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ABSTRACT

Optical trapping schemes that exploit radiation forces, such as optical tweezers,

are well understood and widely used to manipulate microparticles; however, these are

typically effective only on short (sub-millimeter) length scales. In the past decade, ma-

nipulating micron sized objects over large distances (∼0.5 meters) using photophoretic

forces has been experimentally established. Photophoresis, discovered by Ehrenhaft

in the early twentieth century, is the force a small particle feels when exposed to radia-

tion while immersed in a gas. The anisotropic heating caused by the radiation results

in a net momentum transfer on one side with the surrounding gas. To date, there is

no theoretical evaluation of the photophoretic force in the case of an arbitrary illu-

mination profile (i.e. not a plane wave) incident on a dielectric sphere, starting from

Maxwell’s equations. Such a treatment is needed for the case of recently published

photophoretic particle manipulation schemes that utilize complicated wavefronts such

as diverging Laguerre-Gaussian-Bessel beams.

Here the equations needed to determine the expansion coefficients for electromag-

netic fields when represented as a superposition of spherical harmonics are derived.

The algorithm of Driscoll and Healy for the efficient numerical integration of func-

tions on the 2-sphere is applied and validated with the plane wave, whose analytic

expansion is known. The expansion coefficients of the incident field are related to

the field inside the sphere, from which the distribution of heat deposition can be

evaluated. The incident beam is also related to the scattered field, from which the

scattering forces may be evaluated through the Maxwell stress tensor. In future work,

these results will be combined with heat diffusion/convection simulations within the

sphere and a surrounding gas to predict the total forces on the sphere, which will be

compared against experimental observations that so far remain unexplained.
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Chapter 1

INTRODUCTION

1.1 Background

The near atomic resolution of x-rays has enabled imaging nanometer and sub-

nanometer particles through crystallographic methods. Traditional crystallography

requires crystallized samples and returns only static structures. Worse still, the ioniz-

ing nature of x-rays irreparably damages chemical bonds – vaporizing small molecules,

like proteins. However, recent innovations have allowed for new experimental tech-

niques that mitigate these limitations.

Simulations by Neutze, Neutze et al. (2000), suggested the possibility of imaging

individual particles by exposing them to an intense x-ray beam (∼ 106 photons per

angstrom2) for a short amount of time (∼ 10−15 s). The idea is to gather structural

data before the radiation can alter the target’s structure. The advent of the x-

ray free electron laser (XFEL), capable of providing femtosecond pulses, made the

“diffraction-before-destruction” paradigm experimentally viable.

Chapman, Chapman et al. (2006), imaged a synthetic target made of silicon nitride

with “soft” (relatively long wavelength) x-rays at the Free-electron LASer (FLASH)

in Germany. The reconstructed image, while low resolution, showed no signs of

radiation damage; scanning electron microscope imaging before exposure confirmed

the reconstruction and post exposure revealed extensive radiation damage on the

target, confirming diffraction-before-destruction. Also at FLASH, Bogan, Bogan et al.

(2008), imaged a nanoscale particle in free flight – an important prerequisite towards

imaging uncrystallized biomolecules.
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Due to their sub-nanometer resolution hard x-rays (relatively short wavelength)

are preferable to soft x-rays for single particle imaging (SPI) experiments; however,

imaging objects significantly smaller than viruses, such as proteins, is limited by the

number of scattered photons – typically only a few hundred. Thus, image reconstruc-

tion requires millions of diffraction patterns. To overcome this, SPI experiments need

to increase the number of scattering interactions with dense target beams.

Current sample delivery research efforts concentrate on aerodynamic focusing by

aerodynamic lensing or convergent nozzle. Aerodynamic lens stacks consist of a series

of concentric axis-symmetric apertures that focus particles by balancing inertial and

drag forces. Aerodynamic lensing is capable of creating dense beams for varying par-

ticle sizes – tens to hundreds of micrometers, Kirian et al. (2015). Convergent nozzles

join two capillaries inside a nozzle, one carrying liquid sample and one filled with

focusing gas. Gas dynamic virtual nozzles (GDVN) are capable of generating dense

sample beams less than 10 microns in diameter, Nazari et al. (2020), but continuous

sample delivery is costly – especially for expensive or hard to produce targets. These

methods have successfully been implemented at many experiments; however, they

lack precise control over the spatial position of the sample.

1.2 The Photophoretic Force

In the early twentieth century Ehrenhaft, Ehrenhaft (1917), reported on the move-

ment of small particles when exposed on one side to sufficiently intense light, he called

this the photophoretic force. When anisotropically illuminated, a small particle will

heat non-uniformly and consequently have a greater heat (momentum) transfer on one

side, causing a net force (photophoretic) in one direction. Recently the photophoretic

force was used to successfully manipulate, Shvedov et al. (2010), micron sized parti-

cles over meter long distances. Following this development, Eckerskorn, Eckerskorn
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et al. (2015), proposed using the photophoretic force for SPI sample delivery.

The method proposed by Eckerskorn is to use a hollow optical laser beam to trap

and deliver particles precisely to the XFEL beam. To our knowledge, there is no model

that unifies photophoretic and shorter range gradient based trapping schemes, such

as optical tweezers. Here we provide a model from Maxwell’s equations that allows us

to calculate the spherical harmonic expansion of an arbitrary initial electromagnetic

field. In future work this can be combined with a heat diffusion model to describe

the photophoretic force.
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Chapter 2

MAXWELL’S EQUATIONS

James Clerk Maxwell produced a comprehensive and consistent mathematical re-

view of the experimental observations of electric and magnetic phenomena. This work

was refined by Oliver Heaviside and Heinrich Hertz to four coupled partial differen-

tial equations. Maxwell’s equations encode the physical laws of electrodynamics – the

theoretical framework unifying electricity, magnetism, and optics.

2.1 The Microscopic Equations

The sources of electromagnetic phenomena are charges, currents, and changes in

the electric (E ∈ R3) or magnetic (B ∈ R3) fields. Maxwell’s equations,

∇ · E =
ρ

ε0
(2.1a)

∇ ·B = 0 (2.1b)

∇× E +
∂B

∂t
= 0 (2.1c)

∇×B− µ0ε0
∂E

∂t
= µ0J, (2.1d)

relate the fields to their sources, Griffiths (2013). Electric and magnetic fields are

omnipresent, but the charge (ρ ∈ R) and current (J ∈ R3) density are localized.

In SI units, the permittivity and permeability of free space, ε0 = 8.85418782 ×

10−12A2s4kg−1m−3 and µ0 = 1.25663706 × 10−6mA−2s−2kg, are the proportionality

constants.

In this work we will only consider an uncharged sphere with no currents. Generally

the electric and magnetic fields may depend on position and time – we will assume
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time harmonic fields, that is

E(r, t) = Re
{
Ec(r)e

−iωt} and B(r, t) = Re
{
Bc(r)e

−iωt}
where ω is an angular frequency and the complex, position dependent, fields must

satisfy

∇ · Ec = 0 (2.2a)

∇ ·Bc = 0 (2.2b)

∇× Ec = iωBc (2.2c)

∇×Bc = −iµ0ε0ωEc. (2.2d)

Equations (2.2a) to (2.2d) are justified by assuming E(r, t) and B(r, t) may be ex-

panded as a Fourier series in time, i.e. general electric and magnetic fields are the

superposition of all frequencies

E(r, t) = Re

{∫
dω Ec(r)e

−iωt
}

(2.3)

B(r, t) = Re

{∫
dω Bc(r)e

−iωt
}
. (2.4)

For this to be allowable the fields must be integrable and have at most a finite number

of discontinuities – these are reasonable restrictions on physically realizable fields.

Combining eqs. (2.2c) and (2.2d) Ec or Bc can be eliminated (see Appendix A).

Eliminating Bc and setting k2 = µ0ε0ω
2 we arrive at the Helmholtz equation

∇2Ec + k2Ec = 0 (2.5)

constrained by ∇ · Ec = 0 with Bc = −(i/ω)∇× Ec; alternatively, we arrive at

∇2Bc + k2Bc = 0 (2.6)

constrained by ∇ · Bc = 0 with Ec = (i/ω)∇× Bc if Ec is eliminated. Either of

these two are equivalent to eqs. (2.2a) to (2.2d). In the rest of this work we will
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assume electromagnetic fields to be time-harmonic and drop the subscript c with the

understanding that physically realizable fields are always the real part of the complex

equations.

2.2 The Macroscopic Equations

The electric and magnetic fields are inconvenient to describe the fields created

by electric charges and currents inside bulk matter. The electric displacement D

and magnetic displacement H fields, sometimes called the auxiliary fields, are more

suitable and satisfy Maxwell’s equations.

In a dielectric the total charge density is, Griffiths (2013),

ρ = ρf + ρb = ρf −∇ ·P. (2.7)

Plugging eq. (2.7) into eq. (2.1a) we can see that

∇ · (ε0E + P) = ρf (2.8)

where P ∈ R3 is the polarization of the material and the electric displacement field

is defined as

D = ε0E + P. (2.9)

Similarly, the total current density in a dielectric is

J = Jf + Jb = Jf +∇×M (2.10)

where M ∈ R3 is the magnetization of the material, Griffiths (2013). Plugging

eq. (2.10) into eq. (2.1d) we arrive at

∇×
(

1

µ0

B−M

)
= Jf , (2.11)

with the magnetic displacement field defined as

H =
1

µ0

B−M. (2.12)
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The polarization and magnetization may have any complicated form, but they

must satisfy the material Maxwell’s equations, Jackson (1999). In a domain without

free charge or current sources and the time dependence given by e−iωt, D and H

satisfy

∇ ·D = 0

∇× E = iωB

and
∇ ·B = 0

∇×H = −iωD
.

If P (M) relates linearly to E (B) then the material is called linear. Assuming a linear

material that is moreover isotropic and homogeneous, the constitutive relations are

P = ε0χeE and M = µ0χmH where the electric, χe ∈ R, and magnetic, χm ∈

R, susceptibilities are proportionality constants that are measured experimentally

and are independent of the field position and direction, Griffiths (2013). Thus the

displacement fields are

D = ε0(1 + χe)E = εE and H =
1

µ0 + µ0χm
B =

1

µ
B,

with ε ∈ R and µ ∈ R denoting the material permittivity and permeability. The

auxiliary fields also satisfy the Helmholtz equation under these assumptions.

Moving forward, we will be using the Helmholtz equation, eq. (2.5), that was

previously developed for the case of a vacuum, but with the substitution k =
√
εµω.

We always assume that the materials are isotropic, homogeneous, and linear. Note

that the ε and µ can be complex numbers in the case that the material absorbs

electromagnetic energy.
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Chapter 3

THE HELMHOLTZ EQUATION

The eigenvalue problem of the Laplace operator, (∇2 + k2)ψ = 0, is the Helmholtz

equation. Given suitable boundary conditions the Helmholtz equation has a unique

solution which depends continuously on the initial data.

3.1 The Helmholtz Equation in Spherical Polar Coordinates

x

y

z

φ

r

θ

Figure 3.1: Definition of (r, θ, φ) with Respect to Cartesian Coordinates

We use spherical coordinates with polar angle θ and azimuthal angle φ, with this

convention the unit vectors are

êr = sin (θ) cos (φ)êx + sin (θ) sin (φ)êy + cos (θ)êz (3.1)

êθ = cos (θ) cos (φ)êx + cos (θ) sin (φ)êy − sin (θ)êz (3.2)

êφ = − sin (φ)êx + cos (φ)êy. (3.3)

The Helmholtz equation is

1

r2
∂

∂r

(
r2
∂ψ

∂r

)
+

1

r2 sin(θ)

∂

∂θ

(
sin(θ)

∂ψ

∂θ

)
+

1

r2 sin2(θ)

∂2ψ

∂φ2
+ k2ψ = 0 (3.4)

in these coordinates and is separable such that ψ(r, θ, φ) = ψr(r)ψθ(θ)ψφ(φ) (see

Appendix B).
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3.2 Solutions of the Helmholtz Equation

The azimuthal component satisfies the harmonic oscillator equation,

d2

dφ2
ψφ +m2ψφ = 0, (3.5)

where m is a separation constant. Equation (3.5) is solved by a linear combination of

cos (mφ) and sin (mφ). For positive integers m 6= n, cos (mφ) and cos (nφ), sin (mφ)

and sin (nφ), and cos (mφ) and sin (nφ) are orthogonal on [0, 2π] – i.e.∫ 2π

0

dφ cos (mφ) cos (nφ) = πδm,n∫ 2π

0

dφ sin (mφ) sin (nφ) = πδm,n∫ 2π

0

dφ cos (mφ) sin (nφ) = 0

where δm,n = 1 if m = n and 0 otherwise.

The polar component becomes, Bohren and Huffman (1983),

1

sin(θ)

d

dθ

[
sin(θ)

d

dθ
ψθ

]
+

[
`(`+ 1)− m2

sin2(θ)

]
ψθ = 0 (3.6)

with a second separation constant `. Equation (3.6) is solved by the associated

Legendre functions,

Pm
` (x) =

(−1)`+m

2``!
(1− x2)m/2 d`+m

dx`+m
(
x2 − 1

)`
, (3.7)

where x = cos (θ). m ∈ N is referred to as the order and ` ∈ N is called the degree of

the associated Legendre function. The first six associated Legendre functions are:

P 0
0 = 1

P 0
1 = cos (θ)

P 1
1 = − sin (θ)

P 0
2 =

1

2

[
3 cos2 (θ)− 1

]
P 1
2 = −3 sin (θ) cos (θ)

P 2
2 = 3 sin2 (θ)

9



−1 −0.5 0 0.5 1
−2

−1

0

1

2

cos (θ)

P
m `

P 0
0

P 0
1

P 1
1

P 0
2

P 1
2

P 2
2

Figure 3.2: Plots of Pm
` (cos θ) for `,m ∈ {0, 1, 2} and θ ∈ [0, 2π].

For fixed order m the associated Legendre functions are orthogonal on [−1, 1] with

respect to degree (DLMF, 2021, Eq. 14.17.6),∫ 1

−1
dx Pm

` (x)Pm
n (x) =

(`+m)!

(`+ 1
2
)(`−m)!

δ`,n ,

and for fixed degree ` the associated Legendre function are orthogonal on [−1, 1] with

respect to order (DLMF, 2021, Eq. 14.17.8),∫ 1

−1
dx

P n
` (x)Pm

` (x)

1− x2
=

(`+m)!

m(`−m)!
δn,m .

The radial component satisfies

d

dr

(
r2

d

dr
ψr

)
+ [k2r2 − `(`+ 1)]ψr = 0, (3.8)

with k ∈ C. We can rewrite eq. (3.8) as

ρ
d

dρ

(
ρ

d

dρ
Z

)
+

[
ρ2 −

(
`+

1

2

)2
]
Z = 0 (3.9)

by transforming to the dimensionless variable ρ = kr and function Z = ψr(ρ/k)
√
ρ,

Bohren and Huffman (1983). Equation (3.9) is solved by a linear combination of

10
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0.4

0.6

0.8

1

ρ
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Figure 3.3: Plots of j` for ` ∈ {0, 1, 2, 3} and ρ ∈ [0, 10].

spherical Bessel functions of the first,

j`(ρ) =

√
π

2ρ
Jν(ρ) =

(ρ
2

)ν ∞∑
k=0

(−1)k
(ρ2/4)k

k!(ν + k)!
where ν = `+

1

2
, (3.10)

second,

y`(ρ) =

√
π

2ρ
Yν(ρ) =

Jν(ρ) cos (νπ)− J−ν(ρ)

sin (νπ)
(3.11)

and third kind. The latter are also known as the spherical Hankel functions of the

first,

h
(1)
` (ρ) = j`(ρ) + iy`(ρ), (3.12)

and second,

h
(2)
` (ρ) = j`(ρ)− iy`(ρ), (3.13)

kind.

The spherical Bessel functions of the first kind, eq. (3.10), and second kind,

eq. (3.11), are also known as the Bessel functions of half-integer order. Jν and Yν

are the Bessel functions of the first and second kind. The first three spherical Bessel

11
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−4

−2

0

ρ

y `
y0
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y2
y3

Figure 3.4: Plots of y` for ` ∈ {0, 1, 2, 3} and ρ ∈ [0, 10].

functions of the first and second kind are

j0 =
sin (ρ)

ρ

j1 =
sin (ρ)

ρ2
− cos (ρ)

ρ

j2 =

(
−1

ρ
+

3

ρ3

)
sin (ρ)− 3

ρ2
cos (ρ)

y0 = −cos (ρ)

ρ

y1 = −cos (ρ)

ρ2
− sin (ρ)

ρ

y2 =

(
−1

ρ
+

3

ρ3

)
cos (ρ)− 3

ρ2
sin (ρ)

Theorem 3.2.1. In spherical polar coordinates the Helmholtz equation is solved by a

linear combination of

ψe`,m = cos (mφ)Pm
` {cos (θ)}z`(ρ) (3.14)

ψo`,m = sin (mφ)Pm
` {cos (θ)}z`(ρ), (3.15)

where z`(ρ) is one of the spherical Bessel functions, as determined by boundary data;

ψe`,m is called the even and ψo`,m the odd solution because of the parity of the trigono-

metric functions, Bohren and Huffman (1983).

12



3.3 Spherical Harmonics

Often the angular components are combined into the spherical harmonics

Y`,m(θ, φ) =

√
2`+ 1

4π

(`−m)!

(`+m)!
eimφPm

` {cos (θ)} (3.16)

which are orthonormal on the unit sphere (DLMF, 2021, Eq. 14.30.8):∫ 2π

0

dφ

∫ π

0

dθ sin (θ)Y ∗`,m(θ, φ)Yk,n(θ, φ) = δ`,kδm,n . (3.17)

The spherical harmonics are eigenfunctions of L2, which is the angular component of

∇2 in spherical coordinates:

∇2f =
1

r

∂2

∂r2
(rf)− L2

r2
f.

We can also write L2 = L · L, where the differential operator L is

L = −i (r×∇) =
i

sin (θ)

∂

∂φ
êθ − i

∂

∂θ
êφ . (3.18)

The L operator is used often in physics because it is closely related to the angular

momentum operator in quantum mechanics. Some additional useful definitions are,

Jackson (1999),

L± = Lx ± iLy

L2Y`,m = `(`+ 1)Y`,m

L±Y`,m =
√

(`∓m)(`±m+ 1)Y`,m+1

LzY`,m = mY`,m.

Theorem 3.3.1. In spherical polar coordinates the Helmholtz equation is solved by a

linear combination of

ψ`,m = z`(ρ)Y`,m(θ, φ) (3.19)

where z`(ρ) is one of the spherical Bessel functions, as determined by boundary data,

Jackson (1999).
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Figure 3.5: Visualization of the Real Part of Y m
` (θ, φ) for θ ∈ [0, π], φ ∈ [0, 2π],

` ∈ {0, 1, 2, 3} and m ≤ |`|.
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Chapter 4

THE MODEL

The solutions of Maxwell’s equations that describe the absorption and scattering

of a plane wave by an uncharged dielectric sphere of arbitrary radius and refractive

index are generally attributed to Mie. Here we generalize the Mie solutions for an

arbitrary electromagnetic wave.

4.1 Electrodynamics in Spherical Coordinates

The origin of the spherical polar coordinate system will be the center of a single

uncharged dielectric sphere of radius a. Denote the set of all points in the sphere as

Ω and the set of all points in the boundary as ∂Ω ⊆ Ω. In chapter 2 we demonstrated

an electromagnetic wave in an ideal material satisfies

∇2E + k2E = 0 (4.1)

where k2 = µεω2, ∇ · E = 0, and

B = − i
ω
∇× E. (4.2)

We solved eq. (4.1) for the scalar case in chapter 3, see theorem 3.3.1; there are two

approaches we could take to solve the vector equation: solve for each component

of E individually, or build up vector solutions from the scalar solution. These are

equivalent, we will do the latter.

Theorem. If ψ satisfies ∇2ψ + k2ψ = 0, then

M =∇× rψ (4.3)

15



satisfies ∇2M + k2M = 0 and

N =
1

k
∇×M (4.4)

satisfies ∇2N + k2N = 0.

Proof.

∇2M + k2M = ∇2(∇× rψ) + k2(∇× rψ)

=∇× r∇2ψ +∇× rk2ψ

=∇× r(∇2ψ + k2ψ)

= 0

∇2N + k2N = ∇2

(
1

k
∇×M

)
+ k2

(
1

k
∇×M

)
=

1

k

[
∇×∇2M +∇× k2M

]
=

1

k

[
∇×

(
∇2M + k2M

)]
= 0

Theorem. N and M as defined in eqs. (4.3) and (4.4) satisfy

∇ ·N = 0

∇ ·M = 0.

Proof.

∇ ·M =∇ · (∇× rψ) = 0 and ∇ ·N =∇ ·
(

1

k
∇×M

)
= 0.
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Theorem 4.1.1.

M = iLψ (4.5)

N =
i

k
∇× Lψ (4.6)

are equivalent to eqs. (4.3) and (4.4).

Proof.

M =∇× rψ

= −r×∇ψ

= iLψ

N =
1

k
∇×M

=
1

k
∇× iLψ

=
i

k
∇× Lψ

Since M and N satisfy all the requirements to describe electric and magnetic

fields, we may expand them as

E =
∑
`,m

[α`,mM`,m + β`,mN`,m] (4.7)

B = − i
ω

∑
`,m

[α`,mN`,m + β`,mM`,m] (4.8)

where

M`,m =∇× rψ`,m = iLψ`,m (4.9)

N`,m =
1

k
∇×M`,m =

i

k
∇× Lψ`,m (4.10)

and the expansion coefficients are

α`,mz`(kr) =
−i

`(`+ 1)

∫
dΩ (L · E)Y ∗`,m(θ, φ) (4.11)

β`,mz`(kr) =
ω

`(`+ 1)

∫
dΩ (L ·B)Y ∗`,m(θ, φ). (4.12)

The most general possible solution has a radial function that is a linear combination

of the spherical Hankel functions, that is

z` = A1h
(1)
` + A2h

(2)
` .
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4.2 The Incident, Internal, and Scattered Field

The incident and internal fields must be finite everywhere, thus the radial depen-

dence is given by the spherical Bessel function of the first kind. The incident field

is

E0 =
∑
`,m

[
α0
`,mM

0
`,m + β0

`,mN
0
`,m

]
(4.13)

B0 = − i
ω

∑
`,m

[
α0
`,mN

0
`,m + β0

`,mM
0
`,m

]
(4.14)

with

ψ0
`,m = j`(kr)Y`,m(θ, φ)

and the expansion coefficients are given by eqs. (4.11) and (4.12) with z`(kr) = j`(kr).

The internal field is

Di = ε
∑
`,m

[
αi`,mM

i
`,m + βi`,mN

i
`,m

]
(4.15)

Hi = − i

ωµ

∑
`,m

[
αi`,mN

i
`,m + βi`,mM

i
`,m

]
(4.16)

with

ψi`,m = j`(knr)Y`,m(θ, φ)

where n =
√
ε/ε0 is the index of refraction of the sphere.

The scattered field does not see the interior of the sphere and so the radial depen-

dence can be given by the spherical Hankel functions. Considering the asymptotic

expansion

h
(1)
` (kr) ∼ (−i)n−1 e

ikr

kr

h
(2)
` (kr) ∼ in−1

e−ikr

kr
,
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we choose h
(1)
` since it corresponds to an outgoing wave at large distance from the

source (kr � n2), Bohren and Huffman (1983). The scattered field is

Es =
∑
`,m

[
αs`,mM

s
`,m + βs`,mN

s
`,m

]
(4.17)

Bs = − i
ω

∑
`,m

[
αs`,mN

s
`,m + βs`,mM

s
`,m

]
(4.18)

where

ψs`,m = h
(1)
` (kr)Y`,m(θ, φ).

The internal and scattered fields coefficients are calculated from the boundary

conditions. Physically realizable electric and magnetic fields must satisfy Maxwell’s

equations throughout the domain. If there are no free charges or free currents at ∂Ω

then the solutions inside (r ∈ Ω) and outside (r /∈ Ω) must match. The material

properties of the sphere are discontinuous, however we will assume the change is over

a small enough distance that we can mathematically model the change as

n(r) =


√
ε/ε0, r ∈ Ω

0, r /∈ Ω

.

Thus, assuming µ = µ0, the boundary conditions are

[
E0(r) + Es(r)− n2(r)Ei(r)

]
· r̂ = 0 (4.19)

[B0(r) + Bs(r)−Bi(r)] · r̂ = 0 (4.20)

[E0(r) + Es(r)− Ei(r)]× r̂ = 0 (4.21)

[B0(r) + Bs(r)−Bi(r)]× r̂ = 0. (4.22)

Applying the boundary conditions at r = a we use eq. (3.18) and

∇× L = − i
r

[
∂2

∂θ2
+

1

sin2 (θ)

∂2

∂φ2

]
êr + i

∂

∂r

∂

∂θ
êθ +

i

sin (θ)

∂

∂r

∂

∂φ
êφ (4.23)
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to arrive at

α0
`,mj`(ka) = αi`,mj`(kna)− αs`,mh

(1)
` (ka) (4.24)

α0
`,m

∂

∂a
[a j`(ka)] = αi`,m

∂

∂a
[a j`(kna)]− αs`,m

∂

∂a

[
a h

(1)
` (ka)

]
(4.25)

and

β0
`,mj`(ka) = n2(r)βi`,mj`(kna)− βs`,mh

(1)
` (ka) (4.26)

β0
`,m

∂

∂a
[a j`(ka)] = βi`,m

∂

∂a
[a j`(knr)]− βs`,m

∂

∂a

[
a h

(1)
`,m(ka)

]
. (4.27)

Rewriting the systems of equations as matrix equations,

α0
`,m

 j`(ka)

∂
∂a

[a j`(ka)]

 =

 j`(kna) −h(1)` (ka)

∂
∂a

[a j`(kna)] − ∂
∂a

[
a h

(1)
` (ka)

]

αi`,m
αs`,m

 (4.28)

β0
`,m

 j`(ka)

∂
∂a

[a j`(ka)]

 =

n2(r)j`(kna) −h(1)` (ka)

∂
∂a

[a j`(kna)] − ∂
∂a

[
a h

(1)
` (ka)

]

βi`,m
βs`,m

 , (4.29)

we can solve for the internal and scattered field coefficients,αi`,m
αs`,m

 =
α0
`,m

d

− ∂
∂a

[
a h

(1)
` (ka)

]
h
(1)
` (ka)

− ∂
∂a

[a j`(kna)] j`(kna)


 j`(ka)

∂
∂a

[a j`(kna)]

 (4.30)

βi`,m
βs`,m

 =
β0
`,m

d

− ∂
∂a

[
a h

(1)
` (ka)

]
h
(1)
` (ka)

− ∂
∂a

[a j`(kna)] n2(r)j`(kna)


 j`(ka)

∂
∂a

[a j`(kna)]

 (4.31)

where

d = h
(1)
` (ka)

∂

∂a
[a j`(kna)]− j`(kna)

∂

∂a

[
ah

(1)
` (ka)

]
.

Here is the core of our model. Given an electric field at some point in space

the magnetic field can be calculated from eq. (4.2), we can compute the spherical

expansion from eqs. (4.11) and (4.12), α0
`,m and β0

`,m from eq. (4.30) and eq. (4.31).

The index of refraction n and the radius r of the sphere is all we need to compute the
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scattered and internal fields once we have the incident field expansion coefficients.

From these we can compute any quantity of interest. This model depends on the

calculation of the angular integrals eqs. (4.11) and (4.12).

4.3 Mie Theory

The spherical expansion of a scalar plane wave is

eik·r =
∞∑
`=0

i`(2`+ 1)j`(kr)P`(cos γ) (4.32)

and since P` ∝ Y`,0 we can write

eik·r =
∞∑
`=0

i`
√

4π(2`+ 1)j`(kr)Y`,0(γ), (4.33)

where γ is the angle between k and r, Jackson (1999). Now consider a circularly

polarized plane wave propagating along the z-axis

E0 = eik·r[êx + iêy] (4.34)

B0 = − i
ω
E0. (4.35)

With eqs. (4.33) and (4.34) we compute

α0
`,mj`(kr) =

−i
`(`+ 1)

∫
dΩ L · E0Y

∗
`,m

=
−i

`(`+ 1)

∫
dΩ L · [êx + iêy] e

ik·rY ∗`,m(θ, φ)

=
−i

`(`+ 1)

∞∑
`=0

i`
√

4π(2`+ 1)j`(kr)

∫
dΩ [Lx + iLy]Y`,0(θ, φ)Y ∗`,m(θ, φ)

=
−i

`(`+ 1)

∞∑
`=0

i`
√

4π(2`+ 1)j`(kr)

∫
dΩ L+Y`,0(θ, φ)Y ∗`,m(θ, φ);

applying the raising operator L+

α0
`,mj`(kr) =

−i
`(`+ 1)

∞∑
`=0

i`
√

4π(2`+ 1)`(`+ 1)j`(kr)

∫
dΩ Y ∗`,m(θ, φ)Y`,1(θ, φ)

= −i`+1

√
4π(2`+ 1)√
`(`+ 1)

j`(kr)δ`,`δm,1
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we can see

α0
`,1 = −i`+1

√
4π(2`+ 1)

`(`+ 1)
(4.36)

and

β0
`,1 = −iα0

`,1 = −i`
√

4π(2`+ 1)

`(`+ 1)
. (4.37)

4.4 Spherical Harmonic Expansion

For a function f defined on the 2-sphere if the radial and angular components

can be decoupled – that is f(r, θ, φ) = g(r)f ′(θ, φ) – then the spherical harmonic

expansion of f is

f(r, θ, φ) =
∞∑
`=0

∑̀
m=0

α`,mg`,m(r)Y`,m(θ, φ), (4.38)

where

α`,mg`,m(r) =

∫
dΩ Y ∗`,m(θ, φ)f ′(θ, φ). (4.39)

Functions on the 2-sphere that are integrable can be expanded in spherical harmonics,

but we need an efficient numerical algorithm to compute eq. (4.39) for any arbitrary

function. We use the algorithm of Driscoll and Healy.

Theorem. For a band limited function, that is

f(θ, φ) =
L∑
`=0

∑̀
m=0

α`,mY`,m(θ, φ),

a`,m =

∫
dΩ Y ∗`,m(θ, φ)f(θ, φ) =

2L+1∑
h=0

2L+1∑
j=0

Y ∗`,m(θj, φh)f(θj, φh)wj (4.40)

with weights

wj =
4π

2(L+ 1)2
sin

[
(2j + 1)π

4(L+ 1)

] L∑
i=0

(
1

2i+ 1

)
sin

[
(2j + 1)(2i+ 1)π

4(L+ 1)

]
, (4.41)

sampled at

θj =

(
j +

1

2

)
π

2L+ 2
and φh =

hπ

L+ 1
. (4.42)

Equation (4.40) is exact, in exact arithmetic, Driscoll and Healy (1994).
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Chapter 5

RESULTS AND DISCUSSION

5.1 Results

We tested the Driscoll and Healy algorithm by checking the orthonormality of the

spherical harmonics. The program was written in Python and tested on a machine

with floating point precision of 15 decimal places (εm = 2.220446049250313× 10−16).

Figure (5.1) plots the results of the numerical integration of Y`,` for ` ∈ [0, 50]. Table

(5.1) is an excerpt from the automated tests.

Y ∗`,mY`,m Answer Driscoll Healy

Y ∗0,0Y0,0 1 0.9999999999(999983)

Y ∗1,0Y1,0 1 0.9999999999(999994)

Y ∗1,1Y1,1 1 0.9999999999(999998)

Y ∗0,0Y1,1 0 −3.7947076036(992655)× 10−17

Table 5.1: Results: Testing Orthonormality of Spherical Harmonics with the Driscoll
Healy Algorithm.

Figure 5.1: Results: Testing Spherical Harmonic Orthonormality with the Driscoll
Healy Algorithm (L = 50).
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The results of integrating a scalar planewave along the z-axis,∫
dΩ eiêz·r =

∫ 2π

0

dφ

∫ π

0

dθ sin (θ)eir cos (θ)

= 2π

∫ 1

−1
d cos (θ) eir cos (θ)

= 2π
sin (r)

r
,

are presented in figure (5.2) for r = 10 and ` ∈ [0, 25].

Figure 5.2: Results: Testing Integration with the Driscoll Healy Algorithm of Scalar
Planewave along z-axis (L = 25).

Figure 5.3: Results: Testing Integration with the Driscoll Healy Algorithm of Vector
Planewave along z-axis (L = 10).
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Figure 5.4: Results: Testing Integration with the Driscoll Healy Algorithm of Vector
Planewave along z-axis (L = 25).

5.2 Discussion

Our tests were designed to consider 10 matching decimal places (rounded) pass-

ing and any number smaller than εm to be 0. This was mainly for two reasons: 6

significant figures can be easily achieved experimentally and to account for errors in

the numerical algorithms that generate the spherical harmonics and spherical bessel

functions. From table (5.1) we can see that the first few orthonormality relations are

indeed satisfied. Figure (5.1) is a stronger indication of the success of the Driscoll

Healy algorithm, with the computed error 0 for all Y`,`, ` ∈ [0, 50]. The scalar

planewave was also successfully integrated to the correct answer with the algorithm

up to L = 25.

To recreate the Mie solution we simulated a circularly polarized planewave (eq.

4.34) with a wavelength of 532 nm (green light) traveling along the z-axis and incident

on a 1 µm sphere. For L = 10 (figure 5.3) we can see that the maximum error is

∼ 0.1% at ` = 7, however increasing L = 25 (figure 5.4) the maximum error is

∼ 0.0001% at ` = 25 with the error at ` = 7 reduced to ∼ 10−12%. This indicates

that the primary source of error is truncation error. A secondary source of error
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comes from the numerical calculation of the spherical Bessel functions.

The spherical Bessel functions are typically computed from a recurrence relation.

The forward direction (i.e. j` → j`+1) is numerically unstable so often the values are

generated in the reverse direction. One approach is to assume that some large ` is 0

and `−1 is 1 then work down to j0 from the recursion and then apply a normalization

condition such as

j0 + 2
∞∑
m=1

j2m = 1, (5.1)

Stegun and Abramowitz (1957), but this method introduces truncation error. An

alternative approach is to use some asymptotic expansion of the spherical Bessel

functions and recurse backwards from that. The fidelity of this method depends

on how good of an approximation the asymptotic expression is. In the analytic

derivation of the Mie expansion coefficients eqs. (4.36) and (4.37) we could cancel out

the spherical Bessel functions on both sides, however we cannot do that numerically.

We could divide over the spherical Bessel functions and compute

α0
`,m =

−i
`(`+ 1)j`(kr)

∫
dΩ (L · E0)Y

∗
`,m(θ, φ); (5.2)

but, since j` → 0 for large order or argument we can quickly begin dividing by 0.

The success of the algorithm to integrate not only Y`,m but also the scalar planewave

e−ir cos (θ) and compute the Mie expansion coefficents of a vector planewave with a

maximum error of ∼ 0.0001% for L = 25 leads us to conclude that the expansion

coefficients of an arbitrary initial electromagnetic field can be computed numerically.

Additionally, the primary sources of error were identified and are within the accept-

able limit, i.e. they do not affect 10 significant figures.

In the previous chapter we derived matrix equations – eqs. (4.28) and (4.29) –

for the expansion coefficents of the internal and scattered fields, which are solved by

eqs. (4.30) and (4.31) and depend on the radius and index of refraction of the sphere

26



as well as α0
`,m and β0

`,m. Therefore, we can completely characterize the electric and

magnetic fields everywhere. From this description we can compute many quantities

of interest. For example, the energy deposited into the sphere and with the material

properties we can derive the heat distribution inside the sphere; or the scattering force

on the sphere by integrating the Maxwell stress tensor over an appropiate surface.

Combining this with a heat diffusion model we can predict the photophoretic force,

thus accounting for all forces on the sphere, allowing us to predict its trajectory.
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APPENDIX A

HELMHOLTZ EQUATION - DERIVATION FROM MAXWELL’S EQUATIONS
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Begin from the complex, position dependent, Maxwell’s equations

∇ · Ec = 0

∇ ·Bc = 0

∇× Ec = iωBc

∇×Bc = −iµ0ε0ωEc.

To eliminate Bc, plug the last equation into the penultimate equation.

− i
ω
∇× (∇× Ec) = −iµ0ε0ωEc

∇× (∇× Ec) = µ0ε0ω
2Ec

∇ · (∇ · Ec)−∇2Ec = µ0ε0ω
2Ec

∇2Ec = −µ0ε0ω
2Ec

∇2Ec = −k2Ec

Similarly, to eliminate Ec, plug the penultimate equation into the last equation.

− i

µ0ε0ω
∇× (∇×Bc) = −iωBc

∇× (∇×Bc) = µ0ε0ω
2Bc

∇ · (∇ ·Bc)−∇2Bc = µ0ε0ω
2Bc

∇2Bc = −µ0ε0ω
2Bc

∇2Bc = −k2Bc
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APPENDIX B

HELMHOLTZ EQUATION - SEPARATION OF VARIABLES
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Assume the solution of

1

r2
∂

∂r

(
r2
∂ψ

∂r

)
+

1

r2 sin(θ)

∂

∂θ

(
sin(θ)

∂ψ

∂θ

)
+

1

r2 sin2(θ)

∂2ψ

∂φ2
+ k2ψ = 0

is of the form
ψ(r, θ, φ) = ψr(r)ψθ(θ)ψφ(φ)

Plugging in the solution and multiplying through by

r2 sin2 (θ)

ψrψθψφ

we get

sin2 (θ)

ψr

d

dr

(
r2

dψr
dr

)
+

sin(θ)

ψθ

∂

∂θ

(
sin (θ)

dψθ
dθ

)
+

1

ψφ

d2ψφ
dφ2

+ k2r2 sin2 (θ)ψ = 0.

The φ component is now separated, and we must conclude that it is equal to some
constant

1

ψφ

d2ψφ
dφ2

= −m2.

The last two components,

sin2 (θ)

ψr

d

dr

(
r2

dψr
dr

)
+ k2r2 sin2 (θ)ψ =

sin (θ)

ψθ

∂

∂θ

(
sin(θ)

dψθ
dθ

)
−m2,

can be separated by dividing through by sin2 (θ).

1

ψr

d

dr

(
r2

dψr
dr

)
+ k2r2ψ =

1

ψθ sin (θ)

∂

∂θ

(
sin(θ)

dψθ
dθ

)
− m2

sin2 (θ)

Again we are lead to conclude that the two components are equal to some constant

d

dr

(
r2

dψr
dr

)
+
[
k2r2 − `(`+ 1)

]
ψr = 0

1

sin (θ)

∂

∂θ

(
sin(θ)

dψθ
dθ

)
+

[
`(`+ 1)− m2

sin2 (θ)

]
ψφ = 0.
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The expansion coefficients for the internal and scattered field come from the
boundary conditions [

E0(r) + Es(r)− n2(r)Ei(r)
]
· r̂ = 0 (C.1)

[B0(r) + Bs(r)−Bi(r)] · r̂ = 0 (C.2)

[E0(r) + Es(r)− Ei(r)]× r̂ = 0 (C.3)

[B0(r) + Bs(r)−Bi(r)]× r̂ = 0. (C.4)

Theorem C.0.1.
M`,m · r̂ = 0 (C.5)

and

N`,m · r̂ =
z`(kr)

kr
`(`+ 1)Y`,m(θ, φ). (C.6)

Proof. From eqs. (3.18) and (4.23) we conclude

M`,m · r̂ = iL · r̂ ψ`,m
= (r×∇) · r̂ ψ`,m
= (r̂×∇) · r̂ rψ`,m
= 0

and

N`,m · r̂ =
r

r

i

k
[∇× L] · r̂ ψ`,m

=
i

kr
[∇× L] · r ψ`,m

=
i

kr
[r×∇] · L ψ`,m

= − i
2

kr
L2ψ`,m

=
z`(kr)

kr
`(`+ 1)Y`,m(θ, φ).

0 =
[
E0(r) + Es(r)− n2(r)Ei(r)

]
· r̂

=
1

kr

[
β0
`,mj`(kr) + βs`,mh

(1)
` (kr)− n2(r)βi`,mj`(knr)

]
`(`+ 1)Y`,m(θ, φ)

= β0
`,mj`(kr) + βs`,mh

(1)
` (kr)− n2(r)βi`,mj`(knr)

0 = [B0(r) + Bs(r)−Bi(r)] · r̂

=
1

kr

[
α0
`,mj`(kr) + αs`,mh

(1)
` (kr)− αi`,mj`(knr)

]
`(`+ 1)Y`,m(θ, φ)

= α0
`,mj`(kr) + αs`,mh

(1)
` (kr)− αi`,mj`(knr)
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Using

∇× z`(kr)LY`,m(θ, φ) =
i

r
z`(kr)Y`,m(θ, φ)r̂ +

1

r

∂

∂r
[rz`(kr)] r̂× LY`,m(θ, φ), (C.7)

Jackson (1999), to rewrite

E =
∑
`,m

[
α`,miL + β`,m

i

k
∇× L

]
z`(kr)Y`,m(θ, φ)

as

E =
∑
`,m

[
α`,miL− β`,m

1

kr
r̂ + β`,m

i

kr

∂

∂r
[r] r̂× L

]
z`(kr)Y`,m(θ, φ)

and doing the same for B we can write the last two boundary conditions.

0 = [E0(r) + Es(r)− Ei(r)]× r̂

=
[
α0
`,mM

0
`,m + β0

`,mN
0
`,m + αs`,mM

s
`,m + βs`,mN

s
`,m − αi`,mMi

`,m − βi`,mNi
`,m

]
× r̂

= i
[
α0
`,mj`(kr) + αs`,mh

(1)
` (kr)− αi`,mj`(knr)

]
LY`,m(θ, φ)

− 1

kr

[
β0
`,mj`(kr) + βs`,mh

(1)
`,m(kr)− βi`,mj`(knr)

]
r̂

+
i

kr

∂

∂r

[
β0
`,mrj`(kr) + βs`,mrh

(1)
`,m(kr)− βi`,mrj`(knr)

]
r̂× LY`,m(θ, φ)

0 = [B0(r) + Bs(r)−Bi(r)]× r̂

=
[
α0
`,mN

0
`,m + β0

`,mM
0
`,m + αs`,mN

s
`,m + βs`,mM

s
`,m − αi`,mNi

`,m − βi`,mMi
`,m

]
× r̂

= i
[
β0
`,mj`(kr) + βs`,mh

(1)
` (kr)− βi`,mj`(knr)

]
LY`,m(θ, φ)

− 1

kr

[
α0
`,mj`(kr) + αs`,mh

(1)
`,m(kr)− αi`,mj`(knr)

]
r̂

+
i

kr

∂

∂r

[
α0
`,mrj`(kr) + αs`,mrh

(1)
`,m(kr)− αi`,mrj`(knr)

]
r̂× LY`,m(θ, φ)

Now we rewrite the boundary conditions as

α0
`,mj`(kr) = αi`,mj`(knr)− αs`,mh

(1)
` (kr)

β0
`,mj`(kr) = n2(r)βi`,mj`(knr)− βs`,mh

(1)
` (kr)

and

0 = α0
`,m

∂

∂r
[rj`(kr)] + αs`,m

∂

∂r

[
rh

(1)
`,m(kr)

]
− αi`,m

∂

∂r
[rj`(knr)]

= β0
`,m

∂

∂r
[rj`(kr)] + βs`,m

∂

∂r

[
rh

(1)
`,m(kr)

]
− βi`,m

∂

∂r
[rj`(knr)] .
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