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ABSTRACT

Event detection refers to the task of identifying event occurrences in a given natural

language text. Event detection comprises two subtasks; recognizing event mention

(event identification) and the type of event (event classification). Breaking from the

sequence labeling and word classification approaches, this work models event detec-

tion, and its constituent subtasks of trigger identification and trigger classification, as

independent sequence generation tasks. This work proposes a multi-task generative

model trained on event identification, classification, and combined event detection.

The model is evaluated on on general-domain and biomedical-domain event detec-

tion datasets, achieving state-of-the-art results on the general-domain Roles Across

Multiple Sentences (RAMS) dataset, establishing event detection benchmark perfor-

mance on WikiEvents, and achieving competitive performance on the general-domain

Massive Event Detection (MAVEN) dataset and the biomedical-domain Multi-Level

Event Extraction (MLEE) dataset.
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Chapter 1

INTRODUCTION

Event Detection is a crucial language-based information retrieval task. Event

Detection (ED) aims to identify salient words or phrases, known as event triggers,

from unstructured texts, and classify them into predefined event types that describe

the type of event scenario they invoke. It is central to event understanding (Zhang

et al., 2022).

Efficient and accurate event detection is the first step in most larger Event Ex-

traction task for more comprehensive information retrieval from language data. Fur-

thermore, event detection as a standalone task has applications in many downstream

tasks, such as information retrieval (Jungermann and Morik, 2008; Kanhabua and

Anand, 2016), question answering (Costa et al., 2020), and prediction of implicit

arguments from event information (Cheng and Erk, 2018).

1.1 Event Detection

An event is a specific occurrence, something that ”happens”, and is significant to

the subject of the text. It involves participants. An event can often be described as a

change of state (Consortium, 2005). An event trigger is the word or phrase that most

clearly expresses the event occurrence and intent. The event type is a label from a

predefined schema that best describes the characteristics of the event being triggers,

and defines the scope of roles involved in understanding the event. These participants

are referred to as event arguments, and play a role in creating a comprehensive picture

of the event in question.

Both the Event Detection subtasks are evaluated with micro precision, recall, and

1



F-1 scores.

1.2 ED as a Precursor to EE

Event Detection (ED) is foundational to the more comprehensive Event Extrac-

tion (EE) task (Ahn, 2006). Argument extraction, and event extraction as a whole,

depends heavily on event detection. While ED can be performed as an independent

task and has its own uses, the wider EE task, which does more comprehensive infor-

mation retrieval, requires extracting arguments and roles, and doing so is impossible

without first identifying the event in its entirety. Detection of event triggers helps

identify the arguments associated with them, while classifying them into the correct

event type allows models to not only assign argument roles, but even better identify

arguments, with the knowledge of the detected event type and the expected roles

associated with them.

This is especially evident in recent problems which attempt to perform EE in

low-resource settings, without expensive annotation schemes or sufficient coverage.

Attempting to perform argument extraction in the absence of a thorough schema, or

in the absence of a schema entirely, places even more importance on the subtask of

ED, as the schema must be inferred from event triggers and their types. Without

correct identification and classification, even powerful pretrained models with vast

reserves of knowledge cannot leverage the semantic information to perform argument

extraction, and by extension end-to-end event extraction, meaningfully.

In light of this dependency, successful event extraction models have time and again

implemented pipelined architectures (Ahn, 2006; Si et al., 2021; Liu et al., 2022) which

perform ED as a precursor to argument extraction to create a complete EE system.

A common problem they face is the problem of error propagation, originating from

subpar ED modules that handicap the overall efficacy of their EE systems. Improving

2



performance on ED is critical to improving existing and future EE frameworks.

1.3 Research value and Contributions

1.3.1 Research Evaluation

We treat this problem as sequence generation. The few existing works that treat

ED and EE as sequence generation evaluate their performance in accordance with

existing word classification models. In order to evaluate our model performance

fairly and accurately in comparison to these, we also follow the word classification

paradigm for evaluation. The generated sequences are post-processed and framed

as token classifier outputs. We use the common seqeval package used for entity

recognition to obtain precision, recall, and micro and macro F-1 scores.

1.3.2 Contributions

1. To the best of our knowledge, this is only the second work to leverage ED

subtasks, the first to utilize all of the ED subtasks separately and jointly, and

the first one to do so while moving away from the dominant token classification

paradigm.

2. This thesis presents the novel technique of multitasking over a single complex

ED task by implementing a generative reformulation to its constituent subtasks

of both EI and EC, and then creating a single robust multitask model that not

only performs the tasks of EI and EC, but also improves performance on our

primary task of ED by leveraging its learned knowledge of the subtasks that

make up ED.

3. This work adds to the canon of research works in the active domain of using

instructional prompts, as well as research works that formulate ED as sequence

3



generation (of which there are very few)

4. This work establishes new state-of-the-art benchmarks on the general domain

dataset RAMS and establishes the benchmark ED performance on the general

domain WikiEvents dataset. In addition, we present a more robust and com-

prehensive model for the general domain MAVEN dataset, which improves on

some shortcomings of existing state-of-the-art models.

1.4 Structure of Thesis

This work will begin with enumerating the task definition and the importance of

Event Detection to comprehensive information retrieval. Chapter 2 offers an overview

of the state of research in this domain and its dominant paradigms. In chapter 3,

the details and distinctive features of the datasets used in the development of this

work are discussed. Chapter 4 details the novel generative reformulation necessary

to conform to the most recent research paradigm. Chapter 5 discusses another novel

technique used in this work - prompted multi-tasking over all Event Detection sub-

tasks. This chapter also provides a comprehensive analysis of our method in different

settings. The final chapter summarizes key results and findings, while detailing ex-

isting limitations and possible avenues of future research.
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Chapter 2

LITERATURE REVIEW

This chapter provides an overview of major paradigms in Event Detection, with brief

explanations of pioneering and seminal works, as well as the state of the most recent

research endeavours in the paradigms. In keeping with the primary task of this thesis

work, this literature review will focus on supervised event detection. As many of the

works highlighted in this chapter perform Event Extraction (of which Event Detec-

tion is a preliminary subtask) in a pipelined fashion, this allows us to observe their

performance on the ED task independently. Section 2.1 enumerates the earliest work

in this domain - highlighting works that first formulated the problem of Event Detec-

tion, and the use of simple classifiers and statistical methods that relied more heavily

on engineering complex hand-crafted features with domain expertise. Section 2.2 in-

troduces the subsequent paradigm of using neural network based, where researchers

focused with different neural network configurations such as CNNs, RNNs, and GCNs

to model complex relations. Recently, successful event detection and event extrac-

tion models have leveraged deep learning architectures, especially Transformer-based

Pretrained Language Models (PLMs) to learn complex semantic relationships and

longer-term contexts. We explore these models in Sections 2.3. Finally, we briefly

discuss the most recent breakthrough: performing ED as a sequence generation task,

a paradigm which is drastically different from all before it. Research in this avenue

is very new and still ongoing, and it is hoped that this work will add to the canon of

research in this domain.
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2.1 Feature-based Models

The earliest formulation of Event Extraction as a task comes from Consortium

(2005), which defined this specific information retrieval task, while also providing the

widespread terminology of entities, event triggers, types, arguments, and argument

roles. Ahn (2006) was one of the first works to delineate the stages of this task

further, providing the now-commonplace subtask decomposition of Event Extraction

into Event Detection, i.e. trigger identification and classification, and Argument Ex-

traction. The scope and type of features being used was advanced further by the

inclusion of cross-event features (Gupta and Ji, 2009; Liao and Grishman, 2010) and

cross-document features (Ji and Grishman, 2008). Subsequent works (Gupta and

Ji, 2009; Riedel et al., 2010) used handcrafted features to perform Event Extraction

and its adjacent tasks such as temporal inference and relational extraction respec-

tively. Hong et al. (2011) leveraged cross-entity reference, proposing fine-grained

entity consistency as a key feature to trigger identification and classification (this

idea was explored further by Liu et al. (2016)). This work combined unsupervised

ML techniques such as clustering along with information retrieval by mining and used

statistical classifiers to infer trigger existence and types.

The majority of models so far had been pipelined models that performed trigger

identification separately from classification. Chen and Ng (2012) proved that training

a model on trigger identification and classification jointly was a superior approach

to ED. Furthermore, joint training not only allowed knowledge sharing, but also

reduced error propagation along the ED pipeline. This denoted a shift from pipelined

models (Ji and Grishman, 2008; Gupta and Ji, 2009; Patwardhan and Riloff, 2009;

Liao and Grishman, 2011; McClosky et al., 2011; Huang and Riloff, 2021; Li et al.,

2013a) to joint training architectures (Riedel and McCallum, 2011b,a; Li et al., 2013b;
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Venugopal et al., 2014).

Li et al. (2013b) was the first architecture to treat end-to-end EE as structured

prediction. It used a set of complex human-designed lexical features, entity informa-

tion, and syntactic features as local features, in addition to global features (for exam-

ple, context and dependency path between multiple triggers), over which it trained a

structured perceptron. Bronstein et al. (2015) adapted this approach to low-resource

settings by using Wordnet in conjunction with this architecture to augment anno-

tated data. Liu et al. (2016) leveraged global features such as event-event association

further, while integrating latent local information such as fine-grained entity type.

This also marked the beginning of methods integrating external knowledge sources

to improve ED, like Chen et al. (2017); Liu et al. (2017). These models leveraged

information such as argument annotations, and language resources such as Framenet

(Baker et al., 1998) and Freebase (Bollacker et al., 2008). Liu et al. (2017) used exter-

nal knowledge and rule-based methods, along with constraints on word features such

as POS tags and entity labeling to automatically annotate unlabeled external data,

thus generating more samples. However, the choosing features is a labour-intensive

process and requires linguistic intuition as well as domain expertise. This makes these

models less suited for new application domains and limits the cross-domain adapt-

ability. Furthermore, the resources for feature extraction might involve errors, which

may be propagated to the main event detector.

2.2 Neural Network Architectures

The works in this section were among the first to leverage pretrained embeddings

(Mikolov et al., 2013b,a) as features, thus reducing the need labour-intensive fea-

ture engineering. Nguyen and Grishman (2015); Chen et al. (2015) were among the

earliest works to formulate ED as a token-classification problem, and use surround-
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ing tokens as context. Both these approaches used Convolutional Neural Networks

(CNNs), which require a fixed window size for the context. Nguyen and Grishman

(2015) proved the domain adaptability of neural models. It used word embeddings,

position embeddings, and entity type embedding as features. DMCNN (Chen et al.,

2015), a pipelined ED model, used dynamic multi-pooling to retrieve multiple events

per sentence. JRNN (Nguyen et al., 2016) used a joint training scheme, in addition

to using LSTM (Long Short-Term Memory) networks to improve local contextual

information. Recurrent Neural Networks (RNNs) also found use in Ghaeini et al.

(2016), one of the first methods to attempt to capture multi-word triggers. The tree-

structured dbRNN (Sha et al., 2018) also used an RNN, enhanced with dependency

bridges to carry syntactically related information and a tensor layer to capture latent

interaction between trigger candidates. Another jointly trained model, JMEE (Liu

et al., 2018), used a Graph Convolutional Network (GCN) to learn syntactic contex-

tual representations of each node by the leveraging the representative vectors of its

immediate neighbors in the graph.

2.3 Transformer-based Models

With the advent of Transformer models (Vaswani et al., ????) that have shown

promising results across language tasks, there has been a surge of joint and pipelined

architectures that perform ED in diverse settings. The wealth of knowledge behind

pretrained language models (PLMs) make them a more powerful tool to leverage for

language tasks. Unsurprisingly, frameworks integrating PLMs outstrip previously es-

tablished baselines on multiple tasks and datasets. However, PLMs are trained on

general domain data, making them less suited to successful right-out-of-the-box ap-

plications on tasks which require domain-specific knowledge and contexts. Most ED

and EE architectures leverage BERT (Devlin et al., 2018) to perform word classifi-
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cation. PLMEE (Yang et al., 2019) uses BERT embeddings along with a pipelined

structure for EE, where predicted triggers and types are used for argument extrac-

tion. This work treats multi-word triggers as separate tokens with the same event

type class label assigned. DMBERT (Wang et al., 2019) uses BERT along with con-

volutional layers to encode word and position embeddings and then uses dynamic

multi-pooling. It also employs adversarial training: uses a discriminator to judge the

accuracy of annotations, improving performance on noisy data and allowing weakly

or semi supervised applications. Lu et al. (2019) decouples lexical-specific and lexical-

free representations and improves performance on sparse event types. EKD (Tong

et al., 2020) and GPTEDOT (Veyseh et al., 2021) use different Transformer-based ar-

chitectures (BERT and GPT-2 (Radford et al., 2019), respectively) to generate data.

GPTEDOT, however, generates data not for ED, but for Event/Trigger Identifica-

tion, due to relative simplicity and ease of evaluating quality of generated data. It

uses these generated samples and the original ED annotations to train a multi-task

model with improved trigger identification capabilities. More recent works that use

BERT embeddings for word classification are SaliencyED (Liu et al., 2022) which uses

ensemble classifiers, and OntoED (Deng et al., 2021) that can perform low-resource

and zero-shot event detection. BERT embeddings also find use in graph-based archi-

tectures such as DyGIE++ (Wadden et al., 2019) and OneIE (Lin et al., 2020), where

event triggers are set as nodes with edges capturing cross-subtask and cross-instance

interactions. Finally, APEX (Wang et al., 2022a) augments input with type-specific

prompts and seed triggers to perform ED using BERT-large. CLEVE (Wang et al.,

2021b) and Yu et al. (2021) are two recently proposed architectures that leverage the

pretraining paradigm to improve ED on a target dataset.

Many Transformer-based models also leverage the pretrained knowledge of BERT
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by framing ED as a question answering task. These include BERT QA (Du and

Cardie, 2020), Boros et al. (2021), and RCEE (Liu et al., 2020), which use simple

questions to perform trigger extraction. While these models perform ED jointly,

MQAEE (Li et al., 2020) performs ED in a pipelined fashion, by using separate ques-

tions for EI and EC, and using the answer of the former to form the question for the

latter. MQAEE and Wang et al. (2021a) treat ED as machine reading comprehension.

With the advent of more powerful sequence-to-sequence models such as T5 (Raffel

et al., 2020), there has been an increased interest in formulating a range of language

tasks, including event detection and event extraction, as sequence generation tasks.

TANL (Paolini et al., 2021) formulates ED and other information retrieval tasks as

augmented translation tasks. Text2Event (Lu et al., 2021) uses a complex tree-based

structure, while GDAP (Si et al., 2021) uses a relatively simpler pipelined system

to perform ED and EE. GDAP, unlike other pipelined ED models in the past, per-

forms EC before EI, and uses predicted event types as prompts for corresponding

trigger extraction. With this thesis, we add to the canon of works leveraging the

sequence generation and promptng paradigm, and introduce the addition of instruc-

tional prompts for ED and its subtasks.
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Chapter 3

DATASETS

In view of the motivation expressed before: the improvement of ED as a prelim-

inary to EE, the majority of the datasets used in this work are EE datasets, main-

taining the scope of possible extensions of the proposed approach to the argument

extraction task using similar or identical experimental settings.

The datasets we choose to demonstrate our method on span a range of characteris-

tics, from sentence-level to multi-sentence level, with varying proportions of non-event

instances, and include multi-word triggers and multi-class triggers, on which the effi-

cacy of trigger extraction techniques are understudied. In addition to these general

domain datasets, we include a domain dataset to illustrate the performance of our

method on domain-specific datasets.

3.1 RAMS

RAMS (Ebner et al., 2020) is a dataset created primarily for the task of multi-

sentence argument linking. This dataset has 9,124 annotated event triggers across 38

event types and subtypes. The annotated argument roles are in a 5-sentence window

around the related event trigger. The official data split in the original paper defines

3,194, 399, and 400 documents for training, development, and testing respectively.

3.2 MAVEN

The MAssive eVENt detection dataset, or MAVEN, (Wang et al., 2020) was pro-

posed with the idea of combating data scarcity and low coverage problem in prevailing

general domain event detection datasets. It contains trigger and event type annota-
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Figure 3.1: Distribution of Event Types in RAMS

Figure 3.2: Distribution of Macro Event Types in RAMS
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Event type Frequency Example triggers

conflict.attack 721 massacre, battle, bombing

movement.transportperson 491 smuggling, walked, incarcerate

transaction.transfermoney 482 reimbursed, paid, purchasing

life.die 442 die, murder, assassinating

life.injure 422 surgery, injured, brutalized

movement.transportartifact 367 imported, trafficking, smuggling

transaction.transferownership 327 auction, donated, acquire

contact.requestadvise 250 advocating, recommending, urged

contact.discussion 249 discuss, meet, negotiated

transaction.transaction 211 funded, donated, seized

Table 3.1: Top 10 Event Types in RAMS, along with Example Triggers.

Event type Frequency Example triggers

process start 2468 began, debut, took place

causation 2465 resulted in, caused, prompted

attack 2255 bombing, attacked, struck

hostile encounter 1987 fought, conflict, battle

motion 1944 fell, pushed, moved

catastrophe 1785 explosion, hurricane, flooded

competition 1534 event, championships, match

killing 1380 killed, murder, massacre

process end 1323 closing, complete, ended

statement 1269 asserted, proclaimed, said

Table 3.2: Top 10 Event Types in MAVEN, along with Example Triggers.
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Figure 3.3: Distribution of Event Types in MAVEN

tions on 4,480 documents from Wikipedia, with close to 119K event mentions classified

into 168 event types. The event types in MAVEN are derived from the frames defined

in the linguistic resource Frame net (Baker et al., 1998). MAVEN is a dataset aimed

at event detection, and thus lacks argument role annotations. We use MAVEN, de-

spite the lack of argument annotations, as it provides by far the largest coverage in

terms of event diversity, as the statistics will make clear. The high event coverage

provided by MAVEN results in more events per sentence on average, as compared

to other general domain ED datasets. Another significant feature is the frequency of

multi-word triggers, or trigger phrases.

Despite the large scope of coverage offered by MAVEN, out of its 168 types, the

majority of documents deal with a subset of all event types. 18% of all event types

(for example, Breathing and Change Tool) have less than 100 annotated instances,

making them hard to learn and identify (Zhang et al., 2022). The dataset, reflective

of real world data, has a long tail distribution (Wang et al., 2020), as seen in Figure
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Figure 3.4: Distribution of Event Types in WikiEvents

3.3. Using macro metrics to evaluate performance on this dataset can give us an idea

of comparative model performance on sparsely represented event classes.

3.3 WikiEvents

The WikiEvents dataset is a dataset for argument extraction proposed by Li et al.

(2021). It contains 34 event types in a two-level hierarchy, and 67 event types in a

three-level hierarchy. Like MAVEN, this dataset is highly imbalanced, with only

3 event types populated with more than 400 instances across training and testing

splits. The most frequent event, conflict.attack, has nearly twice as many instances

as the next most frequent event type. Furthermore, 54% of the dataset instances

are negative instances, i.e. instances with no event occurrences. Existing work on

this dataset focuses exclusively on document-level argument extraction and event
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Figure 3.5: Distribution of Macro Event Types in WikiEvents

Event type Frequency Example triggers

conflict.attack 1188 explosion, shot, attack

contact.contact 530 met, said, been in touch

life.die 501 killed, died, shot

life.injure 273 injuring, wounded, maimed

movement.transportation 212 transferred, brought, arrived

justice.arrestjaildetain 176 arrested, capture, caught

artifactexistence.damage

destroydisabledismantle

103 damaged, destruction, removed

justice.investigatecrime 102 analysis, discovered, investigation

justice.chargeindict 96 charged, accused, alleged

artifactexistence.manufacture

assemble

82 construct, make, build

Table 3.3: Top 10 Event Types in WikiEvents, along with Example Triggers.
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Figure 3.6: Distribution of Event Types in MLEE

extraction.

For our experiments, we use the authors’ data split of 206, 20, and 20 documents

for training, development, and testing, respectively. In the absence of existing base-

lines, we establish the benchmark performances on sentence-level ED on this dataset

for future researchers.

3.4 MLEE

Our domain dataset is taken from the biomedical domain. The Multi-Level Event

Extraction (MLEE) corpus (Pyysalo et al., 2012) is taken from 262 PubMed ab-

stracts centered around tissue-level and organ-level processes. Event trigger tokens

are classified over 19 biomedical event types drawn from the GENIA ontology. These

events fall under one of 4 high-level event types: molecular, anatomical, general, and

planned. The prevailing best models for ED and EE on this dataset use domain-

specific pretrained models or embeddings. We follow the original data split of 131,
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Category Event type Example triggers

Anatomical cell proliferation proliferation, proliferate, growing

development formation, progression, morphogenesis

blood vessel development angiogenic, angiogenesis

death death, apoptosis, survival

breakdown dysfunction, disrupting, detachment

remodeling remodeling, reconstituted

growth proliferation, growth, regrowth

Molecular synthesis production, formation, synthesized

gene expression expression, expressed, formation

transcription expression, transcription, mRNA

catabolism disruption, degradation, depleted

phosphorylation phosphorylation

dephosphorylation dephosphorylation

General localization migration, metastasis, infiltrating

binding interactions, bind, aggregation

regulation altered, targeting, contribute

positive regulation up-regulation, enhancement, triggered

negative regulation inhibition, decrease, arrests

Planned planned process treatment, therapy, administration

Table 3.4: Event Types in MLEE, along with Example Triggers.
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Dataset Docs #triggers #types

Train Dev Test

MLEE 131 44 87 8014 30

RAMS 3194 399 400 9124 38

MAVEN 2913 710 857 118732 168

WikiEvents 206 20 20 3951 49

Table 3.5: Dataset Statistics (Overview)

Dataset Neg (%) Events per row Types per row #zs

Avg Max Avg Max

MLEE 18.22 2.867 16 2.369 9 3

RAMS 0 1.066 6 1.061 4 0

MAVEN 8.64 2.433 15 2.314 15 0

WikiEvents 54.11 1.671 7 1.429 6 1

Table 3.6: Dataset Statistics (Post-processed). Neg: Instances with No Event Oc-
currences. #zs: Number of Event Types in Test That Are Not Seen in Train.

44, and 87 abstracts for training, development, and testing, respectively, along with

general domain models.
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Chapter 4

EVENT DETECTION SUBTASKS AS SEQUENCE GENERATION

Existing methods, which are predominantly discriminative classifiers, cannot eas-

ily leverage pretrained semantic knowledge. These models fall short of correctly iden-

tifying complex events, such as event triggers associated with multiple event types, or

event triggers that are multi-word phrases. Furthermore, they face difficulties in few-

shot ED settings. Lastly, these models, once trained, lack cross-domain or cross-task

adaptability. In view of these shortcomings, and the rapidly progress development of

powerful pretrained sequence-to-sequence models, we formulate ED and its subtasks

as sequence generation problems.

4.1 ED on Multi-Sentence Level

Previous works on the RAMS dataset (Veyseh et al., 2021) conduct ED on this

dataset on the sentence level. However, for multiple reasons, we do not conform to this

paradigm. Firstly, the data , as provided by the original authors, in its native form,

is not sentence-level. This is owing to the fact that RAMS is geared towards multi-

sentence argument role linking and extraction. The original configuration allows us

to test the efficacy of our model on a different setting - the multi-sentence level.

In addition, on converting the data to sentence level, we find that the dataset is

highly imbalanced, with 77% of the sentences containing no events. This represents

a severely class-imbalanced dataset, which is detrimental to model performance.

Furthermore, any models performing event argument extraction (EAE) on this

dataset would work on these multi-sentence instances. Thus, any ED frameworks

intended to be preliminary stages in successful end-to-end Event Extraction frame-
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works must be likewise able to perform the ED task on the same input format, i.e.

on the multi-sentence level.

Lastly, increasing the number of sentences in a single input instance increases

the scope for misidentifying the salient event trigger. However, we hypothesize that

in this case, the semantic information from the input as well as the presence of

relevant arguments would provide necessary context for accurate identification and

classification of the salient event trigger.

4.2 Task Decomposition

Event identification (EI) and Event classification (EC) are the subtasks that make

up an ED problem (Ahn, 2006). A successful ED model must perform both these

tasks accurately. Sequence labeling approaches do these inherently simultaneously,

by identifying the correct triggers to label, and then assigning the correct event type

as their labels. However, this paradigm does not allow for both of these individual

subtasks to be carried out independently and in parallel. However, these subtasks can

be framed as text generation tasks with similar generation formats as our proposed

output format for ED. We use these constituent subtasks as additional independent

tasks to augment our model.

4.3 Input Reformulation

Existing works that leverage sequence generation to perform ED or EE are recent

and comparatively scarce. Research on the most efficient sequence representation of

this problem is still ongoing. GDAP (Si et al., 2021) uses a highly simplified output

sequence format for both identification and classification; however, it performs ED

sequentially, causing error propagation. TANL (Paolini et al., 2021) and Text2Event

(Lu et al., 2021) use other generation-conducive patterns; however, the former gen-
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erates a considerable number of task-irrelevant tokens, while the latter generates a

complex output structure that can be difficult to parse at scale.

We propose a relatively simple sequence generation format. The labels, whether

they are all event triggers, types of events, or a more comprehensive list of event

triggers and their corresponding type annotations, are converted to a delimited string

with a single-character delimiter. This creates a consistent pattern that can be learned

by the model. In the absence of any events, we use the label NONE.

It is important to note that due to the presence of multi-class triggers, the number

of unique event types and unique triggers for an instance might differ. This makes all

tasks distinct and independent of one another, as opposed to Event Detection being

simply a linear combination of predicted labels for EI and EC.

4.3.1 Event Identification, Classification

Each event for each of these tasks contains a single component, i.e. either the

trigger, or the event type. Hence, we can represent the output of each instance as a

delimited sequence of labels. For example, an instance with x unique triggers would

have the following label representation for the EI task:

T1 | T2 | T3 ... Tx

Where Ti is the ith trigger word or phrase. Similarly, an instance with y unique

event types occurring in it would have the following label representation for the EC

task:

E1 | E2 | E3 ... Ey

Where Ei is the ith type of event occurring in the instance. We delimit all triggers

and types with a pipe (|) symbol.
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Figure 4.1: Sequence Generation Format for All Event Detection Subtasks

4.3.2 Event Detection

Each event for the event detection task is composed of 2 components: the event

trigger, and its corresponding event type. Similar to our sequence formulation for EI

and EC, we create a delimited sequence of events for an instance with x events:

V1 | V2 | V3 ... Vx

Where Vi is the ith unique event occurring in the instance.

The representation of Vi is a combination of the trigger for the particular event,

Ti, and its corresponding type, Ei. We use -> as a delimiter between trigger and type,

creating a unique format to enumerate the list of events. This allows us to represent

multiple events in an instance as follows:

T1− >E1 | T2− >E2 | T3− >E3 ... Tx− >Ex

For an example instance with our generative reformulations for all subtasks, refer to

Figure 4.1.
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Chapter 5

EVENT DETECTION AS MULTI-TASK GENERATION

5.1 Background

5.1.1 Multi-Task Learning

Multi-task Learning is a training paradigm in which a machine learning model is

trained on multiple separate tasks in order to create a single model that learns shared

representations and common ideas between those tasks (Caruana, 1997; Crawshaw,

2020). Across domains, models trained on multiple disparate tasks are better perform-

ing and more robust, due to shared learning. Multi-task learning has been leveraged

to great effect in (Xie et al., 2022; Lourie et al., 2021), and in specific domains as well

(Chen, 2019; Parmar et al., 2022). This paradigm is also the basis of the generative

T5 model, which is trained on a diverse set of language-based tasks converted into

a text-to-text format (Raffel et al., 2020). TANL (Paolini et al., 2021) carried out

multi-task learning experiments over a number of information retrieval tasks, includ-

ing Event Detection and Argument Extraction. A version of multi-tasking over ED

is implemented in GPTEDOT (Veyseh et al., 2021), where generated EI samples are

used to augment ED performance. Generation is restricted to EI, as it is easier to

evaluate the quality of samples generated. Furthermore, it is not possible to train a

discriminative classifier over EC in addition to these 2 subtasks. However, generative

models can be used to extend this multi-tasking approach to all ED subtasks, without

requiring generation of possibly noisy input samples.
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5.1.2 Prompt Engineering

Using prompts and natural language instructions to augment input data and im-

prove model learning is an active research area. The turking test (Efrat and Levy,

2020) was proposed as a method to evaluate how well machine learning models can

learn from instructions, akin to humans, on a range of tasks. Later works have in-

vestigated how well PLMs gain a semantic understanding of prompts (Webson and

Pavlick, 2022; Zhao et al., 2021). The instruction learning paradigm has been in-

vestigated in detail (Hase and Bansal, 2021; Ye and Ren, 2021; Mishra et al., 2022),

especially in settings such as low-resource or zero-shot settings (Zhong et al., 2021;

Sanh et al., 2022; Wei et al., 2022)

Prompt-based models have been used for Event Detection and Event Extraction

as well. More recently, GDAP (Si et al., 2021) used predicted labels from earlier in the

pipeline as prompts for later stages of trigger identification and argument extraction,

while APEX (Wang et al., 2022a), following the example of other works that use

prototype event triggers (Wang and Cohen, 2009; Bronstein et al., 2015; Lai and

Nguyen, 2019; Lyu et al., 2021; Liu et al., 2020; Zhang et al., 2021) from the dataset,

used these triggers as part of tailored prompts for each event type in the schema,

which include natural language information such as type definition, example triggers,

and common sentence structure for the event types.

5.2 Methods

5.2.1 Multi-Tasking on ED Subtask-level

We leverage this training paradigm for ED, by treating the main task and its

independent constituent subtasks as separate tasks of EI, EC, and ED. Our hypothesis

is that by explicitly modeling the individual subtasks, we can augment the model’s
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performance on the combined ED task by creating a robust model that is trained to

carry out both identification and classification, and can combine the results of these

subtasks intelligently to accomplish ED. We refer to this subtask-based multi-task

setting as MTL3 in this work, referring to the number of tasks the model is trained

on. By using the original data for multi-tasking, we avoid introducing more noise into

the training data. For rarer event types, modeling EC separately enables model to

better identify sentences where those event types occur, which improves classification

of identified triggers for these event types.

5.2.2 Prompting for Generative ED

Adding natural language prompts have shown promising results in improving per-

formance in PLMs (Liu et al., 2021). Prompt engineering is an active area of research

across domains. Unlike previous prompt-based approaches (Wang et al., 2022a), we

do not create prompts solely within the scope of the ED task, such as event type-

specific prompts. Instead, we use prompting to improve multi-tasking performance,

by designing prompts that clearly indicate how to perform event identification, clas-

sification, or detection. We do this by employing natural language descriptions of the

tasks and expected output. For example, we use the following text to prompt the

model to perform ED generatively:

The text given as input discusses ongoing events. An event nugget is a word or

phrase that most clearly expresses the event occurrence. Generate output in the for-

mat [event nugget− >event type] for all events in the text. If there are no events,

generate NONE.

We experiment with a range of example types and configurations, including using
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Figure 5.1: Example of an Input Instance for Prompted Generative Event Detection

only general examples, only domain instructions, and a combination of both. We use

the following format for integrating examples into our instructional prompt

INPUT: example input </s> OUTPUT: example output </s> EXPLANATION:

natural language explanation

For each subtask, we add 2 examples following the prompt. An example input is

shown in Figure 5.1.
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Figure 5.2: Beam Search Decoding with Beam Size 3 over a 3-token Vocabulary.
Image from Commons (2021)

5.2.3 Beam Search Decoding

Beam search decoding is the most popular decoding strategy for NLP algorithms

like Neural Machine Translation, Image/video captioning, Chatbots, sequence to se-

quence decoding etc. Beam search considers multiple best options based on beam

size using conditional probability, which is better than the sub-optimal Greedy search.

Greedy approaches consider the single best token at each step. We obtain only a single

sequence, and despite the individual token-to-token transitions being high probabil-

ity,the final sequence may be suboptimal as a whole. Beam search expands Greedy

Search, considering the top k (where k is the beam size) next steps by conditional

probability at each point. As we take more timesteps, beam search calculates total

sequence probability starting from the best sequences so far. This allows for diver-

sity in sequence length, and allows shorter high probability sequences over longer,

less-likely sequences made up of high probability transitions.
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5.3 Model Training

The generative approach requires the use of a text-to-text model that can generate

free form text. We use the generative T5 model (Raffel et al., 2020), a Transformer-

based text-to-text model. The model uses an encoder and decoder stack similar to

BERT-base (Devlin et al., 2019). The model is trained using standard maximum

likelihood. The model learns to minimize error in predicting the next word in a se-

quence at the current timestep. The error used is categorical cross-entropy loss, which

measures the difference between predicted and actual probability distribution. For

language models, the actual probability distribution at the timestep can be expressed

as a one-hot encoded vector, where the element corresponding to the ground truth

token is 1, and the other are 0. This results in cross-entropy loss being the negative

log probability assigned to the next word in the training sequence. The final loss over

a sequence is the aggregated loss over all timesteps.

T5 uses teacher forcing (Williams and Zipser, 1989) for network training. Teacher

forcing refers to the practice of using predicted token at timestep t to calculate loss,

but providing the ground truth sequence up to t tokens in order to predict the token

at the next timestep. This allows us to calculate the loss accurately, while improving

speed of convergence and model stability.

Optimization is done by using AdaFactor (Shazeer and Stern, 2018) for parameter

updates.

5.4 Experimental Setup

For our experiments, we use the T5-base configuration, which has 220 million

parameters. It is trained on a multi-task mixture of unsupervised and supervised

tasks, such as denoising, sentiment analysis, natural language inference, sentence
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Figure 5.3: Overview of the T5 Model. Image from Raffel et al. (2020)

completion, and question answering, among others. We conduct all our experiments

using GTX1080 and V100 NVIDIA GPUs. The trained model allows a maximum

sequence length of 1024 tokens. All models are trained for 20 to 50 epochs, with a

batch size of 1 due to memory constraints. For beam search decoding, we use 50

beams.

The scripts required to create generatively-formatted data, run various task con-

figurations, and evaluate their token-level performance can be found here. 1.

5.5 Results and Discussion

Although we do not perform ED as word classification, in order to compare the

efficacy of our method fairly with established baselines, we evaluate our predictions

by converting them to token-level labels.

Across the board, we observe an increase of 3-4% in F-1 score over individual

task performance on task decomposition and subsequent multi-tasking over the same

dataset. This supports our main hypothesis on the efficacy of breaking a complex

generation task into its constituent subtasks that can be used to support model learn-

ing on the primary task. We observe a further increase of 4% in model performance

1https://github.com/ujjwalaananth/MTL3_EventDetection
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Dataset Single-task MTL3 (tags) MTL3 (instr)

All Pos All Pos All Pos

MLEE 71.07 72.20 74.57 75.82 77.09 78.45

RAMS 63.21 63.21 67.66 67.66 69.53 69.53

MAVEN 58.10 59.18 62.29 63.56 62.40 63.66

WikiEvents 54.31 58.47 56.77 61.35 58.71 64.31

Table 5.1: Results on All Datasets, with Greedy Decoding. Single-task: Event
Detection Results. MTL3 (Tags): Training with EI and EC Tasks on the Same
Dataset. MTL3 (Instr): Incorporating Natural Language Instructions with Examples.
Pos Denotes Performance on Only Event Sentences.

Model P R F1

DMBERT (Wang et al., 2019) 62.6 44.0 51.7

GatedGCN (Lai et al., 2020) 66.5 59.0 62.5

GPTEDOT (Veyseh et al., 2021) 55.5 78.6 65.1

Our model 71.6 71.0 71.3

Table 5.2: Results on RAMS. All Previous Models Are Sentence-level BERT-based
Models.

on 3 out of 4 datasets by engineering instructional prompts and incorporating them

as part of the input. Finally, performing beam search decoding improves prediction

performance further by up to 2%.

5.5.1 RAMS

Existing baselines perform ED on sentence-level. We compare our multi-sentence

ED performance with DMBERT (Wang et al., 2019), GatedGCN (Lai et al., 2020),

and GPTEDOT (Veyseh et al., 2021). All these models are BERT-based. The state-

of-the-art model, GPTEDOT, leverages the multi-task learning paradigm similarly,

however, owing to the limits of classification-based representations, only uses EI, and
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Model P R F-1 WF-1

Single-task 60.0 49.6 54.3 52.1

Our model 60.8 60.6 60.7 59.4

Table 5.3: Results on WikiEvents. WF-1: Weighted F-1 %

requires generation of data to augment existing examples. Using only the native data

as provided by the authors (Ebner et al., 2020), we achieve 67.66% by using our

MTL3 approach. Adding instructional prompts, we achieve 69.53% F-1 score, which

surpasses GPTEDOT by 4.4%. Training for more epochs further increases model

performance to 71.33%. Furthermore, the difference between precision and recall is

drastically lower than the competing discriminative models, indicating that our model

is less biased, and more robust.

Additionally, simply reformulating the problem and performing ED generatively

on the multi-sentence level also achieves a competitive score of 64.75%. This illus-

trates that input reformulation along with incorporated document context alone can

achieve competitive performance on ED.

5.5.2 WikiEvents

As there are no existing event detection baselines on this dataset, we use single-

task ED sequence generation performance as a baseline to contextualize the benefits

on our proposed prompted multi-task learning approach. We establish benchmark

performance, to the best of our knowledge. Conforming with widespread convention,

we evaluate ED on two-level labels, i.e. both predicted event type and event subtype

must match the ground truth. On the sentence-level, performing ED generatively

achieves 54.31% F-1 score. Leveraging EI and EC and training a single model over

the 3 tasks increases the ED performance, and by adding instructional prompts to
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Model P R F-1 M-F1

SaliencyED (Liu et al., 2022) 64.9 69.4 67.1 60.3

Our model 60.1 65.5 62.7 59.1

Table 5.4: Results on MAVEN. All Results Are on the Publicly-available Dev Split.
M-F1: Macro F-1 %

this multi-task model, this score increases further by nearly 4.5%. Training for more

epochs and using beam search decoding allows us to achieve a maximum F-1 score

of 60.71%, with a precision and recall of 60.8% and 60.6% respectively, indicating a

relatively balanced model. This is the model performance over the entire dataset,

including on sentences with no event types, where false positives, i.e incorrect predic-

tion of the existence of triggers, may occur. These sentences make up nearly half of

the entire dataset. On evaluating solely over the sentences with at least one event,

we observe that the best performance goes up to 65.67%.

5.5.3 MAVEN

While we use the original train split to train our models, the ground truth labels

for the test split are unavailable to us. Furthermore, trigger candidates for the test

split are provided by the authors, which can be used to constrain the model output

space. We follow the example of SaliencyED (Liu et al., 2022) and evaluate our model

performance on the development split of the original MAVEN dataset. The state-of-

the-art model, (Wang et al., 2022a), leverages the prompting paradigm to perform

word classification for ED. This model requires significant prompt engineering for

all 168 event types in the schema. However, as its performance is evaluated on the

unavailable test split, with access to possible trigger candidates, we do not report

its performance as a comparable baseline. Using a generative format allows us to

achieve 58.1%. On implementing our MTL3 architecture with instructional prompts,

33



Figure 5.4: Low-resource ED on MAVEN: Breathing

Figure 5.5: Low-resource ED on MAVEN: Extradition

performance increases by 4%. The highest experimental performance occurs when

we implement beam search decoding, is 62.66%. While this is below the existing

best performance on this dataset, the class imbalance in the MAVEN dataset may

contribute to lower micro F-1 score. This is shown by the fact that our model has

a comparable macro F-1 score, indicating relatively better performance on the many

sparsely populated classes. Furthermore, our model shows significant advantages in

performing ED on more complex event instances. An overview of these is discussed

in the following sections.

Low-resource ED

As we discussed previously (Chapter 3), MAVEN suffers from the long-tail distribu-

tion issue in its dataset. Some event types, such as Breathing have very few annotated

train examples that the model can learn from. In the face of this imbalance, we find

that our model performs admirably in low-resource settings. For examples of suc-

cessful low-resource event detection, see Figure 5.4. and 5.5. Both these event types,

Breathing and Extradition have less than 20 annotated train instances in more than
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8K training sentences (6 and 11 annotated triggers respectively). Despite this, we

see the model accurately identifies all triggers in test data that are of these event

types, achieving 100% testing precision on both, and 100% and 80% micro F-1 score

respectively.

Multi-word Triggers

The multi-task sequence generation model shows significant advantages in performing

ED on more complex event instances, specifically, in identifying and correctly classi-

fying multi-class and multi-word event triggers, the former of which occur in 3.42% of

the rows and 7.39% of all the triggers in MAVEN, significantly higher than the other

datasets. For details, see Table 5.7. However, any mention of this is notably absent

in previous works. SaliencyED (Liu et al., 2022) explicitly states that it performs

trigger extraction for trigger words, with no mention made of multi-class, or the far

more frequent, multi-word triggers (Examples in Figures 5.11 and 5.12.). We explore

this in greater detail in the Analysis section of this work.

5.5.4 MLEE

We distinguish between 2 sets of models for biomedical event detection. The

former set of models include 2 SVM-based models (Pyysalo et al., 2012; Zhou and

Zhong, 2015) and a pipelined two-stage model (He et al., 2018a), which conducts

event identification and classification separately. These approaches are comparatively

labour-intensive; they require the creation of handcrafted features for these tasks. The

second set of models are neural network-based models. These include a CNN with

embeddings encoding event type, POS labels and topic representation (Wang et al.,

2017), RNN with word and entity embeddings (V S S Patchigolla et al., 2017), and

LSTM-based models that integrate other biomedical datasets in order to perform
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Model P R F-1

SVM (Pyysalo et al., 2012) * 70.8 81.7 75.8

SVM2 (Zhou and Zhong, 2015) * 72.2 82.3 76.9

Two-stage (He et al., 2018a) * 79.2 80.3 79.8

EANNP (Nie et al., 2015) 71.0 84.6 77.2

CNN (Wang et al., 2017) 80.6 74.2 77.8

GRU (V S S Patchigolla et al., 2017) 79.8 78.4 79.1

LSTM (He et al., 2018b) 81.8 77.8 79.7

LSTM + CRF (Chen, 2019)

(w/o TL)
81.6 74.3 77.8

LSTM + CRF (Chen, 2019)

(w/ TL)
81.8 77.7 79.7

BiLSTM + Att (He et al., 2022) 82.0 78.0 79.9

Our model 75.9 80.4 78.1

Table 5.5: Results on MLEE dataset. * Indicates Models Which Require Engi-
neering Hand-crafted Features. All Neural-network Based Models in This Table Use
Dependency-based Embeddings Specific to Biomedical Texts. w/TL: Results When
4 Biomedical Datasets Are Used for Transfer Learning.

transfer learning Chen (2019).

All existing baselines use pretrained embeddings and other language resources

specifically for biomedical texts such as the resources published by (Pyysalo et al.,

2013). For example, LSTM (He et al., 2018b) and the state-of-the-art BiLSTM (He

et al., 2022), like the majority of existing models, employs Word2vecf (Levy and

Goldberg, 2014) to train dependency-based word embeddings. These embeddings are

trained on Pubmed abstracts that are parsed using the Gdep parser: a dependency

parse tool built for use on biomedical texts. Likewise, EANNP (Nie et al., 2015)

undertakes a similar approach to pretraining embeddings, but uses Medline abstracts
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instead.

However, in keeping with our experimental settings on the general domain datasets,

our approach uses embeddings pretrained on the general domain. This puts us at a

disadvantage, given the lack of access to informative, domain-specific embeddings.

The lower precision of our model indicates that domain knowledge is significant to

competitive performance on domain-specific datasets, and pretrained general domain

knowledge is not sufficient to surpass state-of-the-art benchmarks achieved by domain-

specific models on these datasets.

Nevertheless, even when at a disadvantage, our general domain model equals or

surpasses (Pyysalo et al., 2012; Zhou and Zhong, 2015; Nie et al., 2015; Wang et al.,

2017; Chen, 2019) methods that require labour-intensive handcrafted features, or

sophisticated architectures with pretrained embeddings, along with extensive feature

extraction and engineering. We observe that out model also has higher recall than

the majority of the neural network-based approaches. This strongly suggests that

the task decomposition and prompted multi-tasking approach is promising, and by

tailoring it to specific domains by integrating domain-specific knowledge, it may be

possible to achieve significantly better performances, as well as obtain a model that is

robust and able to handle complex event occurrences such as multi-word, multi-class,

and overlapped events.

5.6 Additional Experiments

5.6.1 Alternative Model Architectures

For experimental purposes, we use generative architectures other than T5-base to

test performance on certain datasets.

T5-large is a variant of the T5 model, but with 770 million parameters, thus
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requiring more computational power to train but capable of learning more complex

dependencies. On the biomedical dataset MLEE, we observe it achieves a recall of

81% at the same settings as T5-base, which exceeds the best model recall. However,

the precision drops, causing overall F-1 score to be slightly below the best T5-base

model, indicating that, for domain-specific data, the shortcoming is not in model size,

but in the knowledge base it is trained on.

Another alternative to vanilla T5 models is using models trained specifically to

follow in-context instructions, similar to the instructional prompts used in MTL3.

One of these is Tk-INSTRUCT (Wang et al., 2022b), which has been shown to out-

perform other instruction-following models such as Instruct-GPT. However, T5-base

outperforms this model on all datasets when task-specific, dataset-agnostic prompts

are used.

When using prompts tailored to specific datasets, the overall performance suffers.

We observe this on MAVEN, where micro F-1 score is comparable to the best recorded

model, macro F-1 score drops by nearly 10% from the best recorded macro F-1 score

with task-specific prompts and the T5-base configuration. Dataset-specific prompts

are discussed further in Section 5.8.3.

5.6.2 Augmenting Training Data with Output Sequence Permutations

We attempt to make the model robust to the effects of possible perturbations in

the training sequences, by augmenting the training data with repeated input instances

but with the sequence of events in the output sequence changed. However, this causes

a decline in model performance. For the most part, event order does not seem to affect

model efficacy. While ground truth sequences generally follow order of occurrence in

the input text, there is no particular pattern in the order of events in generated output

sequences.
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5.7 Alternative Evaluation Metric for Sequence Generation-based ED

The majority of existing works treat this as a multi-class word classification prob-

lem, and all baselines, including generative methods, evaluate model results consistent

with word classification metrics popularly used for NER tasks (Nakayama, 2018).

However we see many multi-label trigger words. Secondly, in real world data the

same trigger may function as a trigger for multiple event types, with a different set

of arguments corresponding to its role as each event type it triggers. This is more

apparent in multi-sentence level inputs. The presence of these complexities makes

existing baselines misleading.

As an alternative evaluation scheme, we treat sequence generation based ED as

sentence or multi-sentence level multi-label classification, where multi-word triggers

are considered distinct labels. For this problem, we treat NONE as a possible label

for a given input text.

We calculate the metrics of precision, recall, and F-1 score using conventional

formulae:

Precision (P) = TP
TP+FP

Recall (R) = TP
TP+FN

F-1 score = 2× P×R
P+R

where a prediction is counted as true positive only if both trigger span and pre-

dicted event type (including subtype) match gold annotations.

In addition to more accurate performance metrics over multi-class triggers, this
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Dataset P R F-1

MLEE All 73.05 76.74 74.85

Pos 73.97 77.49 75.69

RAMS All 72.61 71.62 72.11

MAVEN All 59.01 63.82 61.32

Pos 60.5 64.67 62.51

WikiEvents All 61.29 63.33 62.29

Pos 56.73 57.61 57.17

Table 5.6: Results Using Alternative Evaluation Scheme on All Datasets. All: Multi-
label Metrics on All Rows, with None as a Separate Class. Pos: Multi-label Metrics
on Instances with at Least One Event. Multi-class and Multi-word Triggers Count
as Distinct Labels, with Exact Match Counted as True Positive.

provides a stricter metric to evaluate multi-word triggers, where partial predictions

do not contribute to model performance. Using this metric also allows us to evaluate

the discriminative performance of an ED model, i.e. the accuracy with which it can

identify whether an input text contains an event or not. We implement this evaluation

metric based on publicly-available code from another sequence generation model for

ED (Si et al., 2021). The results on entire test data as well as event and non-event

sentences obtained using this metric are reported in Table 5.6.

5.8 Analysis

5.8.1 Possible Generative Reformulations

We experiment with multiple generative reformulation of the Event Detection

task. Apart from the aforementioned trigger-first representation,

T1− >E1 | T2− >E2 | T3− >E3 ... Tx− >Ex

we also explore the type-first formulation for individual events.
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Figure 5.6: Example 1 of MTL3 Improving Prediction over Single-task Setting.

Figure 5.7: Example 2 of MTL3 Improving Prediction over Single-task Setting.

E1− >T1 | E2− >T2 | E3− >T3 ... Ex− >Tx

Across datasets, we find that the trigger-first reformulation outperforms type-first

reformulation, on both single-task, and multi-task settings.

5.8.2 Efficacy of Subtask-level Multi-tasking

Our hypothesis, that including Event Identification and Event Classification would

improve Event Detection performance, is supported by results on all datasets. The

inclusion of Event Identification trains the model to be able to identify salient event

triggers, which aids in identifying triggers that were not recognized in the single task

setting. This task also trains the model to recognize multi-word triggers. Event

Classification helps identify the types of events, which helps in more accurate trigger

classification, and also in identifying event types that were not recognized in the single
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task setting. This extends to event types linked to the same trigger, i.e. multi-class

triggers.

For examples of improved ED performance due to multi-tasking, see Figures5.6

and 5.7. More examples and detailed analyses on multi-word and multi-class triggers

are documented in the following sections. Single-task and multi-task model metrics

over all datasets are documented in Table 5.1.

5.8.3 Efficacy of Instructional Prompts

The combination of the task decomposition and subsequent multi-tasking, and

usage of instructional prompts, achieve competitive performances on all the datasets.

In this section, we break down the different aspects of our engineered prompts to

the increase in performance and attempt to quantify the contribution of individual

components in the overall improvement in ED performance.

From Table 5.1, we see the metrics for the MTL3 (tags) model configuration, which

does not use instructional prompts at all as part of the input. The tags merely identify

the dataset and task (EI, EC, or ED), and do not add any other information about

how to perform the task. Nevertheless, this model already improves performance over

the single-task by at least 3% for all datasets. This can be attributed to the success of

the subtask-level multi-tasking paradigm, with the improved performance due to the

knowledge obtained by training the model over event identification and classification

in addition to the primary task of event detection.

Our instruction prompts can be divided into the task prompt, and 2 following

examples (Figure 5.1). Initially, we experiment with including only the prompt,

i.e. a natural language instruction that explains the task, and in the case of event

detection, also enumerates the format in which to generate annotated triggers. We

discover that including these prompts improves performance over tag-appended input
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by up to 1.5%.

In terms of augmenting these prompts with examples to help the model learn the

task with illustrative examples, we initially include a single example from the gen-

eral domain. Not only does the inclusion of even one example improve performance

significantly, but surprisingly, it does so even on MLEE, the domain dataset; indi-

cating that the example, even if from a different domain, nevertheless provides some

transferable knowledge.

To explore this idea further, we add an example instance from the biomedical

domain to the instructional prompt. As anticipated, with the addition of a domain-

relevant example, the performance on MLEE improves further to give us the best

performance of 77.43% before beam search decoding and 78.09% after beam search

decoding.

Interestingly, performance on general domain datasets also increases with the

addition of the biomedical example. This indicates that diversity in instructional

prompts is the key to successfully leveraging the instructional learning paradigm to

best effect.

As an additional experiment, we replace the biomedical example with an instance

from a cybersecurity dataset, CysecED (Man Duc Trong et al., 2020), in addition

to the general domain task example. We observe that the performance on general

datasets is still higher than if we use a single general domain example, supporting

our hypothesis on the efficacy of diverse examples despite not being relevant to the

target dataset domain.

Using domain specific instructions improves performance, but using multiple cross-

domain instructions improves scope of learning and consistently improves F-1 score,

creating more robust models.
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Figure 5.8: Example of an Input Instance for Dataset-specific (MLEE) Prompted
Generative Event Detection

Dataset-specific prompts

RAMS and WikiEvents follow the Consortium (2005) guidelines on annotation, while

MAVEN uses a tool to automatically extract trigger and type candidates, which are

provided to human annotators. MLEE, which requires domain expertise, provides

detailed guidelines on the definition of an event in the context of the biomedical event

detection task. We can use these provided annotator guidelines to create instructional

prompts that are more tailored to the datasets and thus convey the task objective
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Figure 5.9: Example of an Input Instance for Dataset-specific (MAVEN) Prompted
Generative Event Detection
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Figure 5.10: Example of an Input Instance for Dataset-specific (RAMS, WikiEvents)
Prompted Generative Event Detection
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Dataset Multi-word triggers Multi-class triggers

%instances %rows %instances %rows

MLEE 0 0 0 0

RAMS 3.38 2.89 3.97 3.72

MAVEN 3.42 7.39 0.06 0.13

WikiEvents 2.86 2.18 0 0

Table 5.7: Statistics on Multi-word and Multi-class Triggers in All Datasets. %in-
stances: The % of Total Triggers That Are Multi-word or Multi-class. %rows: The
% of All Rows That Contain at Least 1 Multi-word or Multi-class Triggers.

more clearly to the model. For example, for MLEE, the dataset-specific instructional

prompt for event detection as shown in Figure 5.8.

We observe that for general domain datasets, dataset-specific instructions cause

decreased performance, while using task-specific but dataset-agnostic instructions,

i.e. the same task-specific generic instructional prompt across datasets, with diverse

domain examples, results in better event detection performance.

For MLEE, the tailored instruction contains the task definition which provides

important domain context for event definition. In this case, including the general

domain example causes a sharp drop in performance due to its misleading nature with

respect to the domain-specific prompt. With only a biomedical example, the model

performance is competitive (77.8% F-1 score), but still does not exceed performance

achieved by using dataset-agnostic prompts with diverse domain examples (78.1%

F-1 score).

5.8.4 Performance on Multi-word Triggers

Treating ED on real world datasets as word classification does not accurately mea-

sure performance on a significant portion of triggers, which are multi-word phrases.
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Dataset #mwt EM acc %

Train Test

MAVEN 2442 633 90.84

RAMS 228 20 88.89

WikiEvents 127 18 44.44

Table 5.8: Results on Multi-word Triggers. #mwt: Number of Multi-word Triggers
in Testing Data. EM Acc %: Exact Match Accuracy, I.E. Percentage of Multi-word
Triggers in Test Data Predicted Accurately by Our Model.

Figure 5.11: Example of an Event with Multi-word Trigger (2 words)

These occur in 7.39% of all sentences and make up 3.42% of all the triggers in MAVEN,

and make up 3.38% of all triggers in RAMS (Table 5.7). Treating the classification of

multi-word event triggers as word classification can create a misleading estimate, as

many triggers only correspond semantically with the event type if the entire phrase

is annotated.

For example, for the trigger phrase ”took place” in 5.11, labeling only either ”took”

or ”place” would be incorrect, as the individual words are semantically distinct from

the meaning of the whole phrase, and would individually denote different event types.

Trigger phrases can be up to 4 words long, as in Figure 5.12.

Figure 5.12: Example of an Event with Multi-word Trigger (4 words)
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In order to evaluate our model’s performance on multi-word trigger phrases, we

calculate exact match accuracy for all multi-word triggers. This gives us the per-

centage of multi-word triggers that are correctly predicted out of all occurrences of

multi-word triggers.

Out of all our datasets, the highest number of multi-word triggers is found in

MAVEN. Owing to the large number of instances and low rate of negative examples,

we have access to a large number of multi-word event triggers. Our model achieves

an exact match accuracy of nearly 91%, indicating that our model can accurately

extract exact spans for triggers that span from 2 to 4 words. Similarly, our model

achieves nearly 89% on multi-word triggers in the RAMS dataset, which has fewer

multi-word triggers, which make up a similar proportion of the dataset to MAVEN.

The WikiEvents dataset has fewer multi-word triggers. The exact match accu-

racy achieved by our model is lower; however, the partially predicted triggers are

often semantically similar to the gold annotations. For example, our model extracts

”bombing”, ”assault”, and ”in touch” in place of ”suicide bombing”, ”the assault”,

and ”been in touch” respectively. For trigger phrases such as ”took place” and ”set

off”, where partial predictions are semantically unequal to complete predictions, our

model performs respectably. For results, refer to Table 5.8.

5.8.5 Performance on Multi-class Triggers

In real-world event data, we find that the same trigger can function as trigger of

different type in context. For example, for purchasing in Figure 5.13, this triggers

denotes two distinct types of transaction events. This distinction is vital; as, for

each type of event it triggers, it has a different set of arguments associated with it

in that aspect of that event. transferownership is an event type with roles such

as previous and current owner, while transfermoney requires the amount event
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Figure 5.13: Example 1 of MTL3 Improving Prediction on Multi-class Triggers.

Figure 5.14: Example 2 of MTL3 Improving Prediction on Multi-class Triggers.

information. Another example would be the trigger murder, which triggers the

Crime and Death. For complete event understanding, we would need the arguments

associated with Crime, such as perpetrator and location, as well as the arguments

associated with Death, such as time. For accurate event detection, it is vital to

capture all senses of a particular trigger.

This is difficult to do with existing word classification methods, which perform

and evaluate ED as multi-class classification, not multi-label classification, due to the

lack of multi-class triggers in popular benchmark datasets. From Table 5.7, however,

we can see that a significant of RAMS triggers embody more than one type of event.

Our generative technique offers more flexibility in predicting and evaluating multi-

class triggers. Furthermore, multi-tasking over subtasks, specifically, training the

model to be able to extract all possible event types in an instance, improves perfor-
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mance on multi-class triggers, as evidenced by Figures 5.13 and 5.14.

In order to evaluate our model’s performance on multi-class triggers, we evaluate

the accuracy of prediction over multi-class triggers, i.e. we estimate an accuracy of

50% over a particular event trigger if we predict one of two event types that it triggers

in that input instance.

Due to the extremely low number of multi-class triggers in MAVEN (less than

10), the results are inconclusive. On RAMS, we find the model accuracy on average

is close to 61%. This indicates, that for event triggers with 2 to 3 event types, our

model can capture most of the senses the trigger functions in.

5.8.6 Effect of Negative Examples

From the dataset statistics in 3.6, we see that while MAVEN, RAMS, and MLEE

have less than 20% of their dataset instances as non-event, or negative instances,

in contrast, the WikiEvents dataset has close to 54% instances that have no major

events. Thus, negative examples make up more than half of the dataset. We observe

that this composition has a detrimental effect on model performance, as the large

proportion of negative examples leaves much fewer examples to train the task on.

This detracts from the model’s ability to discern relevant events and their types

from a set of possible events, and instead, places more importance on the binary

classification task of recognizing whether a sentence contains an event or not.

We analyse the effect of negative examples further using F-1 score (Table 5.1).

While the results on positive examples are consistently higher than on the entire

dataset, the difference between both metrics is stark in the case of WikiEvents. This

consistent trend of higher Pos scores indicates that our model is better at identify-

ing events accurately, than identifying without context whether standalone sentences

contain relevant events or not. Furthermore, despite the fact that MAVEN has 168

51



event types and WikiEvents has only 49 (for reference see Table 3.5), the overall

performance on MAVEN (62.67%) is higher than on WikiEvents (63.85%). This in-

dicates that rather than the complexity of the ED task, the distribution of event and

non-event sentences may hamper the model’s ability to perform the task.

We observe a sharp increase in performance (60.71% to 65.67%) over WikiEvents,

which is significantly higher than what we observe on other datasets. We attribute this

to the much higher share of negative examples in this dataset. From further analysis

we find that training on only positive examples improves the ED performance on

event sentences by nearly 5%. The performance drops over non-event sentences as

the model may predict event occurrence based on salient events in the sentence, that

are important in the context of the sentence alone but are divorced from the subject

of the document, and therefore annotated as non-events. We explore this further in

our discussion of the need for multi-sentence context, which may be a way to counter

the negative impact of a high proportion of non-event sentences on our ED model.

5.9 Chapter Summary

In this chapter we explored our novel subtask-level multi-tasking model that per-

forms ED and both its subtasks. We introduce the instructional prompts we use to

improve model understanding. Next, we explore the results of this training paradigm

and subsequent beam search decoding on all target datasets. Finally, we conduct a

fine-grained analysis of the model predictions in different experimental settings and

conduct case studies on more complex event instances.
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Chapter 6

CONCLUSION

This chapter presents a summary of this thesis work, and enumerates both, the

limitations of this current work, and future research directions in the domain of Event

Detection and Event Extraction.

6.1 Summary

This work presents a generative reformulation of the Event Detection informa-

tion retrieval task, along with a novel multi-tasking method that leverages both its

constituent subtasks. It compares the results of this model on 4 separate datasets,

differing in scope, scale, and domain, against existing state-of-the-art information

retrieval sentences. The model significantly outperforms existing methods on one

dataset, sets a benchmark on another, and performs comparably on the remaining,

including on a domain dataset without domain-specific knowledge. This work also

conducts a fine-grained analysis of model performance over different settings and case

studies.

6.2 Limitations and Future Scope

1. Limited Task Scope: Our work is limited to demonstrating a prompted and

sequence generation-based model on a single task, Event Detection. However,

this approach is flexible and can easily be adapted to other information retrieval

tasks, as demonstrated by Paolini et al. (2021). The generative prompted ap-

proach that we demonstrate in this work can be extended to the subsequent task

of Argument Extraction, as arguments and argument roles can be reformulated
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generatively in a similar format to our proposed format for event detection. This

would aid in the creation of a generative, instructional prompt-based framework

for end-to-end Event Extraction. We leave this to be explored in a future work.

2. Relative difficulty in distinguishing non-event sentences: As we observe

in the WikiEvents dataset and the sentence-level configuratin of the RAMS

dataset, a major hurdle for the model is distinguishing sentences with events

and those whose main action is auxiliary to the event, i.e. negative examples. A

possible remedy would be a binary classification system to distinguish between

event and non-event sentences could improve performance over datasets with

a significant proportion of negative examples. This would also improve the

performance of the Event Detection module, as it could learn mappings specific

to only extracting the salient events from given input.

3. Lack of Syntactic Information: We conduct limited preprocessing on the

actual instance text. In the manner of early feature-based models, inclusion of

syntactic information such as entity types, or Part-of-Speech tagging could help

identify trigger candidates better.

4. Improved Decoding Scheme: Another possible research direction could be

an improved decoding scheme. We find that including predictions from top 2 se-

quences generated during beam search increases recall significantly but reduces

precision. Further experimentation on score-based thresholding could yield a

better decoding scheme that would greatly improve recall without negatively

impacting precision significantly. .

5. Improvement in prompt quality: Another branch of relevant future research

could be further prompt engineering and an analysis of the number and scope, as
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well as level of detail in examples required to achieve the best possible prompted

performance.

6. Lack of Domain Knowledge: While the model architecture is adaptable

across domains, the model performance suffers from lack of any domain knowl-

edge. For specific domains, having background knowledge could help identify

domain-relevant events, as well as improve event type classification, helping

our model could achieve more competitive performances. Integrating domain

knowledge could be done by utilizing domain-specific tools, such as pretrained

domain embeddings, external language-based resources, or pretrained large lan-

guage models for that domain. We leave domain-specific modeling and subtask-

level multitasking to future researchers aiming to leverage this technique in their

respective domains.

7. Need for Multi-sentence Context: Consider the following examples from

the WikiEvents dataset:

Example 1: The whole building has collapsed.

Example 2: He chose destruction.

For Example 1, the model extracts the token in bold as a relevant event trigger,

and assigns it as event of the type of artifactexistence with the subtype

damagedestroydisabledismantle. For Example 2, the model annotates the sen-

tence as NONE, indicating no salient event was found.

For Example 1, from the given sentence as standalone examples, it is a rea-

sonable assumption that this trigger is a major event and therefore should be

annotated. However, we find that Example 1 is from a document that is mainly
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concerned with events of the type conflict.attack, with bombing and explo-

sion being the annotated event triggers. Hence, collapsed merely indicates an

auxiliary event, not the main event, and thus, the model should have predicted

the events as NONE.

In contrast, Example 2 is from a document where the aforementioned destruc-

tion is the focus of the text. The context provided by its following sentences

makes it clear that destruction is, in fact, the salient event in this case. This is

indicated by the gold annotation, denoting destruction to be a trigger of event

type of artifactexistence with the subtype damagedestroydisabledismantle

This shows us that sentences tagged NONE may nevertheless have salient events

predicted by model, but are tagged NONE because in the original multi-sentence

context, the salient event in the sentence is not relevant/less important than

events that are the subject of the passage. It is difficult for our model to judge

the saliency of an event without the semantic context of its document, and the

presence of other events in its vicinity to compare its importance with. This is

why it is vital to include multi-sentence or document-level context, as sentence-

level information can be misleading in the broader context. As we demonstrate

on RAMS, multi-sentence or document-level context can be invaluable to bet-

ter event detection, by providing necessary context for event type classification.

However, multi-sentence inputs increase the output space due to more possi-

bilities. Many existing word classification and sequence labeling models have

experimented with including relevant arguments or document information for

event detection and extraction. A similar encoding of document information

for sentence-level generation is a possible avenue of research.
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Figure A.1: Example of Case Error in Annotation.

Event annotations are case sensitive, as a different case can refer to a different
event trigger altogether. For example, Hurricane vs hurricane can be an important
distinction, especially if the former refers to the occurrence of a specific instance of
a hurricane. However, there may be errors in existing annotations due to improper
extraction or human error.

This model extracts text terms correctly with case-sensitivity, which can help
identify such errors in annotation. For example, A.1

68



WikiEvents Common RAMS

conflict.defeat,
medical.intervention,
disaster.diseaseoutbreak,
justice.releaseparole,
movement.transportation,
cognitive.inspection,
justice.acquit,
justice.sentence,
transaction.exchangebuysell,
justice.trialhearing,
cognitive.identifycategorize,
justice.convict,
artifactexistence.damagedestroydisabledismantle,
genericcrime.genericcrime,
artifactexistence.manufactureassemble,
contact.requestcommand,
control.impedeinterferewith,
justice.investigatecrime,
justice.chargeindict,
cognitive.teachingtraininglearning,
transaction.donation,
cognitive.research,
life.infect,
disaster.crash,
contact.contact

justice.arrestjaildetain,
personnel.startposition,
personnel.endposition,
conflict.attack,
conflict.demonstrate,
life.injure,
contact.threatencoerce,
life.die

contact.collaborate,
justice.investigate,
contact.commitmentpromiseexpressintent,
justice.judicialconsequences,
contact.mediastatement,
contact.commandorder,
manufacture.artifact,
contact.negotiate,
transaction.transaction,
government.legislate,
contact.publicstatementinperson,
contact.funeralvigil,
disaster.fireexplosion,
artifactexistence.damagedestroy,
government.formation,
justice.initiatejudicialprocess,
government.agreements,
personnel.elect,
movement.transportperson,
transaction.transferownership,
conflict.yield,
inspection.sensoryobserve,
government.spy,
government.vote,
transaction.transfermoney,
movement.transportartifact,
disaster.accidentcrash,
contact.discussion,
contact.requestadvise,
contact.prevarication

Table A.1: Event Types in RAMS and WikiEvents. Common: List of Event Types
Common to Both Datasets.
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