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ABSTRACT

Testing and verification is an essential procedure to assert a system adheres to some
notion of safety. To validate such assertions, monitoring has provided an effective
solution to verifying the conformance of complex systems against a set of properties
describing what constitutes safe behavior. In authoring such properties, Temporal
Logic (TL) has become a widely adopted specification language in many monitoring
applications because of its ability to formally capture time-critical behaviors of re-
active systems. This broad acceptance into the verification community and others,
however, has naturally led to a lack of TL-based requirement elicitation standards as
well as increased friction in tool interoperability.

In this thesis, I propose a standardization of TL-based requirement languages
through the development of a Formal Requirements Toolkit (FOREK): a modular,
extensible, and maintainable collection of TL parsers, translators, and interfaces. To
this end, six propositional TL languages are supported in addition to their appropriate
past-time variants to provide a framework for a variety of applications using TL as a
specification language. Furthermore, improvements to the Pythonic Formal Require-
ments Language (PYFOREL) tool are performed in addition to a formal definition
on the structure of a PYFOREL program. And lastly, to demonstrate the results of
this work, FOREK is integrated into an offline monitor to showcase its intended use

and potential applications into other domains.
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PREFACE

This thesis is organized as follows: Chapter 1 introduces the domain and motivation
of recognizing formal requirements in monitoring, Chapter 2 provides a self-contained
review of the core concepts related to this work, Chapter 3 contains a review of related
work and approaches relevant to this thesis, Chapter 4 discusses the main contribution
of this work, Chapter 5 discusses changes, modifications, and definitions for the formal
requirements-based domain-specific language, Chapter 6 showcases results of the the
main contribution of this work, and Chapter 7 provides a conclusion and potential

future work.
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Chapter 1

INTRODUCTION

Safety is a ubiquitous forethought in the design and development of complex
systems [77]. This is especially true for computer-based systems that interact with
the physical world. These aforementioned systems are most notably recognized and
termed Cyber-Physical Systems (CPSs) [64]. Examples of such systems include power
grids, automatic transmissions, autonomous vehicles, robots, and even thermostats.
In designing a safe CPS, a notion of safety must first be expressed. The definition of
safety for a system commonly originates from a set of desirable states often influenced
by various parameters such as its dynamics, control inputs, and the environment it
operates within. Considering these influences, a generalized solution or approach to
certifying all existing and future systems safe is an infeasible feat. Hence, a vast
amount of resources from the academic, industrial, and governmental sectors have
been devoted to the verification and validation of numerous complex systems for
safety and trust [20].

Of these efforts, formal methods have proven to be a successful and reliable ap-
proach in verifying the intended behavior of systems—specifically systems that are
time-critical [54]. In most cases, formal methods such as model checking |23, 16| prove
(exhaustively) the system satisfies the notion of safety set forth. While this methodol-
ogy provides a rigid, provable, and reliable set of techniques to validate the safety of a
system, its strength is its weakness. The analytical solutions provided by these tech-
niques cannot be applied to all domains and problems due to its strict and resource

intensive techniques. Furthermore, a model for the system under scrutiny may even



not exist to accurately and efficiently capture its behavior effectively voiding formal
approaches from being applicable. From these considerations, simulation and testing
provide a numerical-based approach to solving problems that are otherwise limited by
computational power, theory, or simply models when using formal methods. In the
context of CPSs, specification-based monitoring (henceforth, monitoring) [14] is an
effective requirement-based verification technique used to validate the conformance
of a CPS against a safety requirement to assert safety guarantees.

In monitoring, generally a trace of the system (i.e., sequence of states) is checked
against some requirement to verify whether the trace satisfies the requirement. This
satisfaction constraint is dependent on the requirement expressed, its accuracy in
capturing the intended property, and the capabilities of the language used. Natural
Language (NL) is an effective framework to express requirements and has no limita-
tions in this regard. However, as it is an inherently ambiguous language, evaluating
the intention of an NL requirement is unreliable and troublesome. To resolve this issue
of ambiguity and expressiveness, the use of Temporal Logic (TL) as a specification
language for monitoring has become a popular choice. TL provides a formal ap-
proach to unambiguously express safety requirements for reactive systems and CPSs
alike [62|. The popularity of the formal language has grown in recent decades due to
its effective expressibility of time-based behaviors, foundations in formal philosophi-
cal logic, and relatively small grammar to manage. This widespread use can be seen
through the development of numerous tools that utilize TL as a specification lan-
guage to author formal requirements of safety properties [10, 31, 25, 66, 65|. While
these tools illustrate the advantages of TL and the efforts towards safer and more
robust CPSs, the development has, consequently, led to a divergence in authoring TL
requirements at an implementation level. To further demonstrate this idea, consider

the following example regarding a TL requirement.



Example. Consider a scenario where the system under scrutiny is a simple network
server interface. The server has one job: Whenever a request is sent via a client,
the server must eventually grant access to said client within the next 10 time units

(inclusive). In other words, the TL requirement! can be written as so:

O (req = o0 gnit) (1.1)

where req is the event at which a request is received by the server and gnt is the event
at which a grant is issued by the server. If this requirement under consideration were
to be used by several different tools that support this TL language such as TLTK [25],
RTAMT [66], and DP-TALIRO [82], then the following issues arise. First, TLTK
does not inherently support a TL-based interface. Therefore, such a requirement
could not be easily transposed into the TLTK framework without additional work.

Second, the requirement to be used in RTAMT would be written as follows:
always (req implies eventually[0:10] gnt)

where always corresponds to L], implies corresponds to =, and eventually corre-
sponds to < in Equation (1.1). The same requirement, when written to be accepted

by the DP-TALIRO tool would be as follows:
[1(req -> <>_[0,10] gnt)

where [] corresponds to [J, -> corresponds to =, and <> corresponds to < in Equa-
tion (1.1) leading to some obvious divisions in the preferred syntactic flavor for TL

between RTAMT and DP-TALIRO.

With the aforementioned example in mind, the issue of divergence has resulted in

a lack of TL-based requirement elicitation standards, decreased tool interoperability,

LAt this time, the meaning of the TL requirement is unimportant. A further discussion on TLs
is performed in Section 2.2



and minor, yet impactful, syntactic differences in the preferred specification language.
Furthermore, with an increasing number of tools released using TL, this gap is only
widened throughout the verification community:.

In this thesis, I advocate for the standardization of TL-based requirement tools
through the development of the FOREK: a unified, modular, and extensible TL frame-
work for parsing, translating, and authoring formal requirements in TL. In addition,
updates to the Pythonic Formal Requirements Language (PYFOREL) tool [6] are

showcased as well as a formal definition on the structure of a PYFOREL program.
1.1  Contributions

From the work performed in this thesis, the list of contributions (ordered by

appearance) are as follows below:

1. A unified TL framework (“FOREK”) for parsing, interpreting, and translating

TL requirements.

2. A demonstration, by integration, of FOREK with the offline monitor TP-

TALIRO from the S-TALIRO toolbox.
3. A series of new features, improvements, and changes to PYFOREL.

4. A formal definition by induction on the translational units of a PYFOREL

requirement into a TL formula.

In this work, the set of TLs supported include: (1) Linear Temporal Logic (LTL),
(2) Metric Temporal Logic (MTL), (3) Signal Temporal Logic (STL), (4) Timed
Propositional Temporal Logic (TPTL), (5) Timed Quality Temporal Logic (TQTL),

and (6) Spatio-Temporal Perception Logic (STPL).



1.2 Publications

In this section, an overview of publications (ordered most to least recent) received

during the course of my M.S. degree are listed below as follows:

Publication 1.1. Jacob Anderson, Mohammad Hekmatnejad, and Georgios Fainekos.
“PyFoReL: A Domain-Specific Language for Formal Requirements in Temporal Logic”.
In: 2022 IEEE 30th International Requirements Engineering Conference (RE). IEEE.
2022, pp. 266267

Publication 1.2. Quinn Thibeault, Jacob Anderson, Aniruddh Chandratre, Giulia
Pedrielli, and Georgios Fainekos. “Psy-taliro: A Python Toolbox for Search-based
Test Generation for Cyber-Physical Systems”. In: Formal Methods for Industrial
Critical Systems: 26th International Conference, FMICS 2021, Paris, France, August
24-26, 2021, Proceedings 26. Springer. 2021, pp. 223-231



Chapter 2

BACKGROUND

In this chapter, a review of the core concepts used within this thesis is performed.
Briefly, this includes a definition for the model of TL, an overview of the TLs di-
rectly supported in this work, monitoring with TL-based specifications, and parsing

techniques and data structures.
2.1 Model for Temporal Logic

When discussing TLs, it is important to define a model of computation (hence-
forth, “model”) over which the framework operates on. This model for TL is tradi-
tionally and widely represented as a Kripke Structure (KS) [57]. A KS is a specialized
automata [79| containing a finite set of states, a transition relation, and an interpre-

tation function. The formal definition of the structure is provided below.
Definition 2.1.1 (Kripke Structure). Let AP represent the set of atomic propositions.
A KS is then represented as a tuple of the following four elements:

M= (S, R, I,3)

where S is the set of states, R C S x S is the transition relation, I C S is the set
of initial states, and 3 : .S +— 247 is the label (interpretation) function that maps a

state to the set of valid (i.e., true) atomic propositions from AP.

In following the representation of a model for TL from [38] and [62], the KS is,

henceforth, simplified to the following representation when considering the sequence



of states as a linear ordering of moments in time that capture the state of the system

as a set of atomic propositions that are satisfied:

Definition 2.1.2 (Model for Temporal Logic). In considering a simplifed version of

the KS, the resulting model for TL is represented as follows:

9.71 = <So, S1, S92, >

where s; represents a set of valid atomic propositions from AP at moment 7.

With this new representation, a specific moment ¢ of the model 91 from the
discrete time domain 7' C N (e.g., the state of the system at a particular timestamp)
may then be referred to with the following tuple (91, ) such that ¢ € T as will be

commonly used when defining the semantics of each TL in Section 2.2.
2.2 Temporal Logics

TL, as it stands, is a branch of philosophical logic concerned with the metaphysical
element time. The concept of time is not new and has been studied for centuries.
However, most notably, it was not until the formalization of tense logic |74, 73] did
the application and strength of TL begin to show.

From this temporal framework, many new temporal-based logics have been de-
rived. In categorizing these TLs, there are several possible traits associated with
a TL language to describe its capabilities and intended use. The set of mirrored-
properties includes (i) propositional versus first-order, (ii) global versus compositional,
(iii) branching versus linear, (iv) point-based versus interval-based, (v) discrete versus
continuous, and (vi) past versus present [33]. Within this work, the assumed traits
of the supported TL are propositional, linear, point-based, and discrete—both past

and present modalities are supported.



Furthermore, there are a wide variety of TLs created for a variety of problems.
However, this thesis focuses only on a subset of popularly utilized TLs—especially
within the field of verification and testing for CPSs. This subset of supported TLs
forms a hierarchical structure of dependencies that is illustrated in Figure 2.1 below

with Propositional Logic (PL) being the root language.

TPTL e TQTL e STPL
Y
PL e LTL — MTL
pt-LTL — STL

Figure 2.1: Hierarchy of Temporal Logic.

2.2.1 Propositional Logic

Propositional Logic (PL) [18]|, while not a TL, is the foundation for all other
TLs discussed in this work. Therefore, the syntax and semantics of PL formulas are

provided as both a formal introduction and reference.

Definition 2.2.1 (Propositional Logic Syntax). The structure of a PL formula ¢ is

inductively defined by the following grammar:

=T |a|7p|eiApa| @1 V| pr= @2 | o1& e

where T is the boolean constant true, « is a propositional variable (atom) from the
set of atomic propositions AP, = is the unary logical connective negation, and A, V,
=, and < are the binary logical connectives conjunction, disjunction, implication

(material conditional), and biconditional (iff), respectively.



It should also be noted that the boolean constant false L is equivalent to = T
and may be used interchangeably. Furthermore, in Definition 2.2.1, the syntax for
all logical operators are provided for completeness. However, the structure of a PL
formula can be minimally captured with the following set of connectives: {—, A}.
In other words, the inclusion of {—, A} provides a functionally complete set of log-
ical operators to capture all possible PL expressions. This is also true for negation
accompanied with either disjunction or implication.

With the syntax provided, the semantics of a PL formula can now be introduced

below in Definition 2.2.2.

Definition 2.2.2 (Propositional Logic Semantics). Let AP be the set of atomic
propositions, 91 be the model, and 7 € T be the index of the moment of the model.

The semantics of a PL formula are then inductively defined as follows:

M, i) E « iff o€ AP and a € (i)

M, i) =~ iff (M, @) o

O, i) pAd (O ) e and (N, ) | o
M= evy it (M 4) = eor (M, 0) ¢
M, i) = =9 iff if (M, i) | ¢, then (M, i)

M i) eed i (M) k(=) and (M, 1) = (¢ =)

2.2.2  Linear Temporal Logic

Linear Temporal Logic (LTL) 72, 62| is the most fundamental TL considered in
this work with its introduction of unbounded temporal-based logical connectives. As
it is built on-top of PL, it is sometimes referred to as Propositional Temporal Logic

(PTL) in other literature. Within this thesis, however, simply TL will refer to the



propositional-based logic unless otherwise stated. In this section, the syntax and

semantics of LTL formulas are provided.

Definition 2.2.3 (Linear Temporal Logic Syntax). The structure of an LTL formula

@ is inductively defined by the following grammar:

pu=Tla|¢|epiAp |1V | 1= 02|01 & @

O |Ce O | il | o R e

where the newly introduced O, <, and [J are the unary temporal logical connectives
next, eventually (finally), and, always (globally), respectively; and U and R are the
binary temporal logical connectives strict until and release, respectively. For all other

symbols not mentioned, please see Definition 2.2.1.

From the definition above, the full set of logical temporal operators are provided.
However, similar to PL, LTL can be completely captured using a minimal set of
temporal operators. The set of operators, as from [72] in its original conception,
{O, U} form a functionally complete representation of the newly introduced future-
based TL operators where all other operators may be defined by these two.

With the syntax of an LTL formula provided, the semantics of the newly defined

operators are provided below in Definition 2.2.4.

Definition 2.2.4 (Linear Temporal Logic Semantics). Let 9T be the model, and

i € T be the index of the moment of the model. The semantics of an LTL formula

10



are then inductively defined as follows:

O, Y= O (M, i+ 1) o
M, i) Oy iff 3js.t.j>iand (M, j) @
O, i O iff Vjif j >4, then (M, j) = o
M, i) = oUvp  iff Fjst. j>iand (M, j) = o and
Vkifi < k < j, then (O, k) = ¢
O, i) = @Ry iff Vjif j >4, then (M, 5) = or
Tk st i < k< jand (M, k) = )

where the semantics of all other operators not mentioned can be found in Defini-

tion 2.2.2 accordingly.
Past-Time Linear Temporal Logic

Furthermore, while the previously introduced temporal logical connectives from
Definition 2.2.3 support operating over the present-/future-tense, an additional set of
past-time temporal operator counterparts exist to support operating over the past-
tense—known as Past-Timed Linear Temporal Logic (pt-LTL) [52, 22]. For O, its
past-time counterpart is O (yesterday or previous); for O, its past-time counterpart
is [ (historically); for &, its past-time counterpart is < (once); for U, its past-time
counterpart is S (since); and lastly, for R, its past-time counterpart is T (trigger).
These operators have the same binding strength (i.e., precedence) as their future-
based variants. However, the meaning of these operators differ, so the semantics of

the newly introduced pt-LTL operators are defined below as follows.

Definition 2.2.5 (Past-Timed Linear Temporal Logic Semantics). Let 9t be the

model, and ¢ € T be the index of the moment of the model. The semantics of a
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pt-LTL formula is then inductively defined as follows:

M, iy Op iff
M, 1) = v iff

MM, i) = Mo iff

where the semantics of all other operators not mentioned can be found in Defini-

tion 2.2.4 accordingly.

i>0and M, i—1) F¢
Jjst.0<j<iand M, j) F¢
vy if 0 < j <4, then (M, j) Ep
Jj s.t. 0 < j <iand (M, j) E ¢ and
Vkif j < k <i, then (M, k) E ¢
vy if j <, then ((M, j) = or
dk st. j<k<iand (M, k) = p)

2.2.3 Metric Temporal Logic

Metric Temporal Logic (MTL) [55] is a TL developed to capture real-time prop-
erties of reactive systems and is an extension to LTL. This capability is possible by

extending the unbounded TL operators in Definition 2.2.3 to hold metric information

about distance of time added to the traditional model 9t of TL.

Definition 2.2.6 (Metric Temporal Logic Syntax). The structure of an MTL formula

@ is inductively defined by the following grammar:

pu=Tla|¢ | Ag |1V | 1= 2|01 € @

| OOz | Oz | o1l oz | o1 Rz o

where Z represents an interval over the metric information. For all other symbols not

mentioned, please see Definition 2.2.3.
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Remark. While the initial concept of MTL by [55] provided the ability to define
TL requirements with a sense of boundedness, it also permitted singletons in the
interval. As showcased by [3], this acceptance of singular time intervals such as Z = 5
proved to be undecidable. To resolve this issue, a slight restriction on the interval
usage solved this undecidability and introduced a fragment of MTL known as Metric
Interval Temporal Logic (MITL). In retaining this benefit, intervals of MTL follow
the rules proposed by MITL. Therefore, an interval Z may be open (a,b), closed [a, ],
or half-closed [a,b) or (a,b]; and it must hold that the bounds a,b € Rx.

With the syntax provided, the semantics of the newly defined operators are pro-

vided below in Definition 2.2.7.

Definition 2.2.7 (Metric Temporal Logic Semantics). Let 9t be the model, i € T be
the index of the moment of the model, and Z be a non-empty, non-singular interval

in R>g. The semantics of an MTL formula is then inductively defined as follows:

M, iy E Oz iff Jjei+Zst. (M j)Ep

(M, i) = Oze iff Viei+Z, (M j)Eo

M, i) = pUry  iff Fj i+ T st (M, j) o and
Vk € li,jg), (M, k) =e

M, i) = @Rz iff Vjif j >, then (M, j) = or
dkei+Ist. M k) Ep)

where i + Z produces a new interval Z’ shifted to the moment i. Furthermore, the

semantics of all other operators not mentioned can be found in Definition 2.2.4.

For Past-Timed Metric Temporal Logic (pt-MTL), operator semantics are defined
similarly to Definition 2.2.5 with the exception that new intervals are formed by

“looking” backwards (i.e., I" =i —I) from the current moment ¢ in the model 9%. For
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example, the pt-MTL formula [y 5) p informally states that proposition p € AP must

be true for the last five moments of time for 9 to satisfy the formula.
2.2.4 Signal Temporal Logic

Signal Temporal Logic (STL) [61] is a TL derived as a fragment of MITL. Apart
from the same operator support as defined in the previous TLs, STL introduces the

predicate: a new operand used to define constraints directly on a sequence of moments

from the model 9Mt.

Definition 2.2.8 (Signal Temporal Logic Syntax). The structure of an STL formula

¢ is inductively defined by the following grammar:

pu=Tlalp|=e|eiAe2 |01V | 1= 02| o1 @

| O | Oz | Oz | prlUr vz | o1 Rz o

where p represents a predicate from the set of predicates U.

A predicate is effectively a function p : R® — B that returns boolean valuation
set of models 9M; for each p; € U. In other words, for every predicate, an equivalent
sequence of boolean valuations for every ¢ € [0, 7] is produced by evaluating the the
model 9 at each moment with predicate p; € U. With the syntax provided, the

semantics of the newly defined operators are provided below in Definition 2.2.9.

Definition 2.2.9 (Signal Temporal Logic Semantics). Let 9t be the model and i € T’
be the index of the moment of the model. The semantics of an STL formula is then

inductively defined as follows:

(M, i) = p iff peUand pu((M, i) =T
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where the semantics of all other operators not mentioned can be found in Defini-

tion 2.2.7 accordingly.
2.2.5 Timed Propositional Temporal Logic

Timed Propositional Temporal Logic (TPTL) [4] is another TL for formalizing
specifications over the real-time domain. However, the freeze quantifier is introduced
to provide an alternative method to MTL for bounding temporal operators by binding

variables to a specific point in time and defining constraints on those variables.

Definition 2.2.10 (Timed Propositional Temporal Logic Syntax). The structure of

a TPTL formula ¢ is inductively defined by the following grammar:

pu=Tlal-p|leiANpa| 1 V| o= 2|01 E e
CoelOp|OpleiUtU e | o1 Rpa |

rp | m Sy | M > | T =g Mo | T Eg T

Tu=x+c|c

where x.p is the freeze quantifier; < and > are the binary non-strict relational op-
erators less than and greater than, respectively; =4 and #, are the binary relational
operators not equal to and equal to modulo d, respectively; x € V' is a time-bounded

variable; and ¢,d € R are constants. For all other symbols not mentioned, please see

Definition 2.2.3.

Expressions of the form 7, ~ my where ~ € {<, >} in Definition 2.2.10 are referred
to as timing constraints and permit bounding subformulas—similar usage to that of
intervals in STL and MTL. With the introduction of the freeze quantifier and timing

constraints, the semantics of each are reviewed below in Definition 2.2.11

15



Definition 2.2.11 (Timed Propositional Temporal Logic Semantics). Let 9t be the
model, ¢ € T be the index of the moment of the model, and £ : V' — T be the
interpretation (environment) for the variables. The semantics of the newly introduced

structures of a TPTL formula is then inductively defined as follows:

(M, i) =gz iff (M, i) e @
<m, Z> ):g 1 S o iff g(ﬂ'l) S 5(7’(’2)

(M, i) e 71 =47 iff E(m) =4 E(mo)

where £’ represents a new environment that agrees with environment & on all variable
mappings except for the bound variable x such that z +— i (i.e., a new scope &£’ is
created for the subformula ¢ limiting the usage of the newly bound variable x), and
the other operators > and #, are defined similarly to their counterparts. Furthermore,
the semantics of all other operators not mentioned can be found in Definition 2.2.4
accordingly where = is replaced with ¢ denoting a contextualized (i.e., scoped)

interpretation over the structure of the environment £.
2.2.6 Timed Quality Temporal Logic

Timed Quality Temporal Logic (TQTL) [29, 13] is a TL used to formulate re-
quirements for perception-based systems such as Deep Neural Network (DNN) with

computer vision tasks such as object detection.

Definition 2.2.12 (Timed Quality Temporal Logic Syntax). The structure of a
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TQTL formula ¢ is inductively defined by the following grammar:

pu=Tlal—p|lpitAp |1V | 1= 02|01 |
O l|Oe[Op|lpiUpa| iR ey |
rp | m S| M > M | T =g o | T Eg T

JidQx, ¢ | VidQx, p

Tu=x+c|c

where 3idQx and VidQx represent the existential and universal quantification over
the set of unique object identifiers ¢d bounded to the frozen environment x. For all

other symbols not mentioned, please see Definition 2.2.10.

From Definition 2.2.12, the freeze quantifier from TPTL is more commonly re-
ferred to as the freeze frame quantifier as moments in the model of time 971 are more
accurately contextualized as a discrete linear sequence of frames. With the syntax
provided, the semantics of the newly defined operators are provided below in Defini-

tion 2.2.13.

Definition 2.2.13 (Timed Quality Temporal Logic Semantics). Let 91 be the model,
i € T be the index of the moment of the model, and & : V; U V;y — T be the
interpretation (environment) for both the time V; and object V, variables mapped to
a moment in 7. The semantics of the newly introduced structures of a TPTL formula

is then inductively defined as follows:

(M, i) £ FidQx, ¢ iff Jid € Ogr s.t. Ogr #  and (M, i) e

<9ﬁ, Z) ):g Vzd@x,gp ifft Vid € Og/ s.t. Og/ # Q) and <m, Z> IZg/ (%2
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where Og: is the collection of object identifiers from a given freeze environment &’
where x — ¢. Furthermore, the semantics of all other operators not mentioned can

be found in Definition 2.2.11.
2.2.7 Spatio-Temporal Perception Logic

Spatio-Temporal Perception Logic (STPL) [49], similarly to TQTL, is a TL used to
formalize requirements for perception-based systems. However, compared to TQTL,
STPL additionally supports authoring requirements on spatial properties of the sys-

tem such as object bounding box comparisons from DNNs.

Definition 2.2.14 (Spatio-Temporal Perception Logic Syntax). The structure of a
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STPL formula ¢ is inductively defined by the following grammar:

pu=T[@[e1 A2 [ @1 Va|pr= 2|1 e |
CelOp|Opleritps| 1R
JidQzx.p | VidQx.p
T—az~t|F—ax~n|F—x%c~n

id=id|id Zid |0 |ET |¥7 |7

T7uo=Cld) | T|mnNn|nUn|IT|CT

CrT |07 | O57 | Ui o | i Ry 72 |

0 = dist(idy, k1, id, ko) ~ T
lat(id, k) ~ r | lon(id, k) ~ r | lat(idy, k1) ~ r x lat(idy, K2) |
lon(idy, k1) ~ r X lon(idy, ko) | lat(idy, k1) ~ r X lon(idy, K2)
area(id) ~ r | area(id;) ~ r x area(ids)
class(id) = c¢ | class(id) = class(id)

prob(id) ~ r | prob(id;) ~ r x prob(ids)

7 = area(r) ~ r | area(r;) ~ r x area(ry)

k=LM|RM | TM | BM | CT

where T — x ~ t is a time constraint such that 7T is the current time, z € V; is a
freeze quantified time variable, and t € T; F — x ~ n is a frame constraint such
that F is the current frame, x € V; is a freeze quantified object variable, and n € N;

F—x % c~mnisa frame constraint modulo some constant ¢ € N; id = id and id #Z id
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are relational equivalence operators equal to and not equal to on the object identifiers
1dy,idy € 'V, respectively; [3] and [v] are the unary spatial quantifiers nonempty and
universe, respectively; C : V, — II is a mapping between the set of object identifier
variables V, and spatial terms II C (U, I) such that U is the universe (as a set) of
the space, and I is the interior operator; 7 is the set theoretic complement; M and
LI are the binary set theoretic operators conjunction (intersection) and disjunction
(union), respectively; C is the closure operator; &7, 05, OF, Uz, and RS are the
spatio-temporal operators eventually, always, next, until, release, respectively—where
7 represents a temporal property and s represents a spatial property; and dist, area,
lat, lon, class, and prob represents a function to evaluate distance between two
object identifier anchors, area of an object (represented as a set), latitudinal position
of an object anchor, longitudinal position of an object anchor, classification (as a
number) of an object identifier, and confidence of an object identifier, respectively.

For all other symbols not mentioned, please see Definition 2.2.12.

As STPL introduces several new operators over its predecessor TQTL along with
additional information annotated to the model 91, the semantics for the spatio-

temporal framework are left for review in [49].
2.3 Specification-Based Monitoring

Specification-based monitoring is a popular method in the verification and testing
community for evaluating complex or overly large systems where formal methods and
techniques are impractical [14]. Informally, the process of monitoring involves accept-
ing a specification and model of the system under testing, and from this determines
whether the model provided satisfies (i.e., does not violate) to the specification. A
model 9 is said to satisfy a requirement ¢ if (M, 0) = ¢ (i.e., if all moments of

the the system starting from the initial state satisfy the requirement ). In this
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work, TL-based specifications are used as the formal requirement to specify system
constraints to monitor.

In practice, monitoring takes two forms: online monitoring and offline monitoring
[27]. These two forms may also be referred to as synchronous and asynchronous mon-
itoring [75]. The difference between the two methods is most distinctly represented
by the presence of an infinite or finite representation of the system under test. On-
line monitoring evaluates events as they arrive and process the satisfaction criterion
whereas offline monitors have access to the entire system execution at runtime.

In this thesis, the FOREK library is tested with offline monitors only. However, an
extension to the online domain is feasible as the library does not have any assumptions

regarding online versus offline usage but is not verified.
2.4 Parsers and Tree Data Structures

As the major contribution of this work is a collection of parsers and translators,
a high-level overview of these processes is provided. This section does not serve as a
comprehensive guide to parsing and translating techniques but rather is purposed in
motivating the necessity of each.!

The process of parsing is based in formal language recognition techniques [79] and
involves determining whether an input (usually in the form of a string) is correct.
By correct, it is meant that the input string w; falls into the set of possible strings
recognized by some (finite or infinite) language £ = {wy, wq, w3, ...}.

While language recognition is a fundamental of parsing, parsing not only serves
to identify whether some input conforms to the set of strings. In practice, parsing

provides a method to extract information from the string and transform it into a more

IFor those interested in a more formal introduction to parsing, translating, and compiler theory
in general, please see the popular “Dragon Book” [1].
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easily interpretable structure. At an implementation-level, this procedure of parsing a
string often serves as an umbrella term to capture two separate but equally necessary
stages of language recognition: (i) lezical analysis and (ii) syntactic analysis. These
two components makeup the complete process of parsing an input and have different
responsibilities that enable recognition and transformation of strings.

In the context of this work, an input string may be viewed as a finite sequence of
characters (e.g., “{a, b, ¢}”) from the alphabet ¥ of the language £. The responsibility
of the lexical analyzer (henceforth, lexer) is to tokenize (i.e., group) sequences of
characters into lexical units (henceforth, tokens). The syntactic analyzer (henceforth,
parser) is then responsible to validate the ordering of these tokens to ensure they
follow the structure of the defined language—commonly captured as a Context-Free

Grammar (CFG) [79]. A visualization of this workflow is shown in Figure 2.2.

/ Character Sequence F} Lexer —7/ Token Sequence F» Parser

(Lexical Analysis) (Syntactical Analysis)

Figure 2.2: Lexer and parser workflow.

As an example, consider the STL requirement from Equation (1.1) below in Exam-
ple 2.4.1. To effectively interpret this formula, several items must be considered. First,
identifying the individual operators and operands to be consolidated into tokens, con-
sidering precedence rules for correct evaluation, and ensuring binding strengths of

operators for readability.

Example 2.4.1. In a left-to-right fashion, the set of tokens produced from the for-
mula O (req = g gnt) by the lexer would be [ followed by * (* followed by
“req’ followed by ‘=" followed by * 10" followed by © gnt’ followed by ©)’. The

parser then accepts this stream of tokens and ensures that the ordering of each is
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correct and possible according to an STL formula as defined in Definition 2.2.8.

A particularly important aspect in the practice of parsing a string is to transform
its representation into a more interpretable structure to use for various applications
and post-processing. The most common structure that captures important details
of a string such as precedence and dependency is the graph structure. The design,
advantages, and layout of this structure used in this work are provided in Section 2.4.1

as follows below.
2.4.1 Abstract Syntax Tree

An Abstract Syntax Tree (AST) is a graph-based structure popularly used through-
out parsing and compiling and found in many language implementation patterns [68|.
The advantage of an AST is in its ability to capture formal language constructs as
intepretable structures that retain only the needed information. This information
includes only relevant operations, precedence, or dependencies and does not contain
any irrelevant items such as whitespace, newlines, or comments.

As previously mentioned, ASTs are graphs. Therefore, to provide a baseline rep-
resentation of the AST leveraged in this work, a formal introduction of the data
structure is provided. The formalization of a graph [59], for completeness, is defined

as follows below:

Definition 2.4.1 (Graph). A graph G is an ordered pair consisting of a nonempty

set of vertices (nodes) V' and a nonempty set of edges F and is represented as:

G = (V,E)

Tt is recognized that parentheses ‘ (’ and ‘)’ are not formally supported in Definition 2.2.8.
However, in practice support for parentheses is a common occurrence and thus used in the examples
without major justification needed.
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such that each edge e; € E is a two-element subset of V' indicating a connection

between two vertices. In other words, e; = {v;,v;} such that v;,v; € V.

The definition of a rooted tree used to represent the Intermediate Representation
(IR) of a TL formula is specified as an acyclic connected graph where one node is
labeled the root (i.e., the starting point). Furthermore, within the implementation,
this graph structure is a directed graph meaning there is an edge from the parent to the
child and not vice versa. With all these restrictions in mind, the final representation
of the IR is formalized as a rooted binary tree as defined in [42] which may be viewed
as a specialized Directed Acyclic Graph (DAG) where all internal nodes refer to
operations from the formal language, and all leaf nodes refer to operands.

In continuing with the Example 2.4.1, the parser is responsible for generating the
AST that captures the relevant information, and the lexer is responsible for discarding

any irrelevant information that the parser does not care for.

Example 2.4.2. From the set of tokens generated from O (req = <10 gnt), the

resulting AST is as follows:

Ul
!
/\
req <>[0,10]

|
gnt

From the resulting AST, several properties are apparent. First, the parentheses origi-
nally present in the formula are dropped as precedence of operations is captured by the
level and positioning of individual nodes (i.e., the subformula req = <19 gnt must
be resolved before resolving [J as it is positioned below). Furthermore, as (J is a unary

operation, it has only connecting node representing the subformula req = g 10 gnt
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whereas = is a binary operation, so it has two connecting nodes representing the left

subformula req and the right subformula 1) gnt.

From the example above, the resulting AST structure may then be used for mon-
itoring and testing activities as the formal requirement is clearer to interpret, reason
with, and traverse compared to an uncategorized sequence of characters with no in-
herent meaning. In summary, the lexer identifies the individual components and the

parser captures and represents these units in a meaningful manner.
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Chapter 3

LITERATURE REVIEW

In this chapter, a review of the reliance on TL as a specification language is
performed. This review considers the application of the temporal framework in the
context of simulation-based testing and verification—importantly, the methods of
integrating a TL specification into its application are highlighted. In addition, a
review of TL-based formal requirement frameworks, interfaces, and elicitation tools

is performed to highlight the current support for TL requirements authoring.
3.1 Temporal Logic as a Specification Language

TL is a well accepted formalism for describing system properties related to time.
The use of this framework is especially prevalent in simulation-based approaches to
verifying model satisfaction against a TL specification [53].

Falsification is popular activity from simulation-based approaches that leverage
TL requirements. In falsification, a requirement is used to guide the system (i.e.,
model) under consideration towards violating said requirement [34] (i.e., find an input
counterexample). These requirements in implementations are commonly formulated
as TL formulae leading to a strict dependence on the framework as the specifica-
tion language to describe behavior to falsify. Examples of falsification tools for hy-
brid systems include the following: S-TALIRO [10] which utilizes MTL requirements,
BREACH |[31] which utilizes MITL requirements, FALSTAR [35] which utilizes STL
requirements, and more recently W-TALIRO [80] which utilizes STL requirements.

Furthermore, additional falsification tools leveraging TL as the specification language
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can be found in [63, 81, 2, 83]. While this list of TL-based tools is not exhaustive,
the list warrants the impact and use TL has.

The aforementioned tools demonstrate an application of TL. However, these tools
primarily provide the searching capabilities to find inputs that falsify a system. To
guide the search towards falsifying behavior, a proper metric describing the satisfac-
tion of a TL requirement against a system trace (i.e., cost) must be selected and then
evaluated accordingly. This evaluation and metric computation is most commonly
performed by monitors [14]. In addition, the responsibility of inferring TL require-
ments into monitorable requirements is commonly given to the monitors. As there
are numerous monitors for various applications, purposes, and contexts, the selection
of reviewed tools revolve around their handling of TL requirements and methods of
interfacing.

The most primitive form of handling TL requirements is to require the tool/user
to author the formula as a custom data structure as defined by the tool. This method
is used by tools such as PERCEMON [12], a C++ tool used for monitoring perception
algorithms with TQTL specifications, or TLTK [25], a Python tool used for monitor-
ing hybrid systems with STL requirements. This approach provides the advantage
that requirements may be type checked (by either the compiler or some static an-
alyzer) and are therefore provably syntactically correct. However, this has several
disadvantages from a purely interface perspective: (1) the set of data structures for
each tool must be learned regardless if the same TL framework is used, (2) the tool is
not easily interoperable with other programming languages, and (3) cannot be easily
batched.

An improvement over the previous in terms of interfacing with TL requirements is
by introduction of a custom parser to parse and produce a data structure from a TL

string. This approach is highly prevalent in the set of monitors from the S-TALIRO
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toolbox and is a large driving force behind this work. The S-TALIRO toolbox supports
four major monitors: (1) FW-TALIRO [36] for monitoring MTL requirements using a
forward rewriting algorithm, (2) DP-TALIRO [82] for monitoring MTL requirements
using a dynamic programming algorithm, (3) TP-TALIRO [30] for monitoring TPTL
requirements, and (4) STPL-TALIRO [49] for monitoring STPL requirements. All
four monitors are based from the same parsing algorithm and structure that has
been manually developed, managed, and extended. The internal parser developed
performs an iterative cycle over the input string to group lexical units to be parsed.
Furthermore, the BREACH tool [31] parses a BREACH requirement utilizing pattern
matching through regular expressions. These approaches lower the barrier to writing
TL requirements by utilizing parsing a string into the needed data structure, so
tools/users can abstract away without concern for data structures used. However,
a large limitation of the approach in building a custom parser is in its extensibility,
interoperability, and reliability. The tools mentioned perform rudimentary syntax
checks and error reporting upon parsing an ill-formed TL requirement leading to
longer debugging times upon facing such obstacles.

Lastly, the development of modular monitors attempt to provide TL interfaces
that are extensible and customizable through organized parsing frameworks. This
approach is best demonstrated in RTAMT [66] which provides an online and offline
monitor for evaluating STL formulae. Similarly to this work, the ANTLR tool is used
to generate a custom STL parser and lexer. This allows the focus of extensibility to be
on the semantic interpretations rather than the syntactic. The approach in RTAMT,
however, contains parsing framework that is tightly coupled to the core infrastructure
of the tool as it is not intended for general monitoring applications. Therefore, tool
interoperability is limited.

In reviewing the use of TL and approaches to writing TL requirements, various
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methods exist to parse and effectively represent a TL formulae to interpret. This
large variety, however, limits the ability of tools to interact and be easily compared.
In addition, while supporting a custom parser provides an increased ease-of-use, the
maintainability and extensibility begins to become more of a burden. Approaches to
modularizing and creating easily customizable parsers and semantic frameworks have

been performed, however, have not been intended to be generalized.
3.2 Elicitation of Formal Requirements

The process of capturing system requirements into an understandable, accurate,
and expressive medium is an ongoing problem. In working towards a standard to
capture said requirements, various formal requirement languages have been proposed
to help streamline requirement elicitation and provide a baseline class of properties
commonly required for capturing system behavior. Requirement-based languages
such as the Property Specification Language (PSL) [51] derived from Sugar [15] or
Property Specification Pattern (PSP) [32] were proposed to capture a set of commonly
occurring patterns in requirement elicitation [43]. Another approach that takes a more
visual approach to defining system specifications is known as statecharts |46| that
gained much popularity in defining requirements using a sequence of state evolutions
depicted visually. Further contributions to visually representing requirements inspired
from statecharts include Live Sequence Chart (LSC) [26] and its predecessor Message
Sequence Chart (MSC) [76].

An important design principle in creating formal requirement languages and in-
terfaces is in the semantics and computability of the proposed framework—i.e., the
requirement language should be able to be automated and represented in a program
that can test the system against the requirement accurately and reliably. While there

have been various tools and formalizations developed to support these frameworks
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such as [45, 44| for PSL specifications, [47]| for statecharts, and [5] for MSCs, TL-
based frameworks has shown a wide variety of computational support, interpretation,
and application. Therefore, although the formalism inhabits a higher learning curve
that the other proposed solutions attempt to lower, it has prevailed because of its
expressive power. In authoring TL-based requirements, approaches from Natural
Language Processing (NLP) to Graphical User Interface (GUI) to capture the speci-
fications have been proposed. For the remaining contents of this section, the various
approaches to interfacing and eliciting TL requirements are reviewed.

The most recent development in capturing TL specifications has been through the
use of NLP [19]. Development of recent tools such as DEEPSTL [48| for semantic
parsing of STL requirements, and [24, 40| that leverage large language models for ex-
tracting NL statements into LTL formulae is a newly focused problem. The proposed
advantage is in relaxing the bar to entry in formalizing system requirements without
losing the formal method assurances of TL frameworks. However, as these approaches
utilize a Machine Learning (ML) approach, a confidence threshold is placed on the
resulting translation leading to cases of NL statements that do not have a well-formed
TL formula, accordingly.

To circumvent the possibility of confidence and assumption of translations between
NL to TL, alternatives to retaining NL-based structure and guaranteed translations
are with the use of structured NL grammars. Implementations such [37, 56, 11]
define a formal grammar from a subset of NL statements that then translate into a
valid TL requirement reliably. While this approach provides syntactic sugar over a
TL expression as NL statements, the restriction is higher. Therefore, ill-formed NL
requirements do not have a valid translation, purposely.

In veering away from NL-based approaches, the use of GUIs to elicit TL require-

ments have been demonstrated in several applications successfully [58]. In [50], for
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example, introduced the tool VISPEC along with a usability study showcasing the

practicality of GUI-based requirement elicitation tools.
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Chapter 4

A FORMAL REQUIREMENTS TOOLKIT

In this chapter, the Formal Requirements Toolkit (FOREK) is presented. While
the results from this work is a software library, this thesis reserves code implementation-
level details for the library found online at [7] and focuses on the design, justification,
and structural aspects of the toolkit. This includes parsing, representing, translating,
and interpreting TL requirements—for a review of supported TLs in this work, see
Section 2.2 accordingly.

FOREK is a library for recognizing, translating, and interpreting TL formulas.
This procedure, as discussed in Section 3.1, is an important and often repeated pattern
to effectively utilize TL as a specification language in monitoring, testing, and any
other domain having to manage TL formulae. Therefore, this toolkit hopes to merge
the current gap of having to self-manage TL recognizers and validators—and doing
so efficiently, safely, and reliably. In short, if a TL specification needs parsing or
interpreting, FOREK should be used.

As a general overview of the library, FOREK has one input and one output. As
input, it accepts a TL formula as a string; and as output, it returns the IR of the
formula. An overview the FOREK architectural makeup is highlighted in Figure 4.1.
This includes the set of custom TL parser, IR builder, and TL translator procedures
along with their associated error check points. These error points produce custom
runtime errors associated to the context at which the error was thrown and should
be effectively managed by the external interface.

From Figure 4.1, there are six process blocks and two input/output blocks. Three
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Figure 4.1: Overview of FOREK architecture.

process blocks are responsible for data transformation, and the other three are re-
sponsible for runtime error checking. Stacked process blocks are indicative of several
separate procedures that perform similar jobs. For example, the stacked parser pro-
cess block is representative of the set of parsers associated with the various flavors of
TL supported—Ilikewise for the builder and translator blocks.

The parser is the first process block in FOREK that accepts the TL formula and
parses the structure. The result of this process is sent to the first error checker
responsible for checking and throwing parsing-related runtime errors. If no errors
are found, then the result is sent to the builder process block to build the IR. This
result is then sent to an optional (denoted by hatch lines) error checker that may
perform TL language-level assertions and checks such as variable scope rules before
returning a valid IR assuming no errors. Additionally, after the builder produces
a valid IR, the result may also be translated to an equivalent TL formulae to be
interpreted over. This translation between TLs procedure is optional and is not fully
supported between all TLs. However, it is useful when implementing a new TL is
unreasonable and improves interoperability between tools utilizing different flavors of

compatible TL. If used, the resulting translation is also checked for any translation-
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related runtime errors such as incompatible mappings.

Remark 4.0.1 (Runtime Errors Justification). Asshown in Figure 4.1, there are several
points where an error must be effectively caught by the external interface without
otherwise facing unpredictable runtime termination. While it is not desirable to
entrust this reliable behavior cost onto the external interface, parsing TL formulas is
not a task that can fail quietly. If ill-formed TL requirements were partially parsed
to produce an IR that is not truly representative of the intended specification, then
the system under test cannot be confidently deemed robustly safe. Therefore, when
parsing a TL formula goes awry, the error must be promptly thrown and left to the
external interface on how to proceed. In any case, it is assured that the resulting IR

would not be representative of the TL if incorrectly formulated.

For the rest of this chapter, a detailed review of the design for each aforementioned
process block is performed. It should also be established that while this work results in
the support for six total TLs, the work itself of supporting each is similar in design and
implementation. Therefore, each concept, component, and procedure is introduced
under the assumption that it applies unanimously to all currently supported TLs

unless otherwise stated.
4.1 Recognizing Temporal Logic

Parsing is the first major process in recognizing TL formulae. In order to accu-
rately synthesize the IR of a TL formula, the individual components must be rec-
ognized and structured according to its CFG. As a contribution of this work is a
TL-based toolkit that is extensible, developing and managing a custom set of parsers
and lexers is an impractical investment of time and resources. Therefore, the man-
agement of building and maintaining the parser framework is left to ANother Tool

for Language Recognition (ANTLR)—details can be found in Appendix A. This se-
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lection between an automatically generated parser and a custom parser framework is
usually simplified down to two considerations: (1) efficiency and optimization during
parse-time, and (2) capabilities of the parser generator to capture the target lan-
guage. In the context of this work, parsing a TL formula is a single action performed
in a one-time pass fashion to produce the needed IR to interpret or translate there-
after. Therefore, while efficiency and optimization is important, it is not a critical
consideration in the development of this toolkit in its current version. Furthermore,
compared to the competing parser candidates reviewed in Section 3.1, ANTLR gen-
erated parsers already support adaptable error listeners, parser recovery methods,
and importantly a traditional and reliable language recognition technique without
any caveats [69]. In regard to the capabilities of a parser generator, TL is a formal
language [21] inductively defined, so ANTLR is able to capture said language without

any needed parsing adaptations or obscure methods.

Byte Streamer
! )
Lexer g > LexerError ———— . o
V@
3
D
l 5
@
: )
Parser e > ParserError ———> | ©

:

Figure 4.2: Overview of FOREK parsing framework.

In parsing TL formula, the process accepts the TL string as input and returns
a syntax tree. A detailed overview of the parsing procedure is illustrated below in
Figure 4.2. The parsing framework contains three procedures as well as two possible

runtime errors that are highly suggested to be caught by the external interface without
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risking program failure or crash.

At the start, the string is first sent through to the byte streamer which encodes
each character as an equivalent byte numerical representation. From this sequence
of bytes, the lexer performs lexical analysis and generates a stream of tokens. From
this stream of tokens, the parser produces a resulting syntax tree. The separation of
steps that mimic compiler-based infrastructures allows individual components to be
clearly responsible for a single task compared to performing lexical analysis, parsing,
and IR creation in one combined step which can be cumbersome to manage, extend,

and differentiate.

( Start ’
Lexical Analyzer
A
v 14 A
/ Character Stream H Byte Stream H Token Stream H Syntax Tree F»
J \_ J
Y Y

N

Byte Streamer Parser

Figure 4.3: Transformation of data in FOREK.

This transformation of data, as illustrated in Figure 4.3 along with the associated
process blocks, is handled by ANTLR through its interfaces thus simplifying the task
of managing input and output operations, internal data structure representations, and

serializable recognizers.
4.1.1 Grammar Organization

As ANTLR is the selected tool to generate parsers capable of capturing the syntax
of TL formulas, the syntax must be composed into a readable format by ANTLR. This
process of capturing the syntax through ANTLR is done by defining a lexer grammar
and a parser grammar in its meta-language [69]. While ANTLR supports combined

grammars—that is, grammars that define both lexer and parser rules in one file, the
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selection to separate lexical definitions from syntactic definitions is purposefully done
to improve readability, reduce complexity, and encourage reusability.

The organization of the set of TL grammars follows a similar lineage as of Fig-
ure 2.1. This design allows for token and parser definitions to be re-introduced without
redefinition and is inspired by the natural dependency of the supported TLs. The
resulting organization of the set of ANTLR grammars designed is illustrated in Fig-
ure 4.4 below where solid fill indicates grammars with a parser and corresponding

lexer file, and hatch fill indicates the presence of only a lexer grammar.

Common PL LTL

~~~

pt-LTL MTL STL

"

Arithmetic

TPTL TQTL STPL

—~

Figure 4.4: Organization of ANTLR grammars in FOREK.

The organization of the currently supported set of TLs is divided into ten logically
separate ANTLR grammars. When considering both the parser and grammar, a to-
tal of 19 grammar files have been defined to support the syntax of each TL. Unique to
this implementation-level structure, there are two grammars not explicitly mentioned
in Figure 2.1: the Common and Arithmetic grammars. These grammars are separated
as opposed to implemented in the TL grammars directly as their their dependency
is either split between two non-dependent grammars or are logically considered inde-

pendent enough to not be merged into another grammar.
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With this dependency, defining new grammars is as simple as depending on the
definitions of a subset grammar and adding new rules as needed. For example, if a new
TL were to be developed based on STPL, then importing the STPL grammar to the
new corresponding lexer and parser grammars provides all the tokens and parse rules.
Furthermore, ANTLR supports importing from multiple targets—as demonstrated
from TPTL and STL in Figure 4.4. Therefore, reusing syntax rules from multiple

sources is allowed and highly encouraged.

4.1.2 Lexer, Tokens, and Symbols

The first major component in recognizing TL specifications is the lexer. The lexer
is responsible for partitioning the stream of bytes into corresponding tokens that the
parser processes to develop the structure of the formula. The lexer does not consider
the structure of the input but simply categorizes sequences of bytes into discernible
token definitions, accordingly. At this stage, tokens that are unused by the parser are
discarded. This includes whitespace, newlines, or comments.

As alluded to in Section 4.1.1, there are ten total lexer grammars to define the set
of tokens associated with each newly introduced language. Of these lexer grammar
files, the Common is most elementary grammar file. This grammar file provides token
definitions for commonly used tokens throughout all languages and grounds the set of
fundamental symbols, so any new language has access and uses the same token names
for continuity. As previously mentioned, an important responsibility of the lexer is to
discard tokens that are not cared for at later stages. The Common grammar provides
three definitions in Table 4.1 that are captured and effectively thrown out in all
deriving grammars. This set of discardable tokens include whitespace and newlines,
line comments, and comment blocks.

As these discarded tokens are defined in the Common lexer grammar, all dependent
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Token Pattern Example

Whitespace [ \t\r\n]+
Block Comment ¢/’ .%? ‘x/> /* a block comment */
Line Comment /77 %7 ‘\r’? ‘\n’ // a line comment

Table 4.1: Set of discarded token definitions in FOREK.

grammars also discard these tokens by default. For a complete review of the set of
token definitions in Common, see Appendix B.

From the Common lexer grammar, TL-specific and supporting lexers are defined.
The process of creating derived grammars involves two major steps: (1) importing
the parent grammar, and (2) introducing new token definitions.

It should be highlighted that a minor issue introduced by the syntaxes in Sec-
tion 2.2 is the use of symbols and notations for operations are not easily transcribed
when considering the American Standard Code for Information Interchange (ASCII)
[60]. For example, the symbolic representation for the temporal operator always is [J
which is not a supported ASCII character. Therefore, to resolve this issue, ASCII-
compliant token definitions are provided for each newly introduced TL operation.
For each token definition, a short form and long form are provided. The selection of
these token definitions for each are based on the commonly used definitions in other
literature such as |22, 10, 66].

From the supported logics as represented in Figure 2.1, six introduce operators
that require an ASCII-equivalent notation. This includes PL, LTL, pt-LTL, TPTL,
TQTL, and STPL. The branches of logics for STL and STL are supersets of LTL
without introducing any new symbols. Therefore, additional ASCII definitions are
not required for either as both are captured from the LTL token definitions. For
a detailed review of all token definitions and not only the operations, please see

Appendix B, accordingly.
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Propositional Logic

Within Table 4.2, PL introduces five operators that require equivalent ASCII
symbols. This includes the logical negation, conjunction (logical and), disjunction

(logical or), implication, and biconditional operators.

Operator Symbol Short Form Long Form
Logical Negation — ! not

Logical And A && and

Logical Or vV | or
Implication = -> implies
Biconditional & <-> iff

Table 4.2: ASCII token definitions for PL operators.

Linear Temporal Logic

Within Table 4.3, LTL introduces five operators that require equivalent ASCII

symbols. This includes the temporal operators eventually, always, until, and release.

Operator Symbol Short Form Long Form

Eventually <& F eventually
Always O G always
Next O X next

Until U 0) until
Release R R release

Table 4.3: ASCII token definitions for LTL operators.

Past-Time Linear Temporal Logic

Within Table 4.4, pt-LTL introduces five operators that require equivalent ASCII
symbols. This includes the past-time temporal operator counterparts once, histori-

cally, previous, since, and trigger.
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Operator Symbol Short Form Long Form

Once <& 0 once
Historically L[] H historically
Previous © P previous
Since S S since

Trigger T T trigger

Table 4.4: ASCII token definitions for pt-LTL operators.

Timed Propositional Temporal Logic

Within Table 4.5, TPTL introduces a single operator that requires an equivalent
ASCII symbol. This includes time-based freeze quantifier where <var> is replaced

with a valid Identifier as defined in Appendix B.

Operator Symbol Short Form Long Form

Freeze Time Quantifier x. @<var> at <var>

Table 4.5: ASCII token definitions for TPTL operators.

Timed Quality Temporal Logic

Within Table 4.6, TQTL introduces a two new operators that require equivalent
ASCII symbols. This includes frame-based ezists freeze quantifier and forall freeze

quantifier. where <id> and <var> are valid Identifier as defined in Appendix B.

Operator Symbol Short Form Long Form

Exists Freeze Frame didQz E(<id>...)0<x> exists(<id>...) at <x>
Forall Freeze Frame VidQx A(<id>...)0<x> forall(<id>...) at <x>

Table 4.6: ASCII token definitions for TQTL operators.
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Spatio-Temporal Perception Logic

Within Table 4.7, STPL introduces 12 new operators that require equivalent
ASCII symbols. This includes spatial exists, spatial forall, topological complement,

intersection, union, interior, closure, eventually, always, next, until, and release.

Operator Symbol Short Form Long Form
Spatial Exists SE nonempty
Spatial Forall SA universe
Complement - ! not
Intersection r && and

Union L | or

Interior I I interior
Closure C C closure
Spatial Eventually <° F eventually
Spatial Always [ G always
Spatial Next O? X next
Spatial Until us U until
Spatial Release R? R release

Table 4.7: ASCII token definitions for STPL operators.

From a brief observation of Table 4.7, the tokens definitions associated with the
topological set operations are equivalent to those of the logical operations in Table 4.2.
However, this is purely a lexical design and does not add any ambiguity to an STPL

formula as defined in Definition 2.2.14 and will be further discussed in Section 4.2.

4.1.3 Parser and Operator Precedence

The parser is the last step and most known for realizing the structure of a TL
formula. Similar to the lexer, there are nine defined parser grammar rules that capture
the syntax of each TL as well as one for arithmetic operations. For the complete

syntax for each grammar, see Appendix B.
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The structure of a TL parser grammar is similarly designed across all supported
languages to easily read and reuse components. Each grammar definition has a start
rule that expects a formula followed by an EOF token. The expectation of EOF is re-
quired to terminate parsing safely. Furthermore, for each TL, the start rule must be
redefined to match the respective definitions introduced throughout Section 2.2 as this
is a limitation of ANTLR that does not allow merging two definitions through import
statements. While this limitation does not allow the formula definitions of previously
defined grammars to be imported in deriving grammars, all other definitions without

any name clashes are captured accordingly.
Operator Binding Strength and Precedence

An important behavior to provide full clarity on is in the binding strength and
precedence of the connectives associated with the TL operators. Understanding the
precedence and binding strength of each operator ensures that formulas are written
as intended and do not result in potentially incorrect system evaluations because of
unclear precedence rules.

The most notable behavior regarding operator binding is that TL-based operators
have a stronger binding over non-temporal operators (i.e., below LTL). To demon-

strate this binding behavior, see Example 4.1.1 below.

Example 4.1.1 (Binding Strength of Temporal Logic Operators). Consider the sim-
ple LTL formula ‘F p && q’ from the syntax in Appendix B that contains one tem-
poral connective ‘F’ and one propositional connective ‘&&’ with two propositional
variables ‘p” and ‘q’. While the intention of this formula may be to eventually cap-
ture the conjunction of both ‘p’ and ‘q’ as the subformula of ‘F’ | after parsing the
formula following the syntax and binding rules of TL operators, the structure of the

resulting syntax tree is as follows below in Figure 4.5.

43



start
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formula EOF
N
formula && formula
/\
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Figure 4.5: Syntax tree for ‘F p && q'.

Notably, since the temporal operator, eventually F, has a higher binding power
than that of the logical connective, conjunction &&, the subformula p binds to the tem-
poral operator instead of binding with the logical connective. If the intended behavior
is for the temporal operator to bind with ‘p && q’ as the subformula, then paren-
theses around the subformula must be explicitly provided. This newly parenthesized
formula ‘F (p && q)’ when parsed results in the syntax tree shown in Figure 4.6.

start

/\

formula EOF

F

T

( formula )

&&

/\

formula formula

proposition proposition

P q

Figure 4.6: Syntax tree for ‘F (p && q)’ .
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This binding behavior is a common pattern seen when formulating TL require-

ments. Therefore, considerate placement of parentheses will ensure that formulas

behave as expected.

While Example 4.1.1 provided an example with the eventually TL operator, there

are many other TL-based operators that share this higher binding strength over non-

TL operators and connectives. Furthermore, in the absence of parentheses, the prece-

dence between operators of similar binding power need to be accounted for. This

precedence ranking and associativity is represented below in Table 4.8.

Rank Operator Associativity
0 Spatial Exists/Forall Left
1 Closure Left
2 Interior Left
3 Exists/Forall Qualifier — Left
4 Freeze Time Quantifier Left
) Eventually Left
6 Always Left
7 Next Left
8 Until Left
9 Release Left
10 Logical Not Right
11 Logical And Left
12 Logical Or Left
13 Implication Left
14 Biconditional Left

Table 4.8: Operator precedence (lower rank is a higher precedence).
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4.2 Representing Temporal Logic Requirements

A significant contribution of this thesis is in the development of representing TL
formulas as a modular, configurable, and extensible data structure. In doing so, the
ability to evaluate and interpret a correctly parsed formula is simplified. Throughout
this section, the transformation from a syntax tree to an interfaceable IR is detailed.

This includes the structural components of the IR and the algorithm to construct it.
4.2.1 Intermediate Representation

Referring back to Figure 4.1, constructing a valid IR of a TL formula is performed
in the third stage of the FOREK architecture (henceforth, “builder”). The builder
accepts a syntax tree and produces a final custom IR to be utilized by external
interfaces. Generally, the design of the data structure is a rooted binary tree which
is a specialized form of a graph as reviewed in Section 2.4.1 and referred to as an
AST. The makeup of the tree is composed of internal nodes that reflect operations
and leaf nodes that reflect operands. Details regarding the types of nodes supported
are provided in Section 4.2.2.

To build the IR, the syntax tree constructed by ANTLR is visited using a Depth-
First Search (DFS) algorithm such that new nodes are produced when a meaningful
context (i.e., node) of the syntax tree is encountered. For example, a meaningful
context of the syntax tree may be a rule containing an ‘always’ operator; whereas
a non-meaningful context may be a parentheses rule. This decision to selectively
construct semantically representative nodes reduces the size of the tree structure
and ensures the representation minimally and accurately captures the original input
without losing expressive details.

Within Figure 4.7, the syntax tree of the formula ‘eventually[0,10] (p -> q)’
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is illustrated where internal nodes correspond to rules from the ANTLR grammar

and leaf nodes correspond to tokens captured by the lexer.

start
formula EQF
‘eventually’ interval formula
4[7 407 4’7 4107 c]; 4(a formula c)v
formula  ‘->’ formula
proposition proposition
| |
(pJ (q7

Figure 4.7: Syntax tree of STL formula ‘eventually[0,10] (p -> q)’.

From the syntax tree, the nodes go seven levels deep, and the tree contains addi-
tional parsing-related information such as the matching rule, the individual tokens,
and the ordering of subformulas to be evaluated. While these aspects are important,
not every piece of information populated onto the tree is necessary to capture the
intention of the TL formula. As a result, the AST in Figure 4.8 is constructed to

solve this issue.

EventuallyBounded

Implication

/\

Proposition Proposition

Figure 4.8: Resulting AST from syntax tree in Figure 4.7

The resulting AST in Figure 4.8 reduces the number of nodes from 21 in the

syntax tree (Figure 4.7) to four with a max depth of three. With this size reduction,
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traversing and interpreting TL formulas is simpler and more aligned to the semantics

captured in the formal definition of each found in Section 2.2.
4.2.2 Operands and Operations as Nodes

In designing the IR, the AST leverages a polymorphic structure where a base class
forms the stem from which all other nodes derive from. In following Object-Oriented
Programming (OOP) paradigm design aspects, a template for future operations that
may be introduced is provided. From the current set of supported TLs, there are 54
concrete node types—of which 5 are operands. This includes the set of additional
grammars needed to define arithmetic expressions.

To begin, the base structure which all TL operands and operations derive from is
the Node. This the most general structure of a node and does not have any inherent
attributes to utilize besides existing as the base class. Furthermore, two important set
of classes are derived from which meaning to the tree begins. The first is the Operand
class, and the second is the Operation class. The Operand class is equivalent to any
tree that does not have children (i.e., leaf nodes), and the Operation class represents
any tree structure that has children (i.e., internal nodes). Lastly, within the current
FOREK framework, an operation can be categorized into two types: unary or binary.
A unary operation has a single operand whereas a binary operation has a left and
right operand, accordingly. These two patterns are commonly seen throughout the
TL language definitions in Section 2.2, and thus permit a Unary and Binary opera-
tion. A simple Unifed Modeling Language (UML) diagram of these “blueprint” classes
(interfaces) is illustrated in Figure 4.9. From these three most derived interfaces al-
ready introduced, all other operations and operands from the set of supported TLs

are derived, accordingly.
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Operand

Operation

T

Unary Binary

Figure 4.9: Hierarchy of FOREK interface nodes.

Propositional Logic Nodes

A A
Operand Unary Binary
Proposition Not And Or
True Implies Iff
False

Figure 4.10: Hierarchy of FOREK PL operand and operation nodes.

Linear Temporal Logic Nodes

Figure 4.11: Hierarchy of FOREK LTL operation nodes.
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Past-Time Linear Temporal Logic Nodes

A
Unary Binary
Once Historically Since Trigger

Previous

Figure 4.12: Hierarchy of FOREK pt-LTL operation nodes.

Metric Temporal Logic Nodes

Figure 4.13: Hierarchy of FOREK MTL operation nodes.

Signal Temporal Logic Nodes

Operand

T

Predicate

Figure 4.14: Hierarchy of FOREK STL operand node.
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Timed Propositional Temporal Logic Nodes

A A
Operand Unary
TimeConstraint FreezeTime

Figure 4.15: Hierarchy of FOREK TPTL operation nodes.

Timed Quality Temporal Logic Nodes

Figure 4.16: Hierarchy of FOREK TQTL operation nodes.

Spatio-Temporal Temporal Logic Nodes

A A
Operand Unary Binary
FrameConstraint NonEmpty Universe Intersection Union

IdentifierComparison Complement Interior UntilSpatial ReleaseSpatial
SpatialTerm Closure EventuallySpatial
Function AlwaysSpatial NextSpatial

Figure 4.17: Hierarchy of FOREK STPL operation nodes.
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4.3 'Translating Between Temporal Logics

The third feature provided by FOREK in Figure 4.1 is the ability to translate
between TLs. This support is motivated to improve interoperability between inter-
dependent tools utilizing separate TL frameworks. Therefore, FOREK forms a con-
nection between the interface and the underlying monitor without having to modify
either directly. A visualization of this scenario is showcased below in Figure 4.18
comprising PSY-TALIRO and several backends. Instead of modifying either of the
tools directly, a unintrusive connection can be formed between the PSy-TALIRO
and the monitoring backends relieving the need for an explicit implementation-level

dependency between either.

/ STL /
STL (RTAMT) RTAMT —

Y

Psy-TaLiRo > FoReK ;/ STL (TLTk) TLTkK —

TPTL TP-TaLiRo —

:

Figure 4.18: FOREK as a translation interface.

Translating between TLs is a step that requires careful consideration to ensure
the resulting translation retains the meaning of the previous form as not all TLs can
be translated into others. For example, translating between STPL and MTL cannot
be fully supported as STPL introduces several semantically new operators that MTL
has no knowledge of or other possible interpretation for. While a subset of STPL
can be captured in MTL, translating between the two is not exhaustively supported,
so a translation layer between these two is not supported. Furthermore, translations

between two TLs along the same axis (i.e., lineage) are not translatable.
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With these considerations in mind, the current framework of FOREK supports
translating between MTL and TPTL formulas. This support derives from the simi-
larity of both TLs to provide temporal-bounded operators with syntactic differences

as well as no other new operations or rules that the other may not be able to interpret.
4.3.1 From MTL to TPTL

The translation between MTL and TPTL is supported due to the same function-
ality written differently. As both languages derive from LTL, a common syntactic
source exists, so the translation between the same syntactic elements is trivial. How-
ever, in creating an effective translation, the aspects of the languages that are disjunct
are highlighted. The translation scheme from MTL to TPTL using the semantic in-

terpretation of TPTL formulas from [28, 17| is shown below in Definition 4.3.1.

Definition 4.3.1 (Metric Temporal Logic to Timed Propositional Temporal Logic).
Let Z = [a,b] such that a is the lower bound and b is the upper bound, inclusively.
Given a valid MTL formula ¢, an equivalently translated TPTL formula ¢’ is induc-

tively defined below as follows:

Oz = z0((z>anz<b)Ay)
Cre = 20 ((z>anz<b)Ay)
Oz = zO0(@z>anz<b) =)
olUr b = x.<<pu((xzan§b)A¢)>
¢Rv = w(pR((@wzane<b)=v))

where the PL-derived operators and atoms T, a, =, A, V, =, and < translate to

themselves, accordingly.
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From Definition 4.3.1, any valid MTL formula can be synthesized into an equiva-
lent TPTL formula without compromising expressivity allowing tools utilizing MTL

to interface with tools utilizing TPTL.
4.4 Interpreting Temporal Logic Requirements

The fourth and final feature provided by the FOREK library is the ability to
interpret IRs of the parsed TL formulas. This support is optional and not required to
traverse the AST and thus is not included in Figure 4.1. However, this functionality is
commonly needed as traversing the tree structure and evaluating subformulas against
the trace is often times a common pattern. The general general infrastructure of the
interpretation framework is shown below in Figure 4.19.

________ >
R Visitor  f-------- > Output
........ >

A A A

Input

Figure 4.19: FOREK interpretation framework.

The design of this functionality is focused on extensibility and modification through
polymorphic behavior. This decision is necessary as the framework, interpretation
scheme, and application from which it may be used is unknown ahead a time and
strict design decisions may yield a framework too rigid to be of any use. The in-
terpretation of a formula is defined within a Visitor interface which is a derived
polymorphic interface with base interfaces for each TL that allow an external inter-
face to define the semantics for each unique node supported by the logic, accordingly.

Denoted by dashed lines, since the interpretation of the formula cannot be too restric-
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tive, the polymorphic design allows additional inputs, and outputs to be set before
and after evaluation to enable a range of versatility and applications.

The design of the interpretation interface follows the Visitor design pattern |78,
41, 67| which allows the implementation of behavior to remain separated from the
internal code allowing users to modify the semantics of the nodes without touching
the internals of FOREK. For each TL, a custom visitor interface is designed which
also follows a polymorphic structure to reduce the overhead of extending new TL

support. The hierarchy of visitor interfaces is shown below.

Visitor
| 1
PL Arithmetic o—
T
LTL
T
pt-LTL MTL
1 1
TPTL STL —
T —‘
TQTL
T
STPL

Figure 4.20: Hierarchy of FOREK visitors.

The visitor takes advantage of multiple dispatch that allows the node to control
which visitor it should be calling at runtime, and from that call, which visitor method
should be called accordingly. As a result, the external interface only needs to define

what gets stored into the node as a result of this call.
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Chapter 5

PYTHONIC FORMAL REQUIREMENTS LANGUAGE

This chapter presents a brief overview of the Pythonic Formal Requirements Lan-
guage (PYFOREL), and then provides a summary of modifications, features, and
improvements over its previous version. Furthermore, a formal definition by induc-
tion on the translational units of a PYFOREL program is performed to showcase the
correctness of the translation procedure.

PYFOREL is a Domain-Specific Language (DSL) designed to ease the elicitation
of TL requirements. The conception of this work comes from |6, 9] which provided a

preliminary method of translating high-level DSL constructs into TL specifications.
5.1 Updates, Features, and Improvements

From its previous iteration, the PYFOREL tool has been updated in several areas
regarding grammar restructuring, translation procedure, and some changes to the
syntactic constructs. In this thesis, the major changes will be reflected here and any

minor changes should be consulted with the code found in [§].
5.1.1 Grammar Restructuring

The first major change for the PYFOREL tool is in the grammar defined by
ANTLR that captures the DSL. The grammar has been reorganized to improve
readability, remove rules that do not properly map to TL formulas, and remove all
embedded actions. Furthermore, a slight limitation of the syntax previously intro-

duced in PYFOREL was the heavy reliance on indentation and dedentation to differ-
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entiate scope and subformulas. Consequently, writing inline statements were difficult
or required a function call to effectively perform an in-place insertion at translation
time. This limitation has been resolved by allowing any valid PYFOREL statements

to appear in enclosed braces.
5.1.2 Translation Procedure

In the previous version of PYFOREL, the translation procedure relied on an em-
bedded syntax-directed scheme where upon visiting a rule, the resulting structure
would be recursively generated “on-the-fly” [39]. While this approach is functional, it
had several drawbacks: (1) the ANTLR grammar was verbose and not easily under-
stood, (2) extending the grammar relied on adding new functions as well, (3) porting
the grammar to other target languages was non-obvious and required additional work
to support the embedded function calls, and (4) an additional actions grammar had
to be supplied to provide additional parsing and lexing logic that is not obvious to
the behavior of the DSL.

To resolve this problem, the new translation procedure instead walks the generated
parse tree by ANTLR and builds the TL specification recursively. While this still uses

the syntax-directed approach, it simplifies the grammar as well as the implementation.
5.1.3 Integration with FoRek

Furthermore, since FOREK is responsible for parsing and interpreting TL formulas,
PYFOREL is able to focus and serve just the translation procedure of a PYFOREL
program into a TL formula. If further interaction with a PYFOREL program is
needed, FOREK may then effectively generate the appropriate IR from the translated

PYFOREL program. An overview of this integration is shown below.
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PyFoReL FoRek

/ PyFoReL Program F Parser X . Parser —> Error Check

Error Report N . Builder —> /7/%/ m

!

Translator = . Translator —> Error Check

Figure 5.1: Integration of PYFOREL and FOREK framework.

5.2 Structure of PyFoRel. Program

To showcase the translation capabilities of the PYFOREL tool, an inductive defini-
tion on the core translational units of a PYFOREL program is provided. Notably, this
definition does not, however, aim to establish that all TL formulas can be translated
into a PYFOREL program but rather that the currently supported set of statements

map to a TL formula.
5.2.1 Statements

Before providing the definition, a brief review of the various statements supported
within PYFOREL must be performed.

In the current version of PYFOREL (v0.2.0), there are two categories of state-
ments: simple or compound. Simple statements are characterized as statements that
fit on a single line and commonly reflect atomic propositions in TL. Compound state-
ments are characterized statements spread across multiple lines. A compound state-
ment commonly reflects TL expressions with subformulas. Within PYFOREL, there
are currently four simple statement types and six compound statement types. An

overview of each statement and its corresponding categorization is shown below in
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Table 5.1.

Statement Simple Compound

Conditional v
Definition v
False v
Freeze v
Function Call v
Proposition v
Qualifier v
Temporal v
True v
Verbatim v

Table 5.1: PyFoReL statements.

In translating a PYFOREL program, the file is read in a top-down fashion popu-
lating function definition tables and begins translation upon hitting a proper transla-
tional unit. A translational unit is considered a statement that is eventually mapped
to a TL formula. For example, the Definition statement does not become directly
mapped to a TL formula as function definitions are not supported in TL. However,
the contents of the statement is a sequence of statements that are considered trans-
lational units. Therefore, in providing a clear definition, the translational units are

considered and not statements that wrap or support translation indirectly.
5.2.2 Definition

Within this definition, the following statements are not considered in the definition
of a PYFOREL program: (1) Definition, (2) Verbatim.
Furthermore, let £(I) be the language that recognizes all valid identifiers that

begin with any alpha character or underscore followed by zero or more alphanumeric
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characters or underscores; L(K) = { if, else, elif, ... } be the set of reserved

keywords within a PYFOREL program, and < represent a single indentation.

Definition 5.2.1 (PyFoReL Program). Let £(P) be the language recognized by a
PYFOREL program, and L£;(P) = L(I) \ L(K) be the language that recognizes all
unreserved identifiers. Given a PYFOREL program p, a unique TL translation ¢ is
inductively defined as follows:

Proposition. The translation of a Proposition statement is as follows:

(% —

where v € L£;(P) and o € AP.

True. The translation of a True statement is as follows:

true — T

False. The translation of a False statement is as follows:

false — |

Conditional I (If). Given the valid PYFOREL programs A, B € L(P), the trans-
lation of a Conditional statement is as follows:

if A
— B

— A= B

Conditional IT (If-Elif). Given the valid PYFOREL programs A, B,C, D € L(P),

the translation of a Conditional statement is as follows:
if A:
— B
elif C :
— D

— (A= B)AN(-ANC = D)
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Conditional IIT (If-Else). Given the valid PYFOREL programs A, B,C,D €
L(P), the translation of a Conditional statement is as follows:

if A:

— B

else (C :
—~ D

— (A= B)AN(—~A= D)

Freeze. Given a valid PYFOREL program A € L(P), the translation of a Freeze

statement is as follows:

at x :

— A

where x € V.

Function Call. Given a valid PYFOREL program A € L£(P), the translation of a

Function Call statement is as follows:

where § : f — A such that f € L;(P).

Qualifier. Given a valid PYFOREL program A € L(P), the translation of a Qual-

ifier statement is as follows:

exists wvy1,v9,..,v, at x:
Coer e —  dvQz, Jv,Qu, ..., Jv,Qx, A
— A

where v; € Viy and x € V.

Temporal. Given a valid PYFOREL program A € £L(P), the translation of a Tem-

poral statement is as follows:

eventually:

O A

— A
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Chapter 6

EXPERIMENTS

In this chapter, two different experiments are performed. The first experiment
is a demonstration by application of the FOREK library integrated with the offline
monitor TP-TALIRO [30] to replace its current parsing framework with a TPTL
parsing interface provided by FOREK. The second experiment showcases the perfor-
mance metrics of parsing TL formulas with FOREK on a variety with varying levels

of complexity and length evaluate its speed and memory consumption.
6.1 Integration with Offline Monitor

Within this demonstration, the FOREK library is integrated into the Timed Propo-
sitional Temporal Logic Robustness (TP-TALIRO) [30] monitor to replace the native
TPTL parser with one supplied by FOREK. In integrating FOREK with the monitor,
FOREK provides the TL interface to parse TPTL formulas, and TP-TALIRO supplies
the data structures to perform monitoring of these formulas. This approach allows the
updated and robust parsers of FOREK to be utilized without compromising the core
infrastructure developed by the TP-TALIRO tool. An overview of this integration is
illustrated below in Figure 6.1.

The major change in Figure 6.1 is in the parser block (greyed-out) for TP-TALIRO
being bypassed and replaced with the TPTL parser by FOREK. The FOREK library
is responsible for parsing the input TPTL formula and building the appropriate TP-

TALIRO-specific data structure for the monitor to evaluate the model under test.
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TP-TaLiRo

/ TPTL F Parser —> FoRek _7 Data /

Figure 6.1: Integration approach of TP-TALIRO with FOREK.

6.2 Performance Benchmarks

Several performance benchmarks were performed to showcase the speed and mem-
ory consumption for each of the currently supported parsers within the FOREK li-
brary. This included testing the following parsers: (1) PL, (2) LTL, (3) MTL, (4)
STL, (5) TPTL, (6) TQTL, and (7) STPL. For each parser, a total of six requirements
were written targeting the operations unique to that language. The set of require-
ments ranged in length (measured by the number of nodes from the resulting AST)
from 1 to 3125. Furthermore, for each requirement of each parser, 100 replications

were performed and the average was taken. The performance benchmarks of the PL

parser are shown below in Figure 6.2.

100000
80000 &
eooooz@*
500 40000 &%
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°f“b053 3000 0 ¥

0
1000,

Figure 6.2: PL parser performance.
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From observing 6.2, the x-axis ranges in the length of the formula, the y-axis
ranges in the memory consumption (i.e., memory size of the resulting AST), and the
z-axis showcases the parse-time required to parse and build the resulting IR from the
associated formula. The performance benchmarks following the same format for the
other six TL-based parsers are shown in Figure 6.3.

The results of these benchmarks showcase the performance of the parsers to run in
average linear time on the length and size of the formula. This result is unsurprising
as the time complexity of ANTLR’s ALL(*) [70] is O(n?) in theory. However, in
practice, it is linear. Furthermore, the time it takes to build the IR of the formula
is O(V + E) where V represents the number of nodes and E represents the number
of edges. Consequently, as the parsers developed for FOREK are generated from

ANTLR using the same parsing method, the results prove true to this statement.
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Chapter 7

CONCLUSIONS AND FUTURE WORK

In this work, the proposal for a standardization of TL specifications used within
testing and monitoring applications was made through the development of a FOREK:
a modular, extensible, and modern C++ library. The use of this library was demon-
strated through an integration of the library with a currently available offline monitor
for evaluating TPTL requirements as well as various performance benchmarks of the
collection of parsers. Furthermore, improvements and updates to the PYFOREL tool
were made along with a formal definition to showcase the translation mapping of a
PYFOREL program to a TL formula.

Future work of the FOREK library entails several possibilities. First, the library
does not provide any formula compacting to reduce redundant or otherwise equivalent
formulas. Secondly, the tool may be extended to support additional branches of TL
such as Computational Tree Logic (CTL) and its variants. Lastly, to support online
monitoring applications, a translation procedure from future-bounded TL formulas

to past-time equivalents may be supported.

66



REFERENCES

[1] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. Compilers:
Principles, Techniques, and Tools (2nd Edition). USA: Addison-Wesley Longman
Publishing Co., Inc., 2006. 1SBN: 0321486811.

[2] Takumi Akazaki, Shuang Liu, Yoriyuki Yamagata, Yihai Duan, and Jianye Hao.
“Falsification of cyber-physical systems using deep reinforcement learning”. In:
Formal Methods: 22nd International Symposium, FM 2018, Held as Part of the
Federated Logic Conference, FloC 2018, Oxford, UK, July 15-17, 2018, Proceed-
ings 22. Springer. 2018, pp. 456-465.

[3] Rajeev Alur, Tomas Feder, and Thomas A Henzinger. “The benefits of relaxing
punctuality”. In: Journal of the ACM (JACM) 43.1 (1996), pp. 116-146.

[4] Rajeev Alur and Thomas A Henzinger. “A really temporal logic”. In: Journal of
the ACM (JACM) 41.1 (1994), pp. 181-203.

[5] Rajeev Alur and Mihalis Yannakakis. “Model checking of message sequence
charts”. In: CONCUR’99 Concurrency Theory: 10th International Conference
FEindhoven, The Netherlands, August 24—27, 1999 Proceedings. Springer. 2002,
pp. 114-129.

[6] Jacob Anderson. “DSL for Spatio-Temporal Perception Logic Specifications”. In:
(2021).

[7] Jacob Anderson. Formal Requirements Toolkit - GitLab. 2023. URL: https://
gitlab.com/sbtg/forek.

[8] Jacob Anderson. Pythonic Formal Requirements Language - GitLab. 2023. URL:
https://gitlab.com/sbtg/pyforel.

[9] Jacob Anderson, Mohammad Hekmatnejad, and Georgios Fainekos. “PyFoReL:
A Domain-Specific Language for Formal Requirements in Temporal Logic”. In:
2022 IEEE 30th International Requirements Engineering Conference (RE). IEEE.
2022, pp. 266-267.

[10] Yashwanth Annpureddy, Che Liu, Georgios Fainekos, and Sriram Sankaranarayanan.
“S-taliro: A tool for temporal logic falsification for hybrid systems”. In: Tools and
Algorithms for the Construction and Analysis of Systems: 17th International
Conference, TACAS 2011, Held as Part of the Joint Furopean Conferences on
Theory and Practice of Software, ETAPS 2011, Saarbriicken, Germany, March
26—-April 3, 2011. Proceedings 17. Springer. 2011, pp. 254-257.

[11] Marco Autili, Lars Grunske, Markus Lumpe, Patrizio Pelliccione, and Antony
Tang. “Aligning qualitative, real-time, and probabilistic property specification

67


https://gitlab.com/sbtg/forek
https://gitlab.com/sbtg/forek
https://gitlab.com/sbtg/pyforel

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

[20]

[21]

patterns using a structured english grammar”. In: IEEE Transactions on Software
Engineering 41.7 (2015), pp. 620-638.

Anand Balakrishnan, Jyotirmoy Deshmukh, Bardh Hoxha, Tomoya Yamaguchi,
and Georgios Fainekos. “PerceMon: online monitoring for perception systems”.
In: Runtime Verification: 21st International Conference, RV 2021, Virtual Event,
October 11-14, 2021, Proceedings 21. Springer. 2021, pp. 297-308.

Anand Balakrishnan, Aniruddh G Puranic, Xin Qin, Adel Dokhanchi, Jyotirmoy
V Deshmukh, Heni Ben Amor, and Georgios Fainekos. “Specifying and evaluating
quality metrics for vision-based perception systems”. In: 2019 Design, Automa-
tion & Test in Europe Conference & Exhibition (DATE). IEEE. 2019, pp. 1433~
1438.

Ezio Bartocci, Jyotirmoy Deshmukh, Alexandre Donzé, Georgios Fainekos, Oded
Maler, Dejan Nic¢kovié, and Sriram Sankaranarayanan. “Specification-based mon-
itoring of cyber-physical systems: a survey on theory, tools and applications”.
In: Lectures on Runtime Verification: Introductory and Advanced Topics (2018),
pp. 135-175.

Ilan Beer, Shoham Ben-David, Cindy Eisner, Dana Fisman, Anna Gringauze, and
Yoav Rodeh. “The temporal logic Sugar”. In: Computer Aided Verification: 13th
International Conference, CAV 2001 Paris, France, July 18-22, 2001 Proceedings
18. Springer. 2001, pp. 363-367.

Béatrice Bérard, Michel Bidoit, Alain Finkel, Francois Laroussinie, Antoine Petit,
Laure Petrucci, and Philippe Schnoebelen. Systems and software verification:
model-checking techniques and tools. Springer Science & Business Media, 2013.

Patricia Bouyer, Fabrice Chevalier, and Nicolas Markey. “On the expressiveness
of TPTL and MTL”. In: FSTTCS 2005: Foundations of Software Technology and
Theoretical Computer Science: 25th International Conference, Hyderabad, India,
December 15-18, 2005. Proceedings 25. Springer. 2005, pp. 432-443.

Hans Kleine Biining and Theodor Lettmann. Propositional logic: deduction and
algorithms. Vol. 48. Cambridge University Press, 1999.

Igor Buzhinsky. “Formalization of natural language requirements into tempo-
ral logics: a survey”. In: 2019 IEEE 17th international conference on industrial
informatics (INDIN). Vol. 1. IEEE. 2019, pp. 400-406.

Hong Chen. “Applications of cyber-physical system: a literature review”. In: Jour-
nal of Industrial Integration and Management 2.03 (2017), p. 1750012.

Noam Chomsky. “On certain formal properties of grammars”. In: Information
and control 2.2 (1959), pp. 137-167.

68



[22] Alessandro Cimatti, Marco Roveri, and Daniel Sheridan. “Bounded verification
of past LTL”. In: Formal Methods in Computer-Aided Design: 5th International
Conference, FMCAD 2004, Austin, Texas, USA, November 15-17, 2004. Pro-
ceedings 5. Springer. 2004, pp. 245-259.

[23] Edmund M Clarke. “Model checking”. In: Foundations of Software Technology
and Theoretical Computer Science: 17th Conference Kharagpur, India, December
18-20, 1997 Proceedings 17. Springer. 1997, pp. 54-56.

[24] Matthias Cosler, Christopher Hahn, Daniel Mendoza, Frederik Schmitt, and
Caroline Trippel. “nl2spec: Interactively Translating Unstructured Natural Lan-

guage to Temporal Logics with Large Language Models”. In: arXiv preprint
arXiw:2503.04864 (2023).

[25] Joseph Cralley, Ourania Spantidi, Bardh Hoxha, and Georgios Fainekos. “Tltk:
A toolbox for parallel robustness computation of temporal logic specifications”.
In: Runtime Verification: 20th International Conference, RV 2020, Los Angeles,
CA, USA, October 6-9, 2020, Proceedings 20. Springer. 2020, pp. 404-416.

[26] Werner Damm and David Harel. “LSC’s: Breathing life into message sequence
charts”. In: Formal Methods for Open Object-Based Distributed Systems: IFIP
TC6/WG6. 1 Third International Conference on Formal Methods for Open Object-
Based Distributed Systems (FMOODS), February 15-18, 1999, Florence, Italy.
Springer. 1999, pp. 293-311.

[27] Nelly Delgado, Ann Q Gates, and Steve Roach. “A taxonomy and catalog of
runtime software-fault monitoring tools”. In: IEEFE Transactions on software En-
gineering 30.12 (2004), pp. 859-872.

[28] Adel Dokhanchi. “From formal requirement analysis to testing and monitoring
of cyber-physical systems”. PhD thesis. Arizona State University, 2017.

[29] Adel Dokhanchi, Heni Ben Amor, Jyotirmoy V Deshmukh, and Georgios Fainekos.
“Evaluating perception systems for autonomous vehicles using quality temporal
logic”. In: Runtime Verification: 18th International Conference, RV 2018, Limas-
sol, Cyprus, November 10-13, 2018, Proceedings 18. Springer. 2018, pp. 409-416.

[30] Adel Dokhanchi, Bardh Hoxha, Cumhur Erkan Tuncali, and Georgios Fainekos.
“An efficient algorithm for monitoring practical TPTL specifications”. In: 2016
ACM/IEEE International Conference on Formal Methods and Models for System
Design (MEMOCODE). IEEE. 2016, pp. 184-193.

[31] Alexandre Donzé. “Breach, a toolbox for verification and parameter synthesis of
hybrid systems.” In: CAV. Vol. 10. Springer. 2010, pp. 167-170.

69



32]

[33]

[34]

[35]

[36]

137]

[38]

[39]
[40]

[41]

42]

Matthew B Dwyer, George S Avrunin, and James C Corbett. “Property specifica-
tion patterns for finite-state verification”. In: Proceedings of the second workshop
on Formal methods in software practice. 1998, pp. 7-15.

E Allen Emerson. “Temporal and modal logic”. In: Formal Models and Semantics.
Elsevier, 1990, pp. 995-1072.

Gidon Ernst, Paolo Arcaini, Georgios Fainekos, Federico Formica, Jun Inoue,
Tanmay Khandait, Mohammad Mahdi Mahboob, Claudio Menghi, Giulia Pedrielli,
Masaki Waga, et al. “ARCH-COMP 2022 Category Report: Falsification with
Ubounded Resources”. In: Proceedings of 9th International Workshop on Applied.
Vol. 90. 2022, pp. 204-221.

Gidon Ernst, Sean Sedwards, Zhenya Zhang, and Ichiro Hasuo. “Fast falsification
of hybrid systems using probabilistically adaptive input”. In: Quantitative Eval-
uation of Systems: 16th International Conference, QEST 2019, Glasgow, UK,
September 10-12, 2019, Proceedings 16. Springer. 2019, pp. 165-181.

Georgios E Fainekos and George J Pappas. “Robustness of temporal logic speci-
fications”. In: Formal Approaches to Software Testing and Runtime Verification:
First Combined International Workshops, FATES 2006 and RV 2006, Seattle,
WA, USA, August 15-16, 2006, Revised Selected Papers. Springer. 2006, pp. 178~
192.

Cameron Finucane, Gangyuan Jing, and Hadas Kress-Gazit. “LTLMoP: Exper-
imenting with language, temporal logic and robot control”. In: 2010 IEEE/RSJ
International Conference on Intelligent Robots and Systems. IEEE. 2010, pp. 1988—
1993.

Michael Fisher. An introduction to practical formal methods using temporal logic.
John Wiley & Sons, 2011.

Martin Fowler. Domain-specific languages. Pearson Education, 2010.

Francesco Fuggitti and Tathagata Chakraborti. “NL2LTL-A Python Package for
Converting Natural Language (NL) Instructions to Linear Temporal Logic (LTL)
Formulas”. In.

Erich Gamma, Ralph Johnson, Richard Helm, Ralph E Johnson, and John Vlis-
sides. Design patterns: elements of reusable object-oriented software. Pearson
Deutschland GmbH, 1995.

Rowan Garnier and John Taylor. Discrete mathematics: proofs, structures and
applications. CRC press, 2009.

70



[43]

[44]

[45]

[46]

47]

48]

[49]

[50]

[51]

[52]

[53]

[54]

Michael JC Gordon. “Validating the PSL/Sugar semantics using automated rea-
soning”. In: Formal Aspects of Computing 15.4 (2003), pp. 406-421.

Mike Gordon. “PSL semantics in higher order logic”. In: Workshop on Designing
Correct Circuits (DCC). 2004.

Mike Gordon, Joe Hurd, and Konrad Slind. “Executing the formal semantics of
the Accellera property specification language by mechanised theorem proving”.

In: CHARME. Springer. 2003, pp. 200-215.

David Harel. “Statecharts: A visual formalism for complex systems”. In: Science
of computer programming 8.3 (1987), pp. 231-274.

David Harel and Amnon Naamad. “The STATEMATE semantics of statecharts”.
In: ACM Transactions on Software Engineering and Methodology (TOSEM) 5.4
(1996), pp. 293-333.

Jie He, Ezio Bartocci, Dejan Nickovié, Haris Isakovic, and Radu Grosu. “Deep-
STL: from english requirements to signal temporal logic”. In: Proceedings of the
44th International Conference on Software Engineering. 2022, pp. 610-622.

Mohammad Hekmatnejad, Bardh Hoxha, Jyotirmoy V Deshmukh, Yezhou Yang,
and Georgios Fainekos. “Formalizing and Evaluating Requirements of Perception

Systems for Automated Vehicles using Spatio-Temporal Perception Logic”. In:
arXiv preprint arXiw:2206.14372 (2022).

Bardh Hoxha, Nikolaos Mavridis, and Georgios Fainekos. “VISPEC: A graphi-
cal tool for elicitation of MTL requirements”. In: 2015 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE. 2015, pp. 3486
3492.

“IEEE Standard for Property Specification Language (PSL)”. In: IEEE Std 1850-
2010 (Revision of IEEE Std 1850-2005) (2010), pp. 1-182.

Johan Anthony Wilem Kamp. Tense logic and the theory of linear order. Uni-
versity of California, Los Angeles, 1968.

James Kapinski, Jyotirmoy V Deshmukh, Xiaoqing Jin, Hisahiro Ito, and Ken
Butts. “Simulation-based approaches for verification of embedded control sys-
tems: An overview of traditional and advanced modeling, testing, and verification
techniques”. In: IEEE Control Systems Magazine 36.6 (2016), pp. 45-64.

John C Knight. “Safety critical systems: challenges and directions”. In: Proceed-
ings of the 24th international conference on software engineering. 2002, pp. 547

550.

71



[55] Ron Koymans. “Specifying real-time properties with metric temporal logic”. In:
Real-time systems 2.4 (1990), pp. 255-299.

[56] Hadas Kress-Gazit, Georgios E Fainekos, and George J Pappas. “Translating
structured english to robot controllers”. In: Advanced Robotics 22.12 (2008),
pp- 1343-1359.

[57] Saul Kripke. “Semantical considerations of the modal logic”. In: Studia Philo-
sophica 1 (2007).

[58] Insup Lee and Oleg Sokolsky. “A graphical property specification language”. In:
Proceedings 1997 High-Assurance Engineering Workshop. IEEE. 1997, pp. 42-47.

[59] Oscar Levin. “Discrete mathematics: An open introduction”. In: (2021).

[60] Charles E Mackenzie. Coded-Character Sets: History and Development. Addison-
Wesley Longman Publishing Co., Inc., 1980.

[61] Oded Maler and Dejan Nickovic. “Monitoring temporal properties of contin-
uous signals”. In: Formal Techniques, Modelling and Analysis of Timed and
Fault-Tolerant Systems: Joint International Conferences on Formal Modeling and
Analysis of Timed Systmes, FORMATS 2004, and Formal Techniques in Real-
Time and Fault-Tolerant Systems, FTRTFT 2004, Grenoble, France, September
22-24, 2004. Proceedings. Springer. 2004, pp. 152-166.

[62] Zohar Manna and Amir Pnueli. The temporal logic of reactive and concurrent
systems: Specification. Springer Science & Business Media, 2012.

[63] Claudio Menghi, Shiva Nejati, Lionel Briand, and Yago Isasi Parache. “ Approximation-
refinement testing of compute-intensive cyber-physical models: An approach based
on system identification”. In: Proceedings of the ACM/IEEE /2nd International
Conference on Software Engineering. 2020, pp. 372-384.

[64] Sayan Mitra. Verifying Cyber-Physical Systems: A Path to Safe Autonomy. MIT
Press, Feb. 16, 2021. 312 pp. ISBN: 978-0-262-04480-6.

[65] Dejan Nickovic and Oded Maler. “AMT: A property-based monitoring tool for
analog systems”. In: Formal Modeling and Analysis of Timed Systems: 5th In-
ternational Conference, FORMATS 2007, Salzburg, Austria, October 3-5, 2007.
Proceedings 5. Springer. 2007, pp. 304-319.

[66] Dejan Nickovi¢ and Tomoya Yamaguchi. “RTAMT: Online robustness monitors
from STL”. In: Automated Technology for Verification and Analysis: 18th Inter-
national Symposium, ATVA 2020, Hanoi, Vietnam, October 19-23, 2020, Pro-
ceedings. Springer. 2020, pp. 564-571.

72



[67] Jens Palsberg and C Barry Jay. “The essence of the visitor pattern”. In: Pro-
ceedings. The Twenty-Second Annual International Computer Software and Ap-
plications Conference (Compsac’98)(Cat. No. 98CB 36241). IEEE. 1998, pp. 9-
15.

[68] Terence Parr. “Language implementation patterns: create your own domain-
specific and general programming languages”. In: Language Implementation Pat-
terns (2009), pp. 1-380.

[69] Terence Parr. The Definitive ANTLR 4 Reference. 2nd. Pragmatic Bookshelf,
2013. 1SBN: 1934356999.

[70] Terence Parr, Sam Harwell, and Kathleen Fisher. “Adaptive LL (*) parsing: the
power of dynamic analysis”. In: ACM SIGPLAN Notices 49.10 (2014), pp. 579—
598.

[71] Terence J. Parr and Russell W. Quong. “ANTLR: A predicated-LL (k) parser
generator”. In: Software: Practice and Experience 25.7 (1995), pp. 789-810.

[72] Amir Pnueli. “The temporal logic of programs”. In: 18th Annual Symposium on
Foundations of Computer Science (sfcs 1977). ieee. 1977, pp. 46-57.

[73] Arthur Prior. “Past, present and future”. In: (1967).
[74] Arthur N Prior. Time and modality. John Locke Lecture, 2003.

[75] Grigore Rosu and Klaus Havelund. “Rewriting-based techniques for runtime ver-
ification”. In: Automated Software Engineering 12.2 (2005), pp. 151-197.

[76] Ekkart Rudolph, Peter Graubmann, and Jens Grabowski. “Tutorial on mes-
sage sequence charts”. In: Computer networks and ISDN systems 28.12 (1996),
pp- 1629-1641.

[77] Lui Sha, Sathish Gopalakrishnan, Xue Liu, and Qixin Wang. “Cyber-physical
systems: A new frontier”. In: 2008 IEEE international conference on sensor net-

works, ubiquitous, and trustworthy computing (sutc 2008). IEEE. 2008, pp. 1-
9.

[78] Alexander Shvets. “Dive Into Design Patterns”. In: Refactoring. Guru (2018).

[79] Michael Sipser. Introduction to the Theory of Computation. Boston, MA, USA:
Cengage Learning, 2013.

[80] Quinn Thibeault, Jacob Anderson, Aniruddh Chandratre, Giulia Pedrielli, and
Georgios Fainekos. “Psy-taliro: A Python Toolbox for Search-based Test Gen-
eration for Cyber-Physical Systems”. In: Formal Methods for Industrial Critical

73



[81]

[82]

[83]

Systems: 26th International Conference, FMICS 2021, Paris, France, August
24-26, 2021, Proceedings 26. Springer. 2021, pp. 223-231.

Masaki Waga. “Falsification of cyber-physical systems with robustness-guided
black-box checking”. In: Proceedings of the 23rd International Conference on
Hybrid Systems: Computation and Control. 2020, pp. 1-13.

Hengyi Yang. Dynamic programming algorithm for computing temporal logic ro-
bustness. Tech. rep. Arizona State University, 2013.

Zhenya Zhang, Deyun Lyu, Paolo Arcaini, Lei Ma, Ichiro Hasuo, and Jianjun
Zhao. “Effective hybrid system falsification using monte carlo tree search guided
by QB-robustness”. In: Computer Aided Verification: 33rd International Confer-
ence, CAV 2021, Virtual Event, July 20-23, 2021, Proceedings, Part I. Springer.
2021, pp. 595-618.

74



APPENDIX A
ANOTHER TOOL FOR LANGUAGE RECOGNITION

5



ANother Tool for Language Recognition (ANTLR) [71] is a parser generator
responsible for creating custom parsers and lexers from a specified grammar file in
the meta-language of ANTLR.

Grammars

When designing parsers and lexers, all grammar files must follow Extended Backus-
Naur Form (EBNF) [69]. Furthermore, within FOREK, reusing parser and lexer rules
should be prioritized over defining new rules that perform the same function. If the
construct is syntactically the same but semantically different, then this semantic dif-
ference should be reflected during the builder stage and not at the parser level to
reduce duplication of work and management of file dependencies.

Targets

ANTLR supports a multitude of targets (currently, ten total). This lends itself
to the natural decision that FOREK takes to separate implementation from grammar
to allow the ability to generate the same parser and lexer for the supported language
that is preferred.

As FOREK is a C++ library, the resulting parsers and lexer generated by ANTLR
target C++. It should be noted that the C++ target has a very fast parsing time relative
to other targets. However, does generally suffer from a relatively longer warmup time
to begin parsing (i.e., time to load underlying structures to parse the input).

Use in FoRek

All grammars defined within the FOREK library using the ANTLR meta-language
are located under the extras/grammars/ directory and placed under an appropriately
named folder. For example, the lexer and parser grammar files for pt-LTL are located
under extras/grammars/1tl/past/, accordingly.

Furthermore, ANTLR generates various interfaces for walking and visiting the
resulting parse tree to simplify implementation. This capability is leveraged and
is a necessity to retain separation of implementation and definition for each of the
languages. The set of interfaces depended upon and their uses are listed below:

e Lexer: Performs tokenization of input stream.
e Parser: Performs syntactic analysis of token stream from lexer.

e Visitor: Explicitly traverses resulting syntax tree.
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parser grammar PropositionallLogicParser;

start : formula EOF ;

formula : LeftParenthesis formula RightParenthesis #parentheses
| True #plTrue
| False #plFalse
| NegationOperator formula #plNegation
| formula ConjunctionOperator formula #plConjunction
| formula DisjunctionOperator formula #plDisjunction
| formula ImplicationOperator formula #plImplication
| formula IffOperator formula #plIff
| proposition #plProposition
proposition : Identifier ;

Figure B.1: Propositional Logic parser grammar.
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parser grammar LinearTemporallLogicParser;

import PropositionallLogicParser;

start

formula

| True
| False

formula
formula
formula
formula

formula EOF ;

EventuallyOperator formula
AlwaysOperator formula
NextOperator formula
formula UntilOperator formula
formula ReleaseOperator formula

NegationOperator formula

ConjunctionOperator
DisjunctionOperator
ImplicationOperator
IffOperator formula

| proposition

Figure B.2: Linear Temporal Logic parser grammar.

formula
formula
formula

LeftParenthesis formula RightParenthesis
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#parentheses

#plTrue
#plFalse

#1tlEventually
#1ltlAlways
#1tlNext
#1t1lUntil
#1ltlRelease

#plNegation
#plConjunction
#plDisjunction
#plImplication
#plIff

#plProposition



parser grammar MetricTemporalLogicParser;
import LinearTemporallogicParser;

start : formula EOF ;

formula : LeftParenthesis formula RightParenthesis #parentheses
| True #plTrue
| False #plFalse
| EventuallyOperator (interval)? formula #1tlEventually
| AlwaysOperator (interval)? formula #1ltlAlways
| NextOperator (interval)? formula #1ltlNext
| formula UntilOperator (interval)? formula #1t1lUntil
| formula ReleaseOperator (interval)? formula #1ltlRelease
| NegationOperator formula #plNegation
| formula ConjunctionOperator formula #plConjunction
| formula DisjunctionOperator formula #plDisjunction
| formula ImplicationOperator formula #plImplication
| formula IffOperator formula #plIff
| proposition #plProposition

/// An interval.

17/
/// Examples: ‘(1.0, 2.0)°¢, ‘[1, 10)°¢, ¢[100.2, 20)°¢
interval : (LeftParenthesis | LeftBracket) (Scalar | Infinity) Comma (Scalar |

— Infinity) (RightParenthesis | RightBracket) ;

Figure B.3: Metric Temporal Logic parser grammar.
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parser grammar SignalTemporallLogicParser;
import MetricTemporallLogicParser,

start formula EQOF ;

formula LeftParenthesis formula RightParenthesis
| True
| False

EventuallyOperator (interval)? formula
AlwaysOperator (interval)? formula
NextOperator (interval)? formula

formula UntilOperator (interval)? formula
formula ReleaseOperator (interval)? formula

NegationOperator formula

|
| formula ConjunctionOperator formula
| formula DisjunctionOperator formula
| formula ImplicationOperator formula
| formula IffOperator formula
| predicate
| proposition
/// An arithmetic expression.
/17
/// Examples: ‘1 + 2 < 1¢, ‘x + 2 >= 1¢, ‘x == y¢,

predicate

/// The set of relational operators.
17/
/// Examples: ¢<=¢, ¢>=¢ <,
relationalOperator LessThanOrEqualTo
| GreaterThanOrEqualTo
| LeftChevron
| RightChevron
| EqualTo
|

€>¢ ==

NotEqualTo

Figure B.4: Signal Temporal Logic parser grammar.
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ArithmeticParser;

expression relationalOperator expression

#parentheses

#plTrue
#plFalse

#1tlEventually
#ltlAlways
#1ltlNext
#1t1lUntil
#1ltlRelease

#plNegation
#plConjunction
#plDisjunction
#plImplication
#plIff

#stlPredicate
#plProposition



parser grammar TimedPropositionalTemporallLogicParser;

import LinearTemporallogicParser,

start

formula

3

formula EOF ;

True
False

EventuallyOperator formula
AlwaysOperator formula
NextOperator formula

formula UntilOperator formula
formula ReleaseOperator formula

OnceOperator formula
HistoricallyOperator formula
PreviousOperator formula
formula SinceOperator formula
formula TriggerOperator formula

FreezeTime Identifier formula

NegationOperator formula

formula ConjunctionOperator formula
formula DisjunctionOperator formula
formula ImplicationOperator formula
formula IffOperator formula

timeConstraint
proposition

/// A time constraint.

/177

/// Examples: ‘x <= 1¢, ‘y >= 2.0¢, ‘x + 1 < 2.0¢.
timeConstraint

/// The set of relation operators.

/77

/// Examples: ¢<=¢, ¢>=¢, €< ¢x¢ oot

relationalOperator

3

LessThanOrEqualTo
GreaterThanOrEqualTo

LeftChevron

RightChevron

EqualTo

NotEqualTo

Figure B.5: Timed Propositional Temporal Logic parser grammar.

ArithmeticParser;

LeftParenthesis formula RightParenthesis

=
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#parentheses

#plTrue
#plFalse

#1ltlEventually
#1ltlAlways
#1ltlNext
#1t1lUntil
#1ltlRelease

#ptltlOnce
#ptltlHistorically
#ptltlPrevious
#ptltlSince
#ptltlTrigger

#tptlFreezeTime

#plNegation
#plConjunction
#plDisjunction
#plImplication
#plIff

#tptlTimeConstraint
#plProposition

expression relationalOperator expression ;



parser grammar TimedQualityTemporalLogicParser;

import TimedPropositionalTemporallLogicParser;

start formula EQOF ;
formula LeftParenthesis formula RightParenthesis #parentheses
| True #plTrue
| False #plFalse
| EventuallyOperator formula #1ltlEventually
| AlwaysOperator formula #1tlAlways
| NextOperator formula #1lt1lNext
| formula UntilOperator formula #1t1Until
| formula ReleaseOperator formula #1ltlRelease

objectQualifier formula

#tqtlObjectQualifier

| FreezeTime Identifier formula #tptlFreezeTime
| NegationOperator formula #plNegation

| formula ConjunctionOperator formula #plConjunction
| formula DisjunctionOperator formula #plDisjunction
| formula ImplicationOperator formula #plImplication
| formula IffOperator formula #plIff

| timeConstraint
| proposition

#tptlTimeConstraint
#plProposition

3

/// 0Object qualification.
17/
/// Examples: ‘E(objl)@t¢, ‘A(objl, obj2)ex‘.
objectQualifier ExistsQuantifier LeftParenthesis argumentList RightParenthesis
< FreezeTime Identifier #tqtlExistsQualifier
| ForallQuantifier LeftParenthesis argumentList RightParenthesis FreezeTime
<> Identifier #tqtlForallQualifier

/// An argument list

/117

/// Examples: ‘x, y, z¢, ‘pl, p2, _o2°¢.

argumentList Identifier Comma argumentList
| Identifier

3

Figure B.6: Timed Quality Temporal Logic parser grammar.
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parser grammar SpatioTemporalPerceptionLogicParser;

import TimedQualityTemporalLogicParser,

start

formula

formula EQOF ;

True
False

EventuallyOperator formula
AlwaysOperator formula
NextOperator formula

formula UntilOperator formula
formula ReleaseOperator formula

OnceOperator formula
HistoricallyOperator formula
PreviousOperator formula
formula SinceOperator formula
formula TriggerOperator formula
objectQualifier formula

FreezeTime Identifier formula

SpatialExists spatialFormula
SpatialForall spatialFormula

NegationOperator formula

MetricTemporallLogicParser, ArithmeticParser;

LeftParenthesis formula RightParenthesis

formula ConjunctionOperator formula
formula DisjunctionOperator formula
formula ImplicationOperator formula

formula IffOperator formula
fnComparison

timeConstraint
proposition

#parentheses

#plTrue
#plFalse

#1ltlEventually
#1tlAlways
#1ltlNext
#1t1lUntil
#1ltlRelease

#ptltlOnce
#ptltlHistorically
#ptltlPrevious
#ptltlSince
#ptltlTrigger

#tqtlObjectQualifier
#tptlFreezeTime

#stplSpatialExists
#stplSpatialForall

#plNegation
#plConjunction
#plDisjunction
#plImplication
#plIff

#stplFunctionComparison

#tptlTimeConstraint
#plProposition

Figure B.7: Spatio-Temporal Perception Logic parser grammar (pt. I).
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/// A spatial (S4) formula.

/17

/// Examples: ‘...°¢

spatialFormula : EventuallyOperator (interval)? spatialFormula #
<~ stplSpatialEventually
| AlwaysOperator (interval)? spatialFormula #stplSpatialAlways
| NextOperator (interval)? spatialFormula #stplSpatialNext
| spatialFormula UntilOperator (interval)? spatialFormula #stplSpatialUntil
|

spatialFormula ReleaseOperator (interval)? spatialFormula #stplSpatialRelease

| NegationOperator spatialFormula #stplSpatialNegation
| spatialFormula ConjunctionOperator spatialFormula #

— stplSpatialConjunction
| spatialFormula DisjunctionOperator spatialFormula #

< stplSpatialDisjunction

| InteriorOperator spatialFormula #stplSpatiallnterior
| ClosureOperator spatialFormula #stplSpatialClosure
| spatialTerm #stplSpatialTerm

>

/// A bounding box function.

/77
/// Examples: ‘BB(obj)*‘, ¢BB(x)°‘.
spatialTerm : BoundingBoxFunction LeftParenthesis Identifier RightParenthesis ;

/// Function comparisons.

/77

/// Examples: ‘PROB(x) >= (PROB(x) - 0.5)°¢.

fnComparison : fnExpression relationalOperator fnExpression ;
fnExpression : LeftParenthesis fnExpression RightParenthesis #

<~ stplFnExpressionParentheses

| fnInvocation #
<~ stplFnExpressionFnInvocation
| term #stplFnExpressionTerm
| fnExpression MultiplicationOperator fnExpression #stplFnExpressionTimes
| fnExpression DivisionOperator fnExpression #
< stplFnExpressionDivision
| fnExpression ModuloOperator fnExpression #stplFnExpressionModulo
| fnExpression AdditionOperator fnExpression #stplFnExpressionPlus
| fnExpression SubtractionOperator fnExpression #stplFnExpressionMinus
/// An invocated function (i.e., function call).
/117
/// Examples: ‘PROB(x)‘, ‘DIST(x, BM, y, TM)*‘, ¢CLASS(x) ‘.
fnInvocation : Identifier LeftParenthesis argumentList RightParenthesis ;

Figure B.8: Spatio-Temporal Perception Logic parser grammar (pt. II).
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