
SA128 - A Smart Data Compression Technique for Columnar Databases Based on

Characteristics of Data

by

Sukhpreet Singh Anand

A Thesis Presented in Partial Fulfillment
of the Requirements for the Degree

Master of Science

Approved April 2021 by the
Graduate Supervisory Committee:

Ajay Bansal, Chair
Robert Heinrichs

Javier Gonzalez-Sanchez

ARIZONA STATE UNIVERSITY

May 2021

i

ABSTRACT

Traditionally, databases have been categorized as either row-oriented or column-

oriented databases. Row-oriented databases store each row of the table’s data

contiguously onto the disk whereas column-oriented databases store each column’s

data contiguously onto the disk. In recent years, columnar database management

systems are becoming increasingly popular because deep and narrow queries are faster

on them. Hence, column-oriented databases are highly optimized to be used with

analytical (OLAP) workloads (Mike Freedman 2019). That is why they are very

frequently used in business intelligence (BI), data warehouses, etc., which involve

working with large data sets, intensive queries and aggregated computing. As the size

of data keeps growing, efficient compression of data becomes an important

consideration for these databases to optimize storage as well as improve query

performance. Since column-oriented databases store data of the same data type

contiguously, most modern compression techniques provide better compression ratios

as compared to row-oriented databases.

This thesis introduces a new compression technique called SA128 for column-

oriented databases that performs a column-wise compression of database tables.

SA128 is a multi-stage compression technique which performs a column-wise

compression followed by a table-wide compression of database tables. In the first

stage, SA128 performs an analysis based on the characteristics of data (such as data

type and distribution) and determines which combination of lossless-compression

algorithms would result in the best compression ratio. In the second phase, SA128 uses

an entropy encoding technique such as rANS (Duda, J., 2013) to further improve the

compression ratio.

ii

To my parents for believing in me and providing their unconditional support.

To my would-be wife for motivating me when I needed it the most.

iii

ACKNOWLEDGMENTS

Several people have played an important role in the timely completion of this

thesis and the related research associated with it. I would like to acknowledge them

here.

I would like to thank Dr. Ajay Bansal, my thesis chair and advisor, for providing

me with the encouragement to pursue this research. The completion of this research

would have not been possible without his participation and suggestions during our

weekly meetings.

I would like to thank Dr. Robert Heinrichs for his continuous involvement in my

research work, providing valuable suggestions and pushing me to achieve thesis

milestones on time.

I would like to thank Dr. Javier Gonzalez-Sanchez for supporting my research

and serving as part of my thesis committee.

I would also like to thank my family, friends and people close to me for inspiring

and motivating me along the way. This work would have not been possible

without their support.

iv

TABLE OF CONTENTS

Page

LIST OF TABLES ... viii

LIST OF FIGURES ... ix

CHAPTER

1 INTRODUCTION ... 1

2 DATA SET PREPARATION .. 7

2.1 Benchmark Dataset ... 7

2.1.1 TPC-DS Benchmark Schema Overview .. 8

2.1.2 Column Definition .. 8

2.1.3 Dataset Scale ... 9

2.2 Generated Dataset ... 10

3 PREVIOUS WORK AND RESEARCH QUESTIONS 11

3.1 Data Compression Techniques ... 11

3.1.1 Delta Encoding .. 12

3.1.2 Delta of Delta Encoding ... 13

3.1.3 Run-length Encoding ... 13

3.1.4 Zigzag Encoding .. 14

3.1.5 Bit Packing ... 15

3.1.6 XOR-based Encoding .. 15

3.1.7 Lempel-Ziv (LZ) Compression .. 16

3.1.8 LZ77 Compression .. 16

3.1.9 Asymmetric Numeral Systems (ANS) .. 17

3.2 Research Questions .. 18

4 SA128 COMPRESSION .. 20

4.1 Supported Data Types ... 20

v

CHAPTER Page

4.2 Compression Stage 1: Column Based Compression 22

4.2.1 Compression of Category 1 data types ... 23

4.2.2 Compression of Category 2 data types ... 40

4.2.3 Compression of Category 3 data types ... 46

4.2.4 Compression of Category 4 data types ... 54

4.2.5 Compression of Category 5 data types ... 56

4.3 Compression Stage 2: rANS Entropy Encoding 63

5 SA128 DECOMPRESSION .. 66

5.1 Decompression Stage 1: rANS Entropy Decoding 66

5.2 Decompression Stage 2: Column-based Decompression 67

5.2.1 Decompression of Category 1 data types 68

5.2.2 Decompression of Category 2 data types 72

5.2.3 Decompression of Category 3 data types 74

5.2.4 Decompression of Category 4 data types 77

5.2.5 Decompression of Category 5 data types 78

6 EXPERIMENTS AND RESULTS ... 82

6.1 System Configurations ... 82

6.2 Languages and Software used ... 82

6.3 Results.. 83

6.3.1 Results on 1 GB TPC-DS Benchmark Dataset (Dataset – 1) 83

6.3.2 Results for Large Tables ... 84

6.3.3 Results for Medium Tables ... 87

6.3.4 Results for Small Tables ... 90

6.3.5 Datatype Specific Results ... 93

6.3.6 Compression Results vs Other Compression Algorithms for 1 GB

TPC-DS Benchmark Dataset (Dataset – 1) 95

vi

CHAPTER Page

6.3.7 Performance Results vs Other Compression Algorithms for 1

GB TPC-DS Benchmark Dataset (Dataset – 1) 96

6.3.8 Results on 1 GB Generated Dataset (Dataset – 2) 97

6.3.9 Table-wise Compression Results .. 97

6.3.10 Datatype Specific Compression Results 100

6.3.11 Compression Results vs other Compression Algorithms for 1 GB

Generated Dataset (Dataset – 2) .. 103

6.3.12 Performance Results vs Other Compression Algorithms for 1

GB Generated Dataset (Dataset – 2) .. 104

7 LIMITATIONS AND ASSUMPTIONS ... 105

8 DISCUSSIONS AND CONCLUSION ... 107

9 FUTURE WORK .. 109

REFERENCES ... 110

APPENDIX

A. DETAILED COMPRESSION RESULTS FOR SA128

COMPRESSION (ONLY USING STAGE-1) ON 1 GB

TPC-DS BENCHMARK DATASET .. 112

B. DETAILED COMPRESSION RESULTS FOR SA128

COMPRESSION (ONLY USING STAGE-2) ON 1 GB

TPC-DS BENCHMARK DATASET .. 114

C. DETAILED COMPRESSION RESULTS FOR SA128

COMPRESSION (STAGE-1 AND STAGE-2 COMBINED) ON 1 GB

TPC-DS BENCHMARK DATASET .. 116

D. DETAILED COMPRESSION RESULTS FOR SA128 COMPRESSION

(STAGE-1 AND STAGE-2) ON 1 GB TPC-DS BENCHMARK

DATASET GROUPED BY DATATYPE CATEGORIES 118

vii

APPENDIX Page

E. DETAILED COMPRESSION RESULTS FOR SA128

COMPRESSION (STAGE-1 AND STAGE-2) VS OTHER

ALGORITHMS ON 1 GB TPC-DS BENCHMARK DATASET 120

F. DETAILED COMPRESSION RESULTS FOR SA128 COMPRESSION

(ONLY USING STAGE-1) ON 1 GB GENERATED DATASET 123

G. DETAILED COMPRESSION RESULTS FOR SA128 COMPRESSION

(STAGE-1 AND STAGE-2) ON 1 GB GENERATED DATASET 125

H. DETAILED COMPRESSION RESULTS FOR SA128 COMPRESSION

(STAGE-1 AND STAGE-2) ON 1 GB GENERATED DATASET

GROUPED BY DATATYPE CATEGORIES ... 127

I. DETAILED COMPRESSION RESULTS FOR SA128 COMPRESSION

(STAGE-1 AND STAGE-2) VS OTHER ALGORITHMS ON 1 GB

GENERATED DATASET .. 129

J. DETAILED PERFORMANCE RESULTS FOR SA128

COMPRESSION (STAGE-1 AND STAGE-2) VS OTHER

ALGORITHMS ON 1 GB TPC-DS BENCHMARK DATASET 131

K. DETAILED PERFORMANCE RESULTS FOR SA128

COMPRESSION (STAGE-1 AND STAGE-2) VS OTHER

ALGORITHMS ON 1 GB GENERATED DATASET 134

viii

LIST OF TABLES

Table Page

2.1 Column Definition Format ... 8

3.1 Table Data Before Delta Encoding .. 12

3.2 Table Data after Delta Encoding ... 12

3.3 Table Data after Delta of Delta Encoding ... 13

4.1 Mapping of Supported Datatypes to Datatype IDs.. 35

4.2 Mapping of Encoding Type to 𝐸𝑛𝑐 values ... 36

5.1 Mapping of Datatype IDs to Supported Datatypes.. 68

5.2 Mapping of 𝐸𝑛𝑐 Values to Encoding Type .. 70

6.1 System Configurations .. 82

ix

LIST OF FIGURES

Figure Page

3.1 An Example of XOR Based Encoding .. 16

4.1 Illustration of Block Division Step in Category-1 Compression............................. 23

4.2 Illustration of Block Copy Creation Step in Category-1 Compression 25

4.3 Illustration of Delta and Delta of Delta Encoding Step in Category-1

Compression .. 26

4.4 Illustration of Zig-zag Encoding in Category-1 Compression 27

4.5 Illustration of Frame of Reference Step in Category-1 Compression 27

4.6 Illustration of Run Length Encoding Step in Category-1 Compression 28

4.7 Illustration of NULL Packing Step in Category-1 Compression 32

4.8 Illustration of Block Copy Selection in Category-1 Compression 34

4.9 Components of SA128 Block for Category-1 Compression 34

4.10 Components of SA128 Block in Category-2 Compression 41

4.11 Illustration of Block Copy Creation Step in Category-3 Compression 46

4.12 Illustration of XOR-Encoding Variant Step in Category-3 Compression 48

4.13 Components of SA128 Block for 𝐸𝑛𝑐1 = 3 in Category-3 Compression 51

4.14 Components of SA128 Block in Category-4 Compression 54

4.15 Components of SA128 String Block in Category-5 Compression 59

4.16 Components of SA128 Integer Block in Category-5 Compression 61

4.17 Components of Stage-2 SA128 Block in Stage-2 Compression 64

5.1 Steps for Scenario-1 of Category-3 Decompression ... 75

5.2 Steps for Scenario-2 of Category-3 Decompression ... 76

x

Figure Page

6.1 Comparative Analysis of Space Reduction Achieved on Large Tables in 1 GB

TPC-DS Benchmark Dataset Using SA128 Compression 84

6.2 Percentage Comparison of Space Reduction Achieved on Each Large Table in 1

GB TPC-DS Benchmark Dataset Using SA128 Compression 85

6.3 Combined Space Reduction Achieved for All Large Tables in 1 GB TPC-DS

Benchmark Dataset Using SA128 Compression ... 86

6.4 Comparative Analysis of Space Reduction Achieved on Medium Sized Tables

in 1 GB TPC-DS Benchmark Dataset Using SA128 Compression 87

6.5 Percentage Comparison of Space Reduction Achieved on Each Medium Sized

Table in 1 GB TPC-DS Benchmark Dataset Using SA128 Compression 88

6.6 Combined Space Reduction Achieved for All Medium Sized Tables in 1 GB

TPC-DS Benchmark Dataset Using SA128 Compression 89

6.7 Comparative Analysis of Space Reduction Achieved on Small Sized Tables

in 1 GB TPC-DS Benchmark Dataset Using SA128 Compression 90

6.8 Percentage Comparison of Space Reduction Achieved on Each Small Sized

Table in 1 GB TPC-DS Benchmark Dataset Using SA128 Compression 91

6.9 Combined Space Reduction Achieved for All Small Sized Tables in 1 GB

TPC-DS Benchmark Dataset Using SA128 Compression 92

6.10 Space Reduction Achieved for Each of the Three Datatype Categories

Available in 1 GB TPC-DS Benchmark Dataset ... 93

6.11 Percentage Wise Breakdown of the Space Reduction Achieved for Each of the

Three Datatype Categories Available in 1 GB TPC-DS Benchmark Dataset 94

xi

Figure Page

6.12 Comparative Analysis of Space Savings Achieved Using SA128 Against

Other State of the Art Compression Algorithms on 1 GB TPC-DS Benchmark

Dataset ... 95

6.13 Comparative Analysis of Compression Times Using SA128 Against Other

State of the Art Compression Algorithms on 1 GB TPC-DS Benchmark

Dataset ... 96

6.14 Comparative Analysis of Space Reduction Achieved on All 4 Tables from

Our 1 GB Generated Dataset ... 97

6.15 Percentage Wise Breakdown of the Space Reduction Achieved for Each

of the 4 Tables Available in 1 GB Generated Dataset ... 98

6.16 Combined Space Reduction Achieved for All 4 Tables from Our 1 GB

Generated Dataset Using SA128 Compression ... 99

6.17 Space Reduction Achieved for Boolean Columns in 1 GB Generated Dataset ... 100

6.18 Space Reduction Achieved for Real Columns in 1 GB Generated Dataset 101

6.19 Space Reduction Achieved for Double Precision Columns in 1 GB Generated

Dataset ... 102

6.20 Comparative Analysis of Space Saving Achieved Using SA128 Against

Other State of the Art Compression Algorithms on 1 GB Generated

Dataset ... 103

6.21 Comparative Analysis of Compression Times Achieved Using SA128

Against Other State of the Art Compression Algorithms on 1 GB Generated

Dataset ... 104

1

Chapter 1

INTRODUCTION

In traditional databases, as data is stored and queried at scale, data compression

becomes significantly important both in terms of optimizing storage space as well as

improving query performance. More compression means that lesser number of disk

blocks need to be read into memory during each query operation. This reduction in

disk I/O leads to an increase in query performance.

Traditional databases can be divided into row-oriented databases or column-

oriented databases. The difference between the two is mostly concerned with how the

data is stored onto disk. In row-oriented databases, the data tables are stored row by

row, whereas in column-oriented databases the data tables are stored column by

column. In a column-based database, each column value is stored contiguously onto

disk. This storage format has several advantages during compression since the

contiguous data values stored share similar properties such data type, range of values,

etc. and sometimes even share some common characteristics as in the case of time-

series data. Generic compression techniques in row-oriented databases fail to take into

account this local property and common characteristics of data and thus compression

on column-oriented databases can lead to better compression ratios.

A common problem with many compression algorithms is that they are data set

specific. An algorithm which works well on one data set, may not work well on others.

A common example of this is Delta encoding and Run-length encoding, Frame of

Reference (Goldstein et al. 1998), etc. In Delta encoding, data sets which have a small

difference (delta) between each contiguous value compress better than those with large

delta values. In Run-length encoding, if our data set has a lot of repeated values stored

contiguously, then this encoding works very well as opposed to datasets with lesser

2

number of contiguous repeated values. The same is true for Frame of Reference

(Goldstein et al. 1998) technique. If the data set has all values that are large, then FOR

compresses well, but if the data set contains several zero values, then it is not as good.

Another problem with most compression algorithms is that they are datatype

specific. For example, Delta Encoding and Run-length Encoding only works well for

Integers, XOR-based encoding works well for only floating-point numbers, LZ77

works well for string types, etc.

The goal of our thesis is to introduce a new lossless compression technique called

SA128 for column-oriented databases which comprises of two stages. This current

scope of this thesis mainly focuses on the space savings achieved using SA128

compression and not on improving the compression/decompression performance.

Compression and decompression times can be significantly improved using parallel

processing, computing using SIMD instructions and testing results on powerful server

machines (for more details, refer to Chapter 8).

In the first stage, we analyse the data based on their data type. Based on the

properties and distribution of data belonging to each data type, we use a smart selection

process to select a combination of one or more state of the art compression algorithms

that result in a good compression ratio for that dataset instead of blindly choosing a

generic compression algorithm for the data set. In this stage, we divide each data

column into one of 5 categories based on its data type. We use a combination of the

following algorithms based on the below categories of data types to compress them

(the data types considered below are some of the commonly used data types in

PostgreSQL):

1. Integers (integer/int4, smallint/int2, bigint/int8), date, time, timetz,

timestamp and timestamptz: For data columns belonging to this category, we

divide the data column into blocks of 128 data values each. Data belonging to

data types such as date, time, timetz, timestamp and timestamptz are all converted

3

to Integers so that all of them can be compressed using similar methods. For each

block and based on the distribution of the values, we perform Delta encoding and

Delta of Delta encoding over a Frame of reference on two separate copies of the

original block. By this stage, we have three copies of the same block where one

copy is unencoded and the other two copies are encoded using Delta encoding

and Delta of Delta encoding over a Frame of reference respectively. In the next

step, we use a zigzag encoding technique on data values belonging to all three

copies of the block to map negative numbers to positive numbers. By the end of

this stage, if there are repeated runs of contiguous values in the block, we use the

Run-length encoding technique on all three copies of the block. The value for

each of the runs for the data value is stored within the block itself and the index

location to that run value is stored in an exception block for each copy of the

block to remember the position of the run values. In the next step, we use bit

packing technique where we encode all the values with the minimum number of

bits required to encode the largest value in each block. To ensure that the largest

value is not a large value, we use an exception technique in combination with bit

packing. For this, we calculate the minimum number of bits (bmin) required to

store a majority of the values in the block and the bits (bmax) required to store the

largest element in the block. We select the optimum number of bits iteratively

going from bmax to bmin. At each iteration, all values requiring more than b bits of

storage are broken by dividing them with the largest value which can be stored

using b bits. The quotient and remainder pair (q, r) are stored as two separate

values in place of the original value to ensure all values in the copy of the block

can be represented using b bits. We use a second exception block for each copy

of the block to store the index positions of the numbers which were broken down

into a (q, r) pair. We use a third exception block for each copy of the block to

store the index positions of all the NULL values in the block copy. In the end,

4

we compute the total size occupied by each of the three copies of the block along

with the sizes of their respective exception blocks and choose the copy requiring

the least amount of space as the final block. Information regarding which degree

of Delta encoding was used to encode the data block is stored in the block header

which can be used by the decoder using decompression.

2. Decimal/Numeric: Numeric types are fixed precision datatypes. They are often

represented with a tuple (p, s) where p and s are the precision and scale of the

data values respectively. For these data types, we follow a similar approach as

the previous category. However, after dividing the data column into blocks of

128 values each and making three copies of each block, we further split each

copy of the block into two sub-blocks where the first sub-block contains the part

of the data value appearing before the decimal point and the second sub-block

contains the part of the data value appearing after the decimal point. For each of

the two sub-blocks, we follow the same compression process as the first category

such as computing variants of Delta encoding over a Frame of reference, zigzag

encoding, run-length encoding, bit packing with modulo technique and packing

NULL values.

3. Floats (real/float4, double precision/float8): In the first step, we again divide

the data column into blocks of 128 values each. In the second step, we use an

approach similar to that used for numeric datatypes in second category. However,

instead of using three copies of the block (along with the two sub-blocks for each)

for computing variants of delta encoding, we maintain another fourth copy of the

block. On this copy, we perform XOR-based encoding (Pelkonen et al. 2015)

between the contiguous values in the block and we do so over a frame of

reference. We perform zigzag encoding, run-length encoding, bit packing with

exception technique and encode NULL values for all four copies of the block and

select the block (and its exception blocks) with the smallest size as our final

5

block. Information regarding which encoding was used to encode the data

(uncompressed, delta encoding, delta of delta encoding or XOR-based encoding)

is stored in the block header which can be used by the decoder using

decompression.

4. Boolean: For Boolean values, have only 3 distinct values, i.e., true, false and

NULL. Therefore, the probability of having long repeated runs of the same value

is very high in these columns. We again divide the column values into blocks of

128 values each, however this time we keep only a single copy of each block.

For each block instead of trying variants of Delta encoding on each block to see

which one compresses better, we directly use run-length encoding followed by

bit packing and NULL handling to encode the block since delta encoding would

not be much effective in a block containing only 0, 1 and NULL values.

5. Character (char) and Character Varying (varchar): For this category, we use

a dictionary encoding mechanism and map each String to a unique integer. We

then use their integer representation and encode it using the encoding procedure

for the first category integer as discussed above. We then use LZ77 compression

(Ziv J., Lempel A. 1977) to encode the dictionary strings and store them along

with the integer blocks. This only works well when there are a high number of

repeated string values in the data set. This means that the resulting dictionary will

contain a smaller number of unique strings making compression more effective.

If there are lesser number of repeated values, then we compress the entire column

using LZ77 compression (Ziv J., Lempel A. 1977) since no other compression

algorithm would lead to a decent compression on it.

In the second stage, we use a ranged variant of Asymmetric Numeral Systems

(ANS) entropy encoding technique called rANS (Duda, J., 2013) to further compress

the column compressed during the previous stage. With each insert, update and delete

6

operation on the database in the form of queries, the probability distributions of each

symbol might frequently change over time. rANS (Duda, J., 2013) belong to the family

of ANS algorithms and is highly suitable for environments with fast-changing symbol

probability distributions such as databases with fast compression performance. The

probability distribution of the compressed data is stored along with the compressed

data so that it can be used by the decoder during decompression.

Structure of document: This thesis comprises of the following sections:

• Chapter 2 introduces the preparation of data sets used in taking the results of our

compression technique and the preparation of this document.

• Chapter 3 discusses the background and history of progress in the area of data

compression. The history behind some of the techniques used in our research

have been discussed in detail.

• Chapter 4 discusses the design, structure and details of each component of our

compression algorithm and techniques used with it.

• Chapter 5 discusses the design and logic behind our decompression algorithm

encoded using the compression algorithm discussed in chapter 4.

• Chapter 6 describes the experimental setup, presents the results and performs a

comparative analysis on storage and compression ratio in comparison with other

state of the art compression algorithms.

• Chapter 7 continues our discussion on the results, lessons learned over the course

of the project, the limitations and talk about the further improvements.

• Chapter 8 discusses the limitations of our approach and assumptions.

• Chapter 9 concludes the thesis, with ideas about future work.

7

Chapter 2

DATA SET PREPARATION

 For verifying the results of our SA128 compression technique, we performed
compression and decompression on two types of datasets:

1. A 1 GB TPC-DS benchmark data set (Transaction Processing Performance Council

2020) for data belonging to the first, second and fifth data type categories, i.e., for
integers (smalling/int2, integer/int4, bigint/int8), identifier, date, timestamp,
timestamptz, time, timez, decimal/numeric, char and varchar.

2. A generated dataset containing 4 different types of tables for data belonging to the

third and fourth data type categories, i.e., for Boolean, real/float4 and double
precision/float8.

This section provides a brief overview about the various aspects of both the above datasets
and their purpose in accurately computing compression results for SA128.

2.1 Benchmark dataset

For our benchmark dataset, we will be using a 1GB TPC-DS dataset for
calculating the compression ratio and space savings on data modelled from actual
production data.

 According to the TPC-DS documentation version 2.13.0 (Transaction Processing
Performance Council 2020), the “TPC Benchmark™ DS (TPC-DS) is a decision support
benchmark that models several generally applicable aspects of a decision support system,
including queries and data maintenance. The benchmark provides a representative
evaluation of the System Under Test’s (SUT) performance as a general-purpose decision
support system.”

The TPC-DS benchmark (Transaction Processing Performance Council 2020)
illustrates decision support systems which examine large volumes of data and provides
relevant and objective performance data to industry users, they are expected to be accurate
representations of system performance. Hence, this benchmark is good candidate for
measuring the performance of SA128 against them.

TPC-DS (Transaction Processing Performance Council 2020) models the decision
support functions of a retail product supplier, i.e., the sales and sales return process for an
organization that employs three primary sales channels: stores, catalogs, and the Internet.
The supporting schema contains vital business information, such as customer, order, and
product data. The goal of selecting a retail business model is to assist the reader in relating
intuitively to the components of the benchmark, without tracking that industry segment so
tightly as to minimize the relevance of the benchmark.

8

2.1.1 TPC-DS Benchmark Schema Overview

The TPC-DS benchmark dataset (Transaction Processing Performance Council
2020) comprises of a total of 24 tables which include 7 fact tables and 17-dimension tables
where:

1. 6 tables comprise of a pair of fact tables focused on the product sales and returns for

each of the three channels.
2. 1 fact table that models the inventory for the catalog and internet sales channels.
3. 17-dimension tables that are associated with all sales channels.

2.1.2 Column Definition

For each of the above 24 tables, we create a definition file (which is a .dat file), where
the naming convention of each file is in the form <table name>_def.dat. every column in a
table, we have a row in the definition file corresponding to it, which stores its column
definition. The column definition is in the following format:

Column name Datatype NULLs Primary Key Foreign Key

Table 2.1: Column Definition Format

Each of these five properties are explained below in detail:

Column name: The TPC-DS documentation (Transaction Processing Performance

Council 2020) states that each column is uniquely named, and each column name begins
with the abbreviation of the table in which it appears. Columns that are part of a business
key are indicated with (B) appearing after the column name. A business key is neither a
primary key nor a foreign key in the context of the data warehouse schema. It is only used
to differentiate new data from update data of the source tables during the data maintenance
operations.

Datatype: Each column employs one of the following datatypes:

a. Identifier: The column shall be able to hold any key value generated for that column.

b. Integer: The column shall be able to exactly represent integer values (i.e., values in

increments of 1) in the range of at least (−2n − 1) to (2n − 1 − 1), where n is 64.

c. Decimal (d, f): The column shall be able to represent decimal values up to and

including d digits, of which f shall occur to the right of the decimal place; the values
can be either represented exactly or interpreted to be in this range.

9

d. Char (N): The column shall be able to hold any string of characters of a fixed length
of N. If the string that a column of datatype char(N) holds is shorter than N characters,
then trailing spaces shall be stored in the database or the database shall automatically
pad with spaces upon retrieval such that a char_length() function will return N.

e. Varchar (N): The column shall be able to hold any string of characters of a variable

length with a maximum length of N. Columns defined as "varchar(N)" may
optionally be implemented as "char(N)".

f. Date: The column shall be able to express any calendar day between January 1, 1900

and December 31, 2199.

The datatypes do not correspond to any specific SQL-standard datatype. The
definitions are provided to highlight the properties that are required for a particular column.
The benchmark implementer may employ any internal representation or SQL datatype that
meets those requirements. The implementation chosen by the test sponsor for a particular
datatype definition shall be applied consistently to all the instances of that datatype
definition in the schema, except for identifier columns, whose datatype may be selected to
satisfy database scaling requirements.

NULLs: If a column definition includes an ‘N’ in the NULLs column, this column
is populated in every row of the table for all scale factors. If the field is blank this column
may contain NULLs.

Primary Keys: Columns that are part of the table’s primary key are indicated in the
column called Primary Key. If a table uses a composite primary key, then for convenience
of reading the order of a given column in a table’s primary key is listed in parentheses
following the column name.

Foreign Keys: If the values in this column join with another column, the foreign

columns name is listed in the Foreign Key field of the column definition.

Note: For our experiments and results, we will only be concerned with the first
three properties, i.e., column name, datatype and NULLs for each column. The primary
key and foreign key are not useful to us in our compression technique. Also, since the
datatypes used in this benchmark dataset cover our first, second and fifth PostgreSQL
datatype categories, we will only use this benchmark to test compression performance
on these three categories only. Datatypes belonging to the third and fourth category
will be tested using a different dataset.

2.1.3 Dataset scale

The TPC-DS benchmark (Transaction Processing Performance Council 2020)

defines a set of discrete scaling points (“scale factors”) based on the approximate size of
the raw data produced by dsdgen.

10

The set of scale factors defined for TPC-DS is 1 TB, 3 TB, 10 TB, 30 TB and 100

TB for regular databases and 1 GB for a qualification database.

For our performance measurements for compression, we will be using a 1 GB TPC-DS
dataset and calculate compression ratio for columns belonging to all 7 fact tables and 17-
dimension tables.

2.2 Generated dataset

Our generated dataset consists of a large dataset (1 GB) each consisting of 4 tables
each. Each table comprises of 3 columns each where each column belongs to a datatype
from the set {Boolean, Real/Float4, Double Precision/Float8}, i.e., datatypes belonging to
the third and fourth categories.

Details of the 4 generated tables are as follows:

1. Table where all columns have non-decreasing values: For the column with
‘boolean’ datatype, we have the first half of the values as all ‘False’ followed by
the second half as all ‘True’. For the columns with ‘real’ and ‘double precision’
datatypes, our values start from 0.0 and go all the way till 700000.0 with an
increment of 0.1, where the ‘real’ values have up to 6 significant digits and ‘double
precision’ values have up to 15 significant digits respectively.

2. Table where all columns have non-increasing values: For the column with
‘boolean’ datatype, we have the first half of the values as all ‘True’ followed by the
second half as all ‘False’. For the columns with ‘real’ and ‘double precision’
datatypes, our values start from 700000.0 and go all the way till 0.0 with a
decrement of 0.1, where the ‘real’ values have up to 6 significant digits and ‘double
precision’ values have up to 15 significant digits respectively.

3. Table where all columns have random values over a small range: For the

column with ‘boolean’ datatype, we have randomly generated ‘True’ or ‘False’
values. For the columns with ‘real’ and ‘double precision’ datatypes, we generate
random values which range between a small bound ranging from a value x to (x +
1) where x is chosen randomly. The ‘real’ values have up to 6 significant digits and
‘double precision’ values have up to 15 significant digits respectively.

4. Table where all columns have random values over a large range: For the

column with ‘boolean’ datatype, we have randomly generated ‘True’ or ‘False’
values. For the columns with ‘real’ and ‘double precision’ datatypes, we generate
random values which range between a large bound ranging from a value x to (x +
1000) where x is chosen randomly. The ‘real’ values have up to 6 significant digits
and ‘double precision’ values have up to 15 significant digits respectively.

11

Chapter 3

PREVIOUS WORK AND RESEARCH QUESTIONS

Data compression (History of Lossless Data Compression Algorithms 2019) is a

process by which the size occupied by a file or a piece of data is encoded in a way such

that it uses fewer bits of storage to represent compared to the original file or data.

Throughout history, there have been a tremendous amount if research in the area of data

compression. Most of the compression algorithms today fall into either of the two

categories – lossy compression and lossless compression.

In lossy compression, small and unimportant details are removed from a file or piece

of data so that it required less amount of storage. This kind of compression is irreversible,

which means that it is impossible for the decompression algorithm to restore the original

file or data back again. Lossy compression algorithms are generally able to achieve very

high compression ratios. Lossless compression algorithms on the other hand, compresses

data in such a way that the decompression algorithm is always able to recover the original

data back so that there is no loss of data. Lossless compression algorithms generally do not

achieve compression ratios as high as lossy compression algorithms, but are extremely

important in cases where our data is very important and loss to data cannot be tolerated.

Most lossless compression algorithms rely on the principle that the data being compressed

has large amounts of redundancy and non-random values. Hence, they can then be

condensed using statistical modelling techniques.

3.1 Data Compression Techniques

In this section, we will discuss some of the common compression techniques used

throughout history which are relevant to our thesis.

12

3.1.1 Delta Encoding

Delta Encoding reduces the amount of information required to represent a data object

by only storing the difference (or delta) between the object and one or more reference

objects (Joshua et al. 2020). This reduces the variance (range) of the values when the

difference between contiguous values is small. Using this encoding, we can use fewer bits

to represent the data point by only storing the delta from the previous data point. The

following tables 3.1 and 3.2 show contents of our database tables before and after delta

encoding where each value in a column is subtracted by the previous value in the column:

Time CPU Bytes Temperature Humidity

2021-03-25 20:00:00 140 6,843,472,947 28 60

2021-03-25 20:05:00 150 434,455,352 30 60

2021-03-25 20:10:00 150 434,231,335 30 60

2021-03-25 20:15:00 160 3,185,285,098 31 60

Table 3.1: Table Data Before Delta Encoding

Time CPU Bytes Temperature Humidity

2021-03-25 20:00:00 140 6,843,472,947 28 60

5 seconds 10 -6,409,017,595 2 0

5 seconds 0 -224,017 0 0

5 seconds 10 2,751,053,763 1 0

Table 3.2: Table Data after Delta Encoding

13

3.1.2 Delta of Delta Encoding

A large amount of data which is used today comprises of time-series data which is a

series of data points collected over time intervals making it possible to track changes over

time (Joshua et al. 2020). For time-series data, another variation of Delta encoding called

Delta of Delta encoding is even more efficient in further reducing the data size. For

example, if we consider the ‘Time’ column in Table 3.1 and 3.2, we can see that the time

values are logged every 5 seconds. Therefore, instead of using Delta encoding, we compute

a Delta of Delta encoding where we again compute Delta encoding for a second time over

the Delta encoded table. If we apply Delta of Delta encoding to data in table 3.2, we get

the below table 3.3:

Time CPU Bytes Temperature Humidity

2021-03-25 20:00:00 140 6,843,472,947 28 60

5 seconds 10 -6,409,017,595 2 0

0 -10 6,408,793,578 -2 0

0 10 -3,657,739,815 1 0

Table 3.3: Table Data after Delta of Delta Encoding

From the above table 3.3, we can see that after the first two rows, all of the following

rows for the ‘Time’ column contains ‘0’ values, which take an even lesser number of bits

to represent than when the column was compressed using Delta encoding.

3.1.3 Run-length Encoding

In Run-length encoding (Joshua et al. 2020), if we have more than two number of

repeats of the same value appearing contiguously within the data being compressed, we

store one copy of the data value along with the number of repeats as a pair {run; value}.

14

For example, the below data can be compressed using run-length encoding in the following

way:

Original Data: 11, 11, 12, 12, 12, 12, 12, 1, 1, 12, 12, 12, 12

Data after Run-length Encoding: {2, 11}, {5, 12}, {2, 1}, {4, 12}

The Run-length encoded data above required only 11 digits of storage:

Digits used: ([2, 1, 1, 5, 1, 2, 2, 1, 4, 1, 2])

For the original data, approximately 24 digits is required by an optimal series of

variable length integers:

Digits used: ([1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2])

Run-length encoding is highly useful for image data compression where several

contiguous pixels share the same color, etc.

3.1.4 Zigzag Encoding

Zigzag encoding (Fürstenau 2015) is a technique which maps negative values to

positive values while going back and forth (0 = 0, -1 = 1, 1 = 2, -2 = 3, 2 = 4, -3 = 5, 3 = 6,

…). This technique is useful because it is hard to represent negative numbers using a small

number of bits because of the sign bit in MSB position in their binary representation. For

small numbers, although the magnitude of the numbers may be small, they require a large

number of bits to represent making compression on negative numbers not efficient. Given

below are the implementations of how the zigzag encoder and decoder work:

Encoding: (n >> bitlength - 1) ^ (n << 1)

Decoding: (n >>> 1) ^ - (n & 2)

Here, n is the number being encoded or decoded, the bitlength can be 32 for a 32-bit

JAVA integer, ‘>>’ is the arithmetic shifting operation (highest order bit is replicated), ‘^’

is the XOR-operation, ‘>>>’ is the non-arithmetic shifting operation (0-padding) and ‘-’ is

the unary negation operation

15

Therefore, this technique is useful to represent small negative numbers using a

smaller number of bits by storing the sign bit in the LSB instead of MSB. An example of

zigzag encoding can be given as follows:

Original value: -1

Zigzag encoding: (−1 >> 7) ^ (−1 << 1) = 1

Zigzag decoding: (1 >>> 1) ^ − (1 & 1) = −1

3.1.5 Binary Packing

This technique is closely related to Frame-Of-Reference (Goldstein et al. 1998,

Delbru et al. 2012) In Binary packing technique, the data values are partitioned into

blocks (e.g., blocks containing 128 integers) (Daniel Lemire and Leonid Boytsov 2015).

The range of values in the blocks are first coded and then all the values in the block

are written in reference to the range of values.

For example, if the values in a block are integers in the range [1200, 1327], then

they can be stored using 7 bits per integer, i.e., log (1327 − 1200 + 1) = 7, as offsets

from the number 1200 stored in binary notation.

This technique is very efficient if the lower and upper bound values in the block

are large and their difference is small.

3.1.6 XOR-based encoding

XOR-based encoding (Pelkonen et al. 2015) is used for encoding floating point

values. In this scheme, successive floating-point numbers are XOR-ed together, which

means that only the different bits are stored. Techniques such as delta encoding don’t

generally work very well for floats, as they do not reduce the number of bits

sufficiently. Floating point numbers are generally more difficult to compress than

integers. Unlike fixed-length integers which often have a fair number of leading 0s,

floating point numbers often use all of their available bits.

16

In this encoding, the first data value is stored with no compression. Subsequent

data values are represented using their XOR-ed values, encoded using a bit packing

scheme by removing the trailing and leading zeros in the XOR-ed representation. For

example, refer to figure 3.1.

Figure 3.1: An Example of XOR Based Encoding (Pelkonen et al. 2015)

3.1.7 Lempel-Ziv (LZ) Compression

Lempel-Ziv compression (History of Lossless Data Compression Algorithms 2019)

is a contains a family of several compression algorithms and variants. It takes

advantage of the large amounts of repetitive data in a file. Each time we hit one of

these common words, we could just put a shorter code for this word. Some popular

variants of Lempel-Ziv compression are LZW, LZ77, LZ78, LZMA, etc.

3.1.8 LZ77 Compression

LZ77 compression (Ziv J., Lempel A., 1977) works by looking ahead into the file.

If it sees a pattern it recognizes, it will write the previous position of that match in a

file instead of the actual data. LZ77 works by encoding scanned data values using a

triple (o, l, c) where,

o: offset, represents the number of positions that we would need to move

backwards in order to find the start of the matching string.

l: length, represents the length of the match.

17

c: character, represents the character that is found after the match.

Given below is an example of how data compressed using LZ77 compression

would look like:

Original data: a b a b c b a b a b a a

LZ77 encoding: (0, 0, a), (0, 0, b), (2, 2, c), (4, 3, a), (2, 2, a)

3.1.9 Asymmetric Numeral Systems (ANS)

ANS (Duda, J., 2013) is a lossless and entropy encoding compression algorithm.

Its input is a list of symbols from some finite set and its output is a finite integer. Each

symbol s has a fixed known probability ps of occurring in the list. The algorithm tries

to assign each list a unique integer so that the more probable lists get smaller integers.

We convert each symbol to a number from 0 to B−1 (where B is the number of

symbols), add a leading 1 to avoid ambiguities caused by leading zeros, and interpret

the list as an integer written in a base-B positional system.

An example of how the encoder and decoder works for its simplest variant

(Roman Cheplyaka 2017) is given below:

Encoding: 𝑓(𝑠 , 𝑛) = 𝑠 + 𝑛 . 𝐵

Decoding: 𝑔(𝑛) = (𝑛 𝑚𝑜𝑑 𝐵, [𝑛/𝐵])

where, s is the symbol being encoded, B is the number of symbols and n is the

current state of the encoded number prior to encoding symbol s.

There are several popular variants of ANS such as tANS, rANS, uANS. ANS

offers several important advantages in comparison to other entropy encoders such as

Huffman Coding (HUFFMAN, D. A., 1952) and Arithmetic Coding (RISSANEN, J.,

AND LANGDON, G. G., 1979). Huffman Coding is generally very fast but does not

compress close to the entropy limit for the data and Arithmetic Coding compresses

close to the entropy limit but is slow compared to Huffman coding. ANS offers the

18

best of both worlds by being efficient both in terms of degree of compression as well

as performance.

3.2 Research Questions

There are two major concerns with most of the compression algorithms available

today:

1. Most compression algorithms are generic in nature, i.e., they do not adapt with

respect to the data characteristics to get a better compression ratio.

For example:

a. Delta encoding is not favorable if the difference between adjacent values is

large.

b. Delta encoding and delta of delta encoding may in some cases increase the

size of the original file.

c. Frame of Reference or binary packing is not favorable if there is the

minimum value in the data block is 0 or the range of values in a block is

very large.

d. ANS produces a large integer result if set of input symbols are large.

2. Most compression algorithms are suitable for particular data types.

For example:

a. Delta, Delta of Delta, Run-length are good for Integer types.

b. XOR encoding is good for float types.

c. LZ-type compression is good for String types.

Therefore, our thesis work caters to providing a solution to the following research

questions:

1. Can we devise a smart compression algorithm which adapts its compression

technique with respect to dataset characteristics?

19

2. Can we devise a smart compression algorithm which adapts its compression

technique with respect to the datatype?

To answer the above questions, we devise a new compression technique called

SA128 (covered in chapter 4 and 5) which adapts its compression technique with

respect to both the datatype and data characteristics of our data.

An example of a database which tackles the second questions is TimescaleDB.

TimescaleDB (Freedman 2019) turns a row-oriented database into a column-oriented

format and adapts its compression strategy for each of the supported datatypes such as

integers, floats, strings, etc. This approach results in 91-96% storage savings for

TimescaleDB.

20

Chapter 4

SA128 COMPRESSION

In the chapter 3, we discussed some background and common methods used in the

area of compression. In this section we will build on top of some of those techniques and
explore a smart compression technique called SA128. SA128 compression takes place in
two stages:

1. Compression Stage 1 - Column based compression stage: Uses a smart compression

technique which uses common data characteristics of columns for compression and
adapts its compression logic with respect to the data distribution.

2. Compression Stage 2 – rANS entropy encoding stage: Uses an rANS variant of

Asymmetric Numeral Systems (Duda, J., 2013) to compress the set of symbols
received as output from stage 1 into an integer.

4.1 Supported Data Types

SA128 supports most of the commonly used datatypes in databases. For our

implementation, we have used the datatypes available in PostgreSQL (PostgreSQL 13
Documentation, 2021) as many columnar databases are built on top of PostgreSQL or
follow similar data type conventions. Note that certain data types may differ in their
definition from database to database. The internal details of the algorithm can be extended
to support these differences.

The data types which we will be compressing are:

1. Integer/Int4 – Stores whole numbers using 4 bytes of storage with a range of values

from -2147483648 to +2147483647 (PostgreSQL 13 Documentation, 2021). The
integer type is the most common choice as it offers the best balance between range,
storage size and performance.

2. Smallint/Int2 – Stores whole numbers using 2 bytes of storage with a range of values

from -32768 to +32767 (PostgreSQL 13 Documentation, 2021). The smallint type is
generally only used if disk space is at a premium.

3. Bigint/Int8 – Stores whole numbers using 8 bytes of storage with a range of values

from
-9223372036854775808 to +9223372036854775807 (PostgreSQL 13
Documentation, 2021). The bigint type should only be used if the range of
the integer type is insufficient, because the latter is definitely faster. On very minimal
operating systems the bigint type might not function correctly, because it relies on
compiler support for eight-byte integers. On such machines, bigint acts the same
as integer, but still takes up eight bytes of storage.

21

4. Date – Stores a date literal using 4 bytes of storage with a range of values between

4713 BC and 5874897 AD and a resolution of 1 day (PostgreSQL 13 Documentation,
2021). Date is accepted in almost any reasonable format, including ISO 8601, SQL-
compatible, traditional POSTGRES, and others. The ISO 8601 is the recommended
format which uses the ‘yyyy-mm-dd’ format for storing dates.

5. Timestamp – Timestamp (without time zone) uses 8 bytes of storage to store both the

date and time values concatenated into a valid timestamp literal (PostgreSQL 13
Documentation, 2021). It has a range of values between 4713 BC and 294276 AD
and a resolution of 1 millisecond (14 digits). It can accept an optional precision value
of p with valid values between 0 and 6, which specifies the number of fractional
digits retained in the second’s field.

6. Timestamp with time zone/timestamptz – Timestamptz uses 8 bytes of storage to

store the date and time values along with the timezone information, all concatenated
into a valid timestamp literal (PostgreSQL 13 Documentation, 2021). It has a range
of values between 4713 BC and 294276 AD and a resolution of 1 millisecond (14
digits). For timestamp with time zone, the internally stored value is always in UTC
(Universal Coordinated Time, traditionally known as Greenwich Mean Time, GMT).
An input value that has an explicit time zone specified is converted to UTC using the
appropriate offset for that time zone. If no time zone is stated in the input string, then
it is assumed to be in the time zone indicated by the system's timezone parameter,
and is converted to UTC using the offset for the timezone zone.

7. Time – Time uses 8 bytes of storage to store a valid time of the day as a time literal.

It has a range of values from 00:00:00 to 24:00:00 and a resolution 1 microsecond,
i.e.,14 digits (PostgreSQL 13 Documentation, 2021).

8. Time with time zone/timetz – Timetz uses 12 bytes of storage to store a valid time of

the day along with the time zone, both concatenated into a valid timetz literal. It has
a range of values from 00:00:00+1459 to 24:00:00-1459 and a resolution 1
microsecond., 14 digits (PostgreSQL 13 Documentation, 2021). It can accept an
optional precision value of p with valid values between 0 and 6, which specifies the
number of fractional digits retained in the second’s field.

9. Numeric/Decimal – The numeric or decimal types stores arbitrary precision numbers

with a very large number of digits. It stores up to 131072 digits before the decimal
point and up to 16383 digits after the decimal point (PostgreSQL 13 Documentation,
2021). They have the ability to perform calculations accurately, but are however slow
compared to integer or floating-point types. Two values p and s, indicating the
precision and scale can be defined for numeric types. The precision of a numeric is
the total count of significant digits in the whole number, that is, the number of digits
to both sides of the decimal point. The scale of a numeric is the count of decimal
digits in the fractional part, to the right of the decimal point. The precision must be
positive, the scale zero or positive. A numeric type can be defined with either both

22

the precision and scale values, with only a precision value (scale is considered as 0)
or without precision and scale values (in this case it stores numbers with any
precision and scale up to the implementation limit).

10. Real/Float4 – They are inexact and variable-precision numeric types requiring 4

bytes of storage and storing values having up to 6 digits of precision (PostgreSQL 13
Documentation, 2021). They are usually implementations of the IEEE standard 754
for single precision binary floating-point arithmetic.

11. Double Precision/Float8 - They are inexact and variable-precision numeric types

requiring 8 bytes of storage and storing values having up to 15 digits of precision
(PostgreSQL 13 Documentation, 2021). They are usually implementations of the
IEEE standard 754 for double precision binary floating-point arithmetic.

12. Boolean – The Boolean type stores three states: ‘true’, ‘false’ and a third ‘unknown’

state which is represented by the SQL null value (PostgreSQL 13 Documentation,
2021). Possible string representation for true values are ‘true’, ‘yes’, ‘on’, ‘1’.
Possible string representations for false values are ‘false’, ‘no’, ‘off’, ‘0’.

13. Character/Char – Stores fixed size strings up to n characters in length. The value n is

defined along with the data type (PostgreSQL 13 Documentation, 2021). If the length
of the string is less than n characters, the string is padded with empty spaces to make
it equal to a size of n.

14. Character Varying/Varchar – Stores variable length strings with a limit n. Stores only

the number of characters equal to the length of the string without padding extra
spaces at the end (PostgreSQL 13 Documentation, 2021). If the length of the string
exceeds n, then the string is truncated to accommodate a maximum length of n
characters.

4.2 Compression Stage 1: Column Based Compression

In this stage, we sequentially compress each column of our database tables based on

the category of datatypes the column falls under. We divide our data types listed in section
4.1 into 5 categories:

1. Category 1 – Integer/int4, SmallInt/Int2, BigInt/Int8, Date, Timestamp,

Timestamptz, Time, Timetz.

2. Category 2 - Numeric/Decimal.

3. Category 3 - Real/Float4, Double Precision/Flaot8.

4. Category 4 – Boolean

5. Category 5 – Character/Char, Character Varying/Varchar

23

Depending on the Category the column data type falls under, a different compression

strategy is used to compress the respective column. In the next sections, we will explain

the inner details of each of the category-wise compression steps which are a part of Stage

1 compression.

4.2.1 Compression of Category 1 data types

The compression of category 1 datatypes take place in 12 sequential steps which are

explained below:

Step 1 - Divide into blocks: In this step, all the data values belonging to the column being

compressed is divided into blocks of 128 values. If there are 𝑁 values in the column, the

total number of blocks after division will be ⌊𝑁/128⌋ values where each block contains

128 values each except the last block which contains 𝑁%128 + 1 values (between 1 and

128). Therefore, there cannot be an empty block which contains 0 number of values.

Figure 4.1: Illustration of Block Division Step in Category-1 Compression

 The main reason behind choosing block sizes with 128 values are:

1. Optimal storage savings – Having several small sized blocks ensures that most of

the blocks compress well and at the same time it makes sure the compression does

not deteriorate due to poor compression of a small number of blocks. This ensures

that the net average compression of all the blocks combined is high. In most

24

compression algorithms, blocks sizes are generally chosen to be multiples of 8 (to

keep it as multiples of 1 byte). For the reasons above, SA128 has blocks of 128

values each. We did not choose block sizes with lesser than 128 values due to the

overhead of metadata information in the block header which might often occupy

more space if the number of data values are chosen to be 64, 32 or 16, etc.

2. Optimal decompression performance – If columns are divided into blocks

containing small number of values, parallel processing and SIMD instructions can

be used during decompression which can increase decompression performance. If

there is a search key present in the column, then it can also increase query times

tremendously since only selected blocks need to be decompressed instead of

decompressing the entire column data.

Step 2 – Type conversion: If the data type of the column being compressed does not fall

into the set of three integer types, i.e., {𝑠𝑚𝑎𝑙𝑙𝑖𝑛𝑡, 𝑖𝑛𝑡𝑒𝑔𝑒𝑟, 𝑏𝑖𝑔𝑖𝑛𝑡}, the values in every

block is converted to an integer representation by removing all non-numeric characters

from the literal. The integer representation requires 4 bytes of storage for date types, 8 bytes

for timestamp, timestamptz and time types and 12 bytes for timez types. For example:

i. Let s be a literal of ‘date’ type, where s = ‘2021-12-11’ (where the date value is stored

in ISO 8601 format). This will be stored as a literal f = ‘20211211’.

ii. Let s be a literal of ‘timestamp’ type, where s = ‘2021-12-11 11:55:34.12313’ (where

the timestamp value is stored in ISO 8601 format). This will be stored as a literal f =

‘2021121111553412313’.

iii. Let s be a literal of ‘timestamptz’ type, where s = ‘2021-12-11 11:55:34 -8:00’ (where

the timestamptz value is stored in ISO 8601 format). This will be stored as a literal f

= ‘-20211211115534800’. Note that the negative sign for the timezone becomes the

sign of the integer representation, thus making it negative.

25

iv. Let s be a literal of ‘time’ type, where s = ’11:55:34.12313’ (where the time value is

stored in ISO 8601 format). This will be stored as a literal f = ‘11553412313’.

v. Let s be a literal of ‘timez’ type, where s = ’11:55:34.12313-08:00’ (where the time

value is stored in ISO 8601 format). This will be stored as a literal f = ‘-

115534123130800’. Note that the negative sign for the timezone becomes the sign

of the integer representation, thus making it negative.

If the resultant integer representation has leading zeros, then the leading zeros are

removed, i.e., the date literal ‘0010-12-11’ gets converted to ‘101211’.

Step 3 – Create block copies: For each block Bm containing 128 values, where 1 <= m

<= ⌈N/128⌉, we create two more copies of it and call them Bm’ and Bm’’ respectively. In

total, we have three identical blocks of 128 values each.

Figure 4.2: Illustration of Block Copy Creation Step in Category-1 Compression

Step 4 – Delta and Delta of Delta encoding: In this step, we leave block Bm uncompressed

but apply Delta encoding on block copy Bm’ and Delta of Delta encoding on block copy

Bm’’. During Delta encoding and Delta of delta encoding, if there are NULL values in the

blocks Bm’ and Bm’’ respectively, we leave them as it is. During delta encoding on block

Bm’, for every non-null value 𝑣, we replace it with its delta value 𝑑 as 𝑑 = 𝑝𝑟𝑒𝑣 – 𝑣

where 𝑝𝑟𝑒𝑣 is the previously scanned non-null value in the block (the values 𝑝𝑟𝑒𝑣 and 𝑣

26

do not necessarily need to be adjacent to each other as there can me any number of NULL

values between them which remain unchanged). If the previously scanned non-null value

𝑝𝑟𝑒𝑣 does not exist, we keep the value v unchanged. For example: [20, 15, NULL, 10] gets

converted to [20, 5, NULL, 5]. Notice here that the first value remains unchanged because

a non-null value does not exist prior to the first element.

During delta of delta encoding on block Bm’, for every non-null value v, we replace

it with its delta of delta value 𝑑’ as 𝑑’ = (𝑝𝑝𝑟𝑒𝑣 – 𝑝𝑟𝑒𝑣) – (𝑝𝑟𝑒𝑣 – 𝑣) where 𝑝𝑟𝑒𝑣 is the

non-null value appearing before 𝑣 and 𝑝𝑝𝑟𝑒𝑣 is the second previous non-null value before

𝑣. If 𝑝𝑟𝑒𝑣 and 𝑝𝑝𝑟𝑒𝑣 do not have non-null values, then we keep the value v unchanged in

the resultant encoding.

Figure 4.3: Illustration of Delta and Delta of Delta Encoding Step in Category-1

Compression

Step 5 – Zig-zag encoding: In this step, we use zig-zag encoding on all the three blocks

Bm, Bm’ and Bm’’ to deal with negative numbers and represent them using positive

numbers. We do this because it is more space efficient to store small negative numbers

with a smaller number of bits by storing the sign bit in the LSB instead of MSB. Depending

on the number of bits required to represent the integer representation of the data value after

step 2, we represent it using a variable called ‘bitlength’. The zig-zag encoder encodes the

data value to a positive number based on the following equation:

(𝑛 >> 𝑏𝑖𝑡𝑙𝑒𝑛𝑔𝑡ℎ – 1) ^ (𝑛 << 1)

27

Where, n is the value being encoded, “>>” is the arithmetic right shift operation, “<<” is

the arithmetic left shift operation and “^” is the XOR operation.

This mapping from negative to positive numbers is done in the following sequence:

[0 = 0, −1 = 1, 1 = 2, −2 = 3, 2 = 4, −3 = 5, 3 = 6, …]

Figure 4.4: Illustration of Zig-zag Encoding in Category-1 Compression

Step 6 – Frame of Reference: In this step, we find the minimum values in each of the

three blocks Bm, Bm’ and Bm’’, and represent them using tm, tm’ and tm’’ respectively where,

tm = min (Bm), tm’ = min (Bm’) and tm’’ = min (Bm’’). We call tm, tm’ and tm’’ the translated

values for each of their respective blocks. We then subtract all data values in blocks Bm,

Bm’ and Bm’’ by tm, tm’ and tm’’ respectively. This brings down the magnitude of each

number in the block such than a smaller number of bits can be used to represent them later.

We store the values tm, tm’ and tm’’ for our later steps where we will wrap them as part of

our SA128 block header.

Figure 4.5: Illustration of Frame of Reference Step in Category-1 Compression

28

Step 7 – Run-length encoding: In this step, we try to further optimize the storage by

computing a run-length encoding over all the three blocks Bm, Bm’ and Bm’’. For every

sequence S of contiguous values within each of the three blocks, where 𝑆 =

{𝑥 , … , 𝑥 , … , 𝑥 𝑤ℎ𝑒𝑟𝑒 0 ≤ 𝑖 < 𝑛 𝑎𝑛𝑑 𝑥 = 𝑥 } we calculate the run value r, where

𝑟 = 𝑙𝑒𝑛(𝑆) and 𝑙𝑒𝑛 is the length of the sequence S. Note than all run values must be

greater than 1, i.e., 𝑟 > 1 since the minimum length of a sequence S is 2, i.e.,

𝑚𝑖𝑛(𝑙𝑒𝑛(𝑆)) = 2. The sequence of data values 𝑥 , … , 𝑥 , … , 𝑥 in S is replaced with the

pair {𝑥 , 𝑟} in the block. We create an exception block for each of the blocks Bm, Bm’ and

Bm’’ and call them E1m, E1m’ and E1m’’ respectively. These exception blocks store the

index location for each run value ‘r’ in their respective blocks.

Figure 4.6: Illustration of Run Length Encoding Step in Category-1 Compression

Step 8 – Bit packing using modulo technique: In this step, we perform an important

operation of the three blocks Bm, Bm’ and Bm’’ where we try to break down the largest

values into smaller values. The intuition behind doing so is that the largest values in the

blocks dictate the number of bits with which each value will be represented during bit

packing. If the largest value can be represented using lesser number of bits, then so can

each other value in the block. We do this by following a modulo technique for bit packing

specifically designed to optimize the blocks in SA128. For each of the three blocks Bm,

Bm’ and Bm’’, we find the minimum number of bits 𝑏 (𝑏 ′ and 𝑏 ′′ for the copies)

29

required to represent the majority of the values in the block (> 50% values in the block).

We also find the number of bits 𝑏 (𝑏 ′ and 𝑏 ′′ for the copies) required to

represent the largest value in the block. The space occupied by the block after bit packing

is dictated by the value 𝑏 (𝑏 ′ and 𝑏 ′′ for the copies). Therefore, the total number

of bits required to represent the values as well as the indices in their respective exception

blocks are:

𝑆 = 𝑁 . 𝑏 + 𝑁 . 8

𝑆 ′ = 𝑁 ′ . 𝑏 ′ + 𝑁 ′ . 8

𝑆 ′′ = 𝑁 ′′ . 𝑏 ′′ + 𝑁 ′′ . 8

where,

𝑆 = Number of bits required to represent the blocks 𝐵 and 𝐸1 ,

𝑆 ′ = Number of bits required to represent the blocks 𝐵 ′ and 𝐸1 ′,

𝑆 ′′ = Number of bits required to represent the blocks 𝐵 ′ and 𝐸1 ′′,

𝑁 = Number of values in block 𝐵 ,

𝑁 ′ = Number of values in block 𝐵 ′,

𝑁 ′′ = Number of values in block 𝐵 ′′,

𝑁 = Number of values in exception block 𝐸1 ,

𝑁 ′ = Number of values in exception block 𝐸1 ′,

𝑁 ′′ = Number of values in exception block 𝐸1 ′′.

Here, the constant value 8 is the number of bits required to represent each index value

in the exception blocks 𝐸1 , 𝐸1 ′ and 𝐸1 ′′ since the number of possible values lie

between 0 to 127.

We see that the value 𝑏 (𝑏 ′ and 𝑏 ′′ for the copies) dictate the values 𝑆 ,

𝑆 ′ and 𝑆 ′′ respectively. We now explain how the modulo technique works on block

𝐵 . The same technique is used for blocks 𝐵 ′ and 𝐵 ′′ as well. The modulo technique

takes as input the block 𝐵 and the exception block 𝐸1 and tries to break down large

30

values in the block 𝐵 into two small values such than they can be represented using an

optimal number of bit b where 𝑏 ≤ 𝑏 ≤ 𝑏 . It returns us a modified block 𝐵 , the

optimal number of bits b required to represent 𝐵 and a second exception block 𝐸2 which

contains the indices of the values which are broken down into two smaller values.

Pseudo-code for bit packing using modulo technique:

𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑏𝑖𝑡𝑃𝑎𝑐𝑘𝑖𝑛𝑔𝑊𝑖𝑡ℎ𝑀𝑜𝑑𝑢𝑙𝑜(𝐵 , 𝐸1):

𝐸2 = [];

𝑁 = 𝑙𝑒𝑛(𝐵);

𝑁 = 𝑙𝑒𝑛(𝐸1);

𝑆 = 𝑁 . 𝑏 + 𝑁 . 8;

𝑆 = 𝑆 ;

𝐵 = 𝐵 ;

𝐸2 = 𝐸2 ;

𝑏 = 𝐵𝑖𝑡𝑠 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑡𝑜 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡 𝑡ℎ𝑒 𝑙𝑎𝑟𝑔𝑒𝑠𝑡 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑖𝑛 𝐵 ;

𝑏 = 𝐵𝑖𝑡𝑠 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑡𝑜 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡 𝑚𝑜𝑟𝑒 𝑡ℎ𝑎𝑛 ℎ𝑎𝑙𝑓 𝑡ℎ𝑒 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝑖𝑛 𝐵 ;

𝑓𝑜𝑟 𝑏 ≥ 𝑏 ≥ 𝑏 :

𝑚𝑎𝑥𝑉𝑎𝑙 = 𝑡ℎ𝑒 𝑙𝑎𝑟𝑔𝑒𝑠𝑡 𝑣𝑎𝑙𝑢𝑒 𝑤ℎ𝑖𝑐ℎ 𝑐𝑎𝑛 𝑏𝑒 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑒𝑑 𝑢𝑠𝑖𝑛𝑔 𝑏 𝑏𝑖𝑡𝑠;

𝐵 = [];

𝐸2 = [];

𝑓𝑜𝑟 0 ≤ 𝑖 ≤ 𝑙𝑒𝑛(𝐵);

𝑛 = 𝐵 [𝑖];

𝑖𝑓 𝑛 > 𝑚𝑎𝑥𝑉𝑎𝑙:

𝑃𝑢𝑠ℎ , 𝑛 % 𝑏 𝑖𝑛𝑡𝑜 𝐵 ;

𝑃𝑢𝑠ℎ 𝑖 𝑖𝑛𝑡𝑜 𝐸2 ;

𝑒𝑙𝑠𝑒:

31

𝑃𝑢𝑠ℎ 𝑛 𝑖𝑛𝑡𝑜 𝐵 ;

𝑆 = 𝑙𝑒𝑛(𝐵) ∗ 𝑏 + 𝑙𝑒𝑛(𝐸1) ∗ 8 + 𝑙𝑒𝑛(𝐸2) ∗ 8;

𝑖𝑓 𝑆 > 𝑆 :

𝑟𝑒𝑡𝑢𝑟𝑛 {𝐵 , 𝐸2 , (𝑏 + 1)};

𝑒𝑙𝑠𝑒:

𝑆 = 𝑆 ;

𝐵 = 𝐵 ;

𝐸2 = 𝐸2 ;

𝑅𝑒𝑡𝑢𝑟𝑛 {𝐵 , 𝐸2 . 𝑏 };

What bit packing with modulo does is that it tries to represent the block 𝐵 with an

optimal number of bits b. The value of b is found out greedily from 𝑏 to 𝑏 . If there

are any elements in the block which require more than b bits to represent, we break that

number n down into a pair , 𝑛 % 𝑏 which is the quotient and remainder when the

number n is divided by b. This guarantees than the value ≤ 𝑛 and 𝑛 % 𝑏 < 𝑏.

Therefore, it requires a smaller number of bits to represent n compared to each of the two

values and 𝑛 % 𝑏. While doing this for each value of b, we calculate the total number

of bits required to represent the new block and its two exception blocks. If the size

decreases, we keep trying for smaller and smaller values of b. If the size at any point

increases, this means that too many numbers have been broken down into smaller values

in our new block which has resulted in an overhead. This is the point we break and return

the previous optimal value of b.

32

Step 9 – Packing NULL values: If the blocks Bm, Bm’ and Bm’’ contain NULL values, we

replace all the NULL values by 0 and store the index positions of the NULL values in a

third exception block E3m (E3m’ and E3m’ for the block copies).

Figure 4.7: Illustration of NULL Packing Step in Category-1 Compression

Step 10- Bit packing of exception blocks: By this stage, for each of the blocks Bm, Bm’

and Bm’’, we have three exception blocks each, i.e., E1m, E2m and E3m for block Bm, E1m’,

E2m’ and E3m’ for block Bm’ and E1m’’, E2m’’ and E3m’’ for block Bm’’. To optimize the

number of bits with which each of the exception blocks are represented, we use bit packing

on each of the exception blocks. We represent each value in the three exception blocks

using e1, e2 and e3 bits (e1’, e2’, e3’ and e1’’, e2’’, e3’’ for the block copies respectively),

where,

e1 = Number of bits required to represent the largest value in E1m,

e2 = Number of bits required to represent the largest value in E2m,

e3 = Number of bits required to represent the largest value in E3m,

e1’ = Number of bits required to represent the largest value in E1m’,

e2’ = Number of bits required to represent the largest value in E2m’,

e3’ = Number of bits required to represent the largest value in E3m’,

e1’’ = Number of bits required to represent the largest value in E1m’’,

e2’’ = Number of bits required to represent the largest value in E2m’’,

e3’’ = Number of bits required to represent the largest value in E3m’’.

33

Step 11 – Block copy selection: By this stage, the total number of bits Sm, Sm’ and Sm’’

required to represent each block Bm, Bm’ and Bm’’ and their three exception blocks

respectively can be given below:

𝑆 = 𝑁 ∗ 𝑏 + 𝑁 ∗ 𝑒 + 𝑁 ∗ 𝑒 + 𝑁 ∗ 𝑒

𝑆 ′ = 𝑁 ′ ∗ 𝑏′ + 𝑁 ′ ∗ 𝑒 ′ + 𝑁 ′ ∗ 𝑒 ′ + 𝑁 ′ ∗ 𝑒 ′

𝑆 ′′ = 𝑁 ′′ ∗ 𝑏′′ + 𝑁 ′′ ∗ 𝑒 ′′ + 𝑁 ′′ ∗ 𝑒 ′′ + 𝑁 ′′ ∗ 𝑒 ′′

where,

𝑁 , 𝑁 𝑎𝑛𝑑 𝑁 ′′ are the number of elements in blocks Bm, Bm’ and Bm’’ respectively.

𝑏, 𝑏 𝑎𝑛𝑑 𝑏′′ are the number of bits required to represent each element in blocks Bm, Bm’

and Bm’’ respectively.

𝑁 , 𝑁 𝑎𝑛𝑑 𝑁 ′′ are the number of elements in exception blocks E1m, E1m’ and E1m’’

respectively.

𝑒 , 𝑒 𝑎𝑛𝑑 𝑒 ′′ are the number of bits required to represent each element in blocks E1m,

E1m’ and E1m’’ respectively.

𝑁 , 𝑁 𝑎𝑛𝑑 𝑁 ′′ are the number of elements in exception blocks E2m, E2m’ and E2m’’

respectively.

𝑒 , 𝑒 𝑎𝑛𝑑 𝑒 ′′ are the number of bits required to represent each element in blocks E2m,

E2m’ and E2m’’ respectively.

𝑁 , 𝑁 𝑎𝑛𝑑 𝑁 ′′ are the number of elements in exception blocks E3m, E3m’ and E3m’’

respectively.

𝑒 , 𝑒 𝑎𝑛𝑑 𝑒 ′′ are the number of bits required to represent each element in blocks E3m,

E3m’ and E3m’’ respectively.

In this stage, we select the optimal block (and its three exception blocks) where the

total number of bits required to represent it is 𝑆 = min (𝑆 , 𝑆 ′, 𝑆 ′′) and reject the

other two blocks (and their three exception blocks each). Let’s call the optimal block 𝐵

34

and the respective exception blocks 𝐸1 , 𝐸2 and 𝐸3 . We also select the respective

translated value (from step 6) as 𝑡 .

After selection of the optimal block 𝐵 and its exception blocks 𝐸1 , 𝐸2 and

𝐸3 , we record the encoding with which the block was encoded with in step 4 using a

variable 𝐸𝑛𝑐 :

i. If the selected block was uncompressed, 𝐸𝑛𝑐 = 0.

ii. If the selected block was encoded with delta encoding, 𝐸𝑛𝑐 = 1.

iii. If the selected block was encoded with delta of delta encoding, 𝐸𝑛𝑐 = 2.

Figure 4.8: Illustration of NULL Packing Step in Category-1 Compression

Step 12 – Encode as SA128 block: We encode our selected block 𝐵 and exception

blocks 𝐸1 , 𝐸2 and 𝐸3 by wrapping them within a category-1 SA128 block. The

category-1 SA128 block consists of two parts:

i. A category-1 SA128 block header – Contains metadata information about the block.

ii. A category-1 SA128 block body – Contains the data encoded within the block.

The components of a category-1 SA128 block header and block body can be given below:

Figure 4.9: Components of SA128 Block for Category-1 Compression

i. BS - Block size in bytes (32 bits): This is a 32-bit representation for the size of the

entire block (block header and block body. 32 bits are adequate to represent the size

35

of the entire block irrespective of the datatype category being encoded. We will

elaborate on this further in the later sections.

ii. CID - ColumnID (11 bits): Stores the ID of the column being compressed.

PostgreSQL tables are hard limited to a maximum of 1600 tables. Therefore, each

column ID can be represented using 11 bits (bits required to represent 1600 is 11).

iii. D - Datatype (4 bits): There are 14 datatypes supported by SA128. Therefore, each

datatype can be represented using 4 bits. The datatype IDs for each of the 14

supported datatypes is given by the table below:

Datatype Datatype ID

SmallInt/Int2 0

Integer/Int4 1

Bigint/Int8 2

Date 3

Timestamp 4

Timestamp with timezone/Timestamptz 5

Time 6

Time with timezone/Timez 7

Numeric/Decimal 8

Real/Float4 9

Double Precision/Float8 10

Boolean 11

Character/Char 12

Character Varying/Varchar 13

Table 4.1: Mapping of Supported Datatypes to Datatype IDs

36

iv. ET – Encoding Type (2 bits): This stands for the 𝐸𝑛𝑐 value with which the block

𝐵 was encoded with. The following table describes the 𝐸𝑛𝑐 values for each

type of encoding:

Encoding 𝑬𝒏𝒄𝒎
𝒐𝒑𝒕

Uncompressed 0

Delta encoding 1

Delta of Delta encoding 2

Table 4.2: Mapping of Encoding Type to 𝐸𝑛𝑐 Values

The three possible 𝐸𝑛𝑐 values can be encoded using 2 bits.

v. TV – Translated Value (16/32/64 or 96 bits): This stands for the translated value

𝑡 for the selected block 𝐵 . For Smallint/Int2 datatype, this value can be

represented using 16 bits. For Integer/Int4 and Date datatypes, this value can be

represented using 32 bits. For Bigint/Int8, Timestamp, Timestamptz and Time

datatypes, this value can be represented using 64 bits. For timez datatype, this value

can be represented using 96 bits. These 16/32/64 and 96 bits respectively are the

number of bits required to represent the integer representation of each of these

supported category 1 datatypes (as established in step 2).

vi. DL – Data Length (8 bits): The maximum number of elements present in 𝐵 in

the worst case can be 256. This case arises when there are no runs with run value

𝑟 > 1 after run-length encoding in step 7 and when all values are broken down into

pairs of quotient and remainder after bit-packing with modulo in step 8. Since we

start with 128 values in each block, this scenario could double the number of elements

in our block leading to 256 values in the block. Therefore, 8 bits is adequate to

represent a max block length of 256.

vii. DB – Data Bits (8 bits): Let 𝑏 is the number of bits required to represent each

value in 𝐵 . In the worst case, 𝑏 can be equal to 𝑏 after step 8 which is equal

37

to the number of bits required to represent the largest value in 𝐵 . The largest

possible category 1 value for timez type requires 96 bits to represent. Hence, 8 bits

is sufficient to represent the value 𝑏 .

viii. DC – Data Content (DL * DB bits): This represents the number of bits required to

represent the data values within the block 𝐵 . This number of bits required is given

by the Data Length (DL) * Data Bits (DB).

ix. E1L = Excep1 Length (8 bits): During step 7, the largest index value that can be

stored in the exception block 𝐸1 is 127. Let us understand why this is the case

with the help of the below two lemmas:

Lemma 4.2.1.1: The number of values in the block n becomes less than 128 if there

is at least one sequence 𝑆 = {𝑥 , … , 𝑥 , … , 𝑥 𝑤ℎ𝑒𝑟𝑒 0 ≤ 𝑖 < 𝑛 𝑎𝑛𝑑 𝑥 = 𝑥 }

with the run value r > 2.

Explanation: A sequence S with run value r > 2 will be represented by 2 values, i.e.,

the pair {𝑥 , r}. This reduces the total number of values in the block leading to n <

128.

Lemma 4.2.1.2: The number of values in the block n is equal to 128 if there is no

sequence 𝑆 = {𝑥 , … , 𝑥 , … , 𝑥 𝑤ℎ𝑒𝑟𝑒 0 ≤ 𝑖 < 𝑛 𝑎𝑛𝑑 𝑥 = 𝑥 } with r > 2.

Explanation: For a sequence 𝑆 = {𝑥 , … , 𝑥 , … , 𝑥 𝑤ℎ𝑒𝑟𝑒 0 ≤ 𝑖 < 𝑛 𝑎𝑛𝑑 𝑥 =

 𝑥 } with run value r = 2, we replace the two repeated values in the sequence

𝑥 𝑎𝑛𝑑 𝑥 with the pair {𝑥 , r}. This leads to no change in the number of values n in

the block.

Lemma 4.2.1.3: There can be a maximum of 64 index values in an 𝐸1 block.

Explanation: From lemmas Lemma 4.2.1.1 and Lemma 4.2.1.2, we can conclude

that if we have a block where all distinct values form a sequence with run values r =

2, we can have a maximum of 64 such sequences where the 64 different index values

will be {1, 3, 5, …, 127}.

38

Therefore 8 bits is adequate to represent a maximum index value of 127 in the 𝐸1

block.

x. E1B – Excep1 Bits (8 bits): This represents the number of bits 𝑒1 required to

represent each value in the exception block 𝐸1 . From lemma 4.2.1.3, we can

conclude that if we have a block where all distinct values form a sequence with run

values r = 2, the indices required to represent each of those sequences are {1, 3, 5,

…, 127}. Since 127 is the largest index that an 𝐸1 block can contain, we can

represent this value using a maximum of 8 bits.

xi. E1C – Excep1 Content (E1L * E1B bits): This represents the number of bits

required to represent the index values within the exception block 𝐸1 . This number

of bits required is given by the Excep1 Length (E1L) * Excep1 Bits (E1B).

xii. E2L – Excep2 Length (8 bits): There can be a maximum of 128 index values in

exception block 𝐸2 . This can be proved using the following lemma:

Lemma 4.2.1.4: There can be a maximum of 128 index values in exception block

𝐸2 .

Explanation: This is because from lemma 4.2.1.2, if there is no sequence 𝑆 =

{𝑥 , … , 𝑥 , … , 𝑥 𝑤ℎ𝑒𝑟𝑒 0 ≤ 𝑖 < 𝑛 𝑎𝑛𝑑 𝑥 = 𝑥 } with r > 2, our block 𝐵 will

contain exactly 128 values. In this block 𝐵 with 128 values, if all the values were

broken down into a quotient and remainder pair in the bit packing with modulo step

(step 8), this would double the values in the block, therefore leading to a maximum

of 256 values. The number of index values required to represent the position of each

broken value in 𝐵 is 128 which can be represented using 8 bits.

xiii. E2B – Excep2 Bits (8 bits): This represents the number of bits 𝑒2 required to

represent each value in the exception block 𝐸2 . From lemma 4.2.1.4, we can infer

that the index values required to represent a maximum of 128 values in 𝐸2 are {0,

39

2, …, 255}. Since 255 is the largest index value that can exist in 𝐸2 . Therefore

𝑒2 can be adequately represented using 8 bits.

xiv. E2C – Excep2 Content (E2L * E2B bits): This represents the number of bits

required to represent the index values within the exception block 𝐸2 . This number

of bits required is given by the Excep2 Length (E2L) * Excep2 Bits (E2B).

xv. E3L – Excep3 Length (8 bits): This represents the length of the exception block

𝐸3 . The maximum possible length for an exception block 𝐸3 is 64. This can be

explained with the help of the following lemma:

Lemma 4.2.1.5: There can be a maximum of 64 index values in exception block

𝐸3 .

Explanation: To have the maximum number of NULL values in 𝐵 in step 10,

before the run length-encoding step (step 7), our block should have one of the

following sequences with 128 values: {NULL, x0, NULL, x1, …, NULL, xn} or {x0,

NULL, x1, NULL, …, xn, NULL} where x0 to xn are non-NULL integer

representations of block values in 𝐵 . Note that we do not have any contiguous

NULL values in both the above sequences. If we did, we would replace the

contiguous NULL values with a single NULL value followed by the run value r after

the run-length encoding in step 7. This would reduce the number of NULL values in

block 𝐵 . Therefore, only for the above two sequences, we can have the maximum

number of null values in our final block 𝐵 which contains a maximum of 64

indices to 64 null values. These 64 index values can be adequately represented using

8 bits.

xvi. E3B – Excep3 Bits (8 bits): This represents the number of bits 𝑒3 required to

represent each value in the exception block 𝐸3 . The largest possible index value

in 𝐸3 is 191 which can be represented using 8 bits. We can understand why this is

the case using the below lemma:

40

Lemma 4.2.1.6: The largest possible index value in 𝐸3 is 191.

Explanation: From the explanation provided for lemma 4.2.1.5, the two block

sequences {NULL, x0, NULL, x1, …, NULL, xn} or {x0, NULL, x1, NULL, …, xn,

NULL} before step 7 result in 64 NULL values in the block after step 7. During the

bit packing using modulo in step 8, if all our values 64 values from x0 to xn are broken

down into a quotient and remainder pair, this will result in a total of 128 non-NULL

values and 64 NULL values (a total of 192 values). The index of the last NULL value

in this case will be 191.

xvii. E3C – Excep3 Content (E3L * E3B bits): This represents the number of bits

required to represent the index values within the exception block 𝐸3 . This number

of bits required is given by the Excep3 Length (E3L) * Excep3 Bits (E3B).

4.2.2 Compression of Category 2 data types

The compression of category 2 datatypes take place in 4 sequential steps which are

explained below:

Step 1 – Divide into blocks: In this step, all the data values belonging to the column being

compressed is divided into blocks of 128 values. If there are 𝑁 values in the column, the

total number of blocks after division will be ⌊𝑁/128⌋ values where each block contains

128 values each except the last block which contains 𝑁%128 + 1 values (between 1 and

128). Refer to figure 4.1. Therefore, there cannot be an empty block which contains 0

number of values.

Step 2 – Divide into sub-blocks: Separate each block Bm containing 128 values into two

sub-blocks B1m and B2m, where 1 <= m <= ⌈N/128⌉. For each value m in the block Bm,

B1m contains the part of the number m before the decimal point and B2m contains the part

of the number m after the decimal point.

41

For example: If Bm contains the values [1.23, 4.43, 1.44, …], then,

B1m = [1, 4, 1, …] and B2m = [23, 43, 44, …] respectively.

Step 3 – Compress sub-blocks using Category 1 compression algorithm: Since numeric

types have a fixed precision p and scale s, the size of values in B1m and B2m are comparable.

Therefore, we compress each of the two sub-blocks B1m and B2m using category 1

compression from steps 3 to step 11 which includes creating block copies, delta and delta

of delta encoding, zig-zag encoding, frame of reference, run-length encoding, bit packing

using modulo technique, packing NULL values, bit packing exception blocks and block

copy selection. Let the resultant sub-blocks after category 1 compression of B1m be 𝐵1

and the resultant exception blocks be 𝐸11 , 𝐸21 and 𝐸31 . Let the resultant sub-

blocks after category 1 compression of B2m be 𝐵2 and the resultant exception blocks be

𝐸12 , 𝐸22 and 𝐸32 .

Step 4 – Encode as SA128 block: We encode our resultant sub-blocks 𝐵1 , 𝐵2 and

exception blocks 𝐸11 , 𝐸21 , 𝐸31 , 𝐸12 , 𝐸22 and 𝐸32 by wrapping them

within a category-2 SA128 block. The category-2 SA128 block consists of two parts:

i. A category-2 SA128 block header – Contains metadata information about the block.

ii. A category-2 SA128 block body – Contains the data encoded within the block.

The components of a category-2 SA128 block header and block body can be given below:

Figure 4.10: Components of SA128 Block in Category-2 Compression

42

i. BS – Block size in bytes (32 bits): Stores the size of the category-2 block (block

header and the block body) using 32-bits.

ii. CID – Column ID (11 bits): Uses 11 bits to represent the column ID of the column

being compressed. Explanation of the bit representation is same as that provided for

the ‘CID’ section in category-1 SA128 block header.

iii. D – Datatype (4 bits): Uses 4 bits to represent the data type on the column being

compressed. Explanation of the bit representation is same as that provided for the ‘D’

section in category-1 SA128 block header.

iv. ET1 – 𝑩𝟏𝒎
𝒐𝒑𝒕

 Encoding Type (2 bits): Uses 2 bits to represent the encoding type

(uncompressed, delta or delta of delta) for sub-block 𝐵1 . Explanation of the bit

representation is same as that provided for the ‘ET’ section in category-1 SA128

block header.

v. TV1 – 𝑩𝟏𝒎
𝒐𝒑𝒕

 Translated Value (𝒕𝟏 bits): Uses 𝑡 bits to represent the translated

value 𝑡1 after frame of reference in step 6 on sub-block 𝐵1 , where 𝑡 =

log (10() − 1) , p is the precision and s is the scale for the numeric type. The

max length of a value in 𝐵1 is (p – s) which is equal to the part of the number

before the decimal point in the main block 𝐵 . The largest value possible for 𝑡1

is equal to the largest value which can be formed with (p – s) digits, i.e., 10() − 1.

Therefore, the number of bits required to represent the number 10() − 1 is 𝑡 =

log (10() − 1) .

vi. ET2 – 𝑩𝟐𝒎
𝒐𝒑𝒕

 Encoding Type (2 bits): Uses 2 bits to represent the encoding type

(uncompressed, delta or delta of delta) for sub-block 𝐵2 . Explanation of the bit

representation is same as that provided for the ‘ET’ section in category-1 SA128

block header.

vii. TV2 – 𝑩𝟐𝒎
𝒐𝒑𝒕

 Translated Value (𝒕𝟐 bits): Uses 𝑡 bits to represent the translated

43

value 𝑡2 after frame of reference in step 6 on sub-block 𝐵2 , where 𝑡 =

⌈log (10 − 1)⌉ and s is the scale for the numeric type. The max length of a value in

𝐵2 is s which is equal to the part of the number after the decimal point in the main

block 𝐵 . The largest value possible for 𝑡2 is equal to the largest value which

can be formed with s digits, i.e., 10 − 1. Therefore, the number of bits required to

represent the number 10 − 1 is 𝑡 = ⌈log (10 − 1)⌉.

viii. DL1 – 𝑩𝟏𝒎
𝒐𝒑𝒕 Data Length (8 bits): Uses 8 bits to represent the length of the 𝐵1

block. Explanation of the bit representation is same as that provided for the ‘DL’

section in category-1 SA128 block body.

ix. DB1 – 𝑩𝟏𝒎
𝒐𝒑𝒕

 Data Bits (𝒃𝟏 bits): Uses 𝑏 bits to represent the number of bits

required for representing each value in the sub-block 𝐵1 , where 𝑡 =

log (10() − 1) , p is the precision, s is the scale for the numeric type and 𝑏 =

⌈log (𝑡)⌉.

x. DC1 – 𝑩𝟏𝒎
𝒐𝒑𝒕

 Data Content (DL1 * DB1 bits): Uses DL1 * DB1 bits to represent

all the values in sub-block 𝐵1 .

xi. DL2 – 𝑩𝟐𝒎
𝒐𝒑𝒕 Data Length (8 bits): Uses 8 bits to represent the length of the 𝐵2

block. Explanation of the bit representation is same as that provided for the ‘DL’

section in category-1 SA128 block body.

xii. DB2 – 𝑩𝟐𝒎
𝒐𝒑𝒕

 Data Bits (𝒃𝟐 bits): Uses 𝑏 bits to represent the number of bits

required for representing each value in the sub-block 𝐵2 , where 𝑡 =

⌈log (10 − 1)⌉, s is the scale for the numeric type and 𝑏 = ⌈log (𝑡)⌉.

xiii. DC2 – 𝑩𝟐𝒎
𝒐𝒑𝒕

 Data Content (DL2 * DB2 bits): Uses DL2 * DB2 bits to represent

all the values in sub-block 𝐵2 .

xiv. E1L1 – 𝑩𝟏𝒎
𝒐𝒑𝒕

 Excep1 Length (8 bits): Uses 8 bits to represent the length of the

exception block 𝐸11 . Explanation of the bit representation is same as that

44

provided for the ‘E1L’ section in category-1 SA128 block body.

xv. E1B1 – 𝑩𝟏𝒎
𝒐𝒑𝒕

 Excep1 Bits (8 bits): Uses 8 bits to represent the bit required to

represent each index value in exception block 𝐸11 . Explanation of the bit

representation is same as that provided for the ‘E1B’ section in category-1 SA128

block body.

xvi. E1C1 – 𝑩𝟏𝒎
𝒐𝒑𝒕

 Excep1 Content (E1L1 * E1B1 bits): Uses E1L1 * E1B1 bits to

represent all the indices in the exception block 𝐸11 .

xvii. E2L1 – 𝑩𝟏𝒎
𝒐𝒑𝒕

 Excep2 Length (8 bits): Uses 8 bits to represent the length of the

exception block 𝐸21 . Explanation of the bit representation is same as that

provided for the ‘E2L’ section in category-1 SA128 block body.

xviii. E2B1 – 𝑩𝟏𝒎
𝒐𝒑𝒕

 Excep2 Bits (8 bits): Uses 8 bits to represent the bit required to

represent each index value in exception block 𝐸21 . Explanation of the bit

representation is same as that provided for the ‘E2B’ section in category-1 SA128

block body.

xix. E2C1 – 𝑩𝟏𝒎
𝒐𝒑𝒕

 Excep2 Content (E2L1 * E2B1 bits): Uses E2L1 * E2B1 bits to

represent all the indices in the exception block 𝐸21 .

xx. E3L1 – 𝑩𝟏𝒎
𝒐𝒑𝒕

 Excep3 Length (8 bits): Uses 8 bits to represent the length of the

exception block 𝐸31 . Explanation of the bit representation is same as that

provided for the ‘E3L’ section in category-1 SA128 block body.

xxi. E3B1 – 𝑩𝟏𝒎
𝒐𝒑𝒕

 Excep3 Bits (8 bits): Uses 8 bits to represent the bit required to

represent each index value in exception block 𝐸31 . Explanation of the bit

representation is same as that provided for the ‘E3B’ section in category-1 SA128

block body.

xxii. E3C1 – 𝑩𝟏𝒎
𝒐𝒑𝒕

 Excep3 Content (E3L1 * E3B1 bits): Uses E3L1 * E3B1 bits to

represent all the indices in the exception block 𝐸31 .

45

xxiii. E1L2 – 𝑩𝟏𝒎
𝒐𝒑𝒕

 Excep1 Length (8 bits): Uses 8 bits to represent the length of the

exception block 𝐸12 . Explanation of the bit representation is same as that

provided for the ‘E1L’ section in category-1 SA128 block body.

xxiv. E1B2 – 𝑩𝟐𝒎
𝒐𝒑𝒕

 Excep1 Bits (8 bits): Uses 8 bits to represent the bit required to

represent each index value in exception block 𝐸12 . Explanation of the bit

representation is same as that provided for the ‘E1B’ section in category-1 SA128

block body.

xxv. E1C2 – 𝑩𝟐𝒎
𝒐𝒑𝒕

 Excep1 Content (E1L2 * E1B2 bits): Uses E1L2 * E1B2 bits to

represent all the indices in the exception block 𝐸12 .

xxvi. E2L2 – 𝑩𝟐𝒎
𝒐𝒑𝒕

 Excep2 Length (8 bits): Uses 8 bits to represent the length of the

exception block 𝐸22 . Explanation of the bit representation is same as that

provided for the ‘E2L’ section in category-1 SA128 block body.

xxvii. E2B2 – 𝑩𝟐𝒎
𝒐𝒑𝒕

 Excep2 Bits (8 bits): Uses 8 bits to represent the bit required to

represent each index value in exception block 𝐸22 . Explanation of the bit

representation is same as that provided for the ‘E2B’ section in category-1 SA128

block body.

xxviii. E2C2 – 𝑩𝟐𝒎
𝒐𝒑𝒕

 Excep2 Content (E2L2 * E2B2 bits): Uses E2L2 * E2B2 bits to

represent all the indices in the exception block 𝐸22 .

xxix. E3L2 – 𝑩𝟐𝒎
𝒐𝒑𝒕

 Excep3 Length (8 bits): Uses 8 bits to represent the length of the

exception block 𝐸32 . Explanation of the bit representation is same as that

provided for the ‘E3L’ section in category-1 SA128 block body.

xxx. E3B2 – 𝑩𝟐𝒎
𝒐𝒑𝒕

 Excep3 Bits (8 bits): Uses 8 bits to represent the bit required to

represent each index value in exception block 𝐸32 . Explanation of the bit

representation is same as that provided for the ‘E3B’ section in category-1 SA128

block body.

46

xxxi. E3C2 – 𝑩𝟐𝒎
𝒐𝒑𝒕

 Excep3 Content (E3L2 * E3B2 bits): Uses E3L2 * E3B2 bits to

represent all the indices in the exception block 𝐸32 .

4.2.3 Compression of Category 3 data types

The compression of category 3 datatypes take place in 6 sequential steps which are

explained below:

Step 1 – Divide into blocks: In this step, all the data values belonging to the column being

compressed is divided into blocks of 128 values. If there are 𝑁 values in the column, the

total number of blocks after division will be ⌊𝑁/128⌋ values where each block contains

128 values each except the last block which contains 𝑁%128 + 1 values (between 1 and

128). Refer to figure 4.1. Therefore, there cannot be an empty block which contains 0

number of values.

Step 2 – Create block copies: For each block Bm containing 128 values, where 1 <= m <=

⌈N/128⌉, we create three more copies of it and call them Bm’, Bm’’ and Bm’’’ respectively.

In total, we have four identical blocks of 128 values each.

Figure 4.11: Illustration of Block Copy Creation Step in Category-3 Compression

47

Step 3 – Compress using category-1 compression algorithm: For blocks 𝐵 , 𝐵 ′ and

𝐵 ′′, follow steps 3 to 11 of the category-1 compression algorithm and we get the final

encoded sub-blocks 𝐵1 and 𝐵1 along with their exception blocks 𝐸11 , 𝐸21 , 𝐸31

and 𝐸12 , 𝐸22 , 𝐸32 respectively.

Step 4 – Compress using XOR-based encoding variant: In this step, we compute a XOR

between all contiguous values in block 𝐵 ′′′. During XOR encoding, if there are NULL

values in the block Bm’’’, we leave them as it is. During XOR encoding on block Bm’’’, for

every non-null value 𝑣, we replace it with its XOR value 𝑑 as 𝑑 = 𝑝𝑟𝑒𝑣 ^ 𝑣 where 𝑝𝑟𝑒𝑣

is the previously scanned non-null value in the block (the values 𝑝𝑟𝑒𝑣 and 𝑣 do not

necessarily need to be adjacent to each other as there can me any number of NULL values

between them which remain unchanged). If the previously scanned non-null value 𝑝𝑟𝑒𝑣

does not exist, then v is the first 32-bit or 64-bit value in 𝐵 ′′′ (32-bit for real datatype and

64-bit for double precision datatype). Therefore, we keep the first non-NULL value v

unchanged and compute XOR over the following elements. For example: [5.5, 5.6, NULL,

5.1] gets converted to [5.5, 5.562684646268e-310, NULL, 2.781342323134e-309]. Notice

here that the first value remains unchanged because a non-null value does not exist prior to

the first element. The first 32-bit or 64-bit value (for real and double precision datatypes

respectively) in 𝐵 ′′′ is left unchanged. We store the first non-NULL value 𝑓 and its

index position 𝑓 in 𝐵 ′′′ We then remove 𝑓 from block 𝐵 ′′′. If the block contains

all NULL values, then 𝑓 = 0 and 𝑓 = 128.

 Next, we scan through all the XOR-ed values in the block 𝐵 ′′′ and find the total

number of leading zeros 𝑙 and trailing zeros 𝑡 common to all the XOR-ed values

in block 𝐵 ′′′ in its 32-bit or 64-bit floating point representation (32-bit for real datatype

and 64-bit for double precision datatype). Once we have the values 𝑙 and 𝑡 , we

remove 𝑙 number of leading zeros from all the non-NULL values and 𝑡 number

of trailing zeros in block 𝐵 ′′′. For each non-NULL value, the bits remaining after

48

trimming the leading and trailing zeros are converted to an integer representation and stored

in 𝐵 ′′′ in place of the original non-NULL value. The below diagram demonstrates this for

real datatype values. In case of double precision datatypes, each value below will be

represented using its 64-bit floating point representation instead of the 32-bit floating point

representation for real type.

Figure 4.12: Illustration of XOR-Encoding Variant Step in Category-3 Compression

Next, we perform the operations from step 5 to step 10 of category 1 compression on

block 𝐵 ′′′, which includes zig-zag encoding, frame of reference, run-length encoding, bit

packing using modulo, packing NULL values, bit backing of exception blocks. The final

block which we get after this step is 𝐵3 and exception blocks 𝐸13 , 𝐸23 and 𝐸33 .

Step 5 – Block selection: In this step, we choose between selecting the two sub-blocks

𝐵1 , 𝐵2 received from step 3 and the block 𝐵3 received in step 4 respectively. (along

with the exception blocks 𝐸11 , 𝐸21 , 𝐸31 , 𝐸12 , 𝐸22 , 𝐸32 , 𝐸13 , 𝐸23 , 𝐸33

respectively). We choose the block which takes the least number of bits to represent. Let

the number of bits required to represent sub-blocks 𝐵1 and 𝐵2 be 𝑆1 and the number

of bits required to represent block 𝐵3 be 𝑆2 respectively. 𝑆1 and 𝑆2 can be

expressed as follows:

𝑆1 = 𝑁1 ∗ 𝑏1 + 𝑁1 ∗ 𝑒11 + 𝑁1 ∗ 𝑒21 + 𝑁1 ∗ 𝑒31 +

𝑁2 ∗ 𝑏2 + 𝑁2 ∗ 𝑒12 + 𝑁2 ∗ 𝑒22 + 𝑁2 ∗ 𝑒32

49

𝑆2 = 𝑁3 ∗ 𝑏3 + 𝑁3 ∗ 𝑒13 + 𝑁3 ∗ 𝑒23 + 𝑁3 ∗ 𝑒33

where,

𝑁1 = Number of elements in block 𝐵1 ,

𝑏1 = Number of bits required to represent each value in 𝐵1 ,

𝑁1 = Number of elements in exception block 𝐸11 ,

𝑒11 = Number of bits required to represent each index value in 𝐸11 ,

𝑁1 = Number of elements in exception block 𝐸21 ,

𝑒21 = Number of bits required to represent each index value in 𝐸21 ,

𝑁1 = Number of elements in exception block 𝐸31 ,

𝑒31 = Number of bits required to represent each index value in 𝐸31 ,

𝑁2 = Number of elements in block 𝐵2 ,

𝑏2 = Number of bits required to represent each value in 𝐵2 ,

𝑁2 = Number of elements in exception block 𝐸12 ,

𝑒12 = Number of bits required to represent each index value in 𝐸12 ,

𝑁2 = Number of elements in exception block 𝐸22 ,

𝑒22 = Number of bits required to represent each index value in 𝐸22 ,

𝑁2 = Number of elements in exception block 𝐸32 ,

𝑒32 = Number of bits required to represent each index value in 𝐸32 ,

𝑁3 = Number of elements in block 𝐵3 ,

𝑏3 = Number of bits required to represent each value in 𝐵3 ,

𝑁3 = Number of elements in exception block 𝐸13 ,

𝑒13 = Number of bits required to represent each index value in 𝐸13 ,

𝑁3 = Number of elements in exception block 𝐸23 ,

𝑒23 = Number of bits required to represent each index value in 𝐸23 ,

𝑁3 = Number of elements in exception block 𝐸33 ,

50

𝑒33 = Number of bits required to represent each index value in 𝐸33 ,

We select between the two sub-blocks 𝐵1 , 𝐵2 and the block 𝐵3 (and their

exception blocks) which occupy the least number of bits 𝑆 = min (𝑆1 , 𝑆2). If sub-

blocks 𝐵1 , 𝐵2 were selected, we call the selected sub-blocks 𝐵1 and 𝐵2

respectively and its exception blocks 𝐸11 , 𝐸21 and 𝐸31 respectively. We use two

variables called 𝐸𝑛𝑐1 and 𝐸𝑛𝑐2 to store which encoding was used to encode the

selected sub-blocks 𝐵1 and 𝐵2 .

If the sub-blocks 𝐵1 and 𝐵2 were selected, then 𝐸𝑛𝑐1 and 𝐸𝑛𝑐2 have three

possible values specifying the encoding used on that block:

i. 𝐸𝑛𝑐1 /𝐸𝑛𝑐2 = 0: Uncompressed.

ii. 𝐸𝑛𝑐1 /𝐸𝑛𝑐2 = 1: Delta encoding.

iii. 𝐸𝑛𝑐1 /𝐸𝑛𝑐2 = 2: Delta of delta encoding.

If the block selected as the final block is 𝐵3 , we call the selected block 𝐵3 . We

use a variable 𝐸𝑛𝑐3 to represent which encoding was used in block 𝐵3 . 𝐸𝑛𝑐3 has

only one possible value specifying the encoding used on that block:

i. 𝐸𝑛𝑐3 = 3: XOR-encoding

Step 6 – Encode as category-3 SA128 block: We encode our selected block 𝐵 and

exception blocks 𝐸1 , 𝐸2 and 𝐸3 by wrapping them within a category-3 SA128

block. The category-3 SA128 block consists of two parts:

i. A category-3 SA128 block header block – Contains metadata information about the

block.

ii. A category-3 SA128 block body – Contains the data encoded within the block.

The components of a category-3 SA128 block header and block body depend on

which blocks were selected in step 6. If the sub-blocks 𝐵1 and 𝐵2 were selected, then

the components of a category-3 SA128 block header and block body are same as the

51

category-2 block header and block body. Refer to figure 4.10 for details regarding each

component.

If the blocks 𝐵3 was selected in step 5, then the components of a category-3

SA128 block header and block body can be given below:

Figure 4.13: Components of SA128 Block for 𝐸𝑛𝑐1𝑚 = 3 in Category-3 Compression

i. BS – Block size in bytes (32 bits): Stores the size of the category-3 block (block

header and the block body) using 32-bits.

ii. CID – Column ID (11 bits): Uses 11 bits to represent the column ID of the column

being compressed. Explanation of the bit representation is same as that provided for

the ‘CID’ section in category-1 SA128 block header.

iii. D – Datatype (4 bits): Uses 4 bits to represent the data type on the column being

compressed. Explanation of the bit representation is same as that provided for the

‘D’ section in category-1 SA128 block header.

iv. ET – Encoding Type (2 bits): Uses 2 bits to represent the encoding type 𝐸𝑛𝑐3

(which is 3 for XOR encoding) for sub-block 𝐵3 .

v. FV – First Value (32 or 64 bits): Uses 32 bits (for real data type) or 64-bits (for

double precision datatype) to represent the first non-NULL value 𝑓 in block

𝐵3 . If all values in 𝐵3 are null, then 𝑓 = 0 is stored.

vi. FID – Index of first value (8 bits): Uses 8 bits to represent the index of the first

non-NULL value in block 𝐵3 . The largest possible index value in block

𝐵3 containing 128 values before step 4 is 127. Therefore, 8 bits are adequate to

52

represent the index of the first non-NULL value. If all values in 𝐵3 are NULL,

then a value of 𝑓 = 128 is stored.

vii. TV – Translated Value (32 or 64 bits): Uses 32 bits (for real data type) or 64-bits

(for double precision datatype) to represent the translated value 𝑡 received after

the frame of reference with modulo operation at the end of step 4.

viii. L – Leading Zeros (6 bits): Uses 6 bits to represent the value 𝑙 computed in

step 4 representing the number of leading zeros. 𝑙 can have a maximum value

of 64 (for double precision data type) which can be adequately represented using 6

bits.

ix. T – Trailing Zeros (6 bits): Uses 6 bits to represent the value 𝑡 computed in

step 4 representing the number of trailing zeros. 𝑡 can have a maximum value

of 64 (for double precision data type) which can be adequately represented using 6

bits.

x. DL – Data Length (8 bits): Uses 8 bits to represent the length of the 𝐵3 block.

Explanation of the bit representation is same as that provided for the ‘DL’ section

in category-1 SA128 block body.

xi. DB – Data Bits (6 bits): Uses 6 bits to represent the number of bits required to

represent each data value in sub-block 𝐵3 . Since the maximum number of bits

required to represent a data value is 64 bits (in the case of double precision

datatype), 6 bits are adequate to represent the number of bits.

xii. DC – Data Content (DL * DB bits): Uses DL * DB bits to represent all the values

in sub-block 𝐵3 .

xiii. E1L – Excep1 Length (8 bits): Uses 8 bits to represent the length of the exception

block 𝐸13 . Explanation of the bit representation is same as that provided for the

‘E1L’ section in category-1 SA128 block body.

53

xiv. E1B – Excep1 Bits (8 bits): Uses 8 bits to represent the number of bits required to

represent each index value in exception block 𝐸13 . Explanation of the bit

representation is same as that provided for the ‘E1B’ section in category-1 SA128

block body.

xv. E1C – Excep1 Content (E1L * E1B bits): Uses E1L * E1B bits to represent all

the indices in the exception block 𝐸13 .

xvi. E2L – Excep2 Length (8 bits): Uses 8 bits to represent the length of the exception

block 𝐸23 . Explanation of the bit representation is same as that provided for the

‘E2L’ section in category-1 SA128 block body.

xvii. E2B – Excep2 Bits (8 bits): Uses 8 bits to represent the number of bits required to

represent each index value in exception block 𝐸23 . Explanation of the bit

representation is same as that provided for the ‘E2B’ section in category-1 SA128

block body.

xviii. E2C – Excep2 Content (E2L * E2B bits): Uses E2L * E2B bits to represent all

the indices in the exception block 𝐸23 .

xix. E3L – Excep3 Length (8 bits): Uses 8 bits to represent the length of the exception

block 𝐸33 . Explanation of the bit representation is same as that provided for the

‘E3L’ section in category-1 SA128 block body.

xx. E3B – Excep3 Bits (8 bits): Uses 8 bits to represent the number of bits required to

represent each index value in exception block 𝐸33 . Explanation of the bit

representation is same as that provided for the ‘E3B’ section in category-1 SA128

block body.

xxi. E3C – Excep3 Content (E3L * E3B bits): Uses E3L * E3B bits to represent all

the indices in the exception block 𝐸33 .

54

4.2.4 Compression of Category 4 data types

The compression of category-4 datatypes takes place in 3 sequential steps which are

explained below:

Step 1 – Divide into blocks: In this step, all the data values belonging to the column being

compressed is divided into blocks of 128 values. If there are 𝑁 values in the column, the

total number of blocks after division will be ⌊𝑁/128⌋ values where each block contains

128 values each except the last block which contains 𝑁%128 + 1 values (between 1 and

128). Therefore, there cannot be an empty block which contains 0 number of values.

Step 2 – Encode run-length, bit-packing and NULL packing: Execute steps 7 to 10 of

category-1 compression algorithm on a single block copy 𝐵 . We call our resultant block

after all the above operations as 𝐵 and the resultant exception blocks are

𝐸1 , 𝐸2 𝑎𝑛𝑑 𝐸3 respectively.

Step 3 – Encode as category-4 SA128 block: We encode our selected block 𝐵 and

exception blocks 𝐸1 , 𝐸2 and 𝐸3 by wrapping them within a category-4 SA128

block. The category-4 SA128 block consists of two parts:

i. A category-4 SA128 block header – Contains metadata information about the block.

ii. A category-4 SA128 block body – Contains the data encoded within the block.

The components of a category-4 SA128 block header and block body can be given below:

Figure 4.14: Components of SA128 Block in Category-4 Compression

55

i. BS – Block size in bytes (32 bits): Stores the size of the category-4 block (block

header and the block body) using 32-bits.

ii. CID – Column ID (11 bits): Uses 11 bits to represent the column ID of the column

being compressed. Explanation of the bit representation is same as that provided for

the ‘CID’ section in category-1 SA128 block header.

iii. D – Datatype (4 bits): Uses 4 bits to represent the data type on the column being

compressed. Explanation of the bit representation is same as that provided for the ‘D’

section in category-1 SA128 block header.

iv. DL – Data Length (8 bits): Uses 8 bits to represent the length of the 𝐵 block.

Explanation of the bit representation is same as that provided for the ‘DL’ section in

category-1 SA128 block body.

v. DB – Data Bits (1 bit): Uses 1 bit to represent the number of bits required to

represent each data value in sub-block 𝐵 . Since the maximum number of bits

required to represent a data value of ‘true’ and ‘false’ is 1 bit (0 for false and 1 for

true), 1 bit is adequate to represent the number of bits.

vi. DC – Data Content (DL * DB bits): Uses DL * DB bits to represent all the values

in sub-block 𝐵 .

vii. E1L – Excep1 Length (8 bits): Uses 8 bits to represent the length of the exception

block 𝐸1 . Explanation of the bit representation is same as that provided for the

‘E1L’ section in category-1 SA128 block body.

viii. E1B – Excep1 Bits (8 bits): Uses 8 bits to represent the number of bits required to

represent each index value in exception block 𝐸1 . Explanation of the bit

representation is same as that provided for the ‘E2B’ section in category-1 SA128

block body.

ix. E1C – Excep1 Content (E1L * E1B bits): Uses E1L * E1B bits to represent all the

indices in the exception block 𝐸1 .

56

x. E2L – Excep2 Length (8 bits): Uses 8 bits to represent the length of the exception

block 𝐸2 . Explanation of the bit representation is same as that provided for the

‘E1L’ section in category-1 SA128 block body.

xi. E2B – Excep2 Bits (8 bits): Uses 8 bits to represent the number of bits required to

represent each index value in exception block 𝐸2 . Explanation of the bit

representation is same as that provided for the ‘E2B’ section in category-1 SA128

block body.

xii. E2C – Excep2 Content (E2L * E2B bits): Uses E2L * E2B bits to represent all the

indices in the exception block 𝐸2 .

xiii. E3L – Excep3 Length (8 bits): Uses 8 bits to represent the length of the exception

block 𝐸3 . Explanation of the bit representation is same as that provided for the

‘E1L’ section in category-1 SA128 block body.

xiv. E3B – Excep3 Bits (8 bits): Uses 8 bits to represent the number of bits required to

represent each index value in exception block 𝐸3 . Explanation of the bit

representation is same as that provided for the ‘E2B’ section in category-1 SA128

block body.

xv. E3C – Excep3 Content (E3L * E3B bits): Uses E3L * E3B bits to represent all the

indices in the exception block 𝐸3 .

4.2.5 Compression of Category 5 data types

The compression of category-5 datatypes takes place in 3 sequential steps which are

explained below:

Step 1 – Create dictionary: Read all the string values one by one from the character or

character varying type column being compressed. For each distinct string value, store them

57

onto a dictionary. The dictionary capacity, 𝐷 depends on the in-memory capacity of the

system. The ideal size of the dictionary should be, 𝐷 = 2 − 1 where 𝑛 > 0. In our

implementation for SA128, we have implemented the dictionary capacity as 𝐷 = 2 −

1 = 65535. In the dictionary, we map each unique string to an unsigned integer value

starting between 0 and 65535 (𝐷).

Step 2 – LZ77 compression or LZ77 with dictionary compression: We can have three

possible cases:

i. Case 1: If the number of distinct strings 𝑁 > 𝐷 , this means that the

dictionary is not large enough to represent all the strings in the column being

compressed.

ii. Case 2: Let the size of all the column string values be 𝐶 and let the size of the

dictionary be 𝐷 , Therefore,

𝐶 = ∑ 𝐿 ∗ 8 (for character/char type) or,

𝐶 = ∑ 𝐿 ∗ 8 + 16 (for character varying/varchar type)

𝐷 = ∑ log (𝐷) ∗ 𝐿 ∗ 8

where,

𝐿 = The max length n provided in the datatype definition,

𝐿 = Length of string at index position I,

For character/char type, the size of a string is the size of all its characters (included

padded spaces at the end of the string to make it reach 𝐿 length). Each character

occupies 1 byte which when multiplied by 8 gives the size of the string in bits.

For character varying/varchar type, the size of a string is the size of all its characters +

16 extra bits.

58

In this case, if 𝐶 < 𝐷 , this means that there aren’t too many repeated values in

the column and storing them in a dictionary for dictionary compression only

increases the storage requirement. This scenario is often encountered if the string

column being compressed is part of a normalized table. When such a column is

compressed, the low redundancy of the column makes it have near distinct values.

This when combined with the size of mapped unsigned integers in the dictionary

tends to increase the size of the resultant dictionary 𝐷 .

iii. Case 3: 𝑁 ≤ 𝐷 and 𝐶 ≥ 𝐷 : This case arises when the number of

distinct strings is less than the capacity of the dictionary and the size of the column

is less than the dictionary size. The second condition is often satisfied when the

column belongs to a denormalized table. In such columns, there may be a large range

of repeated values which make it a good candidate for dictionary-based compression.

Step 2.1 – LZ77 compression: If we fall into one of the scenarios specified in case 1 or

case 2, we directly apply LZ77 compression (Wesam Manassra, 2020) to all our column

values. We do this by dividing all the string values into blocks of size 65535 (𝐷). We

compress each block 𝐵 of size 65535 where 1 <= 𝑚 <= ⌈𝑁/65535⌉ using LZ77

compression.

Step 2.2 – LZ77 with dictionary compression: If we fall into the scenario specified in

case 3, we represent each string in the column being compressed by its unsigned integer

representation from the dictionary. We then compress this sequence of unsigned integers

using steps 1 to 11 of category-1 compression. Let us call final compressed block we get

after this operation as 𝐵 , its exception blocks as 𝐸1 , 𝐸2 𝑎𝑛𝑑 𝐸3 respectively,

the translated value after frame of reference step as 𝑡 and the encoding used to encode the

block in the delta and delta encoding step as 𝐸𝑛𝑐 . We then compress the strings in the

59

dictionary (which are less than 65535 in number) using LZ77 compression (Wesam

Manassra, 2020).

Step 3 – Encode as SA128 block: Our column compressed in step 2 in wrapped around a

category-5 SA128 block. A category-5 SA128 block has two types:

i. A category-5 SA128 string block – If our column was compressed using LZ77

compression in step 2.1 or if our dictionary strings were compressed using LZ77 with

dictionary compression in step 2.2, we use a category-5 SA128 string block to encode

the dictionary or column strings.

ii. A category-5 SA128 integer block – If our column was compressed using LZ77 with

dictionary compression in step 2.2, we use a category-5 SA128 integer block which

encodes the unsigned integers in the dictionary from step 2.2. This block is only used

for columns compressed using LZ77 using dictionary compression in step 2.2.

The category-5 SA128 block consists of two parts:

i. A category-5 SA128 block header – Contains metadata information about the block.

ii. A category-5 SA128 block body – Contains the data encoded within the block.

The components of a category-5 SA128 string block can be given below:

Figure 4.15: Components of SA128 String Block in Category-5 Compression

i. BS – Block size in bytes (32 bits): Stores the size of the category-5 block (block

header and the block body) using 32-bits.

ii. CID – Column ID (11 bits): Uses 11 bits to represent the column ID of the column

being compressed. Explanation of the bit representation is same as that provided for

60

the ‘CID’ section in category-1 SA128 block header.

iii. D – Datatype (4 bits): Uses 4 bits to represent the data type on the column being

compressed. Explanation of the bit representation is same as that provided for the ‘D’

section in category-1 SA128 block header.

iv. DF – Dictionary Flag (1 bit): Uses 1 bit to represent whether the block is a category-

4 SA128 string block or a category-4 SA128 integer block. We use bit ‘0’ to represent

a category-5 SA128 integer block and bit ‘1’ to represent a category-5 SA128 string

block.

v. SF – Storage Flag (1 bit): Uses 1 bit to represent whether to hold the dictionary in

memory or not. If this bit is set to ‘0’, then the dictionary is discarded after encoding

the category-5 SA128 string block. If this bit is set to ‘1’, then the dictionary is stored

in memory until the next category-5 SA128 integer block has been encoded since the

dictionary is required to extract the unsigned integer representations of the strings.

vi. NS – Number of Strings (16 bits): Uses 16 bits to store the number of strings being

compressed as part of the category-5 SA128 string block. This value can range

between 1 to 65535 (𝐷).

vii. LQ – Length of Quotient (16 bits): Uses 16 bits to represent the value 𝐿 , where

𝐿 = 𝐿 /𝐷 and 𝐿 = Length of the LZ77 compressed string and 𝐷 = Capacity

of the dictionary (a value of 65535 in our case).

viii. LR – Length of Remainder (16 bits): Uses 16 bits to represent the value 𝐿 , where

𝐿 = 𝐿 % 𝐷 and 𝐿 = Length of the LZ77 compressed string and 𝐷 = Capacity

of the dictionary (a value of 65535 in our case).

ix. EB – Exempt Bits (3 bits): Uses 3 bits to represent the additional bits appended to

the binary representation of the compressed string (CS) to make the category-5

SA128 string block occupy a whole number of bytes, i.e., the number of bits added

to the end of the binary representation of the block to make the entire length of the

binary representation a multiple of 8 (1 byte). This is represented by the value 𝐸 =

61

 𝐿 % 8 where 𝐿 = Length of the category-5 SA128 string block. Since 0 ≤ 𝐸 < 8,

we can represent this quantity using 3 bits.

x. CS – Compressed String (LQ * 𝑫𝒄𝒂𝒑 (or 65535) + LR – EB bits): Represents the

LZ77 compressed string in bits.

The components of a category-5 SA128 integer block can be given below:

Figure 4.16: Components of SA128 Integer Block in Category-5 Compression

i. BS – Block size in bytes (32 bits): Stores the size of the category-5 block (block

header and the block body) using 32-bits.

ii. CID – Column ID (11 bits): Uses 11 bits to represent the column ID of the column

being compressed. Explanation of the bit representation is same as that provided for

the ‘CID’ section in category-1 SA128 block header.

iii. D – Datatype (4 bits): Uses 4 bits to represent the data type on the column being

compressed. Explanation of the bit representation is same as that provided for the ‘D’

section in category-1 SA128 block header.

xi. DF – Dictionary Flag (1 bit): Uses 1 bit to represent whether the block is a category-

5 SA128 string block or a category-5 SA128 integer block. We use bit ‘0’ to represent

a category-5 SA128 integer block and bit ‘1’ to represent a category-5 SA128 string

block.

xii. ET – Encoding Type (2 bits): Uses 2 bits to represent the 𝐸𝑛𝑐 encoding type value

for the category-5 SA128 integer block. Explanation of the bit representation is same

as that provided for the ‘ET’ section in category-1 SA128 block body.

xiii. TV – Translated Value (16 bits): Uses 16 bits to represent the translated value 𝑡

62

received after the frame of reference with modulo operation at the end of step 2.2.

Explanation of the bit representation is same as that provided for the ‘TV’ section in

category-1 SA128 block body.

xiv. DL – Data Length (8 bits): Uses 8 bits to represent the length of the 𝐵 block.

Explanation of the bit representation is same as that provided for the ‘DL’ section

in category-1 SA128 block body.

xv. DB – Data Bits (4 bits): Uses 4 bits to represent the number of bits required to

represent each data value in sub-block 𝐵 . Since the maximum number of bits

required to represent a data value is 16 bits (unsigned integers between 0 and

65535), 4 bits are adequate to represent the number of bits.

xvi. DC – Data Content (DL * DB bits): Uses DL * DB bits to represent all the values

in sub-block 𝐵3 .

xvii. E1L – Excep1 Length (8 bits): Uses 8 bits to represent the length of the exception

block 𝐸1 . Explanation of the bit representation is same as that provided for the

‘E1L’ section in category-1 SA128 block body.

xviii. E1B – Excep1 Bits (8 bits): Uses 8 bits to represent the number of bits required to

represent each index value in exception block 𝐸1 . Explanation of the bit

representation is same as that provided for the ‘E1B’ section in category-1 SA128

block body.

xix. E1C – Excep1 Content (E1L * E1B bits): Uses E1L * E1B bits to represent all

the indices in the exception block 𝐸1 .

xx. E2L – Excep2 Length (8 bits): Uses 8 bits to represent the length of the exception

block 𝐸2 . Explanation of the bit representation is same as that provided for the

‘E1L’ section in category-1 SA128 block body.

xxi. E2B – Excep2 Bits (8 bits): Uses 8 bits to represent the number of bits required to

represent each index value in exception block 𝐸2 . Explanation of the bit

63

representation is same as that provided for the ‘E2B’ section in category-1 SA128

block body.

xxii. E2C – Excep2 Content (E2L * E2B bits): Uses E2L * E2B bits to represent all

the indices in the exception block 𝐸2 .

xxiii. E3L – Excep3 Length (8 bits): Uses 8 bits to represent the length of the exception

block 𝐸3 . Explanation of the bit representation is same as that provided for the

‘E1L’ section in category-1 SA128 block body.

xxiv. E3B – Excep3 Bits (8 bits): Uses 8 bits to represent the number of bits required to

represent each index value in exception block 𝐸3 . Explanation of the bit

representation is same as that provided for the ‘E2B’ section in category-1 SA128

block body.

xxv. E3C – Excep3 Content (E3L * E3B bits): Uses E3L * E3B bits to represent all

the indices in the exception block 𝐸3 .

4.3 Compression Stage 2: rANS Entropy Encoding

In this stage we further compress all the SA128 blocks compressed at the end of

Stage 1 using the ranged asymmetric numeral systems (rANS) entropy encoding

technique. This stage takes place in four steps:

Step 1 – Preparing list of input symbols: In this step, we scan each byte of data (8 bits)

one by one from the binary representation of all the compressed SA128 blocks. We

convert each scanned byte of information into an ASCII character (between 0 to 255).

This ASCII character is inserted into our list of input symbols (𝐼) to be compressed using

rANS. We also push each unique input symbol to our set of input symbols (∑) to be

compressed by rANS.

64

Step 2 – Computing probability distribution of input symbols: In this step, we

compute the probability distribution 𝐹(𝑥), of the set of input symbols (∑). For each

symbol 𝑥 ∈ ∑, we calculate the frequency, 𝑓(𝑥) of 𝑥 such that 𝑓(𝑥) =

()

(∑)
. The probability distribution is saved in an internal

database table and occupies 2048 bytes (2 KB) of storage. The probability distribution

used to encode the symbols are needed during decompression to recover back the

symbols.

Step 3 – Divide symbols into blocks and encode using rANS: In this step, we divide

the list of input symbols ‘I’ into blocks containing 1024 input symbols each. For each

symbol 𝑥 ∈ 𝐵 , where 𝐵 is a block being encoded, we pass 𝑥 and its frequency 𝑓(𝑥) as

arguments to the rANS encoder (Fedor Glazov, 2020) to encode symbol 𝑥. After all

symbols have been encoded, we receive the compressed data as a list of 32-bit integers

′𝑂′.

Step 4 – Encode as stage-2 SA128 block: For each block of 1024 symbols being encoded

using rANS, we encapsulate it within a stage-2 SA128 block. The stage-2 SA128 block

consists of two parts:

i. A stage-2 SA128 block header – Contains metadata information about the block.

ii. A stage-2 SA128 block body – Contains the data encoded within the block.

The components of a category-4 SA128 string block can be given below:

Figure 4.17: Components of Stage-2 SA128 Block in Stage-2 Compression

65

i. SC – Symbol Count (16 bits): Stores the number of symbols encoded by the stage-

2 SA128 block. Since block 𝐵 can have between 1 to 1024 symbols, therefore 16

bits are adequate to represent this quantity.

ii. CS – Compressed Size (16 bits): Uses 16 bits to represent the size of the

compressed data using rANS in the block 𝐵 .

iii. CD – Compressed Data (CS bits): Stores the final encoded data using CS number

of bits. Convert each compressed data received as a 32-bit integer. Store the binary

representation of the stage-2 SA128 block and store them onto our disk as our final

compressed data for the block.

66

Chapter 5

SA128 DECOMPRESSION

The SA128 decompression is more straightforward compared to the SA128
compression. The decompression takes place in two stages:

i. Decompression Stage 1 – rANS entropy decoding stage: Uses an rANS variant of

Asymmetric Numeral Systems (Duda, J., 2013) to decompress table data represented
as a compressed integer and converts them to a list of ASCII symbols.

ii. Decompression Stage 2 – Column based decompression stage: Decompresses the list

of symbols representing the encoded SA128 blocks for all columns in the table and
retrieves the original data values for each column in the table with the supported
datatype.

5.1 Decompression Stage 1: rANS Entropy Decoding

In this stage we decompress all the stage-2 SA128 blocks compressed at the end of

section 4.3 using the ranged asymmetric numeral systems (rANS) entropy decoding

technique. This stage takes place in four steps:

Step 1 – Read compressed blocks: In this step, we read each encoded block from section

4.3 in streamlined fashion. We read the first 16 bits signifying the Symbol Count (SC) and

convert it into its integer representation. Read the next 16 bits signifying the Compressed

Size (CS) of the data and convert it into its integer representation. Next, read CS number

of bits from the stream and signifying the Compressed Data (CD) of the block. This process

is repeated for all compressed blocks until there are no more bits to be read from the stream.

Step 2 – Decode stage-2 SA128 block: In this step, we fetch our probability distribution

𝐹(𝑥) for the encoded symbols saved in the internal database table during encoding of stage-

2 SA128 block. Since the number of symbols encoded in the block is equal to SC, we

perform an rANS decode (Fedor Glazov, 2020) operation SC number of times. In each

67

iteration, we pass the probability distribution 𝐹(𝑥) and the compressed data CD to the

decoder so that the original symbols can be retrieved.

Step 3 – Convert symbols to bytes: In this step, each symbol is converted back from its

ASCII representation to its byte representation (8 bits) and stored in memory for the next

compression stage.

5.2 Decompression Stage 2: Column-based Decompression

In this stage, we sequentially decompress each column of our database tables from

their encoded SA128 blocks for all 5 data type categories. The decompression stage 2 takes
place using the following steps:

Step 1 – Read compressed blocks: In this step, we iteratively read all stage-1 SA128
blocks belonging to all of the 5 categories from our stream of decoded bits at the end of
section 5.1. For each SA128 block, we read the first 32 bits signifying the overall Block
Size (BS) and convert it into its integer representation. Next, read BS bits from the stream
which contains the binary representation 𝐵 of entire compressed SA128 block. Next, we
read 11 bits from 𝐵 signifying the Column ID (CID) which the compressed block belongs
to and convert it into its integer representation. Next, we read 4 bits from 𝐵 signifying the
datatype of the column encoded by the block and convert it into its integer representation.
Using the ID value in D, we can retrieve the datatype of the column represented by the
block using the below table and determine the category which this SA128 block falls under:

Datatype ID (D) Datatype

0 SmallInt/Int2

1 Integer/Int4

2 Bigint/Int8

3 Date

4 Timestamp

5 Timestamp with timezone/Timestamptz

6 Time

7 Time with timezone/Timez

8 Numeric/Decimal

68

9 Real/Float4

10 Double Precision/Float8

11 Boolean

12 Character/Char

13 Character Varying/Varchar

Table 5.1: Mapping of Datatype IDs to Supported Datatypes

The category of the SA128 block can be determined in the following way:

i. If the value D lies between 0 to 7, then our SA128 block is a category-1 SA128 block.

ii. If the value D is, then our SA128 block is a category-2 SA128 block.

iii. If the value D lies between 9 to 10, then our SA128 block is a category-3 SA128

block.

iv. If the value D is 11, then our SA128 block is a category-4 SA128 block.

v. If the value D lies between 12 to 13, then our SA128 block is a category-5 SA128

block.

Depending on which category the SA128 belongs to using the above logic, we follow
a different decompression approach explained in the next sections (section 5.2.1 to 5.2.5).
This way, we follow this process iteratively until there are no more bits to be read from the
stream.

5.2.1 Decompression of Category 1 data types

If the SA128 block being decoded belongs to category 1, we follow the following steps to
decode it:

Step 1 – Unpack Block Contents: Read 2 bits from the block stream 𝐵 and convert it
into its integer representation, which signifies the encoded value 𝐸𝑛𝑐 of the current 𝑚
data block 𝐵 being decoded where 1 ≤ 𝑚 ≤ ⌊𝑁/128⌋ + 1 and N is the total number of
blocks encoded using stage-1 compression. Next, we unpack the translated value (𝑡) using
the following rules:

69

i. If D is 0, read 16 bits from 𝐵 and convert it into its integer representation which
represents the translated value 𝑡 for block 𝐵 .

ii. If D is 1 or 3, read 32 bits from 𝐵 and convert it into its integer representation which

represents the translated value 𝑡 for block 𝐵 .

iii. If D is 2, 4, 5 or 6, read 64 bits from 𝐵 and convert it into its integer representation

which represents the translated value 𝑡 for block 𝐵 .

iv. If D is 7, read 96 bits from 𝐵 and convert it into its integer representation which

represents the translated value 𝑡 for block 𝐵 .

Read 8 bits from 𝐵 and convert it into its integer representation which represents the
block length 𝑁 of the compressed data in data block 𝐵 . Lastly, read 8 bits from 𝐵 and
convert it into its integer representation which represents the block bits 𝑏 of the
compressed data in block 𝐵 . Read the next 𝑁 ∗ 𝑏 bits from 𝐵 , where every 𝑏 bits
read is converted to its integer representation and stored in 𝐵 .

Read the next 8 bits from 𝐵 and convert it to its integer representation which signifies

the length 𝑁 of the Exception 1 block 𝐸1 for block 𝐵 . Read the next 8 bits from 𝐵
and convert it to its integer representation which signifies the exception block bits 𝑒1 of
the Exception 1 block 𝐸1 for block 𝐵 . Next, read 𝑁 ∗ 𝑒1 bits from 𝐵 , where every
𝑒1 bits read is converted to its integer representation and stored in 𝐸1 .

If there are bits available in 𝐵 , read the next 8 bits from 𝐵 and convert it to its integer

representation which signifies the length 𝑁 of the Exception 2 block 𝐸2 for block 𝐵 .
Read the next 8 bits from 𝐵 and convert it to its integer representation which signifies the
exception block bits 𝑒2 of the Exception 2 block 𝐸2 for block 𝐵 . Next, read 𝑁 ∗
𝑒2 bits from 𝐵 , where every 𝑒2 bits read is converted to its integer representation and
stored in 𝐸2 .

If there are bits available in 𝐵 , read the next 8 bits from 𝐵 and convert it to its integer

representation which signifies the length 𝑁 of the Exception 3 block 𝐸3 for block 𝐵 .
Read the next 8 bits from 𝐵 and convert it to its integer representation which signifies the
exception block bits 𝑒3 of the Exception 3 block 𝐸3 for block 𝐵 . Next, read 𝑁 ∗
𝑒3 bits from 𝐵 , where every 𝑒3 bits read is converted to its integer representation and
stored in 𝐸3 .

Step 2 – Unpack NULLs: In this step, for each value 𝑖 ∈ 𝐸3 , we replace the ‘0’ value
at index position 𝑖 in 𝐵 with NULL, i.e., 𝐵 [𝑖] = 𝑁𝑈𝐿𝐿.

Step 3 – Bit Unpacking using Modulo Technique: In this step, we find the maximum
value 𝑚𝑎𝑥𝑉𝑎𝑙 which can be represented using 𝑏 bits. The value 𝑚𝑎𝑥𝑉𝑎𝑙 can be
represented as:

𝑚𝑎𝑥𝑉𝑎𝑙 = 2 − 1

70

For each value 𝑖 ∈ 𝐸2 . We perform the below transformations on block 𝐵 :

i. 𝐵 [𝑖] = 𝐵 [𝑖] ∗ 𝑚𝑎𝑥𝑉𝑎𝑙 + 𝐵 [𝑖 + 1]

ii. 𝑅𝑒𝑚𝑜𝑣𝑒 𝑣𝑎𝑙𝑢𝑒 𝑎𝑡 𝐵 [𝑖 + 1] 𝑎𝑛𝑑 𝑠ℎ𝑖𝑓𝑡 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝑙𝑒𝑓𝑡 𝑎𝑓𝑡𝑒𝑟 𝑖𝑛𝑑𝑒𝑥 𝑖 +
1 𝑏𝑦 𝑜𝑛𝑒.

iii. 𝐷𝑒𝑐𝑟𝑒𝑎𝑠𝑒 𝑠𝑖𝑧𝑒 𝑜𝑓 𝑏𝑙𝑜𝑐𝑘 𝑁 𝑏𝑦 1, 𝑖. 𝑒. , 𝑁 = 𝑁 − 1.

Step 4 – Decode Run-length: In this step, for each value 𝑖 ∈ 𝐸1 , we perform run-length
decoding using the below transformations on block 𝐵 :

i. 𝑟 = 𝐵 [𝑖]
ii. Remove value at 𝐵 [𝑖] 𝑎𝑛𝑑 𝑠ℎ𝑖𝑓𝑡 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝑙𝑒𝑓𝑡 𝑎𝑓𝑡𝑒𝑟 𝑖𝑛𝑑𝑒𝑥 𝑖 + 1 𝑏𝑦 𝑜𝑛𝑒.
iv. 𝐷𝑒𝑐𝑟𝑒𝑎𝑠𝑒 𝑠𝑖𝑧𝑒 𝑜𝑓 𝑏𝑙𝑜𝑐𝑘 𝑁 𝑏𝑦 1, 𝑖. 𝑒. , 𝑁 = 𝑁 − 1.
v. Insert the value 𝐵 [𝑖 − 1] 𝑖𝑛𝑡𝑜 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑖, 𝑟 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑖𝑚𝑒𝑠.

vi. 𝐼𝑛𝑐𝑟𝑒𝑎𝑠𝑒 𝑠𝑖𝑧𝑒 𝑜𝑓 𝑏𝑙𝑜𝑐𝑘 𝑁 𝑏𝑦 𝑟, 𝑖. 𝑒. , 𝑁 = 𝑁 + 𝑟.

Step 5 – Translate Frame of Reference: In this step, for each value at index position 𝑖 in
𝐵 , we convert the value by performing the below transformation on block 𝐵 :

i. 𝐵 [𝑖] = 𝐵 [𝑖] + 𝑡

Step 6 – Zigzag decode: In this step, for each value at index position 𝑖 in 𝐵 , we convert
the value by performing the below transformation on block 𝐵 :

i. 𝐵 [𝑖] = (𝐵 [𝑖] ≫> 1) ^ − (𝐵 [𝑖] & 1), where ‘>>>’ is the non-arithmetic shift
operation (0 – padding), ‘-’ is the unary negation operation and ‘^’ in the XOR
operation. This transformation decodes positive numbers back to negative numbers
using zigzag decoding.

Step 7 – Decode Delta and Delta of Delta Encoding: In this step, for each value at index
position 𝑖 in 𝐵 , we perform delta or delta of delta decoding based on the encoding type
𝐸𝑛𝑐 . The decoding technique used can be determined using the below table:

𝑬𝒏𝒄𝒎 Decoding

0 Uncompressed

1 Delta decoding

2 Delta of Delta decoding

Table 5.2: Mapping of 𝐸𝑛𝑐 values to Encoding Type

71

We perform the following transformations on our block based on the 𝐸𝑛𝑐 values:

i. If 𝐸𝑛𝑐 = 0: Keep 𝐵 unchanged.

ii. If 𝐸𝑛𝑐 = 1:

a. If 𝑝𝑟𝑒𝑣 exists, then 𝐵 [𝑖] = 𝑝𝑟𝑒𝑣 − 𝐵 [𝑖] , where 𝑝𝑟𝑒𝑣 is the previous non-
NULL value occurring before 𝐵 [𝑖]. There can be multiple number of NULL
values between 𝑝𝑟𝑒𝑣 and 𝐵 [𝑖].

b. If 𝑝𝑟𝑒𝑣 does not exist, then 𝐵 [𝑖] is left unchanged.

iii. If 𝐸𝑛𝑐 = 2:

a. If 𝑝𝑟𝑒𝑣 and 𝑝𝑝𝑟𝑒𝑣 exist, then 𝐵 [𝑖] = 𝐵 [𝑖] − 𝑝𝑝𝑟𝑒𝑣 + (2 ∗ 𝑝𝑟𝑒𝑣) , where
𝑝𝑟𝑒𝑣 is the previous non-NULL value and pprev is the second previous non-
NULL value occurring before 𝐵 [𝑖] respectively.

b. If 𝑝𝑟𝑒𝑣 and 𝑝𝑝𝑟𝑒𝑣 do not exist, then 𝐵 [𝑖] is left unchanged.

Step 8 – Convert block values from integer representation to datatype representation:
In this step, for non-integer datatypes with D values 3 to 7, we convert them back to the
original datatype format depending on the D value. For example:

i. Let 𝑠 be an integer value which needs to be converted into a literal 𝑓 of ‘date’ type,

where s = ‘20211211’. This will be converted to f = ‘2021-12-11’ (where the date

value is stored in ISO 8601 format).

ii. Let 𝑠 be an integer value which needs to be converted into a literal 𝑓 of ‘timestamp’

type, where s = ‘2021121111553412313’. This will be converted to f = ‘2021-12-11

11:55:34.12313’ (where the timestamp value is stored in ISO 8601 format).

iii. Let 𝑠 be an integer value which needs to be converted into a literal 𝑓 of ‘timestamptz’

type, where s = ‘-20211211115534800’. This will be converted to f = ‘2021-12-11

11:55:34 -8:00’ (where the timestamptz value is stored in ISO 8601 format). Note

that the negative sign for the integer value becomes the sign of the time zone in f.

iv. Let 𝑠 be an integer value which needs to be converted into a literal 𝑓 of ‘time’ type,

where s = ‘11553412313’. This will be converted to f = ’11:55:34.12313’ (where the

time value is stored in ISO 8601 format).

72

v. Let 𝑠 be an integer value which needs to be converted into a literal 𝑓 of ‘timez’ type,

where s = ‘-115534123130800’. This will be converted to f = ’11:55:34.12313-

08:00’ (where the time value is stored in ISO 8601 format). Note that the negative

sign for the integer value becomes the sign of the time zone in f.

Step 9 – Store data block values in table column: Each data value in block 𝐵 , contains
between 128 values (except for the last block which contains N % 128 values where N is
the number of values in the column). We store these values to our table column with 𝑖𝑑 =
 𝐶𝐼𝐷 in the order in which they are decompressed. For the future blocks, the next batch of
decoded values are appended to the table column after the previous block values till all the
values of the column have been decompressed and stored back into the database.

5.2.2 Decompression of Category 2 data types

If the SA128 block being decoded belongs to category 2, we follow the following

steps to decode it:

Step 1 – Unpack block contents: For each block 𝐵 being decoded where 1 ≤ 𝑚 ≤
 ⌊𝑁/128⌋ + 1 and N is the total number of blocks encoded using stage-1 compression,
we have two sub-blocks, 𝐵1 and 𝐵2 respectively. These sub-blocks represent the part
of the numeric/decimal type value before and after the decimal point respectively. We also
calculate the bits per value for both the sub-blocks as 𝑡1 and 𝑡2 , where 𝑡1 =
 log (10 − 1) , 𝑡2 = log (10 − 1). Here, 𝑝 is the precision and 𝑠 is the scale of
the numeric/decimal type respectively.

Read 2 bits from the block stream 𝐵 and convert it into its integer representation,
which signifies the encoded value 𝐸𝑛𝑐1 of the sub-block 𝐵1 . Read 𝑡1 bits from the
block stream 𝐵 and convert it into its integer representation, which signifies the translated
value 𝑡1 of the sub-block 𝐵1 . Again, read 2 bits from the block stream 𝐵 and convert
it into its integer representation, which signifies the encoded value 𝐸𝑛𝑐2 of the sub-block
𝐵2 . Read 𝑡2 bits from the block stream 𝐵 and convert it into its integer representation,
which signifies the translated value 𝑡2 of the sub-block 𝐵2 .

Read 8 bits from 𝐵 and convert it into its integer representation which represents the

block length 𝑁1 of the compressed data in sub-block 𝐵1 . Read log ⌈𝑡1 ⌉ bits from
𝐵 and convert it into its integer representation which represents the block bits 𝑏1 of the
compressed data in sub-block 𝐵1 . Read the next 𝑁1 ∗ 𝑏1 bits from 𝐵 , where every
𝑏1 bits read is converted to its integer representation and stored in 𝐵1 . Read 8 bits from
𝐵 and convert it into its integer representation which represents the block length 𝑁2 of
the compressed data in sub-block 𝐵2 . Read log ⌈𝑡2 ⌉ bits from 𝐵 and convert it into
its integer representation which represents the block bits 𝑏2 of the compressed data in

73

sub-block 𝐵2 . Read the next 𝑁2 ∗ 𝑏2 bits from 𝐵 , where every 𝑏2 bits read is
converted to its integer representation and stored in 𝐵2 .

Read the next 8 bits from 𝐵 and convert it to its integer representation which signifies

the length 𝑁1 of the Exception 1 block 𝐸11 for sub-block 𝐵1 . Read the next 8 bits
from 𝐵 and convert it to its integer representation which signifies the exception block bits
𝑒11 of the Exception 1 block 𝐸11 for sub-block 𝐵1 . Next, read 𝑁1 ∗ 𝑒11 bits from
𝐵 , where every 𝑒11 bits read is converted to its integer representation and stored in
𝐸11 . Read the next 8 bits from 𝐵 and convert it to its integer representation which
signifies the length 𝑁2 of the Exception 1 block 𝐸12 for sub-block 𝐵2 . Read the next
8 bits from 𝐵 and convert it to its integer representation which signifies the exception
block bits 𝑒12 of the Exception 1 block 𝐸12 for sub-block 𝐵2 . Next, read 𝑁2 ∗
𝑒12 bits from 𝐵 , where every 𝑒12 bits read is converted to its integer representation
and stored in 𝐸12 .

Read the next 8 bits from 𝐵 and convert it to its integer representation which signifies

the length 𝑁1 of the Exception 2 block 𝐸21 for sub-block 𝐵1 . Read the next 8 bits
from 𝐵 and convert it to its integer representation which signifies the exception block bits
𝑒21 of the Exception 2 block 𝐸21 for sub-block 𝐵1 . Next, read 𝑁1 ∗ 𝑒21 bits from
𝐵 , where every 𝑒21 bits read is converted to its integer representation and stored in
𝐸21 . Read the next 8 bits from 𝐵 and convert it to its integer representation which
signifies the length 𝑁2 of the Exception 2 block 𝐸22 for sub-block 𝐵2 . Read the next
8 bits from 𝐵 and convert it to its integer representation which signifies the exception
block bits 𝑒22 of the Exception 2 block 𝐸22 for sub-block 𝐵2 . Next, read 𝑁2 ∗
𝑒22 bits from 𝐵 , where every 𝑒22 bits read is converted to its integer representation
and stored in 𝐸22 .

Read the next 8 bits from 𝐵 and convert it to its integer representation which signifies

the length 𝑁1 of the Exception 3 block 𝐸31 for sub-block 𝐵1 . Read the next 8 bits
from 𝐵 and convert it to its integer representation which signifies the exception block bits
𝑒31 of the Exception 3 block 𝐸31 for sub-block 𝐵1 . Next, read 𝑁1 ∗ 𝑒31 bits from
𝐵 , where every 𝑒31 bits read is converted to its integer representation and stored in
𝐸31 . Read the next 8 bits from 𝐵 and convert it to its integer representation which
signifies the length 𝑁2 of the Exception 3 block 𝐸32 for sub-block 𝐵2 . Read the next
8 bits from 𝐵 and convert it to its integer representation which signifies the exception
block bits 𝑒32 of the Exception 3 block 𝐸32 for sub-block 𝐵2 . Next, read 𝑁2 ∗
𝑒32 bits from 𝐵 , where every 𝑒32 bits read is converted to its integer representation
and stored in 𝐸32 .

Step 2 – Decompress sub-blocks using Catetogy-1 decompression: In this step, we
decompress each of the two sub-blocks 𝐵1 and 𝐵2 along with their respective exception
blocks 𝐸11 , 𝐸21 , 𝐸31 and 𝐸12 , 𝐸22 , 𝐸32 respectively using steps 2 to 7 of
category-1 decompression (in section 5.2.1).

Step 3 – Retrieve numeric/decimal data values from sub-blocks: In this step, for each
value at index position 𝑖 in 𝐵1 and 𝐵2 , we create our data block 𝐵 which contains the

74

reconstructed decimal values by appending the corresponding data values in 𝐵1 and 𝐵2
separated by a decimal point. We do this by performing the following transformation:

i. 𝐵 [𝑖] = 𝑐𝑜𝑛𝑐𝑎𝑡(𝑐𝑜𝑛𝑐𝑎𝑡(𝑠𝑡𝑟(𝐵1), ". "), 𝑠𝑡𝑟(𝐵2). 𝑧𝑓𝑖𝑙𝑙(𝑠)), where concat(s1,
s2) is the concatenation operation which concatenates two strings s1 and s2 provided
as arguments to it, str(n) is a function which converts an integer n to string, zfill(s) is
a function which prepends leading ‘0’s to 𝐵2 so that 𝑠𝑡𝑟(𝐵2) can have a length
equal to the scale s of the numeric/decimal type. The zfill(s) function is used to
retrieve the lost 0s during conversion of the fractional part to integer during encoding.

Step 4 – Store data block values in table column: Each data value in block 𝐵 , contains
between 128 values (except for the last block which contains N % 128 values where N is
the number of values in the column). We store these values to our table column with 𝑖𝑑 =
 𝐶𝐼𝐷 in the order in which they are decompressed. For the future blocks, the next batch of
decoded values are appended to the table column after the previous block values till all the
values of the column have been decompressed and stored back into the database.

5.2.3 Decompression of Category 3 data types

If the SA128 block being decoded belongs to category 3, we follow the following

steps to decode it:

Step 1 – Unpack block contents: Read 2 bits from the block stream 𝐵 and convert it into
its integer representation, which signifies the encoded value 𝐸𝑛𝑐 of the current 𝑚 data
block 𝐵 being decoded where 1 ≤ 𝑚 ≤ ⌊𝑁/128⌋ + 1 and N is the total number of
blocks encoded using stage-1 compression.

We now have two scenarios based on the value of 𝐸𝑛𝑐 :

i. Scenario 1: If 𝐸𝑛𝑐 is 0, 1 or 2:

The block contains two sub-blocks 𝐵1 and 𝐵2 . Let 𝐸𝑛𝑐1 𝑏𝑒 𝐸𝑛𝑐 .

75

The decompression process for scenario 1 can is shown using the flowchart below:

Figure 5.1: Steps for Scenario-1 of Category-3 Decompression

76

ii. Scenario 2: If 𝐸𝑛𝑐 is 3:

Let 𝐸𝑛𝑐3 𝑏𝑒 𝐸𝑛𝑐 .

The decompression process for scenario 1 can is shown using the flowchart below:

Figure 5.2: Steps for Scenario-2 of Category-3 Decompression

77

Step 2 – Scenario based decompression: Depending on which scenario was encountered
in step 1, we perform the below actions:

i. For scenario 1: Decompress the sub-blocks 𝐵1 and 𝐵2 along with their
exception blocks using steps 2 and 3 of category-2 decompression (in section 5.2.2)
and get the final decoded data block 𝐵 .

ii. For scenario 2: For each data value at index 𝑖 in 𝐵 , perform the XOR-decoding

using the following transformations on the data block 𝐵 :

a. Convert 𝐵 [𝑖] 𝑡𝑜 𝑖𝑡𝑠 𝑏𝑖𝑛𝑎𝑟𝑦 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 𝑢𝑠𝑖𝑛𝑔 𝑎𝑡 𝑚𝑜𝑠𝑡 (𝑀 −
 (𝑙 + 𝑡)), where M = 32 if D = 9 and M = 64 if D = 10.

b. Prepend 𝑙 number of zeros to the binary representation of 𝐵 [𝑖].
c. Append 𝑡 number of zeros to the binary representation of 𝐵 [𝑖].
d. Convert 𝐵 [𝑖] to its 32-bit or 64-bit floating point representation for D = 9 or

D = 10 respectively.
e. Insert value 𝑓 at index position 𝑓 𝑖𝑛 𝐵 .
f. Decode using XOR by the transformation, 𝐵 [𝑖] = 𝐵 [𝑖] ^ 𝐵 [𝑖 − 1] where

𝑖 > 0 and ‘^’ is the XOR operator.

After XOR-decoding, we get our final decoded data block 𝐵 .

Step 3 – Store data block values in table column: Each data value in block 𝐵 , contains
between 128 values (except for the last block which contains N % 128 values where N is
the number of values in the column). We store these values to our table column with 𝑖𝑑 =
 𝐶𝐼𝐷 in the order in which they are decompressed. For the future blocks, the next batch of
decoded values are appended to the table column after the previous block values till all the
values of the column have been decompressed and stored back into the database.

5.2.4 Decompression of Category 4 data types

If the SA128 block being decoded belongs to category 4, we follow the following

steps to decode it:

Step 1 – Unpack Block Contents: Read 2 bits from the block stream 𝐵 and convert it
into its integer representation, which signifies the encoded value 𝐸𝑛𝑐 of the current 𝑚
data block 𝐵 being decoded where 1 ≤ 𝑚 ≤ ⌊𝑁/128⌋ + 1 and N is the total number of
blocks encoded using stage-1 compression.

Read 8 bits from 𝐵 and convert it into its integer representation which represents the
block length 𝑁 of the compressed data in data block 𝐵 . Read 1 bit from 𝐵 and convert
it into its integer representation which represents the block bits 𝑏 of the compressed data
in block 𝐵 . Read the next 𝑁 ∗ 𝑏 bits from 𝐵 , where every 𝑏 bits read is converted to
its integer representation and stored in 𝐵 .

78

Read the next 8 bits from 𝐵 and convert it to its integer representation which signifies

the length 𝑁 of the Exception 1 block 𝐸1 for block 𝐵 . Read the next 8 bits from 𝐵
and convert it to its integer representation which signifies the exception block bits 𝑒1 of
the Exception 1 block 𝐸1 for block 𝐵 . Next, read 𝑁 ∗ 𝑒1 bits from 𝐵 , where every
𝑒1 bits read is converted to its integer representation and stored in 𝐸1 .

If there are bits available in 𝐵 , read the next 8 bits from 𝐵 and convert it to its integer

representation which signifies the length 𝑁 of the Exception 2 block 𝐸2 for block 𝐵 .
Read the next 8 bits from 𝐵 and convert it to its integer representation which signifies the
exception block bits 𝑒2 of the Exception 2 block 𝐸2 for block 𝐵 . Next, read 𝑁 ∗
𝑒2 bits from 𝐵 , where every 𝑒2 bits read is converted to its integer representation and
stored in 𝐸2 .

If there are bits available in 𝐵 , read the next 8 bits from 𝐵 and convert it to its integer

representation which signifies the length 𝑁 of the Exception 3 block 𝐸3 for block 𝐵 .
Read the next 8 bits from 𝐵 and convert it to its integer representation which signifies the
exception block bits 𝑒3 of the Exception 3 block 𝐸3 for block 𝐵 . Next, read 𝑁 ∗
𝑒3 bits from 𝐵 , where every 𝑒3 bits read is converted to its integer representation and
stored in 𝐸3 .

Step 2 – Decompress using category-1 decompression: Follow steps 2 to 4 of category-
1 decompression (in section 5.2.1) which gives the final data block 𝐵 .

Step 3 – Convert block values to Boolean: For each data value with index 𝑖 in 𝐵 , we
perform the following transformations on the data block:

i. If (𝐵 [𝑖] == 0), assign 𝐵 [𝑖] = ′𝑓′.
ii. If (𝐵 [𝑖] == 1), assign 𝐵 [𝑖] = ′𝑡′.

Step 4 – Store data block values in table column: Each data value in block 𝐵 , contains
between 128 values (except for the last block which contains N % 128 values where N is
the number of values in the column). We store these values to our table column with 𝑖𝑑 =
 𝐶𝐼𝐷 in the order in which they are decompressed. For the future blocks, the next batch of
decoded values are appended to the table column after the previous block values till all the
values of the column have been decompressed and stored back into the database.

5.2.5 Decompression of Category 5 data types

If the SA128 block being decoded belongs to category 5, we follow the following

steps to decode it:

Step 1 – Unpack Block Contents: Read 1 bit from the block stream 𝐵 and convert it into
its integer representation, which signifies the dictionary flag (DF) of the current 𝑚 data

79

block 𝐵 being decoded where 1 ≤ 𝑚 ≤ ⌊𝑁/128⌋ + 1 and N is the total number of
blocks encoded using stage-1 compression. If DF = 0, then our block is a category-5 SA128
integer block. If DF = 1, then our block is a category-5 SA128 string block.

Depending on our DF value, we have two scenarios for decoding our category-5
SA128 block:

i. Scenario 1 – For DF = 1:

Read 1 bit from the block stream 𝐵 and convert it into its integer representation,
which represents the storage flag (SF) flag. If SF = 0, the strings being decompressed
will written disk after the block has been decoded using LZ77 decompression
(Wesam Manassra, 2020). If SF = 1. The decoded strings are not written onto the
disk but are held in memory as a dictionary and are used for decompressing all the
following category-5 SA128 integer blocks since the dictionary is required for LZ77
with dictionary decompression in category-5 SA128 integer blocks.

Read 16 bits from the block stream 𝐵 and convert it into its integer representation,
which represents the number of strings (NS) compressed in the block 𝐵 .

Read 16 bits from the block stream 𝐵 and convert it into its integer representation,
which represents the length of quotient value (𝐿) where 𝐿 = 𝐿 /𝐷 , 𝐿 is the
length of the LZ77 compressed data and 𝐷 = 65535.

Read 16 bits from the block stream 𝐵 and convert it into its integer representation,
which represents the length of remainder value (𝐿) where 𝐿 = 𝐿 % 𝐷 , 𝐿 is the
length of the LZ77 compressed data and 𝐷 = 65535.

Read 3 bits from the block stream 𝐵 and convert it into its integer representation,
which represents the number of exempt bits 𝐸 , where 𝐸 = 𝐿 % 8, 𝐿 = Length
of the category-4 SA128 string block.

Read 𝐶 = 𝐿 ∗ 65535 + 𝐿 − 𝐸 bits from the block stream 𝐵 and convert it into
its integer representation, which represents the compressed string data.

ii. Scenario 1 – For DF = 0:

Read 2 bits from the block stream 𝐵 and convert it into its integer representation,
which signifies the encoded value 𝐸𝑛𝑐 of our block 𝐵 .

Read 16 bits from 𝐵 and convert it into its integer representation which represents
the translated value 𝑡 for block 𝐵 .

Read 8 bits from 𝐵 and convert it into its integer representation which represents the
block length 𝑁 of the compressed data in data block 𝐵 . Next, read 4 bits from 𝐵

80

and convert it into its integer representation which represents the block bits 𝑏 of the
compressed data in block 𝐵 . Read the next 𝑁 ∗ 𝑏 bits from 𝐵 , where every 𝑏
bits read is converted to its integer representation and stored in 𝐵 .

Read the next 8 bits from 𝐵 and convert it to its integer representation which signifies
the length 𝑁 of the Exception 1 block 𝐸1 for block 𝐵 . Read the next 8 bits from
𝐵 and convert it to its integer representation which signifies the exception block bits
𝑒1 of the Exception 1 block 𝐸1 for block 𝐵 . Next, read 𝑁 ∗ 𝑒1 bits from 𝐵 ,
where every 𝑒1 bits read is converted to its integer representation and stored in
𝐸1 .

If there are bits available in 𝐵 , read the next 8 bits from 𝐵 and convert it to its integer
representation which signifies the length 𝑁 of the Exception 2 block 𝐸2 for block
𝐵 . Read the next 8 bits from 𝐵 and convert it to its integer representation which
signifies the exception block bits 𝑒2 of the Exception 2 block 𝐸2 for block 𝐵 .
Next, read 𝑁 ∗ 𝑒2 bits from 𝐵 , where every 𝑒2 bits read is converted to its
integer representation and stored in 𝐸2 .

If there are bits available in 𝐵 , read the next 8 bits from 𝐵 and convert it to its integer
representation which signifies the length 𝑁 of the Exception 3 block 𝐸3 for block
𝐵 . Read the next 8 bits from 𝐵 and convert it to its integer representation which
signifies the exception block bits 𝑒3 of the Exception 3 block 𝐸3 for block 𝐵 .
Next, read 𝑁 ∗ 𝑒3 bits from 𝐵 , where every 𝑒3 bits read is converted to its
integer representation and stored in 𝐸3 .

Step 2 – Decode using LZ77 or LZ77 with dictionary decompression: Depending on
which scenario from step 1 our category-5 SA128 block falls under, we either execute
either LZ77 decompression or LZ77 with dictionary decompression:

i. For scenario 1:

If DF = 1 and SF = 0, the compressed data bits 𝐶 are decoded using LZ77
decompression and stored in our final data block 𝐵 .

If DF = 1 and SF = 1, the compressed data bits 𝐶 are decoded using LZ77
decompression and are held in memory within a dictionary 𝐷𝑖𝑐𝑡 where the
dictionary holds all unique strings mapped to an unsigned integer which is
incremented from 0 to 65535.

ii. For scenario 2:

If DF = 0, then decompress the block 𝐵 and its exception blocks using steps 2 to 7
of category-1 decompression (in section 5.2.1) to get the final data block 𝐵 .

Replace each value at index 𝑖 in 𝐵 with its mapped string value in the dictionary.

81

𝐵 [𝑖] = 𝐷𝑖𝑐𝑡[𝐵 [𝑖]]

Step 3 – Store data block values in table column: Each data value in block𝐵 ,
contains between 128 values (except for the last block which contains N % 128 values
where N is the number of values in the column). We store these values to our table column
with 𝑖𝑑 = 𝐶𝐼𝐷 in the order in which they are decompressed. For the future blocks, the
next batch of decoded values are appended to the table column after the previous block
values till all the values of the column have been decompressed and stored back into the
database.

82

Chapter 6

EXPERIMENTS AND RESULTS

In this section, we go over the system configuration of the experimental setup used

for collecting results and conducting experiments.

6.1 System Configurations

The system configuration used for collecting results for SA128 compression are

summarized in the table below:

System Manufacturer LENOVO

System Model 81N7

Operating System Windows 10 Home Single Language 64-bit (10.0, Build

19042)

Memory 8192GB RAM

Processor Intel® Core™ i5-8265U CPU @ 1.60 GHz

Table 6.1: System Configurations

6.2 Languages and Software Used

The programming languages and software libraries used for implementation of

SA128 compressor and decompressor and conducting experiments are provided below:

1. Python 3.9.0: For developing SA128 compressor (stage-1 + stage-2) and SA128

decompressor (stage-1 and stage-2).

2. Shell: For executing CLI commands for executing the SA128 compressor and

decompressor on data files.

3. Microsoft Visual Studio 2019: For building the TPC-DS version v2.13.0rc1 source

code to generate benchmark data sets.

83

4. Libraries: LZ77-Compressor (Wesam Manassra, 2020), Zstd 1.4.8.1 (Sergey

Dryabzhinsky and Anton Shuk, 2020), Snappy 1.1.3 (Snappy 2015), Lzma 9.38

(Igor Pavlov, 2015), Zlib 1.2.11 (Mark Adler, 2017), LZ4 3.1.3 (Jonathan

Underwood, 2021), Brotli 1.0.9 (Brotli, 2020), Python-rANSCoder (Fedor Glazov,

2020).

6.3 Results

We divide the result section in two parts based on the datasets used for testing

compression results. The first dataset used for result collection is a 1 GB TPC-DS

Benchmark Dataset and the second dataset used for result collection is a generated dataset

discussed in chapter 2.

6.3.1 Results on 1GB TPC-DS Benchmark Dataset (Dataset – 1)

For Dataset – 1, we segregate results based into the following categories based on

size of the tables in the dataset:

1. Large sized tables (> 100 MB): These consist of tables such as catalog_sales,

inventory, store_sales and web_sales.

2. Medium sized tables (1 MB – 100 MB): There consist of tables such as

catalog_page, catalog_returns, customer, customer_address,

customer_demographics, date_dim, household_demographics, item, store_returns,

time_dim and web_returns.

3. Small sized tables (< 1 MB): These consist of tables such as call_center,

income_band, promotion, reason, ship_mode, store, warehouse, web_page and

web_site.

84

6.3.2 Results for Large Tables

Figure 6.1: Comparative Analysis of Space Reduction Achieved on Large Tables in 1 GB

TPC-DS Benchmark Dataset Using SA128 Compression for different stages of

compression, i.e., stage-1 compression, stage-2 compression and combined stage-1 + stage-

2 compression. The above graph shows that we achieved the highest compression ratio for

all the 4 large tables by combining stage-1 and stage-2 compression in SA128 compression

compared to compressing our tables using stage-1 compression and stage-2 compression

separately. The space reduction achieved are 77.34% for catalog_sales, 90.25% for

inventory, 71.19% for store_sales, 73.82% for web_sales. Refer to appendix A, B and C

for more details regarding the data collected.

0

50

100

150

200

250

300

350

400

450

catalog_sales inventory store_sales web_sales

M
B

Tables

Size after stage-wise compression of large
tables in 1GB TPC-DS dataset

Original size
Size after Stage 1 compression
Size after Stage 2 compression
Size after combined Stage 1 + Stage 2 compression

85

Figure 6.2: Percentage Comparison of Space Reduction Achieved on Each Large Table in

1 GB TPC-DS Benchmark Dataset Using SA128 Compression for different stages of

compression, i.e., stage-1 compression, stage-2 compression and combined stage-1 + stage-

2 compression. Refer to appendix A, B and C for more details regarding the data collected.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

catalog_sales inventory store_sales web_sales

Pe
rc

en
ta

ge

Tables

Percentage size comparison of stage-wise
compression of large tables in 1GB TPC-DS

dataset

Size after combined Stage 1 + Stage 2 compression
Size after Stage 2 compression
Size after Stage 1 compression
Original size

86

Figure 6.3: Combined Space Reduction Achieved for All Large Tables in 1 GB TPC-DS

Benchmark Dataset Using SA128 Compression for different stages of compression, i.e.,

stage-1 compression, stage-2 compression and combined stage-1 + stage-2 compression.

The above graph shows that for large tables, the SA128 algorithm achieved space savings

up to 77% using both stage-1 and stage-2 compression, 75% using only stage-1

compression and 55.76% using only stage-2 compression. Refer to Appendix A, B and C

for more details regarding the data collected.

52%

13%

23%

12%

Comparison of size after compression for
different stages on large tables

Original size
Size after Stage 1 compression
Size after Stage 2 compression
Size after combined Stage 1 + Stage 2 compression

87

6.3.3 Results for Medium Tables

Figure 6.4: Comparative Analysis of Space Reduction Achieved on Medium Sized Tables

in 1 GB TPC-DS Benchmark Dataset Using SA128 Compression for different stages of

compression, i.e., stage-1 compression, stage-2 compression and combined stage-1 + stage-

2 compression. The above graph shows that we achieved the highest compression ratio for

all the 11 tables by combining stage-1 and stage-2 compression in SA128 compression

compared to compressing our tables using stage-1 compression and stage-2 compression

separately. The space reduction achieved are 42.45% for catalog_page, 64.43% for

catlog_returns, 57.66% for customer, 82.44% for customer_address, 97.14% for

customer_demographics, 93.59% for date_dim, 97.26% for household_demographics,

52.76% for item, 63.68% for store_returns, 91.7% for time_dim and 61.99% for

web_returns. Refer to appendix A, B and C for more details regarding the data collected.

1

10

100

1000

10000

100000

c_p c_r c c_a c_d d_d h_d i s_r t_d w_r

KB

Tables

Size after stage-wise compression of medium
tables

Original size
Size after Stage 1 compression
Size after Stage 2 compression
Size after combined Stage 1 + Stage 2 compression

88

Figure 6.5: Percentage Comparison of Space Reduction Achieved on Each Medium Sized

Table in 1 GB TPC-DS Benchmark Dataset Using SA128 Compression for different stages

of compression, i.e., stage-1 compression, stage-2 compression and combined stage-1 +

stage-2 compression. Refer to appendix A, B and C for more details regarding the data

collected.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

c_p c_r c c_a c_d d_d h_d i s_r t_d w_r

Pe
rc

en
ta

ge

Tables

Percentage size comparison of stage-wise
compression of medium tables in 1GB TPC-DS

dataset

Size after combined Stage 1 + Stage 2 compression

Size after Stage 2 compression

Size after Stage 1 compression

Original size

89

Figure 6.6: Combined Space Reduction Achieved for All Medium Sized Tables in 1 GB

TPC-DS Benchmark Dataset Using SA128 Compression for different stages of

compression, i.e., stage-1 compression, stage-2 compression and combined stage-1 + stage-

2 compression. The above graph shows that for large tables, the SA128 algorithm achieved

space savings up to 80.76% using both stage-1 and stage-2 compression, 79.8% using only

stage-1 compression and 48.07% using only stage-2 compression. Refer to Appendix A, B

and C for more details regarding the data collected.

52%

11%

27%

10%

Comparison of size after compression for
different stages on medium tables

Original size

Size after Stage 1 compression

Size after Stage 2 compression

Size after combined Stage 1 + Stage 2 compression

90

6.3.4 Results for Small Tables

Figure 6.7: Comparative Analysis of Space Reduction Achieved on Small Sized Tables in

1 GB TPC-DS Benchmark Dataset Using SA128 Compression for different stages of

compression, i.e., stage-1 compression, stage-2 compression and combined stage-1 + stage-

2 compression. The above graph shows that for 5 tables we achieved the best compression

ratio by combining stage-1 and stage-2 compression in SA128 whereas for 4 tables, we

achieved the best compression ratio using only stage-2 compression in SA128. This is

because for small tables, there is an extra overhead in storing the block header information

during stage-1 compression which results in increasing the overall space than reducing it.

Refer to appendix A, B and C for more details regarding the data collected.

1

4

16

64

256

1024

4096

16384

65536

By
te

s

Tables

Size after stage-wise compression of small
tables in 1GB TPC-DS dataset

Original size
Size after Stage 1 compression
Size after Stage 2 compression
Size after combined Stage 1 + Stage 2 compression

91

Figure 6.8: Percentage Comparison of Space Reduction Achieved on Each Small Sized

Table in 1 GB TPC-DS Benchmark Dataset Using SA128 Compression for different stages

of compression, i.e., stage-1 compression, stage-2 compression and combined stage-1 +

stage-2 compression. Refer to appendix A, B and C for more details regarding the data

collected.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Pe
rc

en
ta

ge

Tables

Percentage size comparison of stage-wise
compression of small tables in 1GB TPC-DS

dataset

Size after combined Stage 1 + Stage 2 compression (in bytes)
Size after Stage 2 compression (in bytes)
Size after Stage 1 compression (in bytes)
Original size (in bytes)

92

Figure 6.9: Combined Space Reduction Achieved for All Small Sized Tables in 1 GB TPC-

DS Benchmark Dataset Using SA128 Compression for different stages of compression,

i.e., stage-1 compression, stage-2 compression and combined stage-1 + stage-2

compression. The above graph shows that for large tables, the SA128 algorithm achieved

space savings up to 53.84% using both stage-1 and stage-2 compression, 48.71% using

only stage-1 compression and 41.0% using only stage-2 compression. Refer to Appendix

A, B and C for more details regarding the data collected.

39%

20%

23%

18%

Comparison of size after compression for
different stages on small tables

Original size
Size after Stage 1 compression
Size after Stage 2 compression
Size after combined Stage 1 + Stage 2 compression

93

6.3.5 Datatype Specific Results

Figure 6.10: Space Reduction Achieved for Each of the Three Datatype Categories

Available in 1 GB TPC-DS Benchmark Dataset. We achieve a space reduction of 96.21%

for Category-5 datatypes, 81.7% for Category-2 datatypes and 80.9% for Category-1

datatypes. Therefore, compression for Category-5 > Category 2 > Category 1. Refer to

Appendix D for more details regarding the data collected.

0

1E+09

2E+09

3E+09

4E+09

5E+09

6E+09

7E+09

8E+09

9E+09

Category 1 (Integer,
SmallInt, BigInt,
Identifier, Date,

Timestamp,
Timestamptz, Time,

Timez)

Category 2
(Decimal/Numeric)

Category 5 (Char,
Varchar)

Bi
ts

Datatype Categories

Size after Stage-1 compression grouped by
datatype

Size before compression Size after compression

94

Figure 6.11: Percentage Wise Breakdown of the Space Reduction Achieved for Each of the

Three Datatype Categories Available in 1 GB TPC-DS Benchmark Dataset. We can see

that compression efficiency is highest for char and varchar types and almost similar for

integer, smallint, bigint, date, timestamp, timestamptz, time, timez and numeric types.

Refer to Appendix D for more details regarding the data collected.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Category 1 (Integer,
SmallInt, BigInt,
Identifier, Date,

Timestamp,
Timestamptz, Time,

Timez)

Category 2
(Decimal/Numeric)

Category 5 (Char,
Varchar)

Pe
rc

en
ta

ge

Datatype Categories

Percentage size comparison of Stage-1
compression grouped by datatype

Size before compression Size after compression

95

6.3.6 Compression Results vs Other Compression Algorithms for 1 GB TPC-DS

Benchmark Dataset (Dataset – 1)

Figure 6.12: Comparative Analysis of Space Savings Achieved Using SA128 Against

Other State of the Art Compression Algorithms on 1 GB TPC-DS Benchmark Dataset. For

our 1 GB TPC-DS benchmark dataset, our SA128 compression algorithm was able to

achieve 60.41% better compression than Zstandard (ZSTD), 75.64% better compression

than Snappy, 57.84% better compression than Zlib, 26.36% better compression than LZ4

and 50.52% better compression than Brotli. Only Lzma compressed better by a margin of

0.06% which is comparable to the results achieved using SA128 compression. Refer to

Appendix E for more details regarding the data collected.

0

200

400

600

800

1,000

1,200

1,400

M
B

Compression Algorithm

Comparison of size after compression vs other
compression algorithms

96

6.3.7 Performance Results vs Other Compression Algorithms for 1 GB TPC-DS

Benchmark Dataset (Dataset – 1)

Figure 6.13: Comparative Analysis of Compression Times Using SA128 Against Other

State of the Art Compression Algorithms on 1 GB TPC-DS Benchmark Dataset. The data

shows us that SA128 has a slow compression time compared to all other algorithms. The

best performing algorithm Snappy 1.1.3 has a compression speed of almost 99.92% faster

than SA128 and the second worst performing algorithms Brotli 1.0.9 level 11 has a

compression speed of almost 75.84% better than SA128. Because of this reason, although

using SA128 gives good compression, it’s poor performance makes it unsuitable for real-

time databases where query execution times are important. Therefore, the primary use cases

for SA128 are in the area of data archival and non-real time databases where storage

optimization is of higher priority than query execution times. Refer to Appendix J for more

details regarding the data collected.

1
2
4
8

16
32
64

128
256
512

1024
2048
4096

Brotli
1.0.9 level

11

Lzma 9.38
level 6

Zstd
1.4.8.1
level 22

Zlib 1.2.11
level 9

LZ4 3.1.3 Snappy
1.1.3

SA128

M
in

ut
es

Compression Algorithm

Comparison of compression time vs other
compression algorithms

97

6.3.8 Results on 1 GB Generated Dataset (Dataset – 2)

In this section, we discuss the compression results achieved on our 1 GB Generated

Dataset which contains 4 different tables.

6.3.9 Table-wise Compression Results

Figure 6.14: Comparative Analysis of Space Reduction Achieved on All 4 Tables from Our

1 GB Generated Dataset using stage-1 SA128 compression, and combined stage-1 + stage-

2 SA128 compression. The above graph shows that we achieved the highest compression

ratio for all the 4 large tables by combining stage-1 and stage-2 compression in SA128

compression compared to compressing our tables using only stage-1 compression. The

space reduction achieved are 94.08% for tables with non-decreasing values, 93.83% for

tables with non-increasing values, 67.86% for tables with random values of a small range,

66.97% for tables with random values over a large range. For both the tables with random

values, we have a comparable performance between stage-1 SA128 compression and

combined stage-1 + stage-2 SA128 compression. For the non-increasing and non-

decreasing tables, compression achieved using stage-1 + stage-2 SA128 compression is

clearly much better. Refer to appendix F and G for more details regarding the data

collected.

0

100

200

300

Table with non-
decreasing values

Table with non-
increasing values

Table with random
values over a small

range

Table with random
values over a large

range

M
B

Tables

Size after stage-wise compression of tables in 1GB
generated dataset

Original size
Size after Stage 1 compression
Size after Stage 2 compression
Size after combined Stage 1 + Stage 2 compression

98

Figure 6.15: Percentage Wise Breakdown of the Space Reduction Achieved for Each of the

4 Tables Available in 1 GB Generated Dataset. Refer to appendix F and G for more details

regarding the data collected.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Table with non-
decreasing values

Table with non-
increasing values

Table with
random values

over a small
range

Table with
random values

over a large
range

Pe
rc

en
ta

ge

Tables

Percentage size comparison of stage-wise
compression of tables in 1GB generated

dataset

Size after combined Stage 1 + Stage 2 compression
Size after Stage 2 compression
Size after Stage 1 compression
Original size

99

Figure 6.16: Combined Space Reduction Achieved for All 4 Tables from Our 1 GB

Generated Dataset Using SA128 Compression for stage-1 SA128 compression and

combined stage-1 + stage-2 SA128 compression. The above graph shows that for all the 4

tables, the SA128 algorithm achieved space savings up to 82.19% using both stage-1 and

stage-2 compression and 80.82% using only stage-1 compression. Refer to appendix F and

G for more details regarding the data collected.

58%
11%

20%

11%

Comparison of size after compression for
different stages on large tables

Original size
Size after Stage 1 compression
Size after Stage 2 compression
Size after combined Stage 1 + Stage 2 compression

100

6.3.10 Datatype Specific Compression Results

Figure 6.17: Space Reduction Achieved for Boolean Columns in 1 GB Generated Dataset.

We achieve a space reduction of 66.3% for Category-4 (boolean datatypes). The

compression is almost similar for the non-decreasing and non-increasing columns. The

same is true for both the columns with random values. The data also suggests that for

random values, compression is less compared to non-decreasing and non-increasing

columns. Refer to Appendix H for more details regarding the data collected.

0

10

20

30

40

50

60

Non-decreasing
values

Non-increasing
values

Random values
within a small

range

Random values
within a large

range

M
B

Tables

Size after compression of Boolean type
columns

Size of uncompressed 'Boolean' columns Size of compressed 'Boolean' columns

101

Figure 6.18: Space Reduction Achieved for Real Columns in 1 GB Generated Dataset. We

achieve a space reduction of 46.58% for Category-3 Real datatypes. The compression is

almost similar for the non-decreasing and non-increasing columns. However, the same is

not true for both the columns with random values. The column with random values over a

large range compresses lesser than the column with random values over a small range. The

data also suggests that for random values, compression is less compared to non-decreasing

and non-increasing columns. Refer to Appendix H for more details regarding the data

collected.

0

50

100

150

200

250

Non-decreasing
values

Non-increasing
values

Random values
within a small

range

Random values
within a large

range

M
B

Tables

Size after compression of Real type columns

Size of uncompressed 'Real' columns Size of compressed 'Real' columns

102

Figure 6.19: Space Reduction Achieved for Double Precision Columns in 1 GB Generated

Dataset. We achieve a space reduction of 42.55% for Category-3 Double Precision

datatypes. The compression is almost similar for the non-decreasing and non-increasing

columns. However, the same is not true for both the columns with random values. The

column with random values over a large range compresses lesser than the column with

random values over a small range. The data also suggests that for random values,

compression is less compared to non-decreasing and non-increasing columns. Refer to

Appendix H for more details regarding the data collected.

0
50

100
150
200
250
300
350
400
450
500

Non-decreasing
values

Non-increasing
values

Random values
within a small

range

Random values
within a large

range

M
B

Tables

Size after compression of Double Precision
type columns

Size of uncompressed 'Double Precision' columns
Size of compressed 'Double Precision' columns

103

6.3.11 Compression Results vs other Compression Algorithms for 1 GB Generated

Dataset (Dataset – 2)

Figure 6.20: Comparative Analysis of Space Saving Achieved Using SA128 Against Other

State of the Art Compression Algorithms on 1 GB Generated Dataset. For our 1 GB

generated dataset, our SA128 compression algorithm was able to achieve 79.38% better

compression than Zstandard (ZSTD), 62.63% better compression than Snappy, 62.74%

better compression than Zlib, 32.59% better compression than LZ4 and 79.25% better

compression than Brotli. Only Lzma compressed better by a margin of 4.25%. Refer to

Appendix I for more details regarding the data collected.

0

200

400

600

800

1,000

1,200

M
B

Compression Algorithm

Comparison of size after compression vs
other compression algorithms

104

6.3.12 Performance Results vs other Compression Algorithms for 1 GB Generated

Dataset (Dataset – 2)

Figure 6.21: Comparative Analysis of Compression Times Achieved Using SA128 Against

Other State of the Art Compression Algorithms on 1 GB Generated Dataset. The data

shows us that SA128 has a slow compression time compared to all other algorithms. The

best performing algorithm Snappy 1.1.3 has a compression speed of almost 99.88% faster

than SA128 and the second worst performing algorithms Brotli 1.0.9 level 11 has a

compression speed of almost 46.17% better than SA128. These results are slightly better

compared to the performance results on 1 GB TPC-DS Dataset. However, although using

SA128 gives good compression, it’s poor performance makes it unsuitable for real-time

databases where query execution times are important. Therefore, the primary use cases for

SA128 are in the area of data archival and non-real time databases where storage

optimization is of higher priority than query execution times. Refer to Appendix K for more

details regarding the data collected.

1
2
4
8

16
32
64

128
256
512

1024
2048

Brotli
1.0.9 level

11

Zlib 1.2.11
level 9

Lzma 9.38
level 6

Zstd
1.4.8.1
level 22

LZ4 3.1.3 Snappy
1.1.3

SA128

M
in

ut
es

Compression Algorithm

Comparison of compression time vs other
compression algorithms

105

Chapter 7

LIMITATIONS AND ASSUMPTIONS

A large fraction of popular databases such as AWS Redshift, HadoopDB, etc are

derived from PostgreSQL. Therefore, in our implementation, we have assumed

PostgreSQL as our foundation database so that it can easily be extended to databases build

on top of PostgreSQL.

Although the SA128 compression and decompression algorithm is intended for

compression in columnar databases, in our implementation, we used file storage to store

the tables belonging to our dataset as “.dat” files instead of storing them in real columnar

databases. Therefore, during result collection, we assumed the storage space a column

would take when it is stored in a PostgreSQL table by taking into consideration the datatype

specific storage format and requirements, instead of the storage space it takes in its file

format. The goal of this thesis was to provide a proof of concept (POC) for a smart

compression algorithm which when extended for databases, can lead to identical results.

The SA128 algorithm currently supports 14 popular datatypes such as smallint/int2,

integer/int4, bigint/int8, date, timestamp (without timezone), timestamp with

timezone/timestamptz, time (without timezone), time with timezone/timez,

numeric/decimal, real/float4, double precision/float8, boolean, character/char and

character varying/varchar. For datatypes not belonging to this list, the column is

compressed only using stage-2 compression (rANS entropy encoding).

The goal of this POC work as part of the thesis was to focus on optimizing the

compression ratio for our algorithm and its efficiency compared to other state of the art

compression algorithms such as ZSTD, Snappy, LZMA, Zlib, LZ4 and Brotli. The

decompression time was not a priority for the current 1.0 version, but it can be significantly

improved with parallel processing, implementing a C/C++ port our

compressor/decompressor and further optimizations in future releases. Therefore, the

106

current 1.0 release can be used for compressing non-real time databases where fast query

responses and decompression times are not important. For example, in applications such

as data archiving where storage optimization is more important than query performance.

SA128 compression is highly effective for compressing large and medium sized

tables. For very small tables, sometimes SA128 compression may result in increasing the

size of the original data. This is due to the overhead due to the block header during stage-

1 compression because the metadata information stored in the block header occupies more

space than the space reduction achieved on the data block.

107

Chapter 8

DISCUSSIONS AND CONCLUSION

In this thesis work, we have shown that if data compression techniques are

dynamically adapted based on the characteristics of the data set and the data type of the

data set, we can get a large increase in compression ratio. When this technique is combined

with an entropy encoding stage such as rANS, we reach very close to the entropy limit for

the data being compressed.

For TPC-DS benchmark datasets, our SA128 algorithm achieves space savings up to

77% for large tables, 81% for medium tables and 54% for small tables compared the size

occupied by uncompressed tables. Also, for generated datasets, our algorithm achieved up

to 82% savings in space. For benchmark TPC-DS datasets, our SA128 was able to achieve

60.41% better compression than Zstandard (ZSTD), 75.64% better compression than

Snappy, 57.84% better compression than Zlib, 26.36% better compression than LZ4 and

50.52% better compression than Brotli. Only Lzma compressed better by a margin of

0.06% which is comparable to the results achieved using SA128 compression. These results

demonstrate the effectiveness of our compression strategy which was the core part of this

thesis study. The results from the above data conclude that the approach followed by

SA128 successfully answers the research questions specified in section 3.2.

For Category-1 compression, the sequence of steps selected is due to a combination

of all the below reasons.

1. The Delta and Delta of Delta encoding steps are executed on multiple block copies

before Run-length encoding because Run-length encoding is equally effective when

applied before or after Delta and Delta of Delta encoding. This is because Delta

encoding does not change the number of runs in values.

108

2. Zig-zag encoding is applied after the Delta and Delta of Delta encoding step because

additional negative numbers can arise in the block after Delta or Delta of Delta

encoding step, which needs to be represented efficiently, especially if the magnitude

of the negative values are small.

3. The Frame of Reference and Bit Packing steps are applied towards the end to bring

down the range of all the values and break down larger values into smaller values

respectively. This is done so that few bits are required to represent each block value.

This helps us get a better compression towards the end if Delta Encoding, Delta of

Delta Encoding and Run-length encoding did not give us good compression in the

previous steps.

The current version 1.0 of SA128 does not prioritize performance and only optimizes

storage. Performance of SA128 is 75.84% and 46.17% worse compared to Snappy for the

TPC-DS Benchmark Dataset and Generated Dataset respectively (where Snappy has the

second worst performance). Therefore, it is not ideal to use SA128 for real-time database

applications and are favourable in applications such as data archival, etc where storage

optimization is prioritized. The performance results in the later sections 6.3.7 and 6.3.12

are highly dependent on the system used to testing the results. The results can be

significantly improved if tested on a more powerful server machine with superior

configurations compared to the above configuration. Future versions of SA128 would work

on improving performance of the algorithm which would make it useful in Big Data

applications, data warehousing, business intelligence, etc.

109

Chapter 9

FUTURE WORK

Some of the future enhancements and research areas to extend our SA128 are given below:

1. Extending support for other database management systems other than PostgreSQL

such as MySQL, NoSQL, etc.

2. Supporting more complex data types in PostgreSQL and databases supported in

future.

3. Building SA128 as a pluggable library for PostgreSQL database.

4. Improving compression and decompression time for both stages of compression and

improving query performance so that real-time database applications can be

supported using SA128 compression.

5. Implementing a C/C++ port of our Python prototype to improve performance.

6. Implementing better alternatives of LZ compression techniques in category-5

compression from stage 1 such as LZMA, LZ4, etc.

110

REFERENCES

Ziv J., Lempel A., “A Universal Algorithm for Sequential Data Compression”, IEEE

Transactions on Information Theory, Vol. 23, No. 3 (1977), pp. 337-343.

Pelkonen, T., Franklin, S., Teller, J., Cavallaro, P., Huang, Q., Meza, J. & Veeraraghavan,

K. (2015). Gorilla: A fast, scalable, in-memory time series database. Proceedings of
the VLDB Endowment, 8, 1816--1827.

Daniel Lemire and Leonid Boytsov. 2015. Decoding billions of integers per second through

vectorization. Software: Practice and Experience 45, 1 (2015), 1--29.

Duda, J., “Asymmetric numeral systems: entropy coding combining speed of Huffman

coding with compression rate of arithmetic coding.” arXiv: Information
Theory (2013): n. pag.

Goldstein J, Ramakrishnan R, Shaft U. Compressing relations and indexes. Proceedings of

the Fourteenth International Conference on Data Engineering, ICDE ’98, IEEE
Computer Society: Washington, DC, USA, 1998; 370–379.

Delbru R, Campinas S, Tummarello G. Searching web data: An entity retrieval and high-

performance indexing model. Web Semantics Jan 2012; 10:33–58,
doi:10.1016/j.websem.2011.04.004.

HUFFMAN, D. A. 1952. A method for the construction of minimum-redundancy codes.

In Proceedings of the Institute of Electrical and Radio Engineers 40, 9 (Sept.), pp.
1098-1101.

RISSANEN, J., AND LANGDON, G. G. 1979. Arithmetic coding. IBM J. Res. Dev. 23,

2 (Mar.), 149-162.

Transaction Processing Performance Council (TPC) 2020, accessed 1 December 2020,

<http://tpc.org/tpc_documents_current_versions/pdf/tpc-ds_v2.13.0.pdf>

Mike Freedman 2019, accessed 1 December 2020,

<https://blog.timescale.com/blog/building-columnar-compression-in-a-row-
oriented-database/>

Joshua, Lockerman, Ajay Kulkarni 2020, accessed 1 December 2020,

<https://blog.timescale.com/blog/time-series-compression-algorithms-explained/>.

Daniel Lemire 2012, accessed 1 December 2020,

<https://lemire.me/blog/2012/02/08/effective-compression-using-frame-of-
reference-and-delta-coding>.

111

Roman Cheplyaka 2017, accessed 1 December 2020, <https://ro-che.info/articles/2017-08-

20-understanding-ans>.

M. Fürstenau, zigzag-encoding.README, 2015, GitHub Repository, accessed 1

December 2020, <https://gist.github.com/mfuerstenau/ba870a29e16536fdbaba>.

History of Lossless Data Compression Algorithms 2019, Engineering and Technology

History Wiki, accessed 1 December 2020,
<https://ethw.org/History_of_Lossless_Data_Compression_Algorithms>.

PostgreSQL 13 Documentation 2021, The PostgreSQL Global Development Group,

accessed 1 March 2021, <https://www.postgresql.org/docs/current/datatype.html>.

Fedor Glazov, Python-rANSCoder, 2020, GitHub Repository, accessed 1 December 2020,

<https://github.com/FGlazov/Python-rANSCoder>.

Wesam Manassra, LZ77-Compressor, 2020, GitHub Repository, accessed 1 January 2021,

<https://github.com/manassra/LZ77-Compressor>.

Sergey Dryabzhinsky and Anton Shuk, zstd 1.4.8.1, 2020, Facebook, accessed 1 January

2021, Python Library, <https://pypi.org/project/zstd/>.

Snappy, release 1.1.3, 2015, Google, GitHub Repository, accessed 1 February 2021,

<https://github.com/google/snappy/releases/tag/1.1.3>.

Igor Pavlov, lzma 9.38 beta, 2015, accessed 1 February 2021,

<http://sevenzip.sourceforge.net/sdk.html>.

Mark Adler, Zlib, release 1.2.11, 2017, GitHub Repository, accessed 1 February 2021,

<https://github.com/madler/zlib/releases/tag/v1.2.11>.

Jonathan Underwood, Lz4 3.1.3, 2021, Python Library, accessed 1 February 2021,

<https://pypi.org/project/lz4/>.

Brotli, release 1.0.9, 2020, Google, GitHub Repository, accessed 1 February 2021,

<https://github.com/google/brotli/releases/tag/v1.0.9>.

Mike Freedman. “Building columnar compression in row-oriented database”,

TimescaleDB, 31 October 2019, <https://blog.timescale.com/blog/building-
columnar-compression-in-a-row-oriented-database/>.

112

APPENDIX A

DETAILED COMPRESSION RESULTS FOR SA128 COMPRESSION (ONLY USING
STAGE-1) ON 1 GB TPC-DS BENCHMARK DATASET

113

Table name Original Size

(bytes)

Size after

compression

(bytes)

Compressio

n Ratio

Space savings

call_center 1897 1736 1.0927 8.49%

catalog_page 1643510 1047870 1.5684 36.24%

catalog_returns 21522438 8132433 2.6465 62.21%

catalog_sales 297351932 82877425 3.5879 72.13%

customer 13309372 5815536 2.2886 56.3%

customer_address 5552165 1039001 5.3438 81.29%

customer_demographics 82580896 3933954 20.9918 95.24%

date_dim 10390487 846637 12.2727 91.85%

household_demographics 158853 7493 21.2002 95.28%

income_band 348 70 4.9714 70.89%

inventory 248165139 27670350 8.9686 88.85%

item.dat 5069899 2559284 1.981 49.52%

promotion 37533 18206 2.0616 51.49%

reason 1374 822 1.6715 40.17%

ship_mode 1133 796 1.4234 29.74%

store 3167 2052 1.5434 35.21%

store_returns 32997519 12680449 2.6022 61.57%

store_sales 391325813 120195822 3.2557 69.28%

time_dim 5194180 580174 8.9528 88.83%

warehouse 590 604 0.9768 -2.37%

web_page 5836 1303 4.4789 77.67%

web_returns 9877999 3938056 2.5083 60.13%

web_sales 147597058 40260141 3.6661 72.72%

web_site 8801 4713 1.8674 46.45%

114

APPENDIX B

DETAILED COMPRESSION RESULTS FOR SA128 COMPRESSION (ONLY USING
STAGE 2) ON 1 GB TPC-DS BENCHMARK DATASET

115

Table name Original

Size (bytes)

Size after

compression

(bytes)

Compression

Ratio

Space

savings

call_center 1897 1212 1.5652 36.11%

catalog_page 1643510 1058704 1.5524 35.58%

catalog_returns 21522438 9424636 2.2836 56.21%

catalog_sales 297351932 131715804 2.2575 55.7%

customer 13309372 8445928 1.5758 36.54%

customer_address 5552165 3488464 1.5916 37.17%

customer_demographics 82580896 47133576 1.7521 42.92%

date_dim 10390487 5356692 1.9397 48.45%

household_demographics 158853 65888 2.411 58.52%

income_band 348 108 3.2222 68.97%

inventory 248165139 100258592 2.4753 59.6%

item.dat 5069899 3264840 1.5529 35.6%

promotion 37533 22352 1.6792 40.45%

reason 1374 668 2.0569 51.38%

ship_mode 1133 632 1.7927 44.22%

store 3167 2024 1.5647 36.09%

store_returns 32997519 14486984 2.2777 56.1%

store_sales 391325813 173315548 2.2579 55.71%

time_dim 5194180 2863212 1.8141 44.88%

warehouse 590 360 1.6389 38.98%

web_page 5836 3268 1.7858 44%

web_returns 9877999 4339784 2.2761 56.07%

web_sales 147597058 65353716 2.2584 55.72%

web_site 8801 5656 1.556 35.73%

116

APPENDIX C

DETAILED COMPRESSION RESULTS FOR SA128 COMPRESSION (STAGE 1
AND STAGE 2 COMBINED) ON 1 GB TPC-DS BENCHMARK DATASET

117

Table name Original

Size (bytes)

Size after

compression

(bytes)

Compression

Ratio

Space

savings

call_center 1897 1340 1.4157 29.36%

catalog_page 1643510 945848 1.7376 42.45%

catalog_returns 21522438 7656440 2.811 64.43%

catalog_sales 297351932 79284800 3.7504 73.34%

customer 13309372 5635404 2.3617 57.66%

customer_address 5552165 974716 5.6962 82.44%

customer_demographics 82580896 2358860 35.0088 97.14%

date_dim 10390487 665548 15.6119 93.59%

household_demographics 158853 4360 36.4342 97.26%

income_band 348 44 7.9091 87.36%

inventory 248165139 24194668 10.257 90.25%

item.dat 5069899 2394908 2.1169 52.76%

promotion 37533 16944 2.2151 54.86%

reason 1374 728 1.8874 47.02%

ship_mode 1133 700 1.6186 38.22%

store 3167 1708 1.8542 46.07%

store_returns 32997519 11983596 2.7536 63.68%

store_sales 391325813 112758020 3.4705 71.19%

time_dim 5194180 431212 12.0455 91.7%

warehouse 590 444 1.3288 24.75%

web_page 5836 1104 5.2862 81.08%

web_returns 9877999 3754996 2.6306 61.99%

web_sales 147597058 38647948 3.819 73.82%

web_site 8801 4288 2.0525 51.28%

118

APPENDIX D

DETAILED COMPRESSION RESULTS FOR SA128 COMPRESSION (STAGE-1
AND STAGE-2) ON 1 GB TPC-DS BENCHMARK DATASET GROUPED BY

DATATYPE CATEGORIES

119

Datatype Category Size before

compression
(in bits)

Size after
compression
(in bits)

Category 1 (Integer,
SmallInt, BigInt, Identifier,
Date, Timestamp,
Timestamptz, Time, Timez)

4451721056 850169913

Category 2
(Decimal/Numeric)

8436976136 1543558620

Category 5 (Char, Varchar) 798131824 30237363

120

APPENDIX E

DETAILED COMPRESSION RESULTS FOR SA128 COMPRESSION (STAGE-1
AND STAGE-2) VS OTHER ALGORITHMS ON 1 GB TPC-DS BENCHMARK

DATASET

121

Table

name

SA128

(bytes

)

Zstd

1.4.8.1

level 22

(bytes)

Snappy

1.1.3

(bytes)

Lzma

9.38 level

6 (bytes)

Zlib

1.2.11

level 9

(bytes)

LZ4

3.1.3

(bytes)

Brotli

1.0.9

level 11

(bytes)

call_center 1,340 1,519 1,867 766 1,480 1,040 1,222

catalog_pa

ge

9,45,8

48

15,19,93

1

15,92,49

1

3,30,041 15,15,41

1

7,15,441 11,88,07

6

catalog_ret

urns

76,56,

440

1,42,48,

764

2,17,95,

826

81,33,186 1,40,45,1

97

1,65,85,1

51

1,33,35,4

17

catalog_sal

es

7,92,8

4,800

17,03,85

,185

26,46,33

,075

8,00,06,0

37

16,74,11,

674

16,18,00,

478

16,72,81,

432

customer 56,35,

404

1,17,25,

513

1,22,84,

111

39,63,821 1,16,62,4

41

85,96,44

8

1,12,94,4

18

customer_a

ddress

9,74,7

16

54,80,52

8

54,34,13

1

8,73,294 54,42,89

5

20,89,34

8

48,69,05

1

customer_d

emographic

s

23,58,

860

9,97,32,

219

8,60,00,

318

11,76,988 9,53,47,7

97

1,41,67,5

63

8,86,20,2

28

date_dim 6,65,5

48

77,93,53

9

87,90,44

2

6,49,023 75,28,78

2

27,42,31

2

70,53,09

5

household_

demographi

cs

4,360 2,23,653 1,73,252 6,660 2,09,203 46,277 1,87,604

income_ba

nd

44 528 388 120 461 227 428

122

inventory 2,41,9

4,668

35,38,70

,139

27,16,55

,139

3,05,81,9

08

33,98,38,

509

8,64,52,5

93

29,51,40,

459

item 23,94,

908

40,80,16

0

50,00,48

1

10,32,298 39,86,62

5

24,02,93

3

33,85,63

7

promotion 16,944 32,172 32,511 10,029 31,325 18,001 27,912

reason 728 1,501 1,181 465 1,282 750 1,417

ship_mode 700 1,213 1,016 582 1,072 813 1,166

store 1,708 2,473 3,004 1,079 2,458 1,541 2,088

store_retur

ns

1,19,8

3,596

2,40,72,

687

3,35,98,

253

1,27,09,5

55

2,34,89,6

30

2,62,66,1

28

2,21,94,6

22

store_sales

11,27,

58,020

26,59,21

,359

38,55,37

,856

10,71,57,

408

25,84,54,

411

21,60,72,

982

24,63,45,

827

time_dim 4,31,2

12

54,74,08

9

46,93,60

5

2,10,685 48,51,69

5

13,23,46

1

53,04,89

5

warehouse 444 555 564 276 556 336 473

web_page 1,104 5,504 5,377 1,121 5,298 2,174 5,207

web_return

s

37,54,

996

62,21,94

1

86,43,91

2

34,57,199 61,10,13

2

69,70,77

8

58,83,58

8

web_sales 3,86,4

7,948

8,98,55,

881

14,46,91

,793

4,05,89,6

84

8,80,34,7

56

8,10,51,9

19

6,27,21,4

93

web_site 4,288 7,145 8,650 2,614 6,988 4,024 5,705

123

APPENDIX F

DETAILED COMPRESSION RESULTS FOR SA128 COMPRESSION (ONLY USING
STAGE-1) ON 1 GB GENERATED DATASET

124

Table type Original

Size

(bytes)

Size after

compression

(bytes)

Compression

Ratio

Space

savings

Non-decreasing values 284777810 23244551 12.2514 91.84%

Non-increasing values 284777810 24084695 11.824 91.54%

Random values within a

small range

217000000 69730642 3.112 67.87%

Random values within a

large range

243459776 80601985 3.0205 66.89%

125

APPENDIX G

DETAILED COMPRESSION RESULTS FOR SA128 COMPRESSION (STAGE-1
AND STAGE-2) ON 1 GB GENERATED DATASET

126

Table type Original

Size

(bytes)

Size after

compression

(bytes)

Compression

Ratio

Space

savings

Non-decreasing values 284777810 16854876 16.8959 94.08%

Non-increasing values 284777810 17559804 16.2176 93.83%

Random values within a small

range

217000000 69747320

3.1112 67.86%

Random values within a large

range

243459776 80423180

3.0272 66.97%

127

APPENDIX H

DETAILED COMPRESSION RESULTS FOR SA128 COMPRESSION (STAGE-1
AND STAGE-2) ON GENERATED DATASET GROUPED BY DATATYPE

CATEGORIES

128

Table

type

Size of

uncompr

essed

'Boolean'

column

(Category

4)

Size of

compress

ed

'Boolean'

column

(Category

4)

Size of

uncompres

sed 'Real'

column

(Category

3)

Size of

compresse

d 'Real'

column

(Category

3)

Size of

uncompres

sed

'Double

Precision'

column

(Category

3)

Size of

compresse

d 'Double

Precision'

column

(Category

3)

Non-

decreasing

values

56000000 5960994 222249984 58246558 444499968 117906375

Non-

increasing

values

56000000 5960994 222249984 58544488 444499968 124228609

Random

values

within a

small range

56000000 31777234 222249984 157719231 444499968 367882976

Random

values

within a

large range

56000000 31782972 222249984 200336756 444499968 411304616

129

APPENDIX I

DETAILED COMPRESSION RESULTS FOR SA128 COMPRESSION (STAGE-1
AND STAGE-2) VS OTHER ALGORITHMS ON 1 GB GENERATED DATASET

130

Dataset

type

SA128

(bytes)

Zstd

1.4.8.1

level 22

(bytes)

Snappy

1.1.3

(bytes)

Lzma

9.38

level 6

(bytes)

Zlib

1.2.11

level 9

(bytes)

LZ4

3.1.3

(bytes)

Brotli

1.0.9

level 11

(bytes)

Non-

decreasin

g values

1,68,54,8

76

22,91,6

6,496

21,57,0

8,567

48,43,24

4

18,70,91,

654

10,24,86,

671

26,47,9

4,923

Non-

increasin

g values

1,75,59,8

04

22,91,6

6,496

21,57,0

8,567

45,29,44

0

18,70,91,

654

10,38,96,

451

26,47,9

4,923

Random

values

within a

small

range

6,97,47,3

20

26,84,5

8,645

19,23,4

7,382

6,01,14,9

30

22,02,97,

953

14,72,29,

902

22,38,9

3,416

Random

values

within a

large

range

8,04,23,1

80

27,54,4

5,674

20,60,2

1,863

7,12,30,9

11

23,63,55,

739

16,67,29,

656

24,74,0

0,357

131

APPENDIX J

DETAILED PERFORMANCE RESULTS FOR SA128 COMPRESSION (STAGE-1
AND STAGE-2) VS OTHER ALGORITHMS ON 1 GB TPC-DS BENCHMARK

DATASET

132

Table name SA128
(second
s)

Zstd
1.4.8.1
level 22
(second
s)

Snappy
1.1.3
(second
s)

Lzma
9.38
level 6
(second
s)

Zlib
1.2.11
level 9
(second
s)

LZ4
3.1.3
(second
s)

Brotli
1.0.9
level 11
(second
s)

call_center
0.43668
11

0.13033
19

1.5773
426

0.32050
73

0.29337
08

0.3563
261

0.34515
84

catalog_page
231.486
8507

1.67336
66

2.2356
708

1.56898
73

1.42479
72

0.2166
766

33.4822
501

catalog_returns
5148.51
2151

13.8488
49

1.6678
461

30.5955
206

10.0134
453

1.2510
897

234.067
2823

catalog_sales
38377.7
0037

188.816
018

18.629
3666

351.602
2775

97.5715
193

19.659
9702

3471.43
8509

customer
5069.59
5101

14.5198
804

2.3108
879

17.1598
471

10.9767
005

1.1579
375

242.592
673

customer_addre
ss

473.228
0742

3.56971
62

0.5634
66

5.96122
66

4.72943
66

0.8303
148

118.860
0405

customer_demo
graphics

3454.88
7581

62.5560
466

9.4316
28

64.7205
317

98.2416
144

8.7474
576

3333.35
5909

date_dim
466.300
7508

8.96622
53

0.6365
887

11.4059
86

5.26243
93

0.7468
312

135.715
6169

household_dem
ographics

3.68301
13

0.48790
69

0.3721
83

0.18979
28

0.66028
27

0.1743
653

12.2070
271

income_band
0.53237
62

0.13995
42

0.0979
287

0.07232
73

0.16095
16

0.0908
3

0.13568
43

inventory
17743.6
4505

285.839
5503

48.380
6576

255.546
3801

393.501
1736

40.501
1046

18381.5
3144

item
2685.32
1681

3.67433
06

1.9909
686

5.93890
27

3.35989
95

1.6369
267

59.6010
026

promotion
16.8266
457

0.19542
42

0.2430
946

0.25201
35

0.18325
51

0.1423
423

0.84953
15

reason
1.30378
19

0.15503
79

0.1705
809

0.29833
4

0.12459
54

0.1088
859

0.17847
09

ship_mode
1.33142
2

0.12310
88

0.1685
167

0.19904
35

0.39612
56

0.1172
685

0.12933
18

store
1.79637
89

0.14887
82

0.1200
909

0.23254
14

0.11130
67

0.1258
229

0.13498
27

store_returns
8559.91
1133

19.2585
725

2.7019
705

49.5209
619

16.8946
312

2.3405
282

364.076
9071

store_sales
42843.1
3556

217.017
6965

22.080
6776

509.992
9592

168.681
1037

25.221
1857

7659.88
0805

time_dim
470.541
6569

5.90746
65

1.8814
21

2.44662
95

5.65421
49

1.9246
727

171.227
0268

warehouse
1.60222
69

0.39009
25

0.0928
006

0.04454
81

0.13326
28

0.1059
779

0.05918
14

133

web_page
1.75442
2

0.17455
98

0.1571
61

0.08433
22

0.13846
38

0.1543
036

0.21074
13

web_returns
2805.77
4448

6.79173
96

0.8492
237

8.92203
3

5.58945
8

0.6444
205

120.157
7151

web_sales
19956.5
1049

66.1117
904

9.6403
397

150.058
1109

63.3075
715

7.6407
091

1534.55
7929

web_site
6.52370
09

1.53513
33

0.1453
549

0.13366
34

0.19341
67

0.1589
683

0.23962
75

134

APPENDIX K

DETAILED PERFORMANCE RESULTS FOR SA128 COMPRESSION (STAGE-1
AND STAGE-2) VS OTHER ALGORITHMS ON 1 GB GENERATED DATASET

135

Datase
t type

SA128
(seconds

)

Zstd
1.4.8.1
level 22
(seconds

)

Snappy
1.1.3

(second
s)

Lzma

9.38

level 6

(seconds

)

Zlib
1.2.11
level 9

(seconds
)

LZ4
3.1.3

(second
s)

Brotli
1.0.9

level 11
(seconds

)

Non-
decreas

ing
values

14494.91
977

280.6755
16

34.2860
658

271.1570
873

370.5804
404

27.6235
839

14112.28
481

Non-
increas

ing
values

14049.51
347

267.0388
133

31.6263
264

253.5042
029

280.5093
933

29.2293
526

13870.83
912

Random
values

within a
small
range

36903.05
286

220.7413
967

34.5630
973

276.5787
353

272.0547
708

27.7811
676

13473.63
411

Rando
m

values
within
a large
range

34138.85
045

195.1213
051

36.1044
758

256.8656
053

342.9404
333

28.8372
896

12153.94
776

