Processing-in-Memory for Data-Intensive Applications,
From Device to Algorithm
by

Shaahin Angizi

A Dissertation Presented in Partial Fulfillment
of the Requirements for the Degree
Doctor of Philosophy

Approved April 2021 by the

Graduate Supervisory Committee:

Deliang Fan, Chair
Jae-sun Seo
Amro Awad
Wei Zhang

ARIZONA STATE UNIVERSITY

May 2021

©2021 Shaahin Angizi
All Rights Reserved

ABSTRACT

Over the past decades, the amount of data required to be processed and ana-
lyzed by computing systems has been increasing dramatically to exascale (10 bytes/s
or ops). However, modern computing platforms™ inability to deliver both energy-
eficient and high-performance computing solutions leads to a gap between meets
and needs, especially in resource-constraint Internet of Things (IoT) devices. Un-
fortunately, such a gap will keep widening mainly due to limitations in both de-
vices and architectures. With this motivation, this dissertation’s focus is on cross-
layer (device/circuit/architecture/application) co-design of energy-efficient and high-
performance Processing-in-Memory (PIM) platforms for implementing complex big
data applications, i.e., deep learning, bioinformatics, graph processing tasks, and data
encryption. The dissertation shows how to leverage innovations from device, circuit,
and architecture to integrate memory and logic to break the existing memory and power
walls and dramatically increase computing efficiency of today’s non-Von-Neumann
computing systems.

The proposed PIM platforms transform current volatile and non-volatile random
access memory arrays to computational units capable of working as both memory and
low-area-overhead, massively parallel, fast, reconfigurable in-memory logic. Instead of
integrating complex logic units in cost-sensitive memory, the explored designs exploit
hardware-friendly bit-line computing methods to implement complete Boolean logic
functions between operands within a memory array in a reduced clock cycle, overcom-
ing the multi-cycle logic issue in modern PIM platforms. Besides, new customized
in-memory algorithms and mapping methods are developed to convert the crucial
iteratively-used big data application’s functions to bit-wise PIM-supported logic. To

quantitatively analyze the performance of various PIM platforms running big data ap-

plications, a generic and comprehensive evaluation framework is presented. The over-
all system computing performance (throughput, latency, energy efficiency) for each
application is explored through the developed framework. The device-to-algorithm
co-simulation results on neural network acceleration demonstrate that the proposed
platforms can obtain 36.8x higher energy-efficiency and 22x speed-up compared to
state-of-the-art Graphics Processing Unit (GPU). In accelerating bioinformatics tasks
such as biological sequence alighment, the presented PIM designs result in ~2x, 43.8,
458 x more throughput per Watt compared to state-of-the-art Application-Specific In-
tegrated Circuit (ASIC), Field-Programmable Gate Array (FPGA), and GPU platforms,

respectively.

i

10 my mother Sheida who showed me the way to become what I am today
10 love of my life Shadi for all her love and patience

10 my brother Shayan who is always there for me

iii

ACKNOWLEDGMENTS

I would first like to express my sincere gratitude to my advisor, Dr. Deliang Fan,
whose knowledge and expertise were invaluable in formulating my Ph.D. research di-
rection based on my interest in the past five years. Your kindness, patience, insightful
advice, and feedback enlightened me, polished my thinking, and steered my work to a
higher level.

To my committee members Prof. Jae-sun Seo, Prof. Amro Awad, and Prof. Wei
Zhang, I am very grateful for all the help, constructive comments, and insightful sug-
gestions in several of my research projects and my dissertation. Besides, I would like to
extend my sincere acknowledgment to my kind and smart lab colleagues, Zhezhi He,
Adnan Siraj Rakin, Li Yang, Fan Zhang, Amitesh Sridharan, and Farhana Parveen, for
their inspiring discussion and help on our collaborative works.

Last but not least, I would like to express my appreciation to my wife, parent, and
brother, who always supported me and my decisions throughout my life. This disser-
tation is dedicated to you.

For clarification, Chapters 2 of this dissertation contains material from “Mrima: An
mram-based in-memory accelerator.” published in IEEE TCAD (2019) [1], “Aligns: A
processing-in-memory accelerator for dna short read alignment leveraging sot-mram.”
published in 2019 ACM/IEEE DAC [2], “Exploring a SOT-MRAM based in-memory
computing for data processing.” published in IEEE TMSCS (2018) [3], “GraphS: A
graph processing accelerator leveraging SOT-MRAM.” published in 2019 DATE [4],
and “PIMA-logic: a novel processing-in-memory architecture for highly flexible and
energy-efficient logic computation.” published in 2018 ACM/IEEE DAC [5]. The

dissertation author was the investigator and author of these papers.

iv

Chapters 3 contains material from “Redram: A reconfigurable processing-in-dram
platform for accelerating bulk bit-wise operations.” published in 2019 IEEE/ACM
ICCAD [6], and “Graphide: A graph processing accelerator leveraging in-dram-
computing.” published in 2019 GLSVLSI [7]. The dissertation author was the main
investigator and author of these papers.

Chapters 4 contains material from “IMCE: Energy-efficient bit-wise in-memory
convolution engine for deep neural network.” published in 2018 ASP-DAC [8], “Ac-
celerating deep neural networks in processing-in-memory platforms: Analog or digital
approach?.” published in 2019 ISVLSI [9], and “Mrima: An mram-based in-memory
accelerator.” published in IEEE TCAD (2019) [1]. The dissertation author was the
main investigator and author of these papers.

Chapters 5 contains material from “Aligns: A processing-in-memory accelerator
for dna short read alignment leveraging sot-mram.” published in 2019 ACM/IEEE
DAC [2], “Pim-aligner: A processing-in-mram platform for biological sequence align-
ment.” published in 2020 DATE [10], and “PIM-Assembler: A processing-in-memory
platform for genome assembly.” published in 2020 ACM/IEEE DAC [10]. The dis-
sertation author was the main investigator and author of these papers.

Chapter 6 contains material from “Redram: A reconfigurable processing-in-dram
platform for accelerating bulk bit-wise operations.” published in 2019 IEEE/ACM

ICCAD [6]. The dissertation author was the main investigator and author of this

paper.

CONTENTS

Page
LIST OF TABLES ... e et xii
LIST OF FIGURES ... e e xiii
CHAPTER

1 INTRODUCTION ...t e 1
1.1 Processing-in-Memory Opportunities and Challenges 4
1.1.1 PIM Opportunities.ouvuerineninineneanenenennn. 4
1.1.2 PIM Challenges........coooiuiiiiiiiiiiiina e, 4
1.2 Contributionso.uii i 6

1.2.1 Device-to-Architecture Co-Design for Reconfigurable
PIM Logic Circuits.eovuvriniinni e 6
1.2.1.1 Processing-in-non-volatile Memories.............. 6
1.2.1.2 Processing-in-volatile Memories 7
1.2.2 Big Data Applications and Algorithms 9
1.2.2.1 Bottom-up Evaluation Framework................ 9
1.2.2.2 Deep Neural Networksocoiinen. 10
1.2.2.3 Genome Analysisc.coviiiiiiiiiia... 10
1.2.2.4 Data Encryption.........c.ooviiiiiiiiia... 11
1.2.2.5 Graph Processingc.cooiiiiiiiiin... 11

2 RECONFIGURABLE PIM BASED ON NON-VOLATILE MEMO-
RIES o 12
2.1 Introductionouuin i e 12
2.1.1 Fabrication and Commercialization MRAM 12
2.1.2 STTEMRAM e 13

vi

CHAPTER Page

213 SOT-MRAM ..o 16

2.1.4 Challengescooiiiiiiiii i 20

2.2 Overall PIM Architecture ...t 21

2.3 Evolution of the Proposed MRAM-based PIM Platforms 23

2.3.1 Basic PIM Supporting (N)AND, (N)JOR 23

2.3.2 Reconfigurable Complete PIM Supporting X(N)OR 27
2.3.3 Reconfigurable PIM Supporting Two-Cycle In-Memory

Addition ... 29

2.3.3.1 Design I: MRIMA based on STT-MRAM.......... 29

2.3.3.1.1 Fast row copy (FRC)...................... 31

2.3.3.1.2 Two-input in-memory logic IML2x)....... 31

2.3.3.1.3 'Three-input in-memory logic (IML3x) 32

2.3.3.1.4 Two-cycle in-memory addition 34

2.3.3.1.5 System integration........................ 35

2.3.3.1.6 Non-structured bulk benchmark evaluation . 36

2.3.3.2 Design II: AlignS based on SOT-MRAM............ 37

2.3.4 Reconfigurable PIM Supporting One-Cycle In-Memory
Addition ... 39
2.3.5 Area Overhead Analysis................c.oooiiiia. 41

2.4 Highly Flexible and Energy-Efficient In-Memory Logic Compu-
1216 10 o U PP 42
2.4.1 PIMA-LOGIC .« v v eeee e 42
2.4.1.1 Logic Performancec.coovviiinininin... 47
2.5 SUMMALY .ot 48

vii

CHAPTER Page
3 RECONFIGURABLE PIM BASED ON VOLATILE MEMORIES ... 50

3.1 Introductionovutinii i 50
3.1.1 Processing-in-DRAM Platforms 50
3.1.1.1 Read/Write Operationc.coeveieannn.. 51

3.1.1.2 Initdalization and Copy Operation................ 52

3.1.1.3 Not Operationc..coiiiuiiiiiiinennen... 52

3.1.1.4 Other Logic Functionsoooat. 53

3.1.2 Challengescoooiiiiiiiiii 55

3.2 Design I: GraphiDe.......... ... i 56
3.2.1 GraphiDe’s Dual Row Activation Mechanism 57
3.2.2 In-memory Adder ... 59
3.2.3 ISA SUpport .oovvuei i 60
3.2.4 Reliability ... 62
3.2.5 Virtual Memory ... 64
3.2.6 AreaOverhead ... 65

3.3 DesignII: ReDRAM 65
3.3.1 ReDRAM’s Dual Row Activation Mechanism............ 65
3.3.2 Software SUPPOIt.ouvuitii i 70
3.3.3 Reliability ...\ ov e 71
3.3.4 Raw Performance, 72
3.3.4.1 Throughputt 73

3.3.4.2 Energy. ..ot 75

3.3.4.3 AreaOverhead L. 75

3.4 Summary ... 76

viii

CHAPTER Page
4 PROCESSING-IN-MEMORY ACCELERATION OF DEEP NEU-

RALNETWORKS ..o e 78
4.1 Introductiono.iuiiiiiiii 78
4.1.1 DNN Terminology............coooiiiiiiiiiiiiiiin... 79
4.1.2 DNN Acceleration: Analog or Digital PIM Approach?.... 81

4.2 Proposed Bottom-up PIM Evaluation Framework 84
4.2.1 Performance Analysis ..., 87
4.2.1.1 ISO-Memory-Capacity Comparison.............. 87

420100 Area. ..o 88

4.2.1.1.2 Latencyvveiniiiiiii 88

42113 Energycoovviiiiiiiii 90

4.2.1.2 ISO-Computation Comparison 91

42121 Area. ..o 91

42122 LAENCY «vneeeees e 92

42123 ENergy «.ovvvvriiii i 92

4.3 MRIMA as a Bit-wise DNN Inference Accelerator 94
4.3.1 In-memory Bit-wise Adder.................... ... 95
4.3.2 In-memory Bit-wise Convolver 98
4.3.3 Evaluation. ... 100
4.3.3.1 Architectural setup for MRIMA 100

4.3.3.2 Area and peak performance 101

4.3.3.3 DNN Acceleration Performance.................. 101

4.3.3.3.1 Modelingsetupcooiiiiiiia... 102

4.3.3.3.2 Accelerators setupcoiiiiii it 103

ix

CHAPTER Page

4.3.3.3.3 ACCULACY . evnvniniiiiaiiii e 104

4.3.3.3.4 Energy consumption...................... 104

4.3.3.3.5 Performancec.coiiiiiiiiiiat 106

4.3.3.3.6 Memorywall 108

4.3.3.3.7 Resource utilization....................... 109

44 SUMMATY « ..ottt e e 110
5 PROCESSING-IN-MEMORY ACCELERATION OF GENOME

AN ALY SIS e 111

5.1 Introduction ..ot 111

5.2 DNA Short Read Alignment. ..., 111

5.2.1 BWT-based Read Mappingcooviiniat. 113

5.2.2 Presented PIM Sequencing Algorithm 114

5.2.2.1 Exact Alignment Algorithm...................... 115

5.2.2.2 Extend to Inexact Match, 117

5.2.3 Correlated and Localized Computation.................. 119

5.2.3.1 Partitioningcooiiiiiiiiiiiiiiii 119

5.2.3.2 Mapping and Computation...................... 120

5.2.3.3 Pipeline Design. ...t 121

5.2.4 Evaluation.........oooiiiiiiiiii i 122

5.2.4.1 Counterpart Computing Platforms 122

5.2.4.2 Power & Throughputo.o... 123

5.2.4.3 Trade-off...... ... o 124

5.2.4.4 Off-Chip Memory Access........c.covuvunenenen.. 125

5.3 DNA Genome Assembly ... 126

CHAPTER Page

5.3.1 Presented PIM Assembly Algorithm and Mapping........ 128
5.3.1.1 Stage One: Hash Table 129
5.3.1.2 Stage Two: Graph Construction.................. 131
5.3.1.3 Stage Three: Traversal for Euler Path.............. 134
5.3.2 Evaluation. ... i 137
5.3.2.1 Counterpart Computing Platforms 137
5322 RunTime.. ..ot 139
5.3.2.3 Power Consumptioncoovuiuiininn.. 140
5.3.2.4 Speed-up/Power-Efficiency Trade-off 141
5.3.2.5 Memory Wall ... o 143
5.4 Summary 144
6 PROCESSING-IN-MEMORY ACCELERATION OF DATA EN-
CRYPTION AND GRAPH PROCESSING APPLICATIONS 146
6.1 Introductionooiiiiiiii i 146
6.2 Data Encryptiono i 146
6.2.1 Mapping and Computationc.covueueenenen.. 147
6.2.2 Experimentand Results............... ...l 149
6.3 Graph Processingoouiuiiiiiii i 151
6.3.1 Mapping and Computationcooueuiuienen.. 151
6.3.2 Experimentand Results. ...l 153
6.4 SUMMAry .. .ot e 155
7 CONCLUSIONS AND OUTLOOKot 156
REFERENCES ... e 159
BIOGRAPHICAL SKETCH ..ottt 178

xi

LIST OF TABLES

Table Page
1. Taxonomy of the Proposed Processing-In-Platforms. 8
2. Simulations Parameters for MT].o 16
3. Simulation Parameters for SOT-MT]. i 19
4. Configuration of MRIMA'’s Enable Bits for Different Functions. 31
5. 'The Basic Instructions of MRIMA. ooiiiiiiiiiiiian... 35
6. Configuration of Enable Bits for Different Functions...................... 40
7. Synthesis Comparison of the 13 Standard Functions. 46
8. 'The Basic Functions Supported by GraphiDe............. 61
9. Process Variation Analysis.ot 63
10. The Basic Functions Supported by ReDRAM, Ambit and DRISA. 71
11. Process Variation Analysis.c.ouiuiiinininiiiiiiiiiiiinanann 72
12. Shape Parameters of a Convolutional Layer............... 80
13. Per Operation Estimation Results for Different PIM Designs. In the Area

14.
15.

Part, M Denotes Memory Die Area, and C Denotes Computation Area
Overhead. (Iso-Capacity: 32Mbit-Single Bank, Data Width: 512-Bit). 89
Estimated Row Performance of Various PIMs without Parallelism Techniques. 93

Social Network Data-Sets. . ..vvvune et e e 153

xii

LIST OF FIGURES

Figure

1.

(A) General Von-Neumann Computing Architecture in CPU and GPU vs.

(B) Processing-In-Memory Architecture...............coiiiiiiiiia..

(A) The Internal Bandwidth for DDR3-1600 and HMC at Chip/bank
Hierarchy, (B) Energy Consumption for CPU Data Processing and Data
Movement with a L1:32K/L2:256K/L3:4M/Main Memory:8G Hierarchy

AE AN, oo

(A) Device Structure of Conventional Magnetic Tunnel Junction (MT]J) in
Parallel and Anti-Parallel States, with Spin-Transfer Torque (STT) Switch-
ing Scheme. (B) 1TIR STT-MRAM, (C) Biasing Condition for Memory

OPErations. . .« v v vttt ettt e e e

(A) The Normalized Magnetization Switching in X-, Y- and Z-Axis. (B) The

Resistance-Area Product W.r.t the Thickness of MT] Tunnel Oxide (T,x. ...

(A) The Stacking Device Structure of MT] and Heavy Metal Substrate,
Which Uses Spin-Orbit Torque Induced Magnetization Switching Scheme.
(B) Bit-Cell Schematic of SOT-MRAM with Two Access Transistors

(1R/1W). (C) Biasing Condition for Memory Operations.
The Overall PIM Architecture Used in Chapter 2.

The PIM’s Acceleration Steps. The Size of the Computational Sub-Arrays

Could Be Tailored.oooun

xiii

Page

5

15

18
22

23

Figure

8.

10.

11.

12.

13.

14.

The Idea of Voltage Comparison between Viense and V,ef for (a) Mem-
ory Read, (B) 2-Input In-Memory Logic, I.e., IML2x, and (C) 3-Input In-
Memory Logic, Le., IML3x. Note that, Ryi and R; Denote the Equivalent

Resistance of the Non-Volatile Component and Selecting Transistor, Wire,

Etc. Respectively.ooiei i

(A) Proposed PIM Sub-Array Architecture Based on SOT-MRAM Support-
ing (N)AND, (N)OR Functions with Peripherals. The Layout of Two Ad-
jacent SOT-MRAM Cells Is Also Indicated. (B) Monte-Carlo Simulation

Result of the Sense Voltage (V sense) Distribution.

(A) Proposed In-Memory Processing Sub-Array Architecture Based on
SOT-MRAM Supporting (N)AND, (N)OR, X(N)OR Functions, (B)

Modified Sense Amplifer with Two Sub-SAs and Three Reference Resistors. .

Transient Simulation Results of In-Memory Computing Operations (l.e.,

AND, ORand XOR) .ot

The MRIMA’s Sub-Array Architecture: (a) Block Level Scheme and STT-
MRAM Realization of 2-Input and 3-Input In-Memory Logic Methods,

(B) Peripherals of Computational Sub-Arrays to Support Computation.

Monte-Carlo Simulation of Vsense (with RAp/TMR=2%/5% -
Tox=1.5nm) for (a) Memory Read, (B) IML2x, (C) IML3x When Isense=

6.6p4 A, and (D) IML3x When Isense= 181 A. ...

(A) Voltage Margin between Sensitive States of MRIMA’s Operations vs.
Isense with a Tox=1.5nm, (B) Voltage Margin of IML3x Operation vs.
Thickness of MT] Oxide with Different Variations on RAp/TMR with a

Isense= G.OpA.

xiv

Page

24

25

28

30

33

34

Figure Page

15.
16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

206.

(A) Energy and (B) Delay of ISCAS85 Benchmarks (Y-Axis: Log Scale). 37
(A) Block Level Scheme of Computational Sub-Array and SOT-MRAM
Realization of 2-Input and 3-Input In-Memory Logic Methods in AlignS,
(B) AlignS’s Reconfigurable SA and Peripheral Circuitry. 38
(A) Block Level Scheme of Computational Sub-Array and SOT-MRAM
Realization of 2-Input and 3-Input In-Memory Logic Methods in GraphS,
(B) Reconfigurable SA, (C) Truth Table of Addition Operation Implemen-

tation, (D) Truth Table for Realizing X(N)OR2.c.o.... 39
(A) Configuration Table for a Sample 512Mb Memory, (B) MRIMA Area
Overhead, (C) GraphS Area Overhead. ...t 41

The PIMA-Logic Sub-Array Architecture. Left: Block Level Sub-Array
Architecture, Middle: SOT-MRAM Realization, and Right: Functional

Blocks Used in Sub-Array.........o.ooiiiiiiiii i 43
Performing Boolean Functions Using PIMA-Logic and Pinatubo. 45
Realization of In-Memory Full Adder and 4-Bit RCA in PIMA-Logic....... 46

(A) Energy Consumption and (B) Delay of ISCAS85 Benchmarks Mapped
to Three Different PIM Architectures (Y-Axis in Energy Plot: Log Scale). ... 48

(A) DRAM Sub-Array Organization, (B) DRAM Cell and Sense Amplifier,
(C) Dual-Contact DRAM Cell. ... 51
(A) TRA Mechanism in Ambit, (B) 3T1C Mechanism in DRISA, (C)
1T1C-Logic Mechanism in DRISA.ot 54
(A) The GraphiDe Memory Organization, (B) Block Level Scheme of Com-
putational Sub-Array and Peripheral Circuitry. 57
Realization of AND2 Function in GraphiDe., 59

Figure Page

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

Realization of MA]J5 Function in GraphiDe., 60
Noise Sources in DRAM Cell. ... 62
(A) Block Level Scheme of ReDRAM’s Computational Sub-Array, (B)
Computational Rows and Reconfigurable SA. 66
(A) VIC and (B) Truth Table of the SA’s Inverters to Realize Capacitive
NAND2-NOR2 FUnctions.oouvuinteiiii i eiieeenenn 67

(A) ReDRAM’s Control Signals and Activations in the Sense Amplification
State, (B) Dual Row Activation Mechanism. Here, X(N)OR2 Is Imple-

mented by Setting Enable Set to O1111.oooiiiiiiat.. 68
The Transient Simulation of the Internal ReDRAM’s Sub-Array Signals in
DRA Mechanism. ... 69
Throughput of (a) NOT, (B) AND2, (C) OR2, and (D) XOR2 Operations
Implemented by Different Platforms. X-Axis: Vector Size (MB) and Y-Axis:
Log Scaled Throughput (GOps/second)............coooiiiiiiiiiiiia... 74
Energy of Different Platforms (Y-Axis: Log Scale)......................... 75
Execution Time of a Sample DNN for Scene Labeling on CPU and GPU... 79
Visualization of Inference (A.k.a Forward Propagation) in DNN. 81
Hardware Implementation of a Single M x M ReRAM Crossbar Array Pair

(Positive and Negative Array) as an Analog Dot-Product Engine............ 83
The Bottom-Up Evaluation Framework Developed for PIM Platform Eval-
L 10 (o) o P 85

PIMA-SIM as a PIM Support Evaluation Tool Developed to Model the

Timing, Energy, and Area of Various PIM Technologies. 86

Figure Page

40.

41.
42.
43,
44,
45.
406.
47.
48.
49.
50.
51.
52.

53.
54.

55.

56.

MRIMA’s Data Organization and Computation Steps of Binary-Weight
Layers. ..o 95

Parallel In-Memory Addition Steps for Generating Sum and Carry-Out Logic. 97

Mapping and Computation of MRIMA’s Bit-Wise Convolver. 99
MRIMA’s Area-Peak Performance Trade-Off. 102
(A) Test Error of the DNN Model, (B) Prediction Accuracy vs. Epoch. 105
Energy-Efficiency of MRIMA vs. Different DNN Accelerators. 106
Performance of Different MRIMA vs. DNN Accelerators. 107
Break-Down of (a) Energy and (B) Delay of Four PIM Platforms........... 108
The Memory Bottleneck Ratio.coooiiiiiii i, 109
The Resource Utilization Ratio. ..., 109
Short Read Alignment Concept.oouiuiiiiiiniiiiiiinaenan... 112
The Required Pre-Computation in Alignment-In-Memory Algorithm. 116
(A) AlignS and PIM-Aligner’s Sub-Array Partitioning for Comparison and

Addition Operations, (B) Parallel Comparison Operation (XNOR_Mazch),
(C) MEM Function to Retrieve Marker_add, (D) IM_ADD Function with

Two Methods. ...t 120
The Pipeline Technique with 2,=2 for PIM-Aligner. 122
(A) Power Consumption and (B) Throughput of Different Accelerators
Compared to AlignS and PIM-Aligner (Y-Axis:Log Scale) 124
(A) Throughput/Watt, (B) Throughput/Watt/Area, and (C) Power-
Throughput Trade-Off Wirt. Py ooooiinii i 125

(A) Off-Chip Memory, (B) Memory Bottleneck Ratio, (C) Resource Uti-

lization Ratio for Different Accelerators.c.couueeeeineeennn.. 126

Figure Page

57.

58.

59.

60.

61.

62.

63.

64.

65.

60.

67.

(A) The De Bruijn Graph-Based Genome Assembly Process, (B) Break

down of Execution Time of Meraculous Genome Assembler for Human

and Wheat Data-Set. .. ovueeei e e 127
The Genome Assembly Stages..............o 129
The Hash Table Generation out of K-Mers. ..o v vvoeee e 131

(A) The Proposed Correlated Data Partitioning and Mapping Methodology
for Creating Hash Table, (B) Realization of Parallel In-Memory Comparator
(PANDA_Cmp) between K-Mers in a Computational Sub-Array............ 132
Graph Construction with Sparse Matrix with Partitioning, Allocation and
Parallel Computation.ouiuiiiiiii i, 133
PANDA In-Memory Addition and Comparison Scheme for Finding the

St VEIteX. ottt et e e e e e e 137
The Breakdown of Run Time for Under-Test Platforms Running Different
K-Mer-Length Genome Assembly Task. ..., 140

The Breakdown of Power Consumption for PIM Platforms Running Dif-
ferent K-Mer-Length Genome Assembly Task Compared to CPU. 142
Trade-Off between Power Consumption and Run-Time W.r.t. Parallelism
Degree in K=25. ..ot e 143
(A) Memory Bottleneck Ratio and (B) Resource Utilization Ratio for CPU
and Three Under-Test PIM Platforms for Running Genome Assembly Task. 144
(A) AES Block Diagram, (B) State Matrix Partitioning, (C) Schematic Rep-
resentation of ShiftRows and MixColumns Transformations, (D) The Re-

quired Computation of Each Transformation..................... 148

xviil

Figure Page
68. Breakdown of (a) Energy Consumption and (B) Delay of Different AES
Implementations.eueeuiuin it 150
69. (A) Data Partitioning and Allocation in Chip Level, (B) ReDRAM’s Map-
ping and Acceleration for Finding Matching Index in Sub-Array Level. 152
70. (A) Normalized Energy Consumption, (B) Execution Time, (C) Memory

Bottleneck Ratio of the Accelerators. 154

xix

Chapter 1

INTRODUCTION

In the past decades, the amount of data required to be processed by computing sys-
tems has been dramatically increasing to exascale (10'® bytes/s or flops) [11], [12]. How-
ever, the incapacity of modern computing platforms to deliver both energy-efficient
and high-performance computing solutions leads to a gap between meets and needs
[13], [14]. Unfortunately, with current Boolean logic and Complementary Metal Ox-
ide Semiconductor (CMOS)-based computing platforms, such gap will keep widen-
ing mainly due to limitations in both devices and architectures. First, at device level,
the computing efficiency and performance of CMOS Boolean systems is beginning
to stall due to approaching the end of Moore’s law and also reaching its power wall,
i.e., huge leakage power consumption limits the performance growth when technology
scales down [11], [15]. For example, the highest power efliciency of modern CPU
and GPU systems is only ~10GFLOPS/W, which is difficult to substantially improve
in the predictable scaled technology node [16]. Second, at the architecture level, as
depicted in Fig. 1a, today’s computers are based on Von-Neumann architecture with
separate computing and memory units connecting via buses, which leads to memory
wall imposing long memory access latency, limited memory bandwidth, energy-hungry
data transfer, and huge leakage power for holding data in volatile memory [14], [17].
This comes from the fact that there is a massive number of instruction fetch and data
transfer between computing and memory units. Therefore, there is a great need to lever-

age innovations from both device and architecture to build intelligent, reconfigurable,

instruction fetct

CPU 1 sata ransrer |
Sequential |= = = = = = >
Computation
gyt
(a) - Multiple instruction fetch « Single instruction fetch
« Multiple data transfer « Multiple data transfer
PIM (Memory +Logic) —
| ~
k) e)|Operand Row #1
| |
§ e Operand Row #2
Sequential 2
Computation S| il [Result R
€ esult Row
C
SJ([Mbdified SA)
(b) - Single instruction fetch - C F—F—F)
« No data transfer N

Figure 1: (a) General von-Neumann computing architecture in CPU and GPU vs. (b)
Processing-in-Memory architecture.

energy-efficient, and high-performance computing platforms integrating memory and
logic to break the existing memory and power walls.

In the last three decades, Processing-in-Memory (PIM) architecture, as a potentially
viable way to solve the memory wall challenge, has been well explored [14], [15], [18]-
[22]. The key concept behind PIM, as depicted in Fig. 1b, is to embed logic units
within memory to process data by leveraging the inherent parallel computing mech-
anism and exploiting large internal memory bandwidth. It could lead to remarkable
savings in off-chip data communication energy and latency. Ideally, the PIM architec-
tures must be capable of performing bulk bit-wise operations that are needed in many
big data applications [23], [24]. Generally, at the sub-array level, a PIM holds the
operand rows, e.g., #1 and #2 shown in Fig. 1b in two target rows of the memory. By

receiving a particular instruction from the CPU side, the PIM’s row decoder simulta-

neously activates the target rows and performs the bit-wise logic function between all
the bit-cells in two rows, storing two operands. This could be achieved by modifying
memory components at Sense Amplifiers (SA) level [23], memory bit-cell level [25],
[26], or even adding combinational circuits after SA [8], [27], [28]. The proposals for
exploiting SRAM-based [29], [30] PIM architectures can be found in recent literature.
However, PIM in the context of main memory (DRAM- [15], [19]) has drawn much
more attention in recent years mainly due to larger memory capacities and off-chip
data transfer reduction as opposed to SRAM-based PIM. However, existing DRAM-
based PIM architectures have major shortcomings, e.g., high refresh/leakage power,
multi-cycle logic operations, operand data overwritten, operand locality, etc.

The PIM architecture has become even more intriguing when integrated with
emerging Non-Volatile Memory (NVM) technology, such as Phase Change Memory
(PCM) [31] and resistive RAM (ReRAM) [14]. ReRAM and PCM offer more packing
density (~ 2 — 4x) than DRAM and hence appear to be competitive alternatives to
DRAM. However, they suffer from slower and more power-hungry writing operations
than DRAM [31]. In emerging NVM technologies, Magnetic RAM (MRAM) tech-
nology is another promising high-performance candidate for both last level cache and
main memory due to its ultra-low switching energy, non-volatility, superior endurance,
excellent retention time, high integration density, and compatibility with CMOS tech-
nology [32]. Meanwhile, MRAM technology is in the process of commercialization
[33]. Hence, PIM in the context of different NVMs, without sacrificing memory ca-

pacity, can open a new way to realize efficient in-memory computing paradigms [14],

[23], [34].

1.1

Processing-in-Memory Opportunities and Challenges

1.1.1 PIM Opportunities

The PIM architecture offers two important opportunities:

* First, it can exploit the large internal memory bandwidth that gets larger when

moving towards the memory bit-cell. Such bandwidth is otherwise wasted. Fig.
2a depicts the potential of internal bandwidth for DDR3-1600 and Hybrid Mem-
ory Cube (HMC). It can be observed that as moving from chip/die IO to bank
row buffer, DDR and HMC achieve 57x and 222x bandwidth improvements,
respectively [35], [36].

Second, PIM eliminates data movement between the memory and processing
host by performing the computation in the memory side. Fig. 2b reports
energy consumption of performing integer (INT) and floating-point (FP) op-
erations in the host as well as data movement energy between a host with a
L1:32K/1.2:256K/L3:4M/Main Memory:8G hierarchy at 45nm. It is reported
that the data movement energy for the main memory is ~100x larger than an

FP operation, which shows the significance of data movement reduction.

1.1.2 PIM Challenges

There are two high-level challenges with PIM designs that need to be addressed:

* First, on the one hand, the memory industry is highly cost-sensitive. Therefore,

inserting customized processing units with high-reconfigurability on the memory

(

1,E+05 1.E+05
- [CDDR3-1600 mHMC
31-5*“ S 1E+D4 |
o (=1
= 1.E+03 | >
% 91.E+03 E
g 1.E+02 |]
i ul 1,E+02
© 1,E+01 | T
2]

1,E+00 1.E+01

L1 L2 L3

Bus (Serdes) Chip/Die 10 Bank Row Buffer INT FP Main
(a) (b) Comp. Comp. Cache Cache Cache Memory

Figure 2: (a) The internal bandwidth for DDR3-1600 and HMC at chip/bank hier-
archy, (b) Energy consumption for CPU data processing and data movement with a
L1:32K/1.2:256K/L3:4M/Main Memory:8G hierarchy at 45nm [35], [36].

side could not be accepted if it would incur large area-overhead [23]. On the
other hand, for PIM to considerably reduce the data movement between memory
and host processor, it has to be reconfigurable and supports a wide range of logic
operations. Unfortunately, the existing PIM architectures have been limited to
basic logic operations such as AND, OR, and XOR so far [23], [37], which are
not necessarily applicable to a wide variety of tasks except by imposing multi-
cycle operations to realize specific functions such as addition [19], [38]. This
dual requires a synergic study at both device and circuit levels to realize a low-
overhead and reconfigurable PIM platform.

* Second, to accelerate big data applications such as deep learning, graph process-
ing, bioinformatics, etc., within the content of PIM, a synergic study at both
architecture and algorithm levels is also needed to assure various applications can
work with the provided PIM instructions. The existing big data processing algo-
rithms are developed to work with von-Neumann computing architecture that
will not necessarily fit the PIM concept. On the other side, the PIM architecture
typically deals with a massive number of write-back operations that eventually

may even fade the PIM benefits while working on the big data tasks. This prob-

lem is intensified when it comes to NVMs with costly write operations. Therefore,
there is a great need for architecture and algorithm co-design and co-optimization

on top of device and circuit levels.

1.2 Contributions

Motivated by the aforementioned opportunities and challenges, this dissertation
focuses on hardware and software co-design and co-optimization of energy-efficient and
high-performance PIM platforms for big data applications, leveraging innovations from
circuit and architecture to integrate memory and logic to break the existing memory
and power walls and to bridge memory and computing unit. The dissertation follows
two main directions to address the discussed challenges, summarized in the following

subsections.

1.2.1 Device-to-Architecture Co-Design for Reconfigurable PIM Logic Circuits

In this research direction, the dissertation explores how to exploit and redesign the
existing NVM/VM circuits and architectures with minimal change to simultaneously
work as a memory to store data and as new, intrinsic, parallel, fast, reconfigurable in-

memory logic to process data within memory directly.

1.2.1.1 Processing-in-non-volatile Memories

In emerging resistive NVMs, like ReRAM and MRAM, the data are stored in terms

of resistive states of memory cells. For a traditional NVM read operation, one selected

memory cell will be activated and compared with a reference resistance through mem-
ory SA to read out data value. In the presented computational NVM designs, multiple
resistive memory cells (i.e., data operands) could be activated and sensed simultane-
ously, leading to different parallel resistive levels at the SA side through modifying
peripheral circuits. By carefully selecting different reference resistance levels, various
Boolean logic outputs could be intrinsically ‘read out’ based on input operand data in
the memory array. The device-to-architecture level contributions to NVMs are thor-
oughly discussed in Chapter 2. The evolution of proposed PIMs based on NVMs is
shown starting from basic structures supporting bulk bit-wise (N)AND/(N)OR oper-
ations all the way to fully reconfigurable PIMs supporting X(N)OR and addition. The
design scope and the selected publications related to this chapter are indicated in Table

1 under Technology: STT-MRAM and SOT-MRAM. Table 1 also lists the supported

functions and applications regrading each work.

1.2.1.2 Processing-in-volatile Memories

In the VM domain, novel reconfigurable processing-in-DRAM platforms are de-
signed in this dissertation, which transform current DRAM architecture to massively
parallel computational units exploiting the high internal bandwidth of modern mem-
ory chips. The proposed DRAM-based designs utilize the analog operation of DRAM
sub-arrays and elevate it to implement a full set of 1- and 2-input bulk bit-wise oper-
ations in a single memory cycle based on a new dual-row activation mechanism. The
circuit/architecture level contributions for VMs is presented in Chapter 3. The design
scope and the selected publications related to this chapter are indicated in Table 1 under

Technology: DRAM.

Table 1: Taxonomy of the proposed Processing-in-Platforms.

Reference [39] [40] [1] [20] [10] [41]
STT-/SOT-/ReRAM/
Technology DWM DWM STTMRAM SOT-MRAM SOT-MRAM
DRAM/SRAM
Supported MAJ3/MIN3 MAJ3/MIN3 full set 1-/2- full set 1-/2-input Ops | full set 1-/2-/3-input Ops | full set 1-/2-/3-input Ops
Functions | MAJ5/MIN5/Add | MAJ5/MIN5/Add input Ops./MAJ3 MAJ3 MAJ3/Add MA]J3/Add
Applications image image/DNN encrypt./DNN DNN DNA Alignment DNN
Reference [42] [38] [5] [28] [2] [6]
Technology DWM SHEDWM SOT-MRAM SOT-MRAM SOT-MRAM DRAM
Supported MAJa/MINn full set (N)AND2/(N)OR2 full set full set 1-/2-input Ops full set 1-/2-input Ops
Functions 1-/2- input Ops./MAJ3 MAJ3/MAJ5 1-/2-input Ops MAJ3/Add MAJ3/Add
Applications image encrypt. encrypt. DNN DNA Alignment encrypt./graph
Reference [43] [44] [45] [46] [47] [48]
Technology DWM SHEDWM SOT-MRAM SOT-MRAM SOT-MRAM DRAM
Supported MAJ3/MIN3 full set (N)AND2/(N)OR2 full set 1-/2- XNOR2/MAJ3/
(N)AND2/(N)OR2
Functions | MAJ5/MIN5/Add | 1-/2-input Ops/MA]J3 Add/Sub input Ops Add
Applications image - DNN DNN DNN DNA assembly
Reference [49] [50] [8] [4] [9] [71
STT-/SOT-/ReRAM/
Technology SHEDWM DWM+SOTMRAM SOT-MRAM SOT-MRAM DRAM
DRAM/SRAM
MAJn/MINn/ full set full set 1-/2-/3-input Ops | full set 1-/2-/3-input Ops | (N)AND2/(N)OR2/
Functions (N)AND2/(N)OR2
Add 1-/2-input Ops MAJ3/Add MAJ3/Add MA]J3/MAJ5/Add
Applications encrypt. graph DNN graph DNN graph

1.2.2 Big Data Applications and Algorithms

In this research direction, new customized PIM-friendly algorithms are explored for
big data applications based on the proposed computational NVM and VM circuits and
architectures i