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ABSTRACT

With the bloom of machine learning, a massive amount of data has been used

in the training process of machine learning. A tremendous amount of this data is

user-generated data which allows the machine learning models to produce accurate

results and personalized services. Nevertheless, I recognize the importance of preserv-

ing the privacy of individuals by protecting their information in the training process.

One privacy attack that affects individuals is the private attribute inference attack.

The private attribute attack is the process of inferring individuals’ information that

they do not explicitly reveal, such as age, gender, location, and occupation. The

impacts of this go beyond knowing the information as individuals face potential risks.

Furthermore, some applications need sensitive data to train the models and predict

helpful insights and figuring out how to build privacy-preserving machine learning

models will increase the capabilities of these applications. However, improving pri-

vacy affects the data utility which leads to a dilemma between privacy and utility.

The utility of the data is measured by the quality of the data for different tasks. This

trade-off between privacy and utility needs to be maintained to satisfy the privacy

requirement and the result quality. To achieve more scalable privacy-preserving ma-

chine learning models, I investigate the privacy risks that affect individuals’ private

information in distributed machine learning. Even though the distributed machine

learning has been driven by privacy concerns, privacy issues have been proposed in

the literature which threaten individuals’ privacy.

In this dissertation, I investigate how to measure and protect individuals’ privacy

in centralized and distributed machine learning models. First, a privacy-preserving

text representation learning is proposed to protect users’ privacy that can be revealed

from user generated data. Second, a novel privacy-preserving text classification for

split learning is presented to improve users’ privacy and retain high utility by defend-
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ing against private attribute inference attacks.
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Chapter 1

INTRODUCTION

With the bloom of machine learning, a massive amount of data has been collected,

shared, and used. This raises privacy issues that impact individuals by revealing their

private information such as age, gender, and location. Privacy leakage in the machine

learning model arises from utilizing a vast amount of individuals’ data. Although the

corresponding privacy-preserving techniques have been studied and proposed in the

literature, it is challenging to improve privacy while maintaining the data’s utility.

Improving privacy in machine learning models comes at the cost of utility, making

a trade-off that needs to be maintained. The utility of the data is measured by the

quality of it for different tasks.

Protecting privacy in machine learning models can be divided into two general

categories: (1) protecting the privacy of published data and (2) protecting the pri-

vacy of training data while utilizing it in the machine learning model. Each category

is tackled using different privacy mechanism techniques. Privacy for data publish-

ing and sharing could be achieved by de-anonymization. The second category can be

tackled using differential privacy (Dwork, 2008) or adversarial learning (Jia and Gong,

2018)(Raval et al., 2019). The leakage of the individuals’ privacy has been shown in

different applications such as recommendation systems (Beigi et al., 2020) and pre-

trained language models (Carlini et al., 2020b). Multiple protection techniques need

to be applied to defend against different attacks in some critical applications. Re-

cent works review different aspects of users’ privacy and compare traditional privacy

models for protecting users’ private attributes (Alnasser et al., 2020a).

Protecting individuals’ privacy in machine learning is essential because of its im-
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pact on individuals and societies. Utilizing datasets that contain individuals’ infor-

mation will cause private information leakage and abuse to arise. In addition, using

personal data has been regulated by governments. Uncountable privacy regulations

have been amended to regulate the use of personal data such as the California Con-

sumer Privacy Act (CCPA) and the Health Insurance Portability and Accountability

(HIPAA) in the USA, the General Data Protection Regulation (GDPR) in the Eu-

ropean Union, the Personal Information Protection and Electronic Documents Act

(PIPEDA) in Canada, and Act on the Protection of Personal Information (APPI)

in Japan. Government regulations regulate the use of personal data in general and

machine learning models, which primarily utilize a vast amount of personal data.

Driven by privacy concerns and toward scalability, decentralized machine learning

has started in the last few years as a new mechanism of machine learning. Machine

learning models can be classified to centralized and decentralized when it comes to

the training process and the location of the training data. In centralized machine

learning, the data is centrally pooled from different resources and the training pro-

cess is centralized, while in decentralized machine learning the training process is

enabled across multiple parties. Federated learning approach, which was introduced

by McMahan et al. (2017), one of the common approaches of distributed machine

learning. Then, split learning has emerged as a new distributed machine learning

approach (Gupta and Raskar, 2018). In general, distributed machine leaning im-

proves privacy by keeping the training data stored locally. However, privacy issues

have been proposed in the literature, particularly when the data is very sensitive and

could identify individuals’ identities or attributes (Li et al., 2020).

Achieving the capability to use machine learning models without revealing private

information will help in critical applications such as health and finance. Predicting

Alzheimer’s disease or cancer types are examples of the applications that will improve
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the human life if we figure out how to utilize the data privately. Providing personalized

services and accurate results requires considerable personal data such as age, location,

gender, and occupation. Building privacy-preserving machine learning techniques

that can be trained without leaking private information will significantly improve the

machine learning era.

There is vast literature on protecting the privacy of users in social media from two

different perspectives: (1) identification of vulnerabilities and (2) mitigation of risks.

The first group investigates the potential privacy breaches from social media user-

generated data by introducing different variations of private-attribute inference at-

tacks. The goal of these attacks is to identify possible vulnerabilities of user-generated

data against leakage of private-attribute information. The second group seeks to

mitigate existing privacy risks regarding the leakage of private-attribute by prop-

erly anonymizing user-generated data while preserving the utility of data. Existing

private-attribute inference attacks can be classified into two classes: (1) friend-based

private-attribute attacks and (2) behavior-based private-attribute attacks. Friend-

based private-attribute inference attacks are based on the homophily theory, which

implies that friends have more similar attributes than two random users. Behavior-

based private-attribute inference attacks rely on inference using the similar users’

behavior. They assume similarity between users is based on their behaviors, which

further indicates they share the same attributes. Besides these two classes, other ap-

proaches use both friend and behavior information to infer users’ private-attributes.

Consequently, various privacy protection models are proposed to protect users

against private-attribute inference attacks. These works utilize traditional privacy

preserving techniques such as k-anonymity and Differential Privacy. K-anonymity

(Sweeney, 2002) is one of the traditional privacy preserving techniques which seeks to

anonymize the instances in the dataset by suppression and generalization. Differential
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privacy (Dwork, 2008, 2006) is another traditional technique that is applied during

statistical query over a dataset and seeks to improve the privacy while preserving the

accuracy of results. Figure 1.1 illustrates the attacks and the protection techniques

of users’ private-attributes.

Private-Attribute 
Attacks

Both friend-based and 
behavior-based Inference

Behavior-based Private-
Attribute Inference

Friend-based Private-
Attribute Inference

Private-Attribute 
Attacks

Private-Attribute 
Protections Techniques

Traditional 
Techniques

Differential Privacy

k -Anonymity, 
ℓ -diversity, and 

t -closeness

Adversarial 
Learning

Game-theoretic 
Methods

Computationally 
Tractable methods

Figure 1.1: Attacks and Protection Techniques of User’s Private-Attribute

1.1 Background

With the increase of information on social network platforms, a massive amount

of user-generated data online is created. This user-generated data is rich in content

and includes information about users’ preferences and characteristics such as geo-
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graphic location, gender, occupation, and age. Therefore, user-generated data has

been used by researchers and service providers to better understand users’ behaviors

and offer them personalized services. However, publishing user-generated data causes

privacy problems as this data includes information about users’ private and sensitive

attributes. Private attributes information is those that users do not want to explicitly

disclose such as marital status, location, political view, occupation, age, and gender.

Private attributes can be easily inferred by malicious adversaries from users’ activities

on online social networks. This privacy issue mandates social media data publish-

ers to protect users’ privacy by anonymizing user-generated social media data. Data

anonymization is a challenging task and the ultimate goal of anonymization tech-

niques is to prevent adversaries from inferring private attributes by perturbing given

user-generated data. Perturbing user-generated data can affect the utility of data.

This leads to a dilemma between privacy and utility and makes the problem of pro-

tecting user privacy even more challenging.

To protect users’ privacy in social networks, data publishers are required to protect

users’ data using anonymization techniques. One technique to alleviate privacy issues

is to remove the “personally identifiable information” (PII) such as name, social secu-

rity number, and age (Narayanan and Shmatikov, 2009). Removing this information

and keeping the graph structure has limitations in protecting users’ privacy. There

are several scenarios illustrating the limitation of depending on PII as an anonymiza-

tion technique. For example, the anonymized dataset published for the Netflix prize

challenge was not enough to preserve users’ privacy.

Users’ private attributes are the information and characteristics that describe

individuals online. Private attributes serve different goals for the attackers; it could

be for selling, delivering personalized advertisements, or performing targeted social

engineering. The attacker in this context could be defined as:

5



Definition: Attacker

The attacker could be any party that intends to disclose users’ attributes using

different techniques. Private-attribute inference attacks happen when the attacker

intends to use the publicly available attributes to infer the missing or hidden attributes

about target users. It could be formally defined as:

Definition: Attribute Inference Attack

Given T = (G,A,B), which illustrates a social media with a graph G = (V,E)

where V shows the set of users and E shows the relationship between the users, A

is the users’ attributes and B is the users’ behavior. Attribute inference attack is to

disclose the attributes av of v for ∀ v ∈ Vt where Vt is the set of targeted users using

the available attribute matrix A and behavior matrix B.

1.2 Research Challenges

Measuring and enhancing users’ privacy in machine learning is challenging. In this

dissertation, we investigate how users’ privacy is protected and measured considering

these challenges:

• Trade-off between privacy and utility: Improving the privacy comes at the cost

of performance or utility. To elaborate, using homomorphic encryption in ma-

chine learning models to improve the privacy has limitations regarding the per-

formance and it can be applied in specific scenarios (Aslett et al., 2015). In

addition, adding noise to improve the privacy affects the utility of the data.

The utility of the data means the quality of predicted results such as personal-

ized services and accurate predictions. This challenge needs to be addressed by

maintaining the trade-off between privacy and utility (or performance) as much

as needed to avoid sacrificing one of them.
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• De-identification is insufficient: Removing the Personally Identifiable Informa-

tion (PII) from the training data is not enough and it has been shown in the

literature this solution is insufficient. One example of this is the Netflix prize

challenge (Beigi and Liu, 2020) where the re-identification successfully hap-

pened by linking the released dataset (Netflix) with a publicly available dataset

(IMDb).

• Unscalability: Most of the privacy-preserved machine learning models need ad-

ditional processing and computational cost which may affect the ability of these

models to handle the massive amount of data (Al-Rubaie and Chang, 2019).

This may limit real-world applications from protecting users’ information in

machine learning models.

• No one protection technique is able to solve all privacy issues: Protecting users’

privacy and measuring the leakage can be tackled from different points of view.

First, protecting the training data while utilizing it in the model using dif-

ferential privacy (Dwork, 2008). Second, when the attacker has access to the

input and output of the model at the test time, he can reverse engineer the

model parameters and then estimate the private training data. This attack

can be tackled by using differential privacy to make the reverse engineering of

the parameters as hard as possible. Third, protecting the privacy of published

data before sharing it using anonymization techniques such as k-anonymity

(Sweeney, 2002), `-diversity (Machanavajjhala et al., 2006), and t-closeness (Li

et al., 2007). These anonymization techniques have their strengths and limi-

tations as shown in the literature, and t-closeness is considered the strongest

among these techniques. After illustrating all these categories of attacks, no

one defense mechanism can be applied to improve the users’ privacy in machine
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learning from all these attacks. Combining multiple protection techniques to

minimize the users’ privacy leakage is the best practice to follow. Choosing

from the privacy techniques is highly dependent on the sensitivity level of the

data and the domain (Tanuwidjaja et al., 2020)

1.3 Contributions

In this dissertation, we investigate how to protect individuals’ privacy in central-

ized and distributed machine learning models while considering the trade-off between

privacy and utility. In particular, we study how to maintain the dilemma so the data

utility is retained and privacy is improved at the same time. The contributions of

this dissertation are summarized as follows:

• Present a literature review of protecting users’ private attributes and building

privacy preserving machine learning models;

• Protecting users’ privacy in centralized machine learning by proposing a text

representation learning framework that protects individuals’ privacy and retains

the utility of the data;

• Protecting users’ privacy in distributed machine learning by proposing a privacy

preserving text classification framework on split learning setting which defends

against private attribute inference and preserves data utility;

• Conduct experiments on a real world dataset to verify and demonstrate the

effectiveness of our proposed frameworks.

1.4 Organization

The remainder of this dissertation is organized as follows: in Chapter 2, we re-

view related work privacy preserving machine learning and protecting users’ private
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attributes. In Chapter 3, we study the privacy issues in the user generated text in

centralized machine learning and propose a privacy-preserving text representation

learning framework using BERT, DPBERT . We use BERT to extract the sentences

embedding from the textual data. Our framework, DPBERT , learns the textual rep-

resentation that satisfies three conditions: (1) differentially private to protect against

identity leakage, (2) protects against leakage of private-attributes information, and

(3) maintains the high utility for downstream tasks. In Chapter 4, we extend our

scope and study users’ privacy in distributed machine learning and propose a privacy

preserving text classification framework on split learning setting, PPSL, which de-

fends against private attribute inference and maintains the utility of the data at the

same time. In Chapter 5, we conclude the dissertation and present future research

directions.
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Chapter 2

RELATED WORK

Online social networks enable users to participate in different activities, such as

connecting with each other and sharing different contents online. These activities

lead to the generation of vast amounts of online user data. Publishing user-generated

data creates the problem of user privacy as this data includes information about

users’ private and sensitive attributes. This privacy issue mandates social media

data publishers to protect users’ privacy by anonymizing user-generated social media

data. Existing private-attribute inference attacks can be classified into two classes:

(1) friend-based private-attribute attacks and (2) behavior-based private-attribute

attacks. Consequently, various privacy protection models are proposed to protect

users against private-attribute inference attacks such as k-anonymity and differen-

tial privacy. This chapter will review and compare recent state-of-the-art research in

terms of private-attribute inference attacks and corresponding anonymization tech-

niques. Then, privacy in distributed machine learning will be discussed from two

sides: attacks and defences.

2.1 Private Attribute Inference Attacks

Many social networks contain rich information as nodes attributes. The aim of

private attribute inference attacks is to fill the missing or incomplete attribute infor-

mation for a given network using different approaches. Several recent studies have

demonstrated different private attribute inference attacks that could be classified as

friend-based and behavior-based. This section of the chapter discusses in detail the

classes of private attribute inference attacks and each class is discussed with examples.
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2.1.1 Friend-based Private Attribute Inference

Friend-based private attribute inference attacks are based on the homophily theory

which implies that friends have more similar attributes than two random users. The

similar users seem to form communities that have a high probability for sharing the

same attributes values. For instance, if the friends of a user are between 20 to 25

years old the user might also in the same age group. Initially, to illustrate the attacker

process, the attacker accesses the friends’ list of the target user; then does calculation

to infer the hidden attributes of the target user.

Several studies have considered using the network structure to inference nodes’

attributes. Ali et al. (2021) proposed a schema to represent the nodes in a graph as

feature vectors based on its attributes and nearby nodes’ attributes. These vectors will

be as input for standard machine learning algorithms to predict the attributes. Chen

et al. (2016) proposed different attribute inference models based on network charac-

teristics and social relationships. They have implemented Näıve Bayes, Decision Tree

and Logistic Regression and they found that the social relationship between users

is more critical in attribute inference than network characteristics. Another work

addressed the correlation between a pair of attributes that help in predicting the

attributes (Rabbany et al., 2017). They proposed a model called ProNe to measure

the pattern and calculate the correlations of the attributes which can then be used

in several applications such as prediction and privacy protection. By determining

which pair of attributes can disclose users’ private attribute, these attributes should

be obscured.

Another direction of works in this category is to predict network structure and infer

private attributes. The reason for simultaneously solving these two problems is the

fact that individuals with similar attributes connect to each other and individuals who
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are friends are most likely to share similar attributes (Beigi and Liu, 2020). Gong et al.

(2014) extended the social attributed network (SAN) framework different supervised

and unsupervised algorithms on attribute inference. Moreover, they observed the

attribute inference could help inform the link prediction. In other words, inferring

the missing attributes first will improve the accuracy of the link prediction. Their

work used the network structure and node-attributes information to enhance the

performance of both tow problems link-prediction and attribute inference.

2.1.2 Behavior-based Private Attribute Inference

Behavior-based private attribute inference attacks rely on inference using similar

users’ behavior. They assume similarity between users is based on their behaviors,

which further indicates they share the same attributes. For instance, if a user liked

books, shared articles, and participated in hashtags that are similar to those who that

are liked and used by users majoring in computer science, the user might also major

in computer science. Indeed, the attacker needs to analyze the behavior of the target

user in order to infer the hidden private attributes.

A lot of research has focus on inferring the private attributes using users’ behavior.

Alipour et al. (2019) proposed gender inference attacks on Facebook users based on

their published pictures using alt-text generated by Facebook and comments that are

written about the picture by friends, friends of friends, or strangers. They explained

how the attacker design feature sets with the public attributes to infer specific hidden

attributes. Other work for gender expression classification model is called GENEC

and predict the gender of users (Filho et al., 2016). This classification model uses 60

textual meta-attributes such as characters, syntax, words, structure, and morphology

of short length. This work is based on the relationship between gender and the used

language. Gender classification can be defined as the task of identifying each user in a
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network of male or female gender by analyzing the content and the behavior illustrated

in their messages. Several algorithms have also been evaluated and compared in

performance and the results show the use of Best First Tree (BFTree) algorithm

can achieve excellent results. Another work considered many social media platforms

simultaneously instead of using only a single resource to infer the users’ attributes

(Nie et al., 2017). Since the majority of users use many social network platforms at

the same time, the authors studied their behavior across multiple platforms to infer

the users’ attributes. They proposed a unified multi-source learning model to infer the

users’ occupations which treats each occupation as a task and simultaneously adjusts

source consistency and task relatedness. Historical multimedia posts from multiple

mobile platforms such as Twitter, Foursquare, Instagram, and LinkedIn are crawled

for each user first and extract descriptive features. The proposed model jointly learns

the features by lasso and graph-guided fused lasso. The graph-structure is built up

by leveraging external and internal knowledge.

2.1.3 Both Friend-based and Behavior-based

Uncounted approaches combine both network links and user behavior information

to infer the private attribute. Combining these two approaches can be used to improve

the effectiveness of inferring the private attributes. Gong and Liu (2018) amalgamate

social structures, user behaviors, and user attributes and design a social-behavior

attribute network called social-behavior-attribute (SBA). After that, they proposed

an attack called vote distribution attack (VIAL) under the SBA network to perform

attribute inference. Jia et al. (2017) proposed a model called AttriInfer which is a

Markov Random Field (MRF) based method. This method aims to infer users’ pri-

vate attribute using their public data by leverage both friends, behavior, and the label

information of training users who have an attribute and who do not. Besides, they
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modeled AttriInfer using Loopy Belief propagation (LBP) to compute the posterior

probability, which is the probability that a specific user has the attribute giving a

training dataset. Zhong et al. (2015) demonstrated a framework called a location to

profile (L2P) to infer demographic attributes of online users such as gender, age, edu-

cation level, marital status, and blood type. The proposed model incorporates three

aspects embedded in the check-in data which are spatiality, temporality, and location

knowledge features. Spatiality illustrates that the location check-ins are not uni-

formly distributed in the geospatial space. Temporality means the location check-ins

are changing over time. Location knowledge describes the strong correlation between

individuals with the functionality of locations that encourage individuals to travel

between different places. Another work integrated social structures and attributes

into a probabilistic model to predict targeted users’ attributes with the assumption

of powerful adversaries with background knowledge (He and Huang, 2019).

Moreover, Cai et al. (2018) presented a novel implementation method for collective

inference which can effectively inference users’ sensitive information using both avail-

able attributes and friendship information. They showed exactly how the attacker

launches an inference attack to predict users’ private attributes by investigating a

typical inference attack called collective inference. The collective inference is using

a network to propagate the current inference results iteratively to improve the ac-

curacy. They illustrated the impact of utilizing both attribute and link information

which can significantly improve the accuracy of private attributes inference attacks.

Other work is proposed to predict the voting behavior of users in social media using

a Bayesian network model that combines demographic information, users’ behavior,

and social structures. The goal of the model is to predict the user voting behavior on

Facebook based on the public portions of the user’s profile. Bayesian network classi-

fiers have strong points which are the ability to support the combination of data, the
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previous knowledge about the specific domain, and handling the missing values very

well. These points are important with social network datasets (Idan and Feigenbaum,

2019).

Another work investigated the relevance among social attributes, which can be

used to infer users’ private attributes. One attribute may have relevant to others

which makes the population distribution of one attribute over the second attribute

unbalanced. For instance, the attribute gender may have relevant to attribute job as

the population distribution of job over gender is unbalanced. The distribution can

be seen in some types of jobs where most workers are male or female. That is to say,

the relevant among different attributes affects the performance influences on private

attribute inference (Mao et al., 2019). The authors proposed a relevance attribute

inference method called ReAI using random walks based on a social graph. They

constructed a social graph and embedded the relevant values among attributes into

the social graph as edge weights.

2.2 Protection Techniques

Online users’ privacy has become a critical problem for the researchers which has

led to vast solutions for mitigating the risk of inference attacks. After discussing the

different approaches of private attribute inference attacks, this section will explore

how researchers mitigate the risk of privacy leakage by providing different defense

algorithms. Traditional privacy-preserving techniques will be discussed first, and

then we will discuss how adversarial learning can preserve the users’ privacy.

2.2.1 Traditional Privacy Preserving Techniques

a. Differential Privacy

Differential privacy is one of the traditional techniques applied during statistical
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query over a dataset and seeks to improve the privacy while preserving the accuracy

of results. The goal of differential privacy is to maximize the accuracy of the queries

and minimize privacy leakage. It was developed by Dwork (2008) and it provided

a guarantee that the behavior of the dataset will hardly be affected after a single

instance is added or removed from the dataset. In essence, the presence or absence

of a specific individual in the dataset is insignificant. For example, consider a survey

about an embarrassing activity and out of 100 participants 20 participants respond

“Yes”. When a new participant answers the questions, his answer could be easily

inferred after comparing the result of the survey before and after his answer. This

example illustrates the problem that differential privacy has proposed to solve. The

formal definition of differential privacy as Dwork (2008, p.2) defined it:

A randomized function K gives ε-differential privacy if for all data set D1 and D2

differing on at most one element,and all S ⊆ Range (K),

Pr[K(D1) ∈ S] ≤ exp(ε)× Pr[K(D2) ∈ S] (2.1)

Where the probability is taken is over the coin tosses of K and ε is called privacy

budget and it is a metric of privacy loss. The smaller value of ε is, the higher privacy

preserved because the attacker is unable to infer the change in the database after

adding or removing an instance. K is a randomized function that is independent

of any knowledge the attacker may have about the database. There are two widely

used approaches for adding random noises to achieve differential privacy, namely,

the Laplace mechanism for numeric data and the exponential mechanism of non-

numeric data. The Laplacian mechanism is a common technique for adding Laplace

noise drawn from Laplace distribution. The quantity of added noise depends on the

sensitivity of the query function. The sensitivity of the query describes the difference
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between the value of the function on the two databases D1 and D2 which differ in

at most one instance that needs to be hidden by adding noise. To calculate function

sensitivity (Dwork, 2008, p.4):

∆f = max
D1,D2

‖f (D1)− f (D2)‖1 (2.2)

Differential privacy introduces the least possible noise when ∆f is small. For

example, simple queries that need only counting such as, counting instances with

attribute x = 1 have quite small sensitivity value.

Differential privacy was initially proposed to protect the privacy of individual in-

stances in a statistical database. Then, it was adopted to preserve privacy in social

networks. Researchers have applied differential privacy to preserve the privacy of the

data in social networks using different approaches. Xiao and Xiong (2015) proposed

a solution to preserve location privacy using differential privacy. They protected the

exact location for the user at every timestamp by defining “δ–location set”. To pro-

tect the user’s exact location, they hid it in the δ –location set and as a result, any

pairs of locations are not distinguishable. Moreover, an efficient location perturbation

mechanism called planar isotropic mechanism (PIM) was presented in their work to

achieve the differential privacy. Liu et al. (2020) proposed a local differential pri-

vacy model for social network publishing called DP-LUSN that preserved community

structure information and provided a proof that the local differential privacy model

satisfies the definition of differential privacy while preserving the utility of the com-

munity structure. In local differential privacy, the community structure is considered

an independent unit and the local neighboring databases are defined as a community

with one different edge.

b. k-Anonymity, `-Diversity, and t-Closeness

According to Sweeney (2002), k-anonymity is one of the traditional privacy-
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preserving techniques which seeks to anonymize the instances in the dataset by

suppression and generalization. Suppression implies not releasing the value of an

attribute. For example, instead of releasing the value of the zip code of an instance,

“*” will be released. Generalization involves making the value of an attribute more

general and less specific. For example, releasing the value of the zip code of an in-

stance as “1234*” instead of “12345”. These two ideas have been combined to achieve

k-anonymity. The basic idea of k-anonymity is to make each instance in the dataset

identical from at least k instances that share identifying attributes. The k instances

of the same attributes are indistinguishable regarding their quasi-identifiers. Quasi-

identifiers are defined as the attributes that are linked with an external public dataset

that uniquely identifies at least one individual (Machanavajjhala et al., 2006). An

example of quasi-identifiers is social security numbers which can identify individuals.

Furthermore, not only explicit information can identify the individuals, but also the

combination between some attributes can uniquely identify the individuals.

Even though k-anonymity has protected the privacy of the released dataset, it

cannot protect against private attribute inference attacks. k-Anonymity is susceptible

to some types of attacks which are homogeneity attack and background knowledge

attack (Machanavajjhala et al., 2006). Homogeneity attack is defined as the ability

to infer an instance’s private attributes when sensitive values are in an equivalent

class that lack diversity. Background knowledge attack presumes the attacker knows

a piece of information about one of the instances in the dataset. Because of these

attacks, k-anonymity is insufficient to prevent private attribute inference attacks. In

addition, k-anonymity cannot protect against private attribute inference.

To solve k-anonymity’s limitations, `-diversity was introduced by Machanavajjhala

et al. (2006) and ensures the diversity of the sensitive attributes at each equivalence

class. A dataset is said to have `-diversity if there are at least ` well-represented values
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for the sensitive attributes. Two instantiations of the `-diversity are introduced that

both result in diversity in the sensitive attributes: entropy `-diversity and recursive

(c, `)-diversity. Entropy `-diversity is defined as the entropy of the distribution of

the sensitive attributes in each equivalence class to be at least log(`). Recursive (c,

`)-diversity means the most frequent value should appear frequently enough in the

dataset. It is clear that `-diversity has several advantages against the previous attacks

that risk k-anonymity. First, `-diversity does not require knowledge of sensitive and

non-sensitive attributes. Second, it protects against all different background knowl-

edge attacks. The larger the value of parameter `, the more information is required

to eliminate the values of the sensitive attributes.

Even though `-diversity achieved higher privacy than k-anonymity, it has nega-

tive aspects and vulnerabilities. First, `-diversity is considered difficult to achieve.

Second, `-diversity is vulnerable to two types of attacks: (1) skewness attacks and (2)

similarity attacks. Skewness attacks are defined as gaining information about a sen-

sitive attribute when the global distribution of this attribute is available. `-Diversity

is vulnerable to another attack called similarity attack which happens when the sen-

sitive attributes are distinct but are similar semantically. This because `-diversity

does not consider the semantical closeness of the values (Li et al., 2007).

A new privacy concept was introduced, t-closeness which requires the distribution

of a sensitive attribute to be close to the distribution of the attribute in the whole

dataset. To satisfy t-closeness, the distance between the distribution of a sensitive

attribute in an equivalence class and the distribution of the attribute in the whole

dataset is no more a threshold t. t-closeness is calculated for a dataset based on Earth

Movers Distance (EMD) (Li et al., 2007).

To discuss these three models and their ability to protect the users’ private at-

tributes, k-anonymity does not protect against private attribute attacks. That hap-

19



pens when the variability of sensitive attributes in the equivalence class is low which

gives the attacker the ability to decide the equivalent class of a user that will disclose

information about the sensitive attributes of that user (Soria-Comas et al., 2015). `-

Diversity is insufficient to prevent the private attributes attacks as discussed before;

it is vulnerable to two types of attacks. The reason for this limitation in `-diversity

is because the semantical closeness is ignored (Li et al., 2007). t-Closeness is consid-

ered the strongest among the three models by limiting the number of users’ private

attributes that can be observed by the attacker.

These traditional privacy techniques focus on securing the released dataset and

do not consider the inference attacks using machine learning techniques (Han et al.,

2019). The following section discusses the adversarial learning techniques to preserve

users’ privacy and protect users’ private attribute. To conclude, this section dis-

cussed the traditional techniques to preserve users’ privacy by protecting the private

attributes.

2.2.2 Adversarial Learning

Adversarial learning is the state of the art approach for privacy techniques to

preserve users’ privacy by defending against machine learning models that target to

infer private attributes. Recently, uncountable works have started defending against

private attributes inference attacks.

a. Game-theoretic Methods (Intractable)

Game theory is a mathematical discipline that studies the strategic interaction

among rational individuals. It was established based on the assumption that there

are players and a strategy that will make one player win the game (Wang et al., 2016).

Game theory is wildly used to solve different problems in many fields. The purpose of

using game theory to defend against private attribute inference is to propose strategies
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to keep an equilibrium between data utility and privacy preservation. In this method,

the attacker will perform the inference attack based on the previous knowledge of the

defense algorithm. On the other hand, the defense system will protect against the

optimal inference attack. The dilemma between data utility and privacy preservation

can be illustrated using data user, data collector, and data provider as follows: the

data user performs different algorithms to extract the knowledge on the data offered

by the data collector. It will be better for the data user to have less anonymized

data so that more relevant knowledge and patterns can be extracted. On the other

hand, data providers prefer to keep private data secured, so they want to anonymize

it. The data collector is responsible for deciding how much anonymization the data

needs (Shah et al., 2019).

Several works solved the problem of the trade-off between privacy and utility

and modeled the interactions between different parties as a game. Xu et al. (2015)

discussed this concept by modeling the interactions among data providers, data col-

lectors, and data users as a game. A general approach has been proposed in this work

to find the Nash equilibriums of the game, which is the optimal level of anonymization

that need to be applied on the data. They also presented a specific game formulation

that takes k-anonymity as the anonymization method. These defenses are considered

computationally intractable when applied to attribute inference attacks.

There have been noteworthy works to solve different problems in privacy using

game theory approaches. Shah et al. (2019) reviewed the application of game theory

in privacy preservation. A comparative study of the uses of different game-theoretic

models in privacy preservation was proposed. One example of applying game the-

ory is for defending against location inference attacks (Shokri et al., 2012). The

authors proposed an analytical framework that enables system designers to find the

optimal location-privacy preserving mechanism (LPPM) for location-based services
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against the optimal inference algorithm. They used Bayesian Stackelberg games to

find the solution and the scenario is as follows: a user and an adversary interact

based on a strategy where each one’s gain is the loss of the other. The user plays

first by choosing a location-privacy preserving mechanism (LPPM) and running it on

his exact location. Then, the adversary will play by predicting the user’s location,

given the location-privacy preserving mechanism that the user has run. This is the

Bayesian game because the adversary has incomplete information about the user’s ex-

act location and he is playing the game depending on his hypothesis about the user’s

location. As a result, the authors found the optimal point in the trade-off which

satisfies both user privacy and service quality based on users’ information. Applying

game-theoretic methods have theoretically proved privacy preservation and defending

against inference attacks, but they have several limitations. The computational cost

is exponential because the public data vector in the real dataset has high dimension-

ality. In addition, to defend against private attribute inference, noise has been added

to a user’s public data which could affect the utility (Jia and Gong, 2018).

b. Computationally Tractable Methods

As a solution to the computationally intractable problem, different researchers

have proposed many traceable approaches. Salamatian et al. (2015) developed Quan-

tization Probabilistic Mapping (QPM) which relies on a general statistical inference

framework. They reduced the amount of data by clustering the users’ public data and

take the cluster centroid to represent each cluster. Another work proposed practical

adversarial machine learning to defend against attributes inference attacks called At-

triGuard. It finds a minimum noise for each attribute value then randomly selects

one of the previously founded noises to mislead the attacker. More simply, the goal

is to add random noise to the attribute to reduce the attacker’s inference accuracy

with minimum utility loss (Jia and Gong, 2018). Another work approached adver-
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sarial learning differently to guarantee that the private attributes are protected from

all machine learning attackers (Raval et al., 2019). The authors proposed a privacy

framework called Olympus to eliminate the risk of inferring private attributes by

obfuscating the data and preserving the utility of the data. Their proposed frame-

work used a generative adversarial network (GAN) to solve the problem between the

obfuscator and the attacker.

Several methods are reported in the literature to address how to preserve the tex-

tual information privacy. Beigi et al. (2019) used adversarial learning to anonymize

the textual information by proposing a privacy-preserving text representation learn-

ing framework called DPText. The final output of this model is the text that obscures

the private attribute information by making sure the sensitive attributes are not cap-

tured in the latent representation so the adversary will not be able to infer these

attributes. To create private representation in the text field, Li et al. (2018) proposed

a novel approach for privacy-preserving learning based on generative adversarial net-

work (GAN) to train deep models with adversarial learning in order to improve the

robustness and privacy of the neural representation. Their method has been evalu-

ated on the tasks of part of speech tagging (POS), sentiment analysis, and protecting

several demographic private attributes such as gender, age, and location.

A series of recent successful studies used deep reinforcement learning to preserve

privacy. By leveraging reinforcement learning in controlling privacy-utility balance,

feedback from the attacker is included in a reward function. Mosallanezhad et al.

(2019) proposed a novel reinforcement learning-based text Anonymizer, RLTA, which

addresses the problem of private attribute inference while preserving the utility. RLTA

consists of two components: an attention-based task aware text representation learner

and a deep reinforcement learning-based privacy and utility preserver. The goal of

these components is to extract the embedded representation of the text by minimizing
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the loss and then manipulate the embedded text by learning the optimal strategy

that preserves both privacy and utility. The incorporation of deep reinforcement

learning in this model works to anonymize the text embedding by receiving privacy

and utility feedback and learning the optimal balance for proper manipulation of text

embeddings.

From the data provider point of view, preserving the privacy in textual information

is challenging in two ways. The first is the trade-off between privacy and the semantic

of the text which will be affected when the text is converted to the new form. For

example, this sentence, “I’m a math teacher with 17 years’ experience” will discloses

one of the user’s private attributes, age, since it clearly shows that the user is over 40-

years-old. The second challenge is the disclosure of a private attribute is indirect, such

as how some words are highly used by females (Xu et al., 2019). Several works have

addressed these challenges and preserved the private attributes in textual information.

Xu et al. (2019) developed a tool to rewrite the users’ text into less sensitive text to

preserve the users’ privacy. Their proposed model is based on back translation to

reduce the exposure of private information.

The directions of other works focused on preserving the users’ privacy in the con-

text of the recommendation system. Recommendation systems build a profile for each

user which include user’s public information and interests then recommend relevant

products to each user based on these profiles. Despite the capability of the recommen-

dation system, they could be a source of private attributes inference attacks when the

attackers have access to the output of the recommendation system and information

about the targeted users. Beigi et al. (2020) proposed an adversarial learning-based

recommendation with an attribute protection model called Recommendation with

Attribute Protection (RAP). RAP protects users against private attributes inference

attacks and maintains utility. It consists of two integrated components: Bayesian
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personalized recommender and the private attributes attacker and it has shown the

effectiveness in both protecting users’ privacy and preserving the quality of the recom-

mended items. This proposed model preserves the utility by offering relevant products

and, at the same time, preserves the privacy by making the private attributes infer-

ence challenging for the adversary.

A few other works have proposed methods to estimate online users’ private at-

tributes inference risk. Different works have been designed to measure a specific kind

of attack, but in reality, the behavior of the attacks is unpredictable and various

adversaries will perform different inference attacks. To address this limitation, Han

et al. (2019) proposed a general framework for private attribute disclosure estimation,

called F-PAD, which can estimate inference risk for users given a basket of different

inference attack models. F-PAD consists of three steps: 1) attack model simulation

to simulate adversaries’ attack that predicts private attributes of users, 2) disclosure

model training to study the inference results in order to learn from the correct and

wrong predictions, and 3) disclosure risk estimation to build up the disclosure estima-

tor that integrates the result of multiple models within a high confidence interval in

terms of disclosure probability and risk level. The goal is to generalize the privacy es-

timation function to cover many attributes. Moreover, F-PAD offers some suggestion

to increase the privacy preservation for the users who have a high disclosure risk.

2.3 Privacy in Distributed Machine Learning

Although distributed machine learning improves privacy by storing the training

data locally, privacy issues have arisen and different solutions have been proposed in

the literature. The shift from centralized machine learning to distributed machine

learning can be classified to: federated learning (McMahan et al., 2017) and split

learning (Gupta and Raskar, 2018).
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2.3.1 Privacy Threats in Distributed Machine Learning

From a privacy perspective, the privacy threats in distributed machine learning

that affect individuals’ private information can be classified based on the attack source

as follows:

1. Attacks from the server: When the server is a malicious server that infers

private information about the participants’ training data. In federated learning,

Melis et al. (2019) illustrated how the attack happens when the server is an ad-

versary and his goal is to infer information about the participants’ training data.

The adversary analyzes the participants’ updates during the training process,

and he can do either passive or active attacks. In split learning, Pasquini et al.

(2021) demonstrated a malicious server which recovers the private training data

of the participants. The malicious server hijacks the model’s learning process

to do an inference attack.

2. Attacks from a client: When one of the clients in the distributed environment

is a malicious client who infers other participants’ training data. In federated

learning, Melis et al. (2019) illustrated the case when a malicious client can

infer private information from the training set, such as specific locations. In

split learning, Pasquini et al. (2021) proposed a malicious client, which recovers

the private training data from other participants in the distributed learning

process.

3. External attacks: When the source of the attack happens from the commu-

nication between entities. In federated learning, Singh et al. (2019) proposed a

reconstruction attack which is when the attacker has access to the updates and

communication between the participants. In split learning, Vepakomma et al.
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(2020) proposed a reconstruction attack by utilizing the intermediate updates

between the client and the server. They showed how the private data leaked

through the communication between the entities even after passing some layers

on the client side.

2.3.2 Privacy Protections in Distributed Machine Learning

In the last few years, we have seen a growing body of works proposing privacy-

preserving distributed machine learning that utilizes different protection techniques.

In the light of protecting individuals’ private information in distributed machine learn-

ing, several mitigation techniques have been added to federated learning and split

learning. Table 2.1 shows the different protection techniques to improve individuals’

privacy in federated and split learning.

Geyer et al. (2017) proposed an enhancement in federated learning by applying

differential privacy as a protection technique. They improved the clients’ level of

privacy by defending against membership attacks, which makes it harder for the

attacker to infer whether a client participated in the training process or not. Another

protection technique is Secure Multi-party Computation (SMC), which collectively

computes a function over multiple parties. Bonawitz et al. (2017) used Secure Multi-

party Computation with federated learning to enhance privacy. In addition to SMC,

another protection technique called homomorphic encryption has been used with

federated learning to improve privacy (Cheng et al., 2019). The proposed privacy-

preserved system, SecureBoost, improves privacy while maintaining performance.

In split learning, Abuadbba et al. (2020) applied differential privacy on the split

layer to protect each entity’s training data. On each client, a specific amount of

noise is added to the activation parameter before sending it to the server. As a

second mitigation, they have increased the model complexity by adding more hidden
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layers on the client-side. Another work demonstrated how to reduce the information

leakage by minimizing the distance correlation between the training data and the

intermediate parameters across the clients and the server. They applied their ideas

by adding the distance correlation as an additional loss term to the classification loss

term (Vepakomma et al., 2020).

Table 2.1: Privacy Protection Techniques in Distributed Machine Learning

Federated Learning Split Learning

Differential Privacy (Geyer et al., 2017),

(Choudhury et al., 2019)

(Abuadbba et al., 2020)

Homomorphic En-

cryption

(Cheng et al., 2019) (Pereteanu et al., 2022)

Secure Multi-party

Computation (SMC)

(Bonawitz et al., 2017) -

Other Protection

Techniques

- Minimizing distance

correlation (Vepakomma

et al., 2020), increased

the model complexity

(Abuadbba et al., 2020)

2.4 Conclusion

The amount of online data has increased. Social media platforms are one of the

rich areas of user-generated data which contain sensitive information. User-generated

data has been studied from researcher and service providers to better understand

users’ needs. However, sharing this information may risk the users’ privacy since it

includes sensitive information or private attributes. Research has shown that private

attributes inference is one of the privacy risks that concern online users. A private
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attributes inference attack discloses private attributes using the available public at-

tribute by a malicious adversary. Most of the existing works are divided into two

groups: proposing new attacks to infer the users’ private attributes and defending

against that risk to minimize the privacy leakage. In this chapter, existing private

attribute inference attacks have been explained in both classes: friend-based private

attribute attacks and behavior-based private attribute attacks. After that, the pro-

tection techniques against private attribute inference attacks were discussed. There

are various protection models that were classified into traditional techniques and ad-

versarial learning. I reviewed, categorized, and compared the existing works in terms

of users’ private attributes. Finally, I reviewed the privacy in distributed machine

meaning from two sides: attacks and defences.
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Chapter 3

PRIVACY PRESERVING TEXT REPRESENTATION LEARNING USING BERT

3.1 Introduction

User generated textual data is rich of information that can be used in different

tasks such as understanding users’ behavior and recommendation systems. From the

privacy perspective, user generated textual data can cause a privacy leakage since it

contains sensitive information about the individuals. There are several privacy issues

related to textual data such as re-identification and private-attributes inference.

Online users who publish textual data may not be aware that their private infor-

mation can be easily inferred by malicious adversaries. Many research studies have

shown that the user generated textual data may reveal private information about the

users. The following table 3.1 shows examples of how user-generated textual data

reveal private information. From the first example, it is clear that one can infer the

user’s gender (female), which is one of the private attributes that the user may not

want to share publicly. Example 2 shows the leakage of private health status that can

be inferred from a tweet that contains disease symptoms. Individual’s location and

age group can be inferred from user-generated textual data as shown in examples 3

and 4, respectively.
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Table 3.1: Examples of Private Information Leakage in User Generated Textual

Data

User generated textual data Revealed information

“...I should receive my shoes at the end of next week

so I waited by the end of the week there was no shoes

so my husband called and was told the order never

shipped out...”(Hovy et al., 2015)

Gender (Female)

“Dr.appt Tuesday morning was told I need to lose

30 pounds by X-Mas, have high cholesterol,

and high blood pressure. Today starting count-

ing calories #myfitnesspal and juicing for dinner”

(Beigi et al., 2019)

Disease symptoms

“Bravofly is a rip off. Reimbursed me 97,76

Euros out of 265,06. I will report them to

the French Interior Ministere Service des

Fraude/Escroquerie etc.”(Hovy et al., 2015)

Location (France)

”Well what can I say The show was Brilliant and

well worth going to watch We took out 2 grand-

daughter’s ages 5 and 13 ” (Hovy et al., 2015)

Age group (above 45)

Two categories in general of information leakages have been studied: identity

disclosure and private-attributes disclosure. Identity disclosure happens when a tar-

geted instance is mapped to an instance in a publicly released dataset while private-

attributes leakage happens when the adversary is able to infer some of the sensi-

tive information such as age, gender, and location (Beigi and Liu, 2020). To protect

user’s privacy, various protection techniques have been proposed such as k-anonymity
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(Sweeney, 2002) and differential privacy (Dwork, 2008) which used to tackle the iden-

tity disclosure attack. However, these techniques have shown inefficiency to protect

textual generated data for several reasons such as the data being unstructured and

contains a huge number of short and informal post (Fung et al., 2010). Besides, these

techniques do not protect textual information against private-attributes leakage and

also may have a negative impact on the utility as they do not take it as a part of the

solution.

Our main contribution is proposing a framework, called DPBERT , which learns a

privacy preserved text representation that is differentially private to protect against

identity leakage (if a target instance is available in the data or not), does not leak

private-attributes information (age, gender, location, etc.), and preserves the semantic

of the text.

3.2 Related Work

This section describes related work on the following areas: (1) Sentence embed-

ding; (2) Textual Data Privacy; and (3) Protecting Private-Attributes Information.

3.2.1 Sentence Embedding

is the process of converting a linguistic sentence to a numerical representation tak-

ing into account its meaning. The aim of sentence embedding is being able to use the

logistic features for downstream tasks. There are two categories for sentence embed-

ding techniques:non-parameterized and parameterized models (Wang and Kuo, 2020).

Non-parameterized techniques such as tf-idf and uSIF (Ethayarajh, 2018) which de-

pend on high-quality pre-trained word embedding techniques. On the other hand,

parameterized techniques are more convoluted than non-parameterized techniques.

SBERT(Reimers and Gurevych, 2019) technique is based on BERT foundation. The
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work of (Wang and Kuo, 2020), called SBERT-WK, proposed a new sentence embed-

ding method by using geometric analysis of the space learned by deep contextualized

models.

3.2.2 Textual Data Privacy

User-generated data has been used by researchers and service providers to better

understand users’ behaviors and offer them personalized services. However, publishing

user-generated data may cause the problem of user privacy as this data includes

information about users’ private information. Several methods are reported in the

literature to address how to preserve the textual information privacy. Beigi et al.

(2019) used adversarial learning to anonymize the textual information by proposing a

privacy-preserving text representation learning framework, called DPText. The final

output of this model is the text that obscures the private-attribute information by

making sure the sensitive attribute does not capture in the latent representation so

the adversary will not be able to infer these attributes. The previous study on creating

private representation in the text field by (Liu et al., 2020) proposed a novel approach

for privacy-preserving learning based on generative adversarial network GAN to train

deep models with adversarial learning to improve the robustness and privacy of the

neural representation. Their method has been evaluated on the tasks of part of

speech tagging (POS) and sentiment analysis, protecting several demographic private-

attributes such as gender, age and location.

3.2.3 Protecting Private-Attributes Information

Private-attribute information can be defined as the information that individuals

do not want to explicitly disclose such as marital status, location, occupation, age,

and gender. Numerous research studies have been mitigated the problem of privacy
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leakage. Recent works (Alnasser et al., 2020b) identify different aspects of user pri-

vacy. In particular, Alnasser et al. (2020b) illusterate the privacy risks and compare

different traditional privacy models for protecting user private-attributes.

Our work is distinct from the previous works in that we use BERT to extract the

sentence embedding in our proposed model. Our model can be useful in preserving

privacy in published datasets that are used for different tasks.

3.3 Problem Statement

Problem 1. Given a set of documents X, a set of sensitive attributes P , and

a task T , learn a function f that can anonymize the text embedding representation

Z̃i for each document xi in X so that, 1) the adversary cannot infer the targeted

user’s private-attributes P from the privacy-preserving text representation Z̃i and 2)

the generated private representation Z̃i is preserving the utility for a downstream task

T . The problem can be mathematically defined as Beigi et al. (2019):

Z̃i = f(xi, P, T ) (3.1)

Note that our work aims to protect against external attackers who have access to

the released dataset. We assume the system to be trusted.

3.4 The proposed Framework

In this section, we discuss the details of the proposed model framework which is an

extension to a novel double privacy preserving text representation learning framework,

DBTEXT , (Beigi et al., 2019). The illustration of the entire model is shown in Fig. 3.1.

Our proposed model framework uses BERT for text representation. BERT (Devlin

et al., 2019) is a language representation model which is developed to pre-train deep

bidirectional representations from a given text by jointly conditioning on both left
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and right context in all layers. Then, the differential-privacy-based noise adder adds

random noise, e.g., a Laplacian noise, to the original text representation. Since adding

noise affects the semantic meaning and may destroy the utility of the data, we added

two discriminators for the semantic meaning DS and private-attributes DP to infer

the proper amount of the added noise. The semantic meaning DS verifies that the

added noise does not destroy the semantic meaning given the sentiment classification

task. The private attribute discriminator DP controls the amount of added noise to

make the manipulated representation does not leak users’ private information. The

final output of the proposed model is the manipulated embedding text Z̃ which is

deferentially private, hides the private attributes, and preserves semantic meaning.
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𝒵̅𝒵 = 𝒵𝒵 + ϵ

Differential-Privacy-Based Noise Adder (ϵ)

User-generated Text

“Sentence1, Sentence2 ….”

BERT

[-0.31939548  0.6635888 ...]

𝒵𝒵

Privacy Checking
Private Attributes 

Discriminator (𝑫𝑫𝑷𝑷)

Utility Checking
Semantic

Discriminator (𝑫𝑫𝑺𝑺)

Manipulated Embedding Text (𝒵̅𝒵)

[0.14607579 0.88497686...] 

Figure 3.1: The Framework of DPBERT Architecture. It Consist of Four Compo-

nents, BERT, a Differential Privacy- based Noise Adder, a Semantic Discriminator

DS and a Private-attributes Discriminator DP . The Manipulated Embedding Text Z̃

Is a Noisy Representation Which is Deferentially Private, Hides Private Information

and Has Semantic Meaning

3.4.1 Sentence Representation using BERT

Here, we illustrate how to extract the sentence embedding for a given text. Let

X = {x1, ..., xm} be a document that contains m sentences. We use BERT to ex-

tract the textual embedding because BERT has shown to be significantly efficient
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when modeling textual embedding (Devlin et al., 2019; Reimers and Gurevych, 2019;

Wang and Kuo, 2020). In particular, we use Sentence-BERT (SBERT) (Reimers and

Gurevych, 2019), which achieves state of the art performance for various sentence

embeddings task, to extract the sentence embedding. SBERT is a modification of

BERT network that uses siamese and triplet network structures to derive semanti-

cally meaningful sentence embeddings.

3.4.2 Perturbing Text by Adding Noise

Textual data is rich in content, leading to privacy issues by revealing information

about individuals. The privacy issues can be identity of private attribute attacks.

Furthermore, when the attacker accesses the text latent representation, he can reverse

engineer to the original input. Thus, it is crucial to protect textual information

to improve individuals’ privacy. From the literature, we have seen that differential

privacy is an early and powerful protection technique to improve the users’ privacy

by providing a privacy guarantee. Adding noise to the textual representation will

prevent text re-identification. In this work, we follow (Beigi et al., 2019), where

differential privacy technique is used for preserving the privacy of users’ data. By

adding noise to the latent representation, we improve the privacy by making it harder

for the attacker to do re-identification of learned text representation and preventing

the attacker from recovering the raw textual data. Output perturbation mechanism

is used which is achieving the differential privacy by adding Laplacian noise to the

output of an algorithm Z̃ (Chaudhuri et al., 2011). We added Lablacian noise to

perturb the output Z as follows:

z̃i = z(i) + s(i), s(i) ∼ Lap(b), b =
4
ε
, i = 1, . . . , d (3.2)
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where s the noise vector, s(i) and z(i) are the i − th element for vectors s and z,

respectively, 4 is the L1-sensitivity of the latent representation z, ε is the privacy

budget and d the dimension of z.

Instead of directly sampling noise s(i) using Laplacian mechanism to learn the

value of the privacy budget ε, we use reparameterization trick which was introduced

first in a work done by Kingma and Welling (2014). It first samples a value r from a

uniform distribution and then rewrites s(i) as follows:

s(i) = −∆

ε
× sgn(r) ln(1− 2|r|), i = 1, . . . , d (3.3)

3.4.3 Preserving Text Utility

As discussed previously, adding noise (Eq. 3.2) to the textual representation will

prevent privacy leakage. However, adding noise comes at the cost of text utility loss.

We measure text utility by its semantic meaning. In order to preserve the text’s

semantic meaning, the optimal amount of noise needs to be added to ensure not too

much noise has been added to the textual embedding as it can reduce the utility of

the textual information. We need to add an optimal amount of noise which does not

destroy the semantic meaning of the text data and in the same time ensuring data

privacy. This addresses the trade-off between preserving privacy and maintaining

utility. We train a classifier to learn the amount of added noise with the privacy

budget ε as:

ŷ = softmax(z̃; θDS
) (3.4)

where ŷ represents the inferred label for the classification and θDS
are the weights

associated with the softmax function.

For the semantic meaning of the text representation, we define a semantic discrim-
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inator DS to assign a correct class label to the perturbed representation as follows:

min
θDS

,ε
L(ŷ, y) = min

θDS
,ε

C∑
i=1

−y(i) log ŷ(i) (3.5)

where L is the cross entropy loss function, C is the number of classes, y is the ground

truth label for the classification task and y(i) represents the i− th element of y.

3.4.4 Protecting Private Information

As we discussed, adding noise to the textual representation will prevent adversaries

from inferring the user information. The other side of preserving text representation

privacy is to ensure that the sensitive information of the individuals is not captured

in the text representation. In our proposed model, we follow the idea of adversarial

learning by training a private-attributes discriminator DP that identifies the private

information from the text representation (Beigi et al., 2019). At the same time,

learning a representation that minimizes the leakage of private information by fooling

the discriminator. The adversarial learning can be formally written as:

min{
θ
Dt
P

}T

t=1

max
ε
LDP

= min{
θ
Dt
P

}T

t=1

max
ε

1

K.T

T∑
t=1

K∑
k=1

LDt
P

(
p̂kt , pt

)
, s.t. ε ≤ c1 (3.6)

where θDt
P

is demonstrates the parameters of discriminator model DP , LDt
P

represents

the cross entropy loss function, c1 is a predefined privacy budget constraint, T is the

number of private-attributes, p̂kt is the predicted t− th private-attribute using K− th

sample and it is defined as follows:

p̂kt = softmax
(
z̃k, θDt

P

)
(3.7)

to calculate the predicted t−th sensitive attribute using the k−th sample. The outer

minimization of equation (Eq.4.7) finds the strongest private-attributes inference at-
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tack and the inner maximization seeks to fool the discriminator by obscuring private

information.

3.4.5 DPBERT - Learning the Text Representation

In the previous sections, we show how we: (1)add noise to prevent the adversary

from regenerate the original text from the embedding representation and minimize

the chance of privacy leakage by achieving differential privacy (Eq. 3.2), (2) con-

trol the amount of the added noise to preserve the semantic meaning of the textual

information(Eq. 4.1), and (3)protect the private-attributes (Eq. 4.7). Inspired by

the idea of adversarial learning, we model the objective function as a minmax game

among the two discriminators DP and DS. Assume that LDt
P

and LDS
denotes cross

entropy loss function for the private-attributes discriminator and cross entropy loss

function for semantic task, respectively. Our goal is to maximization LDt
P

that finds

the strongest private-attributes inference attack and minimize LDS
that measured by

the incorrect label in the sentiment prediction. We can write the objective function

as follows:

min
θDS

,ε
max{
θ
Dt
P

}T

t=1

LDS
− αLDt

P
+ λΩ(θ) s.t. ε ≤ c1 (3.8)

where α controls the contribution of the private-attributes discriminator DP in

the learning process, and Ω(θ) is the parameters regularizer.

The goal of this objective function is to learn the private text representation by

adding a proper amount of noise to the latent representation to prevent the mem-

bership attack when the attacker is able to infer the existence of one instance in the

training dataset. In addition, to prevent the reconstruction of the original text and

inferring users’ private information.
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3.5 Experiments

3.5.1 Data

We use a dataset from TrustPilot from Hovy et al.Hovy et al. (2015). In this

collected dataset, there are reviews on different products and ratings from one to five

star. Each review is associated with three private-attributes: gender (male, female),

age, and location (Denmark, France, United Kingdom, and the United States). The

same approach of (Beigi et al., 2019) is followed in this work. We follow the setting of

(Hovy and Søgaard, 2015) by categorizing age attributes into three groups, above 45

years, under 35 years, and between 35 years and 45 years. We subsample 10k reviews

for each location to balance the five locations. For the sentiment ground truth, we

consider the review’s rating score as a sentiment class.

3.5.2 Experimental Design

We compare DPBERT with its variant ORIGINALBERT which uses the original

text representation without adding noise to it. We report accuracy score to evaluate

the utility of the given text for a sentiment analysis (dos Santos and Gatti, 2014).

Specifically, we use the rating score of each review for the sentiment prediction task.

In addition, we report the examination of the text representation using F1 score for

predicting the private-attributes. It is worth mentioning that the higher accuracy

score for the semantic discriminator shows high utility for the sentiment task and a

lower F1 score for the private-attributes discriminator demonstrates high privacy in

the given text.

Since the maximum length of text for BERT is 512. We follow in this work

the head-only method which keeps the first 512 tokens of the given text (Sun et al.,

2020). This head-only method considers that the important information that we need
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to capture from the text will be in beginning of a document.

3.5.3 Experimental Result

We have conducted experiments to answer three questions:

• Q1- Utility: Does the learned text representation preserve the utility of the

original text by keeping the same sentiment preserved?

• Q2- Privacy: Does the learned text representation hide the private information?

• Q3- Utility-Privacy trade-off: Does the trade-off between the utility and privacy

reach the optimal point without sacrificing any of them?

The experimental results are demonstrated in Table 3.2. We compare DPBERT with

ORIGINALBERT , which is a variant of DPBERT that publishes the original repre-

sentation z without adding noise or utilizing the two discriminators.

Table 3.2: Accuracy for Sentiment Prediction and F1 for Evaluating Private At-

tribute Prediction Task. Higher Accuracy Shows Higher Utility, While Lower F1

Demonstrates Higher Privacy.

Model Sentiment (ACC)
Private Attribute (F1)

AGE Location Gender

ORIGINALBERT 0.3870 0.4330 0.3072 0.5623

DPBERT 0.2446 0.195 0.0671 0.4047

To emphasize, semantic discriminator DS is applied to test data to predict the

sentiment meaning where rating score is used as a label. Likewise, we apply the

private-attributes discriminator DP to mimic the attacker behavior who is trying to

infer the private information about the individuals from the textual representation.

For evaluation, a higher accuracy score for semantic discriminator DS indicates high
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utility for the given task, and lower F1 score for private attribute discriminator DP

demonstrates high privacy for individuals.

To answer the first question (Q1), we report experimental results for our pro-

posed model using the sentiment analysis task. We predict sentiment of the textual

information and measure the performance using the metric accuracy. The result of

sentiment prediction for DPBERT shows that the representation preserves the sen-

timent meaning of the textual data which means high utility. ORIGINALBERT

performs better than DPBERT and the reason is that the first one uses the original

text representation without adding noise to it which means high utility.

To answer the second question (Q2), we consider three different private infor-

mation,i.e., age, location, and gender. We examine efficiency of the model in privacy

protection using its performance in predicting values of different private-attributes.

We measure performance of private-attributes predictor using F1 metric. Our pro-

posed model has a remarkably lower F1 score which indicates higher privacy in terms

of hiding the private-attributes. In addition, DPBERT exceeds ORIGINALBERT in

terms of hiding the private information and does not sacrifice the utility significantly.

To answer the third question (Q3), we evaluate the utility loss against privacy

improvement of the given text. DPBERT has achieved a better trade-off results which

are shown in high privacy and low utility loss comparing with ORIGINALBERT .

ORIGINALBERT achieves high accuracy in the sentiment task while suffering from

significant privacy loss.

The results have shown that DPBERT learns the textual representation of a given

text that does not leak private information and preserve the semantic meaning of

the text by achieving higher accuracy score for semantic discriminator DS which

indicates that representation has high utility for the semantic meaning, and lower

F1 score for private-attributes discriminator DP which demonstrates that the textual
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representation has higher privacy for users due to obscuring their private information.

3.5.4 Parameter Analysis

DPBERT has a parameter α which controls the contribution from the private at-

tribute discriminator DP . In this section, we investigate the effect of this parameter

by varying it as: 0.125, 0.25, 1, 2, 4. We do the experiments and check the change

of the accuracy for sentiment prediction for different values of α. Results are shown

in the Fig 3.2. We can see the increase of α will decrease the accuracy of sentiment

prediction task for DPBERT and ORIGINALBERT . This shows that increasing the

contribution of the privacy component leads to a decrease in the quality of the main

task, i.e., sentiment classification. Moreover, The performance of private attributes

discriminator for age, location, and gender is shown in Fig 3.3 using F1 score. Another

observation is choosing α = 1 will improve the accuracy of the sentiment prediction

task and preserve privacy by keeping the F1 score low. This result shows the impor-

tance of the DPBERT s privacy component in preserving users’ privacy.
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Figure 3.2: Performance Results For Sentiment Prediction Tasks For Different Val-

ues of α.
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Figure 3.3: Performance Results For Private Attribute For Different Values of α.

Higher Accuracy Shows Higher Utility, While Lower F1 Demonstrates Higher Privacy.

3.6 Conclusion

In this chapter, we proposed a privacy-preserving text representation learning

framework, DPBERT , which learns a text representation that is differential private,

preserves users’ private information, and maintains high utility by keeping the sen-

timent meaning of the given text. It has four main components which are BERT,

differential-privacy-based noise adder, utility checking which is semantic meaning

discriminator, and privacy checking which is private-attributes discriminator. Im-

proving privacy comes at the cost of data utility which leads to trade-off between

privacy and utility needs to be maintained. Our results showed the effectiveness of
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our proposed framework, DPBERT , in minimizing chances of privacy leakage of the

private-attributes while preserving text semantic meaning in the same time.
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Chapter 4

PPSL: PRIVACY-PRESERVING TEXT CLASSIFICATION FOR SPLIT

LEARNING

4.1 Introduction

Distributed Collaborative Machine Learning (DCML) has become one of the trend

research topics for its importance and impact on individuals and organizations. It has

been applied in various domains such as healthcare and finance. In contrast with the

centralized approach, where the data is centrally pooled from different resources and

the training process is centralized, distributed collaborative machine learning enables

the training process across different parties. DCML improves the privacy in different

applications and under privacy regulations such as HIPPA and GDPR.

One of the latest popular DCML approaches is split learning Gupta and Raskar

(2018) which divides a neural network into two or more sub-networks and trains them

separately on different parties as illustrated in Figure 1.1, where the whole network is

divided between Client A and the server. The first part of the network is trained on

Client A on the raw data locally, and there is no need to share them with any other

parties. The second part of the network will continue the training on the server-

side. Accordingly, the server and other parties have no access to the client’s raw

data. Recently, the interest in split learning is growing (Gao et al., 2020) (Poirot

et al., 2019) (Singh et al., 2019) (Vepakomma et al., 2018). Split learning achieves

three main advantages among DCML approaches, which are (1) privacy protection

by keeping the raw data on the client-side; (2) comparable model accuracy with

centralized machine learning models; and (3) computational work is reduced on the
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client side since it needs to train some layers of the network Gupta and Raskar (2018).

Due to these features, there have been various research works on split learning from

different aspects, including attacks (Pasquini et al., 2021), defenses (Li et al., 2021),

and performance (Madaan et al., 2021).

Split learning comes into the picture of DCML approaches to overcome the weak-

ness of federated learning in some applications(McMahan et al., 2017). In order to

achieve optimal accuracy in some applications that require large computational re-

sources and to obey the ethics and the regulation regarding sharing and utilizing

the training data, split learning was proposed to enable the training in multiple en-

tities (Gupta and Raskar, 2018). However, privacy issues need to be addressed in

split learning, particularly when the data is very sensitive and could identify indi-

viduals’ identities or attributes. With the split learning approach, privacy issues

are caused by exchanging the intermediate parameters among the parties. In the

last few years, there has been significant researches toward improving the privacy

of split learning while maintaining the utility for different tasks by combining dif-

ferent privacy-enhancing mechanisms such as differential privacy(Abuadbba et al.,

2020) and distance correlation minimization(Vepakomma et al., 2020).Split learning

has been applied to different kinds of datasets such as sequential data (Abuadbba

et al., 2020), image data(Vepakomma et al., 2020), and users behavior dataset(Li

et al., 2021). In this work, we apply split learning to a text dataset to build privacy-

preserving text classification.

Text data is rich in the information that used in different applications such as rec-

ommendation systems and understanding users’ behavior. However, it might cause

privacy leakage since it contains implicit sensitive information about individuals (Beigi

et al., 2019)(Alnasser et al., 2021) (Mosallanezhad et al., 2019). Several privacy is-

sues related to text data have been addressed, such as re-identification and private
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attributes inference attacks. Re-identification could be tackled by traditional protec-

tion techniques such as k-anonymity (Sweeney, 2002) and differential privacy (Dwork,

2008). Despite that, these techniques have shown inefficiency in preventing private

attributes leakage because of the nature of the user-generated text data, which is

unstructured and informal. The risk of leakage of private information is even higher

in decentralized NLP in split learning if the attacker has access to the intermedi-

ate exchangeable parameters. This arises the need to protect users against leakage

of private information in this setting. Note that in this paper we assume that the

user’s client-side environment is trusted and an attacker can only have access to the

intermediate parameters.

As a first study towards exploring the feasibility of split learning to deal with text

data, we adopt a sentiment classification approach using a text dataset collected from

social networks. Figure 4.1 illustrates split learning with multiple entities contributing

to the training process. Considering the fact that text data may reveal individuals’

private attributes that they do not want to share (Alnasser et al., 2020a), training

the model on split learning setting and using adversarial learning as a protection

technique would improve the privacy of the classifier.

This work is devoted to investigating and answering the following research ques-

tions:

Q(1): Can split learning be applied to text data in sentiment classifica-

tion to achieve comparable model accuracy as a centralized classification

model?

To answer this question, we explore the feasibility of split learning to deal with text

data by building a sentiment classification model. To the best of our knowledge, this

is the first study on split learning using text data.

Q(2): How does adversarial learning minimize the private information
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Figure 4.1: Split Learning Overview

leakage of sentiment classifier on split learning setting?

To answer this question, we explore the privacy leakage of the classifier on split learn-

ing by training discriminators to predict private information using the exchangeable

variables between the entities.

Q(3): What are the impacts of increasing the number of hidden layers

or training time on the performance and the privacy of split learning?

Then, we investigate these two strategies and study their impacts on the performance

and the privacy of split learning.

The main contributions of this work are:

• We explore the feasibility of split learning to deal with text data.

• We propose a novel privacy-preserving text classification framework using split
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learning that protects the private attributes.

• We perform an experiment on a real-world text dataset to show the efficiency

of our proposed framework. We show the trade-off of privacy with the utility

of the data.

The rest of the chapter is organized as follows: Section 4.2 presents the related

work. Section 4.3 proposes the problem statement. 4.4 proposes the PPSL framework.

Section 4.5 details our experiments. Section 4.6 discusses the experimental results,

followed by the conclusion in Section 4.7.

4.2 Related Work

4.2.1 Distributed Collaborative Machine Learning

Distributed collaborative machine learning approaches have been adopted in dif-

ferent applications instead of the centralized approach for several reasons, such as

managing the computational load and improving the privacy of the training data.

Federated learning approach, which was introduced by (McMahan et al., 2017), al-

lows the training process without sharing the raw data by sending the whole model

to the parties (data owners). The design principle of federated learning supposes that

the neural networks’ weights are exchangeable during the training process. Albeit

there are core challenges related to federated learning in some applications, expensive

communication, model privacy compromised, and privacy issues (Li et al., 2020). As

a solution to the previous challenges, split learning has emerged as a new distributed

machine learning approach (Gupta and Raskar, 2018). The basic idea is to split up

the model into multiple portions and execute each portion at different parties. Each

party has different privileges regarding accessing the raw data. In vanilla split learn-
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ing, where the model is divided between a client and a server, the client train a part

of the neural network that will access the raw data while the other part will be held

in the server. The server will only receive the intermediate output from the split

layer (Gupta and Raskar, 2018) (Poirot et al., 2019) (Vepakomma et al., 2018). Split

learning has been applied on sequential data (Abuadbba et al., 2020) such as ECG

signals, image data (Vepakomma et al., 2020) such as UTKFace and CIFAR10, and

users’ click records (Li et al., 2021) such as Avazu and Criteo.

Federated learning and split learning are both distributed collaborative machine

learning, and there are two main differences related to (1) model architecture, and (2)

computational resources needed. In federated learning, the whole model is transferred

to the client-side to do the training process on the local data and communicate with

the server with the updated model parameter. On the server-side, the aggregated

updated parameters will be combined together using different approaches. In split

learning, the neural network is divided into two or more parts to do the training

process. The simplest split is a vanilla split where the neural network is divided into

two parts, some of the beginning layers will be on the client-side, and the remaining

layers will be on the server-side. The training process is started from the client where

the data is stored locally, and the communication between the client and the server

will be through the output of the last layer on the client side, which is called the

cut layer. The second difference is the computation resources needed in federated

learning and split learning. The former needs considerable computational resources

on the clients’ side since the whole model is transferred to them. On the other hand,

the latter needs fewer computational resources on the clients’ side since part of the

neural network is transferred (Vepakomma et al., 2018).

53



4.2.2 Privacy in Split Learning

Even though split learning improves the privacy by training part of the model

in the data locally on the client, there is a leakage coming from the exchange of

the intermediate output between the parties in the split setting. Various works have

been proposed to improve privacy while maintaining accuracy by combining several

protection techniques with split learning. One work (Abuadbba et al., 2020) adapted

two privacy mitigation techniques to address the leakage in the split learning. The first

technique adds more hidden layers to the part of the neural network on the client-side,

and the second technique applies differential privacy. Other work proposed a method

against the reconstruction attack by minimizing the distance correlation between raw

data and the intermediate output of the split layer (Vepakomma et al., 2020). Their

method adds an additional loss function called distance correlation with categorical

cross-entropy commonly used loss function.

On the other side, numerous works propose attacks in the split learning setting,

which can leak privacy. First, Norm attack, which is a method that uses the norm

of the exchangeable gradients in split learning setting (Li et al., 2021). Using this

method, the attacker will uncover the data labels that might be sensitive and sup-

posed to be private. Another attack is called reconstruction attack (Vepakomma

et al., 2020) which is a neural network taking the intermediate activation as an in-

put, and the output is the generated data. The attacker is located at any party

that receives the intermediate activation to reconstruct the raw data. Other work

analyzed the security vulnerability in split learning and introduced the feature-space

hijacking attack (FSHA), which showed how the server could obtain the training

data (Pasquini et al., 2021). This attack happens when the server exploits its control

on the learning process, leading to changing specific properties in the intermediate
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activation generated by the clients, inference, or reconstruction attacks.

4.2.3 Text Data and Private Attributes

Text data may cause a privacy leakage since it includes private attribute informa-

tion about users, which can be defined as the information that individuals do not want

to explicitly disclose, such as gender, occupation, location, and age. Several methods

are reported in the literature to address how to preserve the text information privacy

(Beigi et al., 2019)(Alnasser et al., 2021) (Mosallanezhad et al., 2019). Recent works

review different aspects of user privacy and compare traditional privacy models for

protecting user private attributes (Alnasser et al., 2020a) (Beigi and Liu, 2020).

4.3 Problem Statement

Problem 1. Let N be the number of parties (devices) and each party denoted

as Clienti where i ∈ [1, N ] and a supercomputing Server. Each party has a set of K

documents as X = {x1, x2, ..., xk} and each document xi composed of a sequence of

words. Let P be a set of private attributes associated with each document and T is

a downstream task (i.e. classification). We would like to use xi in the given task T .

However, we want to preserve users’ privacy by preventing a potential adversary from

inferring the users’ private attribute information. We define the problem as building

a distributed privacy-preserving text classifier among the parties and the server so

that 1) the first part of the model is trained on the Client and the second part on the

Server, 2) the potential adversary cannot infer the targeted user’s private attributes

P from any intermediate variables Z that are exchanged between the client and the

server in the training process, and 3) the utility of the given task T is preserved.

Note that in this work, we assume that the potential adversary can only have

access to the exchangeable data Z and not any other information. Moreover, the goal
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is to achieve a protection against possible private-attribute inference attacks, but not

against other types of attacks such as reconstruction attacks.

4.4 Framework Architecture

Overview: our goal is to design a privacy-preserved text classification framework

on split learning setting where the raw text data on the client-side has never been

shared with any other entity in the environment. In this context of split learning,

the training process will be divided between the client, and the server, and the inter-

mediate activations are communicated between these parties. The simplest form of

split learning will be used where we have a single party and supercomputing resource,

server (Gupta and Raskar, 2018). In order to protect private attribute information,

we follow the idea of adversarial learning. In our proposed model, the model on

the client-side includes two major components, 1) text classifier, and 2) private at-

tribute discriminator. The goal of the text classifier component is to perform the

given downstream task. One part of this component is trained on the client-side and

the other part is trained on the server-side. Intermediate variable Z is also exchanged

accordingly between the client and the server. The private attribute discriminator

component ensures that the intermediate variable Z does not contain private attribute

information. In particular, since the system does not know the malicious attacker’s

model, this component has been added to mimic the behavior of a potential ma-

licious attacker. The private attribute discriminator component seeks to accurately

infer users’ private attribute information from the intermediate variable Z. This com-

ponent could be leveraged in the adversarial learning process to regularize the way

Z is learned by incorporating necessary constraints in order to fool the adversary

component and further avoid the leakage of private attributes from Z. These two

components are discussed in details in the next sections. Figure 4.2 illustrates PPSL
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framework.

Note that in our work, we assume the client is a trusted environment, and any

other entities are not trusted. Also, we assume the attacker will be an external

attacker who will have access to the exchangeable parameters only.

Client
Trusted environment 

Private attribute 
discriminator 𝑫𝑫𝒑𝒑

Minimized private 
attributes leakage

Server

Untrusted environment 

𝓧𝓧 𝓨𝓨

𝓒𝓒(𝓧𝓧) 𝓢𝓢(𝓩𝓩)

𝓩𝓩
𝓩𝓩

Textual
data 

Figure 4.2: The Framework of PPSL Architecture

4.4.1 Text Classifier

First, BERT Base Uncased model (Devlin et al., 2019) is used to extract the

embedding of the text data. Then, we utilize the gated recurrent unit (GRU) as a

cell type of Recurrent Neural Network. Then, we concatenate the two hidden state

outputs of the GRU. We define the loss function of the classifier as follows:

LDS =
G∑
i=1

−y(i) log ŷ(i) (4.1)

where G is the number of classes, y is the ground truth label for the classification

task, and ŷ(i) represents the inferred label of the i− th element.

The classifier will be built on a split learning setting where the client has the

model’s first layers and the server controls the remaining layers. In the training

process, the client will start the training on the first layers of the neural network and
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send the intermediate variable Z to the server as follows:

Z = C(X) (4.2)

Then, the server will propagate the Z through the remaining layers as follows:

Y = S(Z) (4.3)

4.4.2 Private Attribute Discriminators

We follow the idea of adversarial learning by training private attributes discrim-

inators Dp for age, location, and gender. We want the intermediate variable Z to

predict Y with high accuracy and poor accuracy to predict the private attributes.

The adversary learning can be formally written as:

min{
θ
Dt
P

}T

t=1

max
α
LDP

= min{
θ
Dt
P

}T

t=1

max
α

1

K.T

T∑
t=1

K∑
k=1

LDt
P

(
p̂kt , pt

)
(4.4)

where θDP
demonstrate the parameters of the private attributes discriminator, and

T demonstrates three different private attributes (gender, age, location) and K in-

stances. α is scalar weight to control the privacy. pt and p̂ are the true and the pre-

dicted private attribute. The goal of the outer minimization is to find the strongest

private attribute inference attack and the goal of the inner maximization is to fool

the discriminator by obscuring private information. The predicted private attribute

p̂kt is defined as:

p̂ = softmax(z, θDP
) (4.5)

Regarding the split setting, the total loss function will be calculated for the whole

neural network as follows:
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α1 CCE(p, p̂) + α2 CCE (y, ŷ) (4.6)

Where: α1 and α2 are scalar weights to control privacy and utility. CCE is categorical

cross-entropy loss function that will be used.

The objective function that we want to achieve is:

min
θDS

max
{θDP }

T

t=1

1

K.T

T∑
t=1

K∑
k=1

LDS
(ŷ, y)− αLDt

P

(
p̂kt , pt

)
(4.7)

where θDS
and θDP

demonstrate the parameters of the sentiment analysis and the

discriminators, respectively, LDS
and LDP

represent the cross-entropy loss functions.

y and ŷ are sentiment true and the predicted label. α is the the scalar weights to

control the contribution of the private attribute discriminator in the learning process.

This objective function seeks to minimize the privacy leakage by maximizing the

loss in the private attribute discriminator and minimizing the loss in the sentiment

classification task.

4.5 Experiments

This section aims to answer the following research questions:

1. Is the proposed PPSL framework achieving high accuracy in the downstream

task, i.e., classification?

2. How is the trade-off between privacy with utility maintained?

3. How does using adversarial learning improve the privacy of the proposed frame-

work, PPSL?
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4.5.1 Dataset

We use a dataset from TrustPilot from Hovy et al. (2015). In this collected dataset,

there are reviews on different products and ratings from one to five stars. Each review

is associated with three private attributes: gender (male, female), age, and location

(Denmark, France, United Kingdom, and the United States). We follow the setting of

(Hovy and Søgaard, 2015) by categorizing age attributes into three groups, above 45

years, under 35 years, and between 35 years and 45 years. For the sentiment ground

truth, we consider the review’s sentiment positive if its rating score is 4 or 5 and

consider it as negative if the rating is 1, 2, or 3.

4.5.2 Experimental Design

In this work, we follow the simple vanilla split learning configuration (Vepakomma

et al., 2018). In addition we do the experiment with one client and the server. The

parameters α and λ are determined as α = 0.5 and λ = 0.01. The optimization algo-

rithm used in the sentiment analysis classifier and the private attribute discriminators

is SGD. The batch size we use in the experiments is b = 32. We report the accu-

racy score to evaluate the utility of the proposed framework, PPSL, for downstream

task sentiment analysis in split learning after improving the privacy using adversary

learning. Specifically, we use the rating score of each review instance to be the label.

In addition, we report the accuracy of the three private attributes discriminators. It

is worth to mentioning that the lower accuracy for the discriminators shows high pri-

vacy since it shows, it becomes hard for the attacker to infer the private information.

The higher accuracy for the sentiment classification means high utility.
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4.5.3 Experimental Results

The proposed framework, PPSL, is compared with:

• ADV-ALL: This method utilizes a generator and a discriminator to create a

text representation that has high utility for a given task while preserving privacy

by protecting the private attributes (Li et al., 2018).

• Original: This is a sentiment classification on split learning setting with out

using the adversarial learning as a privacy protection technique.

The experimental results are demonstrated in table 4.1.

Table 4.1: Experimental Results. Higher Sentiment Accuracy Values Show Higher

Utility, While Lower Private Attribute Accuracy Indicated Higher Privacy.

Model Sentiment Acc
Private Attributes Acc

Age Loc. Gen

ADV-ALL 89.12% 31.67% 45.90% 50.23%

Original 90.69% 65.97% 76.81% 63%

PPSL 89.46 % 29.50% 44.76% 49.43%

4.6 Discussion

The privacy preservation capabilities of our proposed model, PPSL, are due to

two reasons. First, it conducts split learning which is one of the distributed machine

learning where the training data is kept locally on the client, and the training process

is divided between the client and the server. In split learning, not only the training

data is protected, the model architecture is protected compared with federated learn-

ing, where the model needs to be sent to all the clients. Second, it utilizes the idea of

adversarial learning to prevent private attribute inference attacks. Defining private
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attribute discriminators helps mimic the attacker’s behavior when he utilizes the ex-

changeable parameters between the privacy and utility to infer individuals’ private

information.

We have conducted experiments to answer three questions:

• Q1- Utility: Does the proposed framework preserve the utility?

• Q2- Privacy: Does the proposed framework improve privacy by minimizing the

private attributes leakage?

• Q3- Utility-Privacy trade-off: Does the trade-off between the privacy and the

utility maintain well without sacrificing any of them?

To answer the first question (Q1), we report experimental results for our pro-

posed framework, PPSL, using the downstream task sentiment analysis. We predict

the sentiment of the reviews and measure the performance using metric accuracy.

The sentiment analysis result for PPSL is comparable with the Original baseline,

which is a sentiment classifier in a split learning setting without an adversarial learn-

ing technique. Original performs better in terms of sentiment accuracy than PPSL.

The reason is that Original is a sentiment classifier in a split learning setting without

any protection techniques that affect the utility.

To answer the second question (Q2), three different private attributes are

considered in our experiments, i.e., age, location, and gender. We measure the ef-

ficiency of the framework in privacy protection using its accuracy in predicting the

values of these attributes. We measure the performance of the private attributes

discriminators using the accuracy metric. Our proposed framework, PPSL, has a

remarkably lower accuracy than the Original baseline, which indicates the privacy

improvement by minimizing the private attribute leakage. In addition, PPSL exceeds
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ADV − ALL in terms of hiding the private attributes. To elaborate, the interme-

diate variable Z has been chosen to give a poor accuracy in predicting the private

attributes. The accuracy of the private attribute discriminator to predict the age in

ADV − ALL is 31.67%, and it reduced to be 29.50% in our proposed model PPSL.

While in Original model, the accuracy of predicting the age is 65.97%. This im-

provement in privacy indicates that even though Original is a classification model

in a split learning setting, it causes a privacy leakage that needs to be addressed.

Utilizing adversarial learning has successfully improved the privacy in our proposed

framework, PPSL.

To answer the third question (Q3), we evaluate both the utility and the

privacy to make sure that the trade-off is maintained well in the proposed model,

PPSL. It is clearly shown that PPSL has achieved better trade-off results which are

indicated in high privacy (low accuracy for the private attribute discriminators) and

low utility loss (high accuracy for the sentiment analysis). Improving privacy comes

with the cost of distorting the utility, so maintaining the privacy and utility trade-

off is one of the objectives of the proposed model, PPSL. Utilizing the adversarial

learning helps us to choose the exchangeable parameter, Z, to give a poor accuracy

in predicting the private attributes and good accuracy for the classification task.

The experimental results have shown that our proposed framework, PPSL, achieves

high accuracy in sentiment classification in a split learning setting where the neural

network is divided between the client and the server while preserving the private

attributes information.

We do further investigation and study the impact of the training time on the

privacy, particularly in split learning. We measure the accuracy of the proposed

framework, PPSL, after each epoch. As illustrated in Fig 4.3, the sentiment accuracy

converged to 99.06% around 200 epochs. In addition, we show the accuracy of the
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three discriminators, age, location, and gender in Fig 4.4. It is shown that gender

and location discriminators have lower accuracy when the number of epochs increases,

which means high privacy. It is shown in the literature that some datasets and models

are achieving better performance at higher epochs number of training (Thapa et al.,

2020). However, some scenarios require limiting the number of training to satisfy the

cost limitations. On the other hand, age discriminator accuracy has increased when

the training time has increased. As possible explanation of this, neural networks

memorize the information in the training data (Feldman and Zhang, 2020). There is

a privacy concern in the memorization from a privacy perspective, especially when

the data is sensitive. Membership attacks, for example, take advantage of the mem-

orization by looking at the prediction of the model and inferring the existence of the

data sample in the training data.
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Figure 4.3: Sentiment accuracy over the training time
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Figure 4.4: Private Attributes Discriminators Accuracy Over The Training Time

4.6.1 Parameter Analysis

Our proposed framework, PPSL, has a parameter α that controls the contribution

of the privacy discriminator component. We do the experiments and check the effects

of different values of α by investigating these values: 0.0, 0.2, 0.4, 0.6, 0.8, and 1.0.

Figure 4.5 shows the accuracy of the sentiment prediction and gender discriminator

for different values of α. We can see clearly that the increase of α will increase

the accuracy of sentiment, which means high utility. At the same time, it decreases

the gender discriminator’s accuracy, which means minimizing the gender information

leakage. Similar performances are shown in Figure 4.6 and Figure 4.7 for location

and age, respectively. We observe that setting α = 0.5 will improve the sentiment
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classification accuracy and preserve the private attributes’ privacy by minimizing the

leakage.
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Figure 4.5: Gender Discriminator and Sentiment Meaning Accuracy For Different

Values of α
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Figure 4.6: Location Discriminator and Sentiment Meaning Accuracy For Different

Values of α
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Figure 4.7: Age Discriminator and Sentiment Meaning Accuracy For Different Val-

ues of α

4.6.2 Adding More Hidden Layers

Improving the network complexity by adding more hidden layers impacts the per-

formance and computational resources. We investigate how increasing the number

of the hidden layers on the client-side before the split layer will affect the perfor-

mance of our proposed framework, PPSL. Assuming that the number of layers in

the server is constant during the experiment, we show the impact of increasing the

number of hidden layers starting from 2 to 10 layers. Figure 4.8 illustrates how the

gender discriminator and sentiment meaning accuracy change with the change of the

model architecture, specifically with the increasing of the hidden layers. Sentiment
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classification accuracy decreases when the number of hidden layers is increased. On

the other hand, the privacy leakage is decreased which is measured by the private

attribute discriminators accuracy. As the accuracy of predicting the private attribute

decreased, the privacy improved. The accuracy of the gender discriminator reduced

from 58% to 48% when we increased the number of hidden layers from 2 to 10 layers.

This finding demonstrates that in some applications when the data is highly sensi-

tive, increasing the number of the hidden layers will minimize the privacy leakage

(Abuadbba et al., 2020).

For the location private attribute, Figure 4.9 shows the accuracy of the location

discriminator and sentiment meaning. The sentiment meaning accuracy is dramat-

ically decreased when the number of the hidden layers is increased. On the other

hand, privacy is slightly improved by the increasing number of the hidden layers.

Figure 4.10 shows the accuracy of age discriminator and sentiment meaning. The

sentiment meaning accuracy is dramatically decreased when the number of the hidden

layers is increased. On the other hand, privacy is slightly improved by the increasing

number of the hidden layers.

Overall, the accuracy decline is acceptable until having three hidden layers that retain

the accuracy above 90%. However, an increasing number of layers on the client-

side will require more computational resources, which need to be addressed in some

domains. On another side, privacy is improved with the increasing number of hidden

layers. The reason behind this improvement in the privacy is that as we add more

layers, the dependency between the raw data and the exchangeable intermediate

output of the split layer is reduced.
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Figure 4.8: Gender Discriminator and Sentiment Meaning Accuracy With The In-

crease Number of The Hidden Layers
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Figure 4.9: Location Discriminator and Sentiment Meaning Accuracy With The

Increase Number of The Hidden Layers
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Figure 4.10: Age Discriminator and Sentiment Meaning Accuracy With The In-

crease Number of The Hidden Layers

4.7 Conclusion

In this chapter, we propose a privacy-preserving text classification for split learn-

ing, PPSL, which is a sentiment classification that protects the individual’s private

attributes by using adversarial learning. We explore the feasibility of split learn-

ing to deal with the text dataset. Our results show the effectiveness of the proposed

framework, PPSL, in preserving the utility of a sentiment analysis task and improving

privacy by minimizing the private attributes leakage. We evaluate the performance of

our proposed framework, PPSL, in terms of model accuracy in sentiment classification

as a measure of the utility and the accuracy of the private attributes discriminators
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as a measure of privacy leakage. Future research can be directed towards applying

different privacy techniques in split learning settings and investigating each protec-

tion technique’s impact. Another future direction is to explore the impact of the

number of clients on the performance of the proposed model. Last but not least,

another extension to this work could be considering the implicit dependency between

the private attributes and protecting against that.
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Chapter 5

CONCLUSION AND FUTURE WORK

5.1 Summary

In the first two chapters of this dissertation, we introduced and proposed the prob-

lem of improving users’ privacy in machine learning and reviewed the literature from

two points of view. First, existing private attribute attacks are reviewed which can be

classified to: (1) friend-based private attribute inference, (2) behavior-based private-

attribute inference, and (3) both friend-based and behavior-based inference. Second,

different privacy protection techniques have been proposed and discussed pointing

out two main categories to protect individuals’ private information: (1) traditional

protection techniques and (2) adversarial learning. One of the earliest and powerful

traditional protection techniques is differential privacy which provides a guarantee

that the behavior of the dataset will hardly be affected after a single instance is

added or removed from the dataset. Anonymization techniques are considered pri-

vacy protection techniques which seek to remove personally identifiable information

from datasets. There are three different versions of anonymization: k-anonymity,

`-diversity, and t-closeness. The second category of privacy protection techniques is

adversarial learning which is considered the state-of-art approach to defend against

machine learning models that target and infer individuals’ private information. Un-

countable works have been using adversarial learning as a defense against private

attribute inference attacks and they can be game-theoretic methods or computation-

ally tractable methods. After that, we reviewed the privacy in distributed machine

learning from two angles: attacks and defenses. Attacks in distributed machine learn-
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ing are classified based on the source of the attacks to: (1) attacks from the server, (2)

attacks from a client, and (3) external attacks. Then, we discussed the protections

techniques that have been used in federated and split learning to improve individuals

privacy.

In Chapter 3, we proposed the privacy-preserving text representation learning

framework DBBERT to improve users’ privacy in centralized machine learning. The

goal ofDBBERT is to learn a privacy preserved text representation that is differentially

private to protect against identity leakage, does not leak private attributes information

(age, gender, location, etc.), and preserves the sentiment meaning of the text. In order

to protect from these two kinds of attacks, multiple protection techniques have been

applied which are differential privacy and adversarial learning. This framework first

extracts the sentence embedding for a given text using SBERT then adds noise using

differential privacy mechanism. In order to decide the proper amount of added noise

that improves the privacy and retains the utility, we trained a classifier to learn the

amount of added noise. After that, adversarial learning idea is followed by defining

private attributes discriminators to identify the private information from the text

representation. Improving privacy comes at the cost of data utility, which leads to

a trade-off between privacy and utility. This trade-off needs to be maintained. Our

experiments demonstrated the efficiency of the proposed framework by improving

individuals’ privacy and preserving the utility of the data for the sentiment meaning.

In chapter 4, we extended our scope to improve the users’ privacy in distributed

machine learning, specifically in split learning. We proposed privacy-preserving text

classification for split learning, PPSL, that improves the users’ privacy and preserves

the utility. Shifting from centralized machine learning to distributed machine learning

helped to achieve the scalability that was mentioned earlier as one of the challenges

in privacy-preserving models. In our model, PPSL, we explore the feasibility of split
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learning to deal with text data by building a sentiment classification model. Ad-

versarial learning is used in this model by training discriminators to predict private

information using the exchangeable variables between the entities. Our empirical

results show the effectiveness of PPSL in both protecting users against private at-

tribute inference attacks and preserving the utility of the data for a downstream task.

We investigated the impact of different methods on the privacy which are model com-

plexity, training time, and values of privacy budget. We have seen that increasing the

model complexity improves the privacy and at the same time decreases the sentiment

classification accuracy. In addition, increasing the model complexity required more

computational cost that needs to be determined based on the application resources.

5.2 Conclusion

The availability of massive amounts of user-generated data has enabled machine

learning models to provide personalized services and accurate results. On the other

hand, this data contains private information about individuals which leads to privacy

issues. Individuals face two types of attacks: identity attacks and private information

attacks. Thus, individuals’ privacy needs to be protected without affecting their

data used in different applications to get the desirable results. However, protecting

the privacy of the information comes at the cost of the utility, which means the

quality of the data for different tasks. Consequently, this leads to a trade off between

privacy and utility which needs to be addressed. In addition, no one protection

technique is able to defend against all the attacks that affect users’ privacy. As a

result of this, multiple mechanisms should be combined to achieve better privacy.

Furthermore, distributed machine learning has emerged as a new learning paradigm

which improves the scalability of the models in different applications. Distributed

machine learning improves the privacy by storing the data locally; however, privacy
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risks have threatened individuals’ information which are caused by a server, a client,

or external attacker.

In my dissertation, we investigated how to measure and enhance users’ privacy

in centralized and distributed machine learning. In centralized machine learning, we

proposed a framework to learn a privacy preserved text representation that: (1) is

differentially private to protect against identity leakage, (2) protects against leak-

age of private attributes information, and (3) maintains the high utility for down-

stream tasks. This work defended against identity attacks and inference attacks

while preserving the utility of the data. In distributed machine learning, we proposed

a privacy-preserved text classification framework in split learning that protects indi-

viduals’ private information. By utilizing adversarial learning technique, this frame-

work defended against private attribute inference attacks. The privacy preservation

capabilities of our proposed model, PPSL, come from two reasons: it conducts a split

learning setting where the training data is kept locally on the client and it utilizes

the idea of adversarial learning to minimize the private information leakage.

5.3 Future Work

In this dissertation, we study the research problem of improving users’ privacy in

centralized and distributed machine learning. Below we present some extensions that

are worth investigation:

• Applying different privacy protection techniques in split learning: In

order to defend against different attacks, multiple protection techniques need

to be combined in one framework. Differential privacy, as an example, defends

against membership attacks but not against private attribute inference attacks.

Multiple mitigations need to be adopted to propose a privacy-preserved split

learning model.
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• Exploring the impact of increasing the number of clients in split learn-

ing: In this dissertation, we used the vanilla setting with one client and one

server. It would be interesting to explore how increasing the number of clients

on split learning will affect the privacy of the trained data. In a previous study,

Melis et al. (2019) studied the impact of increasing the number of clients in

federated learning. They showed how privacy improved when the number of

clients increased by making the attacker’s task harder. The reason behind this

is the amount of aggregated updates that will not directly reveal information

about one of the participants.

• Studying the dependencies between the private information and pro-

tecting against that: Dependencies between the individuals’ information is

well known. Private attributes such as, age, gender, and location have depen-

dencies between them which affects the attacker inference. Studying the depen-

dencies between the private information and taking them into account when

proposing a privacy-preserving machine learning model will be an interesting

extended work.

• Extending the proposed privacy-preserved frameworks on different

types of datasets: Proposing privacy-preserving frameworks that applied on

different kind of datasets such as images. As an example, critical problems in

the health domain need to utilize a massive amount of patients’ data which

causes a privacy leakage. Thus, proposing a private way to share and use the

data to train a model is crucial. Moreover, we plan to extend our frameworks

to be applied on different datasets.

• Extending privacy-preserved frameworks to consider fairness: Fairness

in machine learning can be divided based on the availability of the sensitive
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attributes, as follows:

1. Fairness through unawareness (FTU): when the protected attributes, such

as gender and race, are removed and the training is based on the other

features. In other words, when the protected attributes do not explicitly

contribute to the training process (Kusner et al., 2017).

2. Fairness through awareness: happens when the private attributes is con-

sidered in the training process by using the distance metric. The distance

metric is used as a similarity metric to treat similar individuals similarly

(Dwork et al., 2011).

In our proposed framework, DPBERT , which learned the privacy preserved text

representation that is differentially private to protect against identity leakage

(if a target instance is available in the data or not), minimizes the private

information leakage (age, gender, location, etc.), and preserves the utility of the

text for the downstream task. In the future, we will investigate the possibility of

extending our proposed framework, DPBERT , to consider fairness by following

fairness through unawareness (FTU).

• Mitigate the privacy risks in large language models: It has been denoted

that recent large language models leaked some private training data. Two differ-

ent attacks have been reconstructed against large language models (1) pattern

reconstruction attack and (2) keyword inference attack (Pan et al., 2020). Pat-

tern reconstruction attack happens when the attacker has prior knowledge of

the generating rule of the targeted unknown text. This is usually the case when

the text format is well known, such as identity code and date of birth. While

keyword inference attack happens when the attacker can predict if a certain

keyword is contained in the unknown sentence or not. This keyword can be
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sensitive information such as location or disease name. One potential research

direction is to propose a defense mechanism against these attacks which affect

individuals’ privacy.

• Proposing dynamic protection techniques: Research works in the privacy

of machine learning can be divided into two classes: (1) attacks and (2) de-

fenses. In the literature, it has been shown that an uncountable number of

proposed defenses have been attacked. As an example of this, the InstaHide

which protects the privacy of images by encrypting training data and doing the

deep learning directly on them (Huang et al., 2020). A reconstruction attack

has been proposed against InstaHide (Carlini et al., 2020a). Ultimately, this

makes it challenging to adopt specific protection techniques to protect and mea-

sure users’ privacy in real-world applications. In the future, we want to study

the ability to propose a defense that can dynamically defend against different

attacks.

• Empirical study on different versions of differential privacy: Differen-

tial privacy is one of the earliest and powerful protection techniques. It has

been proposed different versions such as (1) local differential privacy and (2)

distributed differential privacy. Local differential privacy is a special version of

the traditional differential privacy where users perturb their data locally before

sending the data to an untrusted third party. Compared with traditional differ-

ential privacy, where the data is collected first from different users at the trusted

party then release the perturbed data publicly. The local differential privacy

is when all the users perturb their data locally before sending it to any party

(Yang et al., 2020). Distributed differential privacy is called the shuffled model,

which takes place between the local differential privacy and center differential

81



privacy. The basic idea of this model is having a channel, called a shuffler,

that receives the data from the users then randomly adds noises and forwards

them to the data collector (or server) for the learning process. In the future,

we will investigate the impact of these different versions of differential privacy

on individuals’ privacy and study their impact of the utility.
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