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ABSTRACT 

High-entropy alloys (HEAs) is a new class of materials which have been studied heavily 

due to their special mechanical properties. HEAs refers to alloys with multiple equimolar 

or nearly equimolar elements. HEAs show exceptional and attractive properties currently 

absent from conventional alloys, which make them the center of intense investigation. 

HEAs obtain their properties from four core effects that they exhibit and most of the 

work on them have been dedicated to study their mechanical properties. In contrast, little 

or no research have gone into studying the functional or even thermal properties of 

HEAs. Some HEAs have also shown exceptional or very high melting points. According 

to the definition of HEAs, Si-Ge-Sn alloys with equal or comparable concentrations of 

the three group IV elements belong to the category of HEAs. Thus, the equimolar 

components of Si-Ge-Sn alloys probably allow their atomic structures to display the same 

fundamental effects of metallic HEAs. The experimental fabrication of such alloys has 

been proven to be very difficult, which is mainly due to differences between the 

properties of their constituent elements, as indicated from their binary phase diagrams. 

However, previous computational studies have shown that SiGeSn HEAs have some very 

interesting properties, such as high electrical conductivity, low thermal conductivity and 

semiconducting properties. In this work, going for a complete characterization of the 

SiGeSn HEA properties, the melting point of this alloy is studied using classical 

molecular dynamics (MD) simulations and density functional theory (DFT) calculations. 

The aim is to investigate the effects of high Sn content in this alloy on the melting point 

compared with the traditional SiGe alloys. Classical MD simulations results strongly 
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indicates that none of the available empirical potentials is able to predict accurate or 

reasonable melting points for SiGeSn HEAs and most of its subsystems. DFT 

calculations results show that SiGeSn HEA have a melting point which represent the 

mean value of its constituent elements and that no special deviations are found. This 

work contributes to the study of SiGeSn HEA properties, which can serve as guidance 

before the successful experimental fabrication of this alloy. 
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A COMPUTATIONAL STUDY ON MELTING POINT OF SI-GE-SN HIGH 

ENTROPY ALLOY 

1 THESIS OVERVIEW AND LAYOUT 

1.1  High Entropy Alloys 

 

Throughout human history, the discovery of new material always marked the 

beginning of a new era. One of these material types, metallic alloys, played a very 

important role in the development of society. To create a conventional alloy, one would 

need to decide on two components; the principal element and the minor element. The 

principal element serves as the base of the alloy. This base is usually chosen based on its 

attractive and useful properties and also based on its stability when combined with lower 

concentrations of other minor elements. In most cases, one principal element is chosen. 

The minor component is one or more elements that are added to the principal element 

with a very low concentration. Famous examples of these alloys where one of each 

component is present are Steel alloy (Iron base with minor concentrations of Carbon) and 

Brass alloy (Copper base with minor concentrations of Tin). There are almost thirty 

common alloy systems that are used regularly for a variety of applications. Alloys offer a 

wide range of properties and performances which explains their ubiquity and usage in 

many different areas. [1]. Although alloy design techniques and tools have hugely 

advanced from ancient eras to modern times, the main concepts of principal and minor 

elements stayed at the core of their design principle. The choice of principal elements and 

the control over the number and concentrations of each of the minor elements continued 

to progress with time, in search of new alloys that offer the best performance or suit a 
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specific application. With all this variety, conventional alloys still failed to be a suitable 

material for some highly needed applications, like high-temperature applications, energy 

production, or alloys with high strength and high toughness simultaneously [2]. One 

central problem is the lack of new principal elements that have the appropriate properties 

and stability. This defined a limit on the traditional design concept of conventional alloys. 

A change in the fundamental ideas was needed to progress the field [1-4] This was made 

by the advent of high entropy alloys (HEAs) in 2004 [5].  

1.1.1 History and Definition  

In 2004, professor Cantor with his team from the University of Oxford, and 

professor Jien-Wei Yeh from the National Tsing Hua University in Taiwan were 

working, at the same time, but independently, on a fundamental new idea of alloy design, 

that would revolutionize the field.  A multi-principal element alloy, where instead of 

having a single base element as the main component of the alloy, you have multiple 

principal elements mixed in equimolar concentration in the same structure to create an 

alloy. The idea started with different motivations for the two research groups, but both of 

them focused on the unexplored regions of the multicomponent alloy phase diagrams, 

that is the regions where you have equ-atomic ratio of multiple elements, rather than one 

element as the base. Two papers from the research groups were published in that year and 

they marked the launch of multi-principal element alloys field (MPEs), later called high 

entropy alloys (HEAs) [5, 6]. HEAs were originally defined as an alloy with 5 or more 

principal elements with each element having a concentration of 5 to 35 atomic percent. 

Additionally, similar to conventional alloys, HEAs can contain minor concentrations of 
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other non-principal elements. This definition was later expanded to include alloys with 

even 3 principal elements and with higher atomic concentrations than 35%, but meets the 

other criteria of HEAs. An alloy base in HEAs is a specific combination of principal 

elements, and there are a vast number of them. This is due to the huge number of ways 

that r  principal elements can be taken from n  candidates, described by the equation 

 
n

r

n!
C

r!(n r)!
=

−
 (1.1) 

There are n 75=  stable elements that aren't toxic, radioactive, or noble gases, resulting 

in over 219 million new alloy systems with 3 r 6   major elements [2]. Even if we 

followed the strict criteria of 5 elements or more, the number would still be huge. Also, 

unlike an elemental alloy base, which only gives one base per element, a combination of r 

specific elements HEA base can provide a variety of unique alloy bases by varying their 

concentrations. This makes the numbers even greater [4]. The high entropy refers to the 

high configurational entropy of random mixture of elements in these alloys, which helps 

in stabilizing the ideal solid solution [5]. The second definition of HEAs relies on the 

concept of entropy. A HEA is defined as an alloy that has a configurational entropy 

greater than 1.61R  in its random solution state, where R is the gas constant.  

 1.61 mixS R  (1.2) 

Entropy in thermodynamics is a state function and a parameter that describes 

randomness. Entropy of a system is given by  

 ln=S k W  (1.3) 
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where k is Boltzmann constant, related to the gas constant R , and W  is the total number 

of microscopic states in the macroscopic system. It can be seen that as the number of 

microscopic states increases, the entropy value of the system increases, and entropy is a 

measure of the number of microscopic states of the system. When the heat of mixing is 

ignored, the increase in the entropy of the system which is caused by the different 

configurations of the atoms of different alloying elements is called configurational 

entropy, hybrid entropy, or mixing entropy. When the solid solution is composed of n  

kinds of atoms, the configurational entropy is given by  

 
1

ln
=

 = − 
n

conf i i

i

S R c c  (1.4) 

where 
ic  is the element concentration in atomic percent. This expression reaches its 

maximum value when 
1 2 ......= = nc c c  and the expression become  

 ln =confS R n  (1.5) 

where n  is the number of components in the system. It can be seen that the greater the 

number of components in a system, the higher the mixing entropy. From here, materials 

or alloys can be classified into three main categories: (1) Low entropy alloys: 

0.69 confS R , containing 1 or 2 main elements. (2) Medium entropy alloys (MEA): 

0.69 1.61  confR S R , containing 2-4 main elements. (3) High entropy alloys 

(HEA): 1.61 confS R , containing five main elements at least. This lays out a criterion 

and a definition of HEAs. For many years, HEAs have been studied under the classic 

definition of 5 or more elements with a single-phase solid solution. But now the limits 
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have been steadily broken as our understanding of HEA has evolved. New classes of 

HEAs and other related concepts are arising, like non-equimolar multiphase solid 

solution alloys, high entropy ceramics, and complex concentrated alloys (CCAs) [4].   

1.1.1 Phase formation and selection rules 

Different phases of a material are controlled by thermodynamic and kinetic 

factors. The Gibbs free energy G  is an important quantity in calculating the phases of a 

material, and it is defined as  

 G H T S =  −   (1.6) 

where H is the enthalpy, T is the temperature, and S  is the entropy. When mixing 

different elements, the Gibbs free energy of mixing comes into play 

 
mix mix mixG H T S =  −   (1.7) 

Although there are many possible states in the solid state of an alloy, the equilibrium state 

is the one with the lowest free energy of mixing, according to the second law of 

thermodynamics. In HEAs, the original idea was that the very high entropy of mixing of 

the various elements in the HEA will stabilize the formation of solid solution against any 

other phases like intermetallic compounds [5]. This effect was called constantly as the 

“high entropy effect”, which was at the core of the definition of HEAs, high mixing 

entropy to enhance the formation of solid solution by reducing Gibbs free energy, 

especially at high temperatures [3]. In the original studies, HEAs were modeled as ideal 

solutions, in that case the expression for mixing entropy 
mixS in Eqn. 1.7 is the same 
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expression given in Eqn. 1.5. The high entropy effect has been the main design 

philosophy of HEAs since their discovery, and it can be translated as follows 

 max{ } ( 1,2, ..., )sys iTS H i m=  (1.8) 

Where 
sysS  is the configurational entropy of mixing of the alloy system and iH  is the 

formation enthalpy of the i th phase, assuming m  possible phases in total [3]. However, 

in reality, other kinds of phases were detected in HEAs, like intermetallic and metallic 

glasses, this means that 
mixS  cannot be used as the sole parameter in the design of 

HEAs. The phase formation rules of HEAs are an extension of the Hume-Rothery rules 

for conventional alloys (crystal structure, atomic size difference, valence, and 

electronegativity) and also other additional empirical criteria developed by others 

researchers.  

1.1.2.1 Mixing entropy 
mixS and mixing enthalpy 

mixH  

 The main thermodynamic quantities in the HEAs criteria are the mixing entropy 

and enthalpy. Mixing entropy is in the core of the HEAs definition, and according to Eqn. 

1.5, the greater the number of components in the alloy, the greater the mixing or 

configurational entropy, the lower the Gibbs free energy of mixing. In the original 

definition, an equ-atomic multicomponent alloy of five or more having a mixing entropy 

of 1.61confS R   formed a high entropy alloy. However, mixing entropy alone is not 

sufficient to stabilize the solid solution phase in every system. The mixing enthalpy 

mixH must also be taken into account. 
mixH  is given by [7]  

 
mix ij i j

iji j

H c c


 =   (1.9) 
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Where 4 AB

ij mixH =   and 
AB

mixH are the mixing enthalpies of binary A-B alloys as 

calculated according to Miedema’s semi-empirical model. It has been found empirically 

that in order to form a complete solid solution, should be between -10 and -5 KJ/mol [8]. 

1.1.2.2 ,  and VEC parameters  

 The Hume-Rothery rules describe the effect of atomic size difference, 

electronegativity difference, and valence electron concentration on the formation of solid 

solution between elements. For HEAs, where there is no clear distinction between solvent 

and solute components, the Hume-Rothery rules were modified and extended. According 

to this criterion, the average atomic size difference is defined as [9] 

 

2

1

1

n

i
i

i

r
c

r


=

 
= − 

 
  (1.10) 

Where n is the total number of components i , each having a concentration and a radius 

ic  and ir  respectively. r is the average of atomic radius of the alloy: 
1

n

i i

i

r c r
=

= . It can be 

found that generally the formation of solid solution phase requires a 6.5%  . The 

electronegativity difference  is given by [10] 

 
2

1

( )
n

i i

i

c  
=

 = −  (1.11) 

Where the average electronegativity 
1

n

i i

i

c 
=

= . The valence effect in the Hume-Rothery 

criterion describes the effect of valence electron concentration on the stability of solid 

solution.  When the atomic valences of the components are close, the component's solid 

solubility is higher, and the solid solution in the alloy is relatively stable. When the 
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valence electron concentration varies or exceeds a certain threshold, the bond between 

the components becomes disordered, reducing the solid solution's stability and favoring 

the formation of intermetallic compounds. The VEC of the alloy is defined as  

 
1

( )
n

i i

i

VEC c VEC
=

=  (1.12) 

Where ( )iVEC is the valence electron concentration of the i-th component of the alloy. 

VEC is a useful criterion to predict the crystal structure of HEAs, mainly the stability of 

FCC and BCC structures in HEA. It is considered that when 8.6VEC  , the FCC solid 

solution phase is stable, while when 6.87VEC  , the BCC solid solution phase is 

relatively stable [10]. 

1.1.2.3   Criteria 

 The   parameter was proposed relate between the criteria and the mixing entropy 

criteria [9]. It is related to the established assumptions of Takeuchi and Inoue that relates 

the free energy change of alloy to the free energy change in the liquid state. The 

parameter can be written as  

 m mix

mix

T S

H


 =


 (1.13) 

Where ( )
1

n

m i m i
i

T c T
=

=  and ( )m i
T  is the melting point of the i-th element. The critical 

value of the parameter is 1. If 1  , the effect of mixing entropy on the formation of 

solid solution exceeds that of mixing enthalpy, and the alloy tends to form a solid 

solution. 

1.1.2 Characteristics and applications of HEAs 
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HEAs have four core effects associated with them, which are: (1) the high entropy 

effect, (2) the severe lattice distortion effect, (3) the sluggish diffusion effect, and (4) the 

“cocktail” effect [11] [12]. The high entropy effect describes the huge influence of 

configurational entropy on the stability of solid solution phases against other phases. The 

maximized mixing entropy (configurational entropy) in HEAs tends to lower the Gibbs 

free energy of the solid solution phase and increase its chance of appearing as a stable 

phase compared to other phases. The lattice distortion effect originates from the 

mismatch of atomic sizes between different elements that form the HEA, causing lattice 

strain and stress. The sluggish diffusion effect slows the diffusion and phase 

transformation kinetics in HEAs. That’s mainly due to the different local environments 

that the atom faces when it jumps into a vacancy (different bonding and local energies), 

unlike in conventional alloys where most of the time, the local atomic configuration in 

the site before and after are the same. The cocktail effect refers to the surprising and 

exotic properties that one gets from the complex mixture of the many different elements 

that compose the HEA lattice. The macroscopic properties of HEAs are not only the 

average properties of their components but also, the interaction between the different 

elements can produce excess quantities that are more than the average quantities 

predicted by the simple mixture. 

Because the majority of HEAs have advantageous mechanical properties, such as high 

hardness values [13-15], yielding stresses , fatigue resistance [16, 17], and irradiation 

resistance [18, 19], a large portion of the research effort has gone into studying their 

mechanical properties for structural applications. However, some HEAs also show 
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interesting functional properties, such as magnetic properties, semiconducting properties, 

and superconductivity [20], and these properties have received significantly less research 

attention. For example, superparamagnetic properties have been reported for 

Ti0.8CoCrCuFeNi and TiCoCrCuFeNi HEAs [21]. Superconducting properties were also 

reported for several HEAs, like HfNbTaTiZr and Ta–Nb–Hf–Zr–Ti [22]. In regards to 

semiconducting properties, studies have discovered that when alloying elements Ge, Pb, 

and Mn are successively added to the SnTe binary alloy to form HEAs, the valence bands 

and bandgaps in the HEAs are modified as a result of the cocktail effect [23]. The ternary 

Sn-Ge-Te HEA, in particular, showed a significant reduction in the bandgap without 

significantly altering the original band structure. The Sn-Ge-Pb-Mn-Te HEA, on the 

other hand, had a wider bandgap as well as more flattened valence bands in the band 

structure than the binary SnTe alloy [23]. 

1.2 SiGeSn High Entropy Alloy System 

 

The elements Si, Ge and Sn make a famous set of binary and ternary alloys that have 

been heavily investigated lately, due to their importance and applications in 

optoelectronic devices. Silicon (Si) and Germanium (Ge) are elemental semiconductors 

and as elements, they have many similar properties. This makes them easier to form an 

alloy with a solid solution phase and a high concentration of one of them as the minor 

element. The element Tin (Sn) however, while existing in the same periodic element 

group as Si and Ge, has different properties than the other two elements. In the 

conventional alloying scheme, this makes either Si or Ge the principal element if Tin (Sn) 

is present in the alloy, due to its different properties. The binary and ternary conventional 
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alloys made of these three elements have one very attractive electronic property, which is 

the ability to achieve a direct-bandgap material, which is not present in the elemental 

semiconductor form of these elements. The binary alloys Si-Sn and Ge-Sn have a tunable 

or a controlled bandgap as the concentration of Sn varies. It has been reported that a Tin 

(Sn) concentration of 8% changes the bandgap of Ge from indirect-bandgap to direct-

bandgap and lowers its value [24]. The same behavior of Tin-concentration controlled 

bandgap is also found in the ternary SiGeSn alloys. [25]. Because of their similar 

properties, the phase diagram of Si-Ge binary system shows full solubility of Ge in any 

concentration of Si, resulting in Si-Ge alloy being a solid-solution alloy [27]. This makes 

their experimental fabrication a doable process and indeed, many Si-Ge have been 

developed for a variety of applications, including near-infrared devices [28]. However, 

when Sn is included in either the binary or the ternary combination, the fabrication of 

such alloys becomes very difficult [31].. The main reason of that as mentioned earlier is 

the striking differences between the properties of Sn compared to the two others, which 

reflects in their binary phase diagrams having a very low solubility limit [26].. In the Si-

Sn and Ge-Sn binary phase diagrams, the thermodynamic solubility limit at room 

temperature is below 1%. [29, 30]. Many innovative experimental methods were 

developed to fabricate ternary SiGeSn alloys with the highest Tin concentration possible 

[32] [33]. But still, there is no defined upper limit for the concentration of Tin in this 

alloy. Studies on this structure, for the most part, included one principal element such as 

Si with a very high concentration such as 70%, and the other two elements as minor 

elements with low concentration to tune the ternary alloy properties. The electrical [34, 
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36, 37], optical [35], and mechanical [34] properties of this ternary alloy have been 

investigated extensively in the literature, but, the Tin concentrations in all of these studies 

have not exceeded 10%. By definition, in the Si-Ge-Sn ternary diagram, alloys with these 

concentrations where one element has the dominant concentration are present in the 

corners of the phase diagrams. There is another form of this alloy that resides in the 

center of the phase diagram. This form has an equ-atomic concentration of these three 

elements (Si0.3Ge0.3Sn0.3) and it can be called a high entropy alloy. In contrast, little to no 

studies have been done on this form of this alloy. The term “high entropy alloy” has 

never been used for Si-Ge-Sn in scientific literature. This high entropy form has never 

been synthesized experimentally due to the difficulties in incorporating high Tin 

concentrations with Si and Ge. Recently, using density functional theory and molecular 

dynamics simulations, Duo Wang et al. (2019; 2020) studied the electronic [38] and 

thermoelectric [39] properties of SiGeSn HEA, and have shown that this alloy has no  

chemical short-range order and remains semiconducting with a bandgap of 0.38 eV, 

which makes it promising for midinfrared optoelectronic applications. Also, these studies 

have shown that the SiGeSn HEA has high electrical conductivity and low thermal 

conductivity, which makes it a candidate for high thermoelectric (TE) applications at 

room temperature. 

1.3 Melting Temperature Calculation 

 

Melting temperature mT  is one of the fundamental and important property for any 

compound and knowing its value is a critical information in many applications [40-45]. 
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Many computational methods have been developed for the theoretical prediction of 

melting temperature and they have been based on different computational approaches and 

with different levels of accuracy in describing the atomic interactions. Melting itself as a 

phenomenon is defined as the phase transition from a solid to a liquid phase. 

Thermodynamically, the melting temperature can be also defined as the temperature 

where the free energy of the solid is equal to the free energy of the liquid. While it is a 

common occurrence in everyday life, its atomic complexity is such that a clear physical 

explanation of its nature and, more importantly, dynamics is still absent. The methods for 

melting temperature calculation can be classified into two groups. The first class of 

methods are “direct” methods and the second is the free-energy methods. In the direct 

methods, the melting phenomena is directly simulated: the melting temperature is 

approached by the evolution of the solid and/or the liquid involved in the phase 

transition. Commonly used examples of these methods include the large two-phase 

coexistence method [46-52] and the fast-heating methods (Z-method) [42, 43, 53, 54] . In 

the two-phase method, a simulation of coexistence of the two phases, liquid and solid is 

carried out. The goal is to have a stable solid-liquid coexistence whose temperature is 

naturally the melting temperature. The simulation cell is split in half, with one half 

containing atoms in a solid structure and the other containing identically dense atoms 

from a liquid simulation of the same system. A fraction of the liquid phase will solidify if 

the system as a whole is at a temperature just below the melting point, producing the 

necessary latent heat. This warms the system up to the melting point since it is closed 

(NVE). The latent heat needed to melt the solid will also cool the system down if it is 
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over the melting point. The disadvantages of this approach include the requirement for 

big systems (both sides must be made up of a sufficient number of atoms), as well as a 

significant number of simulation steps, which is a frequent issue with the melting 

process. The other common method is the Fast-heating method, where an attempt to 

mimic the measurement of melting points in frequent experiments is done. A small solid 

cell is heated to a low temperature to begin the process. Then, as the temperature 

progressively rises, the atoms begin to move more quickly. The crystal melts when the 

temperature reaches a certain point. Because melting causes a temperature reduction due 

to the latent heat, it is simple to calculate the melting temperature. The procedure is 

equally simple as the two-phase method and uses only half the number of atoms in the 

simulation cell. The system must still go through a significant number of simulation steps 

to completely melt, though. In the free energy methods [55-57], the melting temperature 

is found by locating the intersection of the two free energy curves, which depends on 

independent calculations of the free energies of the solid and the liquid. The hardest to 

calculate among them is the liquid-state free energy [58]. This category includes methods 

like thermodynamic integration and two-phase thermodynamics methods. 

1.4 Aims of this work 

 

In this work, we study the melting properties of the binary SiGe alloy and the 

ternary not-yet synthesized SiGeSn high entropy alloy using classical molecular 

dynamics simulations and density functional theory calculations. We investigate the 

effect of the high Sn concentration on the melting point of the conventional SiGe binary 
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alloy system and the validity of the current interatomic potential models to simulate the 

melting of both the binary system and ternary high entropy system.  
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2 THEORETICAL REVIEWS OF COMPUTATIONAL METHODS 

 

The aim of this chapter is to provide a theoretical background of the used 

computational methods in this thesis. The topics covered in section 1 and 2 of this chapter 

have been covered in great details in many standard textbooks. Our review follows 

references: [59, 60]. Section 3 and 4 introduces the used codes in this thesis 

2.1 Molecular Dynamics Simulations 

 

Molecular Dynamics (MD) Simulations is a computer simulation method that is 

used to calculate the motion of atoms in a system based on classical mechanics laws, 

mainly Newton’s law of motion 

 F ma=  (1.14) 

where F  is the force exerted on the particle, m  is the mass of the particle, and a  is the 

acceleration of the particle. Trajectories of the system that describe the acceleration, 

velocity, and positions can be obtained by integrating Newton’s equations of motions, 

from there, many properties of the system can be calculated by applying statistical 

mechanics theorems. The macroscopic behavior of any system is related to the average 

microscopic properties of the atoms constituting the system, because of that, MD 

simulations are a powerful tool to study the properties of materials from their atomic 

interactions. Calculation of the forces on the atoms requires a knowledge of the model 

that governs their interactions, then using classical mechanics laws again 

 ( )F U R= −  (1.15) 
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where ( )U R is the potential energy function that describes the interaction, and  is 

the gradient, which represents the spatial derivative. In MD simulations, atoms are 

considered the lowest level of detail, disregarding electrons and nuclei. Because electrons 

and nuclei, which are the source of the interatomic interactions, are ignored, the need to 

generate an empirical potential energy function arises, also magnetic and electronic 

properties disappear for the same reason. 

Numerical integration is carried to solve newtons equations of motion for obtaining 

motion trajectories, in the form 

 

2

2
( )

d r
m U R

dt
=−  (1.16) 

where r  is the position of the particle and 

2

2

d r

dt
 represents the acceleration a  of the particle. 

The procedure in MD simulations goes as follows: input the initial structure of your 

system, determine the interaction model, calculate the forces exerted on each atom in 

your system, integrate Newton’s Equations of motions to calculate the velocity and 

acceleration of each atom, obtain the motion trajectories of the system, and then compute 

desired properties from these trajectories. 

2.1.1 Interatomic Potentials 

One of the most important aspects of MD simulations is the use of accurate 

energy functions to model the system. There are many potentials to choose from, with 

different levels of accuracy and complexity. In general, these functions can be classified 

into three main types: empirical interatomic potentials, semi-empirical interatomic 
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potentials, and Ab-Initio interatomic potentials. In empirical interatomic potentials, the 

values for the parameters of the energy function are generated from experiments, like IR 

spectroscopy, Raman spectroscopy, ...etc., or quantum mechanical Ab-initio calculations. 

Some examples of this class of functions are Tersoff potential, Stillinger-Weber potential, 

Environment Dependent Interatomic Potential (EDIP), and Reactive force field 

(ReaxFF). Semi-empirical interatomic potential depends on parameters that are generated 

empirically, and also on other terms which are directly calculated from quantum 

mechanical arguments without the need for any other source. A famous example of this 

kind of potential is the Embedded Atom Method (EAM) potential, which is used 

commonly for metals. Ab-initio interatomic potentials calculate atomic interactions from 

electronic interactions.  

2.1.1.1 Pair potentials 

Pair potentials are the simplest kind of interatomic potential that can be used to 

study material properties. These functions approximate the full cohesive energy of the N-

atom system to simply the pair-wise sum of two-atom pair interactions only, ignoring all 

other higher-order terms (triplet interaction, four atoms interaction, etc.) that result from 

the atom interacting with other atoms that are far away. 
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Figure 1. Illustration of pair potential interactions 

 

Pair potentials are typically used to study and model inert gasses, but also useful 

sometimes to study the properties of simple oxides or spherical molecules. Pair potentials 

can be written in the general form 

 

1 1

1
( , )

2

N N

ij i j

i j

U r r
= =

=    (1.17) 

Where ( , )ij i jr r  is a function of the atomic positions that represent the interaction 

between the pair of atoms ( ,i j ), located at ir  and 
jr , respectively. Since this is energy 

that we are talking about, 
ij ji = . A typical example of the pair potentials is the 

Leonard-Jones interatomic potential, which was initially developed for inert gas. This 

potential contains an attractive term that represents a Van der Walls type of bonding, 
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strongly dominating at long distance, and a repulsive term that represents the interaction 

of the electron clouds and the Pauli exclusion principle, dominating at short distances 

 

12 6

( ) 4
ij ij

LJ ij ij

i j i ij ij

U r
r r

 




    
 = −           

  (1.18) 

Where the adjustable parameters, 
ij  and 

ij , represent the “depth” of the energy well, 

and the characteristic distance between the two atoms, respectively. These constants are 

obtained empirically, by fitting materials properties with experiments.  

 

Figure 2. Leonard-Jones potential energy vs distance curve 

The Leonard-Jones potential is used commonly because it has the feature of being a 

simple energy function but yet can describe central–force interatomic interactions in a 

good manner.  While it was developed to describe the general interaction between closed-

shell atoms, it has been used to model almost everything, including being part of the 

many-body potentials and empirical force fields 

2.1.1.2 Three-body potentials 
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In covalent solids, such as silicon, it is not enough to describe the energies as a 

simple pair-wise sum of the atomic interactions; since the bonding between the atoms is 

highly directional. The interatomic potential for these materials should contain some 

angular-dependent terms to reflect the fact of the strong directionality of bonding. Three-

body potentials include a pair-potential that only depends on the distance between two 

atoms, and also terms that depend on the angles between the bonds, they can be written in 

the general form as 

 

1 1 1

1
( , ) ( , , )

2

N N N N N

ij i j ijk ij ik ijk

i j i j i k j

U r r r r  
= = =  

= +      (1.19) 

Where the first term is the simple pair-potential, and the second term is an angular-

dependent term that depends upon the angle between the vector distances of the two 

bonds. A very well-known potential of this kind for silicon is the Stillinger-Weber 

potential, which was initially developed to model the tetrahedral form of the solid, but 

later extended to many other elements and compounds. In Si tetrahedral, each atom is 

surrounded by four other Si atoms, with the equilibrium angle between the bonds set to 

the standard 109.47 . The Stillinger-Weber potential takes the general form 

 2 3( ) ( , , )ij ij ik ijk

i j i i j i k j

U r r r  
  

= +      (1.20) 

Where 2  and 3  are the two and three-body potentials respectively, and written as  

 2

( ) ( ) exp( ),
( )

0,

ij ijP qij ij ij

ij ij ij ij ij ij

ij ij ij ij ij ij

r r
A B r a

r r a

otherwise


 

   

− −
  

−   
= −   



                (1.21) 
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2

0

3

exp ( ) (cos cos ) ,
( , , )

0,

ij ij ik ik
ijk ijk ijk ijk ij ij ij ik ik ik

ij ij ij ik ik ikij ik ijk

r a and r a
r a r ar r

otherwise

   
     

  


+  +  

− −= 



                   (1.22) 

The parameters 𝐴𝑖𝑗 , 𝐵𝑖𝑗, 𝑝𝑖𝑗, 𝜎𝑖𝑗 , 𝜀𝑖𝑗 and 𝜀𝑖𝑗𝑘, 𝜆𝑖𝑗𝑘,  𝜎𝑖𝑗 ,  𝛾𝑖𝑗, 𝑎𝑖𝑗,  𝜎𝑖𝑘, 𝑎𝑖𝑘,  𝛾𝑖𝑘, 𝜃0𝑖𝑗𝑘 are 

adjustable parameters for the pair and triplet interactions of i and j, and i, j, and k 

respectively, which can found by fitting to experiment. The challenge in three-body 

potentials is that there are much more three-body terms than two-body terms. Even 

though these potentials tend to very accurately describe the properties of materials which 

they were designed for, they are typically limited to those materials; for example, The 

Stillinger-Weber potential works well for the perfect tetrahedral solid, but not at all well 

for the liquid, nor for any other solid structures. In general, Three-body potentials are 

used primarily for covalent materials like Si or mixed metallic-covalent systems like Mo. 

2.1.1.3 Bond-order potentials 

Bond-order potentials offer a good and flexible model to describe the effects of 

the environment on the bonding between atoms, by taking into consideration a quantity 

called the bond-order. The bond-order is related to the strength of the bond, such that a 

higher bond-order means in general stronger bonding. So, for example in C-C bonding, a 

single bond would be the weakest of the bonds that can form and triple would be the 

strongest and the bonding with higher bond-order. So, in general, bond-order depends on 

the local coordination around an atom i.e., the number of nearest neighbors, Z. Bond-

order potentials can be represented by the general form 

 

1

1
[ ( ) ( )]

2

Z

i R A

j

E qV r bV r
=

= +  (1.23) 
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Where q  is a parameter that depends on the local electronic density, ( )RV r  and 

( )AV r  are repulsive and attractive interactions, respectively. Z  is the number of nearest 

neighbors. Z  is the bond order, which controls the strength of the chemical bond.  

Tersoff potential is one of the widely used empirical interatomic potentials from the 

bond-order class. Proposed by Tersoff in 1988, based on a variation on the idea of bond 

order, this potential describes the many states of silicon. The Tersoff potential can be 

written in the general form as 

 
1

[ ( ) ( )]
2

Tersoff R ij ij A ij

i j

U V r b V r
=

= +  (1.24) 

Where 
ijb  the bond order is proportional to the coordination number 

 
1

ij

coor

b
Z

  (1.25) 

In other words, the bonding 
ijb  of atom i with atom j is reduced by the presence of 

another bond 
ijb . The degree of weakening depends on where this other bond is and what 

is the angle. Although both terms depend only on distance, this type of potential usually 

has more than six parameters to be fitted. It has been widely used and applied to study 

silicon, but also can be applied to SiC, diamond, amorphous carbon, and hydrocarbons. 

2.1.1.4 Embedded-atom model potentials 

In metallic structures, the long-ranged electrostatic interactions between the atoms 

(ions) surrounded by an electron sea make it very difficult to model the system with only 
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a simple pair-potential. The Embedded-atom method (EAM) tries to capture this effect in 

metals by modeling the interactions as a pair-potential sum, and added to it also another 

term which is called “the embedding energy”. This term represents the electronic energy 

associated with “embedding” the atom in a homogenous electron gas with a density  . 

The assumption here is that the environment of each atom is a nearly uniform electron 

gas. The EAM potential can be written as  

 ( ) ( )
N N

EAM ij i j i i

i j i

U U r F 


= +   (1.26) 

Where 
ijU  is a pair-potential, and ( )i iF   d is called the embedding energy and it 

depends on the electron density i  

 

Figure 3. Illustration of the interactions in EAM potential. The left part represents the 

pair interaction while the right part represents the effective potential due to homogenous 

electron gas 

2.1.2 Numerical integration 

Newton’s Equations of motion represent 3N second order coupled differential 

equations, where N represents the number of particles or atoms in the simulation system. 

These equations would have to be integrated at each timestep to predict the change in 
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position of every atom and get the full simulation trajectory. This process of course is 

impossible to do exactly or analytically, so several numerical integration algorithms were 

developed to carry out this integration using the finite difference method 

2.1.2.1 Verlet Algorithm 

Proposed by Verlet, this is a relatively simple algorithm to carry out the numerical 

integration of the equations of motions. It starts from the Taylor expansion for the 

position forward and backward in time, by a time step of  

 

2

2

1
( ) ( ) ( ) ( )

2

1
( ) ( ) ( ) ( )

2

i i i i

i i i i

r t t r t v t t a t t

r t t r t v t t a t t

  

  

− = − +

+ = + +

 (1.27) 

From the summation of these two equations, we get the equation  

 
2( ) 2 ( ) ( ) ( )i i i ir t t r t r t t a t t  + = − − +  (1.28) 

Which is the equation employed in Verlet Algorithm for advancing the positions. The 

acceleration is determined at each time step from the force evaluation from the gradient 

of the potential. The velocities can also be determined by doing a finite difference 

estimate of the derivative  

 
( ) ( )

( )
2

i i
i

r t t r t t
v t

t

 



+ − −
=  (1.29) 

Which is of course an important quantity relating to the calculation of the kinetic energy 

and conservation of the total energy. We can also see that the Verlet algorithm equation 

has a dependence on the positions before a timestep t , i.e., ( )ir t t− , for the first 
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timestep, this is found by using the first equation alone 0t = . The Verelt algorithm is a 

simple and easy-to-program method to carry numerical integration, and it yields 

reasonable results. 

2.1.2.2 Velocity Verlet Algorithm 

This is a variant of the Verlet algorithm but in it, we have a velocity-dependent 

term in the main equation 

 

( )

21
( ) ( ) ( ) ( )

2

1
( ) ( ) ( ) ( )

2

i i i i

i i i i

r t t r t v t t F t t
m

v t t v t F t F t t t
m

  

  

+ = + +

+ = + + +

 (1.30) 

We note here that the position at the time t t+  only depends on quantities evaluated at 

t . From the position at the time t t+  the force at t t+  can be calculated, then the 

velocity ( )iv t t+ can also be calculated.  

2.1.2.3 Leap-Frog Algorithm 

This is a modified version of the Verlet algorithm, where several modifications 

from the original form are made. The most important aspect is that the velocity is 

explicitly calculated here, but on the other side, the calculation of the positions and the 

velocities is not being done at the same corresponding times. The velocities are first 

calculated at the time 
1

2
t t+ in this algorithm, which is later used to calculate the 

positions, r , at time t t+  
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( ) ( ) ( )

2

1 1
( ) ( ) ( )

2 2

i i i

i i

r t t r t v t t t

v t t v t t a t t

  
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+ = + +

+ = − +

 (1.31) 

At the time t , the velocities can be approximated by the following relation 

 

1 1
( ) ( )

2 2( )
2

i i

i

v t t v t t
v t

 + + −
=  (1.32) 

2.1.3 Energy, Temperature and Pressure Control 

Certain thermodynamic and kinetic criteria must be satisfied, first of all, to get the 

conditions that we want the system in, and secondly to check our simulation quality and 

reliability 

2.1.3.1 Connection to thermodynamics 

In molecular dynamics, after determining the initial positions of the atoms in the 

system, the system is given a random velocity distribution according to some velocity 

distribution, like for example Maxwell-Boltzmann distribution 

 

1/2
2

B B

m mv
P(v) exp

2 k T 2k T

   
= −   
   

 (1.33) 

Or from a Gaussian distribution. for a system in which the potential energy only depends 

on the positions of each atom in the system, and not their velocities, the total energy is 

conserved. The clearest connection to thermodynamic quantities would be the expression 

for the average temperature of the simulation system, given by 
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B

2 KE
T

3Nk
=  (1.34) 

Where KE  is the average kinetic energy of the system. 

2.1.3.2 Ensembles 

The choice of constraints and conditions during the simulation is carried by 

choosing a specific molecular dynamics ensemble to simulate the system in. In the 

microcanonical ensemble (NVE), we have the number of particles N, volume V, and the 

total energy of the system E constant, which represent standard molecular dynamics. The 

microcanonical ensemble represents an isolated system which if given enough time, 

reaches an equilibrium, and the temperature value will be almost constant with small 

fluctuation around a certain average. The conjugate properties of the chosen ensemble 

(Pressure and temperature) can vary. The limitation of this ensemble is that we don’t 

have any temperature control. The velocity rescaling approach tends to keep the system 

in the microcanonical ensemble while having some temperature control of the system. 

The simplest way to force a system to a certain temperature is to rescale velocities. This 

is done according to the knowledge of the kinetic theory and average kinetic energy 

expression 

 
2

B

1 3
KE mv Nk T

2 2
= =  (1.35) 
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1/2BNk T
v 3 T

m


 
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 (1.36) 
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If the desired temperature is sT then by rescaling velocities  

 
new sT

v v
T

=  (1.37) 

Each time the temperature drifts away from the desired temperature, the velocity is 

rescaled again, and the system is left to equilibrate. 

 

2.2 Density Functional Theory 

 

 The Schrodinger equation is the central equation in quantum mechanics that 

describes the electronic structure of atoms and molecules. When solving this equation, 

one looks to find the wave function of a system 1 2 n(x , x ,....., x )  that describes the 

systems, which is generally a function of position of the electrons. The wave function 

contains important information about the probability distribution of electrons in the 

system. The Schrodinger equation can be solved analytically only for simple entities like 

the Hydrogen atom. For any other element or molecule, the equation becomes a 

complicated many-body problem which can only be solved by numerical methods. 

Density Functional Theory (DFT) is a theoretical framework where the solution of the 

Schrodinger equation is approximated by replacing the wave functions by another 

simpler quantity, the electron density ( )n r . DFT is one of the most used computational 

methods in physics, chemistry and materials science, and here, we outline its main 

principles 

2.2.1 Thomas-Fermi model 
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Thomas and Fermi independently presented the first attempts to employ electronic 

density as a fundamental variable in an electronic structure computation in 1927. Thomas 

and Fermi came to the conclusion that one could estimate the distribution of electrons 

using statistical techniques. Another advancement for this approximation is the use of 

local relations to a system's electrical characteristics, which are approximated as a 

homogenous electron gas. This, sometimes known as the local density approximation, is 

essential to DFT. The main result of the Thomas-Fermi model is a formula for kinetic 

energy calculation from electron density: 

 5/3[ ] ( )TF FT n C n r dr=   (1.38) 

Therefore, the total energy of an atom can be written as: 

 
5/3 1 2

1 2

1 2

( ) ( )( ) 1
[ ] ( )

2
TF F

n r n rn r
E n C n r dr Z dr dr dr

r r r
= − +

−    (1.39) 

where the kinetic energy is the first term, the ion core repulsion is the second term, and 

the electron-electron interaction term is the third. Only the electron density is a factor in 

the equation for an atom's total energy. This equation has a drawback in that it ignores all 

exchange and correlation terms and fails with molecules. 

2.2.2 Hohenberg-Kohn theorem 

The possibility that electron density might significantly affect electronic 

computations was recognized by scientists. But up until Hohenberg and Kohn (1964) 

finally verified it with two theorems, it was amenable to formal proof. This provided a 

solid basis for choosing electron density as the main component of the DFT. The 

existence hypothesis and the variational theorem are the two hypotheses. The electron 

density determines the external potential, within a trivial additive constant, according to 
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Theorem 1 (existence theorem). For the ground state of a many-electron system, this 

theorem provides a direct mapping of the external electron potential to the electronic 

density. Theorem 2: Theorem of variation: For a trail density, such ( )n r  and  

( )n r dr N=  

 
0 [ ]

extVE E n  (1.40) 

The ground state density minimizes the system's electronic energy, according to this 

theorem's variational principle for DFT. 

 

2.2.3 Kohn-Sham method 

DFT became a useful tool because to Kohn and Sham's invention of an indirect 

technique for the kinetic energy term. To accurately compute the kinetic energy, they did 

this by introducing orbitals. The issue was designed by Kohn and Sham so that the kinetic 

energy, T [n], is precise. According to Kohn and Sham, the total energy equation 

becomes: 

 [ ] [ ] [ ] [ ] ( ) ( )S XC extE n T n J n E n V r n r dr= + + +   (1.41) 

The benefit of this approach is that the remaining exchange-correlation term [ ]XCE n  may 

be approximated by splitting the kinetic energy term [ ]T n , from the long range Hartree 

interactions. Although realistic estimates have been produced, the actual should be highly 

complex. The capability of this approach to solve problems iteratively till self-

convergence is another benefit. 

2.2.4 Local Density Approximation (LDA) 
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            The Kohn-Sham approach makes it possible to compute the kinetic energy 

precisely; nevertheless, the exchange-correlation term still poses a challenge, and here is 

where the local density approximation (LDA) comes in handy. The kinetic energy was 

calculated using a local uniform electron gas in the Thomas-Fermi model. With the 

Kohn-Sham technique, this is no longer necessary because the exchange-correlation 

portion of the energy functional is handled by the local uniform electron gas in the LDA. 

The exchange-correlation energy's local density approximation 

 ( ) ( )
XC

LDA

XCE n r n dr=   (1.42) 

This approach can be used in situations where the electron density slowly varies across a 

de Broglie wavelength, and it becomes precise at this limit. Due to directional bonding, 

which is known to systematically over-bind, it is less useful in systems with significant 

energy gradients. For LDA, including the PBE approach, corrections and approximations 

have been applied to increase accuracy. 

2.3 LAMMPS Molecular Dynamics Simulations Package 

 

LAMMPS or the Large-scale Atomic/Molecular Massively Parallel Simulator, is a 

classical molecular dynamics (MD) simulation tool created by Sandia National 

Laboratories that is free and open-source. [61]. Using a range of interatomic potentials 

(force fields) and boundary conditions, it can simulate and model atomic, polymeric, 

biological, solid-state (metals, ceramics, oxides), granular, coarse-grained, or 

macroscopic systems. With just a few particles all the way up to millions or billions, it 

can simulate 2D or 3D systems. LAMMPS is now written in the C++ programming 
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language. LAMMPS integrates Newton's equations of motion for a group of interacting 

particles in the broadest meaning. 

2.4 Vienna Ab initio Simulation Package (VASP) 

 

The Vienna Ab initio Simulation Package, also know as (VASP) is a computer 

program for the first-principles modeling of atomic scale materials, such as electronic 

structure computations and quantum mechanical molecular dynamics [62, 63]. When 

solving the Kohn-Sham equations using density functional theory (DFT) or the Roothaan 

equations using the Hartree-Fock (HF) approximation, VASP computes an approximation 

to the many-body Schrödinger equation. There are also hybrid functionals that combine 

the Hartree-Fock strategy with density functional theory. In VASP, fundamental 

parameters like as the electronic charge density, local potential, and one-electron orbitals 

are expressed as plane wave basis sets. The projector-augmented-wave approach, norm-

conserving or ultrasoft pseudopotentials, or both are used to characterize the interactions 

between the electrons and ions. VASP employs effective iterative matrix diagonalization 

methods, such as the residual minimization method with direct inversion of the iterative 

subspace (RMM-DIIS) or blocked Davidson algorithms, to ascertain the electronic 

ground state. 
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3 METHODS FOR MELTING TEMPERATURE CALCULATION 

3.1 Z-Method  

 

  The Z-method is a novel technique that allows the computation of melting 

temperature of a material, based on a series of simulations in the microcanonical 

ensemble (NVE) [64-66]. To explain the rationale behind the Z-method, a basic definition 

of heterogenous and homogenous melting is needed. The melting process, as we usually 

observe it, is technically the so-called heterogenous melting, where melting is initiated 

due to inhomogeneities.  But, under special conditions, it is possible that a solid melts in 

a homogenous way. It has been shown that if a crystal structure melts homogenously, it 

can be overheated significantly above its melting point mT . However, there is a critical 

temperature over which it is impossible to heat a solid without also turning it into a liquid 

structure. That point is called the critical superheating temperature LST . Much research 

has gone into studying the physical interpretations and the criteria behind this critical 

temperature. Based on the concepts of homogenous melting and critical superheating, the 

Z-method was developed. The Z-method can be applied using classical or ab-initio 

molecular dynamics simulations. In the NVE ensemble, simulating a system at a 

temperature beyond its limit of superheating 
LST  will cause it to melt, naturally, without 

any external intervention of the dynamics. When the system melts, the latent heat is 

removed from it, which will decrease its temperature to the temperature of the liquid 

state, which will be the melting temperature 
mT . The pressure also increases due to the 

volume expansion that the system would experience if the volume wasn’t fixed in this 
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case. This sudden change in the temperature and pressure due to melting of the system 

can be seen if we plot the isochore ( )T P  of the system, and it will be an inflection that 

looks like a Z-shaped curve, hence comes the method name. This sudden transition 

usually divides the isochore plot into two lines or branches, the first called the solid 

branch, which the highest temperature on it represents 
LST , and the second is called the 

liquid branch, where its lowest temperature point represents 
mT  the melting temperature. 

By doing many simulations for the system in the NVE ensemble, and mentoring the 

isochore for each initial temperature, one could determine the melting point at a specific 

pressure ( )m mT P . The intended pressure is chosen by changing the system volume, thus 

changing the density.  

 

Figure 4. Schematic representation of the isochoric lines in Z-method simulations in the 

energy temperature plane. 
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3.1.1 Molecular Dynamics Simulations Setup in LAMMPS 

All MD simulations were carried using the Large-scale Atomic/Molecular 

Massively Parallel Simulator (LAMMPS) and using the Stillinger-Weber (SW) many-

body interatomic potential developed by Tomita et al. [67]. This interatomic potential 

was used successfully to calculate the phonon and heat-transfer properties of the SiGeSn 

systems. The parameters of this potential are described in Table 1. In order to imitate the 

SiGeSn HEA's crystal structure, we start with a particular quasirandom structure (SQS). 

Since its creation almost 30 years ago, the SQS approach has been widely applied to the 

modeling of conventional semiconducting alloys with small supercells that can be 

handled by traditional DFT systems [68]. This approach seeks to reduce the discrepancy 

between the correlation functions in a tiny supercell and those in an alloy with really 

random structure. Recently, the SQS approach has been widely employed to simulate the 

structures of metallic HEAs with a solid solution phase [69]. Here we give attention on 

SiGeSn HEA with the highest possible Sn content, which is 33% of the whole alloy 

composition. We create a SQS structure for the 216-atom SiGeSn HEA based on an MC 

process using the mcsqs module [70] implemented in the Alloy Theoretical Automated 

Toolkit (ATAT) package [71] (equivalent to a 3 3 3 supercell of the 8-atom unit cell of 

Si, Ge, or α-Sn). Figure 5 shows a zoomed-in view of the optimized SQS structure. As 

clearly shown. These results represent the SiGeSn HEA with a random solid solution 

phase. A 3 × 3 × 3 supercell of the SiGeSn alloy structure (5832 atoms) was used in the 

MD simulations, with the periodic boundary conditions applied in x, y, and z directions. 

The integration algorithm selected was the Velocity-Verlet algorithm with an integration 
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time-step of 1 fs. The initial temperatures for each volume covered the range from 3000 

K to 6000 K with a step of 500 K. To vary the pressure, several densities, from 4.51 to 

5.15 g/cm3 were used. A simulation time of 1 ns (
61 10 steps) was chosen for all SiGeSn 

HEA simulations. 

 

Figure 5. SiGeSn high entropy alloy structure.  
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Table 1. Stillinger-Weber (SW) potential Parameters for SiGeSn alloy (Tomita et al., 2018). 

i  j  k      a      cos  A  B  P  q  tol  

Unary parameters 

Si Si Si 1 2.095 1.8412 27.942 1.1495 -0.3333333 11.427 0.6729 4.4751 0.7277 0 

Ge Ge Ge 1 2.181 1.811 32.101 1.1718 -0.3333333 10.093 0.6862 4.6973 0.6588 0 

Sn Sn Sn 1 2.503 1.7825 28.747 1.161 -0.3333333 9.4315 0.7012 4.9827 0.6252 0 

Binary parameters 

Si Si Ge 1 2.138 1.8568 10.057 0.9755 -0.3333333 0 0 0 0 0 

Si Ge Si 1 2.138 1.8568 10.057 0.8574 -0.3333333 0 0 0 0 0 

Si Ge Ge 1 2.138 1.8568 25.372 1.1877 -0.3333333 11.902 0.7189 4.4283 1.1451 0 

Ge Si Si 1 2.138 1.8568 25.372 1.1877 -0.3333333 11.902 0.7189 4.4283 1.1451 0 

Ge Si Ge 1 2.138 1.8568 24.845 1.3061 -0.3333333 0 0 0 0 0 

Ge Ge Si 1 2.138 1.8568 24.845 1.0702 -0.3333333 0 0 0 0 0 

Ge Ge Sn 1 2.337 1.7988 29.858 1.8136 -0.3333333 0 0 0 0 0 

Ge Sn Ge 1 2.337 1.7988 29.858 0.7232 -0.3333333 0 0 0 0 0 

Ge Sn Sn 1 2.337 1.7988 24.46 1.1484 -0.3333333 9.8864 0.7021 4.8537 0.6482 0 

Sn Ge Ge 1 2.337 1.7988 24.46 1.1484 -0.3333333 9.8864 0.7021 4.8537 0.6482 0 

Sn Ge Sn 1 2.337 1.7988 26.074 1.3564 -0.3333333 0 0 0 0 0 

Sn Sn Ge 1 2.337 1.7988 26.074 1.0924 -0.3333333 0 0 0 0 0 

Si Si Sn 1 2.337 1.7458 34.032 1.9639 -0.3333333 0 0 0 0 0 

Si Sn Si 1 2.337 1.7458 34.032 0.695 -0.3333333 0 0 0 0 0 

Si Sn Sn 1 2.337 1.7458 16.077 0.9447 -0.3333333 9.9807 0.6145 4.6433 0.2754 0 

Sn Si Si 1 2.337 1.7458 16.077 0.9447 -0.3333333 9.9807 0.6145 4.6433 0.2754 0 

Sn Si Sn 1 2.337 1.7458 28.575 1.3047 -0.3333333 0 0 0 0 0 

Sn Sn Si 1 2.337 1.7458 28.575 1.12 -0.3333333 0 0 0 0 0 

Ternary parameters 

Ge Si Sn 1 2.337 1.7988 16.193 0.7844 -0.3333333 0 0 0 0 0 

Ge Sn Si 1 2.337 1.7988 16.193 1.3564 -0.3333333 0 0 0 0 0 

Si Ge Sn 1 2.337 1.7458 26.645 1.1949 -0.3333333 0 0 0 0 0 

Si Sn Ge 1 2.337 1.7458 26.645 1.3047 -0.3333333 0 0 0 0 0 

Sn Si Ge 1 2.337 1.7458 31.877 0.695 -0.3333333 0 0 0 0 0 

Sn Ge Si 1 2.337 1.7458 31.877 0.7232 -0.3333333 0 0 0 0 0 
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3.2 Small-cell coexistence method 

 

In the traditional coexistence method, a large cell that contains half solid, half 

liquid and an interface between them is simulated to infer the melting temperature of the 

simulated structure based on the stability of these coexisting phases. This setup usually 

requires a large enough simulation cell to maintain the stability of the coexisting phases, 

otherwise the system will end up in one of two states eventually because of interface 

thermal fluctuations. Applying this setup in density functional theory (DFT) framework is 

extremely time consuming and expensive; due to the large cell requirement. 

The small-cell coexistence method is a theoretical farmwork that solves the original 

method’s issue and provides a more efficient and faster alternative [72]. The method's 

precise details and derivations can be found in a prior work, which we briefly outline 

below [72]. In small systems, the coexistence simulation evolves to one single state 

eventually, a liquid state or a solid state, due to the fluctuation of the system. In this 

method, the melting points are rigorously inferred based on statistical analysis of the 

fluctuations in the system. The general procedure is summarized in figure 6. To prepare a 

variety of distinct configurations (snapshots) of half-half solid-liquid coexistence, the 

super cell's other half is heated and melted first. The NPT MD is launched from these 

snapshots. For small system sizes, the two-phase coexistence quickly changes to a single-

phase equilibrium, either completely solid or completely liquid, with a probability 
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defined by the system's temperature in relation to its melting point. The solid–liquid 

probability distributions solidP  and 
liquidP  follow the relations 

 exp( ( ) / (2 ))
liquid l s

x B

solid

P
G T l k T
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Figure 6. Schematic representation of the small-cell coexistence approach in action. 

 

Detailed derivation of Eq. 1.43 and its validation can be found in Ref. [72] and are 

omitted here. Through fitting, we obtain melting properties, e.g., melting point mT , solid 
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and liquid enthalpies / ( )s l

mH T  at mT  and heat capacities ( )l s

pC T−
. Here G  is Gibbs free 

energy, S  is entropy and xl  is a finite-size parameter 

3.2.1 DFT Calculations in the SLUSCHI code 

A free automated computer code called SLUSCHI has been developed for the 

small-cell coexistence method used in direct DFT melting point calculations [73]. With 

an interface to the first-principles code VASP, SLUSCHI is a completely automated code 

that determines melting points using first-principles molecular dynamics simulations. 

SLUSCHI will automatically create a supercell of the right size, prepare solid-liquid 

coexistence, and then apply the small-cell coexistence method to determine the melting 

temperature starting from the crystal structure of a solid (which the user inputs). Because 

DFT calculations are highly generalizable, SLUSCHI code can be used to almost any 

kind of materials. Projector-augmented-wave (PAW) implementation and the generalized 

gradient approximation (GGA) for exchange-correlation energy in the Perdew, Burke, 

and Ernzerhof form were utilized for the DFT calculations in the Vienna Ab initio 

Simulation Package (VASP). Because the simulations were run at high temperatures, we 

used proper pseudo-potentials and considered the semicore s and p states as valence 

states. We apply the code to study these melting points of SiGe and SiGeSn alloys and 

compare the results with the empirical interatomic potential calculations from classical 

molecular dynamics. Similar to the classical MD simulations, we start this calculation by 

generating a SQS structure that represents the random HEA alloy. We generate a SQS 

structure of SiGeSn HEA with 54 atoms (18 atoms of each element) and also for 
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accuracy, we generate a SQS for binary SiGe alloy with 64 atoms (32 atoms of each 

element). 

 

Figure 7. A diagram of SLUSCHI. Individual steps are carried out in sequence to 

approach the melting point. Interaction with VASP is heavily employed. 

Figure 8. SQS Alloy Structures used DFT simulations. (A) SiGeSn HEA and (B) 

SiGe binary alloy. 
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4 RESULTS AND DISCUSSION 

4.1 Z-Method Calculations 

 

The Z-method method is a computational single-phase method for melting curve 

prediction of materials. The method has been extensively applied in many melting using 

classical [74-81] or Ab initio molecular dynamics [65, 82-93] . Although this method has 

proven to be a good alternative to other more complex procedures like the coexistence 

method, because of its simple simulation protocol and the ability to apply it on small 

systems, it has many documented drawbacks that affect its reliability and accuracy. 

Melting in nature is usually initiated at surfaces and crystal defects (heterogenous 

melting). In comparison, homogenous melting is a rare-event process, and it’s by no 

means the same. The issues can be summarized in two points: (1) superheating 

(hysteresis) effect and (2) waiting times. In the Z-method, the ideal crystal structure 

remains in a metastable solid state even after passing its melting point and then it reaches 

its limit of superheating, after that, any increase in the temperature will cause the 

structure to melt and naturally decrease its temperature to the melting temperature. 

However, the amount of extra energy given to the system determines the extent of 

superheating, and hence the calculation error. This is the so-called hysteresis 

phenomenon, and it results in a significant overestimation of the melting point, even for 

simple monatomic molecules. Another prominent issue is the melting waiting time. Since 

The chance to form a nucleation center depends not only on the activation energy, but 

also the amount of time elapsed. In this framework, how long is the waiting time until the 

melting occurs? Studies by Alfe et al. [94], Davis et al. [95] and Lee et al. [96] showed 
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the heavy dependance of the melting waiting time in the Z method on the system size 

(number of atoms) and temperature, and that it can be subject to large errors if it is 

applied to small systems over short times. In the literature, studies that apply the Z-

method in the Ab initio framework tend to have more successful and realistic melting 

curves compared with studies that use classical interatomic potentials. This is expected 

due to the empirical nature of the interatomic potentials. However, applying a full a series 

of DFT calculations in a procedure like the Z-method can be a quite expensive and time-

consuming procedure for a large system such as SiGeSn HEA. With that in mind, we 

choose to apply the Z-method in classical MD framework using the available empirical 

potentials, and see the result before transitioning to full ab initio model. 

4.1.1 Method and Interatomic Potential Validation 

 To our knowledge, there are two currently available classical interatomic 

potentials developed for SiGeSn alloys, one developed by Tomita et al. [67] and another 

developed by Lee et al. [97]. First, we test the Z-method using the same classical MD 

simulations setup for both of the potentials to see their success. The model developed by 

Lee et al. failed to produce any Z-method isochores using the standard Z-method protocol 

and it just gives a T-P plot that is monotonically increasing. This excludes this potential 

from usage in this study. The other potential developed by Tomita et al., successfully 

produces Z-method isochores and its results are shown in the next section 4.1.2 of this 

thesis. To test the reliability of the Z-method for SiGeSn alloy and its sub-systems, and 

the interatomic potential used in this study, we apply the Z-method melting curve 

calculation on the pure and binary SiGeSn systems using the same potential and other 
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available test potentials for each case. The pure element structures were created using the 

lattice command as a diamond lattice in the LAMMPS code. Si, Ge and Sn used lattice 

parameters were 5.43 Å, 5.66 Å and 6.489 Å. The binary alloys starting structures were 

created in LAMMPS as an ordered diamond lattice with eight basis, filling half of the 

basis with each element type. After that, the systems were replicated using the region and 

replicate commands to create a 2744 atom structures for all pure elements and binary 

alloy simulations. Several initial volumes that correspond to different system densities 

were chosen, and an initial temperature range of 3000 K to 6000 K, with a step of 500 K. 

The integration time-step was 1 fs with a simulation time of 250 ps. The results of these 

calculations are summarized in Table 2 and Figure 10 and 11. We find that using the 

Stillinger-Webber potential developed by Tomita et al. [67], the Z-method fails to 

produce any isochore plots for the Si, Ge, and Sn pure element systems. For the binary 

systems, the used potential can produce Z-method isochores for SiGe and GeSn only, and 

it can’t produce any isochores for the SiSn system. For the SiGe system, which has a 

known experimental melting point of 1473 K at ambient pressure, we get a melting point 

of 1486 K at 0.37 GPa, which is just slightly higher than the experimental value of 1473 

at 0 GPa [27, 98]. We also test all other available potential forms available for Ge and Sn, 

like Tersoff potential for Ge [99], and MEAM potential for Ge [100] and Sn [101] and 

they all fail to produce any melting isochores using the Z-method. In a previous study, 

Silicon melting curve has been investigated using the Z-method with multiple interatomic 

potentials [74]. Although the interatomic potentials successfully produced Z-method 
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isochores, none of the tested potentials is able to reproduce the experimental melting 

curve of silicon by means of the Z-method as reported by the study. 

 

Figure 9. Examples of the created structures in LAMMPS for the testing of the Z-

method. (A) Si structure and (B) SiGe binary alloy structure. Other pure elements and 

binary alloys have the same kind of structures appearing in this figure but with different 

lattice constants. 

 

Figure 10. T vs P plot for all failed Z-method attempts on the SiGeSn systems using 

different interatomic potentials. The standard Z-method isochore should have a shape like 

the letter “Z” to obtain a melting point which is not the case in all of these curves. 
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Figure 11. Melting Curves of the successful Z-method calculations for SiGe and GeSn 

binary alloy systems. Unlike failed attempts where there is only one T vs P plot to prove 

failure (not showing Z curve), each point on this plot was taken from a complete isochore 

that has a “Z” shape and an estimate of the melting point at a certain pressure. The 

collection of these melting points for each alloy is what is shown in this figure. 

 

Table 2. Summary of the Z-method results for SiGeSn systems 

Structure Interatomic potential used Z-Method status 

Si 
SW (Tomita et al., 2018) – 

This work 
Failed 

Si 
SW – (Felipe González-

Cataldo et al., 2018) work  
Succeeded 

Si 
EDIP – (Felipe González-

Cataldo et al., 2018) work  
Succeeded 

Si 

Tersoff MOD – (Felipe 

González-Cataldo et al., 2018) 

work  

Succeeded 

Si 
Tersoff T3 – (Felipe González-

Cataldo et al., 2018) work 
Succeeded 
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Ge 
SW (Tomita et al., 2018) – 

This work 
Failed 

Ge Tersoff – This work Failed 

Ge MEAM – This work Failed 

Sn 
SW (Tomita et al., 2018) – 

This work 
Failed 

Sn MEAM – This work Failed 

SiGe 
SW (Tomita et al., 2018) – 

This work 
Succeeded 

SiSn 
SW (Tomita et al., 2018) – 

This work 
Failed 

GeSn 
SW (Tomita et al., 2018) – 

This work 
Succeeded 

SiGeSn 
SW (Tomita et al., 2018) – 

This work 
Succeeded 

SiGeSn 
SW (Lee et al., 2018) – This 

work 
Failed 

 

4.1.2 Z-method isochores for SiGeSn alloy 

Using the Stillinger-Weber potential developed by Tomita et al. for the SiGeSn 

alloy, the Z-method successfully produces isochores plots. The isochore plots obtained 

from the Z-method simulations of SiGeSn alloy are shown in figure. Each point on the 

plot represents a separate simulation of SiGeSn alloy, at a certain density but with 

different starting kinetic energy (different initial temperature given to the overall crystal 

structure at the start of the simulation). Each temperature and pressure point of this plot 

represents an average of the last 50 time-steps of that simulation, taken from the 

LAMMPS log file, ensuring the data taken are data points after reaching full equilibrium. 

The lowest point on the liquid branch (which is drawn as a diamond shape in the plots) 

can be taken as a good estimate for the melting temperature.  
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Figure 12. First group of the Z method isochores for the SiGeSn HEA. The diamond 

shaped point is the point representing the estimate for the melting point from each 

isochore. 
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Figure 13. Second group of the Z method isochores for the SiGeSn HEA. The diamond 

shaped point is the point representing the estimate for the melting point from each 

isochore. 

4.1.3 Size and simulation time effects 

To verify that we reached the thermodynamic equilibrium at the critical 

superheating and the melting temperature, we check the effects of the structure size and 

the simulation time on the final result of the isochore. We take the structure with a 

density of 4.51 g/cm3 as an example and use it to check the effect of simulation size and 

time. We check the simulation size effect by doing one simulation with a size of 13824 

atoms and the simulation time effect by increasing the time to 1250 ps and see the results 

for isochore points around the melting point. We can see clearly from Figure 14 that any 

simulation size or time that are bigger than 5832 atoms and 1000 ps will result to almost 
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the same melting point value. This means that our used simulation size of 5832 atoms and 

time of 1000 ps are sufficient to calculate the melting isochores. 

 

 

Figure 14. Simulation size and time effects for SiGeSn HEA Z-method simulations using 

the isochore at density 4.51 g.cm3. No differences are appreciated in the prediction of the 

melting point. 

4.1.4 Analysis of Z-method isochores 

To verify that we indeed have a solid behavior at 
LST and a liquid behavior at 

mT , 

we compare the mean squared displacement (MSD) as a function of time for the atoms. 

For instance, for the density 4.51 g/cm3 (Figure 15), the behavior of the mean squared 

displacement as a function of time for four different temperatures (which are labeled on 

Figure 15) two from the solid branch, which are 1705T K=  and 1922T K= which 

corresponds to the critical superheating temperature 
LST  (where solid like diffusion is 
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expected) and two from the liquid branch 1616T K= which corresponds to the melting 

temperature 
mT   (where liquid like diffusion is expected) and 1765T K=  is shown in 

Figure 16. The difference in the diffusion behavior (which is related to the slope of MSD 

vs. t graph) is clear. At 
mT , the MSD is linearly increasing with time, as predicted for 

liquids, while at 
LST , the MSD reaches a constant value as the atoms in the solid cannot 

diffuse away from their equilibrium positions in the crystal.  

 

 

 

 

 

 

Figure 15. Detailed analysis of the isochore at density 4.51 g/cm3.  
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Figure 16. Mean square displacement (MSD) of SiGeSn atoms as a function of time 

from different simulations at different points from the 4.51 g/cm3 density isochore. We 

can see a distinct behavior between MSD of simulation at melting point and liquid branch 

compared to the critical superheating point and the solid branch. 

 

To further characterize the solid and liquid states obtained, the radial distribution function 

(RDF) for the final structure of each simulation was calculated.  
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Figure 17. Radial distribution function of SiGeSn atoms from different simulations at 

different points from the 4.51 g/cm3 density isochore. We can see a distinct behavior 

between RDF of simulation at melting point and liquid branch compared to the critical 

superheating point and the solid branch. 

 

Figure 18 shows the alloy structure in four different points: (A) final structure of the 

simulation at 1705T K= , (B) final structure of 
LST simulation (C) final structure of 

mT  

simulation and (D) final structure of the simulation at 1765T K= . We can see that in the 

LST  simulation, the final structure still has its crystalline nature with a little bit of 

distortion, while in 
mT , the structure lost any form of crystallinity in it, which is 

consistent with the MSD and RDF plots. 
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Figure 18. SiGeSn HEA alloy structure in four different points: (A) final structure of the 

simulation at  1705T K= , (B) final structure of LST  simulation (C) final structure of mT

simulation and (D) final structure of the simulation at 1765T K=  . 

 

4.1.5 Melting curve from molecular dynamics simulations 

The melting points obtained from each isochore and their corresponding pressure 

are shown in Table 3. The obtained melting curve is shown in figure.  

Table 3. Melting curve data of SiGeSn HEA up to 6 GPa from the Z-method simulations 

Tm (K) Pm (GPa) 

1616 0.65 

1609 1 

1601 1.38 

1605 2.18 

1611 2.54 

1763 3.27 

1771 3.81 

1781 4.89 

1802 6.26 
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Figure 19. Melting curve of SiGeSn HEA up to 6 GPa from the Z-method simulations 

 

This melting curve has a sharp increase, which is something common in the Z-method 

melting curves. Since this ternary structure hasn’t been synthesized or studied 

experimentally in its HEA form, we have no experimental data to compare with. 

However, considering that the melting points of Si, Ge and Sn in K are 1,683, 1,211 and 

505.1, respectively, and each of these elements make 33% of the alloy composition, it’s 

highly unlikely that this melting curve result from the Z-method classical MD represents 

accurate melting curve data. One observation from this data is that any binary or ternary 

interatomic potential that included the element Sn in it had a tendency to fail or predict 

completely inaccurate melting points.  

4.1.6 Conclusions from molecular dynamics simulations 
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From the results of this study, we conclude that none of the available classical 

interatomic potentials for SiGeSn is valid to use in melting studies using the Z-method. 

The quality of empirical potentials for Group IV elements should be revised and further 

studied in order to develop models that are accurate enough to use for melting studies in 

classical molecular dynamics, especially with models that contain high Sn content where 

not much work have been done to model their behavior. 

4.2 DFT Calculations using the SLUSCHI code 

 

 The small-cell coexistence method was developed based on the need for efficient 

and reliable DFT melting point calculation method. The accuracy (typically with an error 

smaller than 100 K), robustness and efficiency of the method have been demonstrated in 

a range of materials [72, 73, 102-105], including a multi-principal component Mo–Ru–

Ta–W HCP alloy [104]. In particular, the small-cell coexistence method and the 

SLUSCHI code was employed to computationally predict the material with the highest 

melting point, which was subsequently confirmed by independent experiments [106-108]. 

We Note that in this work, we used the conventional PBE exchange correlation 

functionals, which usually underestimates the melting point, due to its underbinding 

nature. So, each melting temperature we calculate here would be underestimated by about 

at least 200K-350K, as we will see in the next sections. To get an accurate melting point 

for SiGeSn systems, the use hybrid functionals such as HSE is required 
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4.2.1 SiGeSn HEA alloy 

We study the melting point of SiGeSn HEA using DFT small-cell coexistence 

method to obtain a more reliable result and to compare it with the results from the Z-

method. We choose to calculate the melting point at the ambient pressure (1 bar). Starting 

from the generated SQS structure, that structure is fed into the SLUSCHI code. 

Duplicates of half solid- half-liquid coexistence simulations were carried out at various 

temperatures, and solid–liquid probability distribution was analyzed to rigorously infer 

the final melting temperature. The calculated meting point of SiGeSn is 754 ± 46 K. 

 

Figure 20. Melting temperature calculation for SiGeSn HEA. Error bars represent the 

standard error of binomial distribution. 
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Figure 21. A 2-D contour of the likelihood function for SiGeSn melting point, which 

provides the mean and the standard deviation of the melting point. 
 

4.2.2 SiGe binary alloy 

 The ambient pressure melting point of the binary SiGe alloy was calculated using 

the SLUSCHI code. Duplicates of half solid- half-liquid coexistence simulations were 

carried out at various temperatures, and solid–liquid probability distribution was analyzed 

to rigorously infer the final melting temperature. The calculated meting point of SiGe is 

1174 ± 16 K. While this melting point is lower than the experimental melting point of 

1487K, the HSE correction for this calculation is expected to raise this melting 

temperature by around 200-300K, which will make it around the correct melting 

temperature for this alloy. 
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Figure 22. Melting temperature calculation for SiGe binary alloy. 

 

Figure 23. A 2-D contour of the likelihood function for SiGe melting point, which 

provides the mean and the standard deviation of the melting point. 
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4.2.3 Conclusions from DFT calculations 

The used DFT model predicts overall more accurate melting temperatures. Since 

DFT calculations give a melting temperature way below 1600K for the SiGeSn HEA, we 

believe the actual melting temperature of SiGeSn is indeed below 1600K, and the 

empirical potential could be wrong. As mentioned before, Sn does not like mixing with 

Ge and Si. The binary Si, Ge and Sn phase diagrams demonstrates this fact. This explains 

why the ternary SiGeSn is so unstable. HSE correction for these DFT calculations is 

expected to raise the melting temperatures of SiGe and SiGeSn to around 1474K and 

1050K, respectively.  

 

 

 

 

 

 

 

 

 



63 

 

5 CONCLUSIONS AND FUTURE WORK 

 

In this work, the melting point of Si0.5Ge0.5 binary and Si0.3Ge0.3Ge0.3 high entropy 

alloy was studied using the Z-method and small-cell coexistence method in the classical 

and ab-initio molecular dynamics farmwork. From classical molecular dynamics Z-

method simulations, we concluded that none of the available empirical potentials is able 

to produce any reasonable melting point for the SiGeSn HEA or any of its subsystems. 

The accuracy and quality of Group IV empirical should be further tested and developed 

in order for these potentials to capture solid and liquid states correctly and predict 

accurate melting points. The DFT calculations gave more reasonable and accurate 

melting points for both the binary and ternary high entropy alloy, which were 1174 ± 16 

and 754 ± 46 K, respectively. We note that these calculations were done using the PBE 

exchange-correlation functionals, which usually underestimates their melting points. 

Using hybrid energy functionals such as HSE would raise the melting temperatures for 

SiGe and SiGeSn HEA to around 1474K and 1050K, respectively. For the SiGe alloy, 

this is almost exactly the experimentally melting point. For the SiGeSn HEA, the melting 

point is very close to the expected mean melting point when these three elements 

combined in a single structure. While the SiGeSn HEA has shown some exceptional 

semiconducting and thermoelectric properties in previous computational studies, the 

melting point of this alloy doesn’t show any unregular deviation from the expected 

melting point when these three elements are combined together. However, the melting 

point is still appropriate for the intended applications of this alloy in Optoelectronics. The 

promising properties of this alloy encourage future experimental synthesis and further 
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development of simulation models to obtain more accurate thermal transport properties 

for these HEAs. 
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