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ABSTRACT 
 

Traditionally, databases have been categorized as either row-oriented or column-

oriented databases. Row-oriented databases store each row of the table’s data 

contiguously onto the disk whereas column-oriented databases store each column’s 

data contiguously onto the disk. In recent years, columnar database management 

systems are becoming increasingly popular because deep and narrow queries are faster 

on them. Hence, column-oriented databases are highly optimized to be used with 

analytical (OLAP) workloads (Mike Freedman 2019). That is why they are very 

frequently used in business intelligence (BI), data warehouses, etc., which involve 

working with large data sets, intensive queries and aggregated computing. As the size 

of data keeps growing, efficient compression of data becomes an important 

consideration for these databases to optimize storage as well as improve query 

performance. Since column-oriented databases store data of the same data type 

contiguously, most modern compression techniques provide better compression ratios 

as compared to row-oriented databases.  

This thesis introduces a new compression technique called SA128 for column-

oriented databases that performs a column-wise compression of database tables. 

SA128 is a multi-stage compression technique which performs a column-wise 

compression followed by a table-wide compression of database tables. In the first 

stage, SA128 performs an analysis based on the characteristics of data (such as data 

type and distribution) and determines which combination of lossless-compression 

algorithms would result in the best compression ratio. In the second phase, SA128 uses 

an entropy encoding technique such as rANS (Duda, J., 2013) to further improve the 

compression ratio.
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Chapter 1 
 

 
INTRODUCTION 

 
 

In traditional databases, as data is stored and queried at scale, data compression 

becomes significantly important both in terms of optimizing storage space as well as 

improving query performance. More compression means that lesser number of disk 

blocks need to be read into memory during each query operation. This reduction in 

disk I/O leads to an increase in query performance. 

Traditional databases can be divided into row-oriented databases or column-

oriented databases. The difference between the two is mostly concerned with how the 

data is stored onto disk. In row-oriented databases, the data tables are stored row by 

row, whereas in column-oriented databases the data tables are stored column by 

column. In a column-based database, each column value is stored contiguously onto 

disk. This storage format has several advantages during compression since the 

contiguous data values stored share similar properties such data type, range of values, 

etc. and sometimes even share some common characteristics as in the case of time-

series data. Generic compression techniques in row-oriented databases fail to take into 

account this local property and common characteristics of data and thus compression 

on column-oriented databases can lead to better compression ratios. 

A common problem with many compression algorithms is that they are data set 

specific. An algorithm which works well on one data set, may not work well on others. 

A common example of this is Delta encoding and Run-length encoding, Frame of 

Reference (Goldstein et al. 1998), etc. In Delta encoding, data sets which have a small 

difference (delta) between each contiguous value compress better than those with large 

delta values. In Run-length encoding, if our data set has a lot of repeated values stored 

contiguously, then this encoding works very well as opposed to datasets with lesser 
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number of contiguous repeated values. The same is true for Frame of Reference 

(Goldstein et al. 1998) technique. If the data set has all values that are large, then FOR 

compresses well, but if the data set contains several zero values, then it is not as good. 

Another problem with most compression algorithms is that they are datatype 

specific. For example, Delta Encoding and Run-length Encoding only works well for 

Integers, XOR-based encoding works well for only floating-point numbers, LZ77 

works well for string types, etc. 

The goal of our thesis is to introduce a new lossless compression technique called 

SA128 for column-oriented databases which comprises of two stages. This current 

scope of this thesis mainly focuses on the space savings achieved using SA128 

compression and not on improving the compression/decompression performance. 

Compression and decompression times can be significantly improved using parallel 

processing, computing using SIMD instructions and testing results on powerful server 

machines (for more details, refer to Chapter 8). 

In the first stage, we analyse the data based on their data type. Based on the 

properties and distribution of data belonging to each data type, we use a smart selection 

process to select a combination of one or more state of the art compression algorithms 

that result in a good compression ratio for that dataset instead of blindly choosing a 

generic compression algorithm for the data set. In this stage, we divide each data 

column into one of 5 categories based on its data type. We use a combination of the 

following algorithms based on the below categories of data types to compress them 

(the data types considered below are some of the commonly used data types in 

PostgreSQL): 

1. Integers (integer/int4, smallint/int2, bigint/int8), date, time, timetz, 

timestamp and timestamptz: For data columns belonging to this category, we 

divide the data column into blocks of 128 data values each. Data belonging to 

data types such as date, time, timetz, timestamp and timestamptz are all converted 
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to Integers so that all of them can be compressed using similar methods. For each 

block and based on the distribution of the values, we perform Delta encoding and 

Delta of Delta encoding over a Frame of reference on two separate copies of the 

original block. By this stage, we have three copies of the same block where one 

copy is unencoded and the other two copies are encoded using Delta encoding 

and Delta of Delta encoding over a Frame of reference respectively. In the next 

step, we use a zigzag encoding technique on data values belonging to all three 

copies of the block to map negative numbers to positive numbers. By the end of 

this stage, if there are repeated runs of contiguous values in the block, we use the 

Run-length encoding technique on all three copies of the block. The value for 

each of the runs for the data value is stored within the block itself and the index 

location to that run value is stored in an exception block for each copy of the 

block to remember the position of the run values. In the next step, we use bit 

packing technique where we encode all the values with the minimum number of 

bits required to encode the largest value in each block. To ensure that the largest 

value is not a large value, we use an exception technique in combination with bit 

packing. For this, we calculate the minimum number of bits (bmin) required to 

store a majority of the values in the block and the bits (bmax) required to store the 

largest element in the block. We select the optimum number of bits iteratively 

going from bmax to bmin. At each iteration, all values requiring more than b bits of 

storage are broken by dividing them with the largest value which can be stored 

using b bits. The quotient and remainder pair (q, r) are stored as two separate 

values in place of the original value to ensure all values in the copy of the block 

can be represented using b bits. We use a second exception block for each copy 

of the block to store the index positions of the numbers which were broken down 

into a (q, r) pair. We use a third exception block for each copy of the block to 

store the index positions of all the NULL values in the block copy. In the end, 
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we compute the total size occupied by each of the three copies of the block along 

with the sizes of their respective exception blocks and choose the copy requiring 

the least amount of space as the final block. Information regarding which degree 

of Delta encoding was used to encode the data block is stored in the block header 

which can be used by the decoder using decompression. 

2. Decimal/Numeric: Numeric types are fixed precision datatypes. They are often 

represented with a tuple (p, s) where p and s are the precision and scale of the 

data values respectively. For these data types, we follow a similar approach as 

the previous category. However, after dividing the data column into blocks of 

128 values each and making three copies of each block, we further split each 

copy of the block into two sub-blocks where the first sub-block contains the part 

of the data value appearing before the decimal point and the second sub-block 

contains the part of the data value appearing after the decimal point. For each of 

the two sub-blocks, we follow the same compression process as the first category 

such as computing variants of Delta encoding over a Frame of reference, zigzag 

encoding, run-length encoding, bit packing with modulo technique and packing 

NULL values. 

3. Floats (real/float4, double precision/float8): In the first step, we again divide 

the data column into blocks of 128 values each. In the second step, we use an 

approach similar to that used for numeric datatypes in second category. However, 

instead of using three copies of the block (along with the two sub-blocks for each) 

for computing variants of delta encoding, we maintain another fourth copy of the 

block. On this copy, we perform XOR-based encoding (Pelkonen et al. 2015) 

between the contiguous values in the block and we do so over a frame of 

reference. We perform zigzag encoding, run-length encoding, bit packing with 

exception technique and encode NULL values for all four copies of the block and 

select the block (and its exception blocks) with the smallest size as our final 
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block. Information regarding which encoding was used to encode the data 

(uncompressed, delta encoding, delta of delta encoding or XOR-based encoding) 

is stored in the block header which can be used by the decoder using 

decompression. 

4. Boolean: For Boolean values, have only 3 distinct values, i.e., true, false and 

NULL. Therefore, the probability of having long repeated runs of the same value 

is very high in these columns. We again divide the column values into blocks of 

128 values each, however this time we keep only a single copy of each block. 

For each block instead of trying variants of Delta encoding on each block to see 

which one compresses better, we directly use run-length encoding followed by 

bit packing and NULL handling to encode the block since delta encoding would 

not be much effective in a block containing only 0, 1 and NULL values. 

5. Character (char) and Character Varying (varchar): For this category, we use 

a dictionary encoding mechanism and map each String to a unique integer. We 

then use their integer representation and encode it using the encoding procedure 

for the first category integer as discussed above. We then use LZ77 compression 

(Ziv J., Lempel A. 1977) to encode the dictionary strings and store them along 

with the integer blocks. This only works well when there are a high number of 

repeated string values in the data set. This means that the resulting dictionary will 

contain a smaller number of unique strings making compression more effective. 

If there are lesser number of repeated values, then we compress the entire column 

using LZ77 compression (Ziv J., Lempel A. 1977) since no other compression 

algorithm would lead to a decent compression on it. 

 

In the second stage, we use a ranged variant of Asymmetric Numeral Systems 

(ANS) entropy encoding technique called rANS (Duda, J., 2013) to further compress 

the column compressed during the previous stage. With each insert, update and delete 
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operation on the database in the form of queries, the probability distributions of each 

symbol might frequently change over time. rANS (Duda, J., 2013) belong to the family 

of ANS algorithms and is highly suitable for environments with fast-changing symbol 

probability distributions such as databases with fast compression performance. The 

probability distribution of the compressed data is stored along with the compressed 

data so that it can be used by the decoder during decompression. 
 

 

 

Structure of document: This thesis comprises of the following sections: 

• Chapter 2 introduces the preparation of data sets used in taking the results of our 

compression technique and the preparation of this document. 

• Chapter 3 discusses the background and history of progress in the area of data 

compression. The history behind some of the techniques used in our research 

have been discussed in detail. 

 
• Chapter 4 discusses the design, structure and details of each component of our 

compression algorithm and techniques used with it. 

 
• Chapter 5 discusses the design and logic behind our decompression algorithm 

encoded using the compression algorithm discussed in chapter 4. 

 

• Chapter 6 describes the experimental setup, presents the results and performs a 

comparative analysis on storage and compression ratio in comparison with other 

state of the art compression algorithms. 

• Chapter 7 continues our discussion on the results, lessons learned over the course 

of the project, the limitations and talk about the further improvements. 

• Chapter 8 discusses the limitations of our approach and assumptions. 

• Chapter 9 concludes the thesis, with ideas about future work.
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Chapter 2 
 
 

DATA SET PREPARATION 
 

 
 For verifying the results of our SA128 compression technique, we performed 
compression and decompression on two types of datasets:  
 
1. A 1 GB TPC-DS benchmark data set (Transaction Processing Performance Council 

2020) for data belonging to the first, second and fifth data type categories, i.e., for 
integers (smalling/int2, integer/int4, bigint/int8), identifier, date, timestamp, 
timestamptz, time, timez, decimal/numeric, char and varchar. 

 
2. A generated dataset containing 4 different types of tables for data belonging to the 

third and fourth data type categories, i.e., for Boolean, real/float4 and double 
precision/float8. 

 
This section provides a brief overview about the various aspects of both the above datasets 
and their purpose in accurately computing compression results for SA128. 
 

2.1 Benchmark dataset 
 

For our benchmark dataset, we will be using a 1GB TPC-DS dataset for 
calculating the compression ratio and space savings on data modelled from actual 
production data. 

 According to the TPC-DS documentation version 2.13.0 (Transaction Processing 
Performance Council 2020), the “TPC Benchmark™ DS (TPC-DS) is a decision support 
benchmark that models several generally applicable aspects of a decision support system, 
including queries and data maintenance. The benchmark provides a representative 
evaluation of the System Under Test’s (SUT) performance as a general-purpose decision 
support system.”  

The TPC-DS benchmark (Transaction Processing Performance Council 2020) 
illustrates decision support systems which examine large volumes of data and provides 
relevant and objective performance data to industry users, they are expected to be accurate 
representations of system performance. Hence, this benchmark is good candidate for 
measuring the performance of SA128 against them. 

TPC-DS (Transaction Processing Performance Council 2020) models the decision 
support functions of a retail product supplier, i.e., the sales and sales return process for an 
organization that employs three primary sales channels: stores, catalogs, and the Internet. 
The supporting schema contains vital business information, such as customer, order, and 
product data. The goal of selecting a retail business model is to assist the reader in relating 
intuitively to the components of the benchmark, without tracking that industry segment so 
tightly as to minimize the relevance of the benchmark. 
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2.1.1 TPC-DS Benchmark Schema Overview 
 

The TPC-DS benchmark dataset (Transaction Processing Performance Council 
2020) comprises of a total of 24 tables which include 7 fact tables and 17-dimension tables 
where: 
 
1. 6 tables comprise of a pair of fact tables focused on the product sales and returns for 

each of the three channels. 
2. 1 fact table that models the inventory for the catalog and internet sales channels. 
3. 17-dimension tables that are associated with all sales channels. 
 

2.1.2 Column Definition 
 

For each of the above 24 tables, we create a definition file (which is a .dat file), where 
the naming convention of each file is in the form <table name>_def.dat. every column in a 
table, we have a row in the definition file corresponding to it, which stores its column 
definition. The column definition is in the following format: 

 
Column name Datatype NULLs Primary Key Foreign Key 

Table 2.1: Column Definition Format 
 

Each of these five properties are explained below in detail: 
 
Column name: The TPC-DS documentation (Transaction Processing Performance 

Council 2020) states that each column is uniquely named, and each column name begins 
with the abbreviation of the table in which it appears. Columns that are part of a business 
key are indicated with (B) appearing after the column name. A business key is neither a 
primary key nor a foreign key in the context of the data warehouse schema. It is only used 
to differentiate new data from update data of the source tables during the data maintenance 
operations. 

 
Datatype: Each column employs one of the following datatypes: 

 
a. Identifier: The column shall be able to hold any key value generated for that column.  
 
b. Integer: The column shall be able to exactly represent integer values (i.e., values in 

increments of 1) in the range of at least (−2n − 1) to (2n − 1 − 1), where n is 64.  
 
c. Decimal (d, f): The column shall be able to represent decimal values up to and 

including d digits, of which f shall occur to the right of the decimal place; the values 
can be either represented exactly or interpreted to be in this range.  
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d. Char (N): The column shall be able to hold any string of characters of a fixed length 
of N. If the string that a column of datatype char(N) holds is shorter than N characters, 
then trailing spaces shall be stored in the database or the database shall automatically 
pad with spaces upon retrieval such that a char_length() function will return N. 

 
e. Varchar (N): The column shall be able to hold any string of characters of a variable 

length with a maximum length of N. Columns defined as "varchar(N)" may 
optionally be implemented as "char(N)". 

 
f. Date: The column shall be able to express any calendar day between January 1, 1900 

and December 31, 2199. 
 

The datatypes do not correspond to any specific SQL-standard datatype. The 
definitions are provided to highlight the properties that are required for a particular column. 
The benchmark implementer may employ any internal representation or SQL datatype that 
meets those requirements. The implementation chosen by the test sponsor for a particular 
datatype definition shall be applied consistently to all the instances of that datatype 
definition in the schema, except for identifier columns, whose datatype may be selected to 
satisfy database scaling requirements. 
 

NULLs: If a column definition includes an ‘N’ in the NULLs column, this column 
is populated in every row of the table for all scale factors. If the field is blank this column 
may contain NULLs. 
 

Primary Keys: Columns that are part of the table’s primary key are indicated in the 
column called Primary Key. If a table uses a composite primary key, then for convenience 
of reading the order of a given column in a table’s primary key is listed in parentheses 
following the column name. 

 
Foreign Keys: If the values in this column join with another column, the foreign 

columns name is listed in the Foreign Key field of the column definition. 
 

Note: For our experiments and results, we will only be concerned with the first 
three properties, i.e., column name, datatype and NULLs for each column. The primary 
key and foreign key are not useful to us in our compression technique. Also, since the 
datatypes used in this benchmark dataset cover our first, second and fifth PostgreSQL 
datatype categories, we will only use this benchmark to test compression performance 
on these three categories only. Datatypes belonging to the third and fourth category 
will be tested using a different dataset. 

 
2.1.3 Dataset scale 

 
The TPC-DS benchmark (Transaction Processing Performance Council 2020) 

defines a set of discrete scaling points (“scale factors”) based on the approximate size of 
the raw data produced by dsdgen. 



10 
 

 
The set of scale factors defined for TPC-DS is 1 TB, 3 TB, 10 TB, 30 TB and 100 

TB for regular databases and 1 GB for a qualification database. 
 

For our performance measurements for compression, we will be using a 1 GB TPC-DS 
dataset and calculate compression ratio for columns belonging to all 7 fact tables and 17-
dimension tables. 
 

2.2 Generated dataset 
 

Our generated dataset consists of a large dataset (1 GB) each consisting of 4 tables 
each. Each table comprises of 3 columns each where each column belongs to a datatype 
from the set {Boolean, Real/Float4, Double Precision/Float8}, i.e., datatypes belonging to 
the third and fourth categories.  

Details of the 4 generated tables are as follows: 
 

1. Table where all columns have non-decreasing values: For the column with 
‘boolean’ datatype, we have the first half of the values as all ‘False’ followed by 
the second half as all ‘True’. For the columns with ‘real’ and ‘double precision’ 
datatypes, our values start from 0.0 and go all the way till 700000.0 with an 
increment of 0.1, where the ‘real’ values have up to 6 significant digits and ‘double 
precision’ values have up to 15 significant digits respectively. 
  

2. Table where all columns have non-increasing values: For the column with 
‘boolean’ datatype, we have the first half of the values as all ‘True’ followed by the 
second half as all ‘False’. For the columns with ‘real’ and ‘double precision’ 
datatypes, our values start from 700000.0 and go all the way till 0.0 with a 
decrement of 0.1, where the ‘real’ values have up to 6 significant digits and ‘double 
precision’ values have up to 15 significant digits respectively. 

 
3. Table where all columns have random values over a small range: For the 

column with ‘boolean’ datatype, we have randomly generated ‘True’ or ‘False’ 
values. For the columns with ‘real’ and ‘double precision’ datatypes, we generate 
random values which range between a small bound ranging from a value x to (x + 
1) where x is chosen randomly. The ‘real’ values have up to 6 significant digits and 
‘double precision’ values have up to 15 significant digits respectively. 

 
4. Table where all columns have random values over a large range: For the 

column with ‘boolean’ datatype, we have randomly generated ‘True’ or ‘False’ 
values. For the columns with ‘real’ and ‘double precision’ datatypes, we generate 
random values which range between a large bound ranging from a value x to (x + 
1000) where x is chosen randomly. The ‘real’ values have up to 6 significant digits 
and ‘double precision’ values have up to 15 significant digits respectively. 
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Chapter 3 
 

 
PREVIOUS WORK AND RESEARCH QUESTIONS 

 
 

Data compression (History of Lossless Data Compression Algorithms 2019) is a 

process by which the size occupied by a file or a piece of data is encoded in a way such 

that it uses fewer bits of storage to represent compared to the original file or data. 

Throughout history, there have been a tremendous amount if research in the area of data 

compression. Most of the compression algorithms today fall into either of the two 

categories – lossy compression and lossless compression. 

In lossy compression, small and unimportant details are removed from a file or piece 

of data so that it required less amount of storage. This kind of compression is irreversible, 

which means that it is impossible for the decompression algorithm to restore the original 

file or data back again. Lossy compression algorithms are generally able to achieve very 

high compression ratios. Lossless compression algorithms on the other hand, compresses 

data in such a way that the decompression algorithm is always able to recover the original 

data back so that there is no loss of data. Lossless compression algorithms generally do not 

achieve compression ratios as high as lossy compression algorithms, but are extremely 

important in cases where our data is very important and loss to data cannot be tolerated. 

Most lossless compression algorithms rely on the principle that the data being compressed 

has large amounts of redundancy and non-random values. Hence, they can then be 

condensed using statistical modelling techniques. 

 

3.1 Data Compression Techniques 

In this section, we will discuss some of the common compression techniques used 

throughout history which are relevant to our thesis. 
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3.1.1 Delta Encoding 
 

Delta Encoding reduces the amount of information required to represent a data object 

by only storing the difference (or delta) between the object and one or more reference 

objects (Joshua et al. 2020). This reduces the variance (range) of the values when the 

difference between contiguous values is small. Using this encoding, we can use fewer bits 

to represent the data point by only storing the delta from the previous data point. The 

following tables 3.1 and 3.2 show contents of our database tables before and after delta 

encoding where each value in a column is subtracted by the previous value in the column: 

 

Time CPU Bytes Temperature Humidity 

2021-03-25 20:00:00 140 6,843,472,947 28 60 

2021-03-25 20:05:00 150 434,455,352 30 60 

2021-03-25 20:10:00 150 434,231,335 30 60 

2021-03-25 20:15:00 160 3,185,285,098 31 60 

Table 3.1: Table Data Before Delta Encoding 

 

Time CPU Bytes Temperature Humidity 

2021-03-25 20:00:00 140 6,843,472,947 28 60 

5 seconds 10 -6,409,017,595 2 0 

5 seconds 0 -224,017 0 0 

5 seconds 10 2,751,053,763 1 0 

Table 3.2: Table Data after Delta Encoding 
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3.1.2 Delta of Delta Encoding 
  

A large amount of data which is used today comprises of time-series data which is a 

series of data points collected over time intervals making it possible to track changes over 

time (Joshua et al. 2020). For time-series data, another variation of Delta encoding called 

Delta of Delta encoding is even more efficient in further reducing the data size. For 

example, if we consider the ‘Time’ column in Table 3.1 and 3.2, we can see that the time 

values are logged every 5 seconds. Therefore, instead of using Delta encoding, we compute 

a Delta of Delta encoding where we again compute Delta encoding for a second time over 

the Delta encoded table. If we apply Delta of Delta encoding to data in table 3.2, we get 

the below table 3.3: 

Time CPU Bytes Temperature Humidity 

2021-03-25 20:00:00 140 6,843,472,947 28 60 

5 seconds 10 -6,409,017,595 2 0 

0 -10 6,408,793,578 -2 0 

0 10 -3,657,739,815 1 0 

Table 3.3: Table Data after Delta of Delta Encoding 

From the above table 3.3, we can see that after the first two rows, all of the following 

rows for the ‘Time’ column contains ‘0’ values, which take an even lesser number of bits 

to represent than when the column was compressed using Delta encoding. 

 
3.1.3 Run-length Encoding 

 

In Run-length encoding (Joshua et al. 2020), if we have more than two number of 

repeats of the same value appearing contiguously within the data being compressed, we 

store one copy of the data value along with the number of repeats as a pair {run; value}. 
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For example, the below data can be compressed using run-length encoding in the following 

way: 

Original Data: 11, 11, 12, 12, 12, 12, 12, 1, 1, 12, 12, 12, 12 

Data after Run-length Encoding: {2, 11}, {5, 12}, {2, 1}, {4, 12} 

The Run-length encoded data above required only 11 digits of storage: 

Digits used: ([2, 1, 1, 5, 1, 2, 2, 1, 4, 1, 2]) 

For the original data, approximately 24 digits is required by an optimal series of 

variable length integers: 

Digits used: ([1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2]) 

Run-length encoding is highly useful for image data compression where several 

contiguous pixels share the same color, etc.  

 

3.1.4 Zigzag Encoding 

Zigzag encoding (Fürstenau 2015) is a technique which maps negative values to 

positive values while going back and forth (0 = 0, -1 = 1, 1 = 2, -2 = 3, 2 = 4, -3 = 5, 3 = 6, 

…). This technique is useful because it is hard to represent negative numbers using a small 

number of bits because of the sign bit in MSB position in their binary representation. For 

small numbers, although the magnitude of the numbers may be small, they require a large 

number of bits to represent making compression on negative numbers not efficient. Given 

below are the implementations of how the zigzag encoder and decoder work: 

Encoding: (n >> bitlength - 1) ^ (n << 1) 

Decoding: (n >>> 1) ^ - (n & 2) 

Here, n is the number being encoded or decoded, the bitlength can be 32 for a 32-bit 

JAVA integer, ‘>>’ is the arithmetic shifting operation (highest order bit is replicated), ‘^’ 

is the XOR-operation, ‘>>>’ is the non-arithmetic shifting operation (0-padding) and ‘-’ is 

the unary negation operation 
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Therefore, this technique is useful to represent small negative numbers using a 

smaller number of bits by storing the sign bit in the LSB instead of MSB. An example of 

zigzag encoding can be given as follows: 

Original value: -1 

Zigzag encoding: (−1 >>  7) ^ (−1 <<  1)  =  1 

Zigzag decoding: (1 >>>  1) ^  −  (1 & 1)  =  −1 

 

3.1.5 Binary Packing 

This technique is closely related to Frame-Of-Reference (Goldstein et al. 1998, 

Delbru et al. 2012) In Binary packing technique, the data values are partitioned into 

blocks (e.g., blocks containing 128 integers) (Daniel Lemire and Leonid Boytsov 2015). 

The range of values in the blocks are first coded and then all the values in the block 

are written in reference to the range of values.  

For example, if the values in a block are integers in the range [1200, 1327], then 

they can be stored using 7 bits per integer, i.e., log (1327 − 1200 + 1) = 7, as offsets 

from the number 1200 stored in binary notation. 

This technique is very efficient if the lower and upper bound values in the block 

are large and their difference is small. 

 

3.1.6 XOR-based encoding 

XOR-based encoding (Pelkonen et al. 2015) is used for encoding floating point 

values. In this scheme, successive floating-point numbers are XOR-ed together, which 

means that only the different bits are stored. Techniques such as delta encoding don’t 

generally work very well for floats, as they do not reduce the number of bits 

sufficiently. Floating point numbers are generally more difficult to compress than 

integers. Unlike fixed-length integers which often have a fair number of leading 0s, 

floating point numbers often use all of their available bits. 
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In this encoding, the first data value is stored with no compression. Subsequent 

data values are represented using their XOR-ed values, encoded using a bit packing 

scheme by removing the trailing and leading zeros in the XOR-ed representation. For 

example, refer to figure 3.1. 

 

Figure 3.1: An Example of XOR Based Encoding (Pelkonen et al. 2015) 

 

3.1.7 Lempel-Ziv (LZ) Compression 

Lempel-Ziv compression (History of Lossless Data Compression Algorithms 2019) 

is a contains a family of several compression algorithms and variants. It takes 

advantage of the large amounts of repetitive data in a file. Each time we hit one of 

these common words, we could just put a shorter code for this word. Some popular 

variants of Lempel-Ziv compression are LZW, LZ77, LZ78, LZMA, etc. 

 

3.1.8 LZ77 Compression 

LZ77 compression (Ziv J., Lempel A., 1977) works by looking ahead into the file. 

If it sees a pattern it recognizes, it will write the previous position of that match in a 

file instead of the actual data. LZ77 works by encoding scanned data values using a 

triple (o, l, c) where, 

o: offset, represents the number of positions that we would need to move 

backwards in order to find the start of the matching string. 

l: length, represents the length of the match. 
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c: character, represents the character that is found after the match. 

Given below is an example of how data compressed using LZ77 compression 

would look like: 

Original data: a b a b c b a b a b a a 

LZ77 encoding: (0, 0, a), (0, 0, b), (2, 2, c), (4, 3, a), (2, 2, a) 

 

3.1.9 Asymmetric Numeral Systems (ANS) 

ANS (Duda, J., 2013) is a lossless and entropy encoding compression algorithm. 

Its input is a list of symbols from some finite set and its output is a finite integer. Each 

symbol s has a fixed known probability ps of occurring in the list. The algorithm tries 

to assign each list a unique integer so that the more probable lists get smaller integers. 

We convert each symbol to a number from 0 to B−1 (where B is the number of 

symbols), add a leading 1 to avoid ambiguities caused by leading zeros, and interpret 

the list as an integer written in a base-B positional system. 

An example of how the encoder and decoder works for its simplest variant 

(Roman Cheplyaka 2017) is given below: 

Encoding: 𝑓(𝑠 , 𝑛)  =  𝑠 +  𝑛 . 𝐵 

Decoding: 𝑔(𝑛)  =  (𝑛 𝑚𝑜𝑑 𝐵, [𝑛/𝐵]) 

where, s is the symbol being encoded, B is the number of symbols and n is the 

current state of the encoded number prior to encoding symbol s. 

There are several popular variants of ANS such as tANS, rANS, uANS. ANS 

offers several important advantages in comparison to other entropy encoders such as 

Huffman Coding (HUFFMAN, D. A., 1952) and Arithmetic Coding (RISSANEN, J., 

AND LANGDON, G. G., 1979). Huffman Coding is generally very fast but does not 

compress close to the entropy limit for the data and Arithmetic Coding compresses 

close to the entropy limit but is slow compared to Huffman coding. ANS offers the 
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best of both worlds by being efficient both in terms of degree of compression as well 

as performance. 

 

3.2 Research Questions 

There are two major concerns with most of the compression algorithms available 

today: 

1. Most compression algorithms are generic in nature, i.e., they do not adapt with 

respect to the data characteristics to get a better compression ratio. 

For example: 

a. Delta encoding is not favorable if the difference between adjacent values is 

large. 

b. Delta encoding and delta of delta encoding may in some cases increase the 

size of the original file. 

c. Frame of Reference or binary packing is not favorable if there is the 

minimum value in the data block is 0 or the range of values in a block is 

very large. 

d. ANS produces a large integer result if set of input symbols are large. 

2. Most compression algorithms are suitable for particular data types. 

For example: 

a. Delta, Delta of Delta, Run-length are good for Integer types. 

b. XOR encoding is good for float types. 

c. LZ-type compression is good for String types. 

 

Therefore, our thesis work caters to providing a solution to the following research 

questions: 

1. Can we devise a smart compression algorithm which adapts its compression 

technique with respect to dataset characteristics? 
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2. Can we devise a smart compression algorithm which adapts its compression 

technique with respect to the datatype? 

 

To answer the above questions, we devise a new compression technique called 

SA128 (covered in chapter 4 and 5) which adapts its compression technique with 

respect to both the datatype and data characteristics of our data. 

An example of a database which tackles the second questions is TimescaleDB. 

TimescaleDB (Freedman 2019) turns a row-oriented database into a column-oriented 

format and adapts its compression strategy for each of the supported datatypes such as 

integers, floats, strings, etc. This approach results in 91-96% storage savings for 

TimescaleDB. 
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Chapter 4 
 

 
SA128 COMPRESSION 

 
In the chapter 3, we discussed some background and common methods used in the 

area of compression. In this section we will build on top of some of those techniques and 
explore a smart compression technique called SA128. SA128 compression takes place in 
two stages: 

 
1. Compression Stage 1 - Column based compression stage: Uses a smart compression 

technique which uses common data characteristics of columns for compression and 
adapts its compression logic with respect to the data distribution. 

 
2. Compression Stage 2 – rANS entropy encoding stage: Uses an rANS variant of 

Asymmetric Numeral Systems (Duda, J., 2013) to compress the set of symbols 
received as output from stage 1 into an integer. 

 
4.1 Supported Data Types 

 
SA128 supports most of the commonly used datatypes in databases. For our 

implementation, we have used the datatypes available in PostgreSQL (PostgreSQL 13 
Documentation, 2021) as many columnar databases are built on top of PostgreSQL or 
follow similar data type conventions. Note that certain data types may differ in their 
definition from database to database. The internal details of the algorithm can be extended 
to support these differences. 

 
The data types which we will be compressing are: 

 
1. Integer/Int4 – Stores whole numbers using 4 bytes of storage with a range of values 

from -2147483648 to +2147483647 (PostgreSQL 13 Documentation, 2021). The 
integer type is the most common choice as it offers the best balance between range, 
storage size and performance. 

 
2. Smallint/Int2 – Stores whole numbers using 2 bytes of storage with a range of values 

from -32768 to +32767 (PostgreSQL 13 Documentation, 2021). The smallint type is 
generally only used if disk space is at a premium. 

 
3. Bigint/Int8 – Stores whole numbers using 8 bytes of storage with a range of values 

from  
-9223372036854775808 to +9223372036854775807 (PostgreSQL 13 
Documentation, 2021). The bigint type should only be used if the range of 
the integer type is insufficient, because the latter is definitely faster. On very minimal 
operating systems the bigint type might not function correctly, because it relies on 
compiler support for eight-byte integers. On such machines, bigint acts the same 
as integer, but still takes up eight bytes of storage. 
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4. Date – Stores a date literal using 4 bytes of storage with a range of values between 

4713 BC and 5874897 AD and a resolution of 1 day (PostgreSQL 13 Documentation, 
2021). Date is accepted in almost any reasonable format, including ISO 8601, SQL-
compatible, traditional POSTGRES, and others. The ISO 8601 is the recommended 
format which uses the ‘yyyy-mm-dd’ format for storing dates. 

 
5. Timestamp – Timestamp (without time zone) uses 8 bytes of storage to store both the 

date and time values concatenated into a valid timestamp literal (PostgreSQL 13 
Documentation, 2021). It has a range of values between 4713 BC and 294276 AD 
and a resolution of 1 millisecond (14 digits). It can accept an optional precision value 
of p with valid values between 0 and 6, which specifies the number of fractional 
digits retained in the second’s field. 

 
6. Timestamp with time zone/timestamptz – Timestamptz uses 8 bytes of storage to 

store the date and time values along with the timezone information, all concatenated 
into a valid timestamp literal (PostgreSQL 13 Documentation, 2021). It has a range 
of values between 4713 BC and 294276 AD and a resolution of 1 millisecond (14 
digits). For timestamp with time zone, the internally stored value is always in UTC 
(Universal Coordinated Time, traditionally known as Greenwich Mean Time, GMT). 
An input value that has an explicit time zone specified is converted to UTC using the 
appropriate offset for that time zone. If no time zone is stated in the input string, then 
it is assumed to be in the time zone indicated by the system's timezone parameter, 
and is converted to UTC using the offset for the timezone zone. 

 
7. Time – Time uses 8 bytes of storage to store a valid time of the day as a time literal. 

It has a range of values from 00:00:00 to 24:00:00 and a resolution 1 microsecond, 
i.e.,14 digits (PostgreSQL 13 Documentation, 2021).   

 
8. Time with time zone/timetz – Timetz uses 12 bytes of storage to store a valid time of 

the day along with the time zone, both concatenated into a valid timetz literal. It has 
a range of values from 00:00:00+1459 to 24:00:00-1459 and a resolution 1 
microsecond., 14 digits (PostgreSQL 13 Documentation, 2021). It can accept an 
optional precision value of p with valid values between 0 and 6, which specifies the 
number of fractional digits retained in the second’s field. 

 
9. Numeric/Decimal – The numeric or decimal types stores arbitrary precision numbers 

with a very large number of digits. It stores up to 131072 digits before the decimal 
point and up to 16383 digits after the decimal point (PostgreSQL 13 Documentation, 
2021). They have the ability to perform calculations accurately, but are however slow 
compared to integer or floating-point types. Two values p and s, indicating the 
precision and scale can be defined for numeric types. The precision of a numeric is 
the total count of significant digits in the whole number, that is, the number of digits 
to both sides of the decimal point. The scale of a numeric is the count of decimal 
digits in the fractional part, to the right of the decimal point. The precision must be 
positive, the scale zero or positive. A numeric type can be defined with either both 
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the precision and scale values, with only a precision value (scale is considered as 0) 
or without precision and scale values (in this case it stores numbers with any 
precision and scale up to the implementation limit). 

 
10. Real/Float4 – They are inexact and variable-precision numeric types requiring 4 

bytes of storage and storing values having up to 6 digits of precision (PostgreSQL 13 
Documentation, 2021). They are usually implementations of the IEEE standard 754 
for single precision binary floating-point arithmetic. 

 
11. Double Precision/Float8 - They are inexact and variable-precision numeric types 

requiring 8 bytes of storage and storing values having up to 15 digits of precision 
(PostgreSQL 13 Documentation, 2021). They are usually implementations of the 
IEEE standard 754 for double precision binary floating-point arithmetic. 

 
12. Boolean – The Boolean type stores three states: ‘true’, ‘false’ and a third ‘unknown’ 

state which is represented by the SQL null value (PostgreSQL 13 Documentation, 
2021). Possible string representation for true values are ‘true’, ‘yes’, ‘on’, ‘1’. 
Possible string representations for false values are ‘false’, ‘no’, ‘off’, ‘0’. 

 
13. Character/Char – Stores fixed size strings up to n characters in length. The value n is 

defined along with the data type (PostgreSQL 13 Documentation, 2021). If the length 
of the string is less than n characters, the string is padded with empty spaces to make 
it equal to a size of n. 

 
14. Character Varying/Varchar – Stores variable length strings with a limit n. Stores only 

the number of characters equal to the length of the string without padding extra 
spaces at the end (PostgreSQL 13 Documentation, 2021). If the length of the string 
exceeds n, then the string is truncated to accommodate a maximum length of n 
characters. 

 
4.2 Compression Stage 1: Column Based Compression 

 
In this stage, we sequentially compress each column of our database tables based on 

the category of datatypes the column falls under. We divide our data types listed in section 
4.1 into 5 categories: 

 
1. Category 1 – Integer/int4, SmallInt/Int2, BigInt/Int8, Date, Timestamp, 

Timestamptz, Time, Timetz. 
 
2. Category 2 - Numeric/Decimal. 
 
3. Category 3 - Real/Float4, Double Precision/Flaot8. 
 
4. Category 4 – Boolean 
 
5. Category 5 – Character/Char, Character Varying/Varchar   
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Depending on the Category the column data type falls under, a different compression 

strategy is used to compress the respective column. In the next sections, we will explain 

the inner details of each of the category-wise compression steps which are a part of Stage 

1 compression. 

 

4.2.1 Compression of Category 1 data types 

The compression of category 1 datatypes take place in 12 sequential steps which are 

explained below: 

 

Step 1 - Divide into blocks: In this step, all the data values belonging to the column being 

compressed is divided into blocks of 128 values. If there are 𝑁 values in the column, the 

total number of blocks after division will be ⌊𝑁/128⌋ values where each block contains 

128 values each except the last block which contains 𝑁%128 +  1 values (between 1 and 

128). Therefore, there cannot be an empty block which contains 0 number of values. 

 

 

Figure 4.1: Illustration of Block Division Step in Category-1 Compression 

 

 The main reason behind choosing block sizes with 128 values are: 

1. Optimal storage savings – Having several small sized blocks ensures that most of 

the blocks compress well and at the same time it makes sure the compression does 

not deteriorate due to poor compression of a small number of blocks. This ensures 

that the net average compression of all the blocks combined is high. In most 
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compression algorithms, blocks sizes are generally chosen to be multiples of 8 (to 

keep it as multiples of 1 byte). For the reasons above, SA128 has blocks of 128 

values each. We did not choose block sizes with lesser than 128 values due to the 

overhead of metadata information in the block header which might often occupy 

more space if the number of data values are chosen to be 64, 32 or 16, etc. 

 

2. Optimal decompression performance – If columns are divided into blocks 

containing small number of values, parallel processing and SIMD instructions can 

be used during decompression which can increase decompression performance. If 

there is a search key present in the column, then it can also increase query times 

tremendously since only selected blocks need to be decompressed instead of 

decompressing the entire column data. 

 

Step 2 – Type conversion: If the data type of the column being compressed does not fall 

into the set of three integer types, i.e., {𝑠𝑚𝑎𝑙𝑙𝑖𝑛𝑡, 𝑖𝑛𝑡𝑒𝑔𝑒𝑟, 𝑏𝑖𝑔𝑖𝑛𝑡}, the values in every 

block is converted to an integer representation by removing all non-numeric characters 

from the literal. The integer representation requires 4 bytes of storage for date types, 8 bytes 

for timestamp, timestamptz and time types and 12 bytes for timez types. For example: 

i. Let s be a literal of ‘date’ type, where s = ‘2021-12-11’ (where the date value is stored 

in ISO 8601 format). This will be stored as a literal f = ‘20211211’.  

ii. Let s be a literal of ‘timestamp’ type, where s = ‘2021-12-11 11:55:34.12313’ (where 

the timestamp value is stored in ISO 8601 format). This will be stored as a literal f = 

‘2021121111553412313’. 

iii. Let s be a literal of ‘timestamptz’ type, where s = ‘2021-12-11 11:55:34 -8:00’ (where 

the timestamptz value is stored in ISO 8601 format). This will be stored as a literal f 

= ‘-20211211115534800’. Note that the negative sign for the timezone becomes the 

sign of the integer representation, thus making it negative. 
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iv. Let s be a literal of ‘time’ type, where s = ’11:55:34.12313’ (where the time value is 

stored in ISO 8601 format). This will be stored as a literal f = ‘11553412313’.  

v. Let s be a literal of ‘timez’ type, where s = ’11:55:34.12313-08:00’ (where the time 

value is stored in ISO 8601 format). This will be stored as a literal f = ‘-

115534123130800’. Note that the negative sign for the timezone becomes the sign 

of the integer representation, thus making it negative. 

 

If the resultant integer representation has leading zeros, then the leading zeros are 

removed, i.e., the date literal ‘0010-12-11’ gets converted to ‘101211’. 

 

Step 3 – Create block copies:  For each block Bm containing 128 values, where 1 <= m 

<= ⌈N/128⌉, we create two more copies of it and call them Bm’ and Bm’’ respectively. In 

total, we have three identical blocks of 128 values each. 

 

 

Figure 4.2: Illustration of Block Copy Creation Step in Category-1 Compression 

 

Step 4 – Delta and Delta of Delta encoding: In this step, we leave block Bm uncompressed 

but apply Delta encoding on block copy Bm’ and Delta of Delta encoding on block copy 

Bm’’. During Delta encoding and Delta of delta encoding, if there are NULL values in the 

blocks Bm’ and Bm’’ respectively, we leave them as it is. During delta encoding on block 

Bm’, for every non-null value 𝑣, we replace it with its delta value 𝑑 as 𝑑 =  𝑝𝑟𝑒𝑣 –  𝑣 

where 𝑝𝑟𝑒𝑣 is the previously scanned non-null value in the block (the values 𝑝𝑟𝑒𝑣 and 𝑣 
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do not necessarily need to be adjacent to each other as there can me any number of NULL 

values between them which remain unchanged). If the previously scanned non-null value 

𝑝𝑟𝑒𝑣 does not exist, we keep the value v unchanged. For example: [20, 15, NULL, 10] gets 

converted to [20, 5, NULL, 5]. Notice here that the first value remains unchanged because 

a non-null value does not exist prior to the first element. 

During delta of delta encoding on block Bm’, for every non-null value v, we replace 

it with its delta of delta value 𝑑’ as 𝑑’ =  (𝑝𝑝𝑟𝑒𝑣 –  𝑝𝑟𝑒𝑣) – (𝑝𝑟𝑒𝑣 –  𝑣) where 𝑝𝑟𝑒𝑣 is the 

non-null value appearing before 𝑣 and 𝑝𝑝𝑟𝑒𝑣 is the second previous non-null value before 

𝑣. If 𝑝𝑟𝑒𝑣 and 𝑝𝑝𝑟𝑒𝑣 do not have non-null values, then we keep the value v unchanged in 

the resultant encoding. 

 

 

Figure 4.3: Illustration of Delta and Delta of Delta Encoding Step in Category-1 

Compression 

 

Step 5 – Zig-zag encoding: In this step, we use zig-zag encoding on all the three blocks 

Bm, Bm’ and Bm’’ to deal with negative numbers and represent them using positive 

numbers. We do this because it is more space efficient to store small negative numbers 

with a smaller number of bits by storing the sign bit in the LSB instead of MSB. Depending 

on the number of bits required to represent the integer representation of the data value after 

step 2, we represent it using a variable called ‘bitlength’. The zig-zag encoder encodes the 

data value to a positive number based on the following equation: 

(𝑛 >>  𝑏𝑖𝑡𝑙𝑒𝑛𝑔𝑡ℎ –  1) ^ (𝑛 <<  1) 
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Where, n is the value being encoded, “>>” is the arithmetic right shift operation, “<<” is 

the arithmetic left shift operation and “^” is the XOR operation. 

This mapping from negative to positive numbers is done in the following sequence:  

[0 =  0, −1 =  1, 1 =  2, −2 =  3, 2 =  4, −3 =  5, 3 =  6, … ] 

 

 

Figure 4.4: Illustration of Zig-zag Encoding in Category-1 Compression 

 

Step 6 – Frame of Reference: In this step, we find the minimum values in each of the 

three blocks Bm, Bm’ and Bm’’, and represent them using tm, tm’ and tm’’ respectively where, 

tm = min (Bm), tm’ = min (Bm’) and tm’’ = min (Bm’’).  We call tm, tm’ and tm’’ the translated 

values for each of their respective blocks. We then subtract all data values in blocks Bm, 

Bm’ and Bm’’ by tm, tm’ and tm’’ respectively. This brings down the magnitude of each 

number in the block such than a smaller number of bits can be used to represent them later. 

We store the values tm, tm’ and tm’’ for our later steps where we will wrap them as part of 

our SA128 block header. 

 

Figure 4.5: Illustration of Frame of Reference Step in Category-1 Compression 
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Step 7 – Run-length encoding: In this step, we try to further optimize the storage by 

computing a run-length encoding over all the three blocks Bm, Bm’ and Bm’’. For every 

sequence S of contiguous values within each of the three blocks, where 𝑆 =

{𝑥 , … , 𝑥 , … , 𝑥  𝑤ℎ𝑒𝑟𝑒 0 ≤  𝑖 <  𝑛 𝑎𝑛𝑑 𝑥  =  𝑥 } we calculate the run value r, where 

𝑟 =  𝑙𝑒𝑛(𝑆) and 𝑙𝑒𝑛 is the length of the sequence S. Note than all run values must be 

greater than 1, i.e., 𝑟 >  1 since the minimum length of a sequence S is 2, i.e., 

𝑚𝑖𝑛(𝑙𝑒𝑛(𝑆))  =  2. The sequence of data values 𝑥 , … , 𝑥 , … , 𝑥  in S is replaced with the 

pair {𝑥 , 𝑟} in the block. We create an exception block for each of the blocks Bm, Bm’ and 

Bm’’ and call them E1m, E1m’ and E1m’’ respectively. These exception blocks store the 

index location for each run value ‘r’ in their respective blocks. 

 

 

Figure 4.6: Illustration of Run Length Encoding Step in Category-1 Compression 

 

Step 8 – Bit packing using modulo technique: In this step, we perform an important 

operation of the three blocks Bm, Bm’ and Bm’’ where we try to break down the largest 

values into smaller values. The intuition behind doing so is that the largest values in the 

blocks dictate the number of bits with which each value will be represented during bit 

packing. If the largest value can be represented using lesser number of bits, then so can 

each other value in the block. We do this by following a modulo technique for bit packing 

specifically designed to optimize the blocks in SA128. For each of the three blocks Bm, 

Bm’ and Bm’’, we find the minimum number of bits 𝑏  (𝑏 ′ and 𝑏 ′′ for the copies) 
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required to represent the majority of the values in the block (> 50% values in the block). 

We also find the number of bits 𝑏  (𝑏 ′ and 𝑏 ′′ for the copies) required to 

represent the largest value in the block. The space occupied by the block after bit packing 

is dictated by the value 𝑏  (𝑏 ′ and 𝑏 ′′ for the copies). Therefore, the total number 

of bits required to represent the values as well as the indices in their respective exception 

blocks are: 

𝑆  =  𝑁 . 𝑏  +  𝑁  . 8 

𝑆 ′ =  𝑁 ′ . 𝑏 ′ +  𝑁 ′ . 8 

𝑆 ′′ =  𝑁 ′′ . 𝑏 ′′ +  𝑁 ′′ . 8 

where,  

𝑆  = Number of bits required to represent the blocks 𝐵  and 𝐸1 , 

𝑆 ′ = Number of bits required to represent the blocks 𝐵 ′ and 𝐸1 ′,   

𝑆 ′′  = Number of bits required to represent the blocks 𝐵 ′ and 𝐸1 ′′, 

𝑁  = Number of values in block 𝐵 , 

𝑁 ′ = Number of values in block 𝐵 ′, 

𝑁 ′′ = Number of values in block 𝐵 ′′, 

𝑁  = Number of values in exception block 𝐸1 , 

𝑁 ′ = Number of values in exception block 𝐸1 ′, 

𝑁 ′′ = Number of values in exception block 𝐸1 ′′. 

 

Here, the constant value 8 is the number of bits required to represent each index value 

in the exception blocks 𝐸1 , 𝐸1 ′ and 𝐸1 ′′ since the number of possible values lie 

between 0 to 127. 

We see that the value 𝑏  (𝑏 ′ and 𝑏 ′′ for the copies) dictate the values 𝑆 , 

𝑆 ′ and 𝑆 ′′  respectively.  We now explain how the modulo technique works on block 

𝐵 . The same technique is used for blocks 𝐵 ′ and 𝐵 ′′ as well. The modulo technique 

takes as input the block 𝐵  and the exception block 𝐸1  and tries to break down large 
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values in the block 𝐵  into two small values such than they can be represented using an 

optimal number of bit b where 𝑏 ≤ 𝑏 ≤  𝑏 . It returns us a modified block 𝐵 , the 

optimal number of bits b required to represent 𝐵  and a second exception block 𝐸2  which 

contains the indices of the values which are broken down into two smaller values. 

 

Pseudo-code for bit packing using modulo technique: 

𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑏𝑖𝑡𝑃𝑎𝑐𝑘𝑖𝑛𝑔𝑊𝑖𝑡ℎ𝑀𝑜𝑑𝑢𝑙𝑜(𝐵 , 𝐸1 ): 

𝐸2 = [ ]; 

𝑁 = 𝑙𝑒𝑛(𝐵 ); 

𝑁 = 𝑙𝑒𝑛(𝐸1 ); 

𝑆  =  𝑁 . 𝑏  +  𝑁  . 8; 

𝑆 = 𝑆 ; 

𝐵 = 𝐵 ; 

𝐸2 =  𝐸2 ; 

𝑏 = 𝐵𝑖𝑡𝑠 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑡𝑜 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡 𝑡ℎ𝑒 𝑙𝑎𝑟𝑔𝑒𝑠𝑡 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑖𝑛 𝐵 ; 

𝑏 = 𝐵𝑖𝑡𝑠 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑡𝑜 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡 𝑚𝑜𝑟𝑒 𝑡ℎ𝑎𝑛 ℎ𝑎𝑙𝑓 𝑡ℎ𝑒 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝑖𝑛 𝐵 ; 

𝑓𝑜𝑟 𝑏 ≥ 𝑏 ≥  𝑏 : 

𝑚𝑎𝑥𝑉𝑎𝑙 =  𝑡ℎ𝑒 𝑙𝑎𝑟𝑔𝑒𝑠𝑡 𝑣𝑎𝑙𝑢𝑒 𝑤ℎ𝑖𝑐ℎ 𝑐𝑎𝑛 𝑏𝑒 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑒𝑑 𝑢𝑠𝑖𝑛𝑔 𝑏 𝑏𝑖𝑡𝑠; 

𝐵 = [ ]; 

𝐸2 = [ ]; 

𝑓𝑜𝑟 0 ≤ 𝑖 ≤ 𝑙𝑒𝑛(𝐵 ); 

𝑛 = 𝐵 [𝑖]; 

𝑖𝑓 𝑛 > 𝑚𝑎𝑥𝑉𝑎𝑙: 

𝑃𝑢𝑠ℎ , 𝑛 % 𝑏 𝑖𝑛𝑡𝑜 𝐵 ; 

𝑃𝑢𝑠ℎ 𝑖 𝑖𝑛𝑡𝑜 𝐸2 ; 

𝑒𝑙𝑠𝑒: 
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𝑃𝑢𝑠ℎ 𝑛 𝑖𝑛𝑡𝑜 𝐵 ; 

𝑆 = 𝑙𝑒𝑛(𝐵 ) ∗ 𝑏 + 𝑙𝑒𝑛(𝐸1 ) ∗ 8 +  𝑙𝑒𝑛(𝐸2 ) ∗ 8; 

𝑖𝑓 𝑆 >  𝑆 : 

𝑟𝑒𝑡𝑢𝑟𝑛 {𝐵 , 𝐸2 , (𝑏 + 1)}; 

𝑒𝑙𝑠𝑒: 

𝑆 =  𝑆 ; 

𝐵 =  𝐵 ; 

𝐸2 =  𝐸2 ; 

𝑅𝑒𝑡𝑢𝑟𝑛 {𝐵 , 𝐸2 . 𝑏 }; 

 

What bit packing with modulo does is that it tries to represent the block 𝐵  with an 

optimal number of bits b. The value of b is found out greedily from  𝑏  to 𝑏 . If there 

are any elements in the block which require more than b bits to represent, we break that 

number n down into a pair , 𝑛 % 𝑏  which is the quotient and remainder when the 

number n is divided by b. This guarantees than the value ≤ 𝑛 and 𝑛 % 𝑏 < 𝑏. 

Therefore, it requires a smaller number of bits to represent n compared to each of the two 

values  and 𝑛 % 𝑏. While doing this for each value of b, we calculate the total number 

of bits required to represent the new block and its two exception blocks. If the size 

decreases, we keep trying for smaller and smaller values of b. If the size at any point 

increases, this means that too many numbers have been broken down into smaller values 

in our new block which has resulted in an overhead. This is the point we break and return 

the previous optimal value of b. 
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Step 9 – Packing NULL values: If the blocks Bm, Bm’ and Bm’’ contain NULL values, we 

replace all the NULL values by 0 and store the index positions of the NULL values in a 

third exception block E3m (E3m’ and E3m’ for the block copies). 
 

 

Figure 4.7: Illustration of NULL Packing Step in Category-1 Compression 

 

Step 10- Bit packing of exception blocks: By this stage, for each of the blocks Bm, Bm’ 

and Bm’’, we have three exception blocks each, i.e., E1m, E2m and E3m for block Bm, E1m’, 

E2m’ and E3m’ for block Bm’ and E1m’’, E2m’’ and E3m’’ for block Bm’’. To optimize the 

number of bits with which each of the exception blocks are represented, we use bit packing 

on each of the exception blocks. We represent each value in the three exception blocks 

using e1, e2 and e3 bits (e1’, e2’, e3’ and e1’’, e2’’, e3’’ for the block copies respectively), 

where,  

e1 = Number of bits required to represent the largest value in E1m, 

e2 = Number of bits required to represent the largest value in E2m, 

e3 = Number of bits required to represent the largest value in E3m, 

e1’ = Number of bits required to represent the largest value in E1m’, 

e2’ = Number of bits required to represent the largest value in E2m’, 

e3’ = Number of bits required to represent the largest value in E3m’, 

e1’’ = Number of bits required to represent the largest value in E1m’’, 

e2’’ = Number of bits required to represent the largest value in E2m’’, 

e3’’ = Number of bits required to represent the largest value in E3m’’. 
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Step 11 – Block copy selection: By this stage, the total number of bits Sm, Sm’ and Sm’’ 

required to represent each block Bm, Bm’ and Bm’’ and their three exception blocks 

respectively can be given below: 

𝑆 = 𝑁 ∗ 𝑏 + 𝑁 ∗ 𝑒 + 𝑁 ∗ 𝑒 + 𝑁 ∗ 𝑒  

𝑆 ′ = 𝑁 ′ ∗ 𝑏′ +  𝑁 ′ ∗ 𝑒 ′ + 𝑁 ′ ∗ 𝑒 ′ + 𝑁 ′ ∗ 𝑒 ′ 

𝑆 ′′ = 𝑁 ′′ ∗ 𝑏′′ +  𝑁 ′′ ∗ 𝑒 ′′ + 𝑁 ′′ ∗ 𝑒 ′′ + 𝑁 ′′ ∗ 𝑒 ′′ 

where, 

𝑁 , 𝑁  𝑎𝑛𝑑 𝑁 ′′ are the number of elements in blocks Bm, Bm’ and Bm’’ respectively. 

𝑏, 𝑏  𝑎𝑛𝑑 𝑏′′ are the number of bits required to represent each element in blocks Bm, Bm’ 

and Bm’’ respectively. 

𝑁 , 𝑁  𝑎𝑛𝑑 𝑁 ′′ are the number of elements in exception blocks E1m, E1m’ and E1m’’ 

respectively. 

𝑒 , 𝑒  𝑎𝑛𝑑 𝑒 ′′ are the number of bits required to represent each element in blocks E1m, 

E1m’ and E1m’’ respectively. 

𝑁 , 𝑁  𝑎𝑛𝑑 𝑁 ′′ are the number of elements in exception blocks E2m, E2m’ and E2m’’ 

respectively. 

𝑒 , 𝑒  𝑎𝑛𝑑 𝑒 ′′ are the number of bits required to represent each element in blocks E2m, 

E2m’ and E2m’’ respectively. 

𝑁 , 𝑁  𝑎𝑛𝑑 𝑁 ′′ are the number of elements in exception blocks E3m, E3m’ and E3m’’ 

respectively. 

𝑒 , 𝑒  𝑎𝑛𝑑 𝑒 ′′ are the number of bits required to represent each element in blocks E3m, 

E3m’ and E3m’’ respectively. 

In this stage, we select the optimal block (and its three exception blocks) where the 

total number of bits required to represent it is 𝑆 = min (𝑆 , 𝑆 ′, 𝑆 ′′) and reject the 

other two blocks (and their three exception blocks each). Let’s call the optimal block 𝐵  
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and the respective exception blocks 𝐸1 , 𝐸2  and 𝐸3 . We also select the respective 

translated value (from step 6) as 𝑡 . 

After selection of the optimal block 𝐵  and its exception blocks 𝐸1 , 𝐸2  and 

𝐸3 , we record the encoding with which the block was encoded with in step 4 using a 

variable 𝐸𝑛𝑐 : 

i. If the selected block was uncompressed, 𝐸𝑛𝑐 = 0.  

ii. If the selected block was encoded with delta encoding, 𝐸𝑛𝑐 = 1.  

iii. If the selected block was encoded with delta of delta encoding, 𝐸𝑛𝑐 = 2. 

 

 

Figure 4.8: Illustration of NULL Packing Step in Category-1 Compression 

 

Step 12 – Encode as SA128 block: We encode our selected block 𝐵  and exception 

blocks 𝐸1 , 𝐸2  and 𝐸3  by wrapping them within a category-1 SA128 block. The 

category-1 SA128 block consists of two parts: 

i. A category-1 SA128 block header – Contains metadata information about the block. 

ii. A category-1 SA128 block body – Contains the data encoded within the block. 

The components of a category-1 SA128 block header and block body can be given below: 

 

Figure 4.9: Components of SA128 Block for Category-1 Compression 

 

i. BS - Block size in bytes (32 bits): This is a 32-bit representation for the size of the 

entire block (block header and block body. 32 bits are adequate to represent the size 
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of the entire block irrespective of the datatype category being encoded. We will 

elaborate on this further in the later sections. 

ii. CID - ColumnID (11 bits): Stores the ID of the column being compressed. 

PostgreSQL tables are hard limited to a maximum of 1600 tables. Therefore, each 

column ID can be represented using 11 bits (bits required to represent 1600 is 11). 

iii. D - Datatype (4 bits): There are 14 datatypes supported by SA128. Therefore, each 

datatype can be represented using 4 bits. The datatype IDs for each of the 14 

supported datatypes is given by the table below: 

 

Datatype Datatype ID 

SmallInt/Int2 0 

Integer/Int4 1 

Bigint/Int8 2 

Date 3 

Timestamp 4 

Timestamp with timezone/Timestamptz 5 

Time 6 

Time with timezone/Timez 7 

Numeric/Decimal 8 

Real/Float4 9 

Double Precision/Float8 10 

Boolean 11 

Character/Char 12 

Character Varying/Varchar 13 

Table 4.1: Mapping of Supported Datatypes to Datatype IDs 
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iv. ET – Encoding Type (2 bits): This stands for the 𝐸𝑛𝑐  value with which the block 

𝐵  was encoded with. The following table describes the 𝐸𝑛𝑐  values for each 

type of encoding: 

Encoding 𝑬𝒏𝒄𝒎
𝒐𝒑𝒕 

Uncompressed 0 

Delta encoding 1 

Delta of Delta encoding 2 

Table 4.2: Mapping of Encoding Type to 𝐸𝑛𝑐  Values 

The three possible 𝐸𝑛𝑐  values can be encoded using 2 bits. 

v. TV – Translated Value (16/32/64 or 96 bits): This stands for the translated value 

𝑡 for the selected block 𝐵 . For Smallint/Int2 datatype, this value can be 

represented using 16 bits. For Integer/Int4 and Date datatypes, this value can be 

represented using 32 bits. For Bigint/Int8, Timestamp, Timestamptz and Time 

datatypes, this value can be represented using 64 bits. For timez datatype, this value 

can be represented using 96 bits. These 16/32/64 and 96 bits respectively are the 

number of bits required to represent the integer representation of each of these 

supported category 1 datatypes (as established in step 2). 

vi. DL – Data Length (8 bits): The maximum number of elements present in 𝐵 in 

the worst case can be 256. This case arises when there are no runs with run value 

𝑟 >  1 after run-length encoding in step 7 and when all values are broken down into 

pairs of quotient and remainder after bit-packing with modulo in step 8. Since we 

start with 128 values in each block, this scenario could double the number of elements 

in our block leading to 256 values in the block. Therefore, 8 bits is adequate to 

represent a max block length of 256. 

vii. DB – Data Bits (8 bits): Let 𝑏  is the number of bits required to represent each 

value in 𝐵 . In the worst case, 𝑏  can be equal to 𝑏  after step 8 which is equal 
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to the number of bits required to represent the largest value in 𝐵 . The largest 

possible category 1 value for timez type requires 96 bits to represent. Hence, 8 bits 

is sufficient to represent the value 𝑏 . 

viii. DC – Data Content (DL * DB bits): This represents the number of bits required to 

represent the data values within the block 𝐵 . This number of bits required is given 

by the Data Length (DL) * Data Bits (DB). 

ix. E1L = Excep1 Length (8 bits): During step 7, the largest index value that can be 

stored in the exception block 𝐸1  is 127. Let us understand why this is the case 

with the help of the below two lemmas: 

Lemma 4.2.1.1: The number of values in the block n becomes less than 128 if there 

is at least one sequence 𝑆 = {𝑥 , … , 𝑥 , … , 𝑥  𝑤ℎ𝑒𝑟𝑒 0 ≤  𝑖 <  𝑛 𝑎𝑛𝑑 𝑥  =  𝑥 }  

with the run value r > 2. 

Explanation: A sequence S with run value r > 2 will be represented by 2 values, i.e., 

the pair {𝑥 , r}. This reduces the total number of values in the block leading to n < 

128. 

Lemma 4.2.1.2: The number of values in the block n is equal to 128 if there is no 

sequence 𝑆 = {𝑥 , … , 𝑥 , … , 𝑥  𝑤ℎ𝑒𝑟𝑒 0 ≤  𝑖 <  𝑛 𝑎𝑛𝑑 𝑥  =  𝑥 } with r > 2. 

Explanation: For a sequence 𝑆 = {𝑥 , … , 𝑥 , … , 𝑥  𝑤ℎ𝑒𝑟𝑒 0 ≤  𝑖 <  𝑛 𝑎𝑛𝑑 𝑥  =

 𝑥 }   with run value r = 2, we replace the two repeated values in the sequence 

𝑥  𝑎𝑛𝑑 𝑥  with the pair {𝑥 , r}. This leads to no change in the number of values n in 

the block. 

Lemma 4.2.1.3: There can be a maximum of 64 index values in an 𝐸1 block. 

Explanation: From lemmas Lemma 4.2.1.1 and Lemma 4.2.1.2, we can conclude 

that if we have a block where all distinct values form a sequence with run values r = 

2, we can have a maximum of 64 such sequences where the 64 different index values 

will be {1, 3, 5, …, 127}.  
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Therefore 8 bits is adequate to represent a maximum index value of 127 in the 𝐸1  

block. 

x. E1B – Excep1 Bits (8 bits): This represents the number of bits 𝑒1 required to 

represent each value in the exception block 𝐸1 . From lemma 4.2.1.3, we can 

conclude that if we have a block where all distinct values form a sequence with run 

values r = 2, the indices required to represent each of those sequences are {1, 3, 5, 

…, 127}. Since 127 is the largest index that an 𝐸1  block can contain, we can 

represent this value using a maximum of 8 bits. 

xi. E1C – Excep1 Content (E1L * E1B bits): This represents the number of bits 

required to represent the index values within the exception block 𝐸1 . This number 

of bits required is given by the Excep1 Length (E1L) * Excep1 Bits (E1B). 

xii. E2L – Excep2 Length (8 bits): There can be a maximum of 128 index values in 

exception block 𝐸2 . This can be proved using the following lemma: 

Lemma 4.2.1.4: There can be a maximum of 128 index values in exception block 

𝐸2 .  

Explanation: This is because from lemma 4.2.1.2, if there is no sequence 𝑆 =

{𝑥 , … , 𝑥 , … , 𝑥  𝑤ℎ𝑒𝑟𝑒 0 ≤  𝑖 <  𝑛 𝑎𝑛𝑑 𝑥  =  𝑥 } with r > 2, our block 𝐵 will 

contain exactly 128 values. In this block 𝐵  with 128 values, if all the values were 

broken down into a quotient and remainder pair in the bit packing with modulo step 

(step 8), this would double the values in the block, therefore leading to a maximum 

of 256 values. The number of index values required to represent the position of each 

broken value in 𝐵  is 128 which can be represented using 8 bits. 

xiii. E2B – Excep2 Bits (8 bits): This represents the number of bits 𝑒2 required to 

represent each value in the exception block 𝐸2 . From lemma 4.2.1.4, we can infer 

that the index values required to represent a maximum of 128 values in 𝐸2  are {0, 
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2, …, 255}. Since 255 is the largest index value that can exist in 𝐸2 . Therefore 

𝑒2  can be adequately represented using 8 bits. 

xiv. E2C – Excep2 Content (E2L * E2B bits): This represents the number of bits 

required to represent the index values within the exception block 𝐸2 . This number 

of bits required is given by the Excep2 Length (E2L) * Excep2 Bits (E2B). 

xv. E3L – Excep3 Length (8 bits): This represents the length of the exception block 

𝐸3 . The maximum possible length for an exception block 𝐸3 is 64. This can be 

explained with the help of the following lemma: 

Lemma 4.2.1.5: There can be a maximum of 64 index values in exception block 

𝐸3 .  

Explanation: To have the maximum number of NULL values in 𝐵  in step 10, 

before the run length-encoding step (step 7), our block should have one of the 

following sequences with 128 values: {NULL, x0, NULL, x1, …, NULL, xn} or {x0, 

NULL, x1, NULL, …, xn, NULL}  where x0 to xn are non-NULL integer 

representations of block values in 𝐵 . Note that we do not have any contiguous 

NULL values in both the above sequences. If we did, we would replace the 

contiguous NULL values with a single NULL value followed by the run value r after 

the run-length encoding in step 7. This would reduce the number of NULL values in 

block 𝐵 . Therefore, only for the above two sequences, we can have the maximum 

number of null values in our final block 𝐵  which contains a maximum of 64 

indices to 64 null values. These 64 index values can be adequately represented using 

8 bits. 

xvi. E3B – Excep3 Bits (8 bits): This represents the number of bits 𝑒3 required to 

represent each value in the exception block 𝐸3 . The largest possible index value 

in 𝐸3 is 191 which can be represented using 8 bits. We can understand why this is 

the case using the below lemma: 
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Lemma 4.2.1.6: The largest possible index value in 𝐸3 is 191. 

Explanation: From the explanation provided for lemma 4.2.1.5, the two block 

sequences {NULL, x0, NULL, x1, …, NULL, xn} or {x0, NULL, x1, NULL, …, xn, 

NULL} before step 7 result in 64 NULL values in the block after step 7. During the 

bit packing using modulo in step 8, if all our values 64 values from x0 to xn are broken 

down into a quotient and remainder pair, this will result in a total of 128 non-NULL 

values and 64 NULL values (a total of 192 values). The index of the last NULL value 

in this case will be 191. 

xvii. E3C – Excep3 Content (E3L * E3B bits): This represents the number of bits 

required to represent the index values within the exception block 𝐸3 . This number 

of bits required is given by the Excep3 Length (E3L) * Excep3 Bits (E3B). 

 

4.2.2 Compression of Category 2 data types 

The compression of category 2 datatypes take place in 4 sequential steps which are 

explained below: 

 

Step 1 – Divide into blocks: In this step, all the data values belonging to the column being 

compressed is divided into blocks of 128 values. If there are 𝑁 values in the column, the 

total number of blocks after division will be ⌊𝑁/128⌋ values where each block contains 

128 values each except the last block which contains 𝑁%128 +  1 values (between 1 and 

128). Refer to figure 4.1. Therefore, there cannot be an empty block which contains 0 

number of values. 

 

Step 2 – Divide into sub-blocks: Separate each block Bm containing 128 values into two 

sub-blocks B1m and B2m, where 1 <= m <= ⌈N/128⌉. For each value m in the block Bm, 

B1m contains the part of the number m before the decimal point and B2m contains the part 

of the number m after the decimal point. 
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For example: If Bm contains the values [1.23, 4.43, 1.44, …], then, 

B1m = [1, 4, 1, …] and B2m = [23, 43, 44, …] respectively. 

 

Step 3 – Compress sub-blocks using Category 1 compression algorithm: Since numeric 

types have a fixed precision p and scale s, the size of values in B1m and B2m are comparable. 

Therefore, we compress each of the two sub-blocks B1m and B2m using category 1 

compression from steps 3 to step 11 which includes creating block copies, delta and delta 

of delta encoding, zig-zag encoding, frame of reference, run-length encoding, bit packing 

using modulo technique, packing NULL values, bit packing exception blocks and block 

copy selection. Let the resultant sub-blocks after category 1 compression of B1m be 𝐵1  

and the resultant exception blocks be 𝐸11 , 𝐸21  and 𝐸31 . Let the resultant sub-

blocks after category 1 compression of B2m be 𝐵2  and the resultant exception blocks be 

𝐸12 , 𝐸22  and 𝐸32 . 

 

Step 4 – Encode as SA128 block: We encode our resultant sub-blocks 𝐵1 , 𝐵2  and 

exception blocks 𝐸11 , 𝐸21 , 𝐸31 , 𝐸12 , 𝐸22  and 𝐸32   by wrapping them 

within a category-2 SA128 block. The category-2 SA128 block consists of two parts: 

i. A category-2 SA128 block header – Contains metadata information about the block. 

ii. A category-2 SA128 block body – Contains the data encoded within the block. 

The components of a category-2 SA128 block header and block body can be given below: 

 

 

Figure 4.10: Components of SA128 Block in Category-2 Compression 
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i. BS – Block size in bytes (32 bits): Stores the size of the category-2 block (block 

header and the block body) using 32-bits.  

ii. CID – Column ID (11 bits): Uses 11 bits to represent the column ID of the column 

being compressed. Explanation of the bit representation is same as that provided for 

the ‘CID’ section in category-1 SA128 block header. 

iii. D – Datatype (4 bits): Uses 4 bits to represent the data type on the column being 

compressed. Explanation of the bit representation is same as that provided for the ‘D’ 

section in category-1 SA128 block header. 

iv. ET1 – 𝑩𝟏𝒎
𝒐𝒑𝒕

 Encoding Type (2 bits): Uses 2 bits to represent the encoding type 

(uncompressed, delta or delta of delta) for sub-block 𝐵1 . Explanation of the bit 

representation is same as that provided for the ‘ET’ section in category-1 SA128 

block header. 

v. TV1 – 𝑩𝟏𝒎
𝒐𝒑𝒕

 Translated Value (𝒕𝟏 bits): Uses 𝑡  bits to represent the translated 

value  𝑡1 after frame of reference in step 6 on sub-block 𝐵1 , where 𝑡  = 

log (10( ) − 1) , p is the precision and s is the scale for the numeric type. The 

max length of a value in 𝐵1  is (p – s) which is equal to the part of the number 

before the decimal point in the main block 𝐵 . The largest value possible for 𝑡1  

is equal to the largest value which can be formed with (p – s) digits, i.e., 10( ) − 1. 

Therefore, the number of bits required to represent the number 10( ) − 1 is 𝑡  = 

log (10( ) − 1) . 

vi. ET2 – 𝑩𝟐𝒎
𝒐𝒑𝒕

 Encoding Type (2 bits): Uses 2 bits to represent the encoding type 

(uncompressed, delta or delta of delta) for sub-block 𝐵2 . Explanation of the bit 

representation is same as that provided for the ‘ET’ section in category-1 SA128 

block header. 

vii. TV2 – 𝑩𝟐𝒎
𝒐𝒑𝒕

 Translated Value (𝒕𝟐  bits): Uses 𝑡  bits to represent the translated 
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value  𝑡2 after frame of reference in step 6 on sub-block 𝐵2 , where 𝑡  = 

⌈log (10 − 1)⌉ and s is the scale for the numeric type. The max length of a value in 

𝐵2  is s which is equal to the part of the number after the decimal point in the main 

block 𝐵 . The largest value possible for 𝑡2  is equal to the largest value which 

can be formed with s digits, i.e., 10 − 1. Therefore, the number of bits required to 

represent the number 10 − 1 is 𝑡  = ⌈log (10 − 1)⌉. 

viii. DL1 – 𝑩𝟏𝒎
𝒐𝒑𝒕 Data Length (8 bits): Uses 8 bits to represent the length of the 𝐵1  

block. Explanation of the bit representation is same as that provided for the ‘DL’ 

section in category-1 SA128 block body. 

ix. DB1 – 𝑩𝟏𝒎
𝒐𝒑𝒕

 Data Bits (𝒃𝟏 bits): Uses 𝑏  bits to represent the number of bits 

required for representing each value in the sub-block 𝐵1 , where 𝑡 =

log (10( ) − 1) , p is the precision, s is the scale for the numeric type and 𝑏 =

⌈log (𝑡 )⌉.  

x. DC1 – 𝑩𝟏𝒎
𝒐𝒑𝒕

 Data Content (DL1 * DB1 bits): Uses DL1 * DB1 bits to represent 

all the values in sub-block 𝐵1 .  

xi. DL2 – 𝑩𝟐𝒎
𝒐𝒑𝒕 Data Length (8 bits): Uses 8 bits to represent the length of the 𝐵2  

block. Explanation of the bit representation is same as that provided for the ‘DL’ 

section in category-1 SA128 block body. 

xii. DB2 – 𝑩𝟐𝒎
𝒐𝒑𝒕

 Data Bits (𝒃𝟐 bits): Uses 𝑏  bits to represent the number of bits 

required for representing each value in the sub-block 𝐵2 , where 𝑡 =

⌈log (10 − 1)⌉, s is the scale for the numeric type and 𝑏 = ⌈log (𝑡 )⌉. 

xiii. DC2 – 𝑩𝟐𝒎
𝒐𝒑𝒕

 Data Content (DL2 * DB2 bits): Uses DL2 * DB2 bits to represent 

all the values in sub-block 𝐵2 . 

xiv. E1L1 – 𝑩𝟏𝒎
𝒐𝒑𝒕

 Excep1 Length (8 bits): Uses 8 bits to represent the length of the 

exception block 𝐸11 . Explanation of the bit representation is same as that 
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provided for the ‘E1L’ section in category-1 SA128 block body. 

xv. E1B1 – 𝑩𝟏𝒎
𝒐𝒑𝒕

 Excep1 Bits (8 bits): Uses 8 bits to represent the bit required to 

represent each index value in exception block 𝐸11 . Explanation of the bit 

representation is same as that provided for the ‘E1B’ section in category-1 SA128 

block body. 

xvi. E1C1 – 𝑩𝟏𝒎
𝒐𝒑𝒕

 Excep1 Content (E1L1 * E1B1 bits): Uses E1L1 * E1B1 bits to 

represent all the indices in the exception block 𝐸11 . 

xvii. E2L1 – 𝑩𝟏𝒎
𝒐𝒑𝒕

 Excep2 Length (8 bits): Uses 8 bits to represent the length of the 

exception block 𝐸21 . Explanation of the bit representation is same as that 

provided for the ‘E2L’ section in category-1 SA128 block body. 

xviii. E2B1 – 𝑩𝟏𝒎
𝒐𝒑𝒕

 Excep2 Bits (8 bits): Uses 8 bits to represent the bit required to 

represent each index value in exception block 𝐸21 . Explanation of the bit 

representation is same as that provided for the ‘E2B’ section in category-1 SA128 

block body. 

xix. E2C1 – 𝑩𝟏𝒎
𝒐𝒑𝒕

 Excep2 Content (E2L1 * E2B1 bits): Uses E2L1 * E2B1 bits to 

represent all the indices in the exception block 𝐸21 . 

xx. E3L1 – 𝑩𝟏𝒎
𝒐𝒑𝒕

 Excep3 Length (8 bits): Uses 8 bits to represent the length of the 

exception block 𝐸31 . Explanation of the bit representation is same as that 

provided for the ‘E3L’ section in category-1 SA128 block body. 

xxi. E3B1 – 𝑩𝟏𝒎
𝒐𝒑𝒕

 Excep3 Bits (8 bits): Uses 8 bits to represent the bit required to 

represent each index value in exception block 𝐸31 . Explanation of the bit 

representation is same as that provided for the ‘E3B’ section in category-1 SA128 

block body. 

xxii. E3C1 – 𝑩𝟏𝒎
𝒐𝒑𝒕

 Excep3 Content (E3L1 * E3B1 bits): Uses E3L1 * E3B1 bits to 

represent all the indices in the exception block 𝐸31 . 
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xxiii. E1L2 – 𝑩𝟏𝒎
𝒐𝒑𝒕

 Excep1 Length (8 bits): Uses 8 bits to represent the length of the 

exception block 𝐸12 . Explanation of the bit representation is same as that 

provided for the ‘E1L’ section in category-1 SA128 block body. 

xxiv. E1B2 – 𝑩𝟐𝒎
𝒐𝒑𝒕

 Excep1 Bits (8 bits): Uses 8 bits to represent the bit required to 

represent each index value in exception block 𝐸12 . Explanation of the bit 

representation is same as that provided for the ‘E1B’ section in category-1 SA128 

block body. 

xxv. E1C2 – 𝑩𝟐𝒎
𝒐𝒑𝒕

 Excep1 Content (E1L2 * E1B2 bits): Uses E1L2 * E1B2 bits to 

represent all the indices in the exception block 𝐸12 . 

xxvi. E2L2 – 𝑩𝟐𝒎
𝒐𝒑𝒕

 Excep2 Length (8 bits): Uses 8 bits to represent the length of the 

exception block 𝐸22 . Explanation of the bit representation is same as that 

provided for the ‘E2L’ section in category-1 SA128 block body. 

xxvii. E2B2 – 𝑩𝟐𝒎
𝒐𝒑𝒕

 Excep2 Bits (8 bits): Uses 8 bits to represent the bit required to 

represent each index value in exception block 𝐸22 . Explanation of the bit 

representation is same as that provided for the ‘E2B’ section in category-1 SA128 

block body. 

xxviii. E2C2 – 𝑩𝟐𝒎
𝒐𝒑𝒕

 Excep2 Content (E2L2 * E2B2 bits): Uses E2L2 * E2B2 bits to 

represent all the indices in the exception block 𝐸22 . 

xxix. E3L2 – 𝑩𝟐𝒎
𝒐𝒑𝒕

 Excep3 Length (8 bits): Uses 8 bits to represent the length of the 

exception block 𝐸32 . Explanation of the bit representation is same as that 

provided for the ‘E3L’ section in category-1 SA128 block body. 

xxx. E3B2 – 𝑩𝟐𝒎
𝒐𝒑𝒕

 Excep3 Bits (8 bits): Uses 8 bits to represent the bit required to 

represent each index value in exception block 𝐸32 . Explanation of the bit 

representation is same as that provided for the ‘E3B’ section in category-1 SA128 

block body. 
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xxxi. E3C2 – 𝑩𝟐𝒎
𝒐𝒑𝒕

 Excep3 Content (E3L2 * E3B2 bits): Uses E3L2 * E3B2 bits to 

represent all the indices in the exception block 𝐸32 . 

 

4.2.3 Compression of Category 3 data types 

The compression of category 3 datatypes take place in 6 sequential steps which are 

explained below: 

 

Step 1 – Divide into blocks: In this step, all the data values belonging to the column being 

compressed is divided into blocks of 128 values. If there are 𝑁 values in the column, the 

total number of blocks after division will be ⌊𝑁/128⌋ values where each block contains 

128 values each except the last block which contains 𝑁%128 +  1 values (between 1 and 

128). Refer to figure 4.1. Therefore, there cannot be an empty block which contains 0 

number of values. 

 

Step 2 – Create block copies: For each block Bm containing 128 values, where 1 <= m <= 

⌈N/128⌉, we create three more copies of it and call them Bm’, Bm’’ and Bm’’’ respectively. 

In total, we have four identical blocks of 128 values each. 

 

 

Figure 4.11: Illustration of Block Copy Creation Step in Category-3 Compression 
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Step 3 – Compress using category-1 compression algorithm: For blocks 𝐵 , 𝐵 ′ and 

𝐵 ′′, follow steps 3 to 11 of the category-1 compression algorithm and we get the final 

encoded sub-blocks 𝐵1  and 𝐵1  along with their exception blocks 𝐸11 , 𝐸21 , 𝐸31  

and 𝐸12 , 𝐸22 , 𝐸32  respectively.  

 

Step 4 – Compress using XOR-based encoding variant: In this step, we compute a XOR 

between all contiguous values in block 𝐵 ′′′. During XOR encoding, if there are NULL 

values in the block Bm’’’, we leave them as it is. During XOR encoding on block Bm’’’, for 

every non-null value 𝑣, we replace it with its XOR value 𝑑 as 𝑑 =  𝑝𝑟𝑒𝑣 ^ 𝑣 where 𝑝𝑟𝑒𝑣 

is the previously scanned non-null value in the block (the values 𝑝𝑟𝑒𝑣 and 𝑣 do not 

necessarily need to be adjacent to each other as there can me any number of NULL values 

between them which remain unchanged). If the previously scanned non-null value 𝑝𝑟𝑒𝑣 

does not exist, then v is the first 32-bit or 64-bit value in 𝐵 ′′′ (32-bit for real datatype and 

64-bit for double precision datatype). Therefore, we keep the first non-NULL value v 

unchanged and compute XOR over the following elements. For example: [5.5, 5.6, NULL, 

5.1] gets converted to [5.5, 5.562684646268e-310, NULL, 2.781342323134e-309]. Notice 

here that the first value remains unchanged because a non-null value does not exist prior to 

the first element. The first 32-bit or 64-bit value (for real and double precision datatypes 

respectively) in 𝐵 ′′′ is left unchanged. We store the first non-NULL value 𝑓  and its 

index position 𝑓  in 𝐵 ′′′ We then remove 𝑓  from block 𝐵 ′′′. If the block contains 

all NULL values, then 𝑓 = 0 and 𝑓 = 128. 

 Next, we scan through all the XOR-ed values in the block 𝐵 ′′′ and find the total 

number of leading zeros 𝑙  and trailing zeros 𝑡  common to all the XOR-ed values 

in block 𝐵 ′′′ in its 32-bit or 64-bit floating point representation (32-bit for real datatype 

and 64-bit for double precision datatype). Once we have the values 𝑙 and 𝑡 , we 

remove 𝑙  number of leading zeros from all the non-NULL values and 𝑡  number 

of trailing zeros in block 𝐵 ′′′. For each non-NULL value, the bits remaining after 
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trimming the leading and trailing zeros are converted to an integer representation and stored 

in 𝐵 ′′′ in place of the original non-NULL value. The below diagram demonstrates this for 

real datatype values. In case of double precision datatypes, each value below will be 

represented using its 64-bit floating point representation instead of the 32-bit floating point 

representation for real type. 

 

 

Figure 4.12: Illustration of XOR-Encoding Variant Step in Category-3 Compression 

 

Next, we perform the operations from step 5 to step 10 of category 1 compression on 

block 𝐵 ′′′, which includes zig-zag encoding, frame of reference, run-length encoding, bit 

packing using modulo, packing NULL values, bit backing of exception blocks. The final 

block which we get after this step is 𝐵3  and exception blocks 𝐸13 , 𝐸23  and 𝐸33 . 

 

Step 5 – Block selection: In this step, we choose between selecting the two sub-blocks 

𝐵1 , 𝐵2  received from step 3 and the block 𝐵3  received in step 4 respectively. (along 

with the exception blocks 𝐸11 , 𝐸21 , 𝐸31 , 𝐸12 , 𝐸22 , 𝐸32 , 𝐸13 , 𝐸23 , 𝐸33  

respectively). We choose the block which takes the least number of bits to represent. Let 

the number of bits required to represent sub-blocks 𝐵1  and 𝐵2  be 𝑆1  and the number 

of bits required to represent block 𝐵3  be 𝑆2  respectively. 𝑆1  and 𝑆2  can be 

expressed as follows: 

𝑆1 = 𝑁1 ∗ 𝑏1 +  𝑁1 ∗ 𝑒11 +  𝑁1 ∗ 𝑒21 + 𝑁1 ∗ 𝑒31 +  

𝑁2 ∗ 𝑏2 +  𝑁2 ∗ 𝑒12 +  𝑁2 ∗ 𝑒22 +  𝑁2 ∗ 𝑒32  
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𝑆2 = 𝑁3 ∗ 𝑏3 +  𝑁3 ∗ 𝑒13 + 𝑁3 ∗ 𝑒23 +  𝑁3 ∗ 𝑒33  

where, 

𝑁1 = Number of elements in block 𝐵1 , 

𝑏1 = Number of bits required to represent each value in 𝐵1 , 

𝑁1  = Number of elements in exception block 𝐸11 , 

𝑒11  = Number of bits required to represent each index value in 𝐸11 , 

𝑁1  = Number of elements in exception block 𝐸21 , 

𝑒21  = Number of bits required to represent each index value in 𝐸21 , 

𝑁1  = Number of elements in exception block 𝐸31 , 

𝑒31  = Number of bits required to represent each index value in 𝐸31 , 

𝑁2 = Number of elements in block 𝐵2 , 

𝑏2 = Number of bits required to represent each value in 𝐵2 , 

𝑁2  = Number of elements in exception block 𝐸12 , 

𝑒12  = Number of bits required to represent each index value in 𝐸12 , 

𝑁2  = Number of elements in exception block 𝐸22 , 

𝑒22  = Number of bits required to represent each index value in 𝐸22 , 

𝑁2  = Number of elements in exception block 𝐸32 , 

𝑒32  = Number of bits required to represent each index value in 𝐸32 , 

𝑁3 = Number of elements in block 𝐵3 , 

𝑏3 = Number of bits required to represent each value in 𝐵3 , 

𝑁3  = Number of elements in exception block 𝐸13 , 

𝑒13  = Number of bits required to represent each index value in 𝐸13 , 

𝑁3  = Number of elements in exception block 𝐸23 , 

𝑒23  = Number of bits required to represent each index value in 𝐸23 , 

𝑁3  = Number of elements in exception block 𝐸33 , 
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𝑒33  = Number of bits required to represent each index value in 𝐸33 , 

We select between the two sub-blocks 𝐵1 , 𝐵2  and the block 𝐵3  (and their 

exception blocks) which occupy the least number of bits  𝑆 = min (𝑆1 , 𝑆2 ). If sub-

blocks 𝐵1 , 𝐵2  were selected, we call the selected sub-blocks 𝐵1  and 𝐵2  

respectively and its exception blocks 𝐸11 , 𝐸21  and 𝐸31  respectively. We use two 

variables called 𝐸𝑛𝑐1  and 𝐸𝑛𝑐2  to store which encoding was used to encode the 

selected sub-blocks 𝐵1  and 𝐵2 .  

If the sub-blocks 𝐵1  and 𝐵2  were selected, then 𝐸𝑛𝑐1  and 𝐸𝑛𝑐2  have three 

possible values specifying the encoding used on that block: 

i. 𝐸𝑛𝑐1 /𝐸𝑛𝑐2 = 0: Uncompressed. 

ii. 𝐸𝑛𝑐1 /𝐸𝑛𝑐2 = 1: Delta encoding. 

iii. 𝐸𝑛𝑐1 /𝐸𝑛𝑐2 = 2: Delta of delta encoding. 

If the block selected as the final block is 𝐵3 , we call the selected block 𝐵3 . We 

use a variable 𝐸𝑛𝑐3  to represent which encoding was used in block 𝐵3 . 𝐸𝑛𝑐3  has 

only one possible value specifying the encoding used on that block: 

i. 𝐸𝑛𝑐3 = 3: XOR-encoding 

 

Step 6 – Encode as category-3 SA128 block: We encode our selected block 𝐵  and 

exception blocks 𝐸1 , 𝐸2  and 𝐸3  by wrapping them within a category-3 SA128 

block. The category-3 SA128 block consists of two parts: 

i. A category-3 SA128 block header block – Contains metadata information about the 

block. 

ii. A category-3 SA128 block body – Contains the data encoded within the block.  

The components of a category-3 SA128 block header and block body depend on 

which blocks were selected in step 6. If the sub-blocks 𝐵1  and 𝐵2 were selected, then 

the components of a category-3 SA128 block header and block body are same as the 
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category-2 block header and block body. Refer to figure 4.10 for details regarding each 

component. 

If the blocks 𝐵3  was selected in step 5, then the components of a category-3 

SA128 block header and block body can be given below: 

 

 

Figure 4.13: Components of SA128 Block for 𝐸𝑛𝑐1𝑚 = 3 in Category-3 Compression 

 

i. BS – Block size in bytes (32 bits): Stores the size of the category-3 block (block 

header and the block body) using 32-bits. 

ii. CID – Column ID (11 bits): Uses 11 bits to represent the column ID of the column 

being compressed. Explanation of the bit representation is same as that provided for 

the ‘CID’ section in category-1 SA128 block header. 

iii. D – Datatype (4 bits): Uses 4 bits to represent the data type on the column being 

compressed. Explanation of the bit representation is same as that provided for the 

‘D’ section in category-1 SA128 block header. 

iv. ET – Encoding Type (2 bits): Uses 2 bits to represent the encoding type 𝐸𝑛𝑐3  

(which is 3 for XOR encoding) for sub-block 𝐵3 .  

v. FV – First Value (32 or 64 bits): Uses 32 bits (for real data type) or 64-bits (for 

double precision datatype) to represent the first non-NULL value 𝑓  in block 

𝐵3 . If all values in 𝐵3  are null, then 𝑓 = 0 is stored. 

vi. FID – Index of first value (8 bits): Uses 8 bits to represent the index of the first 

non-NULL value in block 𝐵3 . The largest possible index value in block 

𝐵3 containing 128 values before step 4 is 127. Therefore, 8 bits are adequate to 
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represent the index of the first non-NULL value. If all values in 𝐵3  are NULL, 

then a value of  𝑓  = 128 is stored. 

vii. TV – Translated Value (32 or 64 bits): Uses 32 bits (for real data type) or 64-bits 

(for double precision datatype) to represent the translated value 𝑡  received after 

the frame of reference with modulo operation at the end of step 4. 

viii. L – Leading Zeros (6 bits): Uses 6 bits to represent the value 𝑙  computed in 

step 4 representing the number of leading zeros. 𝑙  can have a maximum value 

of 64 (for double precision data type) which can be adequately represented using 6 

bits. 

ix. T – Trailing Zeros (6 bits): Uses 6 bits to represent the value 𝑡  computed in 

step 4 representing the number of trailing zeros. 𝑡  can have a maximum value 

of 64 (for double precision data type) which can be adequately represented using 6 

bits. 

x. DL – Data Length (8 bits): Uses 8 bits to represent the length of the 𝐵3  block. 

Explanation of the bit representation is same as that provided for the ‘DL’ section 

in category-1 SA128 block body. 

xi. DB – Data Bits (6 bits): Uses 6 bits to represent the number of bits required to 

represent each data value in sub-block 𝐵3 . Since the maximum number of bits 

required to represent a data value is 64 bits (in the case of double precision 

datatype), 6 bits are adequate to represent the number of bits. 

xii. DC – Data Content (DL * DB bits): Uses DL * DB bits to represent all the values 

in sub-block 𝐵3 . 

xiii. E1L – Excep1 Length (8 bits): Uses 8 bits to represent the length of the exception 

block 𝐸13 . Explanation of the bit representation is same as that provided for the 

‘E1L’ section in category-1 SA128 block body. 
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xiv. E1B – Excep1 Bits (8 bits): Uses 8 bits to represent the number of bits required to 

represent each index value in exception block 𝐸13 . Explanation of the bit 

representation is same as that provided for the ‘E1B’ section in category-1 SA128 

block body. 

xv. E1C – Excep1 Content (E1L * E1B bits): Uses E1L * E1B bits to represent all 

the indices in the exception block 𝐸13 . 

xvi. E2L – Excep2 Length (8 bits): Uses 8 bits to represent the length of the exception 

block 𝐸23 . Explanation of the bit representation is same as that provided for the 

‘E2L’ section in category-1 SA128 block body. 

xvii. E2B – Excep2 Bits (8 bits): Uses 8 bits to represent the number of bits required to 

represent each index value in exception block 𝐸23 . Explanation of the bit 

representation is same as that provided for the ‘E2B’ section in category-1 SA128 

block body. 

xviii. E2C – Excep2 Content (E2L * E2B bits): Uses E2L * E2B bits to represent all 

the indices in the exception block 𝐸23 . 

xix. E3L – Excep3 Length (8 bits): Uses 8 bits to represent the length of the exception 

block 𝐸33 . Explanation of the bit representation is same as that provided for the 

‘E3L’ section in category-1 SA128 block body. 

xx. E3B – Excep3 Bits (8 bits): Uses 8 bits to represent the number of bits required to 

represent each index value in exception block 𝐸33 . Explanation of the bit 

representation is same as that provided for the ‘E3B’ section in category-1 SA128 

block body. 

xxi. E3C – Excep3 Content (E3L * E3B bits):  Uses E3L * E3B bits to represent all 

the indices in the exception block 𝐸33 . 
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4.2.4 Compression of Category 4 data types 

The compression of category-4 datatypes takes place in 3 sequential steps which are 

explained below: 

 

Step 1 – Divide into blocks: In this step, all the data values belonging to the column being 

compressed is divided into blocks of 128 values. If there are 𝑁 values in the column, the 

total number of blocks after division will be ⌊𝑁/128⌋ values where each block contains 

128 values each except the last block which contains 𝑁%128 +  1 values (between 1 and 

128). Therefore, there cannot be an empty block which contains 0 number of values. 

 

Step 2 – Encode run-length, bit-packing and NULL packing:  Execute steps 7 to 10 of 

category-1 compression algorithm on a single block copy 𝐵 . We call our resultant block 

after all the above operations as 𝐵  and the resultant exception blocks are 

𝐸1 , 𝐸2  𝑎𝑛𝑑 𝐸3  respectively. 

 

Step 3 – Encode as category-4 SA128 block: We encode our selected block 𝐵  and 

exception blocks 𝐸1 , 𝐸2  and 𝐸3  by wrapping them within a category-4 SA128 

block. The category-4 SA128 block consists of two parts: 

i. A category-4 SA128 block header – Contains metadata information about the block. 

ii. A category-4 SA128 block body – Contains the data encoded within the block. 

The components of a category-4 SA128 block header and block body can be given below: 

 

 

Figure 4.14: Components of SA128 Block in Category-4 Compression 
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i. BS – Block size in bytes (32 bits): Stores the size of the category-4 block (block 

header and the block body) using 32-bits.  

ii. CID – Column ID (11 bits): Uses 11 bits to represent the column ID of the column 

being compressed. Explanation of the bit representation is same as that provided for 

the ‘CID’ section in category-1 SA128 block header. 

iii. D – Datatype (4 bits): Uses 4 bits to represent the data type on the column being 

compressed. Explanation of the bit representation is same as that provided for the ‘D’ 

section in category-1 SA128 block header. 

iv. DL – Data Length (8 bits): Uses 8 bits to represent the length of the 𝐵  block. 

Explanation of the bit representation is same as that provided for the ‘DL’ section in 

category-1 SA128 block body. 

v. DB – Data Bits (1 bit): Uses 1 bit to represent the number of bits required to 

represent each data value in sub-block 𝐵 . Since the maximum number of bits 

required to represent a data value of ‘true’ and ‘false’ is 1 bit (0 for false and 1 for 

true), 1 bit is adequate to represent the number of bits. 

vi. DC – Data Content (DL * DB bits): Uses DL * DB bits to represent all the values 

in sub-block 𝐵 . 

vii. E1L – Excep1 Length (8 bits): Uses 8 bits to represent the length of the exception 

block 𝐸1 . Explanation of the bit representation is same as that provided for the 

‘E1L’ section in category-1 SA128 block body. 

viii. E1B – Excep1 Bits (8 bits): Uses 8 bits to represent the number of bits required to 

represent each index value in exception block 𝐸1 . Explanation of the bit 

representation is same as that provided for the ‘E2B’ section in category-1 SA128 

block body. 

ix. E1C – Excep1 Content (E1L * E1B bits): Uses E1L * E1B bits to represent all the 

indices in the exception block 𝐸1 . 
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x. E2L – Excep2 Length (8 bits): Uses 8 bits to represent the length of the exception 

block 𝐸2 . Explanation of the bit representation is same as that provided for the 

‘E1L’ section in category-1 SA128 block body. 

xi. E2B – Excep2 Bits (8 bits): Uses 8 bits to represent the number of bits required to 

represent each index value in exception block 𝐸2 . Explanation of the bit 

representation is same as that provided for the ‘E2B’ section in category-1 SA128 

block body. 

xii. E2C – Excep2 Content (E2L * E2B bits): Uses E2L * E2B bits to represent all the 

indices in the exception block 𝐸2 . 

xiii. E3L – Excep3 Length (8 bits): Uses 8 bits to represent the length of the exception 

block 𝐸3 . Explanation of the bit representation is same as that provided for the 

‘E1L’ section in category-1 SA128 block body. 

xiv. E3B – Excep3 Bits (8 bits): Uses 8 bits to represent the number of bits required to 

represent each index value in exception block 𝐸3 . Explanation of the bit 

representation is same as that provided for the ‘E2B’ section in category-1 SA128 

block body. 

xv. E3C – Excep3 Content (E3L * E3B bits):  Uses E3L * E3B bits to represent all the 

indices in the exception block 𝐸3 . 

 

4.2.5 Compression of Category 5 data types 

 

The compression of category-5 datatypes takes place in 3 sequential steps which are 

explained below: 

 

Step 1 – Create dictionary: Read all the string values one by one from the character or 

character varying type column being compressed. For each distinct string value, store them 
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onto a dictionary.  The dictionary capacity, 𝐷  depends on the in-memory capacity of the 

system. The ideal size of the dictionary should be, 𝐷 = 2 − 1 where 𝑛 >  0. In our 

implementation for SA128, we have implemented the dictionary capacity as  𝐷 = 2 −

1 = 65535. In the dictionary, we map each unique string to an unsigned integer value 

starting between 0 and 65535 (𝐷 ). 

 

Step 2 – LZ77 compression or LZ77 with dictionary compression: We can have three 

possible cases: 

i. Case 1: If the number of distinct strings 𝑁 >  𝐷 , this means that the 

dictionary is not large enough to represent all the strings in the column being 

compressed. 

 

ii. Case 2: Let the size of all the column string values be 𝐶  and let the size of the 

dictionary be 𝐷 , Therefore, 

𝐶 =  ∑ 𝐿 ∗ 8 (for character/char type) or, 

𝐶 =  ∑ 𝐿 ∗ 8 + 16 (for character varying/varchar type) 

𝐷 =  ∑ log (𝐷 ) ∗ 𝐿 ∗ 8  

where, 

𝐿  = The max length n provided in the datatype definition, 

𝐿  = Length of string at index position I, 

For character/char type, the size of a string is the size of all its characters (included 

padded spaces at the end of the string to make it reach 𝐿  length). Each character 

occupies 1 byte which when multiplied by 8 gives the size of the string in bits. 

For character varying/varchar type, the size of a string is the size of all its characters + 

16 extra bits. 
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In this case, if 𝐶 < 𝐷 , this means that there aren’t too many repeated values in 

the column and storing them in a dictionary for dictionary compression only 

increases the storage requirement. This scenario is often encountered if the string 

column being compressed is part of a normalized table. When such a column is 

compressed, the low redundancy of the column makes it have near distinct values. 

This when combined with the size of mapped unsigned integers in the dictionary 

tends to increase the size of the resultant dictionary 𝐷 . 

 

iii. Case 3:  𝑁 ≤  𝐷  and  𝐶 ≥ 𝐷 : This case arises when the number of 

distinct strings is less than the capacity of the dictionary and the size of the column 

is less than the dictionary size. The second condition is often satisfied when the 

column belongs to a denormalized table. In such columns, there may be a large range 

of repeated values which make it a good candidate for dictionary-based compression. 

 

Step 2.1 – LZ77 compression: If we fall into one of the scenarios specified in case 1 or 

case 2, we directly apply LZ77 compression (Wesam Manassra, 2020) to all our column 

values. We do this by dividing all the string values into blocks of size 65535 (𝐷 ). We 

compress each block 𝐵  of size 65535 where 1 <=  𝑚 <=  ⌈𝑁/65535⌉ using LZ77 

compression.  

 

Step 2.2 – LZ77 with dictionary compression: If we fall into the scenario specified in 

case 3, we represent each string in the column being compressed by its unsigned integer 

representation from the dictionary. We then compress this sequence of unsigned integers 

using steps 1 to 11 of category-1 compression. Let us call final compressed block we get 

after this operation as 𝐵 , its exception blocks as 𝐸1 , 𝐸2 𝑎𝑛𝑑 𝐸3  respectively, 

the translated value after frame of reference step as 𝑡  and the encoding used to encode the 

block in the delta and delta encoding step as 𝐸𝑛𝑐 . We then compress the strings in the 
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dictionary (which are less than 65535 in number) using LZ77 compression (Wesam 

Manassra, 2020). 

 

Step 3 – Encode as SA128 block:  Our column compressed in step 2 in wrapped around a 

category-5 SA128 block. A category-5 SA128 block has two types: 

i. A category-5 SA128 string block – If our column was compressed using LZ77 

compression in step 2.1 or if our dictionary strings were compressed using LZ77 with 

dictionary compression in step 2.2, we use a category-5 SA128 string block to encode 

the dictionary or column strings. 

ii. A category-5 SA128 integer block – If our column was compressed using LZ77 with 

dictionary compression in step 2.2, we use a category-5 SA128 integer block which 

encodes the unsigned integers in the dictionary from step 2.2. This block is only used 

for columns compressed using LZ77 using dictionary compression in step 2.2. 

 

The category-5 SA128 block consists of two parts: 

i. A category-5 SA128 block header – Contains metadata information about the block. 

ii. A category-5 SA128 block body – Contains the data encoded within the block. 

The components of a category-5 SA128 string block can be given below: 

 

Figure 4.15: Components of SA128 String Block in Category-5 Compression 

 

i. BS – Block size in bytes (32 bits): Stores the size of the category-5 block (block 

header and the block body) using 32-bits.  

ii. CID – Column ID (11 bits): Uses 11 bits to represent the column ID of the column 

being compressed. Explanation of the bit representation is same as that provided for 
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the ‘CID’ section in category-1 SA128 block header. 

iii. D – Datatype (4 bits): Uses 4 bits to represent the data type on the column being 

compressed. Explanation of the bit representation is same as that provided for the ‘D’ 

section in category-1 SA128 block header. 

iv. DF – Dictionary Flag (1 bit): Uses 1 bit to represent whether the block is a category-

4 SA128 string block or a category-4 SA128 integer block. We use bit ‘0’ to represent 

a category-5 SA128 integer block and bit ‘1’ to represent a category-5 SA128 string 

block. 

v. SF – Storage Flag (1 bit): Uses 1 bit to represent whether to hold the dictionary in 

memory or not. If this bit is set to ‘0’, then the dictionary is discarded after encoding 

the category-5 SA128 string block. If this bit is set to ‘1’, then the dictionary is stored 

in memory until the next category-5 SA128 integer block has been encoded since the 

dictionary is required to extract the unsigned integer representations of the strings. 

vi. NS – Number of Strings (16 bits): Uses 16 bits to store the number of strings being 

compressed as part of the category-5 SA128 string block. This value can range 

between 1 to 65535 (𝐷 ). 

vii. LQ – Length of Quotient (16 bits): Uses 16 bits to represent the value 𝐿 , where 

𝐿 = 𝐿 /𝐷  and 𝐿  = Length of the LZ77 compressed string and 𝐷  = Capacity 

of the dictionary (a value of 65535 in our case). 

viii. LR – Length of Remainder (16 bits): Uses 16 bits to represent the value 𝐿 , where 

𝐿 = 𝐿  % 𝐷  and 𝐿  = Length of the LZ77 compressed string and 𝐷  = Capacity 

of the dictionary (a value of 65535 in our case). 

ix. EB – Exempt Bits (3 bits): Uses 3 bits to represent the additional bits appended to 

the binary representation of the compressed string (CS) to make the category-5 

SA128 string block occupy a whole number of bytes, i.e., the number of bits added 

to the end of the binary representation of the block to make the entire length of the 

binary representation a multiple of 8 (1 byte). This is represented by the value 𝐸 =
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 𝐿  % 8 where 𝐿  = Length of the category-5 SA128 string block. Since 0 ≤ 𝐸 < 8, 

we can represent this quantity using 3 bits. 

x. CS – Compressed String (LQ * 𝑫𝒄𝒂𝒑 (or 65535) + LR – EB bits): Represents the 

LZ77 compressed string in bits. 

 

The components of a category-5 SA128 integer block can be given below: 

 

Figure 4.16: Components of SA128 Integer Block in Category-5 Compression 

 

i. BS – Block size in bytes (32 bits): Stores the size of the category-5 block (block 

header and the block body) using 32-bits.  

ii. CID – Column ID (11 bits): Uses 11 bits to represent the column ID of the column 

being compressed. Explanation of the bit representation is same as that provided for 

the ‘CID’ section in category-1 SA128 block header. 

iii. D – Datatype (4 bits): Uses 4 bits to represent the data type on the column being 

compressed. Explanation of the bit representation is same as that provided for the ‘D’ 

section in category-1 SA128 block header. 

xi. DF – Dictionary Flag (1 bit): Uses 1 bit to represent whether the block is a category-

5 SA128 string block or a category-5 SA128 integer block. We use bit ‘0’ to represent 

a category-5 SA128 integer block and bit ‘1’ to represent a category-5 SA128 string 

block. 

xii. ET – Encoding Type (2 bits): Uses 2 bits to represent the 𝐸𝑛𝑐  encoding type value 

for the category-5 SA128 integer block. Explanation of the bit representation is same 

as that provided for the ‘ET’ section in category-1 SA128 block body. 

xiii. TV – Translated Value (16 bits): Uses 16 bits to represent the translated value 𝑡  
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received after the frame of reference with modulo operation at the end of step 2.2. 

Explanation of the bit representation is same as that provided for the ‘TV’ section in 

category-1 SA128 block body. 

xiv. DL – Data Length (8 bits): Uses 8 bits to represent the length of the 𝐵  block. 

Explanation of the bit representation is same as that provided for the ‘DL’ section 

in category-1 SA128 block body. 

xv. DB – Data Bits (4 bits): Uses 4 bits to represent the number of bits required to 

represent each data value in sub-block 𝐵 . Since the maximum number of bits 

required to represent a data value is 16 bits (unsigned integers between 0 and 

65535), 4 bits are adequate to represent the number of bits. 

xvi. DC – Data Content (DL * DB bits): Uses DL * DB bits to represent all the values 

in sub-block 𝐵3 . 

xvii. E1L – Excep1 Length (8 bits): Uses 8 bits to represent the length of the exception 

block 𝐸1 . Explanation of the bit representation is same as that provided for the 

‘E1L’ section in category-1 SA128 block body. 

xviii. E1B – Excep1 Bits (8 bits): Uses 8 bits to represent the number of bits required to 

represent each index value in exception block 𝐸1 . Explanation of the bit 

representation is same as that provided for the ‘E1B’ section in category-1 SA128 

block body. 

xix. E1C – Excep1 Content (E1L * E1B bits): Uses E1L * E1B bits to represent all 

the indices in the exception block 𝐸1 . 

xx. E2L – Excep2 Length (8 bits): Uses 8 bits to represent the length of the exception 

block 𝐸2 . Explanation of the bit representation is same as that provided for the 

‘E1L’ section in category-1 SA128 block body. 

xxi. E2B – Excep2 Bits (8 bits): Uses 8 bits to represent the number of bits required to 

represent each index value in exception block 𝐸2 . Explanation of the bit 
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representation is same as that provided for the ‘E2B’ section in category-1 SA128 

block body. 

xxii. E2C – Excep2 Content (E2L * E2B bits): Uses E2L * E2B bits to represent all 

the indices in the exception block 𝐸2 . 

xxiii. E3L – Excep3 Length (8 bits): Uses 8 bits to represent the length of the exception 

block 𝐸3 . Explanation of the bit representation is same as that provided for the 

‘E1L’ section in category-1 SA128 block body. 

xxiv. E3B – Excep3 Bits (8 bits): Uses 8 bits to represent the number of bits required to 

represent each index value in exception block 𝐸3 . Explanation of the bit 

representation is same as that provided for the ‘E2B’ section in category-1 SA128 

block body. 

xxv. E3C – Excep3 Content (E3L * E3B bits):  Uses E3L * E3B bits to represent all 

the indices in the exception block 𝐸3 . 

 
4.3 Compression Stage 2: rANS Entropy Encoding 

 
In this stage we further compress all the SA128 blocks compressed at the end of 

Stage 1 using the ranged asymmetric numeral systems (rANS) entropy encoding 

technique. This stage takes place in four steps: 

 

Step 1 – Preparing list of input symbols: In this step, we scan each byte of data (8 bits) 

one by one from the binary representation of all the compressed SA128 blocks. We 

convert each scanned byte of information into an ASCII character (between 0 to 255). 

This ASCII character is inserted into our list of input symbols (𝐼) to be compressed using 

rANS. We also push each unique input symbol to our set of input symbols (∑) to be 

compressed by rANS. 
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Step 2 – Computing probability distribution of input symbols: In this step, we 

compute the probability distribution 𝐹(𝑥), of the set of input symbols (∑). For each 

symbol 𝑥 ∈ ∑, we calculate the frequency, 𝑓(𝑥) of  𝑥 such that 𝑓(𝑥) =

(       )

(       ∑)
. The probability distribution is saved in an internal 

database table and occupies 2048 bytes (2 KB) of storage. The probability distribution 

used to encode the symbols are needed during decompression to recover back the 

symbols. 

 

Step 3 – Divide symbols into blocks and encode using rANS: In this step, we divide 

the list of input symbols ‘I’ into blocks containing 1024 input symbols each. For each 

symbol 𝑥 ∈ 𝐵 , where 𝐵  is a block being encoded, we pass 𝑥 and its frequency 𝑓(𝑥) as 

arguments to the rANS encoder (Fedor Glazov, 2020) to encode symbol 𝑥. After all 

symbols have been encoded, we receive the compressed data as a list of 32-bit integers 

′𝑂′.  

 

Step 4 – Encode as stage-2 SA128 block: For each block of 1024 symbols being encoded 

using rANS, we encapsulate it within a stage-2 SA128 block. The stage-2 SA128 block 

consists of two parts: 

i. A stage-2 SA128 block header – Contains metadata information about the block. 

ii. A stage-2 SA128 block body – Contains the data encoded within the block. 

The components of a category-4 SA128 string block can be given below: 

 

Figure 4.17: Components of Stage-2 SA128 Block in Stage-2 Compression 
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i. SC – Symbol Count (16 bits): Stores the number of symbols encoded by the stage-

2 SA128 block. Since block 𝐵  can have between 1 to 1024 symbols, therefore 16 

bits are adequate to represent this quantity. 

ii. CS – Compressed Size (16 bits): Uses 16 bits to represent the size of the 

compressed data using rANS in the block 𝐵 . 

iii. CD – Compressed Data (CS bits): Stores the final encoded data using CS number 

of bits. Convert each compressed data received as a 32-bit integer. Store the binary 

representation of the stage-2 SA128 block and store them onto our disk as our final 

compressed data for the block. 
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Chapter 5 
 

 
SA128 DECOMPRESSION 

 
 

The SA128 decompression is more straightforward compared to the SA128 
compression. The decompression takes place in two stages: 

 
i. Decompression Stage 1 – rANS entropy decoding stage: Uses an rANS variant of 

Asymmetric Numeral Systems (Duda, J., 2013) to decompress table data represented 
as a compressed integer and converts them to a list of ASCII symbols. 

 
ii. Decompression Stage 2 – Column based decompression stage: Decompresses the list 

of symbols representing the encoded SA128 blocks for all columns in the table and 
retrieves the original data values for each column in the table with the supported 
datatype. 

 
5.1 Decompression Stage 1: rANS Entropy Decoding 

 

In this stage we decompress all the stage-2 SA128 blocks compressed at the end of 

section 4.3 using the ranged asymmetric numeral systems (rANS) entropy decoding 

technique. This stage takes place in four steps: 

 

Step 1 – Read compressed blocks: In this step, we read each encoded block from section 

4.3 in streamlined fashion. We read the first 16 bits signifying the Symbol Count (SC) and 

convert it into its integer representation. Read the next 16 bits signifying the Compressed 

Size (CS) of the data and convert it into its integer representation. Next, read CS number 

of bits from the stream and signifying the Compressed Data (CD) of the block. This process 

is repeated for all compressed blocks until there are no more bits to be read from the stream. 

 

Step 2 – Decode stage-2 SA128 block: In this step, we fetch our probability distribution 

𝐹(𝑥) for the encoded symbols saved in the internal database table during encoding of stage-

2 SA128 block. Since the number of symbols encoded in the block is equal to SC, we 

perform an rANS decode (Fedor Glazov, 2020) operation SC number of times. In each 
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iteration, we pass the probability distribution 𝐹(𝑥) and the compressed data CD to the 

decoder so that the original symbols can be retrieved. 

 

Step 3 – Convert symbols to bytes: In this step, each symbol is converted back from its 

ASCII representation to its byte representation (8 bits) and stored in memory for the next 

compression stage. 

 
5.2 Decompression Stage 2: Column-based Decompression 

 
In this stage, we sequentially decompress each column of our database tables from 

their encoded SA128 blocks for all 5 data type categories. The decompression stage 2 takes 
place using the following steps: 

 
Step 1 – Read compressed blocks: In this step, we iteratively read all stage-1 SA128 
blocks belonging to all of the 5 categories from our stream of decoded bits at the end of 
section 5.1. For each SA128 block, we read the first 32 bits signifying the overall Block 
Size (BS) and convert it into its integer representation. Next, read BS bits from the stream 
which contains the binary representation 𝐵  of entire compressed SA128 block. Next, we 
read 11 bits from 𝐵  signifying the Column ID (CID) which the compressed block belongs 
to and convert it into its integer representation. Next, we read 4 bits from 𝐵  signifying the 
datatype of the column encoded by the block and convert it into its integer representation. 
Using the ID value in D, we can retrieve the datatype of the column represented by the 
block using the below table and determine the category which this SA128 block falls under: 
 

Datatype ID (D) Datatype 

0 SmallInt/Int2 

1 Integer/Int4 

2 Bigint/Int8 

3 Date 

4 Timestamp 

5 Timestamp with timezone/Timestamptz 

6 Time 

7 Time with timezone/Timez 

8 Numeric/Decimal 
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9 Real/Float4 

10 Double Precision/Float8 

11 Boolean 

12 Character/Char 

13 Character Varying/Varchar 

Table 5.1: Mapping of Datatype IDs to Supported Datatypes 

 
 
The category of the SA128 block can be determined in the following way: 
 
i. If the value D lies between 0 to 7, then our SA128 block is a category-1 SA128 block. 
 
ii. If the value D is, then our SA128 block is a category-2 SA128 block. 
 
iii. If the value D lies between 9 to 10, then our SA128 block is a category-3 SA128 

block. 
 
iv. If the value D is 11, then our SA128 block is a category-4 SA128 block. 
 
v. If the value D lies between 12 to 13, then our SA128 block is a category-5 SA128 

block. 
 

Depending on which category the SA128 belongs to using the above logic, we follow 
a different decompression approach explained in the next sections (section 5.2.1 to 5.2.5). 
This way, we follow this process iteratively until there are no more bits to be read from the 
stream. 
 
 

5.2.1 Decompression of Category 1 data types 

 
If the SA128 block being decoded belongs to category 1, we follow the following steps to 
decode it: 
 
Step 1 – Unpack Block Contents: Read 2 bits from the block stream 𝐵  and convert it 
into its integer representation, which signifies the encoded value 𝐸𝑛𝑐  of the current 𝑚  
data block 𝐵  being decoded where 1 ≤ 𝑚 ≤  ⌊𝑁/128⌋   +  1 and N is the total number of 
blocks encoded using stage-1 compression. Next, we unpack the translated value (𝑡 ) using 
the following rules: 
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i. If D is 0, read 16 bits from 𝐵  and convert it into its integer representation which 
represents the translated value 𝑡  for block 𝐵 . 

 
ii. If D is 1 or 3, read 32 bits from 𝐵  and convert it into its integer representation which 

represents the translated value 𝑡  for block 𝐵 . 
 
iii. If D is 2, 4, 5 or 6, read 64 bits from 𝐵  and convert it into its integer representation 

which represents the translated value 𝑡  for block 𝐵 . 
 
iv. If D is 7, read 96 bits from 𝐵  and convert it into its integer representation which 

represents the translated value 𝑡  for block 𝐵 . 
 

Read 8 bits from 𝐵  and convert it into its integer representation which represents the 
block length 𝑁  of the compressed data in data block 𝐵 . Lastly, read 8 bits from 𝐵  and 
convert it into its integer representation which represents the block bits 𝑏  of the 
compressed data in block 𝐵 . Read the next 𝑁 ∗ 𝑏  bits from 𝐵 , where every 𝑏  bits 
read is converted to its integer representation and stored in 𝐵 .  

 
Read the next 8 bits from 𝐵  and convert it to its integer representation which signifies 

the length 𝑁  of the Exception 1 block 𝐸1  for block 𝐵 .  Read the next 8 bits from 𝐵  
and convert it to its integer representation which signifies the exception block bits 𝑒1  of 
the Exception 1 block 𝐸1  for block 𝐵 . Next, read   𝑁 ∗ 𝑒1  bits from 𝐵 , where every 
𝑒1  bits read is converted to its integer representation and stored in 𝐸1 . 

 
If there are bits available in 𝐵 , read the next 8 bits from 𝐵  and convert it to its integer 

representation which signifies the length 𝑁  of the Exception 2 block 𝐸2  for block 𝐵 .  
Read the next 8 bits from 𝐵  and convert it to its integer representation which signifies the 
exception block bits 𝑒2  of the Exception 2 block 𝐸2  for block 𝐵 . Next, read   𝑁 ∗
𝑒2  bits from 𝐵 , where every 𝑒2  bits read is converted to its integer representation and 
stored in 𝐸2 . 

 
If there are bits available in 𝐵 , read the next 8 bits from 𝐵  and convert it to its integer 

representation which signifies the length 𝑁  of the Exception 3 block 𝐸3  for block 𝐵 .  
Read the next 8 bits from 𝐵  and convert it to its integer representation which signifies the 
exception block bits 𝑒3  of the Exception 3 block 𝐸3  for block 𝐵 . Next, read   𝑁 ∗
𝑒3  bits from 𝐵 , where every 𝑒3  bits read is converted to its integer representation and 
stored in 𝐸3 . 

 
Step 2 – Unpack NULLs: In this step, for each value 𝑖 ∈  𝐸3 , we replace the ‘0’ value 
at index position 𝑖 in 𝐵  with NULL, i.e., 𝐵 [𝑖] = 𝑁𝑈𝐿𝐿. 
 
Step 3 – Bit Unpacking using Modulo Technique: In this step, we find the maximum 
value 𝑚𝑎𝑥𝑉𝑎𝑙 which can be represented using 𝑏  bits. The value 𝑚𝑎𝑥𝑉𝑎𝑙 can be 
represented as: 
 

𝑚𝑎𝑥𝑉𝑎𝑙 = 2 − 1 
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For each value  𝑖 ∈  𝐸2 . We perform the below transformations on block 𝐵 : 

 
i. 𝐵 [𝑖] = 𝐵 [𝑖] ∗ 𝑚𝑎𝑥𝑉𝑎𝑙 +  𝐵 [𝑖 + 1] 

ii. 𝑅𝑒𝑚𝑜𝑣𝑒 𝑣𝑎𝑙𝑢𝑒 𝑎𝑡 𝐵 [𝑖 + 1] 𝑎𝑛𝑑 𝑠ℎ𝑖𝑓𝑡 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝑙𝑒𝑓𝑡 𝑎𝑓𝑡𝑒𝑟 𝑖𝑛𝑑𝑒𝑥 𝑖 +
1 𝑏𝑦 𝑜𝑛𝑒. 

iii. 𝐷𝑒𝑐𝑟𝑒𝑎𝑠𝑒 𝑠𝑖𝑧𝑒 𝑜𝑓 𝑏𝑙𝑜𝑐𝑘 𝑁 𝑏𝑦 1, 𝑖. 𝑒. , 𝑁 =  𝑁 − 1. 
 
Step 4 – Decode Run-length: In this step, for each value 𝑖 ∈  𝐸1 , we perform run-length 
decoding using the below transformations on block 𝐵 : 
 

i. 𝑟 = 𝐵 [𝑖] 
ii. Remove value at  𝐵 [𝑖] 𝑎𝑛𝑑 𝑠ℎ𝑖𝑓𝑡 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝑙𝑒𝑓𝑡 𝑎𝑓𝑡𝑒𝑟 𝑖𝑛𝑑𝑒𝑥 𝑖 + 1 𝑏𝑦 𝑜𝑛𝑒. 
iv. 𝐷𝑒𝑐𝑟𝑒𝑎𝑠𝑒 𝑠𝑖𝑧𝑒 𝑜𝑓 𝑏𝑙𝑜𝑐𝑘 𝑁 𝑏𝑦 1, 𝑖. 𝑒. , 𝑁 =  𝑁 − 1. 
v. Insert the value 𝐵 [𝑖 − 1] 𝑖𝑛𝑡𝑜 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑖, 𝑟 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑖𝑚𝑒𝑠. 

vi. 𝐼𝑛𝑐𝑟𝑒𝑎𝑠𝑒 𝑠𝑖𝑧𝑒 𝑜𝑓 𝑏𝑙𝑜𝑐𝑘 𝑁 𝑏𝑦 𝑟, 𝑖. 𝑒. , 𝑁 =  𝑁 + 𝑟. 
 
Step 5 – Translate Frame of Reference: In this step, for each value at index position 𝑖 in 
𝐵 , we convert the value by performing the below transformation on block 𝐵 : 
 

i. 𝐵 [𝑖] =  𝐵 [𝑖] +  𝑡  
 
Step 6 – Zigzag decode: In this step, for each value at index position 𝑖 in 𝐵 , we convert 
the value by performing the below transformation on block 𝐵 : 
 

i. 𝐵 [𝑖] =  (𝐵 [𝑖] ≫>  1) ^  − (𝐵 [𝑖] & 1), where ‘>>>’ is the non-arithmetic shift 
operation (0 – padding), ‘-’ is the unary negation operation and ‘^’ in the XOR 
operation. This transformation decodes positive numbers back to negative numbers 
using zigzag decoding. 

 
Step 7 – Decode Delta and Delta of Delta Encoding: In this step, for each value at index 
position 𝑖 in 𝐵 , we perform delta or delta of delta decoding based on the encoding type 
𝐸𝑛𝑐 . The decoding technique used can be determined using the below table: 
 

𝑬𝒏𝒄𝒎 Decoding 

0 Uncompressed 

1 Delta decoding 

2 Delta of Delta decoding 

Table 5.2: Mapping of 𝐸𝑛𝑐  values to Encoding Type 
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We perform the following transformations on our block based on the 𝐸𝑛𝑐  values: 
 

i. If 𝐸𝑛𝑐 = 0: Keep 𝐵  unchanged. 
 

ii. If 𝐸𝑛𝑐 = 1:  
 

a. If 𝑝𝑟𝑒𝑣 exists, then 𝐵 [𝑖] = 𝑝𝑟𝑒𝑣 − 𝐵 [𝑖] , where 𝑝𝑟𝑒𝑣 is the previous non-
NULL value occurring before 𝐵 [𝑖]. There can be multiple number of NULL 
values between  𝑝𝑟𝑒𝑣 and 𝐵 [𝑖].  

b. If 𝑝𝑟𝑒𝑣 does not exist, then 𝐵 [𝑖] is left unchanged. 
 

iii. If 𝐸𝑛𝑐 = 2:  
 

a. If 𝑝𝑟𝑒𝑣 and 𝑝𝑝𝑟𝑒𝑣 exist, then 𝐵 [𝑖] = 𝐵 [𝑖] − 𝑝𝑝𝑟𝑒𝑣 + (2 ∗ 𝑝𝑟𝑒𝑣) , where 
𝑝𝑟𝑒𝑣 is the previous non-NULL value and pprev is the second previous non-
NULL value occurring before 𝐵 [𝑖] respectively.  

b. If 𝑝𝑟𝑒𝑣 and 𝑝𝑝𝑟𝑒𝑣 do not exist, then 𝐵 [𝑖] is left unchanged. 
 
 
Step 8 – Convert block values from integer representation to datatype representation: 
In this step, for non-integer datatypes with D values 3 to 7, we convert them back to the 
original datatype format depending on the D value. For example: 
 
i. Let 𝑠 be an integer value which needs to be converted into a literal 𝑓 of ‘date’ type, 

where s = ‘20211211’. This will be converted to f = ‘2021-12-11’ (where the date 

value is stored in ISO 8601 format).  

ii. Let 𝑠 be an integer value which needs to be converted into a literal 𝑓 of ‘timestamp’ 

type, where s = ‘2021121111553412313’. This will be converted to f = ‘2021-12-11 

11:55:34.12313’ (where the timestamp value is stored in ISO 8601 format). 

iii. Let 𝑠 be an integer value which needs to be converted into a literal 𝑓 of ‘timestamptz’ 

type, where s = ‘-20211211115534800’. This will be converted to f = ‘2021-12-11 

11:55:34 -8:00’ (where the timestamptz value is stored in ISO 8601 format). Note 

that the negative sign for the integer value becomes the sign of the time zone in f. 

iv. Let 𝑠 be an integer value which needs to be converted into a literal 𝑓 of ‘time’ type, 

where s = ‘11553412313’. This will be converted to f = ’11:55:34.12313’ (where the 

time value is stored in ISO 8601 format). 
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v. Let 𝑠 be an integer value which needs to be converted into a literal 𝑓 of ‘timez’ type, 

where s = ‘-115534123130800’. This will be converted to f = ’11:55:34.12313-

08:00’ (where the time value is stored in ISO 8601 format). Note that the negative 

sign for the integer value becomes the sign of the time zone in f. 

 
Step 9 – Store data block values in table column:  Each data value in block 𝐵 , contains 
between 128 values (except for the last block which contains N % 128 values where N is 
the number of values in the column). We store these values to our table column with 𝑖𝑑 =
 𝐶𝐼𝐷 in the order in which they are decompressed. For the future blocks, the next batch of 
decoded values are appended to the table column after the previous block values till all the 
values of the column have been decompressed and stored back into the database. 
 
 

5.2.2 Decompression of Category 2 data types 

 
If the SA128 block being decoded belongs to category 2, we follow the following 

steps to decode it: 
 
Step 1 – Unpack block contents: For each block 𝐵  being decoded where 1 ≤ 𝑚 ≤
 ⌊𝑁/128⌋   +  1 and N is the total number of blocks encoded using stage-1 compression, 
we have two sub-blocks, 𝐵1  and 𝐵2  respectively. These sub-blocks represent the part 
of the numeric/decimal type value before and after the decimal point respectively. We also 
calculate the bits per value for both the sub-blocks as 𝑡1  and 𝑡2 , where 𝑡1 =
 log (10 − 1) , 𝑡2 =  log (10 − 1). Here, 𝑝 is the precision and 𝑠 is the scale of 
the numeric/decimal type respectively. 
 

Read 2 bits from the block stream 𝐵  and convert it into its integer representation, 
which signifies the encoded value 𝐸𝑛𝑐1  of the sub-block 𝐵1 . Read 𝑡1  bits from the 
block stream 𝐵  and convert it into its integer representation, which signifies the translated 
value 𝑡1  of the sub-block 𝐵1 . Again, read 2 bits from the block stream 𝐵  and convert 
it into its integer representation, which signifies the encoded value 𝐸𝑛𝑐2  of the sub-block 
𝐵2 . Read 𝑡2  bits from the block stream 𝐵  and convert it into its integer representation, 
which signifies the translated value 𝑡2  of the sub-block 𝐵2 . 

 
Read 8 bits from 𝐵  and convert it into its integer representation which represents the 

block length 𝑁1  of the compressed data in sub-block 𝐵1 . Read log ⌈𝑡1 ⌉ bits from 
𝐵  and convert it into its integer representation which represents the block bits 𝑏1  of the 
compressed data in sub-block 𝐵1 . Read the next 𝑁1 ∗ 𝑏1  bits from 𝐵 , where every 
𝑏1  bits read is converted to its integer representation and stored in 𝐵1 . Read 8 bits from 
𝐵  and convert it into its integer representation which represents the block length 𝑁2  of 
the compressed data in sub-block 𝐵2 . Read log ⌈𝑡2 ⌉ bits from 𝐵  and convert it into 
its integer representation which represents the block bits 𝑏2  of the compressed data in 
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sub-block 𝐵2 . Read the next 𝑁2 ∗ 𝑏2  bits from 𝐵 , where every 𝑏2  bits read is 
converted to its integer representation and stored in 𝐵2 . 

 
Read the next 8 bits from 𝐵  and convert it to its integer representation which signifies 

the length 𝑁1  of the Exception 1 block 𝐸11  for sub-block 𝐵1 . Read the next 8 bits 
from 𝐵  and convert it to its integer representation which signifies the exception block bits 
𝑒11  of the Exception 1 block 𝐸11  for sub-block 𝐵1 . Next, read 𝑁1 ∗ 𝑒11  bits from 
𝐵 , where every 𝑒11  bits read is converted to its integer representation and stored in 
𝐸11 . Read the next 8 bits from 𝐵  and convert it to its integer representation which 
signifies the length 𝑁2  of the Exception 1 block 𝐸12  for sub-block 𝐵2 . Read the next 
8 bits from 𝐵  and convert it to its integer representation which signifies the exception 
block bits 𝑒12  of the Exception 1 block 𝐸12  for sub-block 𝐵2 . Next, read 𝑁2 ∗
𝑒12  bits from 𝐵 , where every 𝑒12  bits read is converted to its integer representation 
and stored in 𝐸12 . 

 
Read the next 8 bits from 𝐵  and convert it to its integer representation which signifies 

the length 𝑁1  of the Exception 2 block 𝐸21  for sub-block 𝐵1 . Read the next 8 bits 
from 𝐵  and convert it to its integer representation which signifies the exception block bits 
𝑒21  of the Exception 2 block 𝐸21  for sub-block 𝐵1 . Next, read 𝑁1 ∗ 𝑒21  bits from 
𝐵 , where every 𝑒21  bits read is converted to its integer representation and stored in 
𝐸21 . Read the next 8 bits from 𝐵  and convert it to its integer representation which 
signifies the length 𝑁2  of the Exception 2 block 𝐸22  for sub-block 𝐵2 . Read the next 
8 bits from 𝐵  and convert it to its integer representation which signifies the exception 
block bits 𝑒22  of the Exception 2 block 𝐸22  for sub-block 𝐵2 . Next, read 𝑁2 ∗
𝑒22  bits from 𝐵 , where every 𝑒22  bits read is converted to its integer representation 
and stored in 𝐸22 . 

 
Read the next 8 bits from 𝐵  and convert it to its integer representation which signifies 

the length 𝑁1  of the Exception 3 block 𝐸31  for sub-block 𝐵1 . Read the next 8 bits 
from 𝐵  and convert it to its integer representation which signifies the exception block bits 
𝑒31  of the Exception 3 block 𝐸31  for sub-block 𝐵1 . Next, read 𝑁1 ∗ 𝑒31  bits from 
𝐵 , where every 𝑒31  bits read is converted to its integer representation and stored in 
𝐸31 . Read the next 8 bits from 𝐵  and convert it to its integer representation which 
signifies the length 𝑁2  of the Exception 3 block 𝐸32  for sub-block 𝐵2 . Read the next 
8 bits from 𝐵  and convert it to its integer representation which signifies the exception 
block bits 𝑒32  of the Exception 3 block 𝐸32  for sub-block 𝐵2 . Next, read 𝑁2 ∗
𝑒32  bits from 𝐵 , where every 𝑒32  bits read is converted to its integer representation 
and stored in 𝐸32 . 

 
Step 2 – Decompress sub-blocks using Catetogy-1 decompression: In this step, we 
decompress each of the two sub-blocks 𝐵1  and 𝐵2  along with their respective exception 
blocks 𝐸11 , 𝐸21 , 𝐸31  and 𝐸12 , 𝐸22 , 𝐸32  respectively using steps 2 to 7 of 
category-1 decompression (in section 5.2.1). 
 
Step 3 – Retrieve numeric/decimal data values from sub-blocks: In this step, for each 
value at index position 𝑖 in 𝐵1  and 𝐵2 , we create our data block 𝐵  which contains the 
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reconstructed decimal values by appending the corresponding data values in 𝐵1  and 𝐵2  
separated by a decimal point. We do this by performing the following transformation: 
 

i. 𝐵 [𝑖] =  𝑐𝑜𝑛𝑐𝑎𝑡(𝑐𝑜𝑛𝑐𝑎𝑡(𝑠𝑡𝑟(𝐵1 ), ". "), 𝑠𝑡𝑟(𝐵2 ). 𝑧𝑓𝑖𝑙𝑙(𝑠)), where concat(s1, 
s2) is the concatenation operation which concatenates two strings s1 and s2 provided 
as arguments to it, str(n) is a function which converts an integer n to string, zfill(s) is 
a function which prepends leading ‘0’s to 𝐵2  so that 𝑠𝑡𝑟(𝐵2 ) can have a length 
equal to the scale s of the numeric/decimal type. The zfill(s) function is used to 
retrieve the lost 0s during conversion of the fractional part to integer during encoding. 

 
Step 4 – Store data block values in table column:  Each data value in block 𝐵 , contains 
between 128 values (except for the last block which contains N % 128 values where N is 
the number of values in the column). We store these values to our table column with 𝑖𝑑 =
 𝐶𝐼𝐷 in the order in which they are decompressed. For the future blocks, the next batch of 
decoded values are appended to the table column after the previous block values till all the 
values of the column have been decompressed and stored back into the database. 
 
 

5.2.3 Decompression of Category 3 data types 

 
If the SA128 block being decoded belongs to category 3, we follow the following 

steps to decode it: 
 
Step 1 – Unpack block contents: Read 2 bits from the block stream 𝐵  and convert it into 
its integer representation, which signifies the encoded value 𝐸𝑛𝑐  of the current 𝑚  data 
block 𝐵  being decoded where 1 ≤ 𝑚 ≤  ⌊𝑁/128⌋   +  1 and N is the total number of 
blocks encoded using stage-1 compression. 
 
We now have two scenarios based on the value of 𝐸𝑛𝑐 : 

 
i. Scenario 1: If 𝐸𝑛𝑐  is 0, 1 or 2: 
 

The block contains two sub-blocks 𝐵1  and 𝐵2 . Let 𝐸𝑛𝑐1  𝑏𝑒 𝐸𝑛𝑐 . 
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The decompression process for scenario 1 can is shown using the flowchart below: 
 

 
 

Figure 5.1: Steps for Scenario-1 of Category-3 Decompression 
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ii. Scenario 2: If 𝐸𝑛𝑐  is 3: 
 
Let 𝐸𝑛𝑐3  𝑏𝑒 𝐸𝑛𝑐 . 

 
The decompression process for scenario 1 can is shown using the flowchart below: 
 

 
 

Figure 5.2: Steps for Scenario-2 of Category-3 Decompression 
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Step 2 – Scenario based decompression: Depending on which scenario was encountered 
in step 1, we perform the below actions: 
 

i. For scenario 1: Decompress the sub-blocks 𝐵1  and 𝐵2  along with their 
exception blocks using steps 2 and 3 of category-2 decompression (in section 5.2.2) 
and get the final decoded data block 𝐵 . 

 
ii. For scenario 2: For each data value at index 𝑖 in 𝐵 , perform the XOR-decoding 

using the following transformations on the data block 𝐵 : 
 

a. Convert 𝐵 [𝑖] 𝑡𝑜 𝑖𝑡𝑠 𝑏𝑖𝑛𝑎𝑟𝑦 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 𝑢𝑠𝑖𝑛𝑔 𝑎𝑡 𝑚𝑜𝑠𝑡 (𝑀 −
 (𝑙 + 𝑡 )), where M = 32 if D = 9 and M = 64 if D = 10. 

b. Prepend 𝑙  number of zeros to the binary representation of 𝐵 [𝑖]. 
c. Append 𝑡  number of zeros to the binary representation of 𝐵 [𝑖]. 
d. Convert 𝐵 [𝑖] to its 32-bit or 64-bit floating point representation for D = 9 or 

D = 10 respectively. 
e. Insert value 𝑓  at index position 𝑓  𝑖𝑛 𝐵 . 
f. Decode using XOR by the transformation, 𝐵 [𝑖] =  𝐵 [𝑖] ^ 𝐵 [𝑖 − 1] where 

𝑖 > 0 and ‘^’ is the XOR operator. 
 

After XOR-decoding, we get our final decoded data block 𝐵 . 
 

Step 3 – Store data block values in table column:  Each data value in block 𝐵 , contains 
between 128 values (except for the last block which contains N % 128 values where N is 
the number of values in the column). We store these values to our table column with 𝑖𝑑 =
 𝐶𝐼𝐷 in the order in which they are decompressed. For the future blocks, the next batch of 
decoded values are appended to the table column after the previous block values till all the 
values of the column have been decompressed and stored back into the database. 
 
 

5.2.4 Decompression of Category 4 data types 

 
If the SA128 block being decoded belongs to category 4, we follow the following 

steps to decode it: 
 
Step 1 – Unpack Block Contents: Read 2 bits from the block stream 𝐵  and convert it 
into its integer representation, which signifies the encoded value 𝐸𝑛𝑐  of the current 𝑚  
data block 𝐵  being decoded where 1 ≤ 𝑚 ≤  ⌊𝑁/128⌋   +  1 and N is the total number of 
blocks encoded using stage-1 compression. 
 

Read 8 bits from 𝐵  and convert it into its integer representation which represents the 
block length 𝑁  of the compressed data in data block 𝐵 . Read 1 bit from 𝐵  and convert 
it into its integer representation which represents the block bits 𝑏  of the compressed data 
in block 𝐵 . Read the next 𝑁 ∗ 𝑏  bits from 𝐵 , where every 𝑏  bits read is converted to 
its integer representation and stored in 𝐵 .  
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Read the next 8 bits from 𝐵  and convert it to its integer representation which signifies 

the length 𝑁  of the Exception 1 block 𝐸1  for block 𝐵 .  Read the next 8 bits from 𝐵  
and convert it to its integer representation which signifies the exception block bits 𝑒1  of 
the Exception 1 block 𝐸1  for block 𝐵 . Next, read   𝑁 ∗ 𝑒1  bits from 𝐵 , where every 
𝑒1  bits read is converted to its integer representation and stored in 𝐸1 . 

 
If there are bits available in 𝐵 , read the next 8 bits from 𝐵  and convert it to its integer 

representation which signifies the length 𝑁  of the Exception 2 block 𝐸2  for block 𝐵 .  
Read the next 8 bits from 𝐵  and convert it to its integer representation which signifies the 
exception block bits 𝑒2  of the Exception 2 block 𝐸2  for block 𝐵 . Next, read   𝑁 ∗
𝑒2  bits from 𝐵 , where every 𝑒2  bits read is converted to its integer representation and 
stored in 𝐸2 . 

 
If there are bits available in 𝐵 , read the next 8 bits from 𝐵  and convert it to its integer 

representation which signifies the length 𝑁  of the Exception 3 block 𝐸3  for block 𝐵 .  
Read the next 8 bits from 𝐵  and convert it to its integer representation which signifies the 
exception block bits 𝑒3  of the Exception 3 block 𝐸3  for block 𝐵 . Next, read   𝑁 ∗
𝑒3  bits from 𝐵 , where every 𝑒3  bits read is converted to its integer representation and 
stored in 𝐸3 . 

 
Step 2 – Decompress using category-1 decompression: Follow steps 2 to 4 of category-
1 decompression (in section 5.2.1) which gives the final data block 𝐵 . 
 
Step 3 – Convert block values to Boolean: For each data value with index 𝑖 in 𝐵 , we 
perform the following transformations on the data block: 
 
i. If (𝐵 [𝑖] == 0), assign 𝐵 [𝑖] = ′𝑓′. 
ii. If (𝐵 [𝑖] == 1), assign 𝐵 [𝑖] = ′𝑡′. 
 
Step 4 – Store data block values in table column:  Each data value in block 𝐵 , contains 
between 128 values (except for the last block which contains N % 128 values where N is 
the number of values in the column). We store these values to our table column with 𝑖𝑑 =
 𝐶𝐼𝐷 in the order in which they are decompressed. For the future blocks, the next batch of 
decoded values are appended to the table column after the previous block values till all the 
values of the column have been decompressed and stored back into the database. 
 
 

5.2.5 Decompression of Category 5 data types 

 
If the SA128 block being decoded belongs to category 5, we follow the following 

steps to decode it: 
 
Step 1 – Unpack Block Contents: Read 1 bit from the block stream 𝐵  and convert it into 
its integer representation, which signifies the dictionary flag (DF) of the current 𝑚  data 
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block 𝐵  being decoded where 1 ≤ 𝑚 ≤  ⌊𝑁/128⌋   +  1 and N is the total number of 
blocks encoded using stage-1 compression. If DF = 0, then our block is a category-5 SA128 
integer block. If DF = 1, then our block is a category-5 SA128 string block. 
 

Depending on our DF value, we have two scenarios for decoding our category-5 
SA128 block: 
 
i. Scenario 1 – For DF = 1: 
 

Read 1 bit from the block stream 𝐵  and convert it into its integer representation, 
which represents the storage flag (SF) flag. If SF = 0, the strings being decompressed 
will written disk after the block has been decoded using LZ77 decompression 
(Wesam Manassra, 2020). If SF = 1. The decoded strings are not written onto the 
disk but are held in memory as a dictionary and are used for decompressing all the 
following category-5 SA128 integer blocks since the dictionary is required for LZ77 
with dictionary decompression in category-5 SA128 integer blocks. 

 
Read 16 bits from the block stream 𝐵  and convert it into its integer representation, 
which represents the number of strings (NS) compressed in the block 𝐵 . 

 
Read 16 bits from the block stream 𝐵  and convert it into its integer representation, 
which represents the length of quotient value (𝐿 ) where 𝐿 = 𝐿 /𝐷 , 𝐿  is the 
length of the LZ77 compressed data and 𝐷 = 65535. 

 
Read 16 bits from the block stream 𝐵  and convert it into its integer representation, 
which represents the length of remainder value (𝐿 ) where 𝐿 = 𝐿  % 𝐷 , 𝐿  is the 
length of the LZ77 compressed data and 𝐷 = 65535. 

 
Read 3 bits from the block stream 𝐵  and convert it into its integer representation, 
which represents the number of exempt bits 𝐸 , where 𝐸 =  𝐿  % 8,  𝐿  = Length 
of the category-4 SA128 string block. 

 
Read 𝐶 = 𝐿 ∗ 65535 +  𝐿 − 𝐸  bits from the block stream 𝐵  and convert it into 
its integer representation, which represents the compressed string data. 

 
ii. Scenario 1 – For DF = 0: 
 

Read 2 bits from the block stream 𝐵  and convert it into its integer representation, 
which signifies the encoded value 𝐸𝑛𝑐  of our block 𝐵 . 

 
Read 16 bits from 𝐵  and convert it into its integer representation which represents 
the translated value 𝑡  for block 𝐵 . 
 
Read 8 bits from 𝐵  and convert it into its integer representation which represents the 
block length 𝑁  of the compressed data in data block 𝐵 . Next, read 4 bits from 𝐵  
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and convert it into its integer representation which represents the block bits 𝑏  of the 
compressed data in block 𝐵 . Read the next 𝑁 ∗ 𝑏  bits from 𝐵 , where every 𝑏  
bits read is converted to its integer representation and stored in 𝐵 . 

 
Read the next 8 bits from 𝐵  and convert it to its integer representation which signifies 
the length 𝑁  of the Exception 1 block 𝐸1  for block 𝐵 .  Read the next 8 bits from 
𝐵  and convert it to its integer representation which signifies the exception block bits 
𝑒1  of the Exception 1 block 𝐸1  for block 𝐵 . Next, read   𝑁 ∗ 𝑒1  bits from 𝐵 , 
where every 𝑒1  bits read is converted to its integer representation and stored in 
𝐸1 . 

 
If there are bits available in 𝐵 , read the next 8 bits from 𝐵  and convert it to its integer 
representation which signifies the length 𝑁  of the Exception 2 block 𝐸2  for block 
𝐵 .  Read the next 8 bits from 𝐵  and convert it to its integer representation which 
signifies the exception block bits 𝑒2  of the Exception 2 block 𝐸2  for block 𝐵 . 
Next, read   𝑁 ∗ 𝑒2  bits from 𝐵 , where every 𝑒2  bits read is converted to its 
integer representation and stored in 𝐸2 . 

 
If there are bits available in 𝐵 , read the next 8 bits from 𝐵  and convert it to its integer 
representation which signifies the length 𝑁  of the Exception 3 block 𝐸3  for block 
𝐵 .  Read the next 8 bits from 𝐵  and convert it to its integer representation which 
signifies the exception block bits 𝑒3  of the Exception 3 block 𝐸3  for block 𝐵 . 
Next, read   𝑁 ∗ 𝑒3  bits from 𝐵 , where every 𝑒3  bits read is converted to its 
integer representation and stored in 𝐸3 . 

 
Step 2 – Decode using LZ77 or LZ77 with dictionary decompression: Depending on 
which scenario from step 1 our category-5 SA128 block falls under, we either execute 
either LZ77 decompression or LZ77 with dictionary decompression: 
 
i. For scenario 1:  
 

If DF = 1 and SF = 0, the compressed data bits 𝐶  are decoded using LZ77 
decompression and stored in our final data block 𝐵 . 

 
If DF = 1 and SF = 1, the compressed data bits 𝐶  are decoded using LZ77 
decompression and are held in memory within a dictionary 𝐷𝑖𝑐𝑡  where the 
dictionary holds all unique strings mapped to an unsigned integer which is 
incremented from 0 to 65535.  

 
ii. For scenario 2: 
 

If DF = 0, then decompress the block 𝐵  and its exception blocks using steps 2 to 7 
of category-1 decompression (in section 5.2.1) to get the final data block 𝐵 . 
 
Replace each value at index 𝑖 in 𝐵  with its mapped string value in the dictionary.  
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𝐵 [𝑖] = 𝐷𝑖𝑐𝑡[𝐵 [𝑖]] 
 

Step 3 – Store data block values in table column:  Each data value in block𝐵 , 
contains between 128 values (except for the last block which contains N % 128 values 
where N is the number of values in the column). We store these values to our table column 
with 𝑖𝑑 =  𝐶𝐼𝐷 in the order in which they are decompressed. For the future blocks, the 
next batch of decoded values are appended to the table column after the previous block 
values till all the values of the column have been decompressed and stored back into the 
database. 
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Chapter 6 
 

 
EXPERIMENTS AND RESULTS 

 
 

In this section, we go over the system configuration of the experimental setup used 

for collecting results and conducting experiments. 

 

6.1 System Configurations 

The system configuration used for collecting results for SA128 compression are 

summarized in the table below: 

System Manufacturer LENOVO 

System Model 81N7 

Operating System Windows 10 Home Single Language 64-bit (10.0, Build 

19042)  

Memory 8192GB RAM 

Processor Intel® Core™ i5-8265U CPU @ 1.60 GHz 

Table 6.1: System Configurations 

 

6.2 Languages and Software Used 

The programming languages and software libraries used for implementation of 

SA128 compressor and decompressor and conducting experiments are provided below: 

1. Python 3.9.0: For developing SA128 compressor (stage-1 + stage-2) and SA128 

decompressor (stage-1 and stage-2). 

2. Shell: For executing CLI commands for executing the SA128 compressor and 

decompressor on data files. 

3. Microsoft Visual Studio 2019: For building the TPC-DS version v2.13.0rc1 source 

code to generate benchmark data sets. 
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4. Libraries: LZ77-Compressor (Wesam Manassra, 2020), Zstd 1.4.8.1 (Sergey 

Dryabzhinsky and Anton Shuk, 2020), Snappy 1.1.3 (Snappy 2015), Lzma 9.38 

(Igor Pavlov, 2015), Zlib 1.2.11 (Mark Adler, 2017), LZ4 3.1.3 (Jonathan 

Underwood, 2021), Brotli 1.0.9 (Brotli, 2020), Python-rANSCoder (Fedor Glazov, 

2020). 

 

6.3 Results 

We divide the result section in two parts based on the datasets used for testing 

compression results. The first dataset used for result collection is a 1 GB TPC-DS 

Benchmark Dataset and the second dataset used for result collection is a generated dataset 

discussed in chapter 2. 

 

6.3.1 Results on 1GB TPC-DS Benchmark Dataset (Dataset – 1) 

For Dataset – 1, we segregate results based into the following categories based on 

size of the tables in the dataset: 

1. Large sized tables (> 100 MB): These consist of tables such as catalog_sales, 

inventory, store_sales and web_sales. 

2. Medium sized tables (1 MB – 100 MB): There consist of tables such as 

catalog_page, catalog_returns, customer, customer_address, 

customer_demographics, date_dim, household_demographics, item, store_returns, 

time_dim and web_returns. 

3. Small sized tables (< 1 MB): These consist of tables such as call_center, 

income_band, promotion, reason, ship_mode, store, warehouse, web_page and 

web_site. 
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6.3.2 Results for Large Tables 

 

 

Figure 6.1: Comparative Analysis of Space Reduction Achieved on Large Tables in 1 GB 

TPC-DS Benchmark Dataset Using SA128 Compression for different stages of 

compression, i.e., stage-1 compression, stage-2 compression and combined stage-1 + stage-

2 compression. The above graph shows that we achieved the highest compression ratio for 

all the 4 large tables by combining stage-1 and stage-2 compression in SA128 compression 

compared to compressing our tables using stage-1 compression and stage-2 compression 

separately. The space reduction achieved are 77.34% for catalog_sales, 90.25% for 

inventory, 71.19% for store_sales, 73.82% for web_sales. Refer to appendix A, B and C 

for more details regarding the data collected. 
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Figure 6.2: Percentage Comparison of Space Reduction Achieved on Each Large Table in 

1 GB TPC-DS Benchmark Dataset Using SA128 Compression for different stages of 

compression, i.e., stage-1 compression, stage-2 compression and combined stage-1 + stage-

2 compression. Refer to appendix A, B and C for more details regarding the data collected. 
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Figure 6.3: Combined Space Reduction Achieved for All Large Tables in 1 GB TPC-DS 

Benchmark Dataset Using SA128 Compression for different stages of compression, i.e., 

stage-1 compression, stage-2 compression and combined stage-1 + stage-2 compression. 

The above graph shows that for large tables, the SA128 algorithm achieved space savings 

up to 77% using both stage-1 and stage-2 compression, 75% using only stage-1 

compression and 55.76% using only stage-2 compression. Refer to Appendix A, B and C 

for more details regarding the data collected. 
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6.3.3 Results for Medium Tables 

 

Figure 6.4: Comparative Analysis of Space Reduction Achieved on Medium Sized Tables 

in 1 GB TPC-DS Benchmark Dataset Using SA128 Compression for different stages of 

compression, i.e., stage-1 compression, stage-2 compression and combined stage-1 + stage-

2 compression. The above graph shows that we achieved the highest compression ratio for 

all the 11 tables by combining stage-1 and stage-2 compression in SA128 compression 

compared to compressing our tables using stage-1 compression and stage-2 compression 

separately. The space reduction achieved are 42.45% for catalog_page, 64.43% for 

catlog_returns, 57.66% for customer, 82.44% for customer_address, 97.14% for 

customer_demographics, 93.59% for date_dim, 97.26% for household_demographics, 

52.76% for item, 63.68% for store_returns, 91.7% for time_dim and 61.99% for 

web_returns. Refer to appendix A, B and C for more details regarding the data collected. 
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Figure 6.5: Percentage Comparison of Space Reduction Achieved on Each Medium Sized 

Table in 1 GB TPC-DS Benchmark Dataset Using SA128 Compression for different stages 

of compression, i.e., stage-1 compression, stage-2 compression and combined stage-1 + 

stage-2 compression. Refer to appendix A, B and C for more details regarding the data 

collected. 
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Figure 6.6: Combined Space Reduction Achieved for All Medium Sized Tables in 1 GB 

TPC-DS Benchmark Dataset Using SA128 Compression for different stages of 

compression, i.e., stage-1 compression, stage-2 compression and combined stage-1 + stage-

2 compression. The above graph shows that for large tables, the SA128 algorithm achieved 

space savings up to 80.76% using both stage-1 and stage-2 compression, 79.8% using only 

stage-1 compression and 48.07% using only stage-2 compression. Refer to Appendix A, B 

and C for more details regarding the data collected. 
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6.3.4 Results for Small Tables 

 

Figure 6.7: Comparative Analysis of Space Reduction Achieved on Small Sized Tables in 

1 GB TPC-DS Benchmark Dataset Using SA128 Compression for different stages of 

compression, i.e., stage-1 compression, stage-2 compression and combined stage-1 + stage-

2 compression. The above graph shows that for 5 tables we achieved the best compression 

ratio by combining stage-1 and stage-2 compression in SA128 whereas for 4 tables, we 

achieved the best compression ratio using only stage-2 compression in SA128. This is 

because for small tables, there is an extra overhead in storing the block header information 

during stage-1 compression which results in increasing the overall space than reducing it. 

Refer to appendix A, B and C for more details regarding the data collected. 
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Figure 6.8: Percentage Comparison of Space Reduction Achieved on Each Small Sized 

Table in 1 GB TPC-DS Benchmark Dataset Using SA128 Compression for different stages 

of compression, i.e., stage-1 compression, stage-2 compression and combined stage-1 + 

stage-2 compression. Refer to appendix A, B and C for more details regarding the data 

collected. 
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Figure 6.9: Combined Space Reduction Achieved for All Small Sized Tables in 1 GB TPC-

DS Benchmark Dataset Using SA128 Compression for different stages of compression, 

i.e., stage-1 compression, stage-2 compression and combined stage-1 + stage-2 

compression. The above graph shows that for large tables, the SA128 algorithm achieved 

space savings up to 53.84% using both stage-1 and stage-2 compression, 48.71% using 

only stage-1 compression and 41.0% using only stage-2 compression. Refer to Appendix 

A, B and C for more details regarding the data collected. 
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6.3.5 Datatype Specific Results 

 

Figure 6.10: Space Reduction Achieved for Each of the Three Datatype Categories 

Available in 1 GB TPC-DS Benchmark Dataset. We achieve a space reduction of 96.21% 

for Category-5 datatypes, 81.7% for Category-2 datatypes and 80.9% for Category-1 

datatypes. Therefore, compression for Category-5 > Category 2 > Category 1. Refer to 

Appendix D for more details regarding the data collected. 
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Figure 6.11: Percentage Wise Breakdown of the Space Reduction Achieved for Each of the 

Three Datatype Categories Available in 1 GB TPC-DS Benchmark Dataset. We can see 

that compression efficiency is highest for char and varchar types and almost similar for 

integer, smallint, bigint, date, timestamp, timestamptz, time, timez and numeric types. 

Refer to Appendix D for more details regarding the data collected. 

  

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Category 1 (Integer,
SmallInt, BigInt,
Identifier, Date,

Timestamp,
Timestamptz, Time,

Timez)

Category 2
(Decimal/Numeric)

Category 5 (Char,
Varchar)

Pe
rc

en
ta

ge

Datatype Categories

Percentage size comparison of Stage-1 
compression grouped by datatype

Size before compression Size after compression



95 
 

6.3.6 Compression Results vs Other Compression Algorithms for 1 GB TPC-DS 

Benchmark Dataset (Dataset – 1) 

 

Figure 6.12: Comparative Analysis of Space Savings Achieved Using SA128 Against 

Other State of the Art Compression Algorithms on 1 GB TPC-DS Benchmark Dataset. For 

our 1 GB TPC-DS benchmark dataset, our SA128 compression algorithm was able to 

achieve 60.41% better compression than Zstandard (ZSTD), 75.64% better compression 

than Snappy, 57.84% better compression than Zlib, 26.36% better compression than LZ4 

and 50.52% better compression than Brotli. Only Lzma compressed better by a margin of 

0.06% which is comparable to the results achieved using SA128 compression. Refer to 

Appendix E for more details regarding the data collected. 
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6.3.7 Performance Results vs Other Compression Algorithms for 1 GB TPC-DS 

Benchmark Dataset (Dataset – 1) 

 

Figure 6.13: Comparative Analysis of Compression Times Using SA128 Against Other 

State of the Art Compression Algorithms on 1 GB TPC-DS Benchmark Dataset. The data 

shows us that SA128 has a slow compression time compared to all other algorithms. The 

best performing algorithm Snappy 1.1.3 has a compression speed of almost 99.92% faster 

than SA128 and the second worst performing algorithms Brotli 1.0.9 level 11 has a 

compression speed of almost 75.84% better than SA128. Because of this reason, although 

using SA128 gives good compression, it’s poor performance makes it unsuitable for real-

time databases where query execution times are important. Therefore, the primary use cases 

for SA128 are in the area of data archival and non-real time databases where storage 

optimization is of higher priority than query execution times. Refer to Appendix J for more 

details regarding the data collected. 
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6.3.8 Results on 1 GB Generated Dataset (Dataset – 2) 

In this section, we discuss the compression results achieved on our 1 GB Generated 

Dataset which contains 4 different tables. 

6.3.9 Table-wise Compression Results 

 

Figure 6.14: Comparative Analysis of Space Reduction Achieved on All 4 Tables from Our 

1 GB Generated Dataset using stage-1 SA128 compression, and combined stage-1 + stage-

2 SA128 compression. The above graph shows that we achieved the highest compression 

ratio for all the 4 large tables by combining stage-1 and stage-2 compression in SA128 

compression compared to compressing our tables using only stage-1 compression. The 

space reduction achieved are 94.08% for tables with non-decreasing values, 93.83% for 

tables with non-increasing values, 67.86% for tables with random values of a small range, 

66.97% for tables with random values over a large range. For both the tables with random 

values, we have a comparable performance between stage-1 SA128 compression and 

combined stage-1 + stage-2 SA128 compression. For the non-increasing and non-

decreasing tables, compression achieved using stage-1 + stage-2 SA128 compression is 

clearly much better. Refer to appendix F and G for more details regarding the data 

collected. 
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Figure 6.15: Percentage Wise Breakdown of the Space Reduction Achieved for Each of the 

4 Tables Available in 1 GB Generated Dataset. Refer to appendix F and G for more details 

regarding the data collected. 
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Figure 6.16: Combined Space Reduction Achieved for All 4 Tables from Our 1 GB 

Generated Dataset Using SA128 Compression for stage-1 SA128 compression and 

combined stage-1 + stage-2 SA128 compression. The above graph shows that for all the 4 

tables, the SA128 algorithm achieved space savings up to 82.19% using both stage-1 and 

stage-2 compression and 80.82% using only stage-1 compression. Refer to appendix F and 

G for more details regarding the data collected. 
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6.3.10 Datatype Specific Compression Results 

 

Figure 6.17: Space Reduction Achieved for Boolean Columns in 1 GB Generated Dataset. 

We achieve a space reduction of 66.3% for Category-4 (boolean datatypes). The 

compression is almost similar for the non-decreasing and non-increasing columns. The 

same is true for both the columns with random values. The data also suggests that for 

random values, compression is less compared to non-decreasing and non-increasing 

columns. Refer to Appendix H for more details regarding the data collected. 
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Figure 6.18: Space Reduction Achieved for Real Columns in 1 GB Generated Dataset. We 

achieve a space reduction of 46.58% for Category-3 Real datatypes. The compression is 

almost similar for the non-decreasing and non-increasing columns. However, the same is 

not true for both the columns with random values. The column with random values over a 

large range compresses lesser than the column with random values over a small range. The 

data also suggests that for random values, compression is less compared to non-decreasing 

and non-increasing columns. Refer to Appendix H for more details regarding the data 

collected. 
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Figure 6.19: Space Reduction Achieved for Double Precision Columns in 1 GB Generated 

Dataset. We achieve a space reduction of 42.55% for Category-3 Double Precision 

datatypes. The compression is almost similar for the non-decreasing and non-increasing 

columns. However, the same is not true for both the columns with random values. The 

column with random values over a large range compresses lesser than the column with 

random values over a small range. The data also suggests that for random values, 

compression is less compared to non-decreasing and non-increasing columns. Refer to 

Appendix H for more details regarding the data collected. 
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6.3.11 Compression Results vs other Compression Algorithms for 1 GB Generated 

Dataset (Dataset – 2) 

 

Figure 6.20: Comparative Analysis of Space Saving Achieved Using SA128 Against Other 

State of the Art Compression Algorithms on 1 GB Generated Dataset. For our 1 GB 

generated dataset, our SA128 compression algorithm was able to achieve 79.38% better 

compression than Zstandard (ZSTD), 62.63% better compression than Snappy, 62.74% 

better compression than Zlib, 32.59% better compression than LZ4 and 79.25% better 

compression than Brotli. Only Lzma compressed better by a margin of 4.25%. Refer to 

Appendix I for more details regarding the data collected. 
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6.3.12 Performance Results vs other Compression Algorithms for 1 GB Generated 

Dataset (Dataset – 2) 

 

Figure 6.21: Comparative Analysis of Compression Times Achieved Using SA128 Against 

Other State of the Art Compression Algorithms on 1 GB Generated Dataset. The data 

shows us that SA128 has a slow compression time compared to all other algorithms. The 

best performing algorithm Snappy 1.1.3 has a compression speed of almost 99.88% faster 

than SA128 and the second worst performing algorithms Brotli 1.0.9 level 11 has a 

compression speed of almost 46.17% better than SA128. These results are slightly better 

compared to the performance results on 1 GB TPC-DS Dataset. However, although using 

SA128 gives good compression, it’s poor performance makes it unsuitable for real-time 

databases where query execution times are important. Therefore, the primary use cases for 

SA128 are in the area of data archival and non-real time databases where storage 

optimization is of higher priority than query execution times. Refer to Appendix K for more 

details regarding the data collected. 
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Chapter 7 
 

 
LIMITATIONS AND ASSUMPTIONS 

 
A large fraction of popular databases such as AWS Redshift, HadoopDB, etc are 

derived from PostgreSQL. Therefore, in our implementation, we have assumed 

PostgreSQL as our foundation database so that it can easily be extended to databases build 

on top of PostgreSQL. 

Although the SA128 compression and decompression algorithm is intended for 

compression in columnar databases, in our implementation, we used file storage to store 

the tables belonging to our dataset as “.dat” files instead of storing them in real columnar 

databases. Therefore, during result collection, we assumed the storage space a column 

would take when it is stored in a PostgreSQL table by taking into consideration the datatype 

specific storage format and requirements, instead of the storage space it takes in its file 

format. The goal of this thesis was to provide a proof of concept (POC) for a smart 

compression algorithm which when extended for databases, can lead to identical results. 

The SA128 algorithm currently supports 14 popular datatypes such as smallint/int2, 

integer/int4, bigint/int8, date, timestamp (without timezone), timestamp with 

timezone/timestamptz, time (without timezone), time with timezone/timez, 

numeric/decimal, real/float4, double precision/float8, boolean, character/char and 

character varying/varchar.  For datatypes not belonging to this list, the column is 

compressed only using stage-2 compression (rANS entropy encoding). 

The goal of this POC work as part of the thesis was to focus on optimizing the 

compression ratio for our algorithm and its efficiency compared to other state of the art 

compression algorithms such as ZSTD, Snappy, LZMA, Zlib, LZ4 and Brotli. The 

decompression time was not a priority for the current 1.0 version, but it can be significantly 

improved with parallel processing, implementing a C/C++ port our 

compressor/decompressor and further optimizations in future releases. Therefore, the 
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current 1.0 release can be used for compressing non-real time databases where fast query 

responses and decompression times are not important. For example, in applications such 

as data archiving where storage optimization is more important than query performance. 

SA128 compression is highly effective for compressing large and medium sized 

tables. For very small tables, sometimes SA128 compression may result in increasing the 

size of the original data. This is due to the overhead due to the block header during stage-

1 compression because the metadata information stored in the block header occupies more 

space than the space reduction achieved on the data block.
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Chapter 8 
 

 
DISCUSSIONS AND CONCLUSION 

 
In this thesis work, we have shown that if data compression techniques are 

dynamically adapted based on the characteristics of the data set and the data type of the 

data set, we can get a large increase in compression ratio. When this technique is combined 

with an entropy encoding stage such as rANS, we reach very close to the entropy limit for 

the data being compressed. 

For TPC-DS benchmark datasets, our SA128 algorithm achieves space savings up to 

77% for large tables, 81% for medium tables and 54% for small tables compared the size 

occupied by uncompressed tables. Also, for generated datasets, our algorithm achieved up 

to 82% savings in space. For benchmark TPC-DS datasets, our SA128 was able to achieve 

60.41% better compression than Zstandard (ZSTD), 75.64% better compression than 

Snappy, 57.84% better compression than Zlib, 26.36% better compression than LZ4 and 

50.52% better compression than Brotli. Only Lzma compressed better by a margin of 

0.06% which is comparable to the results achieved using SA128 compression. These results 

demonstrate the effectiveness of our compression strategy which was the core part of this 

thesis study. The results from the above data conclude that the approach followed by 

SA128 successfully answers the research questions specified in section 3.2. 

For Category-1 compression, the sequence of steps selected is due to a combination 

of all the below reasons.  

1. The Delta and Delta of Delta encoding steps are executed on multiple block copies 

before Run-length encoding because Run-length encoding is equally effective when 

applied before or after Delta and Delta of Delta encoding. This is because Delta 

encoding does not change the number of runs in values.  
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2. Zig-zag encoding is applied after the Delta and Delta of Delta encoding step because 

additional negative numbers can arise in the block after Delta or Delta of Delta 

encoding step, which needs to be represented efficiently, especially if the magnitude 

of the negative values are small. 

3. The Frame of Reference and Bit Packing steps are applied towards the end to bring 

down the range of all the values and break down larger values into smaller values 

respectively. This is done so that few bits are required to represent each block value. 

This helps us get a better compression towards the end if Delta Encoding, Delta of 

Delta Encoding and Run-length encoding did not give us good compression in the 

previous steps. 

   

The current version 1.0 of SA128 does not prioritize performance and only optimizes 

storage. Performance of SA128 is 75.84% and 46.17% worse compared to Snappy for the 

TPC-DS Benchmark Dataset and Generated Dataset respectively (where Snappy has the 

second worst performance). Therefore, it is not ideal to use SA128 for real-time database 

applications and are favourable in applications such as data archival, etc where storage 

optimization is prioritized. The performance results in the later sections 6.3.7 and 6.3.12 

are highly dependent on the system used to testing the results. The results can be 

significantly improved if tested on a more powerful server machine with superior 

configurations compared to the above configuration. Future versions of SA128 would work 

on improving performance of the algorithm which would make it useful in Big Data 

applications, data warehousing, business intelligence, etc.
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Chapter 9 
 

 
FUTURE WORK 

 

 
Some of the future enhancements and research areas to extend our SA128 are given below: 

1. Extending support for other database management systems other than PostgreSQL 

such as MySQL, NoSQL, etc. 

2. Supporting more complex data types in PostgreSQL and databases supported in 

future. 

3. Building SA128 as a pluggable library for PostgreSQL database. 

4. Improving compression and decompression time for both stages of compression and 

improving query performance so that real-time database applications can be 

supported using SA128 compression. 

5. Implementing a C/C++ port of our Python prototype to improve performance. 

6. Implementing better alternatives of LZ compression techniques in category-5 

compression from stage 1 such as LZMA, LZ4, etc.
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APPENDIX A 
 

DETAILED COMPRESSION RESULTS FOR SA128 COMPRESSION (ONLY USING 
STAGE-1) ON 1 GB TPC-DS BENCHMARK DATASET 
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Table name Original Size 

(bytes) 

Size after 

compression 

(bytes) 

Compressio

n Ratio 

Space savings 

call_center 1897 1736 1.0927 8.49% 

catalog_page 1643510 1047870 1.5684 36.24% 

catalog_returns 21522438 8132433 2.6465 62.21% 

catalog_sales 297351932 82877425 3.5879 72.13% 

customer 13309372 5815536 2.2886 56.3% 

customer_address 5552165 1039001 5.3438 81.29% 

customer_demographics 82580896 3933954 20.9918 95.24% 

date_dim 10390487 846637 12.2727 91.85% 

household_demographics 158853 7493 21.2002 95.28% 

income_band 348 70 4.9714 70.89% 

inventory 248165139 27670350 8.9686 88.85% 

item.dat 5069899 2559284 1.981 49.52% 

promotion 37533 18206 2.0616 51.49% 

reason 1374 822 1.6715 40.17% 

ship_mode 1133 796 1.4234 29.74% 

store 3167 2052 1.5434 35.21% 

store_returns 32997519 12680449 2.6022 61.57% 

store_sales 391325813 120195822 3.2557 69.28% 

time_dim 5194180 580174 8.9528 88.83% 

warehouse 590 604 0.9768 -2.37% 

web_page 5836 1303 4.4789 77.67% 

web_returns 9877999 3938056 2.5083 60.13% 

web_sales 147597058 40260141 3.6661 72.72% 

web_site 8801 4713 1.8674 46.45% 
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APPENDIX B 
 

DETAILED COMPRESSION RESULTS FOR SA128 COMPRESSION (ONLY USING 
STAGE 2) ON 1 GB TPC-DS BENCHMARK DATASET 
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Table name Original 

Size (bytes) 

Size after 

compression 

(bytes) 

Compression 

Ratio 

Space 

savings 

call_center 1897 1212 1.5652 36.11% 

catalog_page 1643510 1058704 1.5524 35.58% 

catalog_returns 21522438 9424636 2.2836 56.21% 

catalog_sales 297351932 131715804 2.2575 55.7% 

customer 13309372 8445928 1.5758 36.54% 

customer_address 5552165 3488464 1.5916 37.17% 

customer_demographics 82580896 47133576 1.7521 42.92% 

date_dim 10390487 5356692 1.9397 48.45% 

household_demographics 158853 65888 2.411 58.52% 

income_band 348 108 3.2222 68.97% 

inventory 248165139 100258592 2.4753 59.6% 

item.dat 5069899 3264840 1.5529 35.6% 

promotion 37533 22352 1.6792 40.45% 

reason 1374 668 2.0569 51.38% 

ship_mode 1133 632 1.7927 44.22% 

store 3167 2024 1.5647 36.09% 

store_returns 32997519 14486984 2.2777 56.1% 

store_sales 391325813 173315548 2.2579 55.71% 

time_dim 5194180 2863212 1.8141 44.88% 

warehouse 590 360 1.6389 38.98% 

web_page 5836 3268 1.7858 44% 

web_returns 9877999 4339784 2.2761 56.07% 

web_sales 147597058 65353716 2.2584 55.72% 

web_site 8801 5656 1.556 35.73% 
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APPENDIX C 
 

DETAILED COMPRESSION RESULTS FOR SA128 COMPRESSION (STAGE 1 
AND STAGE 2 COMBINED) ON 1 GB TPC-DS BENCHMARK DATASET 
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Table name Original 

Size (bytes) 

Size after 

compression 

(bytes) 

Compression 

Ratio 

Space 

savings 

call_center 1897 1340 1.4157 29.36% 

catalog_page 1643510 945848 1.7376 42.45% 

catalog_returns 21522438 7656440 2.811 64.43% 

catalog_sales 297351932 79284800 3.7504 73.34% 

customer 13309372 5635404 2.3617 57.66% 

customer_address 5552165 974716 5.6962 82.44% 

customer_demographics 82580896 2358860 35.0088 97.14% 

date_dim 10390487 665548 15.6119 93.59% 

household_demographics 158853 4360 36.4342 97.26% 

income_band 348 44 7.9091 87.36% 

inventory 248165139 24194668 10.257 90.25% 

item.dat 5069899 2394908 2.1169 52.76% 

promotion 37533 16944 2.2151 54.86% 

reason 1374 728 1.8874 47.02% 

ship_mode 1133 700 1.6186 38.22% 

store 3167 1708 1.8542 46.07% 

store_returns 32997519 11983596 2.7536 63.68% 

store_sales 391325813 112758020 3.4705 71.19% 

time_dim 5194180 431212 12.0455 91.7% 

warehouse 590 444 1.3288 24.75% 

web_page 5836 1104 5.2862 81.08% 

web_returns 9877999 3754996 2.6306 61.99% 

web_sales 147597058 38647948 3.819 73.82% 

web_site 8801 4288 2.0525 51.28% 
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APPENDIX D 
 

DETAILED COMPRESSION RESULTS FOR SA128 COMPRESSION (STAGE-1 
AND STAGE-2) ON 1 GB TPC-DS BENCHMARK DATASET GROUPED BY 

DATATYPE CATEGORIES 
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Datatype Category Size before 

compression 
(in bits) 

Size after 
compression 
(in bits) 

Category 1 (Integer, 
SmallInt, BigInt, Identifier, 
Date, Timestamp, 
Timestamptz, Time, Timez) 

4451721056 850169913 

Category 2 
(Decimal/Numeric) 

8436976136 1543558620 

Category 5 (Char, Varchar) 798131824 30237363 
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APPENDIX E 
 

DETAILED COMPRESSION RESULTS FOR SA128 COMPRESSION (STAGE-1 
AND STAGE-2) VS OTHER ALGORITHMS ON 1 GB TPC-DS BENCHMARK 

DATASET 
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Table 

name 

SA128 

(bytes

) 

Zstd 

1.4.8.1 

level 22 

(bytes) 

Snappy 

1.1.3 

(bytes) 

Lzma 

9.38 level 

6 (bytes) 

Zlib 

1.2.11 

level 9 

(bytes) 

LZ4 

3.1.3 

(bytes) 

Brotli 

1.0.9 

level 11 

(bytes) 

call_center 1,340 1,519 1,867 766 1,480 1,040 1,222 

catalog_pa

ge 

9,45,8

48 

15,19,93

1 

15,92,49

1 

3,30,041 15,15,41

1 

7,15,441 11,88,07

6 

catalog_ret

urns 

76,56,

440 

1,42,48,

764 

2,17,95,

826 

81,33,186 1,40,45,1

97 

1,65,85,1

51 

1,33,35,4

17 

catalog_sal

es 

7,92,8

4,800 

17,03,85

,185 

26,46,33

,075 

8,00,06,0

37 

16,74,11,

674 

16,18,00,

478 

16,72,81,

432 

customer 56,35,

404 

1,17,25,

513 

1,22,84,

111 

39,63,821 1,16,62,4

41 

85,96,44

8 

1,12,94,4

18 

customer_a

ddress 

9,74,7

16 

54,80,52

8 

54,34,13

1 

8,73,294 54,42,89

5 

20,89,34

8 

48,69,05

1 

customer_d

emographic

s 

23,58,

860 

9,97,32,

219 

8,60,00,

318 

11,76,988 9,53,47,7

97 

1,41,67,5

63 

8,86,20,2

28 

date_dim 6,65,5

48 

77,93,53

9 

87,90,44

2 

6,49,023 75,28,78

2 

27,42,31

2 

70,53,09

5 

household_

demographi

cs 

4,360 2,23,653 1,73,252 6,660 2,09,203 46,277 1,87,604 

income_ba

nd 

44 528 388 120 461 227 428 
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inventory 2,41,9

4,668 

35,38,70

,139 

27,16,55

,139 

3,05,81,9

08 

33,98,38,

509 

8,64,52,5

93 

29,51,40,

459 

item 23,94,

908 

40,80,16

0 

50,00,48

1 

10,32,298 39,86,62

5 

24,02,93

3 

33,85,63

7 

promotion 16,944 32,172 32,511 10,029 31,325 18,001 27,912 

reason 728 1,501 1,181 465 1,282 750 1,417 

ship_mode 700 1,213 1,016 582 1,072 813 1,166 

store 1,708 2,473 3,004 1,079 2,458 1,541 2,088 

store_retur

ns 

1,19,8

3,596 

2,40,72,

687 

3,35,98,

253 

1,27,09,5

55 

2,34,89,6

30 

2,62,66,1

28 

2,21,94,6

22 

store_sales

  

11,27,

58,020 

26,59,21

,359 

38,55,37

,856 

10,71,57,

408 

25,84,54,

411 

21,60,72,

982 

24,63,45,

827 

time_dim 4,31,2

12 

54,74,08

9 

46,93,60

5 

2,10,685 48,51,69

5 

13,23,46

1 

53,04,89

5 

warehouse 444 555 564 276 556 336 473 

web_page 1,104 5,504 5,377 1,121 5,298 2,174 5,207 

web_return

s  

37,54,

996 

62,21,94

1 

86,43,91

2 

34,57,199 61,10,13

2 

69,70,77

8 

58,83,58

8 

web_sales 3,86,4

7,948 

8,98,55,

881 

14,46,91

,793 

4,05,89,6

84 

8,80,34,7

56 

8,10,51,9

19 

6,27,21,4

93 

web_site 4,288 7,145 8,650 2,614 6,988 4,024 5,705 
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APPENDIX F 
 

DETAILED COMPRESSION RESULTS FOR SA128 COMPRESSION (ONLY USING 
STAGE-1) ON 1 GB GENERATED DATASET 
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Table type Original 

Size 

(bytes) 

Size after 

compression 

(bytes) 

Compression 

Ratio 

Space 

savings 

Non-decreasing values 284777810 23244551 12.2514 91.84% 

Non-increasing values 284777810 24084695 11.824 91.54% 

Random values within a 

small range 

217000000 69730642 3.112 67.87% 

Random values within a 

large range 

243459776 80601985 3.0205 66.89% 
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APPENDIX G 
 

DETAILED COMPRESSION RESULTS FOR SA128 COMPRESSION (STAGE-1 
AND STAGE-2) ON 1 GB GENERATED DATASET 
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Table type Original 

Size 

(bytes) 

Size after 

compression 

(bytes) 

Compression 

Ratio 

Space 

savings 

Non-decreasing values  284777810 16854876 16.8959 94.08% 

Non-increasing values 284777810 17559804 16.2176 93.83% 

Random values within a small 

range 

217000000 69747320 

3.1112 67.86% 

Random values within a large 

range 

243459776 80423180 

3.0272 66.97% 
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APPENDIX H 
 

DETAILED COMPRESSION RESULTS FOR SA128 COMPRESSION (STAGE-1 
AND STAGE-2) ON GENERATED DATASET GROUPED BY DATATYPE 

CATEGORIES 
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Table 

type 

Size of 

uncompr

essed  

'Boolean' 

column 

(Category 

4) 

Size of  

compress

ed 

'Boolean' 

column 

(Category 

4) 

Size of 

uncompres

sed 'Real' 

column 

(Category 

3) 

Size of  

compresse

d 'Real' 

column 

(Category 

3) 

Size of  

uncompres

sed 

'Double 

Precision' 

column 

(Category 

3) 

Size of  

compresse

d 'Double 

Precision' 

column 

(Category 

3) 

Non-

decreasing 

values 

56000000 5960994 222249984 58246558 444499968 117906375 

Non-

increasing 

values 

56000000 5960994 222249984 58544488 444499968 124228609 

Random 

values 

within a 

small range 

56000000 31777234 222249984 157719231 444499968 367882976 

Random 

values 

within a 

large range 

56000000 31782972 222249984 200336756 444499968 411304616 
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APPENDIX I 
 

DETAILED COMPRESSION RESULTS FOR SA128 COMPRESSION (STAGE-1 
AND STAGE-2) VS OTHER ALGORITHMS ON 1 GB GENERATED DATASET 
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Dataset 

type 

SA128 

(bytes) 

Zstd 

1.4.8.1 

level 22 

(bytes) 

Snappy 

1.1.3 

(bytes) 

Lzma 

9.38 

level 6 

(bytes) 

Zlib 

1.2.11 

level 9 

(bytes) 

LZ4 

3.1.3 

(bytes) 

Brotli 

1.0.9 

level 11 

(bytes) 

Non-

decreasin

g values 

1,68,54,8

76 

22,91,6

6,496 

21,57,0

8,567 

48,43,24

4 

18,70,91,

654 

10,24,86,

671 

26,47,9

4,923 

Non-

increasin

g values 

1,75,59,8

04 

22,91,6

6,496 

21,57,0

8,567 

45,29,44

0 

18,70,91,

654 

10,38,96,

451 

26,47,9

4,923 

Random 

values 

within a 

small 

range 

6,97,47,3

20 

26,84,5

8,645 

19,23,4

7,382 

6,01,14,9

30 

22,02,97,

953 

14,72,29,

902 

22,38,9

3,416 

Random 

values 

within a 

large 

range 

8,04,23,1

80 

27,54,4

5,674 

20,60,2

1,863 

7,12,30,9

11 

23,63,55,

739 

16,67,29,

656 

24,74,0

0,357 
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APPENDIX J 
 

DETAILED PERFORMANCE RESULTS FOR SA128 COMPRESSION (STAGE-1 
AND STAGE-2) VS OTHER ALGORITHMS ON 1 GB TPC-DS BENCHMARK 

DATASET 
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Table name SA128 
(second
s) 

Zstd 
1.4.8.1 
level 22 
(second
s) 

Snappy 
1.1.3 
(second
s) 

Lzma 
9.38 
level 6 
(second
s) 

Zlib 
1.2.11 
level 9 
(second
s) 

LZ4 
3.1.3 
(second
s) 

Brotli 
1.0.9 
level 11 
(second
s) 

call_center 
0.43668
11 

0.13033
19 

1.5773
426 

0.32050
73 

0.29337
08 

0.3563
261 

0.34515
84 

catalog_page 
231.486
8507 

1.67336
66 

2.2356
708 

1.56898
73 

1.42479
72 

0.2166
766 

33.4822
501 

catalog_returns 
5148.51
2151 

13.8488
49 

1.6678
461 

30.5955
206 

10.0134
453 

1.2510
897 

234.067
2823 

catalog_sales 
38377.7
0037 

188.816
018 

18.629
3666 

351.602
2775 

97.5715
193 

19.659
9702 

3471.43
8509 

customer 
5069.59
5101 

14.5198
804 

2.3108
879 

17.1598
471 

10.9767
005 

1.1579
375 

242.592
673 

customer_addre
ss 

473.228
0742 

3.56971
62 

0.5634
66 

5.96122
66 

4.72943
66 

0.8303
148 

118.860
0405 

customer_demo
graphics 

3454.88
7581 

62.5560
466 

9.4316
28 

64.7205
317 

98.2416
144 

8.7474
576 

3333.35
5909 

date_dim 
466.300
7508 

8.96622
53 

0.6365
887 

11.4059
86 

5.26243
93 

0.7468
312 

135.715
6169 

household_dem
ographics 

3.68301
13 

0.48790
69 

0.3721
83 

0.18979
28 

0.66028
27 

0.1743
653 

12.2070
271 

income_band 
0.53237
62 

0.13995
42 

0.0979
287 

0.07232
73 

0.16095
16 

0.0908
3 

0.13568
43 

inventory 
17743.6
4505 

285.839
5503 

48.380
6576 

255.546
3801 

393.501
1736 

40.501
1046 

18381.5
3144 

item 
2685.32
1681 

3.67433
06 

1.9909
686 

5.93890
27 

3.35989
95 

1.6369
267 

59.6010
026 

promotion 
16.8266
457 

0.19542
42 

0.2430
946 

0.25201
35 

0.18325
51 

0.1423
423 

0.84953
15 

reason 
1.30378
19 

0.15503
79 

0.1705
809 

0.29833
4 

0.12459
54 

0.1088
859 

0.17847
09 

ship_mode 
1.33142
2 

0.12310
88 

0.1685
167 

0.19904
35 

0.39612
56 

0.1172
685 

0.12933
18 

store 
1.79637
89 

0.14887
82 

0.1200
909 

0.23254
14 

0.11130
67 

0.1258
229 

0.13498
27 

store_returns 
8559.91
1133 

19.2585
725 

2.7019
705 

49.5209
619 

16.8946
312 

2.3405
282 

364.076
9071 

store_sales 
42843.1
3556 

217.017
6965 

22.080
6776 

509.992
9592 

168.681
1037 

25.221
1857 

7659.88
0805 

time_dim 
470.541
6569 

5.90746
65 

1.8814
21 

2.44662
95 

5.65421
49 

1.9246
727 

171.227
0268 

warehouse 
1.60222
69 

0.39009
25 

0.0928
006 

0.04454
81 

0.13326
28 

0.1059
779 

0.05918
14 
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web_page 
1.75442
2 

0.17455
98 

0.1571
61 

0.08433
22 

0.13846
38 

0.1543
036 

0.21074
13 

web_returns 
2805.77
4448 

6.79173
96 

0.8492
237 

8.92203
3 

5.58945
8 

0.6444
205 

120.157
7151 

web_sales 
19956.5
1049 

66.1117
904 

9.6403
397 

150.058
1109 

63.3075
715 

7.6407
091 

1534.55
7929 

web_site 
6.52370
09 

1.53513
33 

0.1453
549 

0.13366
34 

0.19341
67 

0.1589
683 

0.23962
75 

 
 

  



134 
 

APPENDIX K 
 

DETAILED PERFORMANCE RESULTS FOR SA128 COMPRESSION (STAGE-1 
AND STAGE-2) VS OTHER ALGORITHMS ON 1 GB GENERATED DATASET 
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Datase
t type 

SA128 
(seconds

) 

Zstd 
1.4.8.1 
level 22 
(seconds

) 

Snappy 
1.1.3 

(second
s) 

Lzma 

9.38 

level 6 

(seconds

) 

Zlib 
1.2.11 
level 9 

(seconds
) 

LZ4 
3.1.3 

(second
s) 

Brotli 
1.0.9 

level 11 
(seconds

) 

Non-
decreas

ing 
values 

14494.91
977 

280.6755
16 

34.2860
658 

271.1570
873 

370.5804
404 

27.6235
839 

14112.28
481 

Non-
increas

ing 
values 

14049.51
347 

267.0388
133 

31.6263
264 

253.5042
029 

280.5093
933 

29.2293
526 

13870.83
912 

Random 
values 

within a 
small 
range 

36903.05
286 

220.7413
967 

34.5630
973 

276.5787
353 

272.0547
708 

27.7811
676 

13473.63
411 

Rando
m 

values 
within 
a large 
range 

34138.85
045 

195.1213
051 

36.1044
758 

256.8656
053 

342.9404
333 

28.8372
896 

12153.94
776 

 
 


