between the memory and processing

host by performing the computation in the memory side. Fig. 2b reports

energy consumption of performing integer (INT) and floating-point (FP) op-

erations in the host as well as data movement energy between a host with a

L1:32K/L2:256K/L3:4M/Main Memory:8G hierarchy at 45nm. It is reported

that the data movement energy for the main memory is ∼100× larger than an

FP operation, which shows the significance of data movement reduction.

1.1.2 PIM Challenges

There are two high-level challenges with PIM designs that need to be addressed:

• First, on the one hand, the memory industry is highly cost-sensitive. Therefore,

inserting customized processing units with high-reconfigurability on the memory
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Figure 2: (a) The internal bandwidth for DDR3-1600 and HMC at chip/bank hier-
archy, (b) Energy consumption for CPU data processing and data movement with a
L1:32K/L2:256K/L3:4M/Main Memory:8G hierarchy at 45nm [35], [36].

side could not be accepted if it would incur large area-overhead [23]. On the

other hand, for PIM to considerably reduce the data movement between memory

and host processor, it has to be reconfigurable and supports a wide range of logic

operations. Unfortunately, the existing PIM architectures have been limited to

basic logic operations such as AND, OR, and XOR so far [23], [37], which are

not necessarily applicable to a wide variety of tasks except by imposing multi-

cycle operations to realize specific functions such as addition [19], [38]. This

dual requires a synergic study at both device and circuit levels to realize a low-

overhead and reconfigurable PIM platform.

• Second, to accelerate big data applications such as deep learning, graph process-

ing, bioinformatics, etc., within the content of PIM, a synergic study at both

architecture and algorithm levels is also needed to assure various applications can

work with the provided PIM instructions. The existing big data processing algo-

rithms are developed to work with von-Neumann computing architecture that

will not necessarily fit the PIM concept. On the other side, the PIM architecture

typically deals with a massive number of write-back operations that eventually

may even fade the PIM benefits while working on the big data tasks. This prob-
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lem is intensified when it comes to NVMs with costly write operations. Therefore,

there is a great need for architecture and algorithm co-design and co-optimization

on top of device and circuit levels.

1.2 Contributions

Motivated by the aforementioned opportunities and challenges, this dissertation

focuses on hardware and software co-design and co-optimization of energy-efficient and

high-performance PIM platforms for big data applications, leveraging innovations from

circuit and architecture to integrate memory and logic to break the existing memory

and power walls and to bridge memory and computing unit. The dissertation follows

two main directions to address the discussed challenges, summarized in the following

subsections.

1.2.1 Device-to-Architecture Co-Design for Reconfigurable PIM Logic Circuits

In this research direction, the dissertation explores how to exploit and redesign the

existing NVM/VM circuits and architectures with minimal change to simultaneously

work as a memory to store data and as new, intrinsic, parallel, fast, reconfigurable in-

memory logic to process data within memory directly.

1.2.1.1 Processing-in-non-volatile Memories

In emerging resistive NVMs, like ReRAM and MRAM, the data are stored in terms

of resistive states of memory cells. For a traditional NVM read operation, one selected
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memory cell will be activated and compared with a reference resistance through mem-

ory SA to read out data value. In the presented computational NVM designs, multiple

resistive memory cells (i.e., data operands) could be activated and sensed simultane-

ously, leading to different parallel resistive levels at the SA side through modifying

peripheral circuits. By carefully selecting different reference resistance levels, various

Boolean logic outputs could be intrinsically ‘read out’ based on input operand data in

the memory array. The device-to-architecture level contributions to NVMs are thor-

oughly discussed in Chapter 2. The evolution of proposed PIMs based on NVMs is

shown starting from basic structures supporting bulk bit-wise (N)AND/(N)OR oper-

ations all the way to fully reconfigurable PIMs supporting X(N)OR and addition. The

design scope and the selected publications related to this chapter are indicated in Table

1 under Technology: STT-MRAM and SOT-MRAM. Table 1 also lists the supported

functions and applications regrading each work.

1.2.1.2 Processing-in-volatile Memories

In the VM domain, novel reconfigurable processing-in-DRAM platforms are de-

signed in this dissertation, which transform current DRAM architecture to massively

parallel computational units exploiting the high internal bandwidth of modern mem-

ory chips. The proposed DRAM-based designs utilize the analog operation of DRAM

sub-arrays and elevate it to implement a full set of 1- and 2-input bulk bit-wise oper-

ations in a single memory cycle based on a new dual-row activation mechanism. The

circuit/architecture level contributions for VMs is presented in Chapter 3. The design

scope and the selected publications related to this chapter are indicated in Table 1 under

Technology: DRAM.
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Table 1: Taxonomy of the proposed Processing-in-Platforms.
Reference [39] [40] [1] [20] [10] [41]

Technology DWM DWM STTMRAM SOT-MRAM SOT-MRAM
STT-/SOT-/ReRAM/

DRAM/SRAM

Supported

Functions

MAJ3/MIN3

MAJ5/MIN5/Add

MAJ3/MIN3

MAJ5/MIN5/Add

full set 1-/2-

input Ops./MAJ3

full set 1-/2-input Ops

MAJ3

full set 1-/2-/3-input Ops

MAJ3/Add

full set 1-/2-/3-input Ops

MAJ3/Add

Applications image image/DNN encrypt./DNN DNN DNA Alignment DNN

Reference [42] [38] [5] [28] [2] [6]

Technology DWM SHEDWM SOT-MRAM SOT-MRAM SOT-MRAM DRAM

Supported

Functions
MAJn/MINn

full set

1-/2- input Ops./MAJ3

(N)AND2/(N)OR2

MAJ3/MAJ5

full set

1-/2-input Ops

full set 1-/2-input Ops

MAJ3/Add

full set 1-/2-input Ops

MAJ3/Add

Applications image encrypt. encrypt. DNN DNA Alignment encrypt./graph

Reference [43] [44] [45] [46] [47] [48]

Technology DWM SHEDWM SOT-MRAM SOT-MRAM SOT-MRAM DRAM

Supported

Functions

MAJ3/MIN3

MAJ5/MIN5/Add

full set

1-/2-input Ops/MAJ3
(N)AND2/(N)OR2

(N)AND2/(N)OR2

Add/Sub

full set 1-/2-

input Ops

XNOR2/MAJ3/

Add

Applications image - DNN DNN DNN DNA assembly

Reference [49] [50] [8] [4] [9] [7]

Technology SHEDWM DWM+SOTMRAM SOT-MRAM SOT-MRAM
STT-/SOT-/ReRAM/

DRAM/SRAM
DRAM

Functions
MAJn/MINn/

Add

full set

1-/2-input Ops
(N)AND2/(N)OR2

full set 1-/2-/3-input Ops

MAJ3/Add

full set 1-/2-/3-input Ops

MAJ3/Add

(N)AND2/(N)OR2/

MAJ3/MAJ5/Add

Applications encrypt. graph DNN graph DNN graph
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1.2.2 Big Data Applications and Algorithms

In this research direction, new customized PIM-friendly algorithms are explored for

big data applications based on the proposed computational NVM and VM circuits and

architectures in Chapters 2 and 3 to convert the crucial iteratively-used functions to

bit-wise PIM-supported functions. Besides, new data partitioning and mapping tech-

niques are developed to improve the PIM performance further and reduce the number

of write-back operations. The main high-level contributions of this dissertation are

highlighted in the following subsections.

1.2.2.1 Bottom-up Evaluation Framework

In the first part of chapter 4, a generic and comprehensive evaluation framework is

presented to quantitatively analyze the performance of various PIM platforms running

big data applications. As discussed, the main advantageous concept behind PIM in

NVM/VM is processing massive data within memory and eliminating off-chip data

communication. Thus, the overall system computing performance (throughput, la-

tency, energy efficiency) for each application can be explored through the developed

framework in this chapter. The framework is then put into the test to quantitatively

compare the analog and digital PIM acceleration solutions for Deep Neural Networks

(DNNs). The observations are reported considering three key evaluation metrics, i.e.,

area, energy, and latency.
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1.2.2.2 Deep Neural Networks

In the second part of Chapter 4, a practical DNN case study will be presented to

demonstrate MRIMA’s [1] acceleration for binary-weight and low bit-width convolu-

tional neural networks. The device-to-architecture co-simulation results on DNN accel-

eration demonstrate that MRIMA can obtain 1.7× better energy-efficiency and 11.2×

speed-up compared to ASICs, and, 1.8× better energy-efficiency and 2.4× speed-up

over the best DRAM-based PIM solutions.

1.2.2.3 Genome Analysis

Chapter 5 describes the PIM Acceleration of genome analysis with a focus on DNA

short read alignment and DNA assembly. For the first application, by selecting AlignS

[2] and PIM-Aligner [10] platforms discussed in Chapter 2, a local data partitioning,

mapping, and pipeline technique are presented to maximize the parallelism in multiple

PIM computational sub-arrays while conducting the alignment task. The simulation

results shows that PIM-Aligner outperforms recent platforms based on dynamic pro-

gramming with ∼3.1× higher throughput per Watt. Besides, PIM-Aligner improves

the short read alignment throughput per Watt per mm2 by ∼9× and 1.9× compared

to FM-index-based ASIC and processing-in-ReRAM designs, respectively. For the sec-

ond application, a highly parallel and step-by-step hardware-friendly DNA assembly

algorithm will be developed for PANDA [51] platform that only requires the developed

in-memory logic operations. The platform is then configured with a novel data parti-

tioning and mapping technique that provides local storage and processing to utilize the

algorithm-level’s parallelism fully. The cross-layer simulation results demonstrate that
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PANDA platform reduces the run time and power, respectively, by a factor of 18 and

11 compared with CPU. Besides, speed-ups of up-to 2.5-10× can be obtained over

other recent PIM platforms to perform the same task, like STT-MRAM, ReRAM, and

DRAM.

1.2.2.4 Data Encryption

The first part of chapter 6 is dedicated to PIM acceleration of data encryption appli-

cation. The Advanced Encryption Standard (AES) algorithm is selected as an instance

to elucidate the mapping of its transformations leveraging one of the presented PIM de-

signs in Chapter 3, i.e., ReDRAM [6], which reveals its benefits of energy-efficiency and

high-throughput for in-memory data encryption applications. The ReDRAM achieves

23% lower energy consumption compared to CMOS-ASIC implementation and re-

quires the least number of cycles compared with other processing-in-DRAM platforms

and a general purpose platform.

1.2.2.5 Graph Processing

The second part of chapter 6 discusses the PIM acceleration of graph processing

applications with mapping and partitioning. We show how the ReDRAM [6] can

be leveraged to greatly reduce energy consumption and latency of complex in-DRAM

logic computations relying on state-of-the-art mechanisms based on triple-row activa-

tion, dual-contact cells, row initialization, NOR style, etc. As a graph processing ac-

celerator, ReDRAM reduces energy consumption and execution time ∼21× and 49×,

respectively, compared with GPUs.
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Chapter 2

RECONFIGURABLE PIM BASED ON NON-VOLATILE MEMORIES

2.1 Introduction

This chapter elaborates flexible, parallel, and energy-efficient PIM designs based

on NVMs that can simultaneously work as a memory and realize a high-performance

accelerator for both structured and non-structured data-intensive applications. Please

note, while the proposed reconfigurable PIMs in this chapter leverage MRAM as the

main storage unit, all new microarchitectural and circuit-level schemes presented here

are tested and used in other NVMs such as ReRAM, PCM, etc.

2.1.1 Fabrication and Commercialization MRAM

Recent experiments and fabrication of nano-magnets demonstrate the ability to

switch the magnetization using ultra-small current-induced Spin-Transfer Torque

(STT) or Spin-Orbit Torque (SOT) with high speed (sub-nanosecond), long-

endurance (10 years), and less than fJ/bit memory write energy (close to SRAM)

[52], [53]. Various nanoscale spintronic devices have been explored to realize non-

volatile storage devices for MRAM applications, including but not limited to Magnetic

Tunnel Junction (MTJ) [54], [55], Domain Wall Motion (DWM) device [39], [40],

[42]–[44], [50], [56]–[58] and SOT-MTJ memory device [32], [45], [47], [59], [60],

and Skyrmions [61]. Several companies, including IBM [62] and Everspin [33] are

developing MRAM chips for next-generation universal NVM systems. In early 2016,
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Everspin announced 256Mb STT-MRAM chips based on MTJ with interface speed

similar to DRAM and was planning 1Gb chips in the near future [33]. Toshiba and

SK Hynix co-developed a 4-Gbit STT-MRAM chip prototype and demonstrated it at

IEDM 2016 [63]. In [64], a field-free switching SOT-MRAM on a 300 mm wafer

was demonstrated with a reliable sub-ns switching and CMOS-compatible processes.

In [65], an SOT-MRAM achieving 60-MHz write and 90-MHz was fabricated under

a 55-nm CMOS process and then the first successful example of large-capacity SOT-

MRAM fabrication (4 kB) on a single wafer was shown in [66]. In summary, with the

great advancement of fabrication technology and commercialization progress, MRAM

is becoming a next-generation universal NVM technology, with potential applications

in both last-level cache and main memory. It will greatly change the state-of-the-art

memory hierarchy due to its non-volatility, zero leakage power in un-accessed bit-cell,

high integration density (2× more than SRAM), excellent endurance (∼ 1015 cycles

[67]), and compatibility with the CMOS fabrication process (back end of the line)

[54].

2.1.2 STT-MRAM

A typical Magnetic Tunnel Junction (MTJ) structure, as shown in Fig. 3a, consists

of two ferromagnetic layers with a tunnel barrier sandwiched between them. Due to

the Tunnel MagnetoResistance (TMR) effect [68]–[71], the resistance of MTJ is high

(low) when the magnetization of two ferromagnetic layers are in anti-parallel (paral-

lel) state. The TMR ratio is defined as (RAP-RP)/RP, which may vary from 10% to

400% depending on materials and temperature [68]–[70], [72]. Thus, data are stored

as the magnetization direction in the free layer, which can be flipped through current-
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Figure 3: (a) Device structure of conventional Magnetic Tunnel Junction (MTJ) in
parallel and anti-parallel states, with Spin-Transfer Torque (STT) switching scheme.
(b) 1T1R STT-MRAM, (c) Biasing condition for memory operations.

induced Spin-Transfer Torque (STT). Note that, the MTJ with Perpendicular Mag-

netic Anisotropy (PMA) is used in this dissertation. The 1T1R memory bit-cell is

widely used in the typical MRAM design, as depicted in Fig. 3b, which is controlled

by Bit Line (BL), Word Line (WL), and Source Line (SL). The biasing conditions of

memory read/ write are presented in Fig. 3c. For both memory read and write op-

erations, the WL is enabled, which turns on the access transistor. To write a data

in a memory cell, the corresponding WL is activated using a Memory Row Decoder

(MRD). Then appropriate voltage difference (Fig. 3c) is applied to the corresponding

BL and SL using the Write Driver (WD) connected to them (the write current path

is shown in Fig. 3b), leading to MTJ resistance in High-RAP (/Low-RP ). For mem-

ory read, a sensing current (IREAD) is applied on the BL and consequently generates a

sensing voltage, which can be detected by a Sense Amplifier (SA).
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For the STT-MRAM modeling in this dissertation, the Non-Equilibrium Green’s

Function (NEGF) and Landau-Lifshitz-Gilbert(LLG) equation are used before the

circuit-level simulation. The magnetization dynamics of MTJ’s Free Layer-FL (m) can

be modeled as [73], [74]:

dm

dt
= −|γ|m×Heff + α

(
m× dm

dt

)
+ |γ|β(m×mp ×m)− |γ|βϵ′(m×mp) (2.1)

β = | ℏ
2µ0e

| IcP

AMTJtFLMs

(2.2)

where ℏ is the reduced plank constant, γ is the gyromagnetic ratio, Ic is the charge

current flowing through MTJ, tFL is the thickness of free layer, ϵ′ is the second Spin

transfer torque coefficient, and Heff is the effective magnetic field. P is the effective

polarization factor, AMTJ is the cross sectional area of MTJ, and mp is the unit polariza-

tion direction. Fig. 4a shows the normalized magnetization dynamics of free layer in

x-, y- and z-axis, when performing the STT-MRAM write scheme as described earlier

[75].
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Figure 4: (a) The normalized magnetization switching in x-, y- and z-axis. (b) The
Resistance-Area product w.r.t the thickness of MTJ tunnel oxide (tox) [75].
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Based on the simulation parameters listed in Table 2, the magnetization dynamic

from LLG equation can provide the relative angle θ between the magnetization of

Pinned Layer-PL (ẑ) and FL (m). Therefore, the real-time conductance of MTJ (GMTJ)

is given by [76]:

GMTJ =
GP +GAP

2
+

GP −GAP

2
cos θ (2.3)

where GP and GAP are the conductance of MTJ in parallel (θ = 0) and anti-parallel

(θ = 180) configurations. Both GP and GAP are obtained from the atomistic level sim-

ulation framework based on Non-Equilibrium Green’s Function (NEGF) [77], while

the Resistance-Area Product with respect to the thickness of MTJ tunnel oxide is shown

in Fig. 4b.

Table 2: Simulations Parameters for MTJ.

Parameter Value
Free layer dimension (W × L× t)FL 65× 65× 2 nm3

Polarization factor, P 0.4
Gilbert Damping Factor, α 0.007

Saturation Magnetization, Ms 850 kA/m
Oxide thickness, tox 1.5 nm

RA product, RAp / TMR 10.58 Ω · µm2 / 171.2%
Supply voltage 1 V

CMOS technology 45 nm
STT-MRAM cell area 48F 2

Access transistor width 9F
Cell aspect Ratio 1.34

2.1.3 SOT-MRAM

As shown in Fig. 3b, in the typical STT-MRAM design, only one access transistor

is used for both memory write and read, which suffers several limitations due to the

intrinsic device physics and structure, including long write latency (>10-ns); high write
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current (>2 MA/cm2) and thus large writing power and area (due to large transistor

sizing); shared read and write paths causing read-write conflict; asymmetric writing of

data ‘0’ and ‘1’ due to different spin polarization factor of fixed and free ferromagnetic

layers; reliability concern due to tunnel oxide breakdown in large write voltage [78],

[79].

In order to address the above limitations of STT-MRAM, the recent application

of SOT has been explored to switch the adjacent MTJ free layer magnetization (i.e.,

programming MTJ resistance) much more energy efficiently in I/FM/HM structure

(I: Insulator, FM: Ferro-Magnet, and HM: Heavy Metal) [3], [53]. Fig. 5a presents

the device structure of SOT-MTJ, which is an MTJ mounted on a heavy metal sub-

strate. When electrons flow through the non-magnetic heavy metal substrate (in the

±y direction) with strong spin-orbit coupling, the electrons with the reverse direction

of rotation accumulate on the opposite surfaces of HM. Thus, a pure spin current (Is)

in the±z direction is generated, which exerts an SOT on the adjacent FM and switches

the magnetization. The relationship between the generated spin current (Is) and the

applied charge current (Ic) can be expressed as:

Is = Pshe(σ × Ic) (2.4)

Pshe =
Is
Ic

=
AFM

AHM

θsh

(
1− sech

(tHM

λsf

))
(2.5)

where Pshe is spin Hall injection efficiency. σ is the electron spin polarization, which is

transverse to both the spin current and charge current directions. AFM is the area of the

adjacent FM area and AHM is the cross-sectional area of HM in the direction of current

flow. θsh is the spin Hall angle, which is defined as the ratio of generated spin current

density to the applied charge current density. tHM is the thickness of HM substrate,

and λsf is the spin flip length. Recently, large spin Hall angle was experimentally

demonstrated in different heavy metal materials, such as Pt [80], β-Ta [81], β-W [82],
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Figure 5: (a) The stacking device structure of MTJ and heavy metal substrate, which
uses spin-orbit torque induced magnetization switching scheme. (b) Bit-cell schematic
of SOT-MRAM with two access transistors (1R/1W). (c) Biasing condition for memory
operations.

and CuBi alloys [83]. High magnetization switching speed (<1ns) of SOT-MTJ is

achieved mainly due to larger spin injection efficiency compared to the conventional

MTJ with an STT-switching scheme. Therefore, it is much more efficient to choose

SOT-induced switching scheme as the next generation MRAM design.

Fig. 5b shows the corresponding 2T1R SOT-MRAM bit-cell design with separated

write and read access transistors, correspondingly controlled by Write Bit Line (WBL),

Write Word Line (WWL), Read Bit Line (RBL), Read Word Line (RWL), and the

shared Source Line (SL). The memory read and write biasing conditions are presented

in Fig. 5c. For memory write, WWL is pulled high, which turns on the write access

transistor. Then, to write ‘1’ (or ‘0’), a positive voltage VWP (or negative voltage VWN)

is applied to WBL with SL connected to ground. For memory read, RWL is set to

18



Table 3: Simulation Parameters for SOT-MTJ.

Parameter Value

Free layer dimension,(W × L× t)FM 60× 40× 2 nm3

SHM dimension, (W × L× t)HM 60× 80× 2 nm3

Demagnetization Factor, Dx, Dy, Dz 0.066, 0.911, 0.022
Spin flip length, λsf 1.4 nm
Spin hall angle, θsh 0.3

Gilbert Damping Factor, α 0.007
Saturation Magnetization, Ms 850 kA/m

Oxide thickness, tox 1.2 nm
RA product, RAp / TMR 10.58 Ω · µm2 / 171.2%

Supply voltage 1 V
CMOS technology 45 nm

SOT-MRAM cell area 69F2

Access transistor width 4.5F
Cell aspect Ratio 1.91

VDD, and the read access transistor is switched on. A sensing current (Isense) flowing

through SOT-MTJ consequently generates a sensing voltage (Vsense) on RBL, which

can be detected by the SA.

The magnetization dynamics of SOT-MTJ’s FL (m) can be also modeled by the

modified LLG equation, which can be mathematically described as:

(1 + α2)
dm

dt
= −|γ|µ0m×H − α|γ|m×m×H − m×m× Is

qNs

+ αm× Is
qNs

(2.6)

where α is Gilbert damping factor, γ is the gyromagnetic ratio, and µ0 is the vacuum

permeability. H is the effective field, which includes dipolar coupling field, demagne-

tization field, thermal noise field and anisotropy field. Ns = MsV/µB is the number of

spins, µB is Bohr magneton, Ms and V are the saturation magnetization and volume of

ferromagnet, respectively. The simulation parameters are listed in Table 3. In order to

realize the desired 1ns switching speed, about 130µA writing current is required which

leads to 1V and -0.35V for VWP and VWN, respectively. Based on the simulation pa-

rameters listed in Table 3, the magnetization dynamic from LLG equation can provide
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the relative angle θ between the magnetization of PL and FL. Therefore, the real-time

conductance of MTJ (GMTJ) is given by the Eq. (2.3), where again both GP and GAP

are obtained from the atomistic level simulation framework based on Non-Equilibrium

Green’s Function (NEGF) [77], while the Resistance-Area Product with respect to the

thickness of MTJ tunnel oxide is listed in Table 3.

2.1.4 Challenges

In this subsection, the main limitations and challenges of recent PIM platforms are

discussed:

• First, most recent PIM designs offer application-specific acceleration cir-

cuits/architectures rather than a general-purpose platform for computation

due to the device-circuit level limitations, so they are not necessarily applicable

to other applications. For instance, the ReRAM crossbar-based designs [14],

[34], [84], [85] have been widely used to accelerate Convolutional Neural Net-

works (CNNs). Ambit [19] and Pinatubo [23] as recent in-memory accelerators

enable only bulk bit-wise in-memory operations tailored for data-intensive appli-

cations. DRISA [15], Compute Cache [29], and CMP-PIM [28] optimize and

exploit massive DRAM, SRAM and SOT-MRAM parallelism, respectively, by

modifying memory peripherals like SAs at memory sub-array level to perform

CNN acceleration. DW-AES [86], RIMPA [49], and HieIM [87] target for

designing in-memory encryption engines by developing efficient in-memory

XOR units.

• Second, current PIM schemes unavoidably rely on external processing units for

performing more complex logic operations, otherwise PIM’s performance degra-
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dation would be considerable due to multi-cycle logic operations. For instance,

addition as a preeminent operation for a wide variety of applications can be more

efficiently performed by a processor than a PIM platform. Recent in-memory ad-

dition techniques [38], [49], [88] do not show acceptable performance specially

for multi-bit addition. The STT-CiM [89] presents an interesting way to realize

in-memory bit-line addition by adding logic gates directly in reconfigurable SA.

However, it requires additional memory cycles to save carryout bit back to the

memory and use it for computation of next bits.

• Third, none of these designs can perform computing (Boolean logic functions) be-

tween any two bits irrespective of their locations in the memory array. Processing

data (operands) can be stored in different memory locations with distinct physical

addresses. Therefore, existing bit-wise PIM schemes unavoidably impose multi-

cycle operations to align operands in the same column [23], [29], [89] or row

[49], [90] to process data within memory. For instance, RIMPA [49]/Pinatubo

[23] require at least 2 cycles (read/write) to line operands in the same row/column

to realize a 2-input in-memory AND function. Thus, such operand-locality issue

is a very important un-addressed topic in previously reported PIM architectures

[29].

We explore and address the first two PIM challenges in Section 2.3 and the third

challenge in Section 2.4.

2.2 Overall PIM Architecture

The general memory organization to realize PIM in NVMs is shown in Fig. 6. The

main memory chip is basically divided into multiple Banks. Each bank consists of
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Figure 6: The overall PIM architecture used in Chapter 2.

multiple memory matrices (mats). Banks within the same chip typically share I/O and

buffer, and banks in different chips work in a lock-step manner. The mats are connected

to a Global Row Decoder (GRD) and a shared Global Row Buffer (GRB). Each mat

consists of multiple computational memory sub-arrays (i.e., PIM-enhanced sub-array)

connected to a GRD and GRB.

According to the application type and physical address of operands within mem-

ory, the PIM’s Controller (Ctrl) can configure the computational sub-arrays to perform

data-parallel inter-sub-array computations. Every two computational sub-arrays share

a Local Row Buffer (LRB) as well as a Digital Processing Unit (DPU) to further pro-

cess the data (if necessary) in specific applications, as will be discussed later. Fig. 7

gives an overview of the PIM’s acceleration steps. Assume input tensors A and B (that

can belong to various applications) are initially stored in Data Banks of the memory.

In the first step, either raw data or preprocessed data (by DPU) are mapped into the

computational sub-arrays in specific mats. In the second step, parallel computational

sub-arrays, which are designed to handle the computational load employing PIM tech-

niques, perform bulk bit-wise operations between tensors and generate the output. The
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Figure 7: The PIM’s acceleration steps. The size of the computational sub-arrays could
be tailored.

results at this step can be considered as the ultimate output in data-encryption or graph

processing applications. Additionally, the generated data can be further processed by

DPU to generate the output for neural network-based applications.

2.3 Evolution of the Proposed MRAM-based PIM Platforms

2.3.1 Basic PIM Supporting (N)AND, (N)OR

In emerging resistive NVMs, like MRAM and ReRAM, the data are stored in resis-

tive states of memory cells as discussed in Sections 2.1.2 and 2.1.3. In the traditional

NVM’s read operation, one selected memory cell will be activated and compared with

a reference resistance through memory SA to read out data value. Therefore, firstly,
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Figure 8: The idea of voltage comparison between Vsense and Vref for (a) memory
read, (b) 2-input in-memory logic, i.e., IML2x, and (c) 3-input in-memory logic, i.e.,
IML3x. Note that, RMi and Ri denote the equivalent resistance of the non-volatile
component and selecting transistor, wire, etc. respectively.

the corresponding WL(/RWL) is activated using the MRD and the corresponding

BL(/RBL) is connected to the SA using the Memory Column Decoder (MCD) (the

read current path is shown in Fig. 3b). The idea of voltage comparison for memory

read is shown in Fig. 8a, a single cell is addressed to generate a sense voltage (Vsense),

which will be compared with memory mode reference voltage activated by an enable

signal ENM (Vsense,P<Vref,M<Vsense,AP). Now, if the path resistance is higher (/lower)

than RM (memory reference resistance), i.e. RAP (/RP ), then the SA produces High

(/Low) voltage indicating logic ‘1’ (/‘0’). Note that one SA per BL(/RBL) is considered

in the whole dissertation to maximize the output bandwidth.

With a careful study of this operation, new peripheral circuits are designed in this

chapter such that multiple resistive memory cells (i.e., data operands) could be activated

and sensed simultaneously, leading to different parallel resistive levels at the SA side. In

this way, by carefully selecting different reference resistance levels, various Boolean logic

outputs could be intrinsically ‘read out’ based on input operand data in the memory

array.
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Figure 9: (a) Proposed PIM sub-array architecture based on SOT-MRAM supporting
(N)AND, (N)OR functions with peripherals [8], [59], [91]. The layout of two adjacent
SOT-MRAM cells is also indicated. (b) Monte-Carlo simulation result of the sense
voltage (Vsense) distribution.

The first idea was rather simple [8], [59], [91], where every two bits stored in the

identical column could be selected and sensed simultaneously, as depicted in Fig. 9a.

To do this, the MRD was modified to support multi-line enable function through

combining two single-line enable decoders with their outputs connected to OR gates.

To activate the computing current path as shown in Fig. 9a for the first column, RWL1
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and RWL2 are activated by the MRD while SL1 and SL2 are grounded and all the

other WLs and SLs are kept deactivated. The MCD/CD activates the RBL1 to be

connected to the SA. Now the sense (read) current is applied to RBL1 and with that

the equivalent resistance voltage of such parallel connected SOT-MRAMs (m1 and

m2) and their cascaded access transistors can be compared with a specific reference

voltage generated by SA. Through selecting different reference resistances by new enable

signals (ENM , ENAND, ENOR) as shown in SA box in Fig. 9a, the SA can perform

basic memory and in-memory Boolean functions (i.e., (N)AND2 and (N)OR2). For

(N)AND2 operation, Rref is set at the midpoint of RAP//RP (‘1’,‘0’) and RAP//RAP

(‘1’,‘1’) as shown in Fig. 8b. Thus only when both of the selected MRAM bit-cells

are in an anti-parallel state (i.e., binary input: ‘1’, ‘1’), the output is high, whereas the

output is low. Similarly, for (N)OR2 operation, Rref is set at the midpoint of RP//RP

and RP//RAP and only when both of the two selected MRAM bit-cells are in the

parallel state (i.e., binary input: ‘0’, ‘0’), the output is low, whereas the output is high.

To validate the sense circuit’s variation tolerance, we have performed a Monte-Carlo

simulation with 100000 trials. A σ = 5% variation is added on the Resistance-Area

product (RAP) and a σ = 10% process variation is added on the TMR. The simulation

result of sense voltage (Vsense) distributions in Fig. 9b shows the sense margin of in-

memory computing. It will be reduced by increasing the logic fan-in (i.e., number of

parallel memory cells). It is worth pointing out that this design does not necessarily rely

on a certain NVM technology or cell structure. As long as the technology is based on

resistive-cell, i.e., PCM and ReRAM, the presented SA can readily perform in-memory

computation. Based on our experiments, leveraging PCM and ReRAM cells (with

higher ON/OFF ratio) leads to a significantly larger read margin compared with SOT-

MRAM, which further translates to much higher reliability even by activating more
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number of rows (e.g., up to 64-row operation for PCM [23]). Therefore, it is possible

to use other types of emerging NVMs to achieve a better read margin. Notwithstanding,

PCM and ReRAM consume more power than SOT-MRAM if converted to the PIM

platform mainly due to their relatively higher writing power, which inevitably causes

overall power increase when dealing with complex real-world applications requiring

massive intermediate operand data write-back into memory.

While the proposed PIM design in Fig. 9a could implement any in-memory

Boolean logic functions based on universal NAND2/NOR2 functions, it requires mul-

tiple cycles. It means the operation’s result has to be written back into the memory af-

ter each memory cycle. Such write-back operation reduces the platform’s performance

and energy-efficiency in computationally-intensive big data applications and eventu-

ally may even fade the PIM advantages. This motivated us to move forward and design

reconfigurable complete PIM platforms supporting more Boolean functions.

2.3.2 Reconfigurable Complete PIM Supporting X(N)OR

In [3], [28], an enhanced and reconfigurable PIM platform on top of the previ-

ous design is proposed. In the new design, every RBL is routed to a Modified Sense

Amplifier (MSA), as shown in Fig. 10. The new MSA consists of two sub-SAs and

three reference resistors compared to the first design with one SA in Section 2.3.1. Ev-

ery two bits stored in the identical column can be selected with the MRD and sensed

simultaneously as shown in Fig. 10a. Again, the equivalent resistance of such paral-

lel SOT-MRAMs and their cascaded access transistors is compared with MSA’s pro-

grammable reference. In the new design, through selecting two reference resistances

(i.e., ENAND, ENOR), two sub-SAs can operate simultaneously to realize two basic in-
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Figure 10: (a) Proposed in-memory processing sub-array architecture based on SOT-
MRAM supporting (N)AND, (N)OR, X(N)OR functions [3], [28], (b) Modified
Sense Amplifer with two sub-SAs and three reference resistors.

memory Boolean functions, i.e., (N)AND2 and (N)OR2 at the same time, as shown

in Fig. 10b. This provides more flexibility to the PIM to implement more complex

logic functions through combining the outputs. The X(N)OR2 logic can be realized

with two sub-SA’s outputs (AND2 and NOR2 logic) with an extra CMOS NOR2 gate

after the outputs in the MSA. As shown in Fig. 10b, the operation of such sense circuit

is determined by the control signals (ENAND, ENM , ENOR), while the desired result

is acquired by the select signal (SEL) of the output multiplexer [28], [92]. It is note-

worthy that only one SA is used during (N)AND2/(N)OR2/memory read operation

to reduce the power consumption of sensing. Parallel computing/read is implemented

by using one SA per bit-line.

Fig. 11 depicts the transient simulation result of the sense circuit under a 2ns period

clock signal (CLK), which takes the data stored in MRAM1 (m1) and MRAM2 (m2)

as inputs. When CLK is high, the sense amplifier is in the pre-charge phase, and the
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output is reset to ‘0’. When CLK is low, the sense amplifier is in the sampling phase and

generates logic computation results depending on the reference voltage configuration.

Vcmp plots the comparison between sense voltage (Vsense) and two reference voltages, i.e.,

Vref1 and Vref2. Again, Vref1 is set to (VAP,AP+VAP,P)/2, and Vref2 is set to (VP,P+VAP,P)/2,

for performing AND2 and OR2, respectively. It is noteworthy that Vcmp’s ripple comes

from the kickback noise of the SA’s clock switching. In general, the transient curve

demonstrates the correct logic operation of MSA with ∼200 ps output latency.
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2.3.3 Reconfigurable PIM Supporting Two-Cycle In-Memory Addition

2.3.3.1 Design I: MRIMA based on STT-MRAM

Aiming to provide more flexibility and reconfigurability for the PIM platforms, a

new PIM sub-array architecture based on STT-MRAM, named MRIMA was presented

in [1]. This in-memory circuit design, as depicted in Fig. 12a, mainly consists of
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Figure 12: The MRIMA’s sub-array architecture [1]: (a) Block level scheme and STT-
MRAM realization of 2-input and 3-input in-memory logic methods, (b) Peripherals
of computational sub-arrays to support computation.

Write Driver (WD), MRD (elaborated in Fig. 12b), MCD, SA (Fig. 12b), and can

be adjusted by Ctrl unit (Fig. 12b) to work in dual mode that perform both memory

write/read and bit-line computing. The proposed reconfigurable SA, as depicted in

Fig. 12b, consists of two sub-SAs and totally six reference-resistance branches that can

be selected by enable bits (ENM , ENOR3, ENOR2, ENMAJ , ENAND3, ENAND2) by the

sub-array’s Ctrl to realize the memory and computation schemes as tabulated in Table 4.

Such reconfigurable SA could implement memory read and one-threshold based logic

functions on top the discussed bit-line computing scheme by activating one enable

at a time, e.g., by setting ENAND2 to ‘1’, (N)AND2 logic can be readily implemented

between operands located in the same bit-line. Meanwhile, by activating two enables at

a time, e.g., ENOR2, ENAND2, two logic functions can be simultaneously implemented

and further used to generate two-threshold based logic functions like X(N)OR2, as in

Section 2.3.2. Here, we elaborate on the main functions supported in MRIMA.
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Table 4: Configuration of MRIMA’s enable bits for different functions.

Ops. read/NOT (N)OR2/NOR2 (N)AND2 X(N)OR2 MAJ/MIN (N)OR3 (N)AND3
ENM 1 0 0 0 0 0 0
ENOR2 0 1 0 1 0 0 0
ENAND2 0 0 1 1 0 0 0
ENOR3 0 0 0 0 0 1 0
ENAND3 0 0 0 0 0 0 1
ENMAJ 0 0 0 0 1 0 0

2.3.3.1.1 Fast row copy (FRC)

MRIMA’s FRC mechanism needs consecutive memory read and write operations.

In the first half-cycle, the source row is activated by sub-array’s MRD and readout to

LRB (shown in Fig. 6); in the second half-cycle, the data stored in the buffer is written

back to the destination row. It is noteworthy that FRC can be readily used in mat and

bank levels considering inter-component’s buffer (GRB) to accelerate copy operation

in MRIMA’s sub-components.

2.3.3.1.2 Two-input in-memory logic (IML2x)

The computational sub-array of MRIMA is designed to perform bulk bit-wise in-

memory logic operations between two or three operands located in the same bit-line.

The IML2x is essentially the same as the 2-input PIM operation in the previous designs,

where, every two bits stored in an identical column can be selected employing the

MRD and sensed simultaneously, as depicted in Fig. 12a. The equivalent resistance of

such parallel connected STT-MRAMs and their cascaded access transistors is compared

with a programmable reference by SA. Through selecting different reference resistances

(RAND2, ROR2), the SA can perform basic 2-input in-memory Boolean functions (i.e.,

(N)AND2 and (N)OR2) in a single memory cycle. The idea of voltage comparison
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between Vsense and Vref for IML2x is shown on Fig. 8b. The XOR2 logic is also realized

with two SAs and an additional CMOS NOR gate similar to the presented design in

Fig. 10b.

2.3.3.1.3 Three-input in-memory logic (IML3x)

In the IML3x, every three cells located in an identical column can be selected by

MRD and sensed simultaneously to realize 3-input logic functions (i.e., (N)AND3,

(N)OR3, MAJ/MIN). For instance, consider the data organization shown in Fig. 12a,

where A, B, and C operands correspond to M1, M2, and M3 memory cells, respec-

tively, the computational sub-array can perform majority function (AB + AC + BC)

by setting ENMAJ to ‘1’. As shown in Fig. 8c, to perform MAJ operation, RMAJ is set

at the midpoint of RP//RP//RAP (‘0’,‘0’,‘1’) and RP//RAP//RAP (‘0’,‘1’, ‘1’). Note

that, R1, R2 and R3 in Fig. 8 denote the equivalent resistance of selecting transistor,

wire, etc. cascaded within the sensing path. In our experiment, the average value across

the memory array was taken, since normally the equivalent resistance depends on the

location of the selected memory cell.

A comprehensive study on the MRIMA’s sensing circuit’s variation tolerance is done

by running the Monte-Carlo simulation with 10000 trials. A σ = 2% variation is added

to the RAP, and a σ = 5% process variation (typical MTJ conductance variation [13])

is added on the TMR. The simulation result of Vsense distributions in Fig. 13 shows the

sense margin for memory read, IML2x, and IML3x. It can be seen that sense margin

gradually reduces when increasing the number of fan-ins. To avoid logic failure and

guarantee the output’s reliability, we limited the number of sensed cells to three. Such

sense margin could be even improved by either increasing the sense current or oxide
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Figure 13: Monte-Carlo simulation of Vsense (with RAP/TMR=2%/5% - tox=1.5nm)
for (a) memory read, (b) IML2x, (c) IML3x when Isense = 6.6µA, and (d) IML3x
when Isense = 18µA [1].

thickness (tox), but obviously by sacrificing the operation’s energy-efficiency. To show

this, the sense current (Isense) is increased from the initial value (∼ 6.6µA), plotted

in Fig. 13c, to ∼ 18µA and the simulation for only IML3x was re-run to plot Fig.

13d. By increasing the sense current, the voltage margin between two sensitive states

(RP//RP//RAP and RAP//RAP//RP ) has increased from initial 6.31mv to 31.4mv.

Note that the sensing current is not increased above 20µA to make sure there is no

read-write conflict.

To further explore the correlation between Isense and voltage margin for different

MRIMA’s operations, Fig. 14a shows the voltage margin for memory read, IML2x,

and IML3x operations when the Isense is gradually increased. As can be seen, the larger

Isense is, the larger voltage margin is achieved for different operations. In addition, the

IML3x’s voltage margin considering different stochastic variations on MTJ’s RAP/TMR
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(2%/5%, 5%/2%, and 5%/5%) is explored in Fig. 14b by increasing tox, from 1nm

to 2.25nm (as experimentally-demonstrated in [93]). Increasing tox from 1.5nm to

2nm leads to ∼30.4 mv increase in the sense margin, which considerably enhances the

reliability of this operation in MRIMA.

2.3.3.1.4 Two-cycle in-memory addition

In addition to the above-mentioned single-cycle logic operations, MRIMA’s sub-

array can perform addition/ subtraction (add/sub) operation quite efficiently. In the

full-adder Boolean logic, the carry-out can be directly produced by MAJ function

(Carry in Fig. 12b) just by setting ENMAJ to ‘1’. Accordingly, a carry latch is in-

serted at this point to store intermediate carry outputs to be used in the summation of

the next bits. Meanwhile, Sum output can be obtained by inserting a 2-input XOR

gate in the reconfigurable SA, taking the latch output and in-memory XOR2 output
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as the inputs. Now, assume A, B, and C operands (in Fig. 12a), IML2x and IML3x

are able to generate Sum (/Difference) based on XOR3 and Carry (/Borrow) bits, and

perform parallel multi-bit addition operation as will be delineated in Chapter 4.

2.3.3.1.5 System integration

While MRIMA is meant to be an independent high-performance and energy-

efficient accelerator, it needs to be expose it to programmers and system-level libraries

to utilize it. From a programmer’s perspective, MRIMA is more of a third-party accel-

erator that can be connected directly to the memory bus or through PCI-Express lanes

rather than a memory unit. Accordingly, the programs are translated at install time

to the MRIMA hardware instruction set tabulated in Table 5. The micro and control

transfer instructions are not shown in the table.

Table 5: The basic instructions of MRIMA.

opcode operation function
FRC B ← A Copy row A to Row B

IML2x
IML21
IML22
IML23

A.B
A+B
A⊕B

AND2/NAND2
OR2/NOR2

XOR2/XNOR2

IML3x
IML31
IML32
IML33

A.B.C
A+B+C

AB + AC +BC

AND3/NAND3
OR3/NOR3
MAJ/MIN

The MRIMA commands/instructions can be directly copied/written to a prede-

fined memory-mapped address ranges, e.g., defined in the memory type range registers

(MTRRs), or programmed through writing to Memory-Mapped I/O regions that are

allocated through a simple device driver to do initialization/cleanup for required soft-

ware memory structures. Note that the first approach can potentially bring more perfor-
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mance gains than the later one; accessing MRIMA as an I/O device can incur significant

overheads due to interrupts and page faults (in the shared memory model). In contrast,

a memory-mapped MRIMA scheme can cause significant contentions in the memory

bus if the processor executes memory-intensive applications simultaneously. Choosing

the scheme of integrating MRIMA is left to system architects based on their workloads

and use-cases. In both schemes for integrating MRIMA, the commands/instructions

that MRIMA architecture accepts are similar and based on the ISA.

2.3.3.1.6 Non-structured bulk benchmark evaluation

The logic performance of MRIMA compared to recent PIM platforms is analyzed

taking intrinsically-non-structured ISCAS85 benchmarks. A logic netlist in Berkeley

Logic Interchange Format (.blif ) is fed into ThrEshold Logic Synthesizer (TELS) [94]

to obtain synthesized logic networks. Meanwhile, parameters such as fan-in restriction

is set up during the synthesis. The synthesized networks are then mapped to MRIMA to

assess the performance1. Fig. 15 gives energy and delay of ISCAS85 combinational cir-

cuit benchmarks implemented using MRIMA, Pinatubo [23], STT-CiM [89], RIMPA

[49], HieIM [87], and Ambit [19]. To have an impartial comparison, Pinatubo, a

general system architecture for NVMs, is implemented with the same standard STT-

MRAM, SOT-MRAM, and ReRAM technologies.

Based on the figure, MRIMA spends the lowest energy and delay compared to the

counterparts in different benchmarks. (1) MRIMA reduces the energy consumption by

∼72%, 61.2%, 75.5%, and 86.2% compared to Pinatubo-STT [23], STT-CiM [89],

HieIM [87], and Ambit [19], respectively. This considerable improvement mainly
1The full bottom-up evaluation framework is explained in Chapter 4.
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Figure 15: (a) Energy and (b) Delay of ISCAS85 benchmarks (Y-axis: Log scale).

comes from the proposed logic efficiency and reduced-cycle operations. (2) MRIMA

outperforms the mentioned PIM architectures respectively with 40.8%, 38.3%, 66.7%,

and 95% reduction in delay on different benchmarks. For five more complex bench-

marks (i.e., c2670, c3540, c5315, c6288, and c7552), as logic complexity increases,

MRIMA can show much better performance than the rest.

2.3.3.2 Design II: AlignS based on SOT-MRAM

In AlignS [2], as depicted in Fig. 16, to realize in-memory XNOR2 logic between

every two bits stored in the identical column, a capacitive voltage divider is presented

after reconfigurable SA’s OR2 and NAND2 outputs (Fig. 16b A ) driving a CMOS

inverter (with low-V th PMOS and high-V th NMOS) to realize a NAND2 function

between outputs, thereby enabling a multi-kilobyte-wide bit-wise XNOR2 of two rows
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reconfigurable SA and peripheral circuitry.

in AlignS’s sub-arrays. Note that, the dual-threshold technique can eliminate the leak-

age current through a transistor, thereby decreasing leakage power consumption while

maintaining performance [95], [96].

AlignS’s sub-array can also perform add/sub operation quite efficiently. The carry-

out of the full-adder can be directly produced by MAJ function (Carry in Fig. 16b A )

just by setting CMAJ to ‘1’ in a single memory cycle. Meanwhile, the existing latch in

LRB (Fig. 16b C ) is equipped with additional NOT and XOR2 gates to first store

intermediate carry outputs and then perform the summation of next bits using two

XOR2 gates (implementing XOR3). Now, assume A, B, and C operands (Fig. 16a),

the 3- and 2-input in-memory logic schemes can generate Carry(/Borrow) and Sum

(/Difference), respectively, in two consecutive cycles. The Ctrl’s configuration for such

add operation is shown in Fig. 16b B .
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Figure 17: (a) Block level scheme of computational sub-array and SOT-MRAM real-
ization of 2-input and 3-input in-memory logic methods in GraphS [4], (b) Reconfig-
urable SA, (c) Truth table of addition operation implementation, (d) Truth table for
realizing X(N)OR2.

2.3.4 Reconfigurable PIM Supporting One-Cycle In-Memory Addition

The GraphS’s reconfigurable SA2 [4], as depicted in Fig. 17b, consists of three

sub-SAs and totally six reference-resistance branches that can be selected by enable bits

(ENM , ENOR3, ENOR2, ENMAJ , ENAND3, ENAND2) by the sub-array’s Ctrl to realize

the memory and computation schemes as tabulated in Table 6. Such reconfigurable

SA could again implement memory read and one-threshold-based logic functions only

by activating one enable at a time. Meanwhile, by activating two or three enables at

a time, two or three logic functions can be simultaneously implemented and further

used to generate complex logic functions like X(N)OR3, as explained accordingly.
2A variation of this design is named PIM-Aligner [10].
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GraphS supports both IML2x and IML3x operations. In IML3x, every three cells

located in an identical column can be selected by MRD and sensed simultaneously

to realize 3-input majority/minority functions (MAJ/MIN) in a single sensing cycle.

Consider the data organization shown in Fig. 17a where A, B and C operands corre-

spond to M1, M2, and M3 memory cells, respectively, the computational sub-array

can perform AB + AC +BC Boolean function by setting ENMAJ to ‘1’.

Table 6: Configuration of enable bits for different functions.

Ops. read (N)OR2 (N)AND2 MAJ/MIN (N)OR3 (N)AND3 Add/XNOR3/X(N)OR2
ENM 1 0 0 0 0 0 0
ENOR2 0 1 0 0 0 0 0
ENAND2 0 0 1 0 0 0 0
ENOR3 0 0 0 0 1 0 1
ENAND3 0 0 0 0 0 1 1
ENMAJ 0 0 0 1 0 0 1

Besides, with careful observation on the Full-Adder (FA) truth table, we realized

that in six out of eight possible input combinations, Sum output can be directly ob-

tained by inverted Carry signal as shown in Fig. 17c. Keep this fact in mind that FA’s

Carry can be resulted from MAJ function; the proposed reconfigurable SA can imple-

ment such Sum output readily by MIN (majority-not) function inspired by [97]. As

shown in Fig. 17b-c, the Sum signal is directly connected to the MIN output. How-

ever, for two extreme cases, i.e., (0,0,0) and (1,1,1), the MIN signal is disconnected and

Sum can be respectively implemented by NOR3 (T1:ON, T2:OFF → Sum=‘0’) and

NAND3 functions (T1:OFF, T2:ON→ Sum=‘1’). This is realized by adding two pass

transistors in the MIN function path. Note that, considering the fact that Sum output

is the XOR3 function, the proposed reconfigurable SA can also implement 2-input and

3-input XOR functions, without imposing additional XOR gates like previous works

[1], [2], [19], [30] as shown in Fig. 17d. Now, assume A, B and C as input operands

(in Fig. 17a), IML3x can generate Sum(/Difference) and Carry(/Borrow) bits in a sin-
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gle cycle. To the best of our knowledge, the design proposed here is the first PIM that

can directly implement in-memory addition in a single memory cycle.

2.3.5 Area Overhead Analysis

Here, two PIM designs, i.e., MRIMA [1], and GraphS [4] as the two most-

enhanced platforms that support a wide range of single- and two-cycle logic opera-

tions are selected for the area-overhead analysis. Fig. 18b-c shows the breakdown of

the area overhead for MRIMA supporting two-cycle addition scheme and GraphS sup-

porting one-cycle addition scheme with the same configuration (Fig. 18a) for a sample

512Mb memory. MRIMA and GraphS impose ∼5.8% and ∼7.9% area overhead3 to

the memory, respectively, to realize such in-memory computation support. Therefore,

the proposed PIM platforms respect the memory’s cost-sensitivity while offering fast

in-memory logic operations.

Figure 18: (a) Configuration table for a sample 512Mb memory, (b) MRIMA area
overhead, (c) GraphS area overhead.

3The full bottom-up evaluation framework is explained in Chapter 4.
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2.4 Highly Flexible and Energy-Efficient In-Memory Logic Computation

2.4.1 PIMA-Logic

To efficiently address the operand locality challenge in NVMs as the third challenge

discussed in Section 2.1.4, a new column-wise near-memory majority operation using

a Resistive Unit (RUnit) is proposed in [5]. The RUnit is a low-overhead and highly-

efficient solution to process operands located in one memory row either in sub-array

or inter-component level. In the sub-array level as shown in Fig. 19 L.H.S., a Mode

demultiplexer (MDMUX) is devised to switch between basic PIM mode discussed in

Section 2.3.1 and the proposed enhanced one (PIM+RUnit). As it can be seen in the

block-level sub-array architecture, each SA’s output is routed to MDMUX. According

to the mode selector, output data can be routed to either GMUX4 or RUnit.

The key idea behind RUnit is to realize a majority logic after SAs to further process

the data avoiding unnecessary write-back and accelerating in-memory processing. As

shown in Fig. 19 F , the in-block circuit design of RUnit consists of n resistors (n=# of

SAs) that can contribute in parallel to design a voltage divider driving a static CMOS

inverter. To do the computation, MCD is modified (similar to that of MRD) such

that it can activate more than one RBL at the same time. As a result, more than one

column can be sensed and routed from SAs to RUnit. Considering a similar resistance

(R), the input voltage of the inverter (Vi) can be simply derived,

Vi =
k.VDD

w
(2.7)

4Glossary: CMUX: Control Mux located at RUnit, Din-Intra: Data input to sub-array, Din-Inter:
Data input coming from other sub-arrays, GMUX: Global Mux for interfacing with intra- and inter-
subarrays, MDMUX: Mode D-Mux specially designed to select Runit for more complex computations.
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Figure 19: The PIMA-Logic sub-array architecture [5]. Left: block level sub-array
architecture, Middle: SOT-MRAM realization, and Right: functional blocks used in
sub-array.

Where k denotes the number of SA outputs carrying VDD and w represents the

total number of unit resistors (R) connected to the inverter. Thus, the first inverter

acts as a threshold detector by amplifying deviation from VDD

2
and realizes a minority

function. Then, the second inverter yields the majority function output. In addition

to majority/minority function-based computing, RUnit is equipped with CMUX to as-

sign different weighted inputs to Vi. This could be used to directly implement column-

wise multi-input AND/OR functions. For instance, as shown in Fig. 19 F , 3-input

NAND function can be efficiently designed by setting (En, S1, S2)=(1,1,1). To avoid

logic failure due to a large number of inputs, causing the Vi to be close to VDD

2
, the

number of activated columns are limited to three. However, when CMUX is deacti-

vated ((En, S1, S2)=(0,x,x)), the simulations showed that up to five columns can be

reliably sensed and computed. To better explain the proposed circuit, let’s assume A,

B, and C operands are located in the way shown in L.H.S. of Fig. 19. For calculating
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the minority and majority functions in a single cycle, 3 RBLs are activated simultane-

ously and sensed. CMUX is set by Ctrl to (En, S1, S2)=(0,x,x). It is expected that the

result of sensed RBLs to be zero after the second inverter if at least two of the three SA

outputs are ‘0’ (k = 0, 1), and the result to be VDD, if at least two of three SA outputs

are carrying ‘1’(k = 2, 3), in this way: Vi <
VDD

2
⇒ VOut1 = 0, k = 0, 1

Vi >
VDD

2
⇒ VOut1 = VDD, k = 2, 3

(2.8)

It is noteworthy that considering non-aligned data either in the same row or column,

the PIMA-Logic’s column-wise and row-wise operations need more than one cycle to

line data in either the same row or column to perform the computation.

Fig. 20 intuitively depicts performing some simple Boolean functions within

PIMA-Logic compared to Pinatubo [23]. As it can be seen, A and B operands can

be processed (AB) efficiently in one single cycle regardless of their physical address us-

ing conventional row-wise PIM operation (Conv. PIM) and column-wise operation

using RUnit of PIMA-Logic. However, a similar function is implemented in 3 cy-

cles using Pinatubo when operands are not aligned in one column. This can be further

explored while computing more complex logic functions. As shown, the majority func-

tion (AB+AC+BC) can be computed in one single cycle using PIMA-Logic; however,

Pinatubo needs more than ten cycles to perform such function.

In the inter-component level, we consider two RUnit per component (Sub-array,

MAT, Bank). If the operands are in different subarrays (/MATs/Banks) within one

MAT (/Bank/memory chip), PIMA-Logic performs inter-component operations em-

ploying RUnit added on the row buffer. The first operand row is read into a devised

buffer, and accordingly second operand is read via GBL. After computation, the final

result is latched in the row buffer.
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Figure 20: Performing Boolean functions using PIMA-Logic and Pinatubo [23].

For further exploration, two experiments are conducted to thrive the superiority

of PIMA-Logic compared to two recent PIM architectures (i.e., RIMPA [49], and

Pinatubo [23]). Table 7 tabulates the synthesis of 13 standard functions [98], to rep-

resent all 256 possible 3-variable Boolean functions, utilizing different platforms. To

perform an impartial comparison, it is assumed that initial physical addresses for all

operands are either in the Same Column (SC) or the Same Row (SR). Based on Table

7, PIMA-Logic can show up to 36.5% and 43.9% improvement in terms of the average

number of cycles compared with RIMPA and Pinatubo, respectively, for processing 13

functions with SR condition. In the second experiment, data is Randomly-Distributed

(RD) in the memory prior to the computation. In this case, PIMA-Logic can show up

to 43.1% and 50.8% improvements compared to RIMPA and Pinatubo, respectively.

As an instance of combinational logic circuits, we show the realization of a full-

adder within PIMA-Logic in Fig. 21. Assuming A, B and C are initially located in

a memory row, Carry output (Cout) is generated in a single cycle (see function 9 in

Table 7), accordingly Sum can be generated as Sum = M5(A,B,C,Cout, Cout) after

three cycles. The idea can be generalized by implementing an efficient in-memory 4-bit

45



Table 7: Synthesis comparison of the 13 standard functions.

No. Standard Function RIMPA[49] Pinatubo[23] PIMA-Logic
SC SR RD SC SR RD SC SR RD

1 F=AB’C 7 5 5 5 7 9 5 3 3
2 F=AB 3 1 3 1 3 5 1 1 1
3 F=A’BC+A’B’C’ 19 15 17 15 19 17 9 11 9
4 F=A’BC+AB’C’ 13 17 13 13 17 17 11 11 9
5 F=A’B+BC’ 13 9 11 9 13 11 9 7 7
6 F=AB’+A’BC 11 11 11 11 11 15 9 7 7
7 F=A’BC+ABC’+A’B’C’ 21 25 21 21 25 25 13 13 11
8 F=A 1 1 1 1 1 1 1 1 1
9 F=AB+BC+CA 5 1 3 7 13 11 5 1 1
10 F=A’B+B’C 9 9 9 9 9 11 9 5 5
11 F=A’B+BC+AB’C’ 17 21 19 17 21 21 17 13 11
12 F=AB+A’B’ 11 9 9 1 3 3 5 5 5
13 F=ABC’+A’B’C’+AB’C+A’BC 33 29 31 29 31 31 25 19 17

Total Number of Cycles 162 153 153 139 173 177 119 97 87
Average Number of Cycles 12.46 11.76 11.76 10.69 13.3 13.6 9.15 7.46 6.69
Improvement Percentage 26.5% 36.5% 43.1% 14.4% 43.9% 50.8% - - -

ripple Carry Adder (RCA) in Fig. 21. As shown, column-wise computation employing

RUnit could be adopted to realize such complex circuits very efficiently.
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Figure 21: Realization of in-memory full adder and 4-bit RCA in PIMA-Logic.
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2.4.1.1 Logic Performance

To evaluate the logic performance of PIMA-Logic, the device-to-circuit level data5

is extracted. The simulation is initially carried out in Cadence Spectre with NCSU

45nm CMOS PDK [99]. SOT-MRAM device model of Fig. 5b is used in the circuit

simulation. MTJ resistance (RMTJ) is obtained from the NEGF approach [77], while

the heavy metal resistance (RHM) is calculated based on the resistivity and device di-

mension. Accordingly, a logic netlist in Berkeley Logic Interchange Format (.blif ) is

fed into ThrEshold Logic Synthesizer (TELS) [94] to obtain synthesized logic networks.

Meanwhile, parameters such as fan-in restriction are set up during the synthesis. The

synthesized networks are then mapped to PIMA-Logic using an in-house developed

Matlab code to assess the performance. Fig. 22 gives ISCAS85 combinational circuit

benchmarks implemented using PIMA-Logic, RIMPA [49],and Pinatubo [23]. To

have an impartial comparison, Pinatubo, a general system architecture for NVMs, is

implemented with standard STT-MRAM and identical SOT-MRAM cells.

As shown, PIMA-Logic exhibits the lowest energy and delay compared to the coun-

terparts in different benchmarks. (1) PIMA-Logic reduces the energy consumption

by ∼56%, 67%, and 74.4% compared to Pinatubo-SOT, Pinatubo-STT, and RIMPA,

respectively. This considerable improvement mainly comes from proposed logic effi-

ciency and reduced-cycle operations. (2) PIMA-Logic outperforms mentioned PIM

architectures with 31.6%, 40%, and 52% reduction in delay on different benchmarks.

It is worth pointing out that for five more complex benchmarks (i.e., c2670, c3540,

c5315, c6288, and c7552), as logic complexity increases, PIMA-Logic can show much

better performance compared to the rest.
5The full bottom-up evaluation framework is explained in Chapter 4.
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Figure 22: (a) Energy consumption and (b) Delay of ISCAS85 benchmarks mapped
to three different PIM architectures (Y-axis in energy plot: Log scale).

2.5 Summary

Chapter 2 focuses on designing customized SA designs for NVMs to provide

high-reconfigurability on the memory side with low area-overhead. In this way, the

evolution of proposed SA designs is shown from the basic (N)AND2/(N)OR2 and

X(N)OR2-support all the way double and single-cycle in-memory addition schemes.

The proposed PIM platforms in this chapter could be considered as a generic PIM so-

lution for big data computation, overcoming the first and second challenges discussed

in Section 2.1.4. For instance, the proposed GraphS [4] provides a full set of 1-/2-/3-

input Boolean logic functions (i.e., NOT, AND/NAND, OR/NOR, XOR/XNOR,

add/sub) by configuring the enable signals with ∼7.9% area overhead to the memory

die. Moreover, to address the operand locality issue as the third challenge, PIMA-Logic

[5] is proposed to perform row-wise and column-wise operations. However, our main

observation is, it is more suitable for unstructured benchmarks such as ISCAS85, and
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when it comes to structured bulk benchmarks, PIMA-Logic can sacrifice the PIM par-

allelism.
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Chapter 3

RECONFIGURABLE PIM BASED ON VOLATILE MEMORIES

3.1 Introduction

In this chapter, two reconfigurable DRAM-based PIM accelerators are presented,

which transform current DRAM architecture to massively parallel computational units

exploiting the high internal bandwidth of modern memory chips. The presented de-

signs leverage the well-known analog operation of DRAM sub-arrays and elevate it

to implement a full set of 1- and 2-input bulk bit-wise operations (NOT, (N)AND,

(N)OR, and even X(N)OR) between operands stored in the same bit-line, based on

new row activation mechanisms with a modest change to peripheral circuits such as

sense amplifiers.

3.1.1 Processing-in-DRAM Platforms

At the top architectural level, a DRAM hierarchy includes channels, modules, and

ranks. With a typically 64-bits wide data bus, each memory rank consists of multiple

memory chips. The memory chips are designed with various configurations and operate

simultaneously [19], [100], [101]. The memory chip is spilt into several memory banks.

Each bank is composed of 2D sub-arrays of memory bit-cells that are virtually-ordered

in memory matrices (mats). Banks located in the same chip typically share buffer, and

I/O and banks located in different chips work in a lock-step manner. As depicted in Fig.

23a, the memory sub-array consists of 1) Memory rows (normally 29 or 210) connected
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Figure 23: (a) DRAM sub-array organization, (b) DRAM cell and Sense Amplifier, (c)
Dual-contact DRAM cell.

to DRAM cells, 2) A Sense Amplifiers’ (SA) row, and 3) A memory Row Decoder (RD)

connected to the word-lines. Structurally, a DRAM cell is composed of two modules,

a storage module (capacitor) and an access module (Access Transistor-AT), as shown

in Fig. 23b. The gate and drain of DRAM’s AT are connected to the Word Line (WL)

and Bit Line (BL), respectively. DRAM cell stores the binary data by the charge of the

capacitor. It encodes a fully-charged (Vdd) capacitor as logic ‘1’ and no-charge capacitor

as logic ‘0’.

3.1.1.1 Read/Write Operation

For read/write operation, both BL and BL are initially pulled to Vdd

2
. Technically,

accessing data from a DRAM’s sub-array after the initial state is accomplished with three

commands [19], [102] by the memory controller: 1) With the activation command

(i.e., ACTIVATE), a target row is activated, and stored row data is transferred from the

DRAM row cells to the SA row. Fig. 23b depicts the connection between a cell and the
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SA via a BL. The selected cell typically shares its charge value (0/Vdd) with the BL, which

slightly changes the initial BL’s voltage (Vdd

2
±δ). Then, the memory controller activates

the enable signal that makes the SA amplify the δ towards the original value of the data

through voltage amplification leveraging the switching threshold of SA’s inverter [102].

2) By a WRITE/READ command, the data can be then moved to/from SA from/to

DRAM bus. It is noteworthy that several WRITE/READ commands can be issued to

one row. 3) With a PRECHARGE command, both BL and BL precharge again to the

initial state and get ready for the next access cycle.

3.1.1.2 Initialization and Copy Operation

For a very fast in-memory copy operation (<100ns) within DRAM sub-arrays, in-

stead of ∼ 1µs copy operation in von-Neumann computing architecture, RowClone-

Fast Parallel Mode (FPM) [103] offers a new method that does not require sending the

data to the processing units. In this method, issuing two back-to-back ACTIVATE

commands (without PRECHARGE command in between) to the source and desti-

nation rows can realize a 90ns and multi-kilo byte in-memory copy operation. This

technique has been further exploited for row initialization to effectively copy a preset

DRAM row (‘1’ or ‘0’) to a single or multiple destination row(s), incurring a 0.01%

overhead to memory chip area [103].

3.1.1.3 Not Operation

The Dual-Contact Cell (DCC) has been used so far to realize an in-memory NOT

operation [19], [104], [105], as depicted Fig. 23c. DCC is developed on top of the
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typical DRAM cell but has one more AT linked to BL. It works by issuing two back-to-

back ACTIVATE commands [19]. The controller activates the WLdcc1 of the DRAM

cell (Fig. 23c), and reads out the data, and sends it to the SA via BL. Accordingly, the

controller activates WLdcc2 to connect BL (inverted data) to the same capacitor writing

the negated result back to the DCC.

3.1.1.4 Other Logic Functions

To implement the logic operation in processing-in-DRAM architecture, the Row-

Clone idea was extended in the Ambit [19] to realize three-input majority-based oper-

ations (Maj3) in memory through simultaneously issuing the ACTIVATE command

to three rows with a PRECHARGE command afterward, named Triple Row Activation

(TRA) mechanism. Ambit incurs just 1% area overhead to DRAM chip [19]. Having

one row as the control (Dk), as illustrated in Fig. 24a, initialized by ‘0’/‘1’, TRA im-

plements in-memory AND2/ OR2 based on Maj3 function via charge sharing among

connected DRAM cells (Dk, Di and Dj) and writes the result back on Dr cell. In addi-

tion, Ambit employs the TRA method along with DCCs to implement complementary

operations. Nevertheless, Ambit deals with multi-cycle PIM operations to realize other

logic functions like X(N)OR2. The DRISA-3T1C mechanism [15] alternatively lever-

ages the 3-transistor 1-capacitor DRAM design [106]. As shown in Fig. 24b, such cell

design is composed of two separated write/read ATs and one additional transistor for

decoupling the capacitor from the read BL (rBL). This additional transistor links the

two input DRAM cells in a NOR style on the rBL to perform the Boolean-complete

NOR2 function. DRISA-3T1C incurs a large area overhead and needs multi-cycle

operations to realize different logic functions.
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Figure 24: (a) TRA mechanism in Ambit [19], (b) 3T1C mechanism in DRISA [15],
(c) 1T1C-logic mechanism in DRISA [15]. Glossary- Di/Dj: input rows data, Dk:
initialized row data, Dr result row data.

As depicted in Fig. 24c, DRISA-1T1C mechanism [15] performs in-memory op-

erations via an upgraded SA consisting of a CMOS logic gate and a latch. This mecha-

nism performs in-memory operations in two consecutive cycles: 1) reading out Di and

storing in the latch as the first input of CMOS logic, and 2) reading out Dj as the sec-

ond input to perform the computation. This method requires excessive cycles to realize

other logic functions and imposes 12 transistors to each SA. The Dracc [107] recently

designs a carry look-ahead adder by improving Ambit [19] to accelerate convolutional

neural networks.
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3.1.2 Challenges

There are three main challenges in the existing processing-in-DRAM platforms that

make them inefficient acceleration solutions for various big data applications, and this

chapter aims to resolve them:

• Limited throughput (Challenge-1): Due to the intrinsic complexity of X(N)OR-

based logic implementations, current PIM designs (such as Ambit [19], DRISA

[15], and Dracc [107]) are not able to offer a high-throughput and area-efficient

X(N)OR or addition in-memory operation despite utilizing maximum internal

DRAM bandwidth and memory-level parallelism for NOT, (N)AND, (N)OR,

and MAJ/MIN logic functions. Moreover, while the DRISA-1T1C method

could implement either XNOR or XOR functions as the add-on logic gate, it

requires at least two consecutive cycles to perform the computation, limiting

other logic implementation. We address this challenge by proposing the DRA

mechanism in Sections 3.2 and 3.3.

• Row initialization (Challenge-2): Given R=AopB function (op ∈ AND2/OR2),

TRA-based method [19], [102] takes 4 consecutive steps to calculate one result as

it relies on row initialization: 1-RowClone data of row A to rowDi (Copying first

operand to a computation row to avoid data-overwritten), 2-RowClone of row B

to Dj, 3-RowClone of ctrl row to Dk (Copying initialized control row to a com-

putation row), 4-TRA and RowClone data of row Di to R row (Computation

and Writing-back the result). Therefore, the TRA method needs an averagely

360ns to perform such in-memory operations. When it comes to X(N)OR2 op-

eration, Ambit requires at least three row-initialization steps to process two input

rows. Obviously, this row-initialization load could adversely impact the PIM’s
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energy-efficiency especially dealing with such big data problems. This challenge

is addressed in Section 3.3 through the proposed sense amplifier, which totally

eliminates the need for initialization in performing X(N)OR-based logics.

• Reliability concerns (Challenge-3): By simultaneously activating three cells in

TRA method, the deviation on the BL might be smaller than typical one-cell

read operation in DRAM. This can elongate the sense amplification state or even

adversely affect the reliability of the result [19], [102]. The problem can even be

intensified when multiple TRA are needed to implement X(N)OR-based compu-

tations. To explore and address these challenges, we perform an extensive Monte-

Carlo simulation on the proposed designs in Sections 3.2 and 3.3.

3.2 Design I: GraphiDe

The GraphiDe is developed in [7] to be an independent, high-performance, and

energy-efficient accelerator based on main memory architecture. Each GraphiDe’s

bank consists of multiple memory matrices (mats). The general mat organization of

GraphiDe is shown in Fig. 25a. Each mat consists of multiple computational memory

sub-arrays connected to a Global Row Decoder (GRD) and a shared Global Row Buffer

(GRB). According to the physical address of operands within memory, GraphiDe’s

Controller (Ctrl) is able to configure the sub-arrays to perform data-parallel intra-sub-

array computations. The proposed design is motivated by the Ambit [19] PIM method,

which leverages charge sharing among different rows to perform logic operations, but

with significant modifications. We divide the GraphiDe’s sub-array row space into two

distinct regions as depicted in Fig. 25b: 1- Data rows (500 rows out of 512) that include

the typical DRAM cells connected to a regular Row Decoder (RD), and 2- Computa-
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Figure 25: (a) The GraphiDe memory organization, (b) Block level scheme of compu-
tational sub-array and peripheral circuitry [7].

tion rows (12), connected to a Modified Row Decoder (MRD) (Fig. 25b A ), which

enables bulk bit-wise in-memory operations between copied operands. Eight compu-

tational rows (x1, ..., x8) include typical DRAM cells and four rows (dcc1, ..., dcc4) are

allocated to special DCCs enabling NOT function in every sub-array. In the follow-

ing, we propose dual-row in-memory AND-OR and addition operations that further

enhance Ambit to perform bulk bit-wise operations.

3.2.1 GraphiDe’s Dual Row Activation Mechanism

The TRA mechanism imposes an excessive latency and energy to the memory chip,

which could be alleviated by rethinking the process. As discussed, given R=AopB func-

tion (op ∈ AND2/OR2), Ambit takes 4 consecutive steps to calculate the result with

RowClone operations. As a matter of fact, every RowClone command imposes ∼90ns

[103], therefore the TRA method takes an averagely 360ns to perform in-memory oper-

ations. Our key idea to perform dual-row bit-line computing in GraphiDe is still based
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on majority function but by selecting different thresholds (references) when perform-

ing the charge sharing between selected memory cell(s). The proposed reconfigurable

SA, as depicted in Fig. 25b B , consists of a regular SA with two back-to-back in-

verters connected to two fixed reference-capacitor branches C that can be selected by

control bits (CAND, COR) by the sub-array’s Ctrl D . This design forms a capacitive

voltage divider between two selected cells by MRD and the activated reference (con-

nected to either GND or V dd), driving a CMOS inverter, to implement AND2 or

OR2 functions, respectively.

GraphiDe’s Dual Row Activation method (DRA) eliminates the need for the third

RowClone step in Ambit’s AND2/OR2 operations. It saves two initialized memory

rows used for controls per sub-array at the cost of adding two low-overhead reference ca-

pacitors in the SA unit. Fig. 26 shows the realization of AND2 operation in GraphiDe’s

sub-array. Consider A and B operands are RowCloned from Data rows to x1 and x2

rows 1 and both BL and BL are precharged to Vdd

2
. The DRA simultaneously activates

two WLs, and the corresponding reference (CAND) for charge-sharing 2 . During

sense amplification 3 , with the similar capacitance (Cc) of memory cells and the ref-

erence, input voltage of first inverter (Vi) in SA is simply derived as Vi =
n.Vdd

C
, where n

denotes the number of DRAM cells storing logic ‘1’ and C represents the total number

of unit capacitors (Cc) connected to the inverter. Thus, the inverter acts as a threshold

detector by amplifying deviation from Vdd

2
and realizes a NAND2 function on BL and

consequently AND2 function (AB) on BL. GraphiDe can perform such DRA-based

operations in ∼240ns by eliminating the need for the third RowClone step in Ambit’s

operations. In this work, we use Ambit’s TRA method to directly realize in-memory

majority function (Maj3) and AND2/OR2 operations are realized through the DRA

method.
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3.2.2 In-memory Adder

GraphiDe proposes a Quintuple Row Activation method (QRA) as an extension for

the TRA method, realizing a 5-input (Maj5) operation. In this method, GraphiDe’s

MRD (Fig. 25b A ) helps to activate five WLs, simultaneously. During the precharged

state as shown in Fig. 27 1 , both BL and BL are connected to Vdd

2
. By activating the

five WLs (WLx1 to WLx5), the memory cells storing input operands start to charge

sharing 2 . In this case, since three of the five cells are initially in the charged state,

charge sharing results in a positive deviation on the BL. Therefore, by activating the

Enable (En), such deviation from Vdd

2
is amplified 3 , and the SA drives the BL to V dd

and accordingly, fully charges all the five cells. Based on Maj3 and Maj5 schemes, a new

parallel in-DRAM computation and mapping method for addition (add) operation can

be presented to accelerate a wide spectrum of big data tasks. Assume Di, Dj, and Dk as

input operands, the carry-out (Cout) of the Full-Adder (FA) can be generated through

MAJ3(Di, Dj, Dk) = DiDj +DiDk +DjDk using TRA method. Moreover, the Sum

can be readily carried out throughMAJ5(Di, Dj, Dk, Cout, Cout)with only writing back

the Cout into memory (leveraging two DCC rows) and then applying QRA method.
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3.2.3 ISA Support

While GraphiDe is meant to be an independent high-performance and energy-

efficient accelerator, it has to be exposed to programmers and system-level libraries

to utilize it. From a programmer perspective, GraphiDe is more of a third-party accel-

erator that can be connected directly to the memory bus or through PCI-Express lanes

rather than a memory unit, thus it is integrated similar to that of GPUs. Therefore,

a virtual machine and ISA for general-purpose parallel thread execution need to be

defined similar to PTX [108] for NVIDIA. Accordingly, the programs are translated

at install time to the GraphiDe hardware instruction set discussed here to realize the

functions tabulated in Table 8. The micro and control transfer instructions are not

discussed here.
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Table 8: The basic functions supported by GraphiDe.

Function Operation Command Sequence AAP Type
copy Dr ← Di AAP(Di, Dr) 1

NOT Dr ← Di
AAP(Di, dcc2)
AAP(dcc1, Dr)

1
1

AND2 Dr ← Di.Dj

AAP(Di, x1)
AAP(Dj, x2)

AAP(x1, x2, Dr, 0)

1
1
3

OR2 Dr ← Di +Dj

AAP(Di, x1)
AAP(Dj, x2)

AAP(x1, x2, Dr, 1)

1
1
3

XOR2 Dr ← Di ⊕Dj

AAP(Di, x1, dcc2)
AAP(Dj, x2, dcc4)

AAP(x1, dcc3, x4, 0)
AAP(x2, dcc1, x5, 0)
AAP(x4, x5, Dr, 1)

2
2
3
3
3

Addition Sum← Di ⊕Dj ⊕Dk

Cout ←MAJ3(Di, Dj, Dk)

AAP(Di, x1)
AAP(Dj, x2)
AAP(Dk, x3)

AAP(x1, x2, x3, Cout)
AAP(Cout, dcc2, dcc4)

AAP(x1, x2, x3, dcc1, dcc2, Sum)

1
1
1
4
2
5

GraphiDe is developed based on ACTIVATE-ACTIVATE-PRECHARGE com-

mand referred to as AAP primitives. As thoroughly explained in Ambit [19], most

bulk bit-wise operations involve a sequence of AAP commands. There are five types of

AAP primitives supported by GraphiDe that only differ from the number of activated

source or destination rows, 1- AAP (src, des) that runs the following commands se-

quence: ACTIVATE source address; ACTIVATE destination address; PRECHARGE.

This is manly used for copy and NOT functions as indicated Table 8. 2- AAP (src,

des1, des2) that is designed to copy the result of an operation simultaneously to two

destination rows. 3- AAP (src1, src2, des, Ctrl) that performs the DRA method by

activating two source addresses along with a control input (‘0’ for CAND/ ‘1’ for COR)

and then writes back the result on the destination address. 4- AAP (src1, src2, src3,

des) that performs TRA method by activating three source rows simultaneously and

writing back the MAJ3 or MIN3 result on the destination address. 5- AAP (src1, src2,
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Figure 28: Noise sources in DRAM cell. Glossary: Cwbl, Cs, and Ccross are WL-BL,
BL-substrate, and BL-BL capacitance, respectively.

src3, src4, src5, des) that performs QRA method on five sources and writes the result

back to the destination address.

In order to implement the addition-in-memory, as shown in Table 8, three AAP-

type1 commands first copy the three input data rows to computational rows (x1, x2, x3).

Then, Cout is generated by AAP-type4 and written back to the designated data row.

Again, Cout row is readout and its inversion is copied to two DCC rows (dcc2 and dcc4)

with AAP-type2. Eventually, AAP-type5 command activates five rows to implement

Sum function.

3.2.4 Reliability

An extensive circuit-level simulations following the Ambit’s approach [19] is con-

ducted to study the effect of process variation on GraphiDe’s DRA and QRA methods

considering a worst-case scenario variation in all components (cell/BL/WL capacitance

and transistor) as shown in Fig. 28. A Monte-Carlo simulation with 45nm PTM

library [109] is conducted (DRAM cell parameters were taken from Rambus [110]

model) under 10000 trials. The amount of variation was increased from±0% to±20%

for each PIM mechanism.
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Table 9 shows the percentage of the test error in each variation. It is observed that

even considering a significant ±10% [19] variation, the percentage of erroneous DRA

or QRA across 10000 trials is just 0.12% and 0.39% which is consistent with what

Ambit reports. Therefore, GraphiDe shows acceptable reliability in performing PIM

operations. Note that the DRA method is less vulnerable to capacitance variation ef-

fects than TRA due to its third fixed-voltage branch. By scaling down the transistor

size, the process variation effect is expected to get worse [19], [103]. Since GraphiDe is

mainly developed based on existing DRAM structure and operation with slight modifi-

cations, different methods currently-used to tackle process variation can also be applied

for GraphiDe (e.g., spare rows). Besides, just like Ambit, GraphiDe chips that fail test-

ing due to DRA, TRA, and QRA methods can be considered regular DRAM chips

alleviating DRAM yield.

Table 9: Process variation analysis.

Variation ±0% ±5% ±10% ±20%
GraphiDe’s DRA 0.00% 0.00% 0.12% 11.43%
GraphiDe’s QRA 0.00% 0.08% 0.39% 18.92%

Regarding the error correction, many ECC-enabled DIMMs rely on calculating

some hamming code at the memory controller and use it to correct any soft errors.

Unfortunately, such a feature is not available for GraphiDe as the data being processed

is not visible to the memory controller. Note that this issue is common across all PIM

designs. To overcome this issue, GraphiDe can potentially augment each row with

additional ECC bits that can be calculated and verified at the memory module level or

bank level.
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3.2.5 Virtual Memory

GraphiDe has its own ISA with operations that can potentially use virtual addresses.

To use virtual addresses, GraphiDe’s Ctrl must have the ability to translate virtual ad-

dresses to physical addresses. While in theory, this looks as simple as passing the ad-

dress of the page table root to GraphiDe and giving GraphiDe’s Ctrl the ability to walk

the page table, it is way more complicated in real-world designs. The main challenge

here is that the page table can be scattered across different DIMMs and channels, while

GraphiDe operates within a memory module. Furthermore, page table coherence issues

can arise. The other way to implement translation capabilities for GraphiDe is through

memory controller pre-processing of instructions being written to GraphiDe instruc-

tion registers. For instance, if the programmer writes instruction AAP add0, add1, then

the memory controller intercepts the virtual addresses and translates them into physical

addresses. Note that most systems have near memory controller translation capabili-

ties, mainly to manage IOMMU and DMA accesses from I/O devices. One issue that

can arise is that some operations are appropriate only if the resulting physical addresses

are within a specific plane, e.g., within the same bank. Accordingly, the compiler and

the OS should work together to ensure that the operands of commands will result in

physical addresses suitable to the operation type. To avoid the complexity of virtual

memory when using GraphiDe, system architects can designate a continuous physical

range that GraphiDe and the user/application can use physical addresses for operands.

Directly operating on physical addresses can limit multi-tasking on GraphiDe.
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3.2.6 Area Overhead

GraphiDe is developed on top of Ambit [19] (with the area overhead of <1%). We

have modified the ctrl, MRD, and SAs by adding two reference branches per column.

Such enhanced SAs and peripheral circuitry in GraphiDe’s sub-array occupy less than

15% of area. Therefore, the overall area overhead of GraphiDe is ∼1.3% over the

commodity DRAM.

3.3 Design II: ReDRAM

The ReDRAM is proposed in [6] as a generic and independent accelerator based

on main memory architecture to support and accelerate a wide variety of big data ap-

plications. The main memory organization of ReDRAM is similar to Fig. 25a based

on typical DRAM hierarchy. However, we divide the ReDRAM’s sub-array row space

into two different-sized regions as depicted in Fig. 29a: 1- Data rows (1016 rows

out of 1024) connected to an RD, and 2- Computation rows (8-labeled by x1, ..., x8),

connected to an MRD, which enables dual row activation required for bulk bit-wise

in-memory operations between operands. ReDRAM’s computational sub-array is de-

veloped to perform a full set of bit-wise operations based on the proposed DRA mech-

anism leveraging charge-sharing among different rows, as discussed below.

3.3.1 ReDRAM’s Dual Row Activation Mechanism

The main idea is to perform in-memory logic operations through a DRA mecha-

nism to address all three challenges discussed in Section 3.1.2. To achieve this goal, a

65



R
D

C
tr

l
M

R
D

x1
x2

x8

WLx1

WLx2 B
L

B
L

B
L

Enx

EnM

Enc1-2

buffer

XNOR2

Rst

3-
to

-8
 D

ec
od

e
r

(8)
Compute Rows

Compute. Sub-array

add-on circuit 
controller unit 

(Ctrl) 

MRD
reconfigurable SA 

Data Rows

(1016)

`

NAND2

NOR2
Enmux

Enmux

+-

Figure 29: (a) Block level scheme of ReDRAM’s computational sub-array, (b) Compu-
tational Rows and reconfigurable SA [6].

new reconfigurable SA is developed, as shown in Fig. 29b, on top of existing DRAM

circuitry. It consists of a regular DRAM SA equipped with add-on circuits including

three inverters, one NAND gate, and one MUX, controlled with five enable signals

(EnM , Enx, Enmux, EnC1, EnC2). This design leverages the basic charge-sharing fea-

ture of the DRAM cell and elevates it to implement NOT/AND2/OR2/XOR2 logic be-

tween two selected rows through static capacitive functions in a single cycle. To imple-

ment capacitor-based logic, two different skewed inverters with shifted Voltage Transfer

Characteristic (VTC) are used as shown in Fig. 30a. In this way, a NAND/NOR logic

can be readily carried out based on high switching voltage (Vs)/low-Vs inverters with

standard high-Vth/low-Vth NMOS and low-Vth/high-Vth PMOS transistors. It is worth

mentioning that utilizing low/high-threshold voltage transistors, and normal-threshold

transistors have been accomplished in the low-power application, and many circuits

have enjoyed this technique in low-power design [97], [111].
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Fig. 31 gives the detailed control signals of ReDRAM’s sub-array to implement

different memory and in-memory logic functions (here, e.g., X(N)OR2). ReDRAM’s

ctrl activates EnM and Enx control-bits simultaneously (when MUX is deactivated-

Enmux=0) to perform typical memory write/read operation. It is worth noting that

in such memory operations, MUX’s output voltage is high-z, and BL voltage is solely

determined in sense amplification state through two normal-Vs back-to-back invert-

ers, just like normal DRAM’s SA mechanism. Therefore, ReDRAM can perform the

bulk copy operation based on RowClone mechanism, as discussed earlier. Now, con-

sider Di and Dj operands (in Fig. 31b) are RowCloned from data rows to x1 and

x2 computational rows and both BL and BL are precharged to Vdd

2
(Precharged State).

ReDRAM’s Ctrl first activates two WLs in computational row space (here, x1 and

x2) through the modified decoder for charge-sharing when all the other enable sig-

nals are deactivated. During sense amplification state, by setting the proper enable set

(EnM , Enx, Enmux, EnC1, EnC2), tabulated in Fig. 31a (01111 for X(N)OR2), the

input voltage of both low- and high-Vs inverters in the reconfigurable SA can be sim-

ply derived as Vi =
n.Vdd

C
, where n is the number of DRAM cells storing logic ‘1’ and
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Figure 31: (a) ReDRAM’s control signals and activations in the sense amplification
state, (b) Dual Row Activation mechanism. Here, X(N)OR2 is implemented by setting
enable set (EnM , Enx, Enmux, EnC1, EnC2) to 01111.

C represents the total number of unit capacitors connected to the inverters (i.e., 2 in

DRA mechanism). Now, the low-Vs inverter acts as a threshold detector by amplifying

deviation from 1
4
Vdd and realizes a NOR2 function, as tabulated in the truth table in

Fig. 30b. At the same time, the high-Vs inverter amplifies the deviation from 3
4
Vdd and

realizes a NAND2 function. Accordingly, XNOR2 function of input operands can be

realized after the CMOS NAND gate. Now, ReDRAM’s MUX can be readily recon-

figured through the selectors to assign NOR2/NAND2/buffer/XNOR2 value and its

complementary logic to BL and BL, respectively. Based on Eq. (3.1), by setting enable

set to 01111, XOR2 result can be produced in a single cycle on the BL.

BL = (Di.Dj).(Di +Dj) = Di.Dj +Dj.Di = Di ⊙Dj ⇒ BL = Di ⊕Dj (3.1)

The transient voltage simulation results of ReDRAM’s DRA mechanism to real-

ize single-cycle in-memory operations are shown in Fig. 32. We can observe how

NOR2/NAND2/XNOR2 function is produced for two inputs (Di and Dj). In this

case, MUX’s selectors are configured to set BL voltage with XNOR2 result as in Fig.

31b. Based on this, the target cell’s capacitor is charged to Vdd (when DiDj=10/01) or
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discharged to GND (when DiDj=00/11) during sense amplification state. Therefore,

the DRA mechanism can effectively provide single-cycle logic functions (NOT, AND,

OR, XOR) and two-cycle complementary logics to address the challenge-2 discussed in

Section 3.1.2 by eliminating the need for the row initialization and DCC Rows. Note

that, NOT function is readily realized on the BL by selecting the corresponding MUX

selectors (01110). In addition, ReDRAM can perform more complex in-memory logic

functions (such as XOR2) in a single memory cycle not relying on multiple TRA-based

[19] or NOR-based [15] operations.
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3.3.2 Software Support

ReDRAM hardware instruction set can be leveraged to realize the functions tabu-

lated in Table 10. Additionally, Table 10 lists the corresponding function implemen-

tation in Ambit [19] and DRISA [15] platforms. The micro and control transfer in-

structions are not discussed here. Similar to the GraphiDe [7], ReDRAM instructions

are developed based on AAP primitives. To enable a processor to communicate with

ReDRAM efficiently, two types of AAP-based instructions are designed:

1- AAP (src, des, size) that runs the following commands sequence: 1) ACTIVATE

a source address (src); 2) ACTIVATE a destination address (des); 3) PRECHARGE to

prepare the array for the next access. The size of input vectors for in-memory compu-

tation must be a multiple of DRAM row size, otherwise the application must pad it

with dummy data. The type-1 instruction is mainly used for copy function;

2- AAP (src1, src2, des, opcode, size) that performs DRA method by activating two

source addresses (src1 and src2) and then writes back the result on a destination address

(des) according to the opcode. Here opcode corresponds to the MUX’s selectors (EnC1

and EnC2), as shown in Fig. 31a.

For instance, in order to implement the XOR2-in-memory, as tabulated in Table

10, ReDRAM first copies the input operands from data rows to computational rows in

two consecutive cycles using AAP-type-1 and then performs the operation in a single

cycle using AAP-type-2 by setting the opcode to 11. A similar operation requires at

least 7 consecutive cycles based on the Ambit’s TRA mechanism.
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Table 10: The basic functions supported by ReDRAM, Ambit and DRISA.

Command Sequence
Func. Operation ReDRAM Ambit [19] DRISA‡ [15]

Copy Dr ← Di AAP(Di, Dr)† AAP(Di, Dr)
AP(Di, Latch)
AP(Latch,Dr)

NOT Dr ← Di AAP(Di, Dr, 10)
AAP(Di, dcc2)
AAP(dcc1, Dr)

AAP(Di, dcc2)
AAP(dcc1, Dr)

AND Dr ← Di.Dj

AAP(Di, x1)
AAP(Dj, x2)

AAP(x1, x2, Dr, 01)

AAP(Di, x1)
AAP(Dj, x2)
AAP(0, x3)*

AAP(x1, x2, x3, Dr)**

AP(Di, Latch)
AAP(Dj, x1)

AAP(Latch, x1, Dr)

OR Dr ← Di +Dj

AAP(Di, x1)
AAP(Dj, x2)

AAP(x1, x2, Dr, 00)

AAP(Di, x1)
AAP(Dj, x2)
AAP(1, x3)*

AAP(x1, x2, x3, Dr)**

N/A

XOR2 Dr ← Di ⊕Dj

AAP(Di, x1)
AAP(Dj, x2)

AAP(x1, x2, Dr, 11)

AAP(Di, x1, dcc2)
AAP(Dj, x2, dcc4)
AAP(0, x3, x4)*

AP(dcc1, x2, x3, x2)**
AP(dcc3, x1, x4, x1)**

AAP(1, x3)*
AAP(x1, x2, x3, Dr)**

N/A

† Size of input vectors are not shown here. ‡ DRISA’s 1T1C-logic is realized with add-on AND2 gate. Therefore,
it can not implement other functions. ∗Row initialization steps. ∗∗TRA steps.

3.3.3 Reliability

A comprehensive circuit-level simulation is run to study the effect of process varia-

tion on both ReDRAM’s DRA and TRA methods considering different noise sources

and variation in all components including DRAM cell (BL/WL capacitance and tran-

sistor, shown in Fig. 28) and SA (width/length of transistors-Vs). The Monte-Carlo

simulation is conducted with 45nm NCSU Product Development Kit (PDK) library

[99] in Cadence Spectre (DRAM cell parameters were taken and scaled from Rambus

[110]) under 10000 trials by increasing the amount of variation from ±0% to ±30%

for each method. Table 11 shows the percentage of the test error in each variation.

Again, considering a significant ±10% variation, the percentage of erroneous DRA

across 10000 trials is zero, where the TRA method shows a failure with 0.18%. There-
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Table 11: Process variation analysis.

Variation ±5% ±10% ±15% ±20% ±30%
ReDRAM’s DRA 0.00% 0.00% 1.2% 9.6% 16.4%

Ambit’s TRA 0.00% 0.18% 5.5% 17.1% 28.4%

fore, ReDRAM offers a solution to alleviate challenge-3 by showing acceptable voltage

margin in performing operations based on the DRA mechanism.

3.3.4 Raw Performance

To assess the performance of ReDRAM as a new PIM platform, a comprehensive

circuit-architecture evaluation framework6 and two in-house simulators are developed.

1- At the circuit level, we developed ReDRAM’s sub-array with new peripheral circu-

ity (SA, MRD, etc.) in Cadence Spectre with 45nm NCSU Product Development

Kit (PDK) library [99] in to verify the DRA mechanism and achieve the performance

parameters. 2- An architectural-level simulator is built on top of Cacti [112]. The

circuit-level results were then fed into our simulator. It can change the configuration

files corresponding to different array organizations and report performance metrics for

AAP-based PIM operations. The memory controller circuits are designed and synthe-

sized by Design Compiler [113] with a 45nm industry library. 3- A behavioral-level

simulator is developed in Matlab to calculate the latency and energy that ReDRAM

spends on different tasks. Besides, it has a mapping optimization framework to maxi-

mize the performance according to the available resources.
6The evaluation framework is introduced in Section 4.2.
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3.3.4.1 Throughput

The ReDRAM’s raw performance is evaluated and compared with various com-

puting units and accelerators, including a Core-i7 Intel CPU [114] and an NVIDIA

GTX 1080Ti Pascal GPU [115]. In PIM domain, the comparison shall be restricted to

four recent processing-in-DRAM platforms, Ambit [19], DRISA-1T1C [15], DRISA-

3T1C [15], and HMC 2.0 [116], to handle four bulk bit-wise operations, i.e., NOT,

AND2, OR2, and XOR2. To have a fair comparison, the ReDRAM’s and other PIM

platforms’ raw throughput was reported when implemented with the same 8 banks

with 1024×256 computational sub-arrays. The Intel CPU consists of 4 cores and 8

threads working with two 64-bit DDR4-1866/2133 channels. The Pascal GPU has

3584 CUDA cores running at 1.5GHz [115] and 352-bit GDDR5X. The HMC has

32-10 GB/s bandwidth vaults. Accordingly, an in-house micro-benchmark was de-

signed to run the operations repeatedly for 227/228/229-bit length input vectors and

report the throughput of each platform, as shown in Fig. 33a-d.

It can be observed that 1) either the external or internal DRAM bandwidth has lim-

ited the throughput of the CPU, GPU, and even HMC platforms. However, HMC

outperforms the CPU and GPU with ∼25× and 6.5× higher performance on aver-

age for bulk bit-wise operations. PIM platforms also achieve remarkable throughput

compared to von-Neumann computing systems (CPU/GPU) by unblocking the data

movement bottleneck. ReDRAM shows on average 54× and 7.1× better through-

put compared to CPU and GPU, respectively. 2) While the ReDRAM, Ambit, and

DRISA platforms achieve almost the same performance on performing bulk bit-wise

NOT function, shown in Fig. 33a, ReDRAM outperforms other PIMs in perform-

ing AND2, OR2, and XOR2 operations. As for XOR2, our platform improves the
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throughput on average by 2.3×, 1.9×, 3.7× compared with Ambit [19], DRISA-

1T1C [15], and DRISA-3T1C [15], respectively. This mainly comes from the DRA

mechanism that eliminates the need for row the initialization in Ambit and multi-cycle

DRISA mechanism. Note that the add-on logic of DRISA-1T1C is developed with the

corresponding logic in the plots [15]; however, in practice, only one single logic can

be accelerated with this platform. That is why DRISA-1T1C shows the second-best

performance in performing bulk bit-wise XOR2 operation. To sum it up, ReDRAM’s

DRA mechanism could effectively address challenge-1 by proposing the high-through

bulk bit-wise X(N)OR operation.
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3.3.4.2 Energy

The DRAM chip’s energy consumption to perform the four bulk bit-wise opera-

tions per Kilo-Byte was measured for ReDRAM, Ambit [19], DRISA-3T1C [15], and

CPU7. Fig. 34 shows that ReDRAM achieves 2.6× and 2.8× energy reduction over

Ambit [19] and DRISA-3T1C [15], respectively, to perform bulk bit-wise XOR2 op-

eration. Besides, compared with copying data through the DDR4 interface, ReDRAM

reduces the energy by ∼80×. As for bit-wise in-memory AND2 operation, ReDRAM

outperforms TRA-based Ambit, NOR-based DRISA-3T1C, and CPU, respectively,

with ∼2.1×, 1.9×, and 82× reduction in energy consumption.

3.3.4.3 Area Overhead

To estimate the area overhead of ReDRAM on top of commodity DRAM chip,

three hardware cost sources must be taken into consideration. First, add-on transistors
7This energy doesn’t involve the energy that processor consumes to perform the operation.
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to SAs; each SA requires 30 additional transistors connected to each BL in our design.

Second, the 3:8 MRD overhead; the WL driver was modified by adding two more

transistors in the typical buffer chain, as depicted in Fig. 29b, so there are only 16 add-

on transistors for computational rows. Third, the Ctrl’s overhead to control enable

bits; ctrl generates the activation bits with MUX units with 6 transistors. To sum

it up, ReDRAM imposes 31 DRAM rows (31×256 transistors) per sub-array, at the

most, which can be interpreted as ∼14% of DRAM chip area. Note that Ambit design

requires DCC rows with two WL associated with each; based on the estimation made

by [104], each DCC row imposes roughly one transistor over regular DRAM cell to

each BL. Besides, DRISA-3T1C [15] requires two add-on transistors per cell, which

essentially triple the area overhead.

3.4 Summary

In this chapter, we presented GraphiDe [7] and ReDRAM [6] as two promising

PIM platforms based the commodity DRAM chip. Both designs are dedicated to

eliminating the need for row initialization and multi-cycle operation in the previous

designs by introducing new dual/ quintuple row activation mechanisms. GraphiDe

imposes a very low ∼1.3% area overhead over the commodity DRAM chip supporting

single-cycle AND2/OR2 operations, while ReDRAM shows a ∼14% overhead sup-

porting a full-set of 1- and 2-input in-memory operations. ReDRAM can be leveraged

to greatly reduce energy consumption and latency of complex in-DRAM logic com-

putations relying on state-of-the-art mechanisms based on triple-row activation, dual-

contact cells, row initialization, NOR style, etc. It achieves a considerably higher per-

formance through unblocking the data transfer issue by 54×/ 7.1× better throughput
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as opposed to von-Neumann computing systems, CPU/GPU. Besides, ReDRAM out-

performs other PIMs in performing X(N)OR-based operations by up to 3.7× higher

throughput. From the energy consumption perspective, ReDRAM reduces the DRAM

chip energy by 2.6× compared with Ambit [19] and ∼80× compared to data copying

via the DDR4 interface.
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Chapter 4

PROCESSING-IN-MEMORY ACCELERATION OF DEEP NEURAL

NETWORKS

4.1 Introduction

Deep Convolutional Neural Network (DNN/CNN) has achieved world-wide at-

tention due to outstanding performance in image recognition over large-scale datasets

such as ImageNet [117]. For instance, ResNet shows a prominent recognition accu-

racy of 96.43%, which is higher than human beings (94.9%). Following the trend,

when going more in-depth in DNNs (e.g., ResNet employs 18-1001 layers), mem-

ory/computational resources and their communication have faced inevitable limita-

tions. This can be interpreted as ‘‘DNN power and memory wall” [118], leading to the

development of different approaches to improve DNN efficiency at either algorithm

or hardware level.

Estimation of DNN using shallower models, quantizing parameters [119], [120],

compressing pre-trained networks [121], and network binarization [122]–[127] are the

most widely explored algorithmic approaches. Recent research efforts have significantly

reduced both model size and computing complexity by using low bit-width weights,

activations, and gradients [119], [120]. For example, Zhou et al. [119] have shown

that low bit-width convolution kernels achieved from their quantization method can

accelerate both training and inference with almost comparable prediction accuracy as

32-bit counterparts on ImageNet dataset. A DNN basically consists of multiple stack-

ing layers, namely convolution, activation, and pooling. As depicted in Fig. 35 [117],
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Figure 35: Execution time of a sample DNN for scene labeling on CPU and GPU
[117].

the convolutional layer always takes the most fraction (>90%) of execution time and

computational sources in both GPU and CPU implementations.

In this chapter, a generic and comprehensive evaluation framework is initially pre-

sented to quantitatively analyze the performance of various PIM platforms running big

data applications. The framework is then put into the test to quantitatively compare

the analog and digital PIM acceleration solutions for DNNs. In addition, the PIM

acceleration of DNNs is investigated by proposing in-memory bit-wise adder and in-

memory bit-wise convolver schemes based on the MRIMA architecture [1] presented

in Chapter 2 to accelerate binary-weight and low bit-width CNNs. Detailed mapping

methods are then presented that harness the full potential of PIM capabilities to re-

duce DNN’s data movement overheads. The analysis shows MRIMA is fully capable

of realizing DNN-in-memory.

4.1.1 DNN Terminology

DNN is a machine learning classifier that takes an image as input and then com-

putes the probability that image features belong to a sort of output class. Typically,

a DNN consists of several convolutional layers and pooling layers followed by Fully-
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Connected layers (FC) as depicted in Fig. 36. Note that it has been proven that FC

layers could be equivalently implemented by convolutions [119], [122]. Fig. 36 also

shows a visualization of the convolutional layer of DNN where each layer receives a set

of features organized in multi-channel as input (Input fmaps). It applies kernels (filters)

by performing high-dimensional convolutions, i.e., Multiplication-and-Accumulation

(MAC) and then produces the features (Output fmaps) for the next layer [128]. The

dimensions of both fmaps (input/output) and kernels are 4-D (multiple 3-D struc-

tures), and a batch of input fmaps is typically processed by multiple 3-D kernels. After

convolution, a non-linear activation function, such as ReLU, will be applied to the

results. Considering the shape parameters listed in Table 12, the computation of one

convolutional layer can be defined as follow:

O[n][k][x][y] = ReLU(B[k] +

Fh−1∑
i=0

Fw−1∑
j=0

C−1∑
z=0

I[n][z][Ux + i][Uy + j]W [k][z][i][j]),

0 ≤ n < N, 0 ≤ k < K, 0 ≤ x < W2, 0 ≤ y < H2; (4.1)

where O, B, I, and W are the matrices representing output fmaps, Bias, input fmaps,

and kernels, respectively. W2/H2 dimensions can be achieved as W2 = (W1 − Fw +

2P )/S + 1 and H2 = (H1− Fh + 2P )/S + 1.

Table 12: Shape Parameters of a Convolutional Layer.

Shape Parameter Description
input fmaps dimension W1×H1× C

3-D fmaps batch size (input/output) N
no. of 3-D kernels K

spatial extent of kernels Fw × Fh × C
stride S

no. of zero padding P
output fmaps dimension W2×H2×M
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Figure 36: Visualization of inference (a.k.a forward propagation) in DNN.

4.1.2 DNN Acceleration: Analog or Digital PIM Approach?

For DNN acceleration in memory, analog resistive cross-bar memory, as one of the

most popular memory array structures, has drawn significant interest due to its high

memory accessing bandwidth and in-situ computing capability [14], [129]. More im-

portantly, its current-mode weighted summation operation intrinsically matches the

dominant MAC in the artificial neural network, making it one of the most promis-

ing candidates as the basic computing unit for neural network accelerator design [14].

For example, ISAAC [34] architecture improves throughput and energy by 14.8× and

5.5×, respectively, relative to a well-known ASIC architecture. PipeLayer [85] achieves

the speed-up and energy saving of 42.45× and 7.17×, respectively, compared with a
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GPU platform on average. However, many non-ideal effects, such as IR-drop (i.e., wire

resistance), Stuck-At-Fault (SAF), thermal noise, and random telegraph noise [130],

are limiting the progress of hardware implementation of large-scale DNNs on ReRAM

crossbar-based accelerators. Many recent works have investigated such issues with ei-

ther hardware or software solutions [131], [132].

As an alternative solution to realize massive MAC and memory operations in DNN

deployments, researchers have come up with quantized/binarized DNNs, through con-

straining weights and activations of DNN to be quantized/ binarized in forward prop-

agation [119]. These modifications convert the conventional MAC operation to much

simpler bulk bit-wise operations (based addition/subtraction [46], [125], [133] or com-

parison [28]) that can be accelerated in the content of digital memories. For example,

Neural Cache [30], as an SRAM-based platform improves inference latency by 18.3×

over the state-of-the-art multicore CPU (Xeon E5) and 7.7× over server-class GPU.

DRISA [15], as a DRAM-based platform, employs 3T1C- and 1T1C-based comput-

ing mechanisms and achieves 7.7× speed-up and 15× better energy-efficiency over

GPUs for DNN accelerations. CMP-PIM [28] as an MRAM-based platform achieves

∼10× better energy-efficiency compared to DNN-ReRAM accelerators.

While the respective benefits of the aforementioned DNN acceleration-in-memory

approaches (i.e., analog and digital) are well known, it still lacks cross-technology com-

parison and analysis. In this chapter, a comprehensive and universal cross-layer evalu-

ation platform is developed [1], [9], [134] to quantitatively compare and analyze the

analog and digital approaches for DNN acceleration-in-memory schemes. The pre-

sented framework will be also used to analyze the performance of various big data

applications such as bioinformatics DNA alignment and graph processing in Chapters

5 and 6, respectively.
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Figure 37: Hardware implementation of a single M ×M ReRAM crossbar array pair
(positive and negative array) as an analog dot-product engine [130], [135].

The primary computation performed by an analog ReRAM cross-bar is the current-

mode weighted summation operation (i.e., dot-product). The architecture of the cross-

bar and its peripheral circuits are described in Fig. 37. Note that the positive and

negative array setup is widely used in crossbar-based dot-product engine [84], [130],

[136], [137] for performing convolution computation with positive and negative ker-

nel values. As shown in Fig. 37, the n-bit binary bit-strings ini[n] are the inputs to

the crossbar array, which is first converted by the Digital-to-Analog Converter (DAC)

array into voltages Vi. Since the reference voltage Vref is set to Vdd

2
, the current forward

into the differential ADC in the j-th column pair (i.e., two corresponding columns in

the positive and the negative array) can be described as:

IADC,j =
M∑
i=1

(
(Vi − Vref ) · (G+

i,j −G−
i,j)

)
(4.2)
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where G±
i,j is the conductance of ReRAM cell indexed by i and j in the positive and

negative array respectively. As can be seen, Eq. (4.2) performs the dot-product compu-

tation between two vectors V − Vref and G+
:,j −G−

:,j. However, for using the ReRAM

crossbar array to accelerate the dot-product computation in DNN, a software-hardware

co-design is essential, since mapping the DNN parameters into the crossbar-based ac-

celerator requires a series of signal conversions as introduced in [85], [130].

4.2 Proposed Bottom-up PIM Evaluation Framework

As various data-intensive applications with distinct workload sizes and memory ac-

cess patterns are expected to benefit from processing-in-memory in both cache and

main memory levels, selecting the right design for a particular application is a complex

task. Besides, by choosing a PIM design, it is imperative to establish uniform evaluation

conditions to make an impartial choice between available design options. To perform

the cross-technology comparison among aforementioned PIM techniques, we have de-

veloped a comprehensive bottom-up cross-layer framework [9], [41], [134] shown in

Fig. 38.

1- For Device level modeling, the device parameters are first extracted from differ-

ent assessments and models. The Non-Equilibrium Green’s Function (NEGF), and

Landau-Lifshitz-Gilbert (LLG) equations are used as explained in Chapter 2 to model

STT-MRAM and SOT-MRAM bitcell (indicated under MRAM in Fig. 38) [13], [74].

Large numbers of physical parameters are integrated into the compact model to achieve

a good agreement with experimental measurements. The default ReRAM and SRAM

.cell configurations of NVSIM [138] are considered for evaluation. Moreover, DRAM

cell parameters are taken from Rambus [110] and scaled.
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Figure 38: The bottom-up evaluation framework developed for PIM platform evalua-
tion.

2- For Circuit level simulation, the memory sub-array with peripheral circuity (SA,

MRD, MCD, etc.) could be implemented based on a particular PIM style for each

technology on top of the device level data. In this chapter for DNN acceleration, the

GraphS [4] PIM style is used for SOT-MRAM and digital ReRAM implementations;

STT-CiM [89] as the STT-MRAM design; BCNN-ReRAM [84] design for analog

ReRAM crossbar; Neural Cache [30] design for SRAM and Ambit [19] design for

DRAM are accordingly used. The memory sub-arrays are simulated in Cadence Spectre

with 45nm NCSU Product Development Kit (PDK) library [99] to verify the PIM’s

circuit functionality and achieve the circuit performance parameters. The memory
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(.cell)

PIM Config 

(.pim)

NVSIM

-DesignTarget: RAM
-CacheAccessMode: Normal
-OptimizationTarget: ReadLatency
-EnablePruning: Yes
-ProcessNode: 45
-Capacity (MB): 4
-WordWidth (bit): 512
-DeviceRoadmap: HP
-LocalWireType: LocalAggressive
-LocalWireUseLowSwing: No
-GlobalWireType: GlobalAggressive
-GlobalWireUseLowSwing: No
-Routing: H-tree
-InternalSensing: true
-MemoryCellInputFile: MRAM.cell
-Temperature (K): 350
-ForceBank: 4x4, 1x4
-ForceMat: 2x2, 1x2
-ForceMuxSenseAmp: 2

-MemCellType: MRAM
-CellArea (F^2): 54
-CellAspectRatio: 0.54
-ResistanceOn (ohm): 3000
-ResistanceOff (ohm): 6000
-ReadMode: current
-ReadVoltage (V): 0.25
-MinSenseVoltage (mV): 25
-ReadPower (uW): 30
-ResetMode: current
-ResetCurrent (uA): 80
-ResetPulse (ns): 10
-ResetEnergy (pJ): 1
-SetMode: current
-SetCurrent (uA): 80
-SetPulse (ns): 10
-SetEnergy (pJ): 1
-AccessType: CMOS
-VoltageDropAccessDevice (V): 0.15
-AccessCMOSWidth (F): 8

PIMA-SIM 1.0

/* PIM operation, Current Decoder parameters x n */ 
-Max Row Activation:  3 
/*Sense Amplifier */
-Sense Amplifier Power (uW): 10     
-Sense Amplifier Read Dynamic Energy (fJ): 30  
-Sense Amplifier Latency (ns):  3         
-Sense Amplifier Area (mm^2):  0.00001                   
/*Custom Sub-array-level Add-on Component parameters*/
-Subaddon component Latency (ns): 1,0,0
-Subaddon component Dynamic Energy (nJ):  0.2,0,0
-Subaddon component Leakage Power (uW): 0.1,0,0
-Subaddon component  Area (um^2):  12,0,0 
/*Custom MAT-level Add-on Component parameters*/
-Mataddon component Latency (ns): 0,0,0
-Mataddon component Dynamic Energy (nJ): 0,0,0
-Mataddon component Leakage Power (uW): 0,0,0
-Mataddon component Area (um^2): 0,0,0 
/*Custom BANK-level Add-on Component parameters*/
-Bankaddon component Latency (ns): 0,0,0 
-Bankaddon component Dynamic Energy (nJ): 0,0,0  
-Bankaddon component Leakage Power (uW): 0,0,0
-Bankaddon component Area (um^2): 0,0,0 

• Memory Area- Computational Area (mm2)
• R/W/Compute Latency with add-ons at any memory level (ns)
• R/W/Compute Dynamic Energy with add-ons at any memory level (nJ)
• Leakage Power (W)

Figure 39: PIMA-SIM as a PIM support evaluation tool developed to model the timing,
energy, and area of various PIM technologies.

controller circuits for all platforms are synthesized by Design Compiler [113] with the

same 45nm industry library.

3- For Architecture level, a PIM support evaluation tool is developed for the NVSIM

[138] named PIMA-SIM as shown in Fig. 39 to model the timing, energy, and area

of various PIM technologies based on STT-MRAM, STT-MRAM, PCM, ReRAM,

and SRAM. This tool offers the same flexibility in memory configuration in terms

of bank/mat/subarray organization and peripheral circuitry design as NVSIM, while

supporting PIM-level configurations. PIMA-SIM can be configured using three con-

figuration files. At the cell level, it uses NVSIM’s .cell file to save the device-circuit

level info. At the architecture level, it uses NVSIM’s .cfg file to configure the memory

organization and optimization target. In addition, as depicted in Fig. 39, at the PIM
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level, PIMA-SIM’s .pim file is designed to save the PIM-level parameters. PIMA-SIM’s

.pim file gives the following flexibilities to study the PIM behaviors: 1- users can specify

the number of row activation for PIM purposes; 2- users can insert their customized

sense amplifier designs; and 3- users can add any number of customized add-ons at

the sub-array/mat/bank level. The PIM libraries are accordingly developed for each

platforms on top of NVSIM [138] and Cacti [139] based on device/circuit level data.

Accordingly, the performance data (i.e., latency, energy, and area) could be extracted

for different PIM platforms w.r.t. a single input memory configuration file (.cfg).

4- For Application level simulations, a behavioral-level simulator is developed in

Matlab, taking architecture-level results as well as the proposed customized in-memory

algorithm for various big data applications to calculate the latency, energy, and area that

different PIM platforms spend on them. It has a mapping optimization framework to

maximize the performance w.r.t. the available resources.

4.2.1 Performance Analysis

In this section, two different experiments under ISO-Capacity and ISO-

Computation constraints are conducted to quantitatively compare and analyze the

analog and digital acceleration-in-memory approaches for DNNs.

4.2.1.1 ISO-Memory-Capacity Comparison

The performance of digital and analog PIM platforms with an ISO-memory-

capacity constraint is initially studied. A 32Mb, single bank unit based on digital

(SOT-MRAM, STT-MRAM, ReRAM, SRAM, and DRAM) and analog ReRAM cross-
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bar is developed with the presented bottom-up evaluation framework. Table 13 reports

eleven performance parameters for each platform. The observations on this experiment

are listed below.

4.2.1.1.1 Area

The area metric was divided into two parts: memory die area (M ), and computa-

tional area (C ) which includes controller, modified decoder, SA, 8-bit ADC for the

relevant analog ReRAM crossbar, etc. In terms of memory die area, the digital PIM

platforms impose a relatively larger area than analog ReRAM cross-bar except for STT-

MRAM design [89]. However, if we take the computational area into account, the

ReRAM cross-bar consumes 2.5 mm2, which is much larger than that of digital coun-

terparts, such as digital ReRAM (0.4 mm2). Accordingly, a memory to computational

area ratio as M/C can be defined. The M/C ratio equals 23.53 for SOT-MRAM-based

PIM, while the analog ReRAM cross-bar shows a ratio of 1.33. The low M/C ratio

of ReRAM cross-bar is the consequence of large peripheral circuit’s overhead, such

as buffers and DAC/ADC, which contributes more than 85% of the computational

area [14], [84]. Furthermore, according to the results reported in Table 13, the STT-

MRAM and SRAM platforms occupy the smallest and the largest overall area, respec-

tively, compared to other PIM counterparts.

4.2.1.1.2 Latency

As listed in Table 13, the analog ReRAM cross-bar achieves the shortest read la-

tency (1.48ns) as compared with digital platforms. Still, it has the longest write latency

(20.9ns). The SOT-MRAM platform achieves the shortest write latency compared to
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Table 13: Per operation estimation results for different PIM designs. In the Area part, M denotes Memory die area, and

C denotes Computation area overhead. (iso-capacity: 32Mbit-single Bank, Data Width: 512-bit).

Digital Analog

Metrics SOT-MRAM† STT-MRAM‡ ReRAM† SRAM∗ DRAM§ ReRAM∗∗

Non-volatility Yes Yes Yes No No Yes

Area (mm2)
M: 7.06

C: 0.3

M: 2.14

C: 0.3

M: 3.92

C: 0.4

M: 10.38

C: 0.5

M: 4.53

C: 0.04

M: 3.34

C: 2.5

Read Latency (ns) 2.85 1.90 1.65 2.9 3.4 1.48

Write Latency (ns) 2.59 5.29 19.8 2.7 3.4 20.9

Read Dynamic Energy (nJ) 0.57 0.37 0.76 0.34 0.66 0.38

Write Dynamic Energy (nJ) 0.66 0.67 2.9 0.38 0.66 2.7

(N)AND/(N)OR

Computation Energy (nJ)
∼0.64 ∼0.46 ∼1.13 ∼0.59 ∼0.75

1.96 per MAC

Full Adder

Computation Energy (nJ)
∼1.92 ∼1.59 ∼3.4 ∼1.18 ∼11.25

Leakage Power (mW) 550 410.2 362.4 5243 335.5 587.6

Endurance ∼1010 - 1015 ∼1010 - 1015 ∼105 - 1010 Unlimited 1015 ∼ 105 - 1010

Data over-written issue No No No No Yes No
†implemented based on [4]. ‡implemented based on [89]. ∗ implemented based on [30]. §implemented based on [19].

∗∗implemented based on [84].
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other technologies and has a higher endurance (1010-1015) compared to ReRAM-based

platforms.

4.2.1.1.3 Energy

Based on Table 13, SOT-MRAM and STT-MRAM platforms consume the smallest

write dynamic energy among all the NVM platforms due to its intrinsically low-power

device operation. At the same time, SRAM achieves the smallest read and write en-

ergy compared to all the platforms. The analog ReRAM cross-bar achieves a close-to-

SRAM read dynamic energy, but it consumes a large write dynamic energy. In terms

of computational energy, for digital platforms, it is measured based on the PIM’s capa-

bility to perform (N)AND/(N)OR and full adder functions. As seen from Table 13,

the STT-MRAM [89] and SRAM [30] PIM respectively consume the smallest com-

putational energy compared to different technologies to perform different operations,

where SOT-MRAM stands as the third most energy-efficient platform. Note that, al-

though the DRAM PIM design based on Ambit [19] consumes 0.75 nJ to perform

(N)AND/(N)OR based TRA mechanism, it requires over 14 memory cycles to per-

form the addition operation to avoid overwriting data, which leads to much higher

energy consumption compared to other platforms. For the analog cross-bar, the com-

putational energy per MAC was reported, which is comparable with addition operation

in digital SOT-MRAM platform. In terms of leakage power consumption, the digi-

tal ReRAM and DRAM can be observed as relatively more power-efficient platforms.

Moreover, the SRAM platform consumes ∼14.5× and ∼9× more power than digital

and analog ReRAM, respectively.
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4.2.1.2 ISO-Computation Comparison

The performance of the digital and analog PIM platforms is further explored for

DNN acceleration. Hereby, we took the classical LeNet-5 [140] as a simple example

to perform the handwritten digit classification task with MNIST dataset. For correctly

mapping the target DNN into the PIM, offline training of the LeNet-5 network was

conducted with weight and activation quantization, following the methods presented

in [119], [123]. A description model of each platform based on the data reported in

Table 13 was then employed in the application level DNN simulator. For fair hardware

comparison, the bit-width configuration of [1:8] for [Weight: Activation] was selected,

although ReRAM cross-bar-based accelerator supports higher weight bit-width (> 1

bit) with better DNN performance (i.e., classification accuracy in the experiment). No

quantization was applied in the first and last layer of DNN, and the full-precision com-

putations were also handled by the PIM-based accelerator. For the sake of simplicity,

the estimated performance results (area, energy, latency) of convolutional layers are

only reported.

4.2.1.2.1 Area

Contrary to the approach used to report the area in Table 13, we leverage the

method presented in [28], [84] to report the results. Specifically, we consider the area

overhead due to computation by calculating the number of cross-bars or sub-arrays.

Table 14 reports the area for digital and analog PIM platforms by dividing it into the

memory and logic parts. We observe that the digital ReRAM and STT-MRAM plat-

forms require the smallest area than other platforms, respectively, mainly due to their
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single transistor cell structure. It is noteworthy that, while the DRAM platform has one

of the least die areas due to its single-transistor cell and owns the least computational

area under ISO-capacity constraint due to its almost unchanged peripheral circuitry

(1% as listed in Table 13), it requires accessing to multiple sub-arrays to avoid over-

writing data problem as well as fitting the network at the same time, resulting in a

larger area requirement compared to NVMs. As for the analog cross-bar platform, the

logic part contributes ∼4× more than the memory area. Overall, it imposes a larger

area than that of other digital NVM platforms due to matrix splitting and extra-large

add-on area overhead [14].

4.2.1.2.2 Latency

Table 14 summarizes each platform’s latency required to process the convolutional

layers of the DNN. According to the table, the SRAM platform is the fastest one

with 0.7ms latency. This mainly comes from its short read and write latency and fast

two-cycle addition scheme [30]. Besides, we observe that the SOT-MRAM platform

achieves 0.9ms latency and stands as the second-fastest platform. The DRAM platform

shows an extremely long latency mainly due to the excessive copy operations needed to

avoid overwriting data, as explained in Chapter 3. The analog cross-bar needs 5.8ms

to process the convolutional layers.

4.2.1.2.3 Energy

Table 14 also reports the energy consumption of different platforms. It can be seen

that SOT-MRAM and STT-MRAM based platforms save 15.8× and 17.3× energy

compared to the analog cross-bar. In addition, the volatile digital memories consume
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Table 14: Estimated row performance of various PIMs without parallelism techniques.
Digital Analog

Parameters SOT-MRAM STT-MRAM ReRAM SRAM DRAM ReRAM

Area (mm2)

(memory + logic)

0.018

∼(0.0172+0.0008)

∼0.012

∼(0.011+0.0008)

0.0097

∼(0.009+0.0007)

0.64

∼(0.608+0.032)

0.16

∼(0.158 + 0.002)

0.06

∼(0.011+0.049)

Energy (µJ)

(write-back+read-based Ops)

0.85

∼(0.31+0.54)

0.78

∼(0.25+0.53)

1.9

∼(0.75+1.15)

1.6

∼(0.42+1.18)

2.1

∼(0.8+1.3)

13.5

∼(0+13.5)

Latency (ms) 0.9 1.8 1.3 0.7 13.5 5.8
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much smaller energy than that of the analog platform. Therefore, from energy saving

standpoint, digital PIM platforms could be a better choice in comparison to the analog

cross-bar. Note that, for PIM platforms, all operands are assumed to be stored in mem-

ory. Unlike traditional computation, an extra intermediate data write-back is needed,

which has a large effect on the overall energy and latency. Based on this, we split the re-

ported energy into write-back and read-based logic operations energy. The write-back

energy involves the energy required to write the weights or inputs into PIM plus the

energy required write the computation results back to the memory for computation

in the next layer. The read-based operation energy involves the read and bit-line com-

puting energy. The analog cross-bar [84] can accomplish the MAC operation without

writing back the intermediate data, that’s why we omit the write-back energy for this

platform.

4.3 MRIMA as a Bit-wise DNN Inference Accelerator

In this section, we demonstrate that one of our previously-discussed PIM platforms,

namely MRIMA [1] in Chapter 2, can accelerate Binary-Weight DNNs (BWNNs) and

low bit-width DNNs using its intrinsic in-memory bit-wise adder and convolver. Assume

input feature maps (I) and kernels (W ) are stored in data banks of memory architecture

in Fig. 7. In both networks, except for the inception layer, kernels need to be contin-

uously quantized before mapping into computational sub-arrays. However, quantized

shared kernels can be utilized for different inputs. The DPU in Fig. 7 includes three

ancillary units (i.e., Quantizer, Batch Normalization, and Activation Function). Quan-

tization is basically performed using DPU’s Qnt. module and then results are mapped

to the parallel sub-arrays (1st step). In the 2nd step, the parallel sub-arrays extract the fea-
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Figure 40: MRIMA’s data organization and computation steps of binary-weight layers.

tures using MRIMA’s computation methods. Finally, DPU’s Active. module activates

the generated feature map and completes 3rd step by producing output fmaps.

4.3.1 In-memory Bit-wise Adder

As the main operation of BWNNs, addition (/subtraction) is the most critical unit

of the accelerator [84], [122], [141]. This unit must keep high throughput and re-

source efficiency while handling different input bit-widths at run-time. Therefore, we

proposed a parallel in-memory add/sub mapping technique based on MRIMA’s 2-cycle

in-memory adder to accelerate multi-bit add operation. While there are few designs

for in-memory adder/subtractor in literature [15], [38], [49], [88], to the best of our

knowledge, MRIMA was the first which presents a fast and fully parallel design in

MRAM domain. Fig. 40 shows the requisite data organization and computation steps

of binary-weight layers with a straightforward and intuitive example in Fig. 41 only

considering add operations. Obviously sub can be implemented based on add.
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(1) Initially, c channels (here, 4) in the size of kh×kw (here, 3×3) are selected from

the input batch and accordingly produce a combined batch w.r.t. the corresponding

binary {0,1} kernel batch. Note that MRIMA only employs 2’s complement-based data

partitioning, mapping and computation method. (2) The combined batch’s channels

are transposed and mapped to the designated computational sub-arrays. Considering n-

activated sub-arrays with the size of x×y, each sub-array can handle the parallel add/sub

of up to x elements of m-bit (3m + 2 ≤ y) and so MRIMA could process n × x

elements to maximize the throughput. Here, Ch-1 to Ch-4 are respectively transposed

and mapped to sub-array #1. (3) After mapping, the parallel in-memory adder of the

MRIMA accelerator operates to produce the output feature maps. The memory sub-

array organization for such parallel computation is delineated in Fig. 40 R.H.S. Two

reserved rows for Carry results initialized by zero and m (here, 4) reserved rows are

considered for Sum results. We have shown the current state (Q) as well as the next

state (Q*) of SA’s latch after being enabled for further clarification.

The add operation of two matrices of 4-bit elements (Ch1 and Ch2) is used in

Fig. 41 to elaborate how addition operates in the MRIMA. Every two corresponding

elements that are going to be added together have to be aligned in the same bit-line.

Here, Ch1 and Ch2 should be aligned in the same sub-array. Ch1 elements take the

first 4 rows of the sub-array, followed by Ch2 in the next 4 rows. The addition algorithm

starts bit-by-bit from the LSBs of the two words and continues towards MSBs. There

are 2 cycles for every bit-position computation divided into four steps indicated by S1,

S2, C1, and C2. In step 1 of Sum (S1), 2 RWLs (accessing to LSBs of 4 elements) and

Latch (storing zero) are enabled to generate the sum. The SAs use the 2 bit cells located

in the same bit-lines as input operands for IML23 (see Table 5) and carry latch’s data

as carry-in to generate sum based on MRIMA’s method. During step 2 of Sum (S2), a
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Figure 41: Parallel in-memory addition steps for generating sum and carry-out logic.

WWL is activated to save back the Sum bit using MRIMA’s FRC. In step 1 of Carry

(C1), the same two operands in conjunction with one of the carry’s reserved rows are

enabled to generate the carry-out leveraging MRIMA’s IML33. During step 2 of Carry

(C2), FRC is activated to save back the carry-out bit into a reserved row and latch. This

carry-out bit overwrites the data in the carry latch and becomes the carry-in of the next

cycle. This process is concluded after 2 ×m cycles, where m is the number of bits in

elements. To sum it up, MRIMA’s bit-wise adder supports different configurations of

activation when weight is binary (<W:A>=< 1:m >).
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4.3.2 In-memory Bit-wise Convolver

The main idea of this scheme is to exploit logic AND, bitcount, and bitshift as rapid

and parallelizable operations to accelerate low bit-width (quantized) MACs in convo-

lutional layers. The AND-based convolution of k-bit fixed point integers has been

presented in [119]. There are some other layers in DNNs, such as the inception layer

(directly taking image as inputs and not necessarily quantized) and FC layer. These

layers as discussed, can be equivalently implemented by convolution operations using

1×1 kernels [119]. Thus, all layers could be implemented by convolution computation

by exploiting these operations [8], [46], [119]:

I ∗W =
M−1∑
m=0

N−1∑
n=0

2m+nbitcount(AND2(Cn(W ), Cm(I))) (4.3)

Assume I is a sequence of M-bit input integers (3-bit as an example in Fig. 42)

located in input fmap covered by sliding kernel of W , such that Ii ∈ I is an M-bit

vector representing a fixed-point integer. We index the bits of each Ii element from

LSB to MSB with m = [0,M − 1], such that m = 0 and m = M − 1 are corresponding

to LSB and MSB, respectively. Accordingly, we represent a second sequence denoted

as Cm(I) including the combination of mth bit of all Ii elements (shown by elliptic).

For instance, C0(I) vector consists of LSBs of all Ii elements “0110”. Considering W

as a sequence of N-bit weight integers (3-bit, herein) located in sliding kernel with

index of n = [0, N − 1], the second sequence can be similarly generated like Cn(W ).

Now, by considering the set of all mth value sequences, the I can be represented like

I =
∑M−1

m=0 2
mcm(I). Likewise, W can be represented like W =

∑N−1
n=0 2ncn(W ).
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Figure 42: Mapping and computation of MRIMA’s bit-wise convolver.

As shown in the data mapping step in Fig. 42, C2(W )-C0(W ) are consequently

mapped to the designated sub-arrays of MRIMA. Accordingly, C2(I) − C0(I) are

mapped in the following memory rows in the same way. Now, computational sub-

array can perform bit-wise parallel AND2 operation (IML21) of Cn(W ) and Cm(I) as

depicted in Fig. 42. The results of parallel AND operations stored within sub-array

will be accordingly processed using bit-counter. Bitcount is translated to the addition

of bits implemented by our in-memory adder. It passes the data to a shifter imple-

mented by consecutive memory read and write operations (FRC). As depicted in Fig.

42, “0001”, produced by in-memory adder is left-shifted by 3-bit (×22+1) to “1000”.

Eventually, an in-memory bit-wise adder can produce the output fmaps. Note that

MRIMA’s bit-wise convolver supports different configurations of weight and activa-

tion (<W:A>=< n:m >).
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4.3.3 Evaluation

To assess the performance of MRIMA as a new PIM platform, we leveraged the

presented comprehensive device-to-architecture evaluation framework in Section 4.2.

The device parameters to model STT-MRAM cell are listed in Table 2. At the circuit

level, a comprehensive Verilog model for DPU was also developed interacting with our

SPICE level circuit implementation to run the simulation and perform the evaluation.

There are two activation functions being used in MRIMA (i.e., tanh(x)+1
2

and sign(x)).

From hardware implementation perspective, activation functions were developed us-

ing lookup-table-based transformations [142] with case-statement codes. The batch

normalization unit alleviates the information loss during quantization by normalizing

the input batch to have zero mean and unit variance. It generally performs an affine

function y = kx + h [124], where y and x denote the corresponding output and in-

put feature map pixels, respectively. During inference mode, all the other parameters

are pre-computed and stored in MRIMA arrays. Therefore, BN (see Fig. 7) can fetch

each pixel of feature maps, feed forward to the batch-norm layer, and write back the

corresponding normalized pixel employing an internal, multiplexed CMOS adder and

multiplier to perform this computation efficiently.

4.3.3.1 Architectural setup for MRIMA

We configure MRIMA’s memory organization with 512 rows and 256 columns per

sub-array with total 16 sub-arrays per mat in a H-tree routing manner, 2×2 mats (with

2/2 and 2/2 as row and column activations) per bank, 4×4 banks (with 1/4 and 4/4 as

row and column activations) per group; in total 4 groups and 512Mb total capacity.
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4.3.3.2 Area and peak performance

The area of MRIMA is 109.6mm2. The experiments show that, in total, MRIMA

imposes 5.6-5.8% area overhead to the memory die, where Pinatubo [23], RIMPA [49],

and DRISA [15] incur 0.9%, 17%, and 5% area overhead, respectively. We observe

that the modified controller and drivers contribute more than 50% of this area over-

head in a memory group. Obviously, the choice of the number of sub-arrays is a trade-

off between peak GOps/s and area overhead. Enlarging the chip area brings higher

performance for MRIMA and other PIM designs due to the increased number of sub-

arrays, though the die size directly impacts the chip cost. Fig. 43 shows this trade-off

considering both computational and power efficiency metrics [34], [85]. With cur-

rent configuration, the computational efficiency of MRIMA is 1521.83 GOps/s/mm2

which is higher than PipeLayer-ReRAM [85] (1485), ISAAC-ReRAM [34] (478.9),

and DaDianNao-ASIC [143] (63.46). The power efficiency of MRIMA is 455.48

GOps/W which is higher than PipeLayer-ReRAM (142.9), ISAAC-ReRAM (380.7),

and DaDianNao-ASIC (286.4). To have a fair comparison, the area-normalized results

will be reported in Section 4.3.3.3 for various under-test platforms.

4.3.3.3 DNN Acceleration Performance

In this part, we compare the MRIMA with state-of-the-art DRAM-, ReRAM-,

ASIC-, and GPU-based solutions for the DNN inference acceleration.
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Figure 43: MRIMA’s area-peak performance trade-off.

4.3.3.3.1 Modeling setup

Bit-width: Four bit-width configurations of <W:I> (<1:1>,<1:2>,

<1:4>,<1:8>) are considered for the evaluation with an 8-bit gradient (<G>).

Data-set: The SVHN data-set [144] is selected. The images are re-sized to 40×40

and fed to the model. Model: A DNN with 6 binary-weight convolutional layers,

2 (average) pooling layers, and 2 FC layers is adopted. FC layers are equivalently

implemented by bit-wise convolutions. Training: The open-source algorithm by

DoReFa-Net [119] was used where all the operations can be accelerated significantly

using the bit-wise convolution of fixed-point integers. The batch normalization and

different dropout techniques were adopted to accelerate and avoid over-fitting. The

model was trained on TensorFlow [145] with 100 epochs, and the lowest test error of

epoch was reported.
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4.3.3.3.2 Accelerators’ setup

DRAM: A DRISA-like [15] accelerator for binary-weight DNNs was developed.

Two different computing methods of DRISA named 3T1C and 1T1C-adder were se-

lected for comparison. The 3T1C uses DRAM cells themselves for computing and

naturally performs NOR logic on BLs. However, 1T1C-adder exploits a large n-bit

adder circuit for n-bit BLs after SAs. We accordingly modified CACTI-3DD [139]

for evaluation of DRAM’s solutions. Similar to [15], the controllers and adders were

synthesized in Design Compiler [113]. ReRAM: A Prime-like [14] accelerator with two

full functional (FF) sub-arrays and one buffer sub-array per bank (totally 64 sub-arrays)

were considered for evaluation. In FF sub-arrays, for each mat, there are 256×256

ReRAM cells and eight 6-bit reconfigurable SAs. For evaluation, NVSIM simulator

[138] was extensively modified to emulate Prime functionality. Note that the default

NVSIM’s ReRAM cell file (.cell) was adopted for the assessment. STT-MRAM: An

STT-CiM-like [89] accelerator was developed with the exact same memory configu-

ration as MRIMA, considering 512 rows and 256 columns computational sub-arrays

and 512Mb total memory capacity. We used the same peripheral circuitry and DPU

as in MRIMA to perform an impartial comparison. Accordingly, we used the evalua-

tion platform developed for MRIMA to assess STT-CiM performance in accelerating

DNNs. ASIC: A DaDianNao-like [143] accelerator was developed. To have a fair

comparison, two versions with either 8×8 tiles or 16×16 tiles were selected. Accord-

ingly, the designs were synthesized with Design Compiler [113] under 45 nm process

node. The eDRAM and SRAM performance was estimated using CACTI [146]. GPU:

The NVIDIA GTX 1080Ti Pascal GPU with 3584 CUDA cores running at 1.5GHz

(11TFLOPs peak performance) was used. The energy consumption was measured with
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NVIDIA’s system management interface. Similar to [15], we scaled the achieved results

by 50% to exclude the energy consumed by cooling, etc. Accordingly, based on the

bit-width configuration of <I>, i.e., 1, 2, 4, 8, GPU results were aggressively scaled by

×32, ×16, ×8, and ×4, respectively, to get the peak performance for each quantized

networks. Note that GPU doesn’t support fixed-point DNN, and the real scale ratio

should be less than these numbers [15], [147].

4.3.3.3.3 Accuracy

Fig. 44a tabulates the test error results and relative complexity of the discussed

model under various configurations. The complexity of inference and training are

achieved using W × I and W × I +W ×G, respectively. Generally, experiments repli-

cate the conclusion drawn by [119] that weights, inputs, and gradients are progressively

more sensitive to bit-width changes. Fig. 44b depicts the prediction accuracy curve vs.

the number of epoch in different configurations. It is observed that the low bit-width

networks can keep the accuracy high compared to the original 32-bit case.

4.3.3.3.4 Energy consumption

Fig. 45 shows the MRIMA’s energy-efficiency results on DNN application with

a batch size of 8 and 64 in different <W:I>. As shown, the MRIMA solution of-

fers the highest energy-efficiency normalized to the area compared to others owing to

its energy-efficient and parallel operations. It can be observed that MRIMA achieves

∼1.8× and 2.1× higher energy-efficiency than that of DRAM-3T1C and 1T1C-adder,

respectively. The main reason is the energy-efficiency of operations in MRIMA; as dis-
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Config. Complexity Test Error
W I Inference Training our Model
32 32 -(†) - 2.4%
1 1 1 9 3.1%
1 2 2 10 2.6%
1 4 4 12 2.4%
1 8 8 16 2.3%

(†) The computation complexity of 32:32 is not shown, since it is
not computationally efficient to perform bit-wise convolution of
32:32 configuration [119] and it is already reported in previous
works.
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Figure 44: (a) Test error of the DNN model, (b) Prediction accuracy vs. epoch.

cussed earlier, MRIMA can finish the operation (such as IML21) in one single cycle,

however similar operation in DRAM-3T1C imposes multi-cycle operations to avoid

destructive data-overwritten. Besides, the n-bit adder located after SAs in DRAM-

1T1C-adder solution will bring higher performance compared to 1T1C, though it has

limited its energy-efficiency. Fig. 45 shows that MRIMA solution is 1.7×more energy-

efficient than the best ASIC solution. Besides, it shows ∼8.5× saving in energy com-

pared to the ReRAM solution. It is worth pointing out that MRIMA doesn’t follow

the conventional ReRAM-based cross-bar designs to realize DNN-in-memory, which

brings significant energy-efficiency due to eliminating DAC/ADC units. Compared to

the STT-CiM counterpart, MRIMA obtains on average 1.4× higher energy-efficiency

normalized to the area. Besides, the STT-CiM imposes additional memory cycles and

consecutively energy to save Carry bit in addition operation. This was alleviated using

MRIMA’s in-SA latch.
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Figure 45: Energy-efficiency of MRIMA vs. different DNN accelerators.

4.3.3.3.5 Performance

Fig. 46 shows the MRIMA’s performance results on DNN application in different

<W:I>. It shows that the MRIMA solution is 2.4× faster than the best DRAM solu-

tion (1T1C-adder) and 11.2× faster than the ASIC64 solution. This is mainly because

of (1) ultra-fast and parallel in-memory operations of MRIMA compared to multi-

cycle DRAM operations and (2) the existing mismatch between computation and data

movement in ASIC designs and even 1T1C-adder solution. As a result, ASIC256 with

more tiles does not show higher performance. We can also observe that the larger the

activation’s bit-width is, the higher performance is obtained for MRIMA solution than

DRAMs due to its more paralleled computations. Additionally, we see that MRIMA

is 8.1× faster than ReRAM solution. ReRAM design employs matrix splitting due to

intrinsically limited bit levels of ReRAM device, so multiple sub-arrays should be oc-

cupied, besides ReRAM-based cross-bar has a large peripheral circuit’s overhead such

as buffers and DAC/ADC which contribute more than 85% of area [14]. MRIMA

achieves on average 1.5× higher speed-up compared with STT-CiM, with the exact
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Figure 46: Performance of different MRIMA vs. DNN accelerators.

same memory configuration. This mainly comes from MRIMA’s fast and fully parallel

operations.

Fig. 47 shows the breakdown of the energy and delay measurement of convolutional

layers for four PIM-based solutions, i.e., MRIMA, STT-CiM, DR-3T1C, and ReRAM

into the read and write parts for two bit-width configurations <1:1> and <1:4>. We

can observe that MRIMA outperforms other platforms in terms of number write-back

operations leading to reduced energy and delay. Note that, while the other PIM coun-

terpart designs based on NVMs such as Prime [14], ISAAC [34], etc. implement full

bit-wise DNN inside ReRAM, MRIMA proposes an alternative way, not only taking

advantage of a higher endurance memory (MRAM), but also providing a faster and

more energy-efficient computation solution for such data-intensive application. As a

numerical evaluation, assuming the most write-intensive application in our experiment,

i.e., bit-wise DNN with <1:8> configuration, with the same layer structure, MRIMA

requires 9224 ≃ 105 write cycles. Therefore, even by reusing computational sub-arrays

by repeatedly R&W operations, MRIMA can readily run the application.
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Figure 47: Break-down of (a) Energy and (b) Delay of four PIM platforms.

4.3.3.3.6 Memory wall

Fig. 48 depicts the memory bottleneck ratio, i.e., the time fraction at which the

computation has to wait for data, and on-/off-chip data transfer obstructs its perfor-

mance (memory wall happens). The evaluation is performed according to the peak per-

formance and experimentally extracted results for each platform, considering the num-

ber of memory access in each bit-width configuration. The results8 show the MRIMA’s

favorable solution for solving the memory wall issue. (1) We observe that MRIMA,

STT-CiM, and DRAM-3T1C solutions spend less than ∼15% time for memory ac-

cess and data transfer. While ASIC- and DRAM-1T1C accelerators spend more than

90% time waiting for the loading data. (2) In larger activation bit-widths (<I>=4 and

8), the ReRAM solution shows a lower memory bottleneck ratio than MRIMA. This

comes from two sources: (1) increased number of computational cycles and (2) un-

balanced computation and data movement of MRIMA due to the limitation in the

number of activated sub-arrays when operands get larger.

8GPU data could not be accurately reported for this evaluation.
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Figure 48: The memory bottleneck ratio.

4.3.3.3.7 Resource utilization

The less memory wall ratio can be interpreted as the higher resource utilization ratio

for the accelerators, shown in Fig. 49. For instance, in <1:8>, MRIMA, STT-CiM,

DRAM-3T1C, and ReRAM solutions utilize the highest ratio (up to 65%), which

reconfirms the results reported in Fig. 48.8 64 8 64 8 64 8 64
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Figure 49: The resource utilization ratio.
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4.4 Summary

To accelerate DNN in PIM platforms, the analog current-mode weighted summa-

tion operation in resistive memory crossbars intrinsically matches the dominant MAC

operation in the DNN. Alternatively, latest algorithmic progression has brought com-

petitive classification accuracy for neural networks despite constraining the network

parameters to limited-bit representations, which essentially converts the MAC oper-

ation to much simpler bulk bit-wise operations such as addition or comparison that

can be accelerated inside existing digital memories (e.g., SRAM, DRAM, MRAM).

In this chapter, a generic and comprehensive evaluation framework was initially pre-

sented to quantitatively analyze the performance of various PIM platforms running

big data applications. The framework was then put into the test to quantitatively com-

pare such analog and digital PIM acceleration solutions for DNNs. The observations

was reported considering three key evaluation metrics, i.e., area, energy, latency. In

the second part of Chapter 4, a practical DNN case study was presented to demon-

strate MRIMA’s [1] acceleration for binary-weight and low bit-width convolutional

neural networks. The device-to-architecture co-simulation results on CNN accelera-

tion demonstrate that MRIMA can obtain 1.7× better energy-efficiency and 11.2×

speed-up compared to ASICs, and, 1.8× better energy-efficiency and 2.4× speed-up

over the best DRAM-based PIM solutions.
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Chapter 5

PROCESSING-IN-MEMORY ACCELERATION OF GENOME ANALYSIS

5.1 Introduction

The main focus of chapter 5 is on in-memory acceleration of bioinformatics ap-

plications including DNA short read alignment and DNA genome assembly with the

presented PIM platforms [2], [10] in Chapter 2. To achieve this goal, the existing

bioinformatics algorithms are first reconstructed such that they could be fully imple-

mented in the presented PIM platforms. Then, local data partitioning methodologies,

mapping, and pipeline techniques are developed to maximize the parallelism in mul-

tiple computational sub-arrays while doing a particular genome analysis task. At the

end, the performance and energy-efficiency of the proposed PIM accelerators are exten-

sively assessed and compared with recent genome analysis accelerators based on GPU,

ASIC, FPGA, processing-in-ReRAM, etc. with the bottom-up evaluation framework

presented in Section 4.2.

5.2 DNA Short Read Alignment

The novel DNA sequencing method on top of the recent high-throughput genomic

technologies, is able to analyze and give the accurate order of nucleotides (nt) along

genomes, and to measure cells’ molecular activities. Such advances improves diagnos-

tics of disease and different aspects of medical care, such as prenatal testing and tailor-

ing patient treatment [6], [148]. In general, the generated sequence data of one patient
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Figure 50: Short read alignment concept.

sample is composed of tens of millions short DNA sequences (short reads) ranging from

50-500 nucleotide-nt in length with no position information. Thus, it is required to

determine what part of the chromosome/genome they are from before most genomic

analyses can start. This is achieved by aligning the short reads to the reference genome as

shown in Fig. 50. The reference genome is really large containing two paired, twisting

strands where each strand consists of roughly 3.2 billion nt bases (A, T , C, G) in human

specifically paired as A-T and C-G [2], [149], [150]. As a result, for a single sample,

the DNA short read alignment task is to map the reads (tens of millions) to a reference

genome (3.2 billion base pair-bp) allowing 1-2 mismatches on each short read. Various

alignment algorithms have been developed during the last decade. However, even the

efficient algorithms such as Bowtie [151] or BWA [152] based on Burrows-Wheeler

Transformation (BWT) seek hours or even days to align the short reads generated by

one run (Terabytes of DNA sequence data) from DNA sequencing machine. Therefore,

the genomic information achieved from DNA sequencing data cannot be applied for

prognosis or disease diagnosis in clinics and hospitals.

Today’s sequencing acceleration platforms including CPU, GPU [153], ASIC

[148], [154], [155], and FPGA [156] are mostly based on the von-Neumann archi-
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tecture with separate computing and memory components connecting via buses and

inevitably consume a large amount of energy in data movement between them. The

most recent ReRAM-based PIM solutions for short read alignment [157], [158] rely

on Ternary Content-Addressable Memory (TCAM) arrays that unavoidably impose

significant area and energy overheads to the system [149] due to associative processing

dealing with Smith-Waterman (SW)-based algorithms that require many write oper-

ations and takes 75% of the ReRAM cells to store the intermediate data [159]. Al-

ternatively, RADAR [158], AligneR [149], and FindeR [160] present ReRAM-based

PIM architectures that can directly map more efficient algorithms such as BLASTN

and FM-index-based search.

5.2.1 BWT-based Read Mapping

Sequence alignment algorithms (e.g., BWA [152] and Bowtie [151]) take all the ad-

vantages of BWT and index the large reference genome-S to implement the read align-

ment efficiently. The BWT is a reversible rearrangement of a character string. Exact

alignment finds all occurrences of the short readR (m bp) in the reference genome-S (n

bp). Fig. 50 shows an intuitive example of exact alignment of a sample read-R = CTA

to a sample reference S = TGCTA$ extracted from a gene, in which $ denotes the end

of a sequence. BW matrix (constructed by lexicographically sorting the strings origi-

nated from circulating string S) makes the Suffix Array (SA) of a reference genome-S a

lexicographically-sorted array of the suffixes of S, where each suffix is represented by its

position in S. In this way, the last column in the BW matrix is the BWT of reference-S,

here, BWT (S) = ATGTC$.
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The FM-Index is then built on top of BWT providing the occurrence information

of each symbol in it. The SA interval (low, high) covers a range of indices where the

suffixes share the same prefix. A backward search of the matched positions in the ref-

erence genome-S is then executed for each short read-R starting from the rightmost

nucleotide (A in Fig. 50). The matched lower bound (low) and upper bound (high) in

a SA of the S for each nucleotide in R are determined based on FM-Index and count

function [152]. Thus, SA interval can represent all the occurrences of the query string.

At the end of search, if low < high, R has found a match in S. Otherwise, it has failed

to find a match. The complexity of this alignment algorithm is linearly proportional to

the number of nucleotides in a read (O(m)) in contrast to dynamic programming al-

gorithms such as Smith-Waterman (SW) with O(nm) complexity [161]. Backtracking

can simply extend the exact alignment algorithm to allow mismatches to support inex-

act alignment. In this approach, the DNA short read is permuted using edit operations

(substitutions, insertions or deletions).

5.2.2 Presented PIM Sequencing Algorithm

The DNA alignment-in-memory algorithm consists of two stages: exact alignment

and inexact alignment. For most sequencing data, up to∼70% of short reads should be

exactly aligned to the reference genome after stage one. The remaining reads are then

processed through the stage two. Most genome variations are relatively small, involving

only one or two nucleotides. If we only allow exact match between short reads and the

reference genome, the reads contain the genome variations from the sample cannot map

to the reference genome. In addition, the genome variations (e.g., single nucleotide

mutations) cannot be identified based on the exact alignment algorithm. Thus, such
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potential molecular signatures cannot be applied for disease phenotype prediction. In

the following, these two stages are respectively elaborated.

5.2.2.1 Exact Alignment Algorithm

The proposed customized alignment algorithm [2], [10] is developed based on

BWT and FM-Index [152], and optimized using the developed PIM’s functions

(AlignS [2] and PIM-AligneR9 [10] in Chapter 2). As depicted in Fig. 51, the first step

is to store some important pre-computed tables based on reference genome-S. This is

only a single-time computation for BWT, SA, and Marker Table (MT ) to be saved in

the memory consuming ∼12GB of memory space. We need to reconstruct and store

the table data into different memory sub-arrays, banks and chips to provide high-speed

memory access and parallel PIM operations. In Fig. 51, the number of nucleotides in

the BW matrix’s first column that are lexicographically smaller than the nucleotide-nt

is represented by Count(nt). So there are four elements for sequence alignment. The

FM-index table so-called Occurrence (Occ.) table, is then made based on BWT. In

Occ. table, each element-Occ[i, nt] represents the number of occurrences in the posi-

tion range 0 to i− 1 for nucleotide-nt in the BWT. We sampled such large Occ. table

every d positions (i.e. bucket width) and reconstructed a Sampled Occ. table. There-

fore, we are able to diminish the table size by a factor of d. Besides, a MT was developed

by element-wise addition between Count(nt) and sampled Occ. table. Such marker

table has the same size with Sampled Occ-Table. MT basically consists of the matched

position of nt in the first column of BWT. Accordingly, both PIM platforms are able

to effectively retrieve low and high values in each iteration.

9The design is similar to GraphS [4] in Chapter 2.
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Figure 51: The required pre-computation in alignment-in-memory algorithm.

In Algorithm 1, the backward search process can be reconstructed with the pre-

sented hardware-friendly Bound(MT , nt, id) procedure (line-9) executed on BWT.

This procedure calculates the updated low or high interval’s value from MT with an

input index-id considering a bucket width of d. As can be observed, such Bound pro-

cedure iteratively performs in every step of ‘for’ loop. The aforementioned PIM plat-

forms are particularly developed to run such intensive computation via computing two

operations, i.e., comparison and addition between the occurrence counting data and

‘marker’ value for the required nts located between checkpoint positions and remaining

positions in BWT. As indicated in Algorithm 1, three in-memory functions, named,

MEM (memory read operation), XNOR_Match (XNOR2), and IM_ADD (add) are

used to implement the Bound procedure completely within memory. MEM function

is used to access data in the stored SA or MT having the index. XNOR_Match con-

ducts in-memory XNOR2 operation to check if there is a match between the BWT

elements saved in the entire word-line and the current input-nt in a single computa-

tional cycle. IM_ADD conducts 32-bit integer in-memory addition operation (index
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range) and compute ‘marker+count_match’ results without sending it to CPU or other

computing units.
March 6, 2021

Algorithm 1 DNA Exact Alignment-in-Memory.

Require: : Pre-Compute and Data Mapping: Partition pre-computed BWT, Marker
Table (MT ) and Suffix Array (SA) into memory chip.
input: DNA Short Read-R
output: positions of short read-R in reference genome-S
Step-1. Initialization:

1: low ← 0, high← |S| − 1
Step-2. Backward Search:

2: for i := |R| − 1 to 0 do
3: low ← Bound(MT [blow/dc], R[i], low)
4: high← Bound(MT [bhigh/dc], R[i], high)
5: if low ≥ high then
6: break & return 0 . there is no exact alignment

Step-3. Get matched positions from stored suffix array based on search result:
7: for j := low to high− 1 do
8: positions←MEM(SA[j]) . Read positions from Suffix Array memory

Define procedure Bound:
9: Procedure: Bound(MT , nt, id) . compute matched interval

10: count match← 0
11: for j := 0 to j < (id mod d) do . count number of nt within the BWT region
12: if XNOR Match(nt,BWT [id− (id mod d) + j]) == 1 then
13: count match = count match + 1

14: marker ←MEM(MT [bid/dc], nt]) . Read Marker Table value
15: return IM-ADD(marker, count match)
16: end Procedure

1

Two main features can be identified in the modified alignment algorithm that makes

it a potential candidate for in-memory implementation: 1) it matches AlignS [2] and

PIM-Aligner’s [10] logic operations (e.g., comparison and addition) very well and 2) it

is memory-bound and parallelizable, not needing any memory access to perform entire

read alignment.

5.2.2.2 Extend to Inexact Match

Here the exact alignment algorithm is extended to handle inexact match (mismatch,

insertion and deletion) as shown in Algorithm 2. With recursively computing the inter-

vals that match R[0, i], the presented inexact alignment algorithm allows mismatches
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between read-R and reference genome-S within a tolerance (no more than z differences)

with the condition that R[i + 1] matches {low, high}. While updating the intervals I,

we consider all possible alignments as long as there exists tolerance for differences up to

current position i. For the intervals I of position i, we perform union for all match (line

18) and mismatch (line 20) intervals. Accordingly, the algorithm reports the target po-

sitions (line 4) in the reference genome, with no more than z mismatches, which the

read can be mapped to. We observe that since Algorithm 2 again iteratively exploits the

presented Bound function, it can be also accelerated by the proposed PIM platforms.

Algorithm 2 DNA Inexact Alignment-in-Memory.

Require: : Pre-Compute and Data Mapping: Partition pre-computed BWT, Marker
Table (MT ) and Suffix Array (SA) into memory chip.
input: DNA Short Read-R, z mismatches allowed in the alignment.
output: positions of short read-R in reference genome-S with up to z mismatches.
Step-1. Initialization:

1: low ← 0, high← |S| − 1
2: return I= InexactRecursive(R, |R| , low, high, z):
3: for i := |I| − 1 to 0 do
4: positions←MEM(SA[I[i]])

Define procedure InexactRecursive :
5: Procedure: InexactRecursive(R, i, low, high, z) . z is the number of

mismatches allowed
6: if z < 0 then
7: break & return 0
8: if i < 0 then
9: return [low,high]

10: I ← 0
11: I ← I ∪ InexactRecursive(R, i− 1, low, high, z − 1) . Insertion
12: for each b ∈ {A,C,G, T} do
13: low ← Bound(MT [blow/dc], R[i], low)
14: high← Bound(MT [bhigh/dc], R[i], high)
15: if low < high then
16: I ← I ∪ InexactRecursive(R, i, low, high, z − 1) . Deletion
17: if b = R[i] then
18: I ∪ InexactRecursive(R, i− 1, low, high, z) . Exact Match
19: else
20: I ∪ InexactRecursive(R, i− 1, low, high, z − 1) . Inexact Match

21: return I
22: end Procedure

Algorithm 3 Procedure Hashmap(S, k)

Step-1. Initialization:
1: hashtable named Hashmap = {}

Step-2. Fill out the table:
2: for i := 0 to length(S)-k+1 do
3: k mer ← S[i : i + k] . copy values of S[i to i + k] into variable k mer
4: if PANDA˙Cmp(k mer,Hashmap) == 0 then
5: PANDA Mem˙insert(k mer, 1)
6: else
7: New frq ← PANDA Add(k mer, 1) . increment frq by 1
8: PANDA Mem˙insert(k mer,New frq) . insert into Hashmap again

9: return Hashmap

2
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5.2.3 Correlated and Localized Computation

5.2.3.1 Partitioning

The pre-computed tables (BWT, MT, and SA) require a large memory space, there-

fore, to fully leverage AlignS and PIM-Aligner’s parallelism, and maximize alignment

throughput, a partitioning, mapping and pipeline design was designed. Given a BWT

index range, the accessed memory region of MT and BWT could be readily predicted

and computation could be localized if we store such correlated region into the same

memory sub-array. The correlated data partitioning and mapping methodology, as

shown in Fig. 52a, locally stores correlated regions of BWT and MT vectors in the

same memory sub-array to enable fully local computation (i.e., XNOR_Match and

IM_ADD completely within the same sub-array without inter-bank/chip communi-

cation). To do it, each PIM’s sub-array (512×256) is spilt into four zones to save four

different data types, i.e., BWT, CRef, MT, and reserved space for IM_ADD (Fig. 52a).

First, 256 rows are filled with the corresponding BWT, where each row stores up to

128 bps (encoded by 2 bits). Besides, 4 nucleotide computational reference vectors

(CRef ) are initialized, in which each vector gives one type of nucleotide with vector

size of number of bits in one word-line. CRef is designed to enable fully parallel match

operation- XNOR_Match. Next to it, the value of markers (MT) is check-pointed every

d (=128) positions (one row), and vertically stored to keep the size in check within the

PIM platforms. Hence, 256 columns are allocated for storing MT, each storing 4-byte

value for bps (128-bit). After partitioning, starting from the rightmost symbol in R,

Bound procedure runs and returns low and high for next symbol.
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Figure 52: (a) AlignS [2] and PIM-Aligner’s [10] sub-array partitioning for comparison
and addition operations, (b) Parallel comparison operation (XNOR_Match), (c) MEM
function to retrieve marker_add, (d) IM_ADD function with two methods.

5.2.3.2 Mapping and Computation

Considering current input nucleotide is T and input index as id (in Fig. 52b), the

presented PIM platforms can convert the BWT index into the corresponding mem-

ory WL and BL addresses storing data BWT [id − (id mod d)] to BWT [id]. Then,

such bits and corresponding CRef-T can implement the parallel comparison opera-

tions (XNOR_Match). If the XNOR output is ‘1’ (a match is found), DPU’s embedded

counter counts up to eventually compute count_match for next operation. Fig. 52b
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intuitively shows the XNOR_Match procedure to locate T s in a sub-array. When count-

ing is done, the sub-array returns the count_match and marker address (marker_add),

shown in Fig. 52c. The correlated data partitioning methodology guarantees the read

of marker value (MEM ) is always a local memory access within the same memory

array (Fig. 52c). Now, the marker and just computed and transposed count_match

are buffered in MT and reserved memory spaces, respectively, as shown in Fig. 52d.

To further implement IM_ADD function, two distinct hardware-friendly methods are

proposed; method-I performs the bit-line addition within the same computational sub-

array based on the presented in-memory addition operation though it degrades the sys-

tem performance as other sub-array resources (MEM and XNOR_Match) are not used.

To alleviate this issue, method-II essentially duplicates the number of sub-arrays, where

only in-memory addition computation is transferred to a second sub-array.

5.2.3.3 Pipeline Design

To improve the base-line PIM-Aligner’s performance, the processing of multiple

reads is considered such that in each pipeline stage a different short read-R could be

processed. We take the partitioning method-II for pipeline design. With a careful

observation of DNA alignment computation phases, it can be realized that the different

computing resources of a single sub-array could be set free by copying the sub-array

data into a new sub-array. Therefore, we define Pd as parallelism degree (i.e., # of the

leveraged sub-arrays) to control the trade-off of resources and performance metrics. For

instance, comparison resources of a particular sub-array can be set free after duplicating

(Pd=2) that sub-array (method-II). This pipeline technique is intuitively shown in Fig.

53 for a sample 3 reads; when the R1 is being processed for IM_ADD in the second
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Figure 53: The pipeline technique with Pd=2 for PIM-Aligner.

sub-array, R2 can exploits the parallel XNOR_Match resources in the first sub-array to

increase the parallelism. This can be generalized to more number of sub-arrays where

more than two sub-arrays contribute to the computation at the cost of a higher energy

consumption.

5.2.4 Evaluation

5.2.4.1 Counterpart Computing Platforms

To evaluate the performance of the presented PIM platforms, i.e., accelerating DNA

short read alignment task, the comprehensive device-to-architecture evaluation frame-

work in Section 4.2 was exploited. We perform an extensive comparison with the

counterpart computing platforms, including SW-based Darwin [148], ReCAM [162]

and RaceLogic [154], as well as FM-Index-based platforms including Soap3-dp [153]

on GPU, FPGA [156], ASIC [155], AlignS [2], and AligneR [149]. We refer the

readership to the abovementioned papers for the detailed configuration of each acceler-

ator. Note that, to perform short read alignment on GPU, the Soap3 [153] was used

considering only reads with ≤2 mismatches. The ReRAM-, SOT-MRAM, and CAMs

were re-implemented with PIMA-SIM. For evaluation, 10 millions 100-bps short read

queries were generated via ART simulator [163] and aligned to the human genome
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Hg19 with different computing platforms. Note that the population variation and

genome error rate were set to 0.1% and 0.2%.

5.2.4.2 Power & Throughput

The power consumption of the DNA alignment task for different accelerators is

calculated and shown in Fig. 54a. The AlignS, the baseline (PIM-Aligner-n) and

the pipe-lined PIM-Aligner (Pd=2, PIM-Aligner-p) are accordingly implemented. The

first observation is that SW-based platforms (except for RaceLogic [154]) require a

larger power-budget as we expected, compared with FM-index-based designs. Besides,

among FM-index-based platforms, the PIMs generally show less power consumption.

ReRAM-based AligneR [149], ASIC [155], and SOT-MRAM-based AlignS [2] respec-

tively consume the least power. PIM-Aligner-n stands as the fourth power-efficient

design. It is noteworthy that PIM-Aligner uses three SAs per bit-line to perform the

computation in a single cycle, while the AlignS design has two SAs and a two-cycle

addition scheme as discussed in Chapter 2. That is why the PIM-Aligner consumes

more power than the SOT-MRAM counterpart.

The throughput results for different platforms are reported in Fig. 54b. We observe

that PIM-Aligner-p shows the highest throughput compared with other platforms ex-

cept RaceLogic due to its massively-parallel and local computational scheme. Based on

this plot, the pipeline technique with Pd=2 has improved the performance by ∼40%

compared to the baseline design.
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Figure 54: (a) Power consumption and (b) Throughput of different accelerators com-
pared to AlignS and PIM-Aligner (Y-axis:Log scale)

5.2.4.3 Trade-off

The performance/power trade-off can be better explained by correlated parameters,

as plotted in Fig. 55a-b. We observe that SOT-MRAM-AlignS achieves the highest

throughput per Watt compared to other platforms. Where PIM-Aligner-n stands as the

second most efficient design. The PIM-Aligner improves the short read alignment’s per-

formance by 3.1× over the RaceLogic [154], the best SW-based accelerator, and ∼2×,

43.8×, 458× over ASIC [155], FPGA [156], and GPU [153] platforms, respectively.

Fig. 55b takes estimated area of the chips into account. Considering the area factor,

we observe that PIM-Aligner improves read alignment performance significantly over

all the other solutions, e.g., by ∼9× and 1.9× compared to FM-index-based ASIC

and processing-in-ReRAM designs, respectively. Fig. 55c shows the trade-off between

power and throughput w.r.t. parallelism degree. We can see that by increasing the Pd,
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Figure 55: (a) Throughput/Watt, (b) Throughput/Watt/Area, and (c) Power-
throughput trade-off w.r.t. Pd.

both power consumption and throughput will increase. Therefore, Pd can be tailored

according to the system constraints to provide the best solution.

5.2.4.4 Off-Chip Memory Access

Figure 56a shows the required off-chip memory access for different accelerators.

We observe that FM-index-based GPU[153] and FPGA [156] platforms heavily rely

on off-chip memory consuming humongous energy to fetch data from stored tables

and queries. Note that, ASIC design performs the alignment with only 1GB off-chip

memory after compression. Figure 56b reports the Memory Bottleneck Ratio (MBR).

Based on this, PIM-Aligner spends less than ∼18% time for memory access and data

transfer. It is worth pointing out that other PIM platforms also spend less than 25%

time waiting for the loading data. AligneR [149] solution shows higher memory bottle-

neck ratio than PIM-Aligner due to its unbalanced computation and data movement.

The less MBR can be translated as the higher Resource Utilization Ratio (RUR) for the
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Figure 56: (a) Off-chip memory, (b) Memory Bottleneck Ratio, (c) Resource Utiliza-
tion Ratio for different accelerators.

computing platforms, shown in Fig. 56c. We can see that PIM-Aligner-p shows the

highest resource utilization with up to ∼86%.

5.3 DNA Genome Assembly

With the advent of high-throughput second generation parallel sequencing tech-

nologies, the process of generating fast and accurate large-scale genomics data has

become a significant advancement. Such data can enable us to measure the molec-

ular activities in cells more accurately by analyzing the genomics activities, including

mRNA quantification, genetic variants detection, and differential gene expression anal-

ysis. Thus, by understanding the transcriptomic diversity, we can improve phenotype

predictions and provide more accurate disease diagnostics [164]. However, the recon-

struction of the full-length transcripts considering sequencing errors is a challenging

task in terms of computation and time. Since the current cDNA sequencing technol-

ogy cannot read whole genomes in one step [165], the data produced by the sequencer
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Figure 57: (a) The de Bruijn graph-based genome assembly process, (b) Break down of
execution time of Meraculous genome assembler for human and wheat data-set [165],
[166].

is extensively fragmented due to the presence of repeated chunks of sequences, dupli-

cated reads, and large gaps. Thus, the goal of genome assembly process is to combine

these large number of fragmented short reads and merge them into long contiguous

pieces of sequence (i.e., contigs), to reconstruct the original chromosome from which

the DNA is originated as shown in Fig. 57a.

In bioinformatics hardware acceleration domain, most CPU [167]-/ GPU [168]-/

FPGA [169]- and even PIM [2], [149]-based efforts have only focused on the DNA

short read alignment problem, while the de novo genome assembly problem still re-

lies mostly on CPU-based solutions [170]. De novo assemblers are categorized into

Overlap Layout Consensus (OLC), greedy, and de Bruijn graph-based designs. Re-

cently, de Bruijn graph-based assemblers have gained much more attention as they are

able to solve the problem using Euler path in a polynomial time rather than finding

Hamiltonian path in OLC-based assemblers as an NP hard problem [171]. There are

multiple CPU-based genome assemblers implementing the bi-directed de Bruijn graph

model, such as Velvet [172], Trinity [173], etc. However, only a few GPU-accelerated
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assemblers have been presented such as GPU-Euler [170], [174], [175]. This mainly

comes from the nature of the assembly workload that is not only compute-intensive

but also extremely data-intensive requiring very large working memories. Therefore

adapting such problem to use GPUs with their limited memory capacities has brought

many challenges [176]. A graph-based genome assembly process, shown in Fig. 57a,

basically consists of multiple stages, i.e., k-mer analysis for creating a Hashmap, graph

construction and traversal, and scaffolding and gap closing. Fig. 57b depicts the break-

down of execution time for the well-known Meraculous assembler [166] for the human

and wheat data sets. We observe that Hashmap and graph construction/ traversal are

the two most expensive components, which together take over 80% of the total run

time.

5.3.1 Presented PIM Assembly Algorithm and Mapping

The genome assembly algorithm consists of three main stages visualized in Fig. 58.

First, creating a hash table out of chopped short reads (k-mers) and keeping a count

of each distinct k-mer; second, constructing a de Bruijn Graph with Hashmap; third,

traversing through de Bruijn Graph for Euler Path10. There is a final stage called scaf-

folding to close the gaps between contigs, which is the result of the denovo assembly

[165]. The first three stages always take most fraction of execute time and computa-

tional resources (over 80%) in both CPU and GPU implementations [165]. To effec-

tively handle the huge number of short reads, the assembly algorithm was modularized

by focusing on parallelizing the main steps by loading only the necessary data at each

stage into the PIM platform, and leave stage-4 as our future work. A variation of
10The stage II and III are so-called contig. generation
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Figure 58: The genome assembly stages.

GraphS [4] PIM platform, called PANDA [51] developed on top SOT-MRAM is se-

lected in this section for implementation. The PANDA can execute not only efficient

bulk bit-wise X(N)OR-based comparison/addition operations heavily required for the

genome assembly task but a full-set of 2-/3-input logic operations inside the MRAM

chip.

5.3.1.1 Stage One: Hash Table

Algorithm 3 shows the reconstructed Hashmap(S,k) procedure in which the algo-

rithm takes k-mer from the original sequence (S) in each iteration, creates a hash table

entry (key) for that, and assigns its frequency (value) to 1. This step is visualized in Fig.

59. If the k-mer is already in the table, it will calculate a new frequency (New_frq) by

adding the previous frequency by one and update the value. As indicated, Hashmap

procedure can be implemented through PANDA_Cmp (comparison), PANDA_Add

(addition), and PANDA_Mem_insert (memory W/R) in-memory operations. Such

functions are iteratively used in every step of ‘for’ loop and PANDA is specially de-

signed to handle such computation-intensive load through performing comparison,

summing, and copying operations.
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Algorithm 2 DNA Inexact Alignment-in-Memory.

Require: : Pre-Compute and Data Mapping: Partition pre-computed BWT, Marker
Table (MT ) and Suffix Array (SA) into memory chip.
input: DNA Short Read-R, z mismatches allowed in the alignment.
output: positions of short read-R in reference genome-S with up to z mismatches.
Step-1. Initialization:

1: low ← 0, high← |S| − 1
2: return I= InexactRecursive(R, |R| , low, high, z):
3: for i := |I| − 1 to 0 do
4: positions←MEM(SA[I[i]])

Define procedure InexactRecursive :
5: Procedure: InexactRecursive(R, i, low, high, z) . z is the number of

mismatches allowed
6: if z < 0 then
7: break & return 0
8: if i < 0 then
9: return [low,high]

10: I ← 0
11: I ← I ∪ InexactRecursive(R, i− 1, low, high, z − 1) . Insertion
12: for each b ∈ {A,C,G, T} do
13: low ← Bound(MT [blow/dc], R[i], low)
14: high← Bound(MT [bhigh/dc], R[i], high)
15: if low < high then
16: I ← I ∪ InexactRecursive(R, i, low, high, z − 1) . Deletion
17: if b = R[i] then
18: I ∪ InexactRecursive(R, i− 1, low, high, z) . Exact Match
19: else
20: I ∪ InexactRecursive(R, i− 1, low, high, z − 1) . Inexact Match

21: return I
22: end Procedure

Algorithm 3 Procedure Hashmap(S, k)

Step-1. Initialization:
1: hashtable named Hashmap = {}

Step-2. Fill out the table:
2: for i := 0 to length(S)-k+1 do
3: k mer ← S[i : i + k] . copy values of S[i to i + k] into variable k mer
4: if PANDA Cmp(k mer,Hashmap) == 0 then
5: PANDA Mem insert(k mer, 1)
6: else
7: New frq ← PANDA Add(k mer, 1) . increment frq by 1
8: PANDA Mem insert(k mer,New frq) . insert into Hashmap again

9: return Hashmap

2Considering the fact that the number of different keys in Hash table is almost com-

parable to the genome size G, the memory space requirement to save the hash is given

by ∼ 2 × G × (k + 1) bits (The factor of 2 is given to represent 2 bits per nucleotide).

For instance, storing Hash table for human genome with G ∼3×109 and k=32 requires

∼23GB mostly associated with storing the key. Due to very large memory space re-

quirement of hash table for assembly-in-memory algorithm [165], we partition these

tables into multiple sub-arrays to fully leverage PANDA’s parallelism, and to maximize

computation throughput. Obviously, larger memory units [177] and distributed mem-

ory schemes [165], [178] are preferable.

The proposed correlated partitioning and mapping methodology, as shown in Fig.

60a, locally stores correlated regions of k-mer (980 rows) vectors, where each row stores

up to 128 bps (A,C,G,T encoded by 2 bits) and value (32 rows) vectors in the same

sub-array. For counting the frequencies of each distinct k-mer, the ctrl first reads and

parses the short reads from the original sequence bank to the specific sub-array. As de-

picted in Fig. 60a, assuming S=CGTGTGCA as the short read, the k-mers- ki-ki+n are

extracted and written into the consecutive memory rows of k-mer region. However,

when a new query such as ki+3 arrives (while ki-ki+2 are already in the memory), it

will be first written to the temp region. A parallel in-memory comparison operation
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Figure 59: The hash table generation out of k-mers.

(PANDA_Cmp) will be performed between temp data and already-stored k-mers. Fig.

60b intuitively shows PANDA_Cmp procedure, where entire temp row can be com-

pared with a previous k-mer row in a single cycle. Then, a built-in ctrl’s AND unit in

DPU readily takes all the results to determine the next memory operation according to

the algorithm. To increase the frequency of a specific k-mer, PANDA_Add is leveraged

to perform in-memory addition without sending data to off-chip processor.

5.3.1.2 Stage Two: Graph Construction

The next step is to construct and access a de Bruijn graph based on the Hash struc-

ture to rapidly lookup of a ‘value’ associated with each k-mer. For each entry (of length

k) in the Hashmap, we will make two nodes, one with the prefix of length k-1 and other

with the suffix of length k-1 (e.g., CGTGC → CGTG and GTGC), and connect an

edge between them. For each Hash table entry with n as the frequency, n edges is then
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Figure 60: (a) The proposed correlated data partitioning and mapping methodology for
creating hash table, (b) Realization of parallel in-memory comparator (PANDA_Cmp)
between k-mers in a computational sub-array.

added between the two nodes. The de Bruijn graph G for the sample Hash table in Fig.

59 is constructed in Fig. 61 (step 1). Algorithm 4 shows the reconstructed de Bruijn

procedure for PANDA taking Hashmap data and k as input returning matrix G. For

each key within Hash table, PANDA_Mem_insert instruction creates an entry in G for

node1 and node2s.

Leveraging adjacency matrix representation for direct mapping of such humongous

sparse graph into memory comes at a cost of significantly increased memory require-

ment and run time. The size of adjacency matrix will be V×V for any graph with V

nodes, where sparse matrix could be represented by a 3×E matrix, where E is the total
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Figure 61: Graph construction with sparse matrix with partitioning, allocation and
parallel computation.

number of edges in the graph. PANDA utilizes sparse matrix representation shown in

Fig. 61 (step 2) for mapping purpose. Each entry in the 3rd row of the sparse matrix

represents the number of connections between two nodes in 1st and 2nd rows.

Algorithm 4 Procedure DeBruijn(Hashmap, k)

Step-1. Initialization:
1: G=[], Nodes List=[], i=1

Step-2. Sparse Graph Construction:
2: for ∀k mer ∈ Hashmap.keys(), i + + do
3: node 1← k mer[0 : k − 2]
4: node 2← k mer[1 : k − 1]
5: PANDA Mem insert(G[1][i], node 1)
6: PANDA Mem insert(G[2][i], node 2)
7: PANDA Mem insert(G[3][i], Hashmap[k mer])

8: return G

Algorithm 5 Procedure Find Start Vertex(G)

Step-1. Initialization:
1: start← 0, end← 0
2: edge cnt← 0 . For counting number of edges in G
3: Len← size(G)

Step-2. Find the start vertex:
4: for n in Nodes do
5: in degree[i]← 0
6: out degree[i]← 0

7: for n in Nodes do
8: for k :=1 to Len do
9: if PANDA Cmp(G[1][k], n) then . node n has an out-going edge

10: out degree[n]← PANDA Add(out degree[n], int(G[3][k]))
11: in degree[int(G[2][k])]← PANDA Add(in degree[int(G[2][k])], int(G[3][k]))
12: edge cnt← PANDA Add(edge cnt, int(G[3][k]))

13: if PANDA Cmp(out degree[n], in degree[n] + 1) then
14: start← n
15: else
16: start← first node

17: return start & edge cnt & out degree

Algorithm 6 Procedure Fleury(G, node, edge count, out degree)

1: for v := 0 to N do
2: if G[1][k] == start then
3: v ← G[2][k]
4: if isV alidNextEdge(v) then
5: PANDA Mem insert(v) . add (start, v) in the Eulerian path
6: PANDA Add(out degree[start],−1)
7: PANDA Add(G[3][k],−1) . remove one edge from the graph
8: PANDA Add(edge cnt,−1)

9: Fleury(G, v, edge count, out degree[]) . run Fleury again for the next node v

3

To balance workloads of each PANDA’s chip and maximize parallelism, the interval-

block partitioning method was leveraged. We used the hash-based approach [179] by

splitting the vertices into M intervals and then divided edges into M2 blocks as shown

Fig. 61 (step 3: mapping). Then each block is allocated to a chip (step 4: allocation)
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and mapped to its sub-arrays. Having an m-vertex sub-graph with Ns activated sub-

arrays (size=x× y), each sub-array can process n vertices (n ≤ f |n ∈ N, f = min(x, y))

(step 5: parallel computation). In this way, the number of processing sub-arrays for an

N-vertex sub-graph can be formulated as, Ns =
⌈
N
f

⌉
.

After graph construction, it is possible to perform a round of simplification on the

sparse graph stored in PANDA without loss of information to avoid fragmentation of

the graph. As a matter of fact, the blocks are broken up each time a short read starts or

ends leading to linear connected subgraphs [172]. This fragmentation imposes longer

execution time and larger memory space. The simplification process easily merges two

nodes within memory if a node-A has only one out-going edge directed to node-B with

only one in-going edge.

5.3.1.3 Stage Three: Traversal for Euler Path

The input of this stage will be a sparse representation of graph G. For traversing all

the edges, we will use Fleury’s algorithm to find the Euler path of that graph (a path

which traverses all edges of a graph). Basically, a directed graph has a Euler path if

the in_degree and out_degree11 of every vertex is same or, there are exactly two vertices

which have |in_degree - out_degree|= 1. Finding the starting vertex is very important to

generate the Eulerian path and we cannot consider any vertex as a starting vertex. The

reconstructed PIM-friendly algorithm for finding the start vertex in graph-G is shown

in Algorithm 5. For each node, this stage deals with massive number of iteratively-

used PANDA_Add to calculate the number of in_degree, out_degree and edge_cnt
11The in_degree[i] shows how many edges are coming into a vertex-i and out_degree[i] means how

many out-going edges vertex-i has.
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(total number of edges). Moreover, in order to check the condition (|out_degree =

in_degree|+ 1), parallel PANDA_Cmp operation is required.

Algorithm 4 Procedure DeBruijn(Hashmap, k)

Step-1. Initialization:
1: G=[], Nodes List=[], i=1

Step-2. Sparse Graph Construction:
2: for ∀k mer ∈ Hashmap.keys(), i + + do
3: node 1← k mer[0 : k − 2]
4: node 2← k mer[1 : k − 1]
5: PANDA Mem insert(G[1][i], node 1)
6: PANDA Mem insert(G[2][i], node 2)
7: PANDA Mem insert(G[3][i], Hashmap[k mer])

8: return G

Algorithm 5 Procedure Find Start Vertex(G)

Step-1. Initialization:
1: start← 0, end← 0
2: edge cnt← 0 . For counting number of edges in G
3: Len← size(G)

Step-2. Find the start vertex:
4: for n in Nodes do
5: in degree[i]← 0
6: out degree[i]← 0

7: for n in Nodes do
8: for k :=1 to Len do
9: if PANDA Cmp(G[1][k], n) then . node n has an out-going edge

10: out degree[n]← PANDA Add(out degree[n], int(G[3][k]))
11: in degree[int(G[2][k])]← PANDA Add(in degree[int(G[2][k])], int(G[3][k]))
12: edge cnt← PANDA Add(edge cnt, int(G[3][k]))

13: if PANDA Cmp(out degree[n], in degree[n] + 1) then
14: start← n
15: else
16: start← first node

17: return start & edge cnt & out degree

Algorithm 6 Procedure Fleury(G, node, edge count, out degree)

1: for v := 0 to N do
2: if G[1][k] == start then
3: v ← G[2][k]
4: if isV alidNextEdge(v) then
5: PANDA Mem insert(v) . add (start, v) in the Eulerian path
6: PANDA Add(out degree[start],−1)
7: PANDA Add(G[3][k],−1) . remove one edge from the graph
8: PANDA Add(edge cnt,−1)

9: Fleury(G, v, edge count, out degree[]) . run Fleury again for the next node v

3

After finding the start node, PANDA has to traverse through the length of sparse

matrix G from the starting vertex and check two conditions for each edge and accord-

ingly add qualified edges to the Eulerian Path. The reconstructed Fleury algorithm is

shown in Algorithm 6. If an edge is not a bridge and is not the last edge of the graph,

we will add (start, v) in the Eulerian path and remove that edge. isV alidNextEdge()

function will check if the edge (u, v) is valid to be included into our Euler path. If v

is the only adjacent vertex remaining for u, it means that, we have traversed all other

adjacent vertices, so we will take this edge, otherwise we won’t. The second condition

counts the number of reachable nodes from u before and after removing the edge. If

the number changes/decreases, it means that, the edge was a bridge (removing it will

disconnect the graph into two parts). If it is a bridge, we cannot remove the edge from

the graph; otherwise we will remove the edge and add it into Euler path.
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Algorithm 4 Procedure DeBruijn(Hashmap, k)

Step-1. Initialization:
1: G=[], Nodes List=[], i=1

Step-2. Sparse Graph Construction:
2: for ∀k mer ∈ Hashmap.keys(), i + + do
3: node 1← k mer[0 : k − 2]
4: node 2← k mer[1 : k − 1]
5: PANDA Mem insert(G[1][i], node 1)
6: PANDA Mem insert(G[2][i], node 2)
7: PANDA Mem insert(G[3][i], Hashmap[k mer])

8: return G

Algorithm 5 Procedure Find Start Vertex(G)

Step-1. Initialization:
1: start← 0, end← 0
2: edge cnt← 0 . For counting number of edges in G
3: Len← size(G)

Step-2. Find the start vertex:
4: for n in Nodes do
5: in degree[i]← 0
6: out degree[i]← 0

7: for n in Nodes do
8: for k :=1 to Len do
9: if PANDA Cmp(G[1][k], n) then . node n has an out-going edge

10: out degree[n]← PANDA Add(out degree[n], int(G[3][k]))
11: in degree[int(G[2][k])]← PANDA Add(in degree[int(G[2][k])], int(G[3][k]))
12: edge cnt← PANDA Add(edge cnt, int(G[3][k]))

13: if PANDA Cmp(out degree[n], in degree[n] + 1) then
14: start← n
15: else
16: start← first node

17: return start & edge cnt & out degree

Algorithm 6 Procedure Fleury(G, node, edge count, out degree)

1: for v := 0 to N do
2: if G[1][k] == start then
3: v ← G[2][k]
4: if isV alidNextEdge(v) then
5: PANDA Mem insert(v) . add (start, v) in the Eulerian path
6: PANDA Add(out degree[start],−1)
7: PANDA Add(G[3][k],−1) . remove one edge from the graph
8: PANDA Add(edge cnt,−1)

9: Fleury(G, v, edge count, out degree[]) . run Fleury again for the next node v

3

The out_/in_degree and edge_cnt mapping and computation are shown in the

PANDA platform in Fig. 62, which basically sums up all the entries of a particular

node i of valid links connected to a vertex to find the start vertex. As can be seen, the

sparse matrix representation is used to store the matrix-G. In the proposed mapping

technique, each column is assigned to a distinct source vertex in the graph and then

filled out with the number of edges (#E) only linked to existing destination vertices

in a vertical fashion. Therefore, we do not assign destination vertices to the memory

rows as in direct adjacency matrix mapping. Here, a 4-bit representation is considered

for the simplicity. For example, v4 has out-going edges to v2 and v6 that are stored

vertically in a sub-array. PANDA could perform parallel in-memory addition to calcu-

late the total number of out_ degree for all nodes in parallel. For this task, two rows

in the sub-array are initialized to zero as Carry reserved rows such that they can be

selected along with two operands (here v4→v2 data (0001) and v4→v6 data (0001))

to perform parallel in-memory addition. To perform parallel addition operation and

generate initial Carry and Sum bits, PANDA takes every three rows to perform a par-

allel in-memory addition. The results are written back to the memory reserved space

(Resv.). Then, next step only deals with multi-bit addition of resultant data starting

bit-by-bit from the LSBs of the two words continuing towards MSBs. Then PANDA

is able to perform comparison between number of out_degree and in_degree for each

node in parallel to determine the start node. After finding the start node as shown in
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Figure 62: PANDA in-memory addition and comparison scheme for finding the start
vertex.

Fig. 62, contig. generation can be readily accomplished through finding the Eulerian

path and putting together each vertex data from different sub-arrays.

5.3.2 Evaluation

5.3.2.1 Counterpart Computing Platforms

To the best of our knowledge, PANDA is the first to explore the performance of

a PIM platform for genome assembly problem, therefore, the evaluation test bed was

developed from scratch to have an impartial comparison with both von-Neumann and

non-von-Neumann architectures. The PANDA’s computational memory sub-array

was configured with 1024 rows and 256 columns, 4×4 memory matrix (with 1/1 as

row/column activation) per bank organized in H-tree routing manner, 16×16 banks
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(with 1/1 as row/column activation) in each memory chip. For comparison, we con-

sider five computing platforms: 1) A general purpose processor (GPP): a Quad Core In-

tel Core i7-7700 CPU @ 3.60GHz processor with 8192MB DIMM DDR4 1600MHz

RAM and 8192KB Cache; 2) A processing-in-STT-MRAM platform capable of per-

forming bulk bit-wise operations [180]; 3) The developed processing-in-SOT-MRAM

platform, i.e., AlignS for DNA sequence alignment optimized to perform comparison-

intensive operations [2]; 4) A processing-in-ReRAM accelerator designed for acceler-

ating bulk bit-wise operations [37]; 5) A processing-in-DRAM accelerator based on

Ambit [19] working with triple row activation mechanism to implement various func-

tions. All PIM platforms have an identical physical memory configuration as PANDA.

The presented cross-layer simulation framework in Section 4.2 was then used start-

ing from device-level simulation all the way to circuit- and architectural level. To eval-

uate the CPU performance, we used Trinity-v2.8.5 [173] which was shown to be sen-

sitive and efficient in recovering full-length transcripts. Trinity constructs de Bruijn

graph from short-read sequences and employs an enumeration algorithm to score all

branches, and keeps possible ones as isoforms/transcripts.

In the experiment, 60952 short reads were created through Trinity sample genome

bank with 519771 unique k-mers. The k-mer length, k, was initially set to default

25, and then changed to 22, 27, and 32 as typical values for most genome assemblers.

To clarify, the CPU executes the Inchworm, Chrysalis, and Butterfly steps in Trinity,

while PIM platforms run three main procedures in genome assembly shown in Fig. 58,

i.e., Hashmap, DeBruijn, and Traverse for under-test PIM platforms. Trinity’s power

consumption and execution time are then compared to that of other PIM assemblers

by several measures. To have a fair comparison with such a comprehensive assembler

(that performs full genome assembly task with scaffolding step), we penalized the PIM
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platforms with ∼25% excessive time and power. This could provide a more realistic

comparison with a von-Neumann architecture-based assembler.

5.3.2.2 Run Time

The execution time of genome assembly task for different platforms is reported in

Fig. 63. For k=25, the CPU platform executes the Inchworm, Chrysalis, and Butterfly

steps [173] of Trinity in∼32s, where Chrysalis for clustering the contigs and construct-

ing complete de Bruijn graph takes the largest fraction of the run time (28s) as expected.

However, the comparison operation-intensive Hashmap procedure for k-mer analysis

takes the largest fraction of execution time in all PIM platforms (over 40% of total run

time). Larger k-mer length typically diminishes the de Bruijn graph connectivity by

simultaneously reducing the number of ambiguous repeats in the graph and chance of

overlap between two reads. That is why run time for all platforms reduces with increase

of k-mer length.

We can observe that PIM platforms reduce the run time remarkably compared to

the CPU. As shown, PANDA reduces the run time by ∼18× compared to the CPU

platform for k=25 (18.8× on average over 4 different k-mer lengths). The PANDA plat-

form essentially accelerates the graph construction and traversal stages by∼21.5× com-

pared with CPU platform. Now, by increasing the k-length to 32, the higher speed-up

is even achievable. Compared with counterpart PIM platforms, our X(N)OR-friendly

design reduces the run time on average by 4.2×, 2.5×, compared to STT-PIM [180],

and SOT-PIM [2] platforms as the fastest counterparts, respectively. This comes from

the fact that under-test PIM platforms require multi-cycle operations to implement

addition operation. Besides, the SOT-based device intrinsically shows higher write
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Figure 63: The breakdown of run time for under-test platforms running different
k-mer-length genome assembly task. In each bar group from left to right: CPU,
processing-in-STT-MRAM [180], PANDA, processing-in-SOT-MRAM/AlignS [2],
processing-in-DRAM [19], and processing-in-RRAM [37].

speed compared to STT devices. Compared to DRAM and RRAM platforms, PANDA

achieves on average 10.9× and 6× speed-up for various length k-mer processing. It is

worth pointing out that the processing-in-DRAM platforms possess a destructive com-

puting operation and require multiple memory cycle to copy the operands to particular

rows before computation. As for Ambit [19], seven memory cycles are needed to im-

plement in-memory-X(N)OR function.

5.3.2.3 Power Consumption

The power consumption of different PIM platforms was estimated for running dif-

ferent length k-mers compared to the CPU as shown in Fig. 64. Based on our results, a

significant reduction in power consumption can be reported for all under-test PIM plat-

forms compared with the CPU. The breakdown of energy consumption is also shown
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for the PIM platforms, however this couldn’t be accurately achieved for the CPU and

overall power consumption is reported. In the experiment, the processing-in-SOT-

MRAM design/AlignS [2] achieves the smallest power consumption (on average) to

run the three main procedures, as compared with the CPU and other PIM platforms.

The PANDA platform stands as the second most power-efficient design. This is mainly

due to the three-SA based bit-line computing scheme in PANDA compared with two-

SA per bit-line technique in the counterpart design. While the proposed scheme brings

more speed-up compared with the design in [2], it requires relatively more power. The

PANDA reduces the power consumption by ∼9.2× on average compared with the

CPU platform over different length k-mers. Besides, it reduces the power consump-

tion by ∼18% compared with STT-MRAM [180] platform. The main reason behind

this improvement is more efficient addition operation in PANDA. Addition operation

requires additional memory cycles in the STT-MRAM [180] platform to save carry

bit back to the memory and use it again for the computation of next bits. Compared

to DRAM and RRAM platforms, PANDA obtains on average 2.11× and 55% power

reduction for various length k-mer processing.

5.3.2.4 Speed-up/Power-Efficiency Trade-off

We investigate the power-efficiency and speed-up of three best under-test PIM plat-

forms, based on the run time and power consumption results in the previous subsec-

tions, by tuning the number of active sub-arrays (Ns) associated with the comparison

and addition operations. A parallelism degree (Pd) can be then defined as the num-

ber of replicated sub-arrays to boost the performance of the PIM platforms through

parallel processing as shown in prior works [2], [23]. For example, when Pd is set
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to 2, two parallel sub-arrays are undertaken to process the in-memory operations, si-

multaneously. Such parallelism is expected to improve the performance of genome

assembly at the cost of sacrificing the power consumption and area. Fig. 65 plots the

existing trade-off between run time and power consumption vs. Pd for k= 25. The

estimated CPU power budget required to execute Trinity is also shown. It can be seen

that for all platforms the run time reduces by increasing the parallelism. For example

for PANDA platform, in an extreme case, increasing Pd from 1 to 8 increases the power

consumption from ∼19W to 128W (∼7×) and reduces the execution time by a factor

of 3, which might not be a favorable case. Therefore, a user can meticulously tailor the

PANDA performance to meet the system/application constraints. Here, the optimum

theoretical performance of PANDA and other PIM platforms could be identified by

pinpointing the intersection between power and run time curves in Fig. 65. We ob-

serve that PANDA achieves the smallest run time and power consumption task with a

Pd ∼2 compared with the others.
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5.3.2.5 Memory Wall

The power-efficiency and speed-up of PIM platforms against the von-Neumann

architecture-based CPU was discussed in prior subsections. Here, we further explore

the reasons behind the numbers reported by considering two new measures, i.e., Mem-

ory Bottleneck Ratio (MBR) and Resource Utilization Ratio (RUR). We define MBR

as the time fraction needed for data transfer from/to on-chip or off-chip, when compu-

tation has to wait for data, i.e., memory wall happens. We also define RUR as the time

fraction in which the computation resources are loaded with data. The memory wall is

considered as the main bottleneck that brings large power consumption and lengthen

execution time in CPU.

The MBR is reported in Fig. 66a. The peak throughput for each design in four dis-

tinct k-mer lengths is taken into account for performing the evaluation. This evaluation

mainly considers the number of memory access. As shown, the PANDA uses less than
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∼17% time for data transfer due to the PIM acceleration schemes, while CPU’s MBR

increases to 65% when k=25. Besides, all the other PIM platforms except DRAM also

spend less than ∼17% time for data communication. The smaller MBR can be trans-

lated as the higher RUR for the accelerators plotted in Fig. 66b. The less MBR can be

understood as a higher RUR. With up to ∼82%, PANDA achieves the highest RUR.

Taking everything into account, PIM acceleration schemes offer a high utilization ratio

(>60% excluding DRAM) confirming the conclusion drawn in Fig. 66a. The memory

wall evaluation shows the efficiency of the PANDA platform for solving memory wall

challenge.

5.4 Summary

Chapter 5 presents in-memory acceleration schemes for two bioinformatics appli-

cations, 1-DNA short read alignment and 2-DNA genome assembly, based on the

presented PIM platforms in Chapter 2. For the first application, by selecting AlignS

[2] and PIM-Aligner [10] platforms, local data partitioning, mapping, and pipeline
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Figure 66: (a) Memory bottleneck ratio and (b) Resource utilization ratio for CPU and
three under-test PIM platforms for running genome assembly task.
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techniques were presented to maximize the parallelism in multiple computational sub-

arrays while conducting the alignment task. The simulation results showed that PIM-

Aligner outperforms recent platforms based on dynamic programming with ∼3.1×

higher throughput per Watt. Besides, PIM-Aligner improves the short read alignment

throughput per Watt per mm2 by ∼9× and 1.9× compared to FM-index-based ASIC

and processing-in-ReRAM designs, respectively.

For the second application, a highly parallel and step-by-step hardware-friendly

DNA assembly algorithm was developed tailored for PANDA platform [51] that only

requires the developed in-memory logic operations. The platform was then config-

ured with a novel data partitioning and mapping technique that provides local storage

and processing to utilize the algorithm-level’s parallelism fully. The cross-layer simu-

lation results demonstrated that PANDA platform reduces the run time and power,

respectively, by a factor of 18 and 11 compared with CPU. Besides, speed-ups of up-to

2.5-10× can be obtained over other recent PIM platforms to perform the same task,

like STT-MRAM, ReRAM, and DRAM.
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Chapter 6

PROCESSING-IN-MEMORY ACCELERATION OF DATA ENCRYPTION

AND GRAPH PROCESSING APPLICATIONS

6.1 Introduction

This chapter focuses on the PIM acceleration of data encryption and graph pro-

cessing applications. First, the Advanced Encryption Standard (AES) algorithm is se-

lected as a case study to elucidate the mapping of its transformations in ReDRAM

platform [6] presented in Chapter 3, which reveals its benefits of energy-efficiency and

high-throughput for in-memory data encryption applications. Then, to show the Re-

DRAM’s efficacy in accelerating graph processing workloads, the matching-index task

is selected and the required graph partitioning method is discussed. At the end, the

performance and energy-efficiency of the proposed PIM accelerator is extensively as-

sessed and compared with GPU, ASIC, and processing-in-DRAM counterparts with

the bottom-up evaluation framework presented in Section 4.2.

6.2 Data Encryption

While the processor is typically the trust base, it is possible to rely on memory

logic to do encryption in high-assurance computing systems in which the memory

logic is attested and verified. In such a design, we can also rely on PIM to do the

actual encryption without the need to bring the data all the way to the processor chip,

decrypt it, then encrypt it with a new key and write it back again, but rather just
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doing it on the spot. There are many use-cases in which such a in-memory encryption

accelerator is useful: encrypting files with different keys, frequent updates for the keys,

and frequent reassignment of memory pages for users with different keys. In all such

cases, an efficient way of encrypting data is preferred; refreshing keys would no longer

throttle memory bandwidth and limit performance of other running applications. AES

is an iterative symmetric-key cipher where both sender and receiver units use a single

key for encryption and decryption. AES basically works on the standard input length

of 16 bytes (128 bits) data organized in a 4×4 matrix (called state matrix (SM )) while

using three different key lengths (128, 192, and 256 bits) [86]. For 128-bit key length,

AES encrypts the input data after 10 rounds of consecutive transformations enumerated

as SubBytes, ShiftRows, MixColumns, and AddRoundKey in Fig. 67a.

6.2.1 Mapping and Computation

To facilitate working with input data, each input byte data is distributed into 8-

bit such that eight memory sub-arrays are filled by 4×4 bit-matrices, as shown in Fig.

67b. After mapping, the ReDRAM can support the required AES bulk bit-wise op-

erations to accelerate each transformations inside the memory. As shown in [86], all

transformations are mainly based on (N)AND and XOR operations.

SubBytes. In the SubBytes stage, each byte of SM will undergo a Look-up table

(LUT) based transformation using S-box and will be independently updated by a non-

linear transformation f (Si,j ← f(Si,j)). As simply depicted in Fig. 67d, the input

of S-Box LUT (16 × 16 memory array) is essentially a Byte which is divided into two

4-bit data patterns. Each pattern yields a row or a column index for the decoders reach-

ing target cell in S-box. Then, the addressed data byte in S-Box is written back to
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Figure 67: (a) AES block diagram, (b) State matrix partitioning, (c) Schematic represen-
tation of ShiftRows and MixColumns transformations, (d) The required computation
of each transformation.

the memory unit and substitutes the original data. The S-box data are conventionally

stored using SRAM leading to significant leakage power. However, it can be readily

implemented within the ReDRAM (shown by LUT) leading to a much more efficient

design. To maximize the parallelism in each level, eight ReDRAM’s SA are used.

ShiftRows. In the ShiftRows stage, SM will undergo a cyclically shift operation by a

certain offset as shown in Fig. 67c. Algorithmically, the i-th row of SM will be cyclically

left shifted by i-1 bytes. Accordingly, the first row of state matrix is left unchanged. For

the second to fourth rows, each byte is shifted by offsets of one to three, respectively.

To perform the shift operation, one of the ReDRAM units is considered as a buffer to
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temporary save the readout data. In this way, after reading the data from the second to

fourth row (3 rows), they can be easily rewritten to the memory with desired order.

MixColumns. In the MixColumns stage, the state matrix will be multiplied by a

preset matrix depicted in Fig. 67c. The four bytes of each column of SM are combined

using an invertible linear transformation (S(:),j ← Mmc × S(:),j). The prerequisite op-

erations for this stage are addition, multiplication by two (xtime2), and multiplication

by three (xtime3). The addition could be implemented by ReDRAM as discussed in

Chapter 3; xtime2 can be implemented through shifting followed by a conditional bit-

wise XOR with 0x1B; the xtime3 operation is defined as xtime2 result XOR with the

original value. As discussed in Chapter 3, the bit-wise XOR, as the basic operations of

MixColumns stage, can be efficiently executed by ReDRAM. As shown in Fig. 67d, to

maximize the efficiency of AES performance, similar to the design in [86], a LUT-based

transformation is used, followed by XOR operations.

AddRoundKey. In the AddRoundKey stage, the subkey is combined with the state

matrix. For each round, key expansion unit produces a subkey derived from the main

key using Rijndael’s key schedule [181]. The 16-byte round keys are organized in a

similar 4×4 array (KM ) as the state matrix withKi,j as matrix entry. In this process, each

byte of state matrix will be replaced by bit-wise XOR result of Si,j and Ki,j (subkey’s

corresponding bit). This stage can be easily performed using the in-memory XOR unit.

6.2.2 Experiment and Results

The performance of 128-bit AES implemented by a General Purpose Processor

(GPP), ASIC, CMOL [182], Ambit [19], DRISA-3T1C [15], and ReDRAM, is mea-

sured in terms of energy consumption and number of cycles required for the process.
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Figure 68: Breakdown of (a) Energy consumption and (b) Delay of different AES
implementations.

For evaluation of AES performance in the GPP, we followed the method presented

in [86] at 2GHz. AES C code is taken from [183] and compiled, then cycle-accurate

gem5 simulator [184] is used to take AES binary and accordingly system level processor

power evaluating tool McPAT [35] is used to estimate power dissipation. For evalua-

tion of AES in CMOS ASIC (1.133GHz), Synopsys Design Compiler [113] tool is

used.

Fig. 68a and Fig. 68b show the breakdown of energy12 and number of cycles

required for different AES transformations after mapping to the different platforms,

respectively. The results show the ReDRAM’s energy-efficiency (Fig. 68a) compared to

other platforms. The ReDRAM reduces the energy consumption by ∼23% compared

to the CMOS-ASIC. From number of cycles stand point, we observe that MixColumns

consumes the most clock cycles as well as energy due to the high number of resources

(memory and in-memory XOR2) that it takes during operation. In some of the XOR-
12Y-axis in Fig. 68a: Log scale.
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unfriendly platforms such as Ambit [19], MixColumns contributes to more than 70%

of the energy consumption and number of cycles. Overall, ReDRAM requires the

least number of cycles compared with other processing-in-DRAM platforms and GPP.

However, ASIC (with 336 cycles) and CMOL (470) designs show better performance

compared to ReDRAM (552).

6.3 Graph Processing

From graph processing algorithm perspective, network topology analysis can help

us better understand the intricate connectivity of complex networks in practical prob-

lems. For instance, degree centrality is often used to measure the importance of a ver-

tex. In social networks, people with more connections tend to have more significant

influence in the community. The matching index is another basic topology parameter

characterizes the similarity between two vertices in a network. It measures the ratio of

common neighbors for pair of vertices. Evaluation of these network properties plays

an essential part in potential applications, such as social network analysis and traffic

flow control. The main goal of this section is to provide case studies of how important

graph processing workloads can be partitioned and mapped to the ReDRAM array and

how they can benefit from the PIM concept.

6.3.1 Mapping and Computation

Real world graph consists of millions of vertices and edges that need to be processed.

To efficiently map such graphs into ReDRAM architecture, graph partitioning methods

are used. Here, the interval-block partitioning method was adopted to balance work-
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Figure 69: (a) Data partitioning and allocation in chip level, (b) ReDRAM’s mapping
and acceleration for finding matching index in sub-array level.

loads of each ReDRAM’s chip and maximize parallelism. We use hash-based method

[179] to split the vertices into M intervals and then divide edges into M2 blocks as

shown in Fig. 69a. The matching index Mi,j quantifies the similarity between two

vertices (Vi and Vj) based on the number of common neighbors shared by vertices as

(
∑

common neighbors∑
total number of neighbors). The main task here is to find the common and total number of

neighbors which can be implemented and accelerated by ReDRAM. Fig. 69b provides

a straightforward example to elucidate the mapping and acceleration method of Re-
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DRAM. After partitioning and allocation, the sample four-vertex network is converted

to adjacency matrix and stored in 4 consecutive rows of sub-array. To find the common

neighbors of two particular vertices (e.g., V1, V2), ReDRAM performs parallel AND2

on the rows and SA’s outputs determine the matches (here, V4). In addition, the total

number of neighbors is found by performing OR2 operation on the same rows. Then,

ReDRAM can readily process the summation operation based on the ISA.

6.3.2 Experiment and Results

The ReDRAM’s memory sub-array was configured with 1024 rows and 256

columns, 4×4 mats (with 1/1 as row/column activation) per bank organized in H-tree

routing manner, 16×16 banks (with 1/1 as row/column activation) and 1024Mb total

capacity. Therefore, an identical physical memory size (1024Mb) is considered for all

PIM implementations henceforth exploiting the presented bottom-up cross-layer evalu-

ation framework in Section 4.2. We developed an Ambit-like [19] accelerator for graph

processing. Besides, a conventional architecture presented in [185] using HMC as

main memory was selected without instruction offloading functionality. We also used

the NVIDIA GTX 1080Ti Pascal GPU. The energy was measured with NVIDIA’s sys-

tem management interface. The achieved GPU results were scaled by 50% to exclude

the energy consumed by cooling, etc. To estimate the performance of the accelerators,

three social network data-sets were considered, as tabulated in Table 15.

Table 15: Social Network data-sets.

Dataset Nodes Edges Graph Information
ego-Facebook 4,039 88,234 profiles & friends lists from Facebook
dblp-2010 326,186 1,615,400 scientific collaboration network

amazon-2008 735,323 5,158,388 similarity among books reported by Amazon store
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Figure 70: (a) Normalized energy consumption, (b) Execution time, (c) Memory bot-
tleneck ratio of the accelerators.

Fig. 70a depicts the energy that four accelerators (Ambit [19], ReDRAM, DRISA-

3T1C [15], and GPU) consume to perform matching-index task on different data-sets.

The ReDRAM obtains the highest energy-efficiency compared to others due to the

DRA mechanism. The ReDRAM consumes on average 2.5× less energy than that of

Ambit accelerator. Compared to GPU, it reduces the energy consumption by ∼21×.

Fig. 70b plots the execution time of the ReDRAM and other accelerators. We observe

that ReDRAM solution is on average 5× faster than that of Ambit solution and 49×

faster than GPU. This is mainly because of fast and parallel in-memory operations of

ReDRAM, specifically for implementing AND2-OR2 operations. Fig. 70c also re-

ports the Memory Bottleneck Ratio (MBR), which is the time fraction at which the

computation has to wait for data and on-/off-chip data transfer obstructs its perfor-

mance (memory wall happens) running matching index task on three data-sets. The

experiment is performed according to the peak throughput for each platform consider-

ing number of memory access. The results reemphasize the PIM platform’s efficiency

for solving memory wall issue. We observe that ReDRAM along with other PIM solu-
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tions spend less than ∼22% time for memory access and data transfer. However, GPU

accelerator spends more than 90% time waiting for the loading data.

6.4 Summary

This chapter discusses the PIM acceleration of data encryption and graph process-

ing applications with mapping and partitioning, leveraging one of the presented PIM

designs in Chapter 3. It is shown how the ReDRAM can be leveraged to greatly reduce

energy consumption and latency of complex in-DRAM logic computations relying

on state-of-the-art mechanisms based on triple-row activation, dual-contact cells, row

initialization, NOR style, etc. As a graph processing accelerator, ReDRAM reduces

energy consumption and execution time ∼21× and 49×, respectively, compared with

GPUs. As for data-encryption based on AES algorithm, it achieves 23% lower energy

consumption compared to CMOS-ASIC implementation.
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Chapter 7

CONCLUSIONS AND OUTLOOK

My doctoral research and dissertation have mainly focused on hardware and soft-

ware co-design of energy-efficient and high-performance PIM platforms for big data

applications and IoT. Leveraging innovations from both device and architecture, this

dissertation tries to integrate memory and logic to break the existing memory and power

walls. Generally, there are two high-level challenges and multiple sub-challenges that it

aims to solve. First, the well-knownmemory cost-sensitivity vs. reconfigurability challenge

is discussed. In this direction, we designed reconfigurable and low-overhead in-memory

computing components on top of the existing NVM/VM circuit and architecture to

make them simultaneously work as a memory and as a parallel, fast, reconfigurable

PIM to process data within memory directly. For instance, the proposed ReDRAM

platform in Chapter 3 uses the intrinsic analog operation of DRAM sub-arrays and

elevates it to implement a full set of 1- and 2-input bulk bit-wise operations (NOT,

(N)AND, (N)OR, and even X(N)OR) between operands stored in the same bit-line,

in a single memory cycle, based on a new dual-row activation mechanism with a mod-

est change to peripheral circuits such as sense amplifiers. Besides, such a platform can

be leveraged to reduce energy consumption greatly and latency of complex in-DRAM

logic computations relying on state-of-the-art mechanisms based on triple-row activa-

tion, dual-contact cells, row initialization, NOR style, etc. Second, the existing big

data processing algorithms for deep neural networks, bioinformatics applications such

as DNA alignment and assembly, data encryption, and graph processing tasks, are not

essentially developed to work with non-Von-Neumann computing architectures. Such
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algorithms will impose a massive number of write-back operations that eventually may

even fade the PIM benefits. Therefore, new customized in-memory computing algo-

rithms and mapping methods were developed to convert the crucial iteratively-used

functions to bit-wise PIM-supported functions. For instance, as shown in Chapter 4,

MRIMA’s in-memory AND-based bit-wise convolver and XOR-based adder schemes

outperform recent PIM platforms in terms of number write-back operations leading

to reduced energy and delay. Moreover, to quantitatively analyze the performance of

various PIM platforms running big data applications, a generic and comprehensive

evaluation framework was also presented. The overall system computing performance

(throughput, latency, energy efficiency) for each application was then explored through

the developed framework.

As future directions for this dissertation, I am interested in addressing the known

and anticipating issues in the PIM’s circuit and architecture. For the circuit level, the

non-ideal sense margin that might cause incorrect output under the presence of wire

resistance, process variation, etc., are the main objectives. An enhanced sense amplifier

with a larger sense margin, error correction functionality, and other memory periph-

eral circuits are expected to design. Besides, as discussed, leveraging a PIM platform

introduces new challenges for system programmers to circumvent. I will divide such

architecture research into three sub-objectives: (1) Programming model: there is a great

need to investigate how to integrate PIM instructions within a compiler to reduce the

load on the programmer by activating smooth instruction offloading or library calls.

Therefore, there are needs for designing and examining various compiler-based mech-

anisms to determine what portions of code should be offloaded to PIM platforms in a

transparent fashion to the system programmer. (2) Supporting Address Translation: As

discussed, the PIM platforms have their ISA with operations that can potentially use
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virtual addresses. To use virtual addresses, PIM’s controller must have the ability to

translate virtual addresses to physical addresses. While in theory, this looks as simple

as passing the address of the page table root to PIM and giving the memory controller

the ability to walk the page table, it is way more complicated in real-world designs. The

main challenge here is that the page table can be scattered across different DIMMs and

channels, while PIM operates within a memory module. Therefore, exploring and de-

signing efficient mechanisms for PIM-based virtual-to-physical address translation and

access protection for the generality of applications is of great interest. (3) Cache Coher-

ence: One primary concern that is common across most off-chip accelerators is cache

coherence. When PIM updates data directly in memory, there could be stale copies of

the updated memory locations in the cache; thus data inconsistency issues may arise.

Similarly, if the processor updates cached copies from memory locations that PIM will

process later, PIM could use wrong/stale values. The exploration of various ways to

solve cache coherence in accelerators is another architectural challenge that needs to be

addressed.

158



REFERENCES

[1] S. Angizi, Z. He, A. Awad, and D. Fan, “Mrima: An mram-based in-memory
accelerator”, IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 39, no. 5, pp. 1123–1136, 2019.

[2] S. Angizi, J. Sun, W. Zhang, and D. Fan, “Aligns: A processing-in-memory
accelerator for dna short read alignment leveraging sot-mram”, in 2019 56th
ACM/IEEE Design Automation Conference (DAC), IEEE, 2019, pp. 1–6.

[3] Z. He, Y. Zhang, S. Angizi, B. Gong, and D. Fan, “Exploring a sot-mram based
in-memory computing for data processing”, IEEE Transactions on Multi-Scale
Computing Systems, vol. 4, no. 4, pp. 676–685, 2018.

[4] S. Angizi, J. Sun, W. Zhang, and D. Fan, “Graphs: A graph processing ac-
celerator leveraging sot-mram”, in 2019 Design, Automation & Test in Europe
Conference & Exhibition (DATE), IEEE, 2019, pp. 378–383.

[5] S. Angizi, Z. He, and D. Fan, “Pima-logic: A novel processing-in-memory ar-
chitecture for highly flexible and energy-efficient logic computation”, inDesign
Automation Conference (DAC), IEEE/ACM, 2018.

[6] S. Angizi and D. Fan, “Redram: A reconfigurable processing-in-dram platform
for accelerating bulk bit-wise operations”, in 2019 IEEE/ACM International
Conference on Computer-Aided Design (ICCAD), IEEE, 2019, pp. 1–8.

[7] S. Angizi and D. Fan, “Graphide: A graph processing accelerator leveraging
in-dram-computing”, in Proceedings of the 2019 on Great Lakes Symposium on
VLSI, 2019, pp. 45–50.

[8] S. Angizi, Z. He, F. Parveen, and D. Fan, “Imce: Energy-efficient bit-wise
in-memory convolution engine for deep neural network”, in Design Automa-
tion Conference (ASP-DAC), 2018 23rd Asia and South Pacific, IEEE, 2018,
pp. 111–116.

[9] S. Angizi, Z. He, D. Reis, X. S. Hu, W. Tsai, S. J. Lin, and D. Fan, “Accel-
erating deep neural networks in processing-in-memory platforms: Analog or
digital approach?”, in 2019 IEEE Computer Society Annual Symposium on VLSI
(ISVLSI), IEEE, 2019, pp. 197–202.

159



[10] S. Angizi, J. Sun, W. Zhang, and D. Fan, “Pim-aligner: A processing-in-mram
platform for biological sequence alignment”, in 2020 Design, Automation &
Test in Europe Conference & Exhibition (DATE), IEEE, 2020, pp. 1265–1270.

[11] Y. Wang, H. Yu, L. Ni, G.-B. Huang, M. Yan, C. Weng, W. Yang, and J.
Zhao, “An energy-efficient nonvolatile in-memory computing architecture for
extreme learning machine by domain-wall nanowire devices”, IEEE Transac-
tions on Nanotechnology, vol. 14, no. 6, pp. 998–1012, 2015.

[12] Fact sheet: Big data across the federal government (2012). [Online]. Available:
http: / /%20www.whitehouse .gov/sites /default / files /microsites/ostp/big%
20data%20fact%20sheet%203%2029%202012.pdf.

[13] X. Fong, Y. Kim, K. Yogendra, D. Fan, A. Sengupta, A. Raghunathan, and K.
Roy, “Spin-transfer torque devices for logic and memory: Prospects and per-
spectives”, IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 35, no. 1, pp. 1–22, 2016.

[14] P. Chi, S. Li, C. Xu, T. Zhang, J. Zhao, Y. Liu, Y. Wang, and Y. Xie, “Prime: A
novel processing-in-memory architecture for neural network computation in
reram-based main memory”, in ACM SIGARCH Computer Architecture News,
IEEE Press, vol. 44, 2016, pp. 27–39.

[15] S. Li, D. Niu, K. T. Malladi, H. Zheng, B. Brennan, and Y. Xie, “Drisa: A
dram-based reconfigurable in-situ accelerator”, in Proceedings of the 50th An-
nual IEEE/ACM International Symposium on Microarchitecture, ACM, 2017,
pp. 288–301.

[16] B. Li, P. Gu, Y. Shan, Y. Wang, Y. Chen, and H. Yang, “Rram-based analog
approximate computing”, IEEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems, vol. 34, no. 12, pp. 1905–1917, 2015.

[17] M. Cheng, L. Xia, Z. Zhu, Y. Cai, Y. Xie, Y. Wang, and H. Yang, “Time: A
training-in-memory architecture for memristor-based deep neural networks”,
in Design Automation Conference (DAC), 2017 54th ACM/EDAC/IEEE, IEEE,
2017, pp. 1–6.

[18] M. N. Bojnordi and E. Ipek, “Memristive boltzmann machine: A hardware
accelerator for combinatorial optimization and deep learning”, in High Perfor-
mance Computer Architecture (HPCA), 2016 IEEE International Symposium on,
IEEE, 2016, pp. 1–13.

160

http://%20www.whitehouse.gov/sites/default/files/microsites/ostp/big%20data%20fact%20sheet%203%2029%202012.pdf
http://%20www.whitehouse.gov/sites/default/files/microsites/ostp/big%20data%20fact%20sheet%203%2029%202012.pdf


[19] V. Seshadri, D. Lee, T. Mullins, H. Hassan, A. Boroumand, J. Kim, M. A.
Kozuch, O. Mutlu, P. B. Gibbons, and T. C. Mowry, “Ambit: In-memory ac-
celerator for bulk bitwise operations using commodity dram technology”, in
2017 50th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO), IEEE, 2017, pp. 273–287.

[20] S. Angizi, Z. He, and D. Fan, “Parapim: A parallel processing-in-memory accel-
erator for binary-weight deep neural networks”, in Proceedings of the 24th Asia
and South Pacific Design Automation Conference, ACM, 2019, pp. 127–132.

[21] M. Imani, “Machine learning in iot systems: From deep learning to hyperdi-
mensional computing”, PhD thesis, UC San Diego, 2020.

[22] S. Gupta, “Processing in memory using emerging memory technologies”, PhD
thesis, UC San Diego, 2018.

[23] S. Li, C. Xu, Q. Zou, J. Zhao, Y. Lu, and Y. Xie, “Pinatubo: A processing-
in-memory architecture for bulk bitwise operations in emerging non-
volatile memories”, in Design Automation Conference (DAC), 2016 53nd
ACM/EDAC/IEEE, IEEE, 2016, pp. 1–6.

[24] Z. He, S. Angizi, F. Parveen, and D. Fan, “Leveraging dual-mode magnetic
crossbar for ultra-low energy in-memory data encryption”, in Proceedings of the
on Great Lakes Symposium on VLSI 2017, 2017, pp. 83–88.

[25] S. Yin, Z. Jiang, J.-S. Seo, and M. Seok, “Xnor-sram: In-memory computing
sram macro for binary/ternary deep neural networks”, IEEE Journal of Solid-
State Circuits, vol. 55, no. 6, pp. 1733–1743, 2020.

[26] Z. Jiang, S. Yin, J.-S. Seo, and M. Seok, “C3sram: An in-memory-computing
sram macro based on robust capacitive coupling computing mechanism”, IEEE
Journal of Solid-State Circuits, vol. 55, no. 7, pp. 1888–1897, 2020.

[27] X. Sun, S. Yin, X. Peng, R. Liu, J.-s. Seo, and S. Yu, “Xnor-rram: A scalable
and parallel resistive synaptic architecture for binary neural networks”, in 2018
Design, Automation & Test in Europe Conference & Exhibition (DATE), IEEE,
2018, pp. 1423–1428.

[28] S. Angizi, Z. He, A. S. Rakin, and D. Fan, “Cmp-pim: An energy-efficient
comparator-based processing-in-memory neural network accelerator”, in Pro-
ceedings of the 55th Annual Design Automation Conference, ACM, 2018, p. 105.

161



[29] S. Aga, S. Jeloka, A. Subramaniyan, S. Narayanasamy, D. Blaauw, and R. Das,
“Compute caches”, in 2017 IEEE International Symposium onHigh Performance
Computer Architecture (HPCA), IEEE, 2017, pp. 481–492.

[30] C. Eckert, X. Wang, J. Wang, A. Subramaniyan, R. Iyer, D. Sylvester, D.
Blaaauw, and R. Das, “Neural cache: Bit-serial in-cache acceleration of deep
neural networks”, pp. 383–396, 2018.

[31] B. C. Lee, E. Ipek, O. Mutlu, and D. Burger, “Architecting phase change mem-
ory as a scalable dram alternative”, in ACM SIGARCH Computer Architecture
News, ACM, vol. 37, 2009, pp. 2–13.

[32] F. Parveen, S. Angizi, and D. Fan, “Imflexcom: Energy efficient in-memory flex-
ible computing using dual-mode sot-mram”, ACM Journal on Emerging Tech-
nologies in Computing Systems (JETC), vol. 14, no. 3, pp. 1–18, 2018.

[33] Everspin announces sampling of the world’s first 1-gigabit mram product. 2016.
[Online]. Available: https://www.everspin.com.

[34] A. Shafiee, A. Nag, N. Muralimanohar, R. Balasubramonian, J. P. Strachan,
M. Hu, R. S. Williams, and V. Srikumar, “Isaac: A convolutional neural net-
work accelerator with in-situ analog arithmetic in crossbars”, ACM SIGARCH
Computer Architecture News, vol. 44, no. 3, pp. 14–26, 2016.

[35] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and N. P.
Jouppi, “Mcpat: An integrated power, area, and timing modeling framework for
multicore and manycore architectures”, inMicroarchitecture, 2009.MICRO-42.
42nd Annual IEEE/ACM International Symposium on, IEEE, 2009, pp. 469–
480.

[36] S. Li, “Memory-centric architectures: Bridging the gap between compute and
memory”, PhD thesis, UC Santa Barbara, 2018.

[37] M. Imani, Y. Kim, and T. Rosing, “Mpim: Multi-purpose in-memory process-
ing using configurable resistive memory”, in 2017 22nd Asia and South Pacific
Design Automation Conference (ASP-DAC), IEEE, 2017, pp. 757–763.

[38] S. Angizi, Z. He, N. Bagherzadeh, and D. Fan, “Design and evaluation of a
spintronic in-memory processing platform for non-volatile data encryption”,
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
2017.

162

https://www.everspin.com


[39] S. Angizi, H. Jiang, R. F. DeMara, J. Han, and D. Fan, “Majority-based spin-
cmos primitives for approximate computing”, IEEE Transactions on Nanotech-
nology, vol. 17, no. 4, pp. 795–806, 2018.

[40] S. Angizi, Z. He, Y. Bai, J. Han, M. Lin, R. F. DeMara, and D. Fan, “Lever-
aging spintronic devices for efficient approximate logic and stochastic neural
networks”, in Proceedings of the 2018 on Great Lakes Symposium on VLSI, 2018,
pp. 397–402.

[41] S. Angizi and D. Fan, “Deep neural network acceleration in non-volatile mem-
ory: A digital approach”, in 2019 IEEE/ACM International Symposium on
Nanoscale Architectures (NANOARCH), IEEE, 2019, pp. 1–6.

[42] H. Jiang, S. Angizi, D. Fan, J. Han, and L. Liu, “Non-volatile approximate
arithmetic circuits using scalable hybrid spin-cmos majority gates”, IEEE Trans-
actions on Circuits and Systems I: Regular Papers, vol. 68, no. 3, pp. 1217–1230,
2021.

[43] S. Angizi, Z. He, R. F. DeMara, and D. Fan, “Composite spintronic accuracy-
configurable adder for low power digital signal processing”, in 2017 18th
International Symposium on Quality Electronic Design (ISQED), IEEE, 2017,
pp. 391–396.

[44] S. Angizi, Z. He, and D. Fan, “Energy efficient in-memory computing platform
based on 4-terminal spin hall effect-driven domain wall motion devices”, in
Proceedings of the on Great Lakes Symposium on VLSI 2017, 2017, pp. 77–82.

[45] D. Fan and S. Angizi, “Energy efficient in-memory binary deep neural network
accelerator with dual-mode sot-mram”, in 2017 IEEE International Conference
on Computer Design (ICCD), IEEE, 2017, pp. 609–612.

[46] S. Angizi, Z. He, and D. Fan, “Dima: A depthwise cnn in-memory accelera-
tor”, in 2018 IEEE/ACM International Conference on Computer-Aided Design
(ICCAD), IEEE, 2018, pp. 1–8.

[47] A. Roohi, S. Angizi, D. Fan, and R. F. DeMara, “Processing-in-memory ac-
celeration of convolutional neural networks for energy-effciency, and power-
intermittency resilience”, in 20th International Symposium on Quality Electronic
Design (ISQED), IEEE, 2019, pp. 8–13.

[48] S. Angizi, N. A. Fahmi, W. Zhang, and D. Fan, “Pim-assembler: A processing-
in-memory platform for genome assembly”, in 2020 57th ACM/IEEE Design
Automation Conference (DAC), IEEE, 2020, pp. 1–6.

163



[49] S. Angizi, Z. He, F. Parveen, and D. Fan, “Rimpa: A new reconfigurable dual-
mode in-memory processing architecture with spin hall effect-driven domain
wall motion device”, in 2017 IEEE Computer Society annual symposium on VLSI
(ISVLSI), IEEE, 2017, pp. 45–50.

[50] S. Angizi, Z. He, A. Chen, and D. Fan, “Hybrid spin-cmos polymorphic logic
gate with application in in-memory computing”, IEEE Transactions on Magnet-
ics, vol. 56, no. 2, pp. 1–15, 2020.

[51] S. Angizi, N. A. Fahmi, W. Zhang, and D. Fan, “Panda: Processing-in-
mram accelerated de bruijn graph based dna assembly”, arXiv preprint
arXiv:2008.06177, 2020.

[52] H. Zhao, B. Glass, P. K. Amiri, A. Lyle, Y. Zhang, Y.-J. Chen, G. Rowlands,
P. Upadhyaya, Z. Zeng, J. Katine, et al., “Sub-200 ps spin transfer torque
switching in in-plane magnetic tunnel junctions with interface perpendicular
anisotropy”, Journal of Physics D: Applied Physics, vol. 45, no. 2, p. 025 001,
2011.

[53] S. Fukami, T. Anekawa, C. Zhang, and H. Ohno, “A spin-orbit torque switch-
ing scheme with collinear magnetic easy axis and current configuration”, Na-
ture nanotechnology, 2016.

[54] G. Rowlands, T. Rahman, J. Katine, J. Langer, A. Lyle, H. Zhao, J. Alzate, A.
Kovalev, Y. Tserkovnyak, Z. Zeng, et al., “Deep subnanosecond spin torque
switching in magnetic tunnel junctions with combined in-plane and perpen-
dicular polarizers”, Applied Physics Letters, vol. 98, no. 10, p. 102 509, 2011.

[55] F. Parveen, S. Angizi, Z. He, and D. Fan, “Imcs2: Novel device-to-architecture
co-design for low-power in-memory computing platform using coterminous
spin switch”, IEEE Transactions on Magnetics, vol. 54, no. 7, pp. 1–14, 2018.

[56] T. Kawahara, “Challenges toward gigabit-scale spin-transfer torque random ac-
cess memory and beyond for normally off, green information technology in-
frastructure”, Journal of Applied Physics, vol. 109, no. 7, p. 07D325, 2011.

[57] F. Parveen, Z. He, S. Angizi, and D. Fan, “Hybrid polymorphic logic gate with
5-terminal magnetic domain wall motion device”, in 2017 IEEE Computer So-
ciety Annual Symposium on VLSI (ISVLSI), IEEE, 2017, pp. 152–157.

[58] D. Fan, Z. He, and S. Angizi, “Leveraging spintronic devices for ultra-low
power in-memory computing: Logic and neural network”, in 2017 IEEE 60th

164



International Midwest Symposium on Circuits and Systems (MWSCAS), IEEE,
2017, pp. 1109–1112.

[59] F. Parveen, S. Angizi, Z. He, and D. Fan, “Low power in-memory computing
based on dual-mode sot-mram”, in Low Power Electronics and Design (ISLPED,
2017 IEEE/ACM International Symposium on, IEEE, 2017, pp. 1–6.

[60] A. S. Rakin, S. Angizi, Z. He, and D. Fan, “Pim-tgan: A processing-in-memory
accelerator for ternary generative adversarial networks”, in 2018 IEEE 36th
International Conference on Computer Design (ICCD), IEEE, 2018, pp. 266–
273.

[61] Z. He, S. Angizi, and D. Fan, “Current-induced dynamics of multiple
skyrmions with domain-wall pair and skyrmion-based majority gate design”,
IEEE Magnetics Letters, vol. 8, pp. 1–5, 2017.

[62] W. J. Gallagher and S. S. Parkin, “Development of the magnetic tunnel junc-
tion mram at ibm: From first junctions to a 16-mb mram demonstrator chip”,
IBM Journal of Research and Development, vol. 50, no. 1, pp. 5–23, 2006.

[63] S.-W. Chung, T. Kishi, J. Park, M. Yoshikawa, K. Park, T. Nagase, K.
Sunouchi, H. Kanaya, G. Kim, K. Noma, et al., “4gbit density stt-mram
using perpendicular mtj realized with compact cell structure”, in 2016 IEEE
International Electron Devices Meeting (IEDM), IEEE, 2016, pp. 27–1.

[64] K. Garello, F. Yasin, H. Hody, S. Couet, L. Souriau, S. Sharifi, J. Swerts, R.
Carpenter, S. Rao, W. Kim, et al., “Manufacturable 300mm platform solution
for field-free switching sot-mram”, in 2019 Symposium on VLSI Circuits, IEEE,
2019, T194–T195.

[65] M. Natsui, A. Tamakoshi, H. Honjo, T. Watanabe, T. Nasuno, C. Zhang,
T. Tanigawa, H. Inoue, M. Niwa, T. Yoshiduka, et al., “Dual-port field-free
sot-mram achieving 90-mhz read and 60-mhz write operations under 55-nm
cmos technology and 1.2-v supply voltage”, in 2020 IEEE Symposium on VLSI
Circuits, IEEE, 2020, pp. 1–2.

[66] M. Natsui, A. Tamakoshi, H. Honjo, T. Watanabe, T. Nasuno, C. Zhang,
T. Tanigawa, H. Inoue, M. Niwa, T. Yoshiduka, et al., “Dual-port sot-mram
achieving 90-mhz read and 60-mhz write operations under field-assistance-free
condition”, IEEE Journal of Solid-State Circuits, 2020.

[67] J. Kan, C. Park, C. Ching, J. Ahn, L. Xue, R. Wang, A. Kontos, S. Liang,
M. Bangar, H. Chen, et al., “Systematic validation of 2x nm diameter perpen-

165



dicular mtj arrays and mgo barrier for sub-10 nm embedded stt-mram with
practically unlimited endurance”, in Electron Devices Meeting (IEDM), 2016
IEEE International, IEEE, 2016, pp. 27–4.

[68] G. Autes, J. Mathon, and A. Umerski, “Strong enhancement of the tunneling
magnetoresistance by electron filtering in an fe/mgo/fe/gaas (001) junction”,
Physical review letters, p. 217 202, 2010.

[69] P. Mavropoulos, M. Levzaic, and S. Blugel, “Half-metallic ferromagnets for
magnetic tunnel junctions by ab initio calculations”, Physical Review B, vol. 72,
no. 17, p. 174 428, 2005.

[70] M. Bowen, M. Bibes, A. Barthelemy, J.-P. Contour, A. Anane, Y. Lemaitre, and
A. Fert, “Nearly total spin polarization in la 2/3 sr 1/3 mno 3 from tunneling
experiments”, Applied Physics Letters, vol. 82, no. 2, pp. 233–235, 2003.

[71] D. Fan, S. Angizi, and Z. He, “In-memory computing with spintronic devices”,
in 2017 IEEE Computer Society Annual Symposium on VLSI (ISVLSI), IEEE,
2017, pp. 683–688.

[72] J. Hayakawa, S. Ikeda, F. Matsukura, H. Takahashi, and H. Ohno, “Depen-
dence of giant tunnel magnetoresistance of sputtered cofeb/mgo/cofeb mag-
netic tunnel junctions on mgo barrier thickness and annealing temperature”,
Japanese Journal of Applied Physics, vol. 44, no. 4L, p. L587, 2005.

[73] M. J. Donahue, “Oommf user’s guide, version 1.0”, -6376, 1999.

[74] X. Fong, S. K. Gupta, N. N. Mojumder, S. H. Choday, C. Augustine, and
K. Roy, “Knack: A hybrid spin-charge mixed-mode simulator for evaluating
different genres of spin-transfer torque mram bit-cells”, in 2011 International
Conference on Simulation of Semiconductor Processes and Devices, 2011, pp. 51–
54.

[75] Z. He, S. Angizi, and D. Fan, “Exploring stt-mram based in-memory com-
puting paradigm with application of image edge extraction”, in 2017 IEEE
International Conference on Computer Design (ICCD), IEEE, 2017, pp. 439–
446.

[76] D. Fan, S. Maji, K. Yogendra, M. Sharad, and K. Roy, “Injection-locked spin
hall-induced coupled-oscillators for energy efficient associative computing”,
IEEE Transactions on Nanotechnology, vol. 14, no. 6, pp. 1083–1093, 2015.

166



[77] G. Panagopoulos, C. Augustine, and K. Roy, “A framework for simulating hy-
brid mtj/cmos circuits: Atoms to system approach”, in 2012 Design, Automa-
tion & Test in Europe Conference & Exhibition (DATE), IEEE, 2012, pp. 1443–
1446.

[78] Y. Huai, “Spin-transfer torque mram (stt-mram): Challenges and prospects”,
AAPPS bulletin, vol. 18, no. 6, pp. 33–40, 2008.

[79] D. Fan, “Boolean and brain-inspired computing using spin-transfer torque de-
vices”, 2015.

[80] L. Liu, T. Moriyama, D. Ralph, and R. Buhrman, “Spin-torque ferromagnetic
resonance induced by the spin hall effect”, Physical review letters, vol. 106, no. 3,
p. 036 601, 2011.

[81] L. Liu, C.-F. Pai, Y. Li, H. Tseng, D. Ralph, and R. Buhrman, “Spin-torque
switching with the giant spin hall effect of tantalum”, Science, vol. 336,
no. 6081, pp. 555–558, 2012.

[82] C.-F. Pai, L. Liu, Y. Li, H. Tseng, D. Ralph, and R. Buhrman, “Spin transfer
torque devices utilizing the giant spin hall effect of tungsten”, Applied Physics
Letters, vol. 101, no. 12, p. 122 404, 2012.

[83] Y. Niimi, Y. Kawanishi, D. Wei, C. Deranlot, H. Yang, M. Chshiev, T. Valet,
A. Fert, and Y. Otani, “Giant spin hall effect induced by skew scattering from
bismuth impurities inside thin film cubi alloys”, Physical review letters, vol. 109,
no. 15, p. 156 602, 2012.

[84] T. Tang, L. Xia, B. Li, Y. Wang, and H. Yang, “Binary convolutional neural
network on rram”, in 2017 22nd Asia and South Pacific Design Automation
Conference (ASP-DAC), IEEE, 2017, pp. 782–787.

[85] L. Song, X. Qian, H. Li, and Y. Chen, “Pipelayer: A pipelined reram-based
accelerator for deep learning”, in High Performance Computer Architecture
(HPCA), 2017 IEEE International Symposium on, IEEE, 2017, pp. 541–552.

[86] Y. Wang, L. Ni, C.-H. Chang, and H. Yu, “Dw-aes: A domain-wall nanowire-
based aes for high throughput and energy-efficient data encryption in non-
volatile memory”, IEEE Transactions on Information Forensics and Security,
vol. 11, no. 11, pp. 2426–2440, 2016.

167



[87] F. Parveen, Z. He, S. Angizi, and D. Fan, “Hielm: Highly flexible in-memory
computing using stt mram”, in Design Automation Conference (ASP-DAC),
2018 23rd Asia and South Pacific, IEEE, 2018, pp. 361–366.

[88] M. Zabihi, Z. Chowdhury, Z. Zhao, U. R. Karpuzcu, J.-P. Wang, and S. Sapat-
nekar, “In-memory processing on the spintronic cram: From hardware design
to application mapping”, IEEE Transactions on Computers, 2018.

[89] S. Jain, A. Ranjan, K. Roy, and A. Raghunathan, “Computing in memory with
spin-transfer torque magnetic ram”, IEEE Transactions on Very Large Scale Inte-
gration (VLSI) Systems, no. 3, pp. 470–483, 2018.

[90] M. Imani, S. Gupta, Y. Kim, and T. Rosing, “Floatpim: In-memory accelera-
tion of deep neural network training with high precision”, in 2019 ACM/IEEE
46th Annual International Symposium on Computer Architecture (ISCA), IEEE,
2019, pp. 802–815.

[91] S. Angizi and D. Fan, “Imc: Energy-efficient in-memory convolver for acceler-
ating binarized deep neural network”, in Proceedings of the Neuromorphic Com-
puting Symposium, 2017, pp. 1–8.

[92] Z. He, S. Angizi, F. Parveen, and D. Fan, “High performance and energy-
efficient in-memory computing architecture based on sot-mram”, in 2017
IEEE/ACM International Symposium onNanoscale Architectures (NANOARCH),
IEEE, 2017, pp. 97–102.

[93] S. Yuasa, T. Nagahama, A. Fukushima, Y. Suzuki, and K. Ando, “Giant room-
temperature magnetoresistance in single-crystal fe/mgo/fe magnetic tunnel
junctions”, Nature materials, vol. 3, no. 12, p. 868, 2004.

[94] R. Zhang, P. Gupta, L. Zhong, and N. K. Jha, “Threshold network synthe-
sis and optimization and its application to nanotechnologies”, IEEE Transac-
tions on computer-aided design of integrated circuits and systems, vol. 24, no. 1,
pp. 107–118, 2005.

[95] S. V. Kosonocky, M. Immediato, P. Cottrell, T. Hook, R. Mann, and J. Brown,
“Enchanced multi-threshold (mtcmos) circuits using variable well bias”, in Pro-
ceedings of the 2001 international symposium on Low power electronics and design,
2001, pp. 165–169.

[96] H. Ozdemir, A. Kepkep, B. Pamir, Y. Leblebici, and U. Cilingiroglu, “A capac-
itive threshold-logic gate”, IEEE Journal of Solid-State Circuits, vol. 31, no. 8,
pp. 1141–1150, 1996.

168



[97] K. Navi, V. Foroutan, M. R. Azghadi, M. Maeen, M. Ebrahimpour, M. Kaveh,
and O. Kavehei, “A novel low-power full-adder cell with new technique in
designing logical gates based on static cmos inverter”, Microelectronics Journal,
vol. 40, no. 10, pp. 1441–1448, 2009.

[98] R. Zhang, K. Walus, W. Wang, and G. A. Jullien, “A method of majority logic
reduction for quantum cellular automata”, IEEE Transactions on Nanotechnol-
ogy, vol. 3, no. 4, pp. 443–450, 2004.

[99] (2011). Ncsu eda freepdk45, [Online]. Available: http://www.eda.ncsu.edu/
wiki/FreePDK45:Contents.

[100] Y. Kim, W. Yang, and O. Mutlu, “Ramulator: A fast and extensible dram sim-
ulator”, IEEE Computer architecture letters, vol. 15, no. 1, pp. 45–49, 2016.

[101] S. Angizi and D. Fan, “Accelerating bulk bit-wise x(n)or operation in
processing-in-dram platform”, arXiv preprint arXiv:1904.05782, 2019.

[102] V. Seshadri, K. Hsieh, A. Boroum, D. Lee, M. A. Kozuch, O. Mutlu, P. B.
Gibbons, and T. C. Mowry, “Fast bulk bitwise and and or in dram”, IEEE
Computer Architecture Letters, vol. 14, no. 2, pp. 127–131, 2015.

[103] V. Seshadri, Y. Kim, C. Fallin, D. Lee, R. Ausavarungnirun, G. Pekhimenko,
Y. Luo, O. Mutlu, P. B. Gibbons, M. A. Kozuch, et al., “Rowclone: Fast and
energy-efficient in-dram bulk data copy and initialization”, in Proceedings of the
46th Annual IEEE/ACM International Symposium on Microarchitecture, ACM,
2013, pp. 185–197.

[104] H. B. Kang and S. K. Hong, One-transistor type dram, US Patent 7,701,751,
2010.

[105] S.-L. Lu, Y.-C. Lin, and C.-L. Yang, “Improving dram latency with dynamic
asymmetric subarray”, in 2015 48th Annual IEEE/ACM International Sympo-
sium on Microarchitecture (MICRO), IEEE, 2015, pp. 255–266.

[106] G. Sideris, “Intel 1103-mos memory that defied cores”, Electronics, vol. 46,
no. 9, pp. 108–113, 1973.

[107] Q. Deng, L. Jiang, Y. Zhang, M. Zhang, and J. Yang, “Dracc: A dram based
accelerator for accurate cnn inference”, in Proceedings of the 55th Annual Design
Automation Conference, ACM, 2018, p. 168.

169

http://www.eda.ncsu.edu/wiki/FreePDK45:Contents
http://www.eda.ncsu.edu/wiki/FreePDK45:Contents


[108] (2018). Parallel thread execution isa version 6.1, [Online]. Available: http://
docs.nvidia.com/cuda/parallel-thread-execution/index.html.

[109] W. Zhao and Y. Cao, “New generation of predictive technology model for sub-
45nm design exploration”, in ISQED, IEEE Computer Society, 2006, pp. 585–
590.

[110] 2. DRAM Power Model. https://www.rambus.com/energy/.

[111] M. W. Allam, M. H. Anis, and M. I. Elmasry, “High-speed dynamic logic
styles for scaled-down cmos and mtcmos technologies”, in Proceedings of the
2000 international symposium on Low power electronics and design, ACM, 2000,
pp. 155–160.

[112] S. Thoziyoor, N. Muralimanohar, J. H. Ahn, and N. P. Jouppi, “Cacti 5.1”,
Technical Report HPL-2008-20, HP Labs, Tech. Rep., 2008.

[113] Synopsys, Inc., Synopsys design compiler, product version 14.9.2014, ver-
sion 14.9.2014, 2014.

[114] 6th generation intel core processor family datasheet. [Online]. Available: https :
//www.intel.com/content/www/us/en/products/processors/core/core-vpro/i7-
6700.html.

[115] Geforce gtx 1080 ti. [Online]. Available: https : / /www .nvidia . com/ en - us /
geforce/products/10series/geforce-gtx-1080-ti/.

[116] Hybrid memory cube speci!cation 2.0. [Online]. Available: http://www.hybridm
emorycube.org/files/SiteDownloads/HMC-30G-VSR_HMCC_Specification
_Rev2.0_Public.pdf..

[117] L. Cavigelli, M. Magno, and L. Benini, “Accelerating real-time embedded scene
labeling with convolutional networks”, in Proceedings of the 52nd Annual Design
Automation Conference, 2015, pp. 1–6.

[118] R. Andri, L. Cavigelli, D. Rossi, and L. Benini, “Yodann: An architecture for ul-
tralow power binary-weight cnn acceleration”, IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 37, no. 1, pp. 48–60, 2018.

[119] S. Zhou, Y. Wu, Z. Ni, X. Zhou, H. Wen, and Y. Zou, “Dorefa-net: Train-
ing low bitwidth convolutional neural networks with low bitwidth gradients”,
arXiv preprint arXiv:1606.06160, 2016.

170

http://docs.nvidia.com/cuda/parallel-thread-execution/index.html
http://docs.nvidia.com/cuda/parallel-thread-execution/index.html
https://www.intel.com/content/www/us/en/products/processors/core/core-vpro/i7-6700.html
https://www.intel.com/content/www/us/en/products/processors/core/core-vpro/i7-6700.html
https://www.intel.com/content/www/us/en/products/processors/core/core-vpro/i7-6700.html
https://www.nvidia.com/en-us/geforce/products/10series/geforce-gtx-1080-ti/
https://www.nvidia.com/en-us/geforce/products/10series/geforce-gtx-1080-ti/
http://www.hybridmemorycube.org/files/SiteDownloads/HMC-30G-VSR_HMCC_Specification_Rev2.0_Public.pdf.
http://www.hybridmemorycube.org/files/SiteDownloads/HMC-30G-VSR_HMCC_Specification_Rev2.0_Public.pdf.
http://www.hybridmemorycube.org/files/SiteDownloads/HMC-30G-VSR_HMCC_Specification_Rev2.0_Public.pdf.


[120] M. Courbariaux, Y. Bengio, and J.-P. David, “Training deep neural networks
with low precision multiplications”, arXiv preprint arXiv:1412.7024, 2014.

[121] S. Lin, “Platform-specific model compression for deep neural networks with
joint methods”, PhD thesis, Northeastern University, 2020.

[122] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “Xnor-net: Imagenet
classification using binary convolutional neural networks”, in European confer-
ence on computer vision, Springer, 2016, pp. 525–542.

[123] M. Courbariaux, Y. Bengio, and J.-P. David, “Binaryconnect: Training deep
neural networks with binary weights during propagations”, arXiv preprint
arXiv:1511.00363, 2015.

[124] R. Zhao, W. Song, W. Zhang, T. Xing, J.-H. Lin, M. Srivastava, R. Gupta,
and Z. Zhang, “Accelerating binarized convolutional neural networks with
software-programmable fpgas”, in Proceedings of the 2017 ACM/SIGDA Inter-
national Symposium on Field-Programmable Gate Arrays, ACM, 2017, pp. 15–
24.

[125] Z. He, S. Angizi, A. S. Rakin, and D. Fan, “Bd-net: A multiplication-less dnn
with binarized depthwise separable convolution”, in 2018 IEEE Computer So-
ciety Annual Symposium on VLSI (ISVLSI), IEEE, 2018, pp. 130–135.

[126] Z. He, L. Yang, S. Angizi, A. S. Rakin, and D. Fan, “Sparse bd-net: A
multiplication-less dnn with sparse binarized depth-wise separable convolu-
tion”, ACM Journal on Emerging Technologies in Computing Systems (JETC),
vol. 16, no. 2, pp. 1–24, 2020.

[127] A. Roohi, S. Sheikhfaal, S. Angizi, D. Fan, and R. F. DeMara, “Apgan: Approx-
imate gan for robust low energy learning from imprecise components”, IEEE
Transactions on Computers, vol. 69, no. 3, pp. 349–360, 2019.

[128] Y.-H. Chen, T. Krishna, J. S. Emer, and V. Sze, “Eyeriss: An energy-efficient re-
configurable accelerator for deep convolutional neural networks”, IEEE journal
of solid-state circuits, vol. 52, no. 1, pp. 127–138, 2016.

[129] K.-H. Kim, S. Gaba, D. Wheeler, J. M. Cruz-Albrecht, T. Hussain, N. Srini-
vasa, and W. Lu, “A functional hybrid memristor crossbar-array/cmos system
for data storage and neuromorphic applications”, Nano letters, vol. 12, no. 1,
pp. 389–395, 2012.

171



[130] Z. He, J. Lin, R. Ewetz, J.-S. Yuan, and D. Fan, “Noise injection adaption: End-
to-end reram crossbar non-ideal effect adaption for neural network mapping”,
in Proceedings of the 56th Annual Design Automation Conference 2019, 2019,
pp. 1–6.

[131] I. Chakraborty, D. Roy, and K. Roy, “Technology aware training in memristive
neuromorphic systems for nonideal synaptic crossbars”, IEEE Transactions on
Emerging Topics in Computational Intelligence, vol. 2, no. 5, pp. 335–344, 2018.

[132] S. Jain, A. Sengupta, K. Roy, and A. Raghunathan, “Rx-caffe: Framework for
evaluating and training deep neural networks on resistive crossbars”, arXiv
preprint arXiv:1809.00072, 2018.

[133] Z. He and D. Fan, “Simultaneously optimizing weight and quantizer of ternary
neural network using truncated gaussian approximation”, in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019,
pp. 11 438–11 446.

[134] D. Reis, D. Gao, S. Angizi, X. Yin, D. Fan, M. Niemier, C. Zhuo, and X. S.
Hu, “Modeling and benchmarking computing-in-memory for design space ex-
ploration”, in Proceedings of the 2020 on Great Lakes Symposium on VLSI, 2020,
pp. 39–44.

[135] Z. He, “Efficient and secure deep learning inference system: A software and
hardware co-design perspective”, PhD thesis, Arizona State University, 2020.

[136] T.-h. Yang and M.-f. Chang, Sense amplifier of resistive memory and operating
method thereof, US Patent App. 15/939,262, 2019.

[137] M. Hu, H. Li, Y. Chen, Q. Wu, G. S. Rose, and R. W. Linderman, “Memristor
crossbar-based neuromorphic computing system: A case study”, IEEE transac-
tions on neural networks and learning systems, vol. 25, no. 10, pp. 1864–1878,
2014.

[138] X. Dong, C. Xu, Y. Xie, and N. P. Jouppi, “Nvsim: A circuit-level performance,
energy, and area model for emerging nonvolatile memory”, IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 31, no. 7,
pp. 994–1007, 2012.

[139] K. Chen, S. Li, N. Muralimanohar, J. H. Ahn, J. B. Brockman, and N. P.
Jouppi, “Cacti-3dd: Architecture-level modeling for 3d die-stacked dram main
memory”, in Design, Automation & Test in Europe Conference & Exhibition
(DATE), 2012, IEEE, 2012, pp. 33–38.

172



[140] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition”, Proceedings of the IEEE, vol. 86, no. 11,
pp. 2278–2324, 1998.

[141] Z. He, S. Angizi, and D. Fan, “Accelerating low bit-width deep convolution
neural network in mram”, in 2018 IEEE Computer Society Annual Symposium
on VLSI (ISVLSI), IEEE, 2018, pp. 533–538.

[142] M. Tommiska, “Efficient digital implementation of the sigmoid function for
reprogrammable logic”, IEE Proceedings-Computers and Digital Techniques,
vol. 150, no. 6, pp. 403–411, 2003.

[143] Y. Chen, T. Luo, S. Liu, S. Zhang, L. He, J. Wang, L. Li, T. Chen, Z. Xu, N.
Sun, et al., “Dadiannao: A machine-learning supercomputer”, in Proceedings
of the 47th Annual IEEE/ACM International Symposium on Microarchitecture,
IEEE Computer Society, 2014, pp. 609–622.

[144] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y. Ng, “Reading
digits in natural images with unsupervised feature learning”, in NIPS workshop
on deep learning and unsupervised feature learning, vol. 2011, 2011, p. 5.

[145] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghe-
mawat, G. Irving, M. Isard, et al., “Tensorflow: A system for large-scale ma-
chine learning”, in 12th USENIX symposium on operating systems design and
implementation, 2016, pp. 265–283.

[146] N. Muralimanohar, R. Balasubramonian, and N. P. Jouppi, “Cacti 6.0: A tool
to model large caches”, HP Laboratories, pp. 22–31, 2009.

[147] S. W. Keckler, W. J. Dally, B. Khailany, M. Garland, and D. Glasco, “Gpus
and the future of parallel computing”, IEEE Micro, vol. 31, no. 5, pp. 7–17,
2011.

[148] Y. Turakhia, G. Bejerano, and W. J. Dally, “Darwin: A genomics co-processor
provides up to 15,000 x acceleration on long read assembly”, in Proceedings of
the Twenty-Third International Conference on Architectural Support for Program-
ming Languages and Operating Systems, ACM, 2018, pp. 199–213.

[149] F. Zokaee, H. R. Zarandi, and L. Jiang, “Aligner: A process-in-memory archi-
tecture for short read alignment in rerams”, IEEE Computer Architecture Letters,
vol. 17, no. 2, pp. 237–240, 2018.

173



[150] S. Angizi, W. Zhang, and D. Fan, “Exploring dna alignment-in-memory lever-
aging emerging sot-mram”, in Proceedings of the 2020 on Great Lakes Symposium
on VLSI, 2020, pp. 277–282.

[151] B. Langmead, C. Trapnell, M. Pop, and S. L. Salzberg, “Ultrafast and memory-
efficient alignment of short dna sequences to the human genome”, Genome
biology, vol. 10, no. 3, pp. 1–10, 2009.

[152] H. Li and R. Durbin, “Fast and accurate short read alignment with burrows–
wheeler transform”, bioinformatics, vol. 25, pp. 1754–1760, 2009.

[153] R. Luo, T. Wong, J. Zhu, C.-M. Liu, X. Zhu, E. Wu, L.-K. Lee, H. Lin, W.
Zhu, D. W. Cheung, et al., “Soap3-dp: Fast, accurate and sensitive gpu-based
short read aligner”, PloS one, vol. 8, no. 5, e65632, 2013.

[154] A. Madhavan, T. Sherwood, and D. Strukov, “Race logic: A hardware acceler-
ation for dynamic programming algorithms”, in 2014 ACM/IEEE 41st Inter-
national Symposium on Computer Architecture (ISCA), IEEE, 2014, pp. 517–
528.

[155] Y.-C. Wu, C.-H. Chang, J.-H. Hung, and C.-H. Yang, “A 135-mw fully in-
tegrated data processor for next-generation sequencing”, IEEE transactions on
biomedical circuits and systems, vol. 11, no. 6, pp. 1216–1225, 2017.

[156] J. Arram, T. Kaplan, W. Luk, and P. Jiang, “Leveraging fpgas for accelerating
short read alignment”, IEEE/ACM Transactions on Computational Biology and
Bioinformatics (TCBB), vol. 14, no. 3, pp. 668–677, 2017.

[157] S. K. Khatamifard, Z. Chowdhury, N. Pande, M. Razaviyayn, C. Kim, and
U. R. Karpuzcu, “A non-volatile near-memory read mapping accelerator”,
arXiv preprint arXiv:1709.02381, 2017.

[158] W. Huangfu, S. Li, X. Hu, and Y. Xie, “Radar: A 3d-reram based dna alignment
accelerator architecture”, in 55th DAC, ACM, 2018, p. 59.

[159] L. Yavits, S. Kvatinsky, A. Morad, and R. Ginosar, “Resistive associative pro-
cessor”, IEEE Computer Architecture Letters, vol. 14, no. 2, pp. 148–151, 2014.

[160] F. Zokaee, M. Zhang, and L. Jiang, “Finder: Accelerating fm-index-based exact
pattern matching in genomic sequences through reram technology”, in 2019
28th International Conference on Parallel Architectures and Compilation Tech-
niques (PACT), IEEE, 2019, pp. 284–295.

174



[161] S. Canzar and S. L. Salzberg, “Short read mapping: An algorithmic tour”, Pro-
ceedings of the IEEE, vol. 105, no. 3, pp. 436–458, 2017.

[162] R. Kaplan, L. Yavits, R. Ginosar, and U. Weiser, “A resistive cam processing-in-
storage architecture for dna sequence alignment”, IEEE Micro, vol. 37, no. 4,
pp. 20–28, 2017.

[163] W. Huang, L. Li, J. R. Myers, and G. T. Marth, “Art: A next-generation se-
quencing read simulator”, Bioinformatics, vol. 28, no. 4, pp. 593–594, 2012.

[164] H. Li and N. Homer, “A survey of sequence alignment algorithms for next-
generation sequencing”, Briefings in bioinformatics, vol. 11, no. 5, pp. 473–
483, 2010.

[165] E. Georganas, A. Bulucc, J. Chapman, L. Oliker, D. Rokhsar, and K. Yelick,
“Parallel de bruijn graph construction and traversal for de novo genome assem-
bly”, in SC’14: Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, IEEE, 2014, pp. 437–448.

[166] J. A. Chapman, I. Ho, S. Sunkara, S. Luo, G. P. Schroth, and D. S. Rokhsar,
“Meraculous: De novo genome assembly with short paired-end reads”, PloS one,
vol. 6, no. 8, e23501, 2011.

[167] R. Li, C. Yu, Y. Li, T.-W. Lam, S.-M. Yiu, K. Kristiansen, and J. Wang, “Soap2:
An improved ultrafast tool for short read alignment”, Bioinformatics, vol. 25,
no. 15, pp. 1966–1967, 2009.

[168] C.-M. Liu, T. Wong, E. Wu, R. Luo, S.-M. Yiu, Y. Li, B. Wang, C. Yu, X.
Chu, K. Zhao, R. Li, and T.-W. Lam, “Soap3: Ultra-fast gpu-based parallel
alignment tool for short reads”, Bioinformatics, vol. 28, no. 6, pp. 878–879,
2012.

[169] J. Arram, T. Kaplan, W. Luk, and P. Jiang, “Leveraging fpgas for accelerating
short read alignment”, IEEE/ACM transactions on computational biology and
bioinformatics, vol. 14, no. 3, pp. 668–677, 2016.

[170] S. F. Mahmood and H. Rangwala, “Gpu-euler: Sequence assembly using
gpgpu”, in 2011 IEEE International Conference on High Performance Computing
and Communications, IEEE, 2011, pp. 153–160.

[171] B. S. C. Varma, K. Paul, and M. Balakrishnan, “Fpga-based acceleration of de
novo genome assembly”, in Architecture Exploration of FPGA Based Accelerators
for BioInformatics Applications, Springer, 2016, pp. 55–79.

175



[172] D. R. Zerbino and E. Birney, “Velvet: Algorithms for de novo short read as-
sembly using de bruijn graphs”, Genome research, vol. 18, pp. 821–829, 2008.

[173] M. G. Grabherr, B. J. Haas, M. Yassour, J. Z. Levin, D. A. Thompson, I. Amit,
X. Adiconis, L. Fan, R. Raychowdhury, Q. Zeng, and Z. Chen, “Full-length
transcriptome assembly from rna-seq data without a reference genome”,Nature
biotechnology, vol. 29, no. 7, pp. 644–652, 2011.

[174] S. Goswami, K. Lee, S. Shams, and S.-J. Park, “Gpu-accelerated large-scale
genome assembly”, in 2018 IEEE International Parallel and Distributed Process-
ing Symposium (IPDPS), IEEE, 2018, pp. 814–824.

[175] S. Ren, N. Ahmed, K. Bertels, and Z. Al-Ars, “An efficient gpu-based de bruijn
graph construction algorithm for micro-assembly”, in 2018 IEEE 18th Inter-
national Conference on Bioinformatics and Bioengineering (BIBE), IEEE, 2018,
pp. 67–72.

[176] M. Lu, Q. Luo, B. Wang, J. Wu, and J. Zhao, “Gpu-accelerated bidirected de
bruijn graph construction for genome assembly”, in Asia-Pacific Web Confer-
ence, Springer, 2013, pp. 51–62.

[177] R. Li, H. Zhu, J. Ruan, W. Qian, X. Fang, Z. Shi, Y. Li, S. Li, G. Shan, K.
Kristiansen, S. Li, H. Yang, J. Wang, and J. Wang, “De novo assembly of hu-
man genomes with massively parallel short read sequencing”, Genome research,
vol. 20, no. 2, pp. 265–272, 2010.

[178] J. T. Simpson, K. Wong, S. D. Jackman, J. E. Schein, S. J. Jones, and I. Birol,
“Abyss: A parallel assembler for short read sequence data”, Genome research,
vol. 19, no. 6, pp. 1117–1123, 2009.

[179] G. Dai, T. Huang, Y. Chi, J. Zhao, G. Sun, Y. Liu, Y. Wang, Y. Xie, and
H. Yang, “Graphh: A processing-in-memory architecture for large-scale graph
processing”, IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 38, no. 4, pp. 640–653, 2018.

[180] S. Jain, A. Ranjan, K. Roy, and A. Raghunathan, “Computing in memory with
spin-transfer torque magnetic ram”, IEEE Transactions on Very Large Scale Inte-
gration (VLSI) Systems, vol. 26, no. 3, pp. 470–483, 2017.

[181] N.-F. Standard, “Announcing the advanced encryption standard (aes)”, FIPSP,
vol. 197, 2001.

176



[182] Z. Abid, A. Alma’Aitah, M. Barua, and W. Wang, “Efficient cmol gate designs
for cryptography applications”, IEEE transactions on nanotechnology, vol. 8,
no. 3, pp. 315–321, 2009.

[183] K. Malbrain, Byte-oriented-aes: A public domain byte-oriented implementation of
aes in c, 2009.

[184] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu, J. Hest-
ness, D. R. Hower, T. Krishna, S. Sardashti, et al., “The gem5 simulator”, ACM
SIGARCH computer architecture news, vol. 39, no. 2, pp. 1–7, 2011.

[185] L. Nai, R. Hadidi, J. Sim, H. Kim, P. Kumar, and H. Kim, “Graphpim: En-
abling instruction-level pim offloading in graph computing frameworks”, in
2017 IEEE International symposium on high performance computer architecture
(HPCA), IEEE, 2017, pp. 457–468.

177



BIOGRAPHY

Shaahin Angizi received his Ph.D. degree in Electrical Engineering at the School of
Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ,
in 2021, under the supervision of Dr. Deliang Fan. He received his B.Sc. and M.Sc. in
Computer Engineering from South Tehran Branch and Science and Research Branch of
Azad University, Tehran, Iran, in 2012 and 2014, respectively. He has authored and
co-authored +70 research papers in top-ranked international journals such as IEEE
TNANO, IEEE TCAD, IEEE TC, IEEE TCASI, IEEE TETC, IEEE TMAG, etc.,
and top-tier EDA conferences including, DAC, DATE, ICCAD, ASP-DAC, ICCD,
etc. As a graduate student, he has received prestigious Fellowship and Scholarship
awards during his Ph.D. He is also the recipient of the Best Ph.D. Research Award
(1st-place) of 2018 Ph.D. Forum at Design Automation Conference (DAC), two Best
Paper Awards of IEEE Computer Society Annual Symposium on VLSI (ISVLSI) in
2017 and 2018, and the Best Paper Award of ACM Great Lakes Symposium on VLSI
(GLSVLSI) in 2019. His primary research interests include In-Memory Computing
Based on Volatile & Non-Volatile Memories, Accelerator Design for Deep Neural Net-
works, Bioinformatics, Graph Processing, and Low Power and Area-efficient In-Sensor
Computing for IoT.

178


	Title Page
	Contents
	List of Tables
	List of Figures
	Chapter
	1 Introduction
	2 Reconfigurable PIM based on Non-volatile Memories
	3 Reconfigurable PIM Based on Volatile Memories
	4 Processing-in-Memory Acceleration of Deep Neural Networks
	5 Processing-in-Memory Acceleration of Genome Analysis
	6 Processing-in-Memory Acceleration of Data Encryption and Graph Processing Applications
	7 CONCLUSIONS AND OUTLOOK

	References
	Biographical Sketch

