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ABSTRACT  

   

This project studied a four-variable single mediator model, a single mediator 

model: X (independent variable) to M (mediator) to Y (dependent variable), and a 

confounder (U) that influences M and Y. Confounding represents a threat to the causal 

interpretation in mediation analysis. For instance, if X represents random assignment to 

control and treatment conditions, the effect of X on M and the effect of X on Y have a 

causal interpretation under certain reasonable assumptions. However, the randomization 

of X does not allow for a causal interpretation of the M to Y effect unless certain 

confounding assumptions are satisfied. The aim of this project was to develop a 

significance test and an effect size comparison for two sensitivity to confounding 

analyses methods: Left Out Variables Error (L.O.V.E.) and the correlated residuals 

method. Further, the project assessed the accuracy of the methods for identifying 

confounding bias by simulating data with and without confounding bias.  
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CHAPTER 1 

INTRODUCTION 

The simplest cause-effect relation involves two variables (e.g., 𝑋 and 𝑌), and in 

terms of effects, there are four possible combinations: 𝑋 and 𝑌 are unrelated, 𝑋 causes 𝑌 

(𝑋→𝑌), 𝑌 causes 𝑋 (𝑌→𝑋), or 𝑋 and 𝑌 cause each other (𝑌↔𝑋) (MacKinnon, 2008). 

More complex combinations arise when a third variable is included. Some of these relations 

include mediators, confounders, and colliders.  

A mediator represents the causal mechanism through which an independent variable 

influences a dependent variable (Baron & Kenny, 1986, p. 1173). In other words, a 

mediator (𝑀) is an intermediate variable in the causal path from the independent variable 

(𝑋) to the dependent variable (𝑌). Where 𝑋 causes 𝑀, which in turn causes 𝑌 (𝑋→𝑀→𝑌) 

(MacKinnon, 2008). 

A confounder has been defined in different ways; for instance, “… a variable that 

changes the relationship between an independent variable and dependent variable because it 

is related to both the independent and the dependent variable.” (MacKinnon, 2008, p. 7), “a 

variable related to two factors of interest that falsely obscures or accentuates the 

relationship between the factors.” (Meinert & Tonascia, 1986, p. 285). In a diagram, the 

arrows point from the confounder (𝑈), to the independent variable (𝑋) and to the dependent 

variable (𝑌) as follows: (𝑋←𝑈→𝑌). 

 In a single confounder case, statistical adjustment for the confounder provides an 

unbiased estimate of the relation between the independent and the dependent variable 
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(Hafeman, 2011; MacKinnon, Krull, & Lockwood, 2000). Also, for the single confounder 

case, the sign of the arrows can predict the direction of the bias. For instance, if both arrows 

have the same sign (both positive or negative), the confounding bias is called positive, and 

the estimate will be biased upwards without adjusting for 𝑈. However, if the arrows have 

opposite signs, the confounding bias is called negative, and the estimate will be biased 

downwards without adjustment for 𝑈 (Hernán & Robins, 2020).  

A collider variable is caused by two other variables (Elwert & Winship, 2014). In a 

diagram, the arrows are from 𝑋 and 𝑌 to the collider variable (𝑋 → 𝐶𝑜𝑙𝑙𝑖𝑑𝑒𝑟 ← 𝑌) rather 

than arrows from the third variable to 𝑋 and to 𝑌, for a confounder. Opposite to the 

confounder case, researchers should not control for a collider because conditioning on a 

collider induces a spurious association between the two variables (in this case, 𝑋 and 𝑌). 

Collider bias can also arise from restricting sampling based on the collider variable, known 

as endogenous selection bias (Elwert & Winship, 2014). 

Mediators, confounders, and colliders involve three variables. The current project 

focuses on a model that combines mediation and confounding in a four-variable model. 

First, this document presents the single mediator model by including the path diagrams, 

equations, and assumptions. Second, it incorporates confounding within mediation analysis, 

focusing on how confounding represents a threat to causal interpretation. The focus is on 

the single mediator model, where a confounder 𝑈 influences both 𝑀 and 𝑌. Third, the 

document includes the topic of sensitivity analyses, a group of methods that are used to 

help deal with unmeasured confounders. Then, it describes the proposed research questions, 
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the methods to answer these questions, and the results. Finally, it presents the discussion, 

limitations of the study, and future research directions. 

 

Single mediator model 

Mediation analysis is a method that helps to evaluate the underlying mechanisms in 

which an independent variable causes a dependent variable. The following three equations 

represent the single mediator model: 

 

𝑌 = 𝑖1 + 𝑐𝑋 + 𝑒1         (1) 

 

𝑀 = 𝑖2 + 𝑎𝑋 + 𝑒2  (2) 

 

𝑌 = 𝑖3 + 𝑐′𝑋 + 𝑏𝑀 + 𝑒3  (3) 

 

Figure 1 represents the single mediation model path diagrams, where 𝑋 represents 

the independent variable, 𝑀 represents the mediator, and 𝑌 represents the dependent 

variable. The coefficient 𝑐 represents the effect of 𝑋 on 𝑌; 𝑎 represents the direct effect of 

𝑋 on 𝑀; 𝑐′ is the coefficient of 𝑋 to 𝑌 adjusted for the effects of 𝑀; the coefficient 𝑏 

represents the effect of 𝑀 on 𝑌 adjusted for the effects of 𝑋; 𝑒1, 𝑒2, and 𝑒3 represent the 

error variances; and 𝑖1, 𝑖2, and 𝑖3 represent the intercepts.  
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Figure 1 

Path Diagrams of the Single Mediator Model 

 

The conclusions from the single mediator model analysis rely on the following 

assumptions: a) each mediation regression equation assumes a linear relationship among 

variables, b) the regression equations represent the correct model; thus, it does not omit any 

important variable (e.g., confounders), c) the scores of 𝑋, 𝑀, and 𝑌 are valid and reliable, d) 

the residuals are assumed to be uncorrelated with the predictors, to be independent of each 

other, to have constant variance, and to be uncorrelated between equations, e) the single 

mediator model assumes correct temporal order, where X precedes M, which in turn 

precedes Y, f) it is assumed that the timing of measurement of the mediator and the 

outcome matches the right changing time in these variables (MacKinnon, 2008). 

There are four additional no-confounding assumptions to enhance a causal 

interpretation of the direct and indirect effects in the single mediator model: (1) no 

unmeasured 𝑋–𝑌 confounding, (2) no unmeasured 𝑀–𝑌 confounding, (3) no unmeasured 

𝑋–𝑀 confounding, and (4) no measured or unmeasured confounders of 𝑀 and 𝑌 that have 

been affected by the exposure 𝑋 (Pearl, 2001; Valeri & Vanderweele, 2013). Assumptions 
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(1) and (3) hold if 𝑋 represents random assignment to control and treatment conditions. 

However, assumptions (2) and (4) are not guaranteed with random assignment of 𝑋. 

 

Single mediator model and confounding bias 

The model of interest in this study was a single mediator model with a confounder 

(𝑈) influencing, 𝑀 and 𝑌, but not 𝑋 (Figure 2). The model is widely used for mediation 

analysis of studies with randomization to conditions represented by 𝑋. The model is 

described by equations 4 and 5, where 𝑋 represents the independent variable, 𝑀 the 

mediator, 𝑌 the dependent variable, and 𝑈 the confounder. The coefficient 𝑎 represents the 

effect of 𝑋 on 𝑀 adjusted for the effects of 𝑈; 𝑑 represents the effect of 𝑈 on 𝑀 adjusted 

for the effects of 𝑋; 𝑐′ represents the effect of 𝑋 on 𝑌 adjusted for the effects of 𝑀 and 𝑈; 

the coefficient 𝑏 represents the effect of 𝑀 on 𝑌 adjusted for the effects of 𝑋 and 𝑈; and 𝑒 

represents the effect of 𝑈 on 𝑌 adjusted for the effects of 𝑀 and 𝑋; 𝑟1, and 𝑟2 represent the 

error variances; 𝑖1, 𝑖2 represent the intercepts. The true covariance matrix for this model is 

included in Appendix A, and the analytical program for this model is included in Appendix 

B. 

 

𝑀 = 𝑖1 + 𝑎𝑋 + 𝑑𝑈 + 𝑟1         (4) 

 

𝑌 = 𝑖2 + 𝑐′𝑋 + 𝑏𝑀 + 𝑒𝑈 + 𝑟2  (5) 

 

 

 

 



 

6 

 

Figure 2 

Path Diagram: Single Mediator Model With a Confounder (𝑈) That is Influencing the 

Mediator (𝑀) and the Outcome (𝑌)  

 

Several techniques help strengthen the causal interpretation of the mediation 

analysis results, which are divided into design-based and analysis-based techniques. The 

design-based techniques include randomization of 𝑋, randomization of 𝑀, and 

randomization of both 𝑋 and 𝑀 (e.g., sequential double randomization design, concurrent 

double randomization design, and parallel randomization). The analysis-based techniques 

include inverse probability weighting, sequential G-estimation, the inclusion of 

instrumental variables in the analysis, principal stratification, the usage of comprehensive 

models, and sensitivity analyses (see MacKinnon & Pirlott, 2015; Pirlott & MacKinnon, 

2016; Valente et al., 2017). This research focuses on sensitivity to confounding analyses to 

strengthen the causal interpretation of the 𝑀 to 𝑌 effect.   

Sensitivity analyses is a group of methods that help deal with confounding bias in 

mediation analysis when there is no measure of the potential confounders. In the following 

section, I describe four sensitivity analyses methods for unmeasured confounders: the Left 

Out Variables Error (L.O.V.E.) method (Cox, Kisbu-Sakarya, Miocevic, & MacKinnon, 

2013; Mauro, 1990), the phantom variable method (Harring, McNeish, & Hancock, 2017; 
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MacKinnon, 2022; Rindskopf, 1984), the correlated residuals method (Imai, Keele, & 

Yamamoto, 2010), and the binary confounder method (Vanderweele, 2010). 

Left Out Variables Error (L.O.V.E.; Cox et al., 2013; Mauro, 1990) 

Cox et al. (2013) adapted Mauro’s (1990) L.O.V.E. method for mediation analysis. 

This method assesses confounding in the 𝑀 to 𝑌 relation in mediation analysis by using 

correlation methods, focusing on 1) the correlation between the omitted variable1 and the 

mediator (𝑟𝑢𝑚) and 2) the correlation between the omitted variable and the dependent 

variable (𝑟𝑢y). 

This method specifies the model equations when the confounder (𝑈) is included in 

the single mediator model, with 𝑋 as the treatment, 𝑀 the mediator, and 𝑌 as the outcome 

(Equations 6 and 7).  

𝑀 = 𝑎∗𝑀 + 𝑑∗𝑈 + 𝑟1  (6) 

 

𝑌 = 𝑏∗𝑀 + 𝑐′∗𝑋 + 𝑒∗𝑈 + 𝑟2     (7) 

 

Based on these equations, the standardized regression coefficients (𝑏∗ , 𝑐′∗,  and  𝑎∗) can be 

estimated using Equations 8, 9, 10 (Cox et al., 2013). 

𝑏∗ =
𝑟𝑦𝑚(1−𝑟𝑢𝑥

2 )+𝑟𝑦𝑥 (𝑟𝑢𝑚𝑟𝑥𝑢− 𝑟𝑚𝑥)+ 𝑟𝑢𝑦(𝑟𝑚𝑥𝑟𝑢𝑥− 𝑟𝑢𝑚)

1+2𝑟𝑚𝑥𝑟𝑥𝑢𝑟𝑢𝑚−𝑟𝑢𝑚
2 −𝑟𝑢𝑥

2 −𝑟𝑚𝑥
2   

 

(8) 

 

𝑐′
∗
=

𝑟𝑦𝑥(1−𝑟𝑢𝑚
2 )+𝑟𝑦𝑚 (𝑟𝑢𝑥𝑟𝑢𝑚− 𝑟𝑚𝑥)+ 𝑟𝑢𝑦(𝑟𝑢𝑚𝑟𝑢𝑥− 𝑟𝑥𝑚)

1+2𝑟𝑚𝑥𝑟𝑢𝑚𝑟𝑢𝑥−𝑟𝑢𝑥
2 −𝑟𝑢𝑚

2 −𝑟𝑚𝑥
2   

(9) 

                                                 

1 Throughout the document, the term “omitted variable” is used interchangeably with 

“unmeasured confounder”. 
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𝑎∗ =
(𝑟𝑚𝑥−𝑟𝑢𝑚∗ 𝑟𝑢𝑥)

1−𝑟𝑢𝑥
2   (10) 

 

If there is a correlation between the omitted variable 𝑈 and the other predictors in the 

model (𝑀 and 𝑌), the estimates 𝑏∗and 𝑐′∗ will be biased if the regression model does not 

include 𝑈 (Cox et al., 2013). The L.O.V.E. method assesses how large the correlation 

between the omitted variable and the mediator (𝑟𝑢𝑚) and the correlation between the omitted 

variable and the dependent variable (𝑟𝑢𝑦) should be to make the standardized indirect effect 

zero (Cox et al., 2013). The indirect effect can be considered robust if the sensitivity analysis 

shows that implausibly large values of 𝑟𝑢𝑚 and 𝑟𝑢y render the standardized indirect effect 

equal to zero (Valente et al., 2017). 

Appendix C shows the code using the SAS programming language that conducts 

sensitivity analysis using the L.O.V.E. method as in Cox et al. (2013). The code generates a 

range of mathematically possible values for two correlations: 𝑟𝑢𝑚 and 𝑟𝑢y. Also, consistent 

with a randomized 𝑋 variable, the correlation between the treatment and the omitted variable 

is fixed to zero (𝑟𝑥𝑢 = 0). The program requires the value of three correlations values as 

input: 1) the correlation between the dependent variable and the treatment (𝑟𝑦𝑥), 2) the 

correlation between the mediator and the treatment (𝑟𝑚𝑥), and 3) the correlation between the 

dependent variable and the mediator (𝑟𝑦𝑚). 

The L.O.V.E. method compares the correctly specified model coefficients (which 

includes the confounder 𝑈) with the misspecified model coefficients (which ignores the 
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confounder 𝑈). The standardized regression coefficients for the misspecified model are 

estimated with Equations 11, 12, and 13: 

𝑏
∗
𝑏𝑖𝑎𝑠𝑒𝑑 =

𝑟𝑦𝑚 − 𝑟𝑦𝑥 ∗ 𝑟𝑚𝑥

1 − 𝑟𝑚𝑥
2

 (11) 

𝑐′
∗
𝑏𝑖𝑎𝑠𝑒𝑑 =

𝑟𝑦𝑥 − 𝑟𝑦𝑚 ∗ 𝑟𝑚𝑥

1 − 𝑟𝑚𝑥
2

 (12) 

𝑎∗𝑏𝑖𝑎𝑠𝑒𝑑 = 𝑟𝑚𝑥 (13) 

The bias of the correctly specified and misspecified model can be calculated based on 

the regression coefficients: 

𝑏𝑖𝑎𝑠𝑏
∗
=  𝑏

∗
𝑏𝑖𝑎𝑠𝑒𝑑− 𝑏

∗ (14) 

𝑏𝑖𝑎𝑠𝑐′
∗
=  𝑐′

∗
𝑏𝑖𝑎𝑠𝑒𝑑− 𝑐′

∗
 (15) 

𝑏𝑖𝑎𝑠𝑎∗ = 𝑎∗𝑏𝑖𝑎𝑠𝑒𝑑 − 𝑎∗ (16) 

The method estimates the standardized indirect effect (𝑎∗ ∗ 𝑏∗) and creates a plot for 

all the values of 𝑟𝑢𝑚 and 𝑟𝑢y that make the standardized indirect effect (𝑎∗ ∗ 𝑏∗) zero. Figure 

3 shows a plot of the L.O.V.E method, where the values of 𝑟𝑢𝑦 are shown on x-axis, and the 

values of 𝑟𝑢𝑚 are shown on the y-axis.  
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Figure 3 

Plot of the L.O.V.E. Sensitivity to Confounding Method 

 

 

The phantom variable method 

A phantom variable is defined as “a latent variable with no manifest indicators” 

(Harring et al., 2017, p. 619). Rindskopf (1984) first used phantom variables to constrain 

parameters in LISREL. Harring, et al. (2017) applied this method to assess a model 

sensitivity to potential external misspecifications using fixed and random parameter 

approaches.  

The phantom variable method can be used as a sensitivity to confounding method in 

mediation analysis by specifying a phantom variable representing the hypothetical 

confounder. This method fixes the effect of the phantom variable to the mediator 

(𝑝ℎ𝑎𝑛𝑡𝑜𝑚 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 →  𝑀) and the effect of the phantom variable to the dependent 

variable (𝑝ℎ𝑎𝑛𝑡𝑜𝑚 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 → 𝑌) to different values and then estimates the indirect 

effect. The goal is to find the value that makes the indirect effect zero. Note that if 𝑋 
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represents random assignment to conditions, the relation between the phantom variable and 

𝑋, would be fixed at zero because the variables are expected to be uncorrelated. 

Appendix D shows the code in Mplus that performs a sensitivity analysis to 

confounding using the phantom variable method, following MacKinnon (2022). The 

program specifies the variance of the phantom variable, which is fixed to one 

(phantom@1;). Also, since 𝑋 represent random assignment to conditions, the effect 

between the phantom variable and the independent variable 𝑋 is fixed at zero (X ON 

phantom@0;). The phantom variable is specified within the two mediation equations. The 

effect of the phantom variable on the mediator (M ON X phantom@1.744;) and the effect 

of the phantom variable on the outcome were fixed to 1.744 (Y ON M X 

phantom@1.744;), which is the value that renders the indirect effect to zero in this dataset. 

Appendix E also includes the code to perform the phantom variable method, but in the SAS 

programming language using the PROC CALIS statement. Table 1 shows the estimated 

coefficients for both programs.  

 

 

 

 

 

 

 

 

mailto:phantom@1.744
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Table 1 

Phantom Variable Method Results: SAS and Mplus 

  Estimates Standard 

Error 

t-value p-value 

SAS 

phantom@1.744 

�̂� 3.558 0.681 5.222 <.0001 

𝑐′̂ 2.468 1.403 1.758 0.078 

�̂� 0.013 0.255 0.052 0.958 

�̂��̂� 0.046    

Mplus 

phantom@1.744 
�̂� 3.558 0.632  0.000 

𝑐′̂ 2.518 1.488  0.091 

�̂� 0.000 0.244  0.998 

�̂��̂� 0    

 

In practice, a researcher can assess different values for the effect of the phantom 

variable and create a plot similar to the L.O.V.E. method plot (e.g., see program Confoundit 

by Lovis-McMahon & MacKinnon, 2014). For instance, Figure 4 shows a plot with the 

effects of the phantom variable on the mediator and the outcome on the x-axis and the 

indirect effect (𝑎𝑏) on the y-axis. The graph shows that values -1.76 and 1.76 of the 

phantom variable on 𝑀 and 𝑌 make the indirect effect ~ zero (0.00850). These values differ 

from the value in the Mplus program, which was 1.744. 
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Figure 4 

Plot of the Phantom Variable Sensitivity to Confounding Method 

 

 

Note. The dashed lines indicate the values of phantom variable effect on 𝑀 and 𝑌 needed to 

make the indirect effect zero. 

 

 

Correlated residuals method (Imai et al., 2010) 

Imai et al. (2010) developed a sensitivity analysis derived from the potential 

outcomes framework of mediation analysis, which evaluates the average causal indirect 

effect (indirect effect) for violations of the sequential ignorability assumption. This 

assumption involves the following two conditions. First, there are no unobserved 

confounders on the 𝑋 to 𝑀 relation or on the 𝑋 to 𝑌 relation. Second, there are no 

unobserved (baseline or post-exposure) 𝑀 to 𝑌 confounders. The first condition could be 

justified when the treatment is randomly assigned or when researchers have measured 

enough baseline covariates that differences between groups are ignorable (Imai et al., 

2010). The correlated residuals method assumes randomization of 𝑋; hence it focuses on 

testing the latter condition.  
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This sensitivity analysis assesses confounding bias by analyzing how the indirect 

effect changes as a function of the correlation between the residual variances 𝑒2 and 𝑒3 (𝜌) 

of the single mediator model equations (Equations 2 and 3).  If the sequential ignorability 

assumption holds, the residuals (𝑒2, 𝑒3) should be uncorrelated, hence 𝜌 = 0. That means 

that there is no confounding on the 𝑀 to 𝑌 relation. On the contrary, if the sequential 

ignorability assumption does not hold, the residuals (𝑒2, 𝑒3) are correlated, hence 𝜌 ≠ 0, 

which could be interpreted as the existence of an omitted variable related to the mediator 

and to the dependent variable (Imai et al., 2010; James, 1980).  

This sensitivity analysis is performed by plotting the average causal indirect effect 

as a function of the correlation between the residuals 𝑒2 and 𝑒3 (𝜌). Imai et al. (2010) 

provide the following equation to estimate the average causal indirect effect given the 

parameter 𝜌. 

 

�̅�(0) = �̅�(1) = 
(𝛽2𝜎1)

𝜎2
 {�̃� − 𝜌√(1 − �̃�2/(1 − 𝜌2))}  (17) 

 

Where 𝜎𝑗
2 ≡ 𝑣𝑎𝑟 (휀𝑖𝑗) for 𝑗 = 1, 2 and �̃� ≡ 𝐶𝑜𝑟𝑟 (휀𝑖2, 휀𝑖3). If the sequential ignorability 

assumption is violated, the bounds are (-1 and 1) for the sensitivity parameter 𝜌 are 

(−∞,∞) for the indirect effect. 

The package mediation in the R software package (Imai et al., 2010) performs this 

sensitivity analysis (included in Appendix F). The program estimates the causal mediation 

analysis and then runs the sensitivity analysis providing plots of the estimated average 
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causal indirect effect as a function of 𝜌 (see Figure 5). This method can also be performed 

in the Mplus programming language (Muthén & Muthén, 2012). 

Figure 5 

Plot of the Correlated Residuals Sensitivity to Confounding Method  

 

 

Binary confounder method (Vanderweele, 2010) 

VanderWeele (2010) proposed a sensitivity analysis that focuses on binary 

confounders. Like the correlated residuals method (Imai et al., 2010), this method is based 

on the mediation analysis potential outcomes framework. The sensitivity analysis plot 

displays the Natural Indirect Effect (NIE) as a function of two parameters (γ and δ). The 

first parameter, γ, represents the effect of the binary confounder on 𝑌, for individuals with 

the same value of the mediator. The second parameter, δ, “represents the difference in the 

prevalence of the confounder variable 𝑈, for people with the same value of 𝑀 in both the 

treatment and control groups” (Cox et al., 2013, p. 412). 
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VanderWeele (2010) specified the NIE’s bias as a function of both parameters, as 

shown below: 

 

𝐵𝑖𝑎𝑠 𝑁𝐼𝐸 (𝑥) =  − δγ 

 

(18) 

There have been additional contributions on sensitivity analyses methods. For 

example, the development of sensitivity analyses that allows the assessment of the no-

omitted-confounders assumption and the no-measurement error assumption jointly (Fritz, 

Kenny, & MacKinnon, 2016; Liu & Wang, 2020), a sensitivity analysis that allows 

assessing confounding bias for growth curve mediation models (Tofighi et al., 2019), and a 

sensitivity analysis that assesses confounding bias in a Bayesian mediation analysis 

(McCandless & Somers, 2019). Also, VanderWeele and Chiba (2014) developed a non-

parametric sensitivity analysis applicable even if the 𝑀 to 𝑌 confounder is affected by 𝑋. 

Albert and Wang (2014) developed two sensitivity analyses. The first allows latent versions 

of the mediator and the outcome, and second considers a hybrid causal-observational 

model, which considers two effects of 𝑋 on 𝑌: a causal effect and cohort effect (selection 

bias).  

To sum up, sensitivity analyses is a group of methods that address confounding bias 

when there is no measure of the confounders. In the last section, multiple sensitivity 

analyses methods were described, but only two of them were selected for this project, the 

L.O.V.E. and correlated residuals methods. In particular, the interest was to select methods 

that help dealing with continuous unmeasured confounders. For instance, the sensitivity 

analysis proposed by VanderWeele (2010) is focused on binary confounders. 
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This project aims to develop a significance test and an effect size comparison for two 

sensitivity analyses methods: L.O.V.E. and correlated residuals (Cox et al., 2013; Imai et 

al., 2010; Mauro, 1990). Further, the project aims to assess the accuracy of these methods 

to identify confounding bias by simulating data with and without confounding bias. 
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CHAPTER 2 

METHOD (STUDY 1) 

Simulation Study 

 

A Monte Carlo Simulation study was conducted in the SAS 9.4 programming 

language. The data were generated based on a single mediator model with a confounder (𝑈) 

influencing the mediator (𝑀) and the outcome (𝑌). In this model 𝑀, 𝑌, and 𝑈 were 

generated as continuous variables, and 𝑋 was generated as a binary variable, representing 

random assignment to control and treatment groups. 

In the simulation, sample size (N = 100, 200, 500), and parameter values (𝑎, 𝑏, 𝑐’ = 

0, 0.59; 𝑑 and 𝑒 = -0.59, 0, 0.59) varied for a total of 3 X 2 X 2 X 2 X 3 X 3 equals 216 

combinations. There were 1,000 replications for each condition. There were seven 

outcomes for the indirect effect (𝑎𝑏) in Study 1: Bias, Relative Bias, Standardized Bias, 

Empirical Type I Error Rates, Empirical Power, Confidence Intervals Coverage, and 

Imbalance. These outcomes were calculated for two scenarios: 1) when the data were 

analyzed with a single mediator model with a confounder (𝑈) influencing the mediator (𝑀) 

and the outcome (𝑌), and 2) when the data were analyzed with a misspecified model, where 

the confounder was omitted from the model. The simulation program is shown in Appendix 

G. 

Bias of the indirect effect (a*b) 

 

Three type of Biases of the indirect effect were calculated in the study: Bias, 

Relative bias, and Standardized bias. Bias was calculated as the difference between the 

estimate of the indirect effect minus the true indirect effect (Equation 19). Relative bias was 



 

19 

 

calculated by dividing bias (shown in Equation 19) by the true indirect effect (Equation 20). 

Standardized bias was calculated as the difference between the indirect effect estimate 

minus the true indirect effect, divided by the standard deviation of the indirect effect 

estimate (Equation 21). Relative bias values between -0.10 and 0.10 were considered 

acceptable. 

𝐵𝑖𝑎𝑠 = �̂� − 𝜔 (19) 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝐵𝑖𝑎𝑠 =
�̂� − 𝜔

𝜔
 

(20) 

 

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑖𝑧𝑒𝑑 𝐵𝑖𝑎𝑠 =
�̂�−𝜔

𝑆𝐷�̂�
   (21) 

 

 

Confidence Limit Estimation 

 

Confidence intervals were estimated using normal theory approximations and the 

percentile bootstrap resampling method. Normal theory confidence limits were constructed 

based on the estimate of the indirect effect and its standard error. The normal theory 95% 

confidence intervals (Equation 22) were obtained by multiplying the indirect effect 

standard error by its critical value (1.96). The resulting value was added and subtracted 

from the indirect effect estimate. 

95% 𝐶𝐼 = �̂��̂� ± 1.96 ∗ 𝑆𝐸�̂��̂� (22) 

Asymmetric confidence limits were obtained using the percentile bootstrap 

confidence intervals. The bootstrap method generated 1000 random samples with 

replacement for each dataset, and the indirect effect was estimated in each of those 1000 

samples. Confidence intervals were calculated using the percentile bootstrap. This method 

orders the estimates from the lowest to the highest. It then creates the confidence interval 
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with the values of the 2.5% and 97.5% percentile, which correspond to the Lower Bound 

and Upper Bound of the confidence interval, respectively.  

 

Confidence Interval Coverage 

 

Confidence Interval Coverage was assessed by the proportion of times the true 

population parameter (𝑎𝑏) was included in the 95% percentile bootstrap confidence 

interval. Poor coverage was considered when values fell outside the acceptable range 

[0.925, 0.975]. 

 

Imbalance 

 

The accuracy of the Percentile Bootstrap Confidence Limits was evaluated with the 

proportion of the times the true value (𝑎𝑏) was above the upper confidence limit and the 

proportion of the times the true value (𝑎𝑏) was below the lower confidence limit. These 

proportions were then compared to the predicted proportion. For a 95% confidence interval, 

the most accurate methods should have a proportion of true values above the upper 

confidence limit of 0.025 and a proportion of true values below the lower confidence limit 

of 0.025. This study used the liberal robustness criterion (Bradley, 1978) to assess if 

proportions deviated significantly from the expected proportion. For instance, proportions 

were considered robust if they fell within the range .5α/2 to 1.5α/2. = (0.0125,0.0375). 
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Empirical Type I Error Rates and Empirical Power  

 

The statistical significance test for the indirect effect using the multivariate delta 

standard error divides the indirect effect estimate (�̂��̂�) by its standard error 

(√�̂�2𝑠�̂�
2 + �̂�2𝑠�̂�

2). Then this value was compared to the values in the normal distribution. If 

(|
�̂��̂�

√�̂�2𝑠
�̂�
2+�̂�2𝑠�̂�

2
|) exceeded 1.96, the hypothesis of no indirect effect was rejected at a two-

tailed alpha level of 0.05 (MacKinnon, 2008).  

The statistical significance for confidence intervals (normal theory confidence 

intervals and percentile bootstrap confidence intervals) was assessed by evaluating whether 

zero was included in the confidence interval. 

The Empirical Type I Error Rate and the Empirical Power were calculated in both 

cases. Using Bradley’s criterion (1978), acceptable values for Type I Error Rate fell in the 

range of α = 0.025 - 0.075. Values above 0.80 for Empirical Power were considered 

acceptable using the conventional standard of 0.80 power. 
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CHAPTER 3 

RESULTS (STUDY 1) 

The results for the seven outcomes (Bias, Relative bias, Standardized bias, 

Empirical Type I Error Rates, Empirical Power, Confidence Intervals Coverage, and 

Imbalance) are discussed in the section below. Figures 6, 7, 8, and 9 show the sample size 

(𝑁 = 100, 200, and 500) on the x-axis, and the outcome (e.g., Bias) on the y-axis. The 

confounding effect is represented with the following symbols: negative confounding (-), no 

confounding (0), and positive confounding (+). 

Scenario 1. The data were analyzed with a single mediator model with a confounder 

(𝑼) influencing the mediator (𝑴) and the outcome (𝒀).  

 

Bias of the indirect effect 

The results for Bias, Relative bias, and Standardized bias followed a consistent 

pattern. As expected, when the data were analyzed with a single mediator model and the 

confounder (𝑈) was included, the values for Bias, Relative Bias, and Standardized bias fell 

within the acceptable range (e.g., values between -.10 and .10 for Relative Bias). Figure 6 

shows the Standardized Bias results. Figures with the Bias and Relative bias results are 

shown in Appendix H. 

Empirical Type I Error Rate for the indirect effect (ab) 

 

 The next outcome was the Empirical Type I Error Rate for the indirect effect (𝑎𝑏). 

Empirical Type I Error Rates were computed using the Z test, Normal Confidence 

Intervals, and Percentile Bootstrap Confidence Intervals. The results from these methods 
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show a consistent pattern, so this section describes the Empirical Type I Error Rates 

calculated with the Percentile Bootstrap Confidence Intervals (Figure 7). Figures for 

Empirical Type I Error Rates computed using the Z test, Normal Confidence Intervals are 

shown in Appendix H.  

Using Bradley’s criterion (1978), Empirical Type I Error Rate values that fell in the 

range of α = 0.025 - 0.075 were considered acceptable. As expected, Empirical Type I Error 

Rates did not have values above 0.075; however, some values were below 0.025.  

Empirical Power for the indirect effect (ab) 

 

The next outcome was the Empirical Power for the indirect effect (𝑎𝑏). This 

outcome was estimated using the Z test, the Normal Confidence Intervals, and the 

Percentile Bootstrap Confidence Intervals.  

Overall, Empirical Power values were above the acceptable value of 0.80, for 𝑁 = 

200 and 𝑁 = 500, for each method used to calculate the outcome (Z test, Normal 

Confidence Intervals, and Percentile Bootstrap Confidence Intervals). However, differences 

in Empirical Power were found in sample size 𝑁 = 100. For instance, there were some 

values between 0.75 and 0.80 when Empirical Power was estimated with a Z test and the 

Normal Confidence Intervals (see Appendix H), but all values were higher than 0.80 when 

Empirical Power was calculated using the Percentile Bootstrap Confidence Intervals 

(Figure 8).  
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Confidence Interval Coverage and Imbalance 

 

Confidence Interval Coverage was calculated using the Percentile Bootstrap 

Confidence Intervals. Using Bradley’s (1978) criterion, poor coverage was considered for 

values that fell outside the range [0.925, 0.975]. When the data were analyzed with the true 

model, no values were below 0.925 (see Figure 9). The imbalance results are shown in 

Appendix H. 

Figure 6 

Standardized Bias of the Indirect Effect (𝑎𝑏). The Data Were Analyzed With a Single 

Mediator Model With a Confounder (U) That Influences the Mediator (M) and the Outcome 

(Y) 

 
Note. The dashed line indicates a Standardized bias of zero. 
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Figure 7 

Empirical Type I Error Rate for the Indirect Effect (𝑎𝑏). Statistical Significance Was 

Assessed Using Percentile Bootstrap Confidence Intervals. The Data Were Analyzed With a 

Confounder (U) That Influences the Mediator (M) and the Outcome (Y) 

 

 
Note. The dashed lines indicate the adequate Empirical Type I Error Rate range [.025, 

.075]. 
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Figure 8 

Empirical Power for the Indirect Effect (𝑎𝑏). Statistical Significance was Assessed Using 

Percentile Bootstrap Confidence Intervals. The Data Were Analyzed With a Confounder 

(U) That Influences the Mediator (M) and the Outcome (Y) 

 

 
Note. The dashed line represents the conventional standard of 0.80 power. 
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Figure 9 

Coverage for the Indirect Effect (𝑎𝑏). The Data Were Analyzed With a Single Mediator 

Model With a Confounder (U) That Influences the Mediator (M) and the Outcome (Y) 

 

 
Note. The dashed lines indicate the adequate Confidence Interval Coverage range [0.925, 

0.975] 
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Scenario 2. The data were analyzed with a misspecified model, where the 

confounder was omitted from the model. 

 

Bias of the indirect effect (𝒂𝒃) 

 

Because the results for Bias, Relative bias, and Standardized bias of the indirect 

effect (𝑎𝑏) followed a consistent pattern, this section focuses on reporting the results of 

Standardized bias (Figure 10). 

 When the data were analyzed with the misspecified model, Standardized bias had 

large values, but only for conditions where the true 𝑎 parameter was large (0.59), not for 

cases where the true 𝑎 parameter was zero. Negative confounding (𝑑𝑒 = -0.3481) resulted 

in negative standardized bias values, and positive confounding (𝑑𝑒 = 0.3481) resulted in 

positive standardized bias values. Figures with the results for Bias and Relative bias are 

shown in Appendix I. 

 

Empirical Type I Error Rate for the indirect effect (ab) 

 

 The next outcome was the Empirical Type I Error Rate for the indirect effect 

(𝑎𝑏). Empirical Type I Error Rates were computed using the Z test, Normal Confidence 

Intervals, and Percentile Bootstrap Confidence Intervals. The results from these methods 

show a consistent pattern. For that reason this section describes the Empirical Type I 

Error Rates calculated with the Percentile Bootstrap Confidence Intervals (Figure 11). 

Figures for Empirical Type I Error Rates computed using the Z test, Normal Confidence 

Intervals are shown in Appendix I. 
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When the data were analyzed with a misspecified model, there were Empirical 

Type I Error Rates values above the acceptable criterion of 0.075 when large 

confounding was present, both negative (𝑑𝑒 = -0.3481) and positive (𝑑𝑒 = 0.3481); but 

only when the true 𝑎 parameter was large (0.59). For these conditions, the Empirical 

Type I Error Rates were around 0.50 for sample size 𝑁 = 100, increased to values around 

0.80 for 𝑁 = 200, and were around 1 for sample size 𝑁 = 500 (See Figure 11). 

 

Empirical Power for the indirect effect 

 

The next outcome was the Empirical Power for the indirect effect (𝑎𝑏). This 

outcome was estimated using the Z test, the Normal Confidence Intervals, and the 

Percentile Bootstrap Confidence Intervals. Overall, Empirical Power values were above 

the acceptable value of 0.80, for 𝑁 = 200 and 𝑁 = 500, with no difference in the method 

used to calculate the outcome (Z test, Normal Confidence Intervals, and Percentile 

Bootstrap Confidence Intervals).  

However, the true confounding effect influenced Empirical Power when 𝑁 = 100. 

Negative confounding (𝑑𝑒 = -0.3481) was the instance where Empirical Power was 

affected the most, with values around 0.50 when Empirical Power was calculated using 

the Z test and the Normal Theory Confidence Intervals, and values around 0.60 using the 

Percentile Confidence Intervals. Figure 12 show the Empirical Power estimated with the 

Percentile Bootstrap Confidence Intervals. Results for Empirical Power estimated with 

the Z test, the Normal Confidence Intervals are shown in Appendix I. 
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Confidence Interval Coverage and Imbalance 

 

The Confidence Interval Coverage was calculated using the Percentile Bootstrap 

Confidence Intervals. In general, large confounding (𝑑𝑒 = 0.3481 and 𝑑𝑒 = 0.3481) 

affected Confidence Interval Coverage, but only when the true a path was large (𝑎 = 

0.59) (see Figure 13). The imbalance results are shown in Appendix I. 

 

Figure 10 

Standardized Bias of the Indirect Effect (𝑎𝑏). The Data Were Analyzed With a 

Misspecified Model (Single Mediator Model) 

 

 
Note. The dashed line indicates a Standardized bias of zero. 
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Figure 11 

Empirical Type I Error Rate for the Indirect Effect (𝑎𝑏). Statistical Significance Was 

Assessed Using Percentile Bootstrap Confidence Intervals). The Data Were Analyzed 

With a Misspecified Model (Single Mediator Model) 

 

 
Note. The dashed lines indicate the adequate Empirical Type I Error Rate range [0.025, 

0.075]. 
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Figure 12 

Empirical Power for the Indirect Effect (𝑎𝑏). Statistical Significance Was Assessed Using 

Percentile Bootstrap Confidence Intervals). The Data Were Analyzed With a Misspecified 

Model (Single Mediator Model) 

 

 
Note. The dashed line represents the conventional standard of 0.80 power. 
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Figure 13 

Coverage for the Indirect Effect (𝑎𝑏). The Data Were Analyzed with a Misspecified 

Model (Single Mediator Model) 

 

 
Note. The dashed lines indicate the adequate Confidence Interval Coverage range [0.925, 

0.975]. 
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CHAPTER 4 

METHOD (STUDY 2) 

Simulation Study 

 

A Monte Carlo Simulation study was conducted using the SAS 9.4 programming 

language. The data were generated based on a single mediator model with a confounder 

(𝑈) influencing the mediator (𝑀) and the outcome (𝑌). In this model 𝑀, 𝑌, and 𝑈 were 

generated as continuous variables. 𝑋 was generated as a binary variable, representing 

random assignment to treatment and control groups. Residuals for each variable were 

generated as normal variates.  

The simulation had two sample sizes (N = 100 and 500) and 16 sets of parameter 

values (𝑎, 𝑏, 𝑐’, 𝑑 and 𝑒) for a total of 32 combinations. There were 1,000 replications for 

each condition. The simulated data were analyzed with two sensitivity analyses (L.O.V.E. 

and correlated residuals). Each sensitivity analysis method had a significance test and an 

effect size comparison. The simulation programs for the sensitivity to confounding 

methods are included in the Appendices; Appendix J shows the program of the correlated 

residuals method, and Appendix K shows the program of the L.O.V.E. method. 

There were two factors of interest in the simulation study. The first factor was the 

magnitude of the true confounding effect, which is denoted by the product of 𝑑 times 𝑒 

(𝑑𝑒  = 0, 0.019, 0.1521, 0.3481). The second factor was the magnitude of the true indirect 

effect, which is denoted by the product of 𝑎 times 𝑏 (𝑎𝑏 = 0, 0.019, 0.1521, 0.3481).  
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Significance tests 

 

Significance test for the Left Out Variables Error (L.O.V.E.) method 

 

For the L.O.V.E. method, the significance test evaluated the product of the 

correlation between the confounder and the mediator times the correlation between the 

confounder and the outcome (𝑟𝑢𝑚 ∗ 𝑟𝑢𝑦). 

The first step was to estimate the standardized regression coefficients (𝑏∗ , 

𝑐′∗,  and  𝑎∗) for a model where the confounder 𝑈 is included using equations 8, 9, and 

10. Then, all the values of 𝑟𝑢𝑚 and 𝑟𝑢𝑦 that make the standardized indirect effect zero 

(𝑎∗ ∗ 𝑏∗ = 0) were selected. The significance test was performed for the pair of 

correlations where the values were equal (𝑟𝑢𝑚 = 𝑟𝑢𝑦). If multiple pairs of correlations 

met the criterion, the smallest value of the product of the correlations (𝑟𝑢𝑚 ∗ 𝑟𝑢𝑦) was 

selected for the significance test. 

The variance and covariances of the correlations were estimated with the 

following equations (Olkin & Finn, 1995): 

𝑣𝑎𝑟(𝑟𝑢𝑚) =  
(1 − 𝑟𝑢𝑚

2 )2

𝑁
 

(23) 

𝑣𝑎𝑟(𝑟𝑚𝑦) =  
(1 − 𝑟𝑚𝑦

2 )2

𝑁
 

(24) 

𝑣𝑎𝑟(𝑟𝑢𝑦) =  
(1 − 𝑟𝑢𝑦

2 )2

𝑁
 

(25) 

𝑐𝑜𝑣(𝑟𝑢𝑚, 𝑟𝑚𝑦) =  

1
2 (2𝑟𝑚𝑦 − 𝑟𝑢𝑚𝑟𝑚𝑦)(1 − 𝑟𝑢𝑦

2 − 𝑟𝑢𝑚
2 − 𝑟𝑚𝑦

2 ) + 𝑟𝑢𝑦
3

𝑁
 

 

(26) 

𝑐𝑜𝑣(𝑟𝑢𝑚, 𝑟𝑢𝑦) =  

1
2 (2𝑟𝑚𝑦 − 𝑟𝑢𝑚𝑟𝑢𝑦)(1 − 𝑟𝑢𝑚

2 − 𝑟𝑚𝑦
2 − 𝑟𝑢𝑦

2 ) + 𝑟𝑚𝑦
3

𝑁
 

 

(27) 
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𝑐𝑜𝑣(𝑟𝑢𝑦, 𝑟𝑚𝑦) =  

1
2 (2𝑟𝑢𝑚 − 𝑟𝑚𝑦𝑟𝑢𝑦)(1 − 𝑟𝑢𝑚

2 − 𝑟𝑚𝑦
2 − 𝑟𝑢𝑦

2 ) + 𝑟𝑢𝑚
3

𝑁
 

 

(28) 

The standard error for the product of correlations (𝑟𝑢𝑚 ∗ 𝑟𝑢𝑦) (equation  

30) was estimated using the Multivariate delta method, where the variance–covariance 

matrix of the correlation coefficients was pre- and postmultiplied by the vector of partial 

derivatives. 

Variance–covariance matrix: 

[
 
 
 
 

𝑟𝑢𝑚 𝑟𝑚𝑦 𝑟𝑢𝑦

𝑟𝑢𝑚 𝑣𝑎𝑟(𝑟𝑢𝑚)

𝑟𝑚𝑦 𝑐𝑜𝑣(𝑟𝑢𝑚, 𝑟𝑚𝑦) 𝑣𝑎𝑟(𝑟𝑚𝑦)

𝑟𝑢𝑦 𝑐𝑜𝑣(𝑟𝑢𝑚, 𝑟𝑢𝑦) 𝑐𝑜𝑣(𝑟𝑢𝑦, 𝑟𝑚𝑦) 𝑣𝑎𝑟(𝑟𝑢𝑦)]
 
 
 
 

 

 

𝑣𝑎𝑟𝑟𝑢𝑚∗𝑟𝑢𝑦
= 𝑟𝑢𝑚

2 ∗  𝑣𝑎𝑟(𝑟𝑢𝑦) + 2 ∗ 𝑐𝑜𝑣(𝑟𝑢𝑚, 𝑟𝑢𝑦) ∗ 𝑟𝑢𝑚 ∗ 𝑟𝑢𝑦 + 𝑟𝑢𝑦
2 ∗ 𝑣𝑎𝑟(𝑟𝑢𝑚)   

 

(29) 

𝑆𝐸 =  √𝑣𝑎𝑟𝑟𝑢𝑚∗𝑟𝑢𝑦
 

 

(30) 

 

Finally, a Z value was calculated dividing (𝑟𝑢𝑚 ∗ 𝑟𝑢𝑦) by its standard error (equation 31). 

𝑍 =  
𝑟𝑢𝑚 ∗ 𝑟𝑢𝑦

𝑆𝐸
 (31) 

 

Significance test for the correlated residuals method 

 

The correlated residuals method was performed in the Structural Equation 

Modeling (SEM) framework using the PROC CALIS statement in the SAS language 

programming. First, equations 2 and 3 from the single mediator model were specified 

with regression coefficients 𝑎, 𝑐′, and 𝑏 as free parameters. The COV statement was used 

to fix the covariances between residuals (𝑒2, 𝑒3) to a range of values from -3 to 3.  
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The covariances between residuals were converted into correlations by dividing 

each covariance between residuals by the square root of residual of 𝑀 (√𝐷1) times the 

square root of the residual of 𝑌 (√𝐷2). 

The exact correlation between residuals (𝑟𝑒2𝑒3) needed to change the indirect 

effect to zero was identified. This value was used to perform the significance test using 

two-tailed hypotheses (H₀: ⍴ = 0, and H1:  ⍴ ≠ 0). The t statistic was estimated using 

equation 32 and compared to the 𝑡𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 with 𝑛 − 2 degrees of freedom.  

𝑡 =  
𝑟√𝑛 − 2

√1 − 𝑟2
 

 

(32) 

The 95% Confidence Intervals were estimated with the Fisher’s z-transformation 

test. This method first transformed the correlation value to z′(equation 33). The lower 

and upper confidence limits for the Fisher’s z test for the correlation were estimated using 

equation 35. Moreover, the confidence intervals were converted to 𝑟 again using equation 

36 (Cohen, Cohen, West, & Aiken, 2003). Finally, it was assessed whether zero was part 

of the 95% Confidence Interval. 

𝑧′ = 1
2
[𝑙𝑛(1+ 𝑟) − 𝑙𝑛(1−𝑟)] = 0.5𝑙𝑛 (

1+𝑟
1−𝑟

)  = 𝑎𝑟𝑐𝑡𝑎𝑛ℎ (𝑟)  (33) 

𝑆𝐸
𝑧′ = 1

√𝑛−3
  (34) 

95% 𝐶𝐼 = 𝑧 ′̂ ± 1.96 ∗ 𝑆𝐸𝑧′   (35) 

𝑟 =  
𝑒2𝑧−1

𝑒2𝑧−1
= 𝑡𝑎𝑛ℎ (𝑧)  (36) 
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Effect size 

 

The amount of confounding was assessed by the effect size of a) the product of 

the correlation between the confounder and the mediator times the correlation between 

the confounder and the outcome (𝑟𝑢𝑚 ∗ 𝑟𝑢𝑦) for the L.O.V.E. method, and b) the 

correlation between residuals (𝑟𝑒2𝑒3) for the correlated residuals method. 

Cox et al. (2013) mentioned that there is no scale for evaluating whether the 

confounding effect is small, medium, or large. However, in the present study each 

estimate was evaluated at four effect sizes. Whether the estimate was greater than 0.05 

(half small effect), greater than 0.1 (small effect), greater than 0.3 (medium effect), and 

greater than 0.5 (large effect). 

Interpretation 

 

Left Out Variables Error (L.O.V.E.) method 

 

In terms of the interpretation, Cox et al. (2013) described that if 𝑟𝑢𝑚 and 𝑟𝑢𝑦 are 

large (e.g., 0.5), confounding bias is not likely because a confounder with such large 

effects is unlikely to exist. On the contrary, if the hypothetical correlations with the 

confounder are small, confounding of the indirect effect would be more plausible since 

there could be many possible confounders with smaller effects.  

Correlated residuals method 

 

The correlated residuals method uses the correlation between residuals (𝑟𝑒2𝑒3) 

needed to change the indirect effect to zero. The interpretation follows the same pattern 

as the L.O.V.E method. If the correlation between residuals (𝑟𝑒2𝑒3) that is needed to 
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change the indirect effect to zero is large; confounding is less likely to explain the 

indirect effect results. And if the correlation between residuals (𝑟𝑒2𝑒3) needed to make 

the indirect effect zero is small, confounding is more likely to explain the indirect effect 

results.  

Joint test 

 

The accuracy of these methods was evaluated with a joint test, which multiplies 

the probability of a statistically significant indirect effect by the probability that 

confounding does not explain the results. The following section describes how each of 

these probabilities were estimated. 

𝐽𝑜𝑖𝑛𝑡 𝑡𝑒𝑠𝑡 = 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑎 𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐𝑎𝑙𝑙𝑦 𝑠𝑖𝑔𝑛𝑖𝑓𝑖𝑐𝑎𝑛𝑡 𝑖𝑛𝑑𝑖𝑟𝑒𝑐𝑡 𝑒𝑓𝑓𝑒𝑐𝑡

∗ 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑡ℎ𝑎𝑡 𝑐𝑜𝑛𝑓𝑜𝑢𝑛𝑑𝑖𝑛𝑔 𝑑𝑜𝑒𝑠 𝑛𝑜𝑡 𝑒𝑥𝑝𝑙𝑎𝑖𝑛 𝑡ℎ𝑒 𝑟𝑒𝑠𝑢𝑙𝑡𝑠 

Probability of a statistically significant indirect effect 

The probability of a statistically significant indirect effect was estimated using the 

1000 replications for each condition. The Sobel test was used as the significance test of 

the indirect effect, which corresponds to the Type I Error Rate of the indirect effect when 

𝑎𝑏 =  0, and to the Empirical Power of the indirect effect when 𝑎𝑏 ≠  0. 

Probability that confounding does not explain the results 

The probability that confounding does not explain the results was estimated by 

applying the tests for sensitivity to confounding to the datasets where the indirect effect 

estimate was statistically significant in the sample. This procedure resembles what a 

researcher would typically do, first testing if the indirect effect is statistically significant 
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and then assessing whether that statistically significant indirect effect can be explained by 

confounding bias by looking at the results of the sensitivity analyses. The probability that 

confounding does not explain the results of a statistically indirect effect was estimated by 

calculating the proportion of the times the Null Hypothesis (H0:  𝑟𝑢𝑚 ∗ 𝑟𝑢𝑦 = 0 and H0:   

𝑟𝑒2𝑒3 = 0) of the sensitivity to confounding methods was rejected, and the proportion of 

times the sensitivity values were higher than a certain cutoff (0.05, 0.1, 0.3, 0.5). 
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CHAPTER 5 

RESULTS (STUDY 2) 

This section describes the simulation results of the sensitivity analyses methods. 

Tables 2, 3, 4, and 5 show the results of the L.O.V.E method, and Tables 6, 7, 8, and 9 

show the results of the correlated residuals method.  

Type I Error Rates  

 

For conditions when sample size N = 500 and the true confounding effect was 

medium and large (𝑑𝑒 = 0.1521 𝑎𝑛𝑑 0.3481), the Type I Error Rates for the test of the 

indirect effect fell outside the acceptable range (0.117 and 0.226, respectively). The 

Empirical Type I Error Rates for the indirect effect did not improve when multiplied by 

the significance tests for the L.O.V.E method or the correlated residuals method (see 

Tables 2 and 6). However, the Empirical Type I Error Rates for the test of the indirect 

effect fell into the acceptable range [0.025, 0.075] when multiplied by the proportion of 

times the sensitivity values were higher than 0.3 and 0.5 for both the L.O.V.E. and 

correlated residuals methods (see Tables 3 and 7). 

Empirical Power 

 

The Empirical Power of the test of the indirect effect (𝑎𝑏) fell into the acceptable 

range (above 0.80) when sample size N = 500 and the true indirect effect (𝑎𝑏) was 

medium and large (𝑑𝑒 = 0.1521 𝑎𝑛𝑑 0.3481). The Empirical Power of the indirect 

effect did not change when multiplied by the significance tests or the proportion of times 

the sensitivity values were higher than 0.05, 0.1, and 0.3. However, when the Empirical 
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Power values were multiplied by the proportion of times the sensitivity values were 

higher than 0.5, decreased Empirical Power values below the acceptable value (0.80). 

This finding implies that using 0.5 as a cutoff for either 𝑟𝑢𝑚 ∗ 𝑟𝑢𝑦  or 𝑟𝑒2𝑒3 (see Tables 5 

and 9), it would be too strict of a cutoff for sensitivity to confounding. 

 

Table 2 

Left Out Variables Error (L.O.V. E.) Simulation Results. Joint Test: Probability of a 

Statistically Significant Indirect Effect*Probability That Confounding Does Not Explain 

the Results. Conditions When the True Indirect Effect Is Zero (ab = 0) 

 

Note. (-) Indicates cases when the indirect effect estimate was not statistically significant 

in any of the datasets, hence no data was considered. Joint test = The joint test was 

calculated by multiplying the probability of a statistically significant indirect effect 

(Empirical Type I Error Rate of the indirect effect) times the probability that confounding 

does not explain the results (Proportion of times the H0:  𝑟𝑢𝑚 ∗ 𝑟𝑢𝑦 = 0 was rejected using 

the Z-test). 
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Table 3 

Left Out Variables Error (L.O.V. E.) Simulation Results. Joint Test: Probability of a 

Statistically Significant Indirect Effect*Probability That Confounding Does Not Explain 

the Results. Conditions When the True Indirect Effect Is Zero (ab = 0) 

 

Note. (-) Indicates cases when the estimate of the indirect effect was not statistically 

significant in any of the datasets, hence no data was considered. Joint tests = The joint 

test was calculated by multiplying the probability of a statistically significant indirect 

effect (Empirical Type I Error Rate of the indirect effect) times the probability that 

confounding does not explain the results (Proportion of times the sensitivity values 𝑟𝑢𝑚 ∗

𝑟𝑢𝑦 were higher than 0.05, 0.1, 0.3, 0.5). 
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Table 4 

Left Out Variables Error (L.O.V.E) Simulation Results. Joint Test (Probability of a 

Statistically Significant Indirect Effect*Probability That Confounding Does Not Explain 

the Results). Conditions When the True Indirect Effect Is Different from Zero (ab ≠ 0) 
 

 

Note. Joint test = The joint test was calculated by multiplying the probability of a 

statistically significant indirect effect (Empirical Power of the indirect effect) times the 

probability that confounding does not explain the results (Proportion of times the H0: 

 𝑟𝑢𝑚 ∗ 𝑟𝑢𝑦 = 0 was rejected using the Z-test). 
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Table 5 

Left Out Variables Error (L.O.V.E) Simulation Results. Joint Test (Probability of a 

Statistically Significant Indirect Effect*Probability That Confounding Does Not Explain 

the Results). Conditions When the True Indirect Effect Is Different from Zero (ab ≠ 0) 

Note. Joint test = The joint test was calculated by multiplying the probability of a 

statistically significant indirect effect (Empirical Power of the indirect effect) times the 

probability that confounding does not explain the results (Proportion of times the 

sensitivity values 𝑟𝑢𝑚 ∗ 𝑟𝑢𝑦 were higher than 0.05, 0.1, 0.3, 0.5). 
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Table 6 

Correlated Residuals Simulation Results. Joint Test (Probability of a Statistically 

Significant Indirect Effect*Probability That Confounding Does Not Explain the Results. 

Conditions When the True Indirect Effect Is Zero (ab=0) 

 

 

 

Note. (-) Indicates cases when the indirect effect estimate was not statistically significant 

in any of the datasets, hence no data was considered. Joint test = The joint test was 

calculated by multiplying the probability of a statistically significant indirect effect 

(Empirical Type I Error Rate of the indirect effect) times the probability that confounding 

does not explain the results (Proportion of times the H0:  𝑟𝑒2𝑒3 =  0 was rejected using the 

t-test, and the proportion zero was not inside the 95% CI). 
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Table 7 

Correlated Residuals Simulation Results. Joint Test (Probability of a Statistically 

Significant Indirect Effect*Probability That Confounding Does Not Explain the Results). 

Conditions When the True Indirect Effect Is Zero (ab=0) 

 

Note. (-) Indicates cases when the indirect effect estimate was not statistically significant 

in any of the datasets, hence no data was considered. Joint tests = The joint test was 

calculated by multiplying the probability of a statistically significant indirect effect 

(Empirical Type I Error Rate of the indirect effect) times the probability that confounding 

does not explain the results (Proportion of times the sensitivity values 𝑟𝑒2𝑒3 were higher 

than 0.05, 0.1, 0.3, 0.5). 
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Table 8 

Correlated Residuals Simulation Results. Joint Test (Probability of a Statistically 

Significant Indirect Effect*Probability That Confounding Does Not Explain the Results). 

Conditions When the Indirect Effect Is Different from Zero (ab ≠ 0) 

 

Note. (-) Indicates cases when the estimate of the indirect effect was not statistically 

significant in any of the datasets, hence no data was considered. Joint test = The joint test 

was calculated by multiplying the probability of a statistically significant indirect effect 

(Empirical Power of the indirect effect) times the probability that confounding does not 

explain the results (Proportion of times the H0: 𝑟𝑒2𝑒3 =  0 was rejected using the t-test, 

and the proportion zero was not inside the 95% CI). 
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Table 9 

Correlated Residuals Simulation Results. Joint Test (Probability of a Statistically 

Significant Indirect Effect*Probability That Confounding Does Not Explain the Results). 

Conditions When the Indirect Effect Is Different from Zero (ab ≠ 0) 

Note. (-) Indicates cases when the estimate of the indirect effect was not statistically 

significant in any of the datasets, hence no data was considered. Joint test = The joint test 

was calculated by multiplying the probability of a statistically significant indirect effect 

(Empirical Power of the indirect effect) times the probability that confounding does not 

explain the results (Proportion of times the sensitivity values 𝑟𝑒2𝑒3 were higher than 0.05, 

0.1, 0.3, 0.5). 
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CHAPTER 6 

APPLIED DATA EXAMPLES 

Two datasets were used to evaluate confounding on the 𝑀 to 𝑌 relation: 1) a data 

set from a memory study, and 2) a data set from the Athletes Training and Learning to 

Avoid Steroids (ATLAS) intervention.  

Datasets 

 

Memory study 

 

In this study, 44 participants were randomly assigned to two conditions: 

participants were asked to repeat a list of words (primary rehearsal) or make images of 

the words (secondary rehearsal). In the end, participants were asked to report the number 

of words they remembered. In the data set, 𝑋 represents random assignment to 

conditions, coded 0 (primary rehearsal) and 1 (secondary rehearsal). 𝑀 is the response to 

the question about how much each participant made images, scored from 1 (not at all) to 

9 (definitely), and 𝑌 represents the total number of words that people remembered (out of 

20). More detail about this study is described in MacKinnon, Valente, and Wurpts 

(2018). 

Athletes Training and Learning to Avoid Steroids (ATLAS) intervention 

 

This intervention was designed to prevent steroid use among high school athletes. 

The participants were 1,506 adolescent football players from 31 high schools in two 

states: Oregon and Washington. The participants were randomly assigned to two 

conditions: An intervention group (that received 14 sessions of the prevention program) 
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and a control group (that received a pamphlet with information about steroid use). More 

detail about this project is described in Goldberg et al. (1996). 

Memory study 

 

Left Out Variables Error (L.O.V.E) Method 

 

Three correlations were estimated from the data: 1) the correlation between the 

outcome and the independent variable (𝑟𝑦𝑥), 2) the correlation between the mediator and 

the independent variable (𝑟𝑚x), and 3) the correlation between the outcome and the 

mediator (𝑟𝑦𝑚). The estimates of those correlations were: 𝑟𝑦𝑥 = 0.337 , 𝑟𝑚𝑥 = 0.623, 

𝑟𝑦𝑚 = 0.497. The correlation between the independent variable and the omitted variable 

(𝑟𝑥𝑢) was fixed to zero. Figure 14 shows a plot for all the values of 𝑟𝑢𝑚 and 𝑟𝑢y that make 

the standardized indirect effect zero. 

Figure 14 

Plot of the L.O.V.E Sensitivity to Confounding Method (Memory Study) 
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Significance test for the product of correlations (𝒓𝒖𝒎 ∗ 𝒓𝒖𝒚) 

 

A significance test for 𝑟𝑢𝑚 ∗ 𝑟𝑢𝑦 was performed. First, all values of 𝑟𝑢𝑚 and 𝑟𝑢y that 

make the standardized indirect effect zero were selected. Then, all cases where 𝑟𝑢𝑚 = 𝑟𝑚𝑦 

were chosen; in the memory data set there were five pairs of values that met the criterion 

(See Table 10). The test was performed for the smallest value of 𝑟𝑢𝑚 ∗ 𝑟𝑢𝑦 = 0.285. 

Table 10 

Conditions of 𝑟𝑚𝑢 and 𝑟𝑢𝑦 That Make the Standardized Indirect Effect Zero, and Also Are 

Equal (𝑟𝑢𝑚 = 𝑟𝑢𝑦) 

𝑟𝑦𝑥 𝑟𝑚𝑥 𝑟𝑦𝑚 𝑟𝑢𝑚 𝑟𝑢𝑦 𝑟𝑢𝑚 ∗ 𝑟𝑢𝑦 

0.337 0.623 0.497 0.534 0.534 0.285 

0.337 0.623 0.497 0.535 0.535 0.286 

0.337 0.623 0.497 0.536 0.536 0.287 

0.337 0.623 0.497 0.537 0.537 0.288 

0.337 0.623 0.497 0.538 0.538 0.289 

 

The variance and covariances, variances of the correlations, standard error and Z 

value of 𝑟𝑢𝑚 ∗ 𝑟𝑢𝑦 = 0.285 were estimated with the following equations: 

𝑣𝑎𝑟(𝑟𝑢𝑚) =  
(1 − 𝑟𝑢𝑚

2 )2

𝑁
=  0.011 

𝑣𝑎𝑟(𝑟𝑚𝑦) =  
(1 − 𝑟𝑚𝑦

2 )2

𝑁
=  0.012 

𝑣𝑎𝑟(𝑟𝑢𝑦) =  
(1 − 𝑟𝑢𝑦

2 )2

𝑁
=  0.011 

𝑐𝑜𝑣(𝑟𝑢𝑚, 𝑟𝑚𝑦) =  
1

2
(2𝑟𝑚𝑦− 𝑟𝑢𝑚𝑟𝑚𝑦)(1−𝑟𝑢𝑦

2 −𝑟𝑢𝑚
2 −𝑟𝑚𝑦

2 )+𝑟𝑢𝑦
3

𝑁
= .005    

𝑐𝑜𝑣(𝑟𝑢𝑚, 𝑟𝑢𝑦) =  

1
2 (2𝑟𝑚𝑦 − 𝑟𝑢𝑚𝑟𝑢𝑦)(1 − 𝑟𝑢𝑚

2 − 𝑟𝑚𝑦
2 − 𝑟𝑢𝑦

2 ) + 𝑟𝑚𝑦
3

𝑁
= .004 

𝑐𝑜𝑣(𝑟𝑢𝑦, 𝑟𝑚𝑦) =  

1
2 (2𝑟𝑢𝑚 − 𝑟𝑚𝑦𝑟𝑢𝑦)(1 − 𝑟𝑢𝑚

2 − 𝑟𝑚𝑦
2 − 𝑟𝑢𝑦

2 ) + 𝑟𝑢𝑚
3

𝑁
= .005  
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𝑣𝑎𝑟𝑟𝑢𝑚∗𝑟𝑢𝑦
= 𝑟𝑢𝑚

2 ∗  𝑣𝑎𝑟(𝑟𝑢𝑦) + 2 ∗ 𝑐𝑜𝑣(𝑟𝑢𝑚, 𝑟𝑢𝑦) ∗ 𝑟𝑢𝑚 ∗ 𝑟𝑢𝑦 + 𝑟𝑢𝑦
2 ∗ 𝑣𝑎𝑟(𝑟𝑢𝑚)

=  .009  

𝑠𝑒 =  √𝑣𝑎𝑟𝑟𝑢𝑚∗𝑟𝑢𝑦
=  0.095 

𝑍 = 
𝑟𝑢𝑚 ∗ 𝑟𝑢𝑦

𝑠𝑒
=  2.996  

Effect size 

 

The amount of confounding was assessed by the effect size of the product of the 

correlations (𝑟𝑢𝑚 ∗ 𝑟𝑢𝑦  = 0.285). The product of the correlations was greater than 0.05 

(half small effect) and greater than 0.1 (small effect). But it was neither greater than 0.3 

(medium effect) nor greater than 0.5 (large effect). 

Correlated residuals method 

 

Significance test for the correlation between residuals (𝒓𝒆𝟐𝒆𝟑) 

 

A significance test was performed for the value of 𝑟𝑒2𝑒3 that made the indirect effect 

zero (0.389). The t-value was greater than the tcritical, at an alpha level of 0.05. Also, zero 

was not included in the 95% confidence interval [0.104, 0.615]. 

Table 11 

Significance Test (𝑟𝑒2𝑒3) (Memory Study) 

𝑟𝑒2𝑒3 N 𝑡 𝑡𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝑧′ 𝑆𝐸𝑧′  95% 

 𝐿𝐶𝐿𝑧’ 
95%  
𝑈𝐶𝐿𝑧’ 

 95%  
𝐿𝐶𝐿𝑟 

95%  
𝑈𝐶𝐿𝑟 

0.389 44 2.739 2.018 0.411 0.156 0.105 0.717 0.104 0.615 

 

Effect size 

 

The amount of confounding was assessed by the effect size of the correlation 

between residuals (𝑟𝑒2𝑒3 =  0.389), which was greater than 0.05 (half small effect), 

greater than 0.1 (small effect), and greater than 0.3 (medium effect), but it was not greater 

than 0.5 (large effect). 
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Figure 15 

Plot of the Correlated Residuals Sensitivity to Confounding Method (Memory Study) 

 

 
The correlated residuals method was also performed in R environment (R Core 

Team, 2020) using the mediation package (Tingley et al., 2014). Figure 16 shows how 

the Average Mediation Effect change as a function of the sensitivity parameter (𝜌). The 

value of 𝜌 that made the ACME zero was 0.39. This is the same value that was obtained 

with the SAS program.  
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Figure 16 

Plot of the Correlated Residuals Sensitivity to Confounding Method 

 

Athletes Training and Learning to Avoid Steroids (ATLAS) intervention 

 

Left Out Variables Error (L.O.V.E) Method 

 

Three correlations were estimated from the data: 1) the correlation between the 

outcome and the independent variable (𝑟𝑦𝑥), 2) the correlation between the mediator and 

the independent variable (𝑟𝑚x), and 3) the correlation between the outcome and the 

mediator (𝑟𝑦𝑚). The estimates of those correlations were: 𝑟𝑦𝑥 = 0.235, 𝑟𝑚𝑥 = 0.085, 

𝑟𝑦𝑚 = 0.222. The correlation between the independent variable and the omitted variable 

(𝑟𝑥𝑢) was fixed to zero. Figure 15 shows a plot for all the values of 𝑟𝑢𝑚 and 𝑟𝑢y that make 

the standardized indirect effect zero. 
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Figure 17 

Plot of the L.O.V.E Sensitivity to Confounding Method (ATLAS Intervention) 

 
 

Significance test for the product of correlations (𝒓𝒖𝒎 ∗ 𝒓𝒖𝒚) 

 

A statistical significance test for 𝑟𝑢𝑚 ∗ 𝑟𝑢𝑦 was performed. First, all values of 𝑟𝑢𝑚 

and 𝑟𝑢y that make the standardized indirect effect zero were selected. Then, all cases where 

𝑟𝑢𝑚 = 𝑟𝑚𝑦 were chosen; in this dataset there were ten pairs of values that met the criterion 

(See Table 11). The test was performed for the smallest value of 𝑟𝑢𝑚 ∗ 𝑟𝑢𝑦 = 0.16. 

Table 12 

Conditions of 𝑟𝑢𝑚 and 𝑟𝑢𝑦 That Make the Standardized Indirect Effect Zero, and Also Are 

Equal (𝑟𝑢𝑚 = 𝑟𝑢𝑦) (ATLAS Intervention) 

𝑟𝑦𝑥 𝑟𝑚𝑥 𝑟𝑦𝑚 𝑟𝑢𝑚 𝑟𝑢𝑦 𝑟𝑢𝑚 ∗ 𝑟𝑢𝑦 

0.235 0.085 0.222 0.40 0.40 0.160 

0.235 0.085 0.222 0.41 0.41 0.168 

0.235 0.085 0.222 0.42 0.42 0.176 

0.235 0.085 0.222 0.43 0.43 0.184 

0.235 0.085 0.222 0.44 0.44 0.193 

0.235 0.085 0.222 0.45 0.45 0.202 

0.235 0.085 0.222 0.46 0.46 0.211 
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𝑟𝑦𝑥 𝑟𝑚𝑥 𝑟𝑦𝑚 𝑟𝑢𝑚 𝑟𝑢𝑦 𝑟𝑢𝑚 ∗ 𝑟𝑢𝑦 

0.235 0.085 0.222 0.47 0.47 0.220 

0.235 0.085 0.222 0.48 0.48 0.230 

0.235 0.085 0.222 0.49 0.49 0.240 

 

The variance and covariances, variances of the correlations, standard error and Z 

value of 𝑟𝑢𝑚 ∗ 𝑟𝑢𝑦 = 0.16 were estimated with the following equations: 

𝑣𝑎𝑟(𝑟𝑢𝑚) =  
(1 − 𝑟𝑢𝑚

2 )2

𝑁
= .0005 

𝑣𝑎𝑟(𝑟𝑚𝑦) =  
(1 − 𝑟𝑚𝑦

2 )2

𝑁
= .0007 

𝑣𝑎𝑟(𝑟𝑢𝑦) =  
(1 − 𝑟𝑢𝑦

2 )2

𝑁
= .0005 

𝑐𝑜𝑣(𝑟𝑢𝑚, 𝑟𝑚𝑦) =  
1

2
(2𝑟𝑚𝑦− 𝑟𝑢𝑚𝑟𝑚𝑦)(1−𝑟𝑢𝑦

2 −𝑟𝑢𝑚
2 −𝑟𝑚𝑦

2 )+𝑟𝑢𝑦
3

𝑁
= .0002    

𝑐𝑜𝑣(𝑟𝑢𝑚, 𝑟𝑢𝑦) =  

1
2 (2𝑟𝑚𝑦 − 𝑟𝑢𝑚𝑟𝑢𝑦)(1 − 𝑟𝑢𝑚

2 − 𝑟𝑚𝑦
2 − 𝑟𝑢𝑦

2 ) + 𝑟𝑚𝑦
3

𝑁
= .00008 

𝑐𝑜𝑣(𝑟𝑢𝑦, 𝑟𝑚𝑦) =  

1
2 (2𝑟𝑢𝑚 − 𝑟𝑚𝑦𝑟𝑢𝑦)(1 − 𝑟𝑢𝑚

2 − 𝑟𝑚𝑦
2 − 𝑟𝑢𝑦

2 ) + 𝑟𝑢𝑚
3

𝑁
= .0002 

𝑣𝑎𝑟𝑟𝑢𝑚∗𝑟𝑢𝑦
= 𝑟𝑚𝑢

2 ∗  𝑣𝑎𝑟(𝑟𝑢𝑦) + 2 ∗ 𝑐𝑜𝑣(𝑟𝑢𝑚, 𝑟𝑢𝑦) ∗ 𝑟𝑢𝑚 ∗ 𝑟𝑢𝑦 + 𝑟𝑢𝑦
2 ∗ 𝑣𝑎𝑟(𝑟𝑢𝑚)

=  .000217226 

𝑠𝑒 =  √𝑣𝑎𝑟𝑟𝑢𝑚∗𝑟𝑢𝑦
=  0.014 

𝑍 =  
𝑟𝑢𝑚 ∗ 𝑟𝑢𝑦

𝑠𝑒
=  10.855 

 

Effect size 

 

The amount of confounding was assessed by the effect size of the product of the 

correlations (𝑟𝑢𝑚 ∗ 𝑟𝑢𝑦 = 0.16). The product of the correlations was greater than 0.05 

(half small effect) and greater than 0.1 (small effect). However, it was neither greater 

than 0.3 (medium effect) nor greater than 0.5 (large effect). 



 

59 

 

Correlated residuals method 

 

 

Significance test for the correlation between residuals (𝒓𝒆𝟐𝒆𝟑) 

 

A significance test was performed for the value of 𝑟𝑒2𝑒3 that made the indirect effect 

zero (0.229). The t-value was greater than the tcritical, at an alpha level of 0.05. Also, zero 

was not included in the 95% confidence interval [0.174, 0.282]. 

Table 13 

Significance Test (𝑟𝑒2𝑒3) (ATLAS Intervention) 

𝑟𝑒2𝑒3 N 𝑡 𝑡𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝑧′ 𝑆𝐸𝑧′  95%  
𝐿𝐶𝐿𝑧’ 

95%  
𝑈𝐶𝐿𝑧’ 

 95% 

 𝐿𝐶𝐿𝑟 

95% 

 𝑈𝐶𝐿𝑟 

0.229 1188 8.118 1.961 0.233 0.029 0.176 0.290 0.174 0.282 

 
 

Effect size 

 

The amount of confounding was assessed by the effect size of the correlation 

between residuals (𝑟𝑒2𝑒3 =  0.229), which was greater than 0.05 (half small effect) and 

greater than 0.1 (small effect). However, it was neither greater than 0.3 (medium effect) 

nor greater than 0.5 (large effect).  
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Figure 18 

Plot of the Correlated Residuals Sensitivity to Confounding Method (ATLAS Intervention) 

 
The correlated residuals method was also performed in R environment (R Core 

Team, 2020) using the mediation package (Tingley et al., 2014). Figure 19 shows how 

the Average Mediation Effect change as a function of the sensitivity parameter (𝜌). The 

value of 𝜌 that made the ACME zero was 0.21. This value was close but not the same as 

the one that was obtained with the SAS program (0.229). 

Figure 19 

Plot of the Correlated Residuals Sensitivity to Confounding Method 
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CHAPTER 7 

DISCUSSION 

There are four no-confounding assumptions to enhance a causal interpretation of 

the effects in mediation analysis: 1) no unmeasured 𝑋–𝑌 confounding, (2) no unmeasured 

𝑀–𝑌 confounding, (3) no unmeasured 𝑋–𝑀 confounding; and (4) no 𝑀–𝑌 confounder 

affected by the exposure (Pearl, 2001; Valeri & Vanderweele, 2013). If 𝑋 represents 

random assignment to treatment and control conditions, assumptions 1 and 3 hold. 

However, randomization of the treatment 𝑋 does not guarantee assumptions 2 and 4. In 

other words, if 𝑋 is randomized, the effect of 𝑀 to 𝑌 does not represent a causal effect 

unless assumptions 2 and 4 are satisfied. Methods to assess confounding of 𝑀 to 𝑌 were 

the focus of this master’s project.  

Different techniques have been developed to enhance a causal interpretation of 

the 𝑀 to 𝑌 effect (see MacKinnon & Pirlott, 2015; Pirlott & MacKinnon, 2016; Valente 

et al., 2017). For instance, sensitivity analyses are a group of methods that help deal with 

confounding bias in mediation analysis when there is no measure of the potential 

confounders. Researchers might omit relevant variables in their models. The goal of this 

project was to understand how these methods work and to compare their accuracy. Lee et 

al. (2021) proposed a list of guidelines while reporting mediation analyses of randomized 

trials and observational studies. The authors suggested that researchers routinely report 

any sensitivity analyses that were used to explore the causal assumptions, including 

assumptions about confounding. Recommendations to investigate confounding in 

mediation analysis and the probability that there are unmeasured confounders of the 𝑀 to 
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𝑌 relation in most studies motivated this work. It is important to evaluate how sensitivity 

to confounding methods work if researchers are encouraged to use and report them 

regularly. 

In the current study, a test for significance and an effect size comparison were 

developed for two sensitivity to confounding analyses: the L.O.V.E. method and the 

correlated residuals method. The significance tests for the L.O.V.E. method and the 

correlated residuals method were not informative about whether confounding bias 

explains the results of a statistically significant indirect effect. The tests for significance 

of 𝑟𝑢𝑚 ∗ 𝑟𝑢𝑦 and 𝑟𝑒2𝑒3, suggested that in datasets where the indirect effect was statistically 

significant, the Null Hypothesis (H0:  𝑟𝑢𝑚 ∗ 𝑟𝑢𝑦 = 0 and H0: 𝑟𝑒2𝑒3 = 0) was always 

rejected. In other words, testing for confounding bias corresponded to the significance 

test of the indirect effect (𝑎𝑏). Suppose the significance test for confounding and the 

significance test for the indirect effect (𝑎𝑏) are the same. In that case a researcher could 

conclude that performing sensitivity to confounding would not be necessary, and the 

recommendation for researchers would be to look at the effect size of the indirect effect. 

The correspondence between sensitivity analysis results and tests of statistical 

significance has not been described in the previous research literature. That the effect size 

of the indirect effect is critical for sensitivity to confounding in mediation analysis is 

consistent with the first of Hill’s considerations for a causal relation, which emphasizes 

the strength of the effect. Hill argued that “strong associations are more likely to be 

causal than weak associations because, if they could be explained by some other factor, 
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the effect of that factor would have to be even stronger than the observed association” 

(Rothman & Greenland, 2005, p. 1)  

In contrast, the effect size comparison was more informative about whether 

confounding bias explains the results of a statistically significant indirect effect. The 

values for 𝑟𝑢𝑚 ∗ 𝑟𝑢𝑦  and 𝑟𝑒2𝑒3 were compared to whether they were greater than 0.05, 

0.1, 0.3, and 0.5. Finally, a joint test was developed to assess the accuracy of the L.O.V.E 

method and the correlated residuals method; this was performed with the aim of making 

the results more comprehensible. The joint test was calculated by multiplying the 

probability of finding a statistically significant indirect effect times the probability that 

confounding does not explain the results. 

Since the test for significance of the sensitivity parameters (𝑟𝑢𝑚 ∗ 𝑟𝑢𝑦  and 𝑟𝑒2𝑒3) 

did not work as expected. We would not recommend its use. However, the general 

recommendation for researchers would be to focus on the effect size of the sensitivity 

parameters instead. Researchers are encouraged to use theory and prior knowledge to 

evaluate whether it is likely to find a confounder with such effect sizes. However, the 

effect size measures for a confounder to reduce a mediated effect to zero are also closely 

related to the effect size of the mediated effect.  
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CHAPTER 8 

LIMITATIONS AND FUTURE RESEARCH DIRECTIONS 

The current study has some limitations and suggestions for future research. First, 

only two sensitivity to confounding methods were selected for this project. A future study 

would include other sensitivity to confounding methods that have been developed for 

mediation analysis and would compare them in a simulation study. For example, 

VanderWeele (2010) developed a sensitivity to confounding analysis, which is an 

extension of the Cornfield et al. (2009) method for binary confounders. This method 

evaluates the effect of the binary confounder on 𝑌, for individuals with the same value of 

the mediator, and the difference in the prevalence of the confounder variable 𝑈, for 

people with the same value of 𝑀 in both the treatment and control groups. Also, recent 

advancements include the development of sensitivity analyses that allows the assessment 

of the no-omitted-confounders assumption and the no-measurement error assumption 

jointly (Fritz et al., 2016; Liu & Wang, 2020), a sensitivity analysis that allows assessing 

confounding bias for growth curve mediation models (Tofighi et al., 2019), and a 

sensitivity analysis that assesses confounding bias in a Bayesian mediation analysis 

(McCandless & Somers, 2019). However, these methods are extensions of the L.O.V.E. 

and correlated residuals methods so they would be closely related to the effect size 

evaluated for confounder bias.  

Second, the simulation study though extensive, tested only 32 conditions, limiting 

the ability to generalize the effect size cutoffs found in this study (0.3 and 0.5) to other 

conditions. A future study would include more conditions with additional sample sizes 
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(e.g., N = 50, 250, and 1000), conditions when partial mediation is present (𝑐’ ≠ 0), 

different signs of parameters, and conditions where the confounding paths have 

differential effects (𝑑 ≠ 𝑒). 

Third, the current project showed a correspondence between the test for 

significance of the indirect effect and the test for significance of confounding. A future 

direction involves assessing whether the test for significance of 𝑟𝑢𝑚 ∗ 𝑟𝑢𝑦 and 𝑟𝑒2𝑒3 and 

the test for significance for the indirect effect (𝑎𝑏) give the same or different conclusions 

in terms of Empirical Type I Error Rates and Empirical Power. This could be 

accomplished by performing the significance test for 𝑟𝑢𝑚 ∗ 𝑟𝑢𝑦 and 𝑟𝑒2𝑒3 in all the 

conditions, calculate the Empirical Type I Error Rates when the true indirect effect is 

zero (𝑎𝑏 = 0), and calculate the Empirical Power when the true indirect effect is different 

from zero (𝑎𝑏 ≠ 0). In this way, the tests based on residuals can be compared to the 

Empirical Type I Error Rates and Empirical Power of the test for significance of 𝑎𝑏. 

There is a context in which it would be important to suggest that researchers test the 

statistical significance of the mediated effect with residuals rather than the usual method. 

Testing for mediation based on the residuals or L.O.V.E. method would raise awareness 

of the possibility of confounding in any mediation analysis.  

In addition, the cutoffs for the effect size comparison were selected arbitrarily. 

For instance, as mentioned in Cox et al. (2013), there is no scale for evaluating whether 

the confounding effect is small, medium, or large. Hence, the cutoffs were selected for 

the effect size of a correlation 0.05 (half small effect), 0.1 (small effect), 0.3 (medium 

effect), 0.5 (large effect), which might be problematic because the sensitivity parameter 
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value for the L.O.V.E. method is not a correlation, but it is a product of correlations 

(𝑟𝑢𝑚 ∗ 𝑟𝑢𝑦). A future direction would be to develop more informative cutoffs to decide 

whether confounding bias explains the indirect effect results. This would involve testing 

many conditions and choosing the cutoffs that are required to make the Empirical Type I 

Error Rates fall in the adequate range [0.025-0.075], and Empirical Power values fall 

above 0.80.  

Finally, these sensitivity to confounding analyses methods are focused on the 

confounding effect that is needed to make the estimate of the indirect effect zero. 

However, a future direction would include assessing confounding bias in terms of the 

statistical significance of the indirect effect (the amount of confounding needed to make 

the indirect effect non-significant). Another future direction is to focus on assessing 

confounding bias in terms of 𝑏 path (amount of confounding needed to make 𝑏 

coefficient zero). 

In conclusion, the inferences of the mediation analysis results rely on several 

assumptions, including no-confounding assumptions. Even though the causal 

interpretation of the 𝑀 to 𝑌 relation is challenging, different techniques have been 

developed to improve interpretation of causal mediation. In this study, a statistical 

significance and an effect size comparison were developed to help understand how these 

methods work. Even though the significance test did not provide additional information, 

the effect size comparison may be a better approach to assess whether confounding 

explains the results of a statistically significant indirect effect. Testing the significance 

for unmeasured confounding and evaluating effect sizes of possible confounder effects 
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are two methods that increase awareness of the possible confounding of the 𝑀 to 𝑌 

relation in mediation analysis.  
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APPENDIX A 

DERIVED COVARIANCE MATRIX OF 𝑋, 𝑀, 𝑌 AND 𝑈  
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APPENDIX A 

DERIVED COVARIANCE MATRIX OF 𝑋, 𝑀, 𝑌 AND 𝑈  
 

 

 X M Y U 

X 

[
 
 
 
 
 

σ𝑋
2

𝑎σ𝑋
2 𝑎2σ𝑋

2 + 𝑑2σ𝑈
2+ σ𝜖𝑀

2

𝑐′σ𝑋
2 + 𝑏𝑎σ𝑋

2 𝑎𝑐′σ𝑋
2

+ 𝑎2𝑏σ𝑋
2 + 𝑑2𝑏σ𝑈

2 + 𝑐′2𝜎𝑋
2 + 2𝑐′𝑏𝑎𝜎𝑋

2 + 𝑏2𝑎2𝜎𝑋
2 + 𝑏2𝑑

2
𝜎𝑈

2 +

𝑑𝑒σ𝑈
2 + 𝑏σ𝜖𝑀

2  𝑏2𝜎𝜖𝑀

2
+ 2𝑒𝑏𝑑𝜎𝑈

2 + 𝑒2𝜎𝑈
2 + 𝜎𝜖𝑌

2

0 𝑑σ𝑈
2 𝑏𝑑σ𝑈

2 + 𝑒σ𝑈
2 𝜎𝑈

2 ]
 
 
 
 
 

 

M 

Y 

U 

 

1. 𝐶𝑜𝑣 (𝑋, 𝑋) =  σ𝑋
2   

 

2. 𝐶𝑜𝑣 (𝑋,𝑀) = 𝐶𝑜𝑣(𝑋, 𝑎𝑋 + 𝑑𝑈 + 𝜖𝑀)  

=    𝐶𝑜𝑣(𝑋, 𝑎𝑋) + 𝐶𝑜𝑣(𝑋, 𝑑𝑈) +  𝐶𝑜𝑣(𝑋, 𝜖𝑀) 

=    𝑎 𝐶𝑜𝑣(𝑋, 𝑋) + 𝑑𝐶𝑜𝑣(𝑋, 𝑈) + 0 

=    𝑎σ𝑋
2 + 𝑑(0) + 0  

=    𝑎σ𝑋
2   

 

3. 𝐶𝑜𝑣 (𝑀,𝑀) = 𝐶𝑜𝑣 (𝑎𝑋 + 𝑑𝑈 + 𝜖𝑀 , 𝑎𝑋 + 𝑑𝑈 + 𝜖𝑀) 

=    𝐶𝑜𝑣 (𝑎𝑋, 𝑎𝑋) + 𝐶𝑜𝑣 (𝑎𝑋, 𝑑𝑈) + 𝐶𝑜𝑣 (𝑎𝑋, 𝑒𝑀) + 𝐶𝑜𝑣 (𝑑𝑈, 𝑎𝑋) +

𝐶𝑜𝑣 (𝑑𝑈, 𝑑𝑈) + 𝐶𝑜𝑣 (𝑑𝑈, 𝑒𝑀) + 𝐶𝑜𝑣 (𝑒𝑀, 𝑎𝑋) + 𝐶𝑜𝑣 (𝑒𝑀, 𝑑𝑈) + 𝐶𝑜𝑣 (𝜖𝑀, 𝜖𝑀)  

=     𝑎2𝐶𝑜𝑣 (𝑋, 𝑋) +  𝑎𝑑𝐶𝑜𝑣 (𝑋, 𝑈) + 0 + 𝑎𝑑𝐶𝑜𝑣 (𝑈, 𝑋) +

 𝑑2 𝐶𝑜𝑣 (𝑈, 𝑈) + 0 + 0 + 0 + σ𝜖𝑀
2   

= 𝑎2σ𝑋
2 + 2𝑎𝑑 𝐶𝑜𝑣 (𝑋, 𝑈) +  𝑑2𝐶𝑜𝑣 (𝑈, 𝑈) +  σ

𝜖𝑀

2   

=   𝑎2σ𝑋
2 + 2𝑎𝑑(0) +  𝑑2σ𝑈

2 + σ𝜖𝑀

2   

=    𝑎2σ𝑋
2 + 0 + 𝑑2σ𝑈

2 + σ𝜖𝑀

2   

=  𝑎2σ𝑋
2 + 𝑑2σ𝑈

2 + σ𝜖𝑀

2   
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4. 𝐶𝑜𝑣 (𝑋, 𝑌) = 𝐶𝑜𝑣 (𝑋, 𝑐′𝑋 + 𝑏𝑀 + 𝑒𝑈 + 𝜖𝑌) 

=    𝐶𝑜𝑣 (𝑋, 𝑐′𝑋) + 𝐶𝑜𝑣 (𝑋, 𝑏𝑀) + 𝐶𝑜𝑣 (𝑋, 𝑒𝑈) + 𝐶𝑜𝑣 (𝑋, 𝜖𝑌)  

=    𝑐 ′𝐶𝑜𝑣 (𝑋, 𝑋) + 𝑏 𝐶𝑜𝑣 (𝑋,𝑀) + 𝑒𝐶𝑜𝑣 (𝑋, 𝑈) + 𝐶𝑜𝑣 (𝑋, 𝜖𝑌)  

=    𝑐′σ𝑋
2 + 𝑏 𝐶𝑜𝑣 (𝑋,𝑀) + 𝑒𝐶𝑜𝑣 (𝑋, 𝑈) + 0  

=    𝑐′σ𝑋
2 + 𝑏𝑎σ𝑋

2 + 𝑒(0) + 0  

=    𝑐′σ𝑋
2 + 𝑏𝑎σ𝑋

2    

 

5. 𝐶𝑜𝑣 (𝑀, 𝑌) = 𝐶𝑜𝑣 (𝑎𝑋 + 𝑑𝑈 + 𝜖𝑀, 𝑐′𝑋 + 𝑏𝑀 + 𝑒𝑈 + 𝜖𝑌) 

=      𝐶𝑜𝑣 (𝑎𝑋, 𝑐′𝑋 ) + 𝐶𝑜𝑣 (𝑎𝑋, 𝑏𝑀) + 𝐶𝑜𝑣 (𝑎𝑋, 𝑒𝑈) + 𝐶𝑜𝑣(𝑎𝑋, 𝜖𝑌) +  𝐶𝑜𝑣 (𝑑𝑈, 𝑐′𝑋 ) +  𝐶𝑜𝑣 (𝑑𝑈, 𝑏𝑀) +  

𝐶𝑜𝑣 (𝑑𝑈, 𝑒𝑈) + 𝐶𝑜𝑣 (𝑑𝑈, 𝜖𝑌) + 𝐶𝑜𝑣 (𝜖𝑀, 𝑐′𝑋) + 𝐶𝑜𝑣 (𝜖𝑀 , 𝑏𝑀 ) ∗∗ + 𝐶𝑜𝑣 (𝜖𝑀, 𝑒𝑈) + 𝐶𝑜𝑣 (𝜖𝑀, 𝜖𝑌)  

=      𝑎𝑐′𝐶𝑜𝑣 (𝑋, 𝑋) + 𝑎𝑏𝐶𝑜𝑣 (𝑋,𝑀) + 𝑎𝑒𝐶𝑜𝑣 (𝑋, 𝑈) + 0 +  𝑑𝑐′𝐶𝑜𝑣 (𝑈, 𝑋) +  𝑑𝑏𝐶𝑜𝑣 (𝑈,𝑀) + 

𝑑𝑒𝐶𝑜𝑣 (𝑈, 𝑈) + 0 + 0 + 𝐶𝑜𝑣 (𝜖𝑀, 𝑏𝑀 ) ∗∗ +0 + 0  

=     𝑎𝑐′σ𝑋
2 + 𝑎𝑏(𝑎σ𝑋

2) + 𝑎𝑒(0) + 0 +  𝑑𝑐′𝐶𝑜𝑣(0) +  𝑑𝑏(𝑑σ𝑈
2 ) + 𝑑𝑒σ𝑈

2 + 0 + 0 + 𝑏σ𝜖𝑀

2 + 0 + 0  

=     𝑎𝑐′σ𝑋
2 + 𝑎2𝑏σ𝑋

2 + 0 + 0 +  0 + 𝑑2𝑏σ𝑈
2 + 𝑑𝑒σ𝑈

2 + 0 + 0 + 𝑏σ𝜖𝑀

2 + 0 + 0  

=     𝑎𝑐′σ𝑋
2 + 𝑎2𝑏σ𝑋

2 + 𝑑2𝑏σ𝑈
2 + 𝑑𝑒σ𝑈

2 + 𝑏σ𝜖𝑀

2   

 

6. 𝐶𝑜𝑣 (𝑌, 𝑌) = 𝐶𝑜𝑣 (𝑐′𝑋 + 𝑏𝑀 + 𝑒𝑈 + 𝜖𝑌, 𝑐′𝑋 + 𝑏𝑀 + 𝑒𝑈 + 𝜖𝑌) 

=     𝐶𝑜𝑣 (𝑐′𝑋, 𝑐′𝑋) + 𝐶𝑜𝑣 (𝑐′𝑋, 𝑏𝑀) + 𝐶𝑜𝑣 (𝑐′𝑋, 𝑒𝑈) + 𝐶𝑜𝑣 (𝑐′𝑋, 𝜖𝑌) + 𝐶𝑜𝑣 (𝑏𝑀, 𝑐′𝑋 ) + 𝐶𝑜𝑣 (𝑏𝑀, 𝑏𝑀) +  

      𝐶𝑜𝑣 (𝑏𝑀, 𝑒𝑈) + 𝐶𝑜𝑣 (𝑏𝑀, 𝜖𝑌) + 𝐶𝑜𝑣 (𝑒𝑈, 𝑐′𝑋 ) + 𝐶𝑜𝑣 (𝑒𝑈, 𝑏𝑀) + 𝐶𝑜𝑣 (𝑒𝑈, 𝑒𝑈 ) + 𝐶𝑜𝑣 (𝑒𝑈, 𝜖𝑌 ) +  

      𝐶𝑜𝑣 (𝜖𝑌, 𝑐′𝑋) + 𝐶𝑜𝑣 (𝜖𝑌, 𝑏𝑀) + 𝐶𝑜𝑣 (𝜖𝑌, 𝑒𝑈) + 𝐶𝑜𝑣 (𝜖𝑌, 𝜖𝑌)  

=    𝑐′2𝐶𝑜𝑣 (𝑋, 𝑋) + 𝑐′𝑏𝐶𝑜𝑣 (𝑋,𝑀) + 𝑐′𝑒𝐶𝑜𝑣 (𝑋, 𝑈) + 0 + 𝑏𝑐′𝐶𝑜𝑣 (𝑀, 𝑋) + 𝑏2𝐶𝑜𝑣 (𝑀,𝑀) +  

      𝑏𝑒𝐶𝑜𝑣 (𝑀, 𝑈) + 0 + 𝑒𝑐′𝐶𝑜𝑣 (𝑈, 𝑋) + 𝑒𝑏𝐶𝑜𝑣 (𝑈,𝑀) + 𝑒2𝐶𝑜𝑣 (𝑈, 𝑈) + 0 + 0 + 0 + 0 + 𝐶𝑜𝑣 (𝜖𝑌, 𝜖𝑌)  

=    𝑐′2𝜎𝑋
2 + 2𝑐′𝑏𝐶𝑜𝑣 (𝑋,𝑀) + 2𝑐′𝑒𝐶𝑜𝑣 (𝑋, 𝑈) + 𝑏2𝐶𝑜𝑣 (𝑀,𝑀) + 2𝑒𝑏𝐶𝑜𝑣 (𝑈,𝑀) + 𝑒2𝜎𝑈

2 + 𝜎𝜖𝑌

2    

=    𝑐′2𝜎𝑋
2 + 2𝑐′𝑏(𝑎𝜎𝑋

2) + 2𝑐′𝑒(0) + 𝑏2(𝑎2𝜎𝑋
2 + 𝑑2𝜎𝑈

2+ 𝜎𝜖𝑀

2 ) + 2𝑒𝑏(𝑑𝜎𝑈
2) + 𝑒2𝜎𝑈

2 + 𝜎𝜖𝑌

2    

=    𝑐′2𝜎𝑋
2 + 2𝑐′𝑏𝑎𝜎𝑋

2 + 𝑏2𝑎2𝜎𝑋
2 + 𝑏2𝑑2𝜎𝑈

2+ 𝑏2𝜎𝜖𝑀

2 + 2𝑒𝑏𝑑𝜎𝑈
2 + 𝑒2𝜎𝑈

2 + 𝜎𝜖𝑌

2    

 

7. 𝐶𝑜𝑣 (𝑋, 𝑈) =  0 

 

8. 𝐶𝑜𝑣 (𝑀, 𝑈) = 𝐶𝑜𝑣 (𝑎𝑋 + 𝑑𝑈 + 𝜖𝑀, 𝑈) 

=    𝐶𝑜𝑣 (𝑎𝑋, 𝑈) + 𝐶𝑜𝑣 (𝑑𝑈, 𝑈) + 𝐶𝑜𝑣 (𝜖𝑀, 𝑈)  

=     𝑎𝐶𝑜𝑣 (𝑋, 𝑈) + 𝑑𝐶𝑜𝑣 (𝑈, 𝑈) + 𝐶𝑜𝑣 (𝜖𝑀, 𝑈)  

=     𝑎(0) + 𝑑σ𝑈
2 + 0  

=    𝑑σ𝑈
2   
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9. 𝐶𝑜𝑣 (𝑌, 𝑈) = 𝐶𝑜𝑣 (𝑐′𝑋 + 𝑏𝑀 + 𝑒𝑈 + 𝜖𝑌, 𝑈) 

=  𝐶𝑜𝑣 (𝑐′𝑋, 𝑈) + 𝐶𝑜𝑣 (𝑏𝑀, 𝑈) + 𝐶𝑜𝑣 (𝑒𝑈, 𝑈) + 𝐶𝑜𝑣 (𝜖𝑌, 𝑈)  

= 𝑐′𝐶𝑜𝑣 (𝑋, 𝑈) + 𝑏𝐶𝑜𝑣 (𝑀, 𝑈) + 𝑒𝐶𝑜𝑣 (𝑈, 𝑈) + 𝐶𝑜𝑣 (𝜖𝑌, 𝑈) 

= 𝑐′(0) + 𝑏(𝑑σ𝑈
2 ) + 𝑒σ𝑈

2 + 0  

=  0 + 𝑏𝑑σ𝑈
2 + 𝑒σ𝑈

2 + 0  

=  𝑏𝑑σ𝑈
2 + 𝑒σ𝑈

2   

 

10. 𝐶𝑜𝑣 (𝑈, 𝑈) = σ𝑈
2  

 

∗∗ 𝐶𝑜𝑣 (𝜖𝑀, 𝑏𝑀) = 𝑏[𝐶𝑜𝑣 (𝜖𝑀, 𝑎𝑋 + 𝑑𝑈 + 𝜖𝑀)]  

=  𝑏[𝐶𝑜𝑣 (𝜖𝑀, 𝑎𝑋) + 𝐶𝑜𝑣 (𝜖𝑀 + 𝑑𝑈) + 𝐶𝑜𝑣 (𝜖𝑀, 𝜖𝑀)]  
=  𝑏[(𝜖𝑀, 𝑎𝑋) + 𝐶𝑜𝑣 (𝜖𝑀 + 𝑑𝑈) + 𝐶𝑜𝑣 (𝜖𝑀, 𝜖𝑀)]  

=  𝑏σ𝜖𝑀
2   
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APPENDIX B 

ANALYTICAL PROGRAM 
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APPENDIX B 

ANALYTICAL PROGRAM 

 

 
 

*SECTION 1; 

 *This section generates the true regression coefficients; 

data a; 

input a b cp d e N; 

 do a=.1; 

 do b=.5; 

 do cp=0; 

 do d=-1 to 1 by .1; 

 do e=-1 to 1 by .1; 

 do n=50; 

 c=a*b+cp;  

 TRUEAB=a*b; 

*This section computes true variances and covariances based on residual 

error variance equal to 1; 

ERROR=1;ERRORM=1;ERRORY=1;ERRORU=1; 

BMX=A;BYM=B;BYX=CP;BMU=D;BYU=E; NOBS=N; 

EMOD1=(ERROR)**2; 

EMOD2=(ERRORm)**2; 

EMOD3=(ERRORy)**2; 

EMOD4=(ERRORu)**2; 

VXX=EMOD1; 

CXM=BMX*VXX; 

CXY=BYX*VXX+BYM*BMX*VXX; 

CMM=BMX*BMX*VXX+BMU*BMU*EMOD4+EMOD2; 

CMY=BMX*BYX*VXX+BMX*BMX*BYM*VXX+BMU*BMU*BYM*EMOD4+BMU*BYU*EMOD4+BYM*EMOD2

; 

CYY=BYX*BYX*VXX+2*BYX*BYM*BMX*VXX+BYM*BYM*BMX*BMX*VXX+BYM*BYM*BMU*BMU*EMO

D4+BYM*BYM*EMOD2+2*BYU*BYM*BMU*EMOD4+BYU*BYU*EMOD4+EMOD3; 

CXU=0; 

CMU=BMU*EMOD4; 

CYU=BYM*BMU*EMOD4+BYU*EMOD4; 

CUU=EMOD4; 

*This section computes the population regression coefficients based on 

the true variances and covariances; 

A = (CUU*CXM)- (CXU*CMU) / (VXX*CUU)- (CXU*CXU); 

D = (VXX*CMU)- (CXU*CXM) / (VXX*CUU)- (CXU*CXU); 

CP =(CMU*CMY*CXU + CXM*CMU*CYU - CMU*CMU*CXY - CXU*CYU*CMM - CXM*CMY*CUU 

+  CXY*CMM*CUU)/ 

(CMU*CXU*CXM + CXM*CMU*CXU - CXU*CXU*CMM - CXM*CXM*CUU - CMU*CMU*VXX + 

CMM*CUU*VXX); 

B =(CXU*CYU*CXM - CMY*CXU*CXU + CMU*CXU*CXY - CXM*CXY*CUU - CMU*CYU*VXX + 

CMY*CUU*VXX)/ 

(CMU*CXU*CXM + CXM*CMU*CXU - CXU*CXU*CMM - CXM*CXM*CUU - CMU*CMU*VXX + 

CMM*CUU*VXX); 

E = (CXM*CYU*CXM - CXM*CMY*CXU - CMU*CXM*CXY + CXU*CXY*CMM + CMU*CMY*VXX 

- CYU*CMM*VXX)/ 
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((-CMU)*CXU*CXM - CXM*CMU*CXU + CXU*CXU*CMM + CXM*CXM*CUU + CMU*CMU*VXX - 

CMM*CUU*VXX); 

*This section computes population correlations among X, M, U and Y; 

RMX = CXM/SQRT(VXX*CMM); 

RYM = CMY/SQRT(CMM*CYY); 

RYX = CXY/SQRT(VXX*CYY); 

RUM = CMU/SQRT(CMM*CUU); 

RUY = CYU/SQRT(CYY*CUU); 

RUX = CXU/SQRT(VXX*CUU); 

*This section computes multiple correlations among the predictors; 

R2XMU = (RMX*RMX + RUX*RUX - 2*RMX*RUX*RUM) / (1-RUM*RUM); 

R2MXU = (RMX*RMX + RUM*RUM - 2*RMX*RUX*RUX) / (1-RUX*RUX); 

R2UMX = (RUM*RUM + RUX*RUX - 2*RUM*RUX*RMX) / (1-RMX*RMX); 

************************************************************************; 

*This section computes the population STANDARIZED regression coefficients 

based on the true correlations; 

CPRSTD =(RYX*(1-RUM**2)+RYM*(RUX*RUM-RMX)+RUY*(RMX*RUM-

RUX))/(1+2*(RMX*RUM*RUX)-RUX**2-RUM**2-RMX**2); 

BSTD  =(RYM*(1-RUX**2)+RYX*(RUM*RUX-RMX)+RUY*(RMX*RUX-

RUM))/(1+2*(RMX*RUX*RUM)-RUM**2-RUX**2-RMX**2); 

ASTD  =(RMX-RUM*RUX)/(1-RUX**2); 

/*Observed values of a,b, cpr */ 

CPRBIASEDSTD=(RYX-RYM*RMX)/(1-RMX**2); 

BBIASEDSTD=(RYM-RYX*RMX)/(1-RMX**2); 

ABIASEDSTD=RMX; 

/*Obtaining the bias of each coefficient, a is unbiased because RUX=0*/ 

BIASCPRSTD=CPRBIASEDSTD-CPRSTD; 

BIASBSTD=BBIASEDSTD-BSTD; 

BIASASTD=ABIASEDSTD-ASTD; 

*The following code computes standardized true ab, standardized biased 

ab, and the bias of the indirect effect; 

TRUEABSTD=ASTD*BSTD; 

BIASEDABSTD=ABIASEDSTD*BBIASEDSTD; 

BIASABSTD=BIASEDABSTD-TRUEABSTD; 

*This section computes the MSE; 

MSE1 = CMM - d*d*CUU - a*a*VXX - a*d*CXU*CXU;  

MSE2 = CYY - cp*cp*VXX - b*b*CMM - e*e*CUU - 2*cp*b*CXM - 2*cp*e*CXU - 

2*b*e*CMU; 

*This section computes the standard errors of the estimate; 

*se1 = 1/(N-3);   

*se2 = 1/(N-4); 

*True standard errors; 

sa = sqrt (((MSE1) / (N-1)) * (1/VXX/(1-RUX**2))); 

sd = sqrt (((MSE1) / (N-1)) * (1/CUU/(1-RUX**2))); 

 

scp = sqrt (((MSE2) / (N-1)) * (1/VXX /(1-R2XMU))); 

sb = sqrt  (((MSE2) / (N-1)) * (1/CMM /(1-R2MXU))); 

se = sqrt  (((MSE2) / (N-1)) * (1/CUU /(1-R2UMX))); 

 

sab= sqrt(a*a*sb*sb+b*b*sa*sa); 

 

*This section computes the regression coefficients' t-values (a, b,c', d, 

e, ab); 

ta = A/ sa; 
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td = D/ sd; 

tcp = CP/scp; 

tb = B/ sb; 

te = E/ se; 

tab= TRUEAB/sab; 

 

*This section computes the regression coefficients' p-values (a, b,c', d, 

e, ab); 

pa = 1-probnorm(ta); 

pd = 1-probnorm(td); 

pcp = 1-probnorm(tcp); 

pb = 1-probnorm(tb); 

pe = 1-probnorm(te); 

pab = 1-probnorm(tab); 

************************************************************************; 

*SECTION 2; 

*This section computes the regression coefficients based on the variances  

and covariances of the single medition model; 

ABIASED  = CXM/VXX; 

CPBIASED = (CMM*CXY - CXM*CMY) / (VXX*CMM - CXM*CXM); 

BBIASED  = (VXX*CMY - CXM*CXY) / (VXX*CMM - CXM*CXM); 

 

BIASCP=CPBIASED-CP; 

BIASB=BBIASED-B; 

BIASA=ABIASED-A; 

 

BIASEDAB= ABIASED * BBIASED; 

BIAS = BIASEDAB-TRUEAB; 

*This section computes the population variance of the errors in the 

equation where X predicts M; 

*se1p= 1/(N-2); 

*This section computes the population variance of the errors in the 

equation where X and M predict Y; 

*se2p= 1/(N-3); 

*This section computes the MSE; 

MSE1p = CMM - ABIASED*ABIASED*VXX; 

MSE2p = CYY - BBIASED*BBIASED*CMM - CPBIASED *VXX - 

BBIASED*CPBIASED*CXM*CXM;  

 

*True variances of the estimators (a', b' and c'') when residual error 

variance equals 1; 

sap  = sqrt ((MSE1p) / ((N-1)  * (VXX))); 

scpp = sqrt (((MSE2p) / (N-1)) * (1/VXX/(1-RMX**2))); 

sbp  = sqrt (((MSE2p) / (N-1)) * (1/CMM/(1-RMX**2))); 

sabp = sqrt(ABIASED*ABIASED*sbp*sbp+BBIASED*BBIASED*sap*sap); 

 

 

*This section computes the regression coefficients' t-values (a', b', c',  

ab'); 

tap = ABIASED/ sap; 

tbp = BBIASED/ sbp; 

tcpp = CPBIASED/ scpp; 

tabp = BIASEDAB/sabp; 
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*This section computes the regression coefficients' p-values (a', b', 

ab'); 

pap = 1-probnorm(tap); 

pbp = 1-probnorm(tbp); 

pcpp = 1-probnorm(tcpp); 

pabp = 1-probnorm(tabp); 

 

output; 

end; 

end; 

end; 

end; 

end; 

end; 

cards; 

0 0 0 0 0 50 

; 

 

proc print data=a; 

run; 
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APPENDIX C 

L.O.V.E. METHOD PERFORMED IN SAS 
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APPENDIX C 

L.O.V.E. METHOD PERFORMED IN SAS 

 
TITLE ‘SIMULATION OF CONFOUNDING with a LOVE plot of bias in ab when true 

standardized ab is close to zero’; 

/*RYX is the observed correlation between X and Y;  

RMX is the observed correlation between X and M;  

RYM is the observed correlation between M and Y; 

*/ 

DATA SIM; 

INPUT RYX RMX RYM; 

DO RUM=0 TO 1 BY .001; 

DO RUY=0 TO 1 BY .0001; 

DO RUX=0 ; 

/* True values of a,b,cpr that account for the influence of a potential 

confounder U*/ 

CPR=(RYX*(1-RUM**2)+RYM*(RUX*RUM-RMX)+RUY*(RUX*RUM-RUX))/(1+2*(RMX*RUM*RUX)-

RUX**2-RUM**2-RMX**2); 

B=(RYM*(1-RUX**2)+RYX*(RUM*RUX-RMX)+RUY*(RMX*RUX-RUM))/(1+2*(RMX*RUX*RUM)-RUM**2-

RUX**2-RMX**2); 

A=(RMX-RUM*RUX)/(1-RUX**2); 

/*Observed values of a,b, cpr */ 

CPRBIASED=(RYX-RYM*RMX)/(1-RMX**2); 

BBIASED=(RYM-RYX*RMX)/(1-RMX**2); 

ABIASED=RMX; 

/*Obtaining the bias of each coefficient, a is unbiased because RUX=0*/ 

BIASCPR=CPRBIASED-CPR; 

BIASB=BBIASED-B; 

BIASA=ABIASED-A; 

*The following code computes standardized true ab, standardized biased ab, and 

the bias of the indirect effect; 

TRUEAB=A*B; 

BIASEDAB=ABIASED*BBIASED; 

BIASAB=BIASEDAB-TRUEAB; 

RTRUEAB= round(TRUEAB,.01); 

OUTPUT; 

END; 

END; 

END; 

/* the numerical values of correlations below are from the word spring 2012 data 

set and should be changed by the user; 

The order of correlations should be ryx, rxm, and rmy for the program to produce 

the correct plot*/ 

CARDS; 

0.30933 0.62300 0.49759  

; 

RUN; 

 

DATA FORZERO; 

SET SIM; IF RTRUEAB=0; 

 

proc gplot data=FORZERO; 

/*The title for the plot can be changed by the user*/ 

TITLE1 "Observed ab as a function of RUY and RUM when true ab is close to zero"; 

plot RUM*RUY=RTRUEAB/overlay; 

symbol1 interpol=join r=1 c=red l=1 value=0; 

run; 
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APPENDIX D 

 PHANTOM VARIABLE METHOD PERFORMED IN MPLUS 
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APPENDIX D 

 PHANTOM VARIABLE METHOD PERFORMED IN MPLUS 

 

 

TITLE:      Phantom variables; 

DATA:       FILE = "F:\memory data.csv"; 

VARIABLE:   NAMES ARE X M Y; 

ANALYSIS:   ESTIMATOR =ML; 

 

MODEL: 

phantom BY; 

phantom@1; 

X ON phantom@0; 

M ON X phantom@1.744; 

Y ON M X phantom@1.744; 

 

MODEL INDIRECT: 

Y IND X; 
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APPENDIX E 

PHANTOM VARIABLE METHOD PERFORMED IN SAS 
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APPENDIX E 

PHANTOM VARIABLE METHOD PERFORMED IN SAS 

 

 
title ‘Phantom variable method to confounding’; 

 

data memory; 

input  id x m y; 

 cards; 

 1    0    3    13 

 2    0    7    11 

 3    0    2    13 

 4    0    1    15 

 5    0    7    19 

 6    0    4    13 

 7    0    1    9 

 8    0    1    9 

 9    0    5    10 

10    0    1    16 

11    0    6    9 

12    0    2    6 

13    0    1    11 

14    0    3    12 

15    0    7    15 

16    0    9    18 

17    0    7    10 

18    0    5    4 

19    0    3    8 

20    0    9    18 

21    0    6    14 

22    0    2    10 

23    0    8    15 

24    0    9    12 

25    1    9    10 

26    1    9    15 

27    1    7    17 

28    1    9    19 

29    1    8    16 

30    1    9    14 

31    1    8    14 

32    1    8    16 

33    1    6    12 

34    1    8    16 

35    1    9    18 

36    1    9    9 

37    1    6    10 

38    1    9    19 

39    1    9    19 

40    1    8    13 

41    1    5    10 

42    1    9    17 

43    1    8    11 

44    1    9    17; 
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/* Equation 3.1:  

  Regress the outcome variable on the IV. That is, regress 

    recall on memory technique. */ 

 proc reg; 

 model y=x; 

 

/* Equation 3.2:  

  Regress the outcome variable on the IV and the  

    mediator. That is, regress recall on memory technique and 

imagery. */ 

 proc reg; 

 model y=x m; 

 

/* Equation 3.3:  

  Regress the mediator on the IV. That is, regress imagery on 

memory technique. */ 

 proc reg; 

 model m=x; 

run;  

 

PROC CORR COV data = memory;  

var x m y; 

run; 

 

PROC CALIS DATA=memory plots=pathdiagram METHOD=ML; 

path 

x    ===> m , 

x m  ===> y , 

phantom ===> m y = 0 0, 

phantom ===> x = 0; 

 

pvar  

phantom = 1; 

var x m y; 

run; 

 

PROC CALIS DATA=memory plots=pathdiagram METHOD=ML; 

path 

phantom x    ===> m = 1.744 a, 

phantom x m  ===> y = 1.744 cp b , 

phantom ===> x = 0; 

 

pvar  

phantom = 1; 

var x m y; 

run; 
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APPENDIX F 

CORRELATED RESIDUALS PERFORMED IN R 
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APPENDIX F 

CORRELATED RESIDUALS PERFORMED IN R 

 

 
data1 <-read.table("memorydata.txt", header=TRUE, na.strings=".") 
 
med.m <- lm(m ~ x, data = data1) 
med.y <- lm(y ~ x + m, data = data1) 
 
attach (data1) 
x=as.character(x) 
m=as.character(m) 
library (mediation) 

med.out <- mediate(med.m, med.y, sims = 2000, treat = "x", mediator = "m") 
sens.out <- medsens(med.out, rho.by = 0.01, eps=.01) 
 
 
jpeg ("imai plot.jpg") 
plot (sens.out) 
dev.off() 

## png  
##   2 

detach(data1) 
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APPENDIX G 

SIMULATION PROGRAM 
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APPENDIX G 

SIMULATION PROGRAM 

 
 

TITLE 'SIMULATION SINGLE MEDIATOR MODEL WITH A CONFOUNDER CAUSING M AND 

Y. X-BINARY'; 
OPTIONS PS=59 LS=80 REPLACE NONOTES; 

FILENAME NULLOG DUMMY 'C:\NULL'; 

PROC PRINTTO LOG=NULL; 

RUN; 

 

%MACRO SIMULATE(NREP,NOBS,B1,B2,B3,B4,B5,FILE,TYPE); 

DATA SUMMARY;  

SET _NULL_; 

%DO I=1 %TO &NREP; 

*GENERATE*; 

DATA SIM; 

DO I=1 TO &NOBS; 

X = RAND('BERNOULLI', .5); 

U = RAND('NORMAL', 0, 1); 

M = &B1*X + &B2*U + RAND('NORMAL', 0, 1); 

Y = &B3*X + &B4*M + &B5*U + RAND('NORMAL', 0, 1); 

OUTPUT; 

END; 

**************************************** 

****MODEL 0 (Y = X); 

**************************************** 

*Estimating the (Y = X) regression; 

PROC REG DATA=SIM OUTEST=FILE TABLEOUT NOPRINT COVOUT; 

Model0 : MODEL Y = X/ stb; 

*Print model summary; 

*PROC PRINT; 

DATA A; SET FILE; 

IF _TYPE_='PARMS'; C=X; MSE = _RMSE_*_RMSE_; 

DROP MODEL_ _TYPE_ _NAME_ _DEPVAR_ _RMSE_ Intercept X Y; 

KEEP C MSE; 

*Merging data Model 0; 

DATA MODEL0; MERGE A; 

 

************************************** 

****MODEL 1 (M = X U); 

************************************** 

*Estimating the (M = X U) regression; 

PROC REG DATA=SIM OUTEST=FILE TABLEOUT NOPRINT COVOUT; 

Model1: MODEL M = X U/ stb; 

*Print model summary; 

*PROC PRINT; 

 

*This code saves the value of a and u; 

DATA B; SET FILE; 

IF _TYPE_='PARMS';   

A=X; D=U; MSE1 = _RMSE_*_RMSE_; 

DROP _MODEL_ _TYPE_ _NAME_ _DEPVAR_ _RMSE_ Intercept X U M;  

KEEP A D MSE1; 
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*Saving the standard error of the coefficient a; 

DATA B1; SET FILE; 

IF _TYPE_='STDERR';  

SEA=X; 

DROP _MODEL_ _TYPE_ _NAME_ _DEPVAR_ _RMSE_ Intercept X U M;  

KEEP SEA; 

*Merging data Model 1; 

DATA MODEL1; MERGE B B1; 

*PROC PRINT; 

************************************** 

****MODEL 2 (Y = X M U); 

************************************* 

*Estimating the (Y = X M U) regression; 

PROC REG DATA=SIM OUTEST=FILE  TABLEOUT NOPRINT COVOUT; 

Model2 : MODEL Y = X M U/ stb;  

*Print model summary; 

*PROC PRINT; 

*This code saves the value of cp, b and e; 

DATA C; SET FILE; 

IF _TYPE_='PARMS';  

CP=X; B=M; E=U; MSE2 = _RMSE_*_RMSE_; 

DROP _MODEL_ _TYPE_ _NAME_ _DEPVAR_ Intercept X M U Y; 

KEEP CP B E MSE2; 

*Saving the standard error of the coefficients biasedb and biasedc; 

DATA C1; SET FILE; 

IF _TYPE_='STDERR';  

SECP=X;SEB=M; 

DROP _MODEL_ _TYPE_ _NAME_ _DEPVAR_ Intercept X M U Y;  

KEEP SECP SEB; 

*This code saves the variances and covariances of the sample; 

PROC CORR COV DATA=SIM NOPRINT OUTP=COV; 

VAR Y X M U; 

*Print covariance matrix; 

*PROC PRINT; 

**This code saves the variances and covariances; 

DATA F1; SET COV;  

IF _NAME_ = 'Y' and _TYPE_ = 'COV'; VARY  = Y; 

KEEP VARY; 

 

DATA F2; SET COV;  

IF _NAME_ = 'X' and _TYPE_ = 'COV'; VARX  = X; 

KEEP VARX; 

 

DATA F3; SET COV;  

IF _NAME_ = 'M' and _TYPE_ = 'COV'; VARM  = M; 

KEEP VARM; 

 

DATA F4; SET COV;   

IF _NAME_ = 'U' and _TYPE_ = 'COV'; VARU  = U;  

KEEP VARU; 

 

DATA F5; SET COV;  

IF _NAME_ = 'X' and _TYPE_ = 'COV'; COVYX = Y;  

KEEP COVYX; 
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DATA F6; SET COV;  

IF _NAME_ = 'M' and _TYPE_ = 'COV'; COVYM = Y; 

KEEP COVYM; 

 

DATA F7; SET COV;   

IF _NAME_ = 'U' and _TYPE_ = 'COV'; COVUY = Y;  

KEEP COVUY; 

 

DATA F8; SET COV;  

IF _NAME_ = 'X' and _TYPE_ = 'COV'; COVMX = M; 

KEEP COVMX; 

 

DATA F9; SET COV;  

IF _NAME_ = 'U' and _TYPE_ = 'COV'; COVUX = X; 

KEEP COVUX; 

 

DATA F10; SET COV;  

IF _NAME_ = 'U' and _TYPE_ = 'COV'; COVUM = M;  

KEEP COVUM; 

 

DATA F11; SET COV;  

IF _NAME_ = 'X' and _TYPE_ = 'CORR'; RYX  = Y; 

KEEP RYX; 

 

DATA F12; SET COV;  

IF _NAME_ = 'M' and _TYPE_ = 'CORR'; RYM  = Y; 

KEEP RYM; 

 

DATA F13; SET COV;  

IF _NAME_ = 'U' and _TYPE_ = 'CORR'; RUY  = Y;   

KEEP RUY; 

 

DATA F14; SET COV;  

IF _NAME_ = 'X' and _TYPE_ = 'CORR'; RMX  = M;  

KEEP RMX; 

 

DATA F15; SET COV;  

IF _NAME_ = 'U' and _TYPE_ = 'CORR'; RUX  = X;  

KEEP RUX; 

 

DATA F16; SET COV;  

IF _NAME_ = 'U' and _TYPE_ = 'CORR'; RUM  = M;  

KEEP RUM; 

 

DATA MODEL2; MERGE C C1 F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 

F15 F16; 

************************************* 

************************************* 

*This section includes the misspecified single mediator model 

which omits the U variable; 

 

************************************* 

****MODEL 3 (M = X) (Misspecified model) 
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************************************* 

*Estimating the (M = X) regression; 

PROC REG DATA=SIM OUTEST=FILE TABLEOUT NOPRINT COVOUT; 

Model3 : MODEL M = X/ stb;  

*Saving the coefficient biaseda; 

DATA D; SET FILE; 

IF _TYPE_='PARMS';   

bA=X; MSE3 = _RMSE_*_RMSE_; 

DROP _MODEL_ _TYPE_ _NAME_ _DEPVAR_ _RMSE_ Intercept X M; 

KEEP bA MSE3; 

*Saving the standard error of the coefficient biaseda; 

DATA D1; SET FILE; 

IF _TYPE_='STDERR';  

SEbA=X; 

DROP _MODEL_ _TYPE_ _NAME_ _DEPVAR_ _RMSE_ Intercept X M; 

KEEP SEbA; 

*Merging data Model 3; 

DATA MODEL3; MERGE D D1; 

************************************* 

****MODEL 4 (Y = X M) 

*Misspecified model 

************************************* 

*Estimating the (Y = X M) regression; 

PROC REG DATA=SIM OUTEST=FILE TABLEOUT NOPRINT COVOUT; 

Model4 : MODEL Y = X M/ stb;  

*Saving the coefficients biasedb and biasedc; 

DATA E; SET FILE; 

IF _TYPE_='PARMS';   

bCP=X; bB=M; MSE4 = _RMSE_*_RMSE_; 

DROP _MODEL_ _TYPE_ _NAME_ _DEPVAR_ _RMSE_ Intercept X M Y;  

KEEP bCP bB MSE4; 

 

 

*Saving the standard error of the coefficients biasedb and biasedc; 

DATA E1; SET FILE; 

IF _TYPE_='STDERR';  

SEbCP=X;SEbB=M; 

DROP _MODEL_ _TYPE_ _NAME_ _DEPVAR_ _RMSE_ Intercept X M Y;  

KEEP SEbCP SEbB; 

*Merging data Model 4; 

DATA MODEL4; MERGE E E1; 

*PROC PRINT; 

 

*Starts Percentile Boostrap Single mediator model and a confounder; 

%LET NBOOT=1000; 

 

PROC SURVEYSELECT DATA=SIM NOPRINT OUT=OUT2 METHOD=URS SAMPSIZE=&NOBS 

REP=&NBOOT OUTHITS; 

RUN; 

 

PROC REG DATA=OUT2 OUTEST=OUT3 NOPRINT; 

BY REPLICATE; 

MODEL Y = M X U; 

MODEL M = X U; 
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DATA F; SET OUT3; 

IF _MODEL_^='MODEL1' THEN DELETE; 

B=M; 

KEEP REPLICATE B; 

 

DATA G; SET OUT3; 

IF _MODEL_^='MODEL2' THEN DELETE; 

A=X; 

KEEP REPLICATE A; 

 

DATA M; MERGE F G; BY REPLICATE; 

AB=A*B; 

 

PROC SORT DATA=M; 

BY AB; 

PROC UNIVARIATE DATA=M NOPRINT; 

VAR AB; 

*PERCENTILE BOOTSTRAP; 

DATA I; SET M; 

IF _N_=(CEIL(.025*&NBOOT)) THEN CALL SYMPUT("LCL95", AB); 

IF _N_=(CEIL(.975*&NBOOT)) THEN CALL SYMPUT("UCL95", AB); 

RUN; 

 

DATA J; 

PBLCL95=&LCL95; 

PBUCL95=&UCL95; 

KEEP PBLCL95 PBUCL95; 

*Finishes Percentile Boostrap Single mediator model and a confounder; 

 

 

*Starts Percentile Boostrap Single mediator model; 

%LET NBOOT=1000; 

 

PROC SURVEYSELECT DATA=SIM NOPRINT OUT=OUT21 METHOD=URS SAMPSIZE=&NOBS 

REP=&NBOOT OUTHITS; 

RUN; 

 

PROC REG DATA=OUT21 OUTEST=OUT31 NOPRINT; 

BY REPLICATE; 

MODEL Y = M X; 

MODEL M = X; 

 

DATA F1; SET OUT31; 

IF _MODEL_^='MODEL1' THEN DELETE; 

biasedB=M; 

KEEP REPLICATE biasedB; 

 

DATA G1; SET OUT31; 

IF _MODEL_^='MODEL2' THEN DELETE; 

biasedA=X; 

KEEP REPLICATE biasedA; 

 

DATA M1; MERGE F1 G1; BY REPLICATE; 
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biasedAB=biasedA*biasedB; 

 

PROC SORT DATA=M1; 

BY biasedAB; 

PROC UNIVARIATE DATA=M1 NOPRINT; 

VAR biasedAB; 

*PERCENTILE BOOTSTRAP; 

DATA I1; SET M1; 

IF _N_=(CEIL(.025*&NBOOT)) THEN CALL SYMPUT("LCL95", biasedAB); 

IF _N_=(CEIL(.975*&NBOOT)) THEN CALL SYMPUT("UCL95", biasedAB); 

RUN; 

 

DATA J1; 

bPBLCL95=&LCL95; 

bPBUCL95=&UCL95; 

KEEP bPBLCL95 bPBUCL95; 

*Finishes Percentile Boostrap Single mediator model; 

 

*This code merges the different datasets that contain estimates from the 

simulation replication; 

DATA ALL;  

 MERGE MODEL0 MODEL1 MODEL2 MODEL3 MODEL4 J J1; 

RUN; 

 

DATA TEST; SET ALL; 

B1=&B1 ; B2=&B2 ; B3=&B3 ; B4=&B4; B5=&B5; 

NOBS= &NOBS; 

TYPE = &TYPE; 

DATA NEW; SET SUMMARY; 

DATA SUMMARY; SET NEW TEST; 

DATA SIMDATA.SIM; SET WORK.SIM; 

RUN; 

%END; 

 

 

 

 

 

/*This code includes the test for significance of the indirect effect for 

Model 1; 

MODEL 1:  

M = X+ U; Y = X  + M + U;  */ 

DATA SIG;  

SET SUMMARY; 

TRUEAB = B1 * B4; 

AB = A * B; 

SOBEL = SQRT(A*A*SEB*SEB+B*B*SEA*SEA); 

ZSOBEL = AB/SOBEL; 

PSOBEL = 1 - PROBNORM(ZSOBEL); 

NTLCL = AB - 1.96 * SOBEL; 

NTUCL = AB + 1.96 * SOBEL; 

ABSZSOBEL = ABS(ZSOBEL); 

 

IF ABSZSOBEL > 1.96 THEN DECZSOBEL = 1; 
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ELSE DECZSOBEL = 0; 

 

IF PSOBEL < 0.05 THEN DECPSOBEL = 1; 

ELSE DECPSOBEL = 0; 

 

IF NTLCL <= 0 <= NTUCL THEN DECNTCI = 0; 

ELSE DECNTCI = 1; 

 

IF PBLCL95 <= 0 <= PBUCL95 THEN DECPBCI = 0; 

ELSE DECPBCI = 1; 

 

/*Coverage Boostrap*/ 

IF PBLCL95 <= TRUEAB <= PBUCL95 THEN COV1 = 1; 

ELSE COV1  = 0; 

/*Imbalance Boostrap*/ 

IF TRUEAB < PBLCL95 THEN LEFT1 = 1; 

ELSE LEFT1 = 0; 

 

IF TRUEAB > PBUCL95 THEN RIGHT1 = 1; 

ELSE RIGHT1 = 0; 

 

/*Bias*/ 

BIAS1 = AB-TRUEAB; 

/*Relative Bias*/ 

RBIAS1 = (AB-TRUEAB)/TRUEAB; 

/*Standardized Bias*/ 

SBIAS1 = (AB-TRUEAB)/SOBEL; 

 

 

/*This code includes the test for significance of the indirect effect for 

Model 2; 

MODEL 2 (Misspecified model):  

M = X ; Y = X  + M */ 

bAB = bA * bB; 

SOBELP = SQRT(bA*bA*SEbB*SEbB+bB*bB*SEbA*SEbA); 

ZSOBELP = bAB/SOBELP; 

PSOBELP = 1 - PROBNORM(ZSOBELP); 

NTLCLP = bAB - 1.96 * SOBELP; 

NTUCLP = bAB + 1.96 * SOBELP; 

ABSZSOBELP = ABS(ZSOBELP); 

 

IF ABSZSOBELP > 1.96 THEN DECZSOBELP = 1; 

ELSE DECZSOBELP = 0; 

 

IF PSOBELP < 0.05 THEN DECPSOBELP = 1; 

ELSE DECPSOBELP = 0; 

 

IF NTLCLP <= 0 <= NTUCLP THEN DECNTCIP = 0; 

ELSE DECNTCIP = 1; 

 

IF bPBLCL95 <= 0 <= bPBUCL95 THEN DECbPBCI = 0; 

ELSE DECbPBCI = 1; 

 

/*Coverage Boostrap*/ 
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IF bPBLCL95 <= TRUEAB <= bPBUCL95 THEN COV2 = 1; 

ELSE COV2 = 0; 

/*Imbalance Boostrap*/ 

IF TRUEAB < bPBLCL95 THEN LEFT2 = 1; 

ELSE LEFT2 = 0; 

 

IF TRUEAB > bPBUCL95 THEN RIGHT2 = 1; 

ELSE RIGHT2 = 0; 

 

/*Bias*/ 

BIAS2 = bAB-TRUEAB; 

/*Relative Bias*/ 

RBIAS2 = (bAB-TRUEAB)/TRUEAB; 

/*Standardized Bias*/ 

SBIAS2 = (bAB-TRUEAB)/SOBELP; 

RUN; 

 

**This code generates frequency tables; 

PROC MEANS DATA=SIG N MEAN; 

VAR DECZSOBEL DECPSOBEL DECNTCI DECPBCI COV1 RIGHT1 LEFT1 BIAS1 RBIAS1 

SBIAS1 DECZSOBELP DECPSOBELP DECNTCIP DECbPBCI COV2 RIGHT2 LEFT2 BIAS2 

RBIAS2 SBIAS2; 

RUN; 

 

*This code prints out the summary of the estimates in all the 

replications; 

PROC MEANS DATA=SUMMARY N MEAN STD MIN MAX SUM VAR STDERR; 

RUN; 

 

%MEND; 

 

**Trial; 

%SIMULATE(NREP=10,NOBS=50,B1=0.5,  B2=0.9, B3=0, B4=0.2,   B5= -0.9,   

FILE = TEMP, TYPE = 'BCCC'); 
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APPENDIX H 

RESULTS STUDY 1 (TRUE MODEL) 
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APPENDIX H 

RESULTS STUDY 1 (TRUE MODEL) 

 

 

Bias 

 

Figure 20 

Bias of the Indirect Effect (𝑎𝑏). The Data Were Analyzed with a Single Mediator Model 

with a Confounder (U) That Influences the Mediator (M) and the Outcome (Y) 
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Figure 21 

Relative Bias of the Indirect Effect (𝑎𝑏). The Data Were Analyzed With a Single Mediator 

Model with a Confounder (U) That Influences the Mediator (M) and the Outcome (Y) 

 

 
Note. Dashed lines indicate the adequate Relative bias range [-.10, .10]. 
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Empirical Type I Error Rate 

 

Figure 22 

Empirical Type I Error Rate for the Indirect Effect (𝑎𝑏). Statistical Significance Was 

Assessed with a Z Test. The Data Were Analyzed With a Single Mediator Model With a 

Confounder (U) That Influences the Mediator (M) and the Outcome (Y) 

 
Note. Dashed lines indicate the adequate Empirical Type I Error Rate range [.025, .075]. 
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Figure 23 

Empirical Type I Error Rate for the Indirect Effect (𝑎𝑏). Statistical Significance Was 

Assessed Using Normal Theory Confidence Intervals. The Data Were Analyzed With a 

Confounder (U) That Influences the Mediator (M) and the Outcome (Y) 

 

 
Note. Dashed lines indicate the adequate Empirical Type I Error Rate range [.025, .075]. 
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Empirical Power 

 

Figure 24 

Empirical Power for the Indirect Effect (𝑎𝑏). Statistical Significance Was Assessed With a 

Z Test. The Data Were Analyzed With a Single Mediator Model With a Confounder (U) 

That Influences the Mediator (M) and the Outcome (Y) 

 

 
Note. The dashed line represents the conventional standard of 0.80 power. 
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Figure 25 

Empirical Power for the Indirect Effect (𝑎𝑏). Statistical Significance Was Assessed Using 

Normal Theory Confidence Intervals. The Data Were Analyzed With a Confounder (U) 

That Influences the Mediator (M) and the Outcome (Y) 

 

 
Note. The dashed line represents the conventional standard of 0.80 power. 
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Imbalance 

 

Table 14 

Imbalance Results. Data Analyzed with a Single Mediator Model With a Confounder (U) 

That Influences the Mediator (M) and the Outcome (Y) 

 
       N= 100 N= 200 N= 500 

a d cp b e ab de True  

to  

left 

True to 

right 

True to  

left 

True to 

right 

True to  

left 

True to 

right 

0 -0.59 0 0 0 0 0 0.001* 0.001* 0.001* 0.001* 0* 0.002* 

0 0 0 0 -0.59 0 0 0* 0.002* 0* 0.002* 0* 0* 

0 0 0 0 0 0 0 0* 0.001* 0* 0* 0* 0.001* 

0 0 0 0 0.59 0 0 0* 0.001* 0* 0* 0.001* 0* 

0 0.59 0 0 0 0 0 0.002* 0.001* 0* 0.001* 0.002* 0.002* 

0 -0.59 0.59 0 0 0 0 0* 0.001* 0.002* 0* 0* 0* 

0 0 0.59 0 -0.59 0 0 0* 0.003* 0.002* 0.001* 0* 0.001* 

0 0 0.59 0 0 0 0 0.001* 0* 0.001* 0* 0* 0* 

0 0 0.59 0 0.59 0 0 0.001* 0.003* 0.001* 0* 0* 0.001* 

0 0.59 0.59 0 0 0 0 0.003* 0.001* 0.001* 0.001* 0.001* 0.001* 

0 -0.59 0 0.59 0 0 0 0.023 0.027 0.026 0.025 0.023 0.029 

0 0 0 0.59 -0.59 0 0 0.032 0.024 0.019 0.027 0.021 0.026 

0 0 0 0.59 0 0 0 0.037 0.025 0.023 0.023 0.021 0.024 

0 0 0 0.59 0.59 0 0 0.026 0.024 0.023 0.027 0.026 0.033 

0 0.59 0 0.59 0 0 0 0.032 0.029 0.029 0.029 0.03 0.031 

0 -0.59 0.59 0.59 0 0 0 0.019 0.032 0.025 0.031 0.036 0.019 

0 0 0.59 0.59 -0.59 0 0 0.029 0.03 0.024 0.022 0.024 0.022 

0 0 0.59 0.59 0 0 0 0.033 0.024 0.038* 0.025 0.023 0.042* 

0 0 0.59 0.59 0.59 0 0 0.024 0.031 0.026 0.028 0.021 0.019 

0 0.59 0.59 0.59 0 0 0 0.021 0.021 0.021 0.029 0.027 0.018 

0.59 -0.59 0 0 0 0 0 0.019 0.021 0.035 0.019 0.015 0.023 

0.59 0 0 0 -0.59 0 0 0.019 0.023 0.022 0.02 0.021 0.026 

0.59 0 0 0 0 0 0 0.018 0.019 0.019 0.028 0.027 0.019 

0.59 0 0 0 0.59 0 0 0.021 0.029 0.03 0.028 0.023 0.042* 

0.59 0.59 0 0 0 0 0 0.023 0.017 0.023 0.023 0.029 0.029 
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0.59 -0.59 0.59 0 0 0 0 0.023 0.015 0.024 0.019 0.033 0.02 

0.59 0 0.59 0 -0.59 0 0 0.015 0.018 0.02 0.028 0.022 0.03 

0.59 0 0.59 0 0 0 0 0.018 0.017 0.029 0.031 0.025 0.022 

0.59 0 0.59 0 0.59 0 0 0.019 0.022 0.015 0.031 0.026 0.024 

0.59 0.59 0.59 0 0 0 0 0.016 0.029 0.031 0.028 0.022 0.03 

0.59 -0.59 0 0.59 0 0.3481 0 0.016 0.034 0.016 0.039* 0.017 0.028 

0.59 0 0 0.59 -0.59 0.3481 0 0.021 0.032 0.021 0.028 0.024 0.034 

0.59 0 0 0.59 0 0.3481 0 0.018 0.033 0.02 0.032 0.018 0.03 

0.59 0 0 0.59 0.59 0.3481 0 0.02 0.036 0.02 0.029 0.022 0.024 

0.59 0.59 0 0.59 0 0.3481 0 0.019 0.036 0.014 0.038* 0.025 0.031 

0.59 -0.59 0.59 0.59 0 0.3481 0 0.018 0.031 0.027 0.026 0.02 0.027 

0.59 0 0.59 0.59 -0.59 0.3481 0 0.02 0.036 0.016 0.029 0.017 0.02 

0.59 0 0.59 0.59 0 0.3481 0 0.018 0.03 0.013 0.039* 0.028 0.031 

0.59 0 0.59 0.59 0.59 0.3481 0 0.012* 0.031 0.018 0.031 0.017 0.028 

0.59 0.59 0.59 0.59 0 0.3481 0 0.008* 0.034 0.02 0.029 0.03 0.03 

0 -0.59 0 0 -0.59 0 0.3481 0.001* 0* 0.001* 0.003* 0* 0* 

0 0.59 0 0 0.59 0 0.3481 0.002* 0* 0* 0.001* 0* 0.001* 

0 -0.59 0.59 0 -0.59 0 0.3481 0* 0.002* 0.003* 0* 0* 0* 

0 0.59 0.59 0 0.59 0 0.3481 0.004* 0.001* 0* 0.002* 0* 0* 

0 -0.59 0 0.59 -0.59 0 0.3481 0.03 0.025 0.026 0.022 0.031 0.027 

0 0.59 0 0.59 0.59 0 0.3481 0.024 0.026 0.016 0.022 0.027 0.022 

0 -0.59 0.59 0.59 -0.59 0 0.3481 0.025 0.04* 0.023 0.029 0.032 0.02 

0 0.59 0.59 0.59 0.59 0 0.3481 0.027 0.027 0.027 0.027 0.037 0.022 

0.59 -0.59 0 0 -0.59 0 0.3481 0.015 0.028 0.02 0.025 0.025 0.024 

0.59 0.59 0 0 0.59 0 0.3481 0.021 0.022 0.031 0.023 0.021 0.026 

0.59 -0.59 0.59 0 -0.59 0 0.3481 0.021 0.021 0.027 0.022 0.034 0.023 

0.59 0.59 0.59 0 0.59 0 0.3481 0.022 0.02 0.021 0.026 0.028 0.029 

0.59 -0.59 0 0.59 -0.59 0.3481 0.3481 0.022 0.029 0.021 0.032 0.019 0.035 

0.59 0.59 0 0.59 0.59 0.3481 0.3481 0.025 0.046* 0.024 0.04* 0.023 0.036 

0.59 -0.59 0.59 0.59 -0.59 0.3481 0.3481 0.018 0.038* 0.025 0.039* 0.02 0.037 

0.59 0.59 0.59 0.59 0.59 0.3481 0.3481 0.023 0.03 0.028 0.038* 0.028 0.04* 

0 -0.59 0 0 0.59 0 -0.3481 0.002* 0.003* 0.001* 0.003* 0.003* 0.002* 

0 0.59 0 0 -0.59 0 -0.3481 0* 0.001* 0.001* 0* 0.001* 0.001* 

0 -0.59 0.59 0 0.59 0 -0.3481 0* 0.001* 0* 0* 0.001* 0* 

0 0.59 0.59 0 -0.59 0 -0.3481 0* 0* 0.001* 0* 0.002* 0.001* 
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Note. Values marked with * are outside Bradley’s (1978) robustness criterion 

(0.0125,0.0375) 

0 -0.59 0 0.59 0.59 0 -0.3481 0.026 0.032 0.018 0.032 0.022 0.027 

0 0.59 0 0.59 -0.59 0 -0.3481 0.026 0.03 0.031 0.026 0.035 0.029 

0 -0.59 0.59 0.59 0.59 0 -0.3481 0.03 0.032 0.025 0.032 0.033 0.026 

0 0.59 0.59 0.59 -0.59 0 -0.3481 0.026 0.036 0.027 0.024 0.025 0.029 

0.59 -0.59 0 0 0.59 0 -0.3481 0.021 0.018 0.033 0.025 0.024 0.023 

0.59 0.59 0 0 -0.59 0 -0.3481 0.018 0.023 0.025 0.023 0.032 0.039* 

0.59 -0.59 0.59 0 0.59 0 -0.3481 0.016 0.022 0.03 0.031 0.028 0.033 

0.59 0.59 0.59 0 -0.59 0 -0.3481 0.026 0.023 0.035 0.026 0.034 0.028 

0.59 -0.59 0 0.59 0.59 0.3481 -0.3481 0.014 0.032 0.026 0.043* 0.015 0.038* 

0.59 0.59 0 0.59 -0.59 0.3481 -0.3481 0.017 0.036 0.02 0.032 0.032 0.027 

0.59 -0.59 0.59 0.59 0.59 0.3481 -0.3481 0.014 0.041 0.019 0.033 0.014 0.037 

0.59 0.59 0.59 0.59 -0.59 0.3481 -0.3481 0.023 0.045 0.023 0.03 0.024 0.024 
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APPENDIX I 

RESULTS STUDY 1 (MISSPECIFIED MODEL) 
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APPENDIX I 

RESULTS STUDY 1 (MISSPECIFIED MODEL) 

 

 

Bias  

 

Figure 26 

Bias of the Indirect Effect (𝑎𝑏). The Data Were Analyzed With a Misspecified Model 

(Single Mediator Model) 
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Figure 27 

Relative Bias of the Indirect Effect (𝑎𝑏). The Data Were Analyzed with a Misspecified 

Model (Single Mediator Model) 

 

 
 

Note. Dashed lines indicate the adequate Relative bias range [-.10, .10]. The Relative bias 

formula requires to divide by the true indirect effect (𝑎𝑏). The undefined conditions 

resulted by diving by a true indirect effect equal to zero (𝑎𝑏 = 0). 

 

  

Undefined 

Undefined Undefined Undefined 

Undefined Undefined 
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Type I Error Rates 

 

Figure 28 

Empirical Type I Error Rate for the Indirect Effect (𝑎𝑏). Statistical Significance Was 

Assessed with a Z Test. The Data Were Analyzed With a Misspecified Model (Single 

Mediator Model) 

 

 
Note. Dashed lines indicate the adequate Empirical Type I Error Rate range [.025, .075]. 
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Figure 29 

Empirical Type I Error Rate for the Indirect Effect (𝑎𝑏). Statistical Significance Was 

Assessed Using Normal Theory Confidence Intervals. The Data Were Analyzed With a 

Misspecified Model (Single Mediator Model) 

 

 
 

Note. Dashed lines indicate the adequate Empirical Type I Error Rate range [.025, .075]. 
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Empirical Power 

 

Figure 30 

Empirical Power for the Indirect Effect (𝑎𝑏). Statistical Significance Was Assessed With a 

Z Test). The Data Were Analyzed with a Misspecified Model (Single Mediator Model) 

 

 
Note. The dashed line represents the conventional standard of 0.80 power. 

  



 

115 

 

Figure 31 

Empirical Power for the Indirect Effect (𝑎𝑏). Statistical Significance Was Assessed Using 

Normal Theory Confidence Intervals). The Data Were Analyzed With a Misspecified Model 

(Single Mediator Model) 

 

 
Note. The dashed line represents the conventional standard of 0.80 power. 
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Table 15 

Imbalance Results. Data Analyzed With a Misspecified Model (Single Mediator Model) 
       N= 100 N= 200 N= 500 

a d cp b e ab de True to  

left 

True to 
right 

True to  

left 

True to 
right 

True to  

left 

True to 
right 

0 -0.59 0 0 0 0 0 0* 0.002* 0* 0* 0* 0.002* 

0 0 0 0 -0.59 0 0 0* 0.003* 0* 0.001* 0.001* 0* 

0 0 0 0 0 0 0 0* 0.001* 0* 0* 0* 0.002* 

0 0 0 0 0.59 0 0 0* 0* 0* 0* 0.001* 0.001* 

0 0.59 0 0 0 0 0 0* 0.002* 0.001* 0.003* 0.001* 0.001* 

0 -0.59 0.59 0 0 0 0 0.002* 0.002* 0* 0.001* 0* 0* 

0 0 0.59 0 -0.59 0 0 0.001* 0.001* 0.001* 0.002* 0.001* 0.001* 

0 0 0.59 0 0 0 0 0* 0* 0.001* 0* 0* 0* 

0 0 0.59 0 0.59 0 0 0* 0.002* 0.001* 0.002* 0.001* 0.001* 

0 0.59 0.59 0 0 0 0 0.001* 0* 0* 0* 0.001* 0.001* 

0 -0.59 0 0.59 0 0 0 0.02 0.02 0.026 0.021 0.021 0.034 

0 0 0 0.59 -0.59 0 0 0.032 0.022 0.017 0.028 0.022 0.024 

0 0 0 0.59 0 0 0 0.034 0.021 0.028 0.024 0.023 0.019 

0 0 0 0.59 0.59 0 0 0.026 0.024 0.022 0.024 0.025 0.032 

0 0.59 0 0.59 0 0 0 0.023 0.028 0.024 0.026 0.032 0.024 

0 -0.59 0.59 0.59 0 0 0 0.02 0.029 0.027 0.03 0.03 0.025 

0 0 0.59 0.59 -0.59 0 0 0.026 0.036 0.023 0.022 0.027 0.028 

0 0 0.59 0.59 0 0 0 0.035 0.022 0.04* 0.021 0.023 0.049* 

0 0 0.59 0.59 0.59 0 0 0.023 0.027 0.027 0.029 0.022 0.017 

0 0.59 0.59 0.59 0 0 0 0.025 0.025 0.015 0.028 0.032 0.018 

0.59 -0.59 0 0 0 0 0 0.014 0.019 0.029 0.016 0.02 0.025 

0.59 0 0 0 -0.59 0 0 0.017 0.017 0.02 0.022 0.017 0.036 

0.59 0 0 0 0 0 0 0.019 0.024 0.017 0.026 0.023 0.017 

0.59 0 0 0 0.59 0 0 0.024 0.033 0.029 0.029 0.031 0.033 

0.59 0.59 0 0 0 0 0 0.02 0.006* 0.022 0.023 0.027 0.021 

0.59 -0.59 0.59 0 0 0 0 0.024 0.014 0.021 0.023 0.033 0.018 

0.59 0 0.59 0 -0.59 0 0 0.018 0.027 0.021 0.025 0.02 0.028 

0.59 0 0.59 0 0 0 0 0.021 0.019 0.031 0.026 0.023 0.023 

0.59 0 0.59 0 0.59 0 0 0.019 0.028 0.019 0.028 0.026 0.027 

0.59 0.59 0.59 0 0 0 0 0.009* 0.02 0.023 0.029 0.036 0.023 
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0.59 -0.59 0 0.59 0 0.3481 0 0.015 0.037 0.018 0.032 0.023 0.028 

0.59 0 0 0.59 -0.59 0.3481 0 0.018 0.034 0.024 0.033 0.025 0.038* 

0.59 0 0 0.59 0 0.3481 0 0.019 0.035 0.025 0.031 0.018 0.033 

0.59 0 0 0.59 0.59 0.3481 0 0.016 0.028 0.02 0.034 0.022 0.021 

0.59 0.59 0 0.59 0 0.3481 0 0.011* 0.034 0.013 0.045* 0.023 0.034 

0.59 -0.59 0.59 0.59 0 0.3481 0 0.014 0.027 0.023 0.03 0.02 0.027 

0.59 0 0.59 0.59 -0.59 0.3481 0 0.019 0.048* 0.019 0.039 0.021 0.024 

0.59 0 0.59 0.59 0 0.3481 0 0.015 0.031 0.017 0.037 0.032 0.032 

0.59 0 0.59 0.59 0.59 0.3481 0 0.014 0.037 0.016 0.025 0.017 0.031 

0.59 0.59 0.59 0.59 0 0.3481 0 0.012* 0.031 0.019 0.022 0.024 0.032 

0 -0.59 0 0 -0.59 0 0.3481 0.016 0.021 0.016 0.024 0.027 0.024 

0 0.59 0 0 0.59 0 0.3481 0.013 0.01* 0.023 0.029 0.036 0.023 

0 -0.59 0.59 0 -0.59 0 0.3481 0.017 0.013 0.026 0.027 0.021 0.03 

0 0.59 0.59 0 0.59 0 0.3481 0.011* 0.02 0.02 0.029 0.025 0.025 

0 -0.59 0 0.59 -0.59 0 0.3481 0.034 0.024 0.026 0.026 0.023 0.028 

0 0.59 0 0.59 0.59 0 0.3481 0.023 0.032 0.029 0.025 0.02 0.034 

0 -0.59 0.59 0.59 -0.59 0 0.3481 0.032 0.037 0.023 0.026 0.029 0.022 

0 0.59 0.59 0.59 0.59 0 0.3481 0.027 0.017 0.035 0.02 0.028 0.028 

0.59 -0.59 0 0 -0.59 0 0.3481 0.483* 0* 0.888* 0* 1* 0* 

0.59 0.59 0 0 0.59 0 0.3481 0.46* 0* 0.909* 0* 1* 0* 

0.59 -0.59 0.59 0 -0.59 0 0.3481 0.499* 0* 0.9* 0* 1* 0* 

0.59 0.59 0.59 0 0.59 0 0.3481 0.494* 0* 0.898* 0* 1* 0* 

0.59 -0.59 0 0.59 -0.59 0.3481 0.3481 0.108* 0.002* 0.184* 0.003* 0.396* 0* 

0.59 0.59 0 0.59 0.59 0.3481 0.3481 0.108* 0.004* 0.198* 0.001* 0.385* 0* 

0.59 -0.59 0.59 0.59 -0.59 0.3481 0.3481 0.115* 0.004* 0.185* 0.003* 0.379* 0* 

0.59 0.59 0.59 0.59 0.59 0.3481 0.3481 0.119* 0.006* 0.182* 0.002* 0.398* 0* 

0 -0.59 0 0 0.59 0 -0.3481 0.027 0.015 0.026 0.023 0.019 0.029 

0 0.59 0 0 -0.59 0 -0.3481 0.021 0.02 0.028 0.017 0.028 0.024 

0 -0.59 0.59 0 0.59 0 -0.3481 0.015 0.017 0.025 0.016 0.035 0.028 

0 0.59 0.59 0 -0.59 0 -0.3481 0.017 0.016 0.025 0.019 0.02 0.024 

0 -0.59 0 0.59 0.59 0 -0.3481 0.023 0.03 0.022 0.029 0.02 0.033 

0 0.59 0 0.59 -0.59 0 -0.3481 0.021 0.028 0.023 0.028 0.036 0.029 

0 -0.59 0.59 0.59 0.59 0 -0.3481 0.018 0.022 0.027 0.026 0.024 0.022 

0 0.59 0.59 0.59 -0.59 0 -0.3481 0.017 0.024 0.039* 0.029 0.029 0.028 

0.59 -0.59 0 0 0.59 0 -0.3481 0* 0.49* 0* 0.9* 0* 1* 
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Note. Values marked with * are outside Bradley’s (1978) robustness criterion 

(0.0125,0.0375) 

0.59 0.59 0 0 -0.59 0 -0.3481 0* 0.526* 0* 0.907* 0* 0.999* 

0.59 -0.59 0.59 0 0.59 0 -0.3481 0* 0.499* 0* 0.903* 0* 1* 

0.59 0.59 0.59 0 -0.59 0 -0.3481 0* 0.505* 0* 0.896* 0* 1* 

0.59 -0.59 0 0.59 0.59 0.3481 -0.3481 0* 0.321* 0* 0.569* 0* 0.874* 

0.59 0.59 0 0.59 -0.59 0.3481 -0.3481 0* 0.336* 0* 0.544* 0* 0.861* 

0.59 -0.59 0.59 0.59 0.59 0.3481 -0.3481 0.001* 0.343* 0* 0.529* 0* 0.896* 

0.59 0.59 0.59 0.59 -0.59 0.3481 -0.3481 0* 0.307* 0* 0.522* 0* 0.887* 
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APPENDIX J 

SAS PROGRAM TO ESTIMATE THE CORRELATION BETWEEN RESIDUALS 

METHOD 
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APPENDIX J 

SAS PROGRAM TO ESTIMATE THE CORRELATION BETWEEN RESIDUALS 

METHOD 

 

 
LIBNAME SIMDATA "C:\Users\Documents\Study2_v2\N = 100, A = 0.59, B = 

0.59, D = 0.59, E = 0.59_files_archivos\1.Simdata"; 

LIBNAME DATAOUT "C:\Users\Documents\Study2_v2\N = 100, A = 0.59, B = 

0.59, D = 0.59, E = 0.59_files_archivos\2.Simdatacor"; 

LIBNAME DATAOUT1 "C:\Users\Documents\Study2_v2\N = 100, A = 0.59, B = 

0.59, D = 0.59, E = 0.59_files_archivos\3.Corr"; 

TITLE 'SIMULATION SINGLE MEDIATOR MODEL WITH A CONFOUNDER CAUSING M AND 

Y. X-BINARY'; 

OPTIONS PS=59 LS=80 REPLACE NONOTES; 

FILENAME NULLOG DUMMY 'C:\NULL'; 

PROC PRINTTO LOG=NULL; 

RUN; 

 

%MACRO SIMULATE(NREP,NOBS,B1,B2,B3,B4,B5,FILE,TYPE,COND); 

 

%DO I=1 %TO &NREP; 

*GENERATE*; 

DATA SIM&I&FILE;  

DO I=1 TO &NOBS; 

X = RAND('BERNOULLI', .5); 

U = RAND('NORMAL', 0, 1); 

M = &B1*X + &B2*U + RAND('NORMAL', 0, 1); 

Y = &B3*X + &B4*M + &B5*U + RAND('NORMAL', 0, 1); 

B1 = &B1; 

B2 = &B2; 

B3 = &B3; 

B4 = &B4; 

B5 = &B5; 

REP = &I;  

COND = &COND; 

N = &NOBS; 

OUTPUT; 

END; 

RUN; 

 

DATA SIMDATA.&FILE.&I; SET SIM&I&FILE; 

RUN; 

 

%END; 

%MEND; 

 

/*POPULATION PARAMETERS*/ 

/*100*/ 

/* 

B1 = a; 

B2 = d; 

B3 = cp; 

B4 = b; 
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B5 = e; 

*/ 

 

/*%SIMULATE(NREP=1000, NOBS=100,    B1=0.14,  B2=0,    B3=0, B4=0.14,   

B5= 0,  FILE = COND01, TYPE = 'BCCC', COND = '1');*/ 

/*%SIMULATE(NREP=1000, NOBS=100,    B1=0.14,  B2=0.14,    B3=0, 

B4=0.14,   B5= 0.14,  FILE = COND02, TYPE = 'BCCC', COND = '2');*/ 

/*%SIMULATE(NREP=1000, NOBS=100,    B1=0.14,  B2=0.39,    B3=0, 

B4=0.14,   B5= 0.39,  FILE = COND03, TYPE = 'BCCC', COND = '3');*/ 

/*%SIMULATE(NREP=1000, NOBS=100,    B1=0.14,  B2=0.59,    B3=0, 

B4=0.14,   B5= 0.59,  FILE = COND04, TYPE = 'BCCC', COND = '4');*/ 

 

/*%SIMULATE(NREP=1000, NOBS=100,    B1=0.59,  B2=0,       B3=0, 

B4=0.59,   B5= 0,     FILE = COND01, TYPE = 'BCCC', COND = '1');*/ 

/*%SIMULATE(NREP=1000, NOBS=100,    B1=0.59,  B2=0.14,    B3=0, 

B4=0.59,   B5= 0.14,  FILE = COND02, TYPE = 'BCCC', COND = '2');*/ 

/*%SIMULATE(NREP=1000, NOBS=100,    B1=0.59,  B2=0.39,    B3=0, 

B4=0.59,   B5= 0.39,  FILE = COND03, TYPE = 'BCCC', COND = '3');*/ 

/*%SIMULATE(NREP=1000, NOBS=100,    B1=0.59,  B2=0.59,    B3=0, 

B4=0.59,   B5= 0.59,  FILE = COND04, TYPE = 'BCCC', COND = '4');*/ 

 

%MACRO CORRELATED(NREP, NOBS, FILE, COND); 

%DO X=1 %TO &NREP; 

 

DATA CORRES; SET _NULL_; 

 

*This part saves the estimates a, b and cp for each replication. Also 

it tests whether the indirect effect is statistically significant; 

 

************************************* 

****MODEL 1(X = M)  

*************************************; 

*Estimating the (M = X) regression; 

PROC REG DATA = SIMDATA.&FILE.&X OUTEST=FILE TABLEOUT NOPRINT COVOUT; 

Model1 : MODEL M = X/ stb;  

 

*Saving the coefficient a; 

DATA D; SET FILE; 

IF _TYPE_='PARMS';   

Asample=X; MSE1sample = _RMSE_*_RMSE_; 

DROP _MODEL_ _TYPE_ _NAME_ _DEPVAR_ _RMSE_ Intercept X M; 

KEEP Asample MSE1sample; 

 

 

*Saving the standard error of the coefficients a; 

DATA D1; SET FILE; 

IF _TYPE_='STDERR';  

SEAsample=X; 

DROP _MODEL_ _TYPE_ _NAME_ _DEPVAR_ _RMSE_ Intercept X M; 

KEEP SEAsample; 

 

************************************* 

****MODEL 2(Y = X M)  

*************************************; 
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*Estimating the(Y  = X M) regression; 

 

PROC REG DATA=SIMDATA.&FILE.&X OUTEST=FILE TABLEOUT NOPRINT COVOUT; 

Model2 : MODEL Y = X M/ stb;  

 

*Saving the coefficients b and c; 

DATA E; SET FILE; 

IF _TYPE_='PARMS';   

CPsample=X; Bsample=M; MSE2sample = _RMSE_*_RMSE_; 

DROP _MODEL_ _TYPE_ _NAME_ _DEPVAR_ _RMSE_ Intercept X M Y;  

KEEP CPsample Bsample MSE2sample; 

 

 

*Saving the standard error of the coefficients b and cp; 

DATA E1; SET FILE; 

IF _TYPE_='STDERR';  

SECPsample=X; SEBsample=M; 

DROP _MODEL_ _TYPE_ _NAME_ _DEPVAR_ _RMSE_ Intercept X M Y;  

KEEP SECPsample SEBsample; 

 

*Merging data; 

DATA MODEL; MERGE D D1 E E1; 

 

*This part performs the sesntivivity analysis varying the correlation 

between residual variances; 

%Do I = %SysEvalF(-3 * 10) %To %SysEvalF(3 * 10) ; 

%Put I = %sysEvalF(&I / 10) ;  

PROC CALIS DATA = SIMDATA.&FILE.&X METHOD=ML COV OUTEST=OUT 

PLOTS=PATHDIAGRAM NOPRINT; 

 

LINEQS 

M = a X + D1, 

Y = c X +  b M + D2; 

 

STD 

D1, 

D2; 

 

COV 

D1 D2 = %sysEvalF(&I / 10); 

 

DATA B; SET OUT; 

IF _TYPE_='PARMS'; 

D1=_Parm1; 

D2=_Parm2; 

AB=A*B; 

KEEP A B AB D1 D2; 

 

DATA SE; SET OUT; 

IF _TYPE_='STDERR'; 

SEA=A; SEB=B; 

KEEP SEA SEB; 

 

DATA COV; 
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COVE1E2= %sysEvalF(&I / 10); 

KEEP COVE1E2; 

 

DATA ALL; MERGE MODEL B SE COV; 

CORRE1E2 = COVE1E2/ (SQRT(D1)*SQRT(D2)); 

 

*Test for significance a*b; 

ABsample = Asample * Bsample; 

SOBEL = 

SQRT(Asample*Asample*SEBsample*SEBsample+Bsample*Bsample*SEAsample*SEAs

ample); 

ZSOBEL = ABsample/SOBEL; 

ABSZSOBEL = ABS(ZSOBEL); 

 

IF ABSZSOBEL > 1.96 THEN DECZSOBEL = 1; 

ELSE DECZSOBEL = 0; 

 

RAB = abs (AB); 

COND = &COND; 

N = &NOBS; 

 

DATA NEW;SET CORRES; 

DATA CORRES; SET NEW ALL; 

 

%END; 

DATA DATAOUT.&FILE.&X; SET CORRES; 

RUN; 

%END; 

%MEND; 

/*NEP = 1000, NOBS AND CONDITION*/ 

/*%CORRELATED (NREP = 1000, NOBS = 100, FILE = COND01, COND = '1');*/ 

/*%CORRELATED (NREP = 1000, NOBS = 100, FILE = COND02, COND = '2');*/ 

/*%CORRELATED (NREP = 1000, NOBS = 100, FILE = COND03, COND = '3');*/ 

/*%CORRELATED (NREP = 1000, NOBS = 100, FILE = COND04, COND = '4');*/ 

 

/*%CORRELATED (NREP = 1000, NOBS = 100, FILE = COND01, COND = '1');*/ 

/*%CORRELATED (NREP = 1000, NOBS = 100, FILE = COND02, COND = '2');*/ 

/*%CORRELATED (NREP = 1000, NOBS = 100, FILE = COND03, COND = '3');*/ 

/*%CORRELATED (NREP = 1000, NOBS = 100, FILE = COND04, COND = '4');*/ 

 

 

%MACRO CORR(NREP, FILE, COND); 

%DO X=1 %TO &NREP; 

 

DATA SUMMARY2; SET _NULL_; 

 

PROC SORT DATA=DATAOUT.&FILE.&X; 

   BY RAB; 

RUN; 

 

DATA CORRES1; 

SET DATAOUT.&FILE.&X; 

IF _N_= 1; 

COND = &COND; 
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REP = &X; 

RUN; 

 

DATA NEW; SET CORRES1; 

DATA  SUMMARY2; SET SUMMARY2 NEW; 

 

DATA DATAOUT1.&FILE.&X; SET SUMMARY2; 

RUN; 

%END; 

 

%MEND; 

/*NEP = 1000, CONDITION*/ 

/*100*/ 

/*%CORR(NREP=1000, FILE = COND01, COND = '1');*/ 

/*%CORR(NREP=1000, FILE = COND02, COND = '2');*/ 

/*%CORR(NREP=1000, FILE = COND03, COND = '3');*/ 

/*%CORR(NREP=1000, FILE = COND04, COND = '4');*/ 

 

/*%CORR(NREP=1000, FILE = COND01, COND = '1');*/ 

/*%CORR(NREP=1000, FILE = COND02, COND = '2');*/ 

/*%CORR(NREP=1000, FILE = COND03, COND = '3');*/ 

/*%CORR(NREP=1000, FILE = COND04, COND = '4');*/ 

 

PROC SQL; 

SELECT catt('DATAOUT1.',MEMNAME) INTO : MEMNAMES separated by '  ' 

FROM DICTIONARY.TABLES 

WHERE LIBNAME='DATAOUT1'; 

QUIT; 

 

DATA WANT; 

SET &MEMNAMES.;  

/*t*/ 

ALPHA = 0.05; 

P = 1 - ALPHA/2; 

T = CORRE1E2*SQRT(N-2)/SQRT(1-CORRE1E2**2); 

TABS = ABS (T); 

TCRITICAL = TINV (P, N-2); 

IF TABS > TCRITICAL THEN DECISIONT = 1; 

ELSE DECISIONT = 0; 

/*Condifence  intervals*/ 

ZP = ARTANH(CORRE1E2); 

/*Zp1 = .5 *(log(1+CORRE1E2) - log(1-CORRE1E2));*/ 

SEp = 1 / SQRT (N-3); 

LCLz = zp - 1.96 *  SEp;  

UCLz = zp + 1.96 *  SEp;  

 

LCLr = TANH (LCLz);  

UCLr = TANH (UCLz);  

 

IF LCLr < 0 < UCLr THEN DECISIONCI = 0; 

ELSE DECISIONCI = 1; 

 

ABSCORR = ABS(CORRE1E2); 
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IF ABSCORR  > 0.05 THEN EFFR05 = 1; 

ELSE EFFR05 = 0; 

IF ABSCORR  > 0.1 THEN EFFR1 = 1; 

ELSE EFFR1 = 0; 

IF ABSCORR  > 0.3 THEN EFFR3 = 1; 

ELSE EFFR3 = 0; 

IF ABSCORR  > 0.5 THEN EFFR5 = 1; 

ELSE EFFR5 = 0; 

 

RUN; 

 

PROC MEANS DATA = WANT; 

RUN; 

 

PROC MEANS DATA = WANT; 

CLASS DECZSOBEL; 

RUN; 

 

PROC SGPLOT DATA = WANT; 

TITLE "Distribution of the correlation between residuals that make the 

indirect effect 0"; 

HISTOGRAM CORRE1E2 / GROUP = DECZSOBEL; 

RUN; 

TITLE; 
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APPENDIX K 

SAS PROGRAM TO ESTIMATE THE L.O.V.E METHOD 
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APPENDIX K 

SAS PROGRAM TO ESTIMATE THE L.O.V.E METHOD 

 

 
LIBNAME SIMDATA "C:\Users\Diana Alvarez Bartolo\Documents\Study2_v2\N = 

100, A = 0.59, B = 0.59, D = 0.59, E = 0.59_files_archivos\1.Simdata"; 

LIBNAME DATAOUT "C:\Users\Diana Alvarez Bartolo\Documents\Study2_v2\N = 

100, A = 0.59, B = 0.59, D = 0.59, E = 0.59_files_archivos\4.love"; 

TITLE 'SIMULATION L.O.V.E'; 

OPTIONS PS=59 LS=80 REPLACE NONOTES; 

FILENAME NULLOG DUMMY 'C:\NULL'; 

PROC PRINTTO LOG=NULL; 

RUN; 

 

%MACRO CORR(NREP, NOBS, FILE, COND); 

%DO X=1 %TO &NREP; 

DATA LOVE; SET _NULL_; 

 

*This part saves the estimates a, b and cp for each replication. Also 

it tests whether the indirect effect is statistically significant; 

************************************* 

****MODEL 1(X = M)  

*************************************; 

*Estimating the (M = X) regression; 

PROC REG DATA = SIMDATA.&FILE.&X OUTEST=FILE TABLEOUT NOPRINT COVOUT; 

Model1 : MODEL M = X/ stb;  

 

*Saving the coefficient a; 

DATA D; SET FILE; 

IF _TYPE_='PARMS';   

Asample=X; MSE1sample = _RMSE_*_RMSE_; 

DROP _MODEL_ _TYPE_ _NAME_ _DEPVAR_ _RMSE_ Intercept X M; 

KEEP Asample MSE1sample; 

 

*Saving the standard error of the coefficients a; 

DATA D1; SET FILE; 

IF _TYPE_='STDERR';  

SEAsample=X; 

DROP _MODEL_ _TYPE_ _NAME_ _DEPVAR_ _RMSE_ Intercept X M; 

KEEP SEAsample; 

 

************************************* 

****MODEL 2(Y = X M)  

*************************************; 

*Estimating the(Y  = X M) regression; 

 

PROC REG DATA=SIMDATA.&FILE.&X OUTEST=FILE TABLEOUT NOPRINT COVOUT; 

Model2 : MODEL Y = X M/ stb;  

 

*Saving the coefficients b and c; 

DATA E; SET FILE; 

IF _TYPE_='PARMS';   

CPsample=X; Bsample=M; MSE2sample = _RMSE_*_RMSE_; 
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DROP _MODEL_ _TYPE_ _NAME_ _DEPVAR_ _RMSE_ Intercept X M Y;  

KEEP CPsample Bsample MSE2sample; 

 

*Saving the standard error of the coefficients b and cp; 

DATA E1; SET FILE; 

IF _TYPE_='STDERR';  

SECPsample=X; SEBsample=M; 

DROP _MODEL_ _TYPE_ _NAME_ _DEPVAR_ _RMSE_ Intercept X M Y;  

KEEP SECPsample SEBsample; 

 

*Merging data; 

DATA MODEL; MERGE D D1 E E1; 

 

PROC CORR COV DATA=SIMDATA.&FILE.&X NOPRINT OUTP=COV; 

VAR Y X M U; 

RUN; 

 

DATA CORR1; SET COV;  

IF _NAME_ = 'X' and _TYPE_ = 'CORR'; RYX  = Y; 

KEEP RYX; 

 

DATA CORR2; SET COV;  

IF _NAME_ = 'M' and _TYPE_ = 'CORR'; RYM  = Y; 

KEEP RYM; 

 

DATA CORR3; SET COV;  

IF _NAME_ = 'X' and _TYPE_ = 'CORR'; RMX  = M;  

KEEP RMX; 

 

DATA R; 

MERGE CORR1 CORR2 CORR3; 

 

DATA COMPLETE; 

MERGE MODEL R; 

RUN; 

 

DATA LOVE; SET COMPLETE; 

DO CORUM=0 TO 1 BY .01; 

DO CORUY=0 TO 1 BY .01; 

DO CORUX=0; 

/* True values of a,b,cpr that account for the influence of a potential 

confounder U*/ 

CPR =(RYX*(1-CORUM**2)+ RYM*(CORUX*CORUM-RMX)+ CORUY*(CORUX*CORUM-

CORUX))/(1+2*(RMX*CORUM*CORUX)- CORUX**2-CORUM**2-RMX**2); 

B =(RYM*(1-CORUX**2)+ RYX*(CORUM*CORUX-RMX)+ CORUY*(RMX*CORUX-

CORUM))/(1+2*(RMX*CORUX*CORUM)- CORUM**2-CORUX**2-RMX**2); 

A =(RMX-CORUM*CORUX)/(1-CORUX**2); 

 

/*Observed values of a,b, cpr*/ 

CPRBIASED=(RYX-RYM*RMX)/(1-RMX**2); 

BBIASED=(RYM-RYX*RMX)/(1-RMX**2); 

ABIASED=RMX; 

 

/*Obtaining the bias of each coefficient, a is unbiased because RUX=0*/ 
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BIASCPR=CPRBIASED-CPR; 

BIASB=BBIASED-B; 

BIASA=ABIASED-A; 

 

*The following code computes standardized true ab, standardized biased 

ab, and the bias of the indirect effect; 

TRUEAB=A*B; 

BIASEDAB=ABIASED*BBIASED; 

BIASAB=BIASEDAB-TRUEAB; 

RTRUEAB = round(TRUEAB,.01); 

 

ABsample = Asample * Bsample; 

SOBEL = 

SQRT(Asample*Asample*SEBsample*SEBsample+Bsample*Bsample*SEAsample*SEAs

ample); 

ZSOBEL = ABsample/SOBEL; 

ABSZSOBEL = ABS(ZSOBEL); 

 

IF ABSZSOBEL > 1.96 THEN DECZSOBEL = 1; 

ELSE DECZSOBEL = 0; 

 

OUTPUT; 

END; 

END; 

END; 

RUN; 

 

DATA FORZERO; SET LOVE;  

IF RTRUEAB=0; 

 

COND = &COND; 

N = &NOBS; 

REP = &NREP; 

 

*VARIANCE OF THE CORRELATIONS; 

VRMU = ((1-CORUM*CORUM)*(1-CORUM*CORUM))/ N; 

VRMY = ((1-RYM*RYM)*(1-RYM*RYM))/N; 

VRUY = ((1-CORUY*CORUY)*(1-CORUY*CORUY))/ N; 

 

*COVARIANCES AMONG THE CORRELATIONS; 

CRMYRMU =(.5*(2*CORUY-CORUM*RYM)*(1-CORUY*CORUY-CORUM*CORUM-RYM*RYM) + 

CORUY*CORUY*CORUY)/N; 

CRMYRUY =(.5*(2*CORUM-RYM*CORUY)*(1-CORUM*CORUM-RYM*RYM-CORUY*CORUY) + 

CORUM*CORUM*CORUM)/ N; 

 

CRUYRMU = (.5*(2*RYM - CORUM*CORUY)*(1-CORUM*CORUM-RYM*RYM-CORUY*CORUY) 

+ RYM*RYM*RYM)/N; 

CORR = CORUM * CORUY; 

CORVAR = ((CORUM**2)*VRUY)+(2*CRUYRMU*CORUM*CORUY)+ ((CORUY**2)*VRMU); 

CORSE = SQRT(CORVAR); 

CORZ = CORR/CORSE; 

CORZABS = ABS (CORR/CORSE); 

 

IF CORZABS > 1.96 THEN DECISIONZ = 1; 
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ELSE DECISIONZ = 0 ; 

 

IF CORR > 0.05 THEN EFFR05 = 1; 

ELSE EFFR05 = 0; 

 

IF CORR > 0.1 THEN EFFR1 = 1; 

ELSE EFFR1 = 0; 

 

IF CORR > 0.3 THEN EFFR3 = 1; 

ELSE EFFR3 = 0; 

 

IF CORR > 0.5 THEN EFFR5 = 1; 

ELSE EFFR5 = 0; 

 

DATA ROW; SET FORZERO; 

WHERE CORUM = CORUY; 

RUN; 

 

DATA ROW1; SET ROW; 

IF _N_= 1; 

RUN; 

 

DATA NEW; SET ROW1; 

DATA ROW1; SET ROW1; 

 

DATA DATAOUT.&FILE.&X; SET ROW1; 

RUN; 

%END; 

 

%MEND; 

%CORR(NREP = 1000, NOBS = 100, FILE = COND04, COND = '4'); 

 

PROC SQL; 

SELECT catt('DATAOUT.',MEMNAME) INTO : MEMNAMES separated by '  ' 

FROM DICTIONARY.TABLES 

WHERE LIBNAME='DATAOUT'; 

QUIT; 

 

DATA WANT; 

SET &MEMNAMES.;  

RUN; 

 

PROC MEANS DATA = WANT; 

RUN; 

 

PROC MEANS DATA = WANT; 

CLASS DECZSOBEL; 

RUN; 

 

PROC SGPLOT DATA = WANT; 

TITLE "Distribution of the product of correlations (rum*ruy)"; 

HISTOGRAM CORR / GROUP = DECZSOBEL; 

RUN; 

TITLE; 


