
Multistep Multivariate Scenario Generation and Forecasting for Power Systems using

Machine Learning

by

Mohammed Alhazmi

A Thesis Presented in Partial Fulfillment
of the Requirements for the Degree

Master of Science

Approved October 2021 by the
Graduate Supervisory Committee:

Anamitra Pal, Chair

Raja Ayyanar
Keith Holbert

ARIZONA STATE UNIVERSITY

December 2021

 i

ABSTRACT

The penetration of renewable energy in the power system has grown considerably in the

past few years. While this use may come with an abundance of advantages, it also

introduces new challenges in operating the 100+ years old electrical network.

Fundamentally, the power system relies on a real-time balance of generation and demand.

However, renewable resources such as solar and wind farms are not available throughout

the day. Furthermore, they introduce temporal variability to the generation process due to

metrological factors, making the balance of generation and demand precarious. Utilities

use standby units with reserve power and high ramp-up, ramp-down capabilities to ensure

balance. However, such solutions can be very costly. An accurate scenario generation and

forecasting of the stochastic variables (load and renewable resources) can help reduce the

cost of these solutions.

The goal of this research is to solve the scenario generation and forecasting problems

using state-of-the-art machine learning techniques and algorithms. The training database

is created using publicly available data obtained from NREL and the Texas-2000 bus

system. The IEEE-30 bus system is used as the test system for the analysis conducted

here. The conventional generators of this system are replaced with solar farms and wind

farms. The ability of four machine learning algorithms in addressing the scenario

generation and forecasting problems are investigated using appropriate metrics.

The first machine learning algorithm is the convolutional neural network (CNN). It is

found to be well-suited for the scenario generation problem. However, its inability to

 ii

capture certain intricate details about the different variables was identified as a possible

drawback. The second algorithm is the long-short term memory-variational auto-encoder

(LSTM-VAE). It generated scenarios that are very similar to the actual scenarios

indicating that it is suitable for solving the forecasting problem. The third algorithm is the

conditional generative adversarial network (C-GAN). It was extremely effective in

generating scenarios when the number of variables were small. However, its scalability

was found to be a concern. The fourth algorithm is the spatio-temporal graph

convolutional network (STGCN). It was found to generate representative correlated

scenarios effectively.

 iii

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to Dr. Anamitra Pal for providing me with an

opportunity to pursue research under his guidance as a member of his research group, the

Pal Lab. He has guided me at all stages of my research journey and has been a constant

source of motivation. I would like to extend my gratitude to Dr. Keith Holbert and Dr.

Raja Ayyanar for agreeing to be a member of my thesis committee and helping me in my

research with valuable feedback and insights. I thank all the members of the Pal Lab for

the help that they have offered me during my master’s journey. A special thanks to

Behrouz Azimian and Dhaval Dalal for their valuable contributions to select portions of

my research.

I would like to thank both my parents and my sisters for their support during this journey.

They have been a constant source of joy and positive energy. I would like to thank Fatmah

Alyami for being a source of joy, laughter, and the goodness in humanity

 iv

1. TABLE OF CONTENTS
 Page

LIST OF TABLES .. vii

LIST OF FIGURES ... viii

CHAPTER

1. INTRODUCTION .. 1

1.1 Motivation ... 2

1.2 Objectives ... 3

1.3 Structure of the Thesis .. 4

2. PROBLEM FORMULATION AND LITERATURE REVIEW 6

2.1 Problem Formulation .. 6

2.2 Literature Review .. 7

2.2.1 Forecasting .. 7

2.2.2 Scenario Generation .. 9

3. MACHINE LEARNING MODELS ... 10

3.1 Convolutional Neural Networks (CNNs) .. 10

3.2 Variational Auto Encoders (VAE) .. 15

3.3 Long Short-Term Memory networks (LSTM) .. 17

3.4 Conditional Generative Adversarial Networks (C-GANs) 19

3.5 Graph Convolutional Neural Network (GCNN) ... 20

3.6 Error Metrics ... 23

3.7 Autocorrelation Coefficient Function (ACF) .. 24

 v

CHAPTER Page

3.8 Cumulative Distribution Function (CDF) ... 24

4. PROPOSED ARCHITICURES .. 25

4.1 Data Preprocessing .. 25

4.2 The Test Model ... 25

4.3 Data Normalization ... 26

4.4 Label Encoding ... 27

4.5 CNN Model ... 27

4.5.1 Data ... 28

4.5.2 Hyperparameters ... 30

4.5.3 Results ... 31

4.5.4 Autocorrelation and Error Metrics .. 42

4.5.5 Error Metrics: .. 45

4.6 LSTM-VAE .. 46

4.6.1 Data: .. 47

4.6.2 Hyperparameters: .. 48

4.6.3 Results: .. 49

4.6.4 Autocorrelation and Error Metrics: ... 60

4.6.5 Error Metrics: .. 64

4.7 Conditional GANs .. 65

4.7.1 Data: .. 65

4.7.2 Hyperparameters: .. 66

4.7.3 Results: .. 67

 vi

CHAPTER Page

4.8 STGCN ... 78

4.8.1 Data: .. 78

4.8.2 Hyperparameter: ... 79

4.8.3 Results: .. 79

4.8.4 Autocorrelation and Error Metrics: ... 91

4.8.5 Error Metrics: .. 94

4.9 Discussion ... 95

5. CONCLUSION AND FUTURE DIRECTIONS .. 97

5.1 Future Directions .. 98

REFERENCES ... 100

APPENDIX

A. GITHUB REPO .. 105

B. CNN PSEUDO CODE .. 107

C. LSTM-VAE PSEUDO CODE .. 109

D. C-GANS PSEUDO CODE ... 113

E. STGCN PSEUDO CODE ... 116

 vii

LIST OF TABLES

Table Page

3-1: CNN Hyperparameters .. 30

3-3: MAE and RMSE Error for CNN ... 46

3-4: LSTM-VAE Hyperparameters .. 48

3-5: MAE and RMSE for LSTM-VAE ... 64

3-6: MAE and RMSE Error for STGCN .. 95

 viii

LIST OF FIGURES

Figure Page

1-1: Renewable electricity generation increase by technology, country and region,

2020-2021 .. 1

3-1: CNN Architecture ... 10

3-2: Filters or Kernels Applied to CNNs ... 11

3-3: Performing Gradient Descent for Weights ... 13

3-4: ReLU Activation Function ... 14

3-5: Max-pooling Applied to CNN .. 15

3-6: Auto-Encoders .. 15

3-7: Architecture of Variational Auto Encoders .. 16

3-8: LSTM Cells ... 17

3-9: LSTM Forget Gate ... 18

3-10: Remember Gate .. 18

3-11: Remember Gate (Cell State) ... 19

3-12: Output Gate .. 19

3-13: GAN General Architecture ... 20

3-14: STGCN General Architecture .. 21

4-1: IEEE-30 Bus System .. 26

4-2: Data Input to CNN Model ... 29

4-3: Solar Generated Scenarios During Summer .. 31

4-4: Solar Generated Scenarios During Winter .. 32

4-5: Average Hourly Power for Solar Farms in Summer Scenarios 32

 ix

Figure Page

4-6: Average Hourly Power for Solar Farms in Winter Scenarios 33

4-7: Average Daily Power for Summer Scenario ... 33

4-8: Average Daily Power for Winter Scenario .. 34

4-9: Wind Generated Scenarios During Summer ... 35

4-10: Wind Generated Scenarios During Spring .. 35

4-11: Average Hourly Power for Wind Farms in Summer Scenarios 36

4-12: Average Hourly Power for Wind Farms in Spring Scenarios 36

4-13: Average Daily Power for Summer Scenario ... 37

4-14: Average Daily Power for Spring Scenario .. 37

4-15: Load Generated Scenarios During Weekday ... 38

4-16: Load Generated Scenarios During Weekend ... 39

4-17: Average Hourly Demand for Load Weekday Scenarios 39

4-18: Average Hourly Demand for Load Weekend Scenarios 40

4-19: Average Daily Demand for Weekday Scenario .. 41

4-20: Average Daily Demand for Weekend Scenario .. 41

4-21: Autocorrelation of Real and Generated Scenarios .. 43

4-22: CDF of Real and Generated Load Scenarios ... 44

4-23: CDF of Real and Generated Wind Scenarios .. 44

4-24: CDF of Real and Generated Solar Scenarios .. 45

4-25: LSTM Model Architecture ... 47

4-26: Hyperparameter Search for LSTM-VAE .. 49

4-27: Real and Generated Sample Scenarios .. 50

 x

Figure Page

4-28: Solar Generated Scenarios During Summer .. 51

4-29: Solar Generated Scenarios During Winter .. 51

4-30: Average Hourly Power for Solar Summer Scenarios 52

4-31: Average Hourly Power for Solar Winter Scenarios .. 52

4-32: Average Daily Power for Summer Scenario ... 53

4-33: Average Daily Power for Winter Scenario .. 53

4-34: Wind Generated Scenarios During Spring .. 55

4-35: Wind Generated Scenarios During Summer ... 55

4-36: Average Hourly Power for Wind Spring Scenarios .. 56

4-37: Average Hourly Power for Wind Summer Scenarios 56

4-38: Average Daily Power for Spring Scenario .. 57

4-39: Average Daily Power for Summer Scenario ... 57

4-40: Load Generated Scenarios During Weekday ... 58

4-41: Load Generated Scenarios During Weekend ... 59

4-42: Average Hourly Demand for Load Weekday Scenarios 59

4-43: Average Hourly Demand for Load Weekend Scenarios 60

4-44: Autocorrelation of Real and Generated Scenarios .. 61

4-45: CDF of Real and Generated Load Scenarios ... 62

4-46: CDF of Real and Generated Wind Scenarios .. 63

4-47: CDF of Real and Generated Solar Scenarios .. 64

4-48: C-GANs Hyperparameters ... 66

4-49: Solar Generated Scenarios During Summer .. 68

 xi

Figure Page

4-50: Average Hourly Power for Solar Summer Scenarios 68

4-51: Average Daily Power for Summer Scenario ... 69

4-52: Wind Generated Scenarios .. 69

4-53: Average Hourly Power for Wind Scenarios .. 70

4-54: Average Daily Power for Wind Scenario .. 70

4-55: Solar Generated Scenarios ... 71

4-56: Load Generated Scenarios ... 72

4-57: Wind Generated Scenarios .. 72

4-58: Sampled Output During Training (Epoch = 50) .. 73

4-59: Sampled Output During Training (Epoch = 100) .. 73

4-60: Sampled Output During Training (Epoch = 150) .. 74

4-61: Sampled Output During Training (Epoch = 200) .. 74

4-62: Sampled Output During Training (Epoch = 50) .. 75

4-63: Sampled Output During Training (Epoch = 100) .. 75

4-64: Sampled Output During Training (Epoch = 150) .. 76

4-65: Sampled Output During Training (Epoch = 200) .. 76

4-66: Sampled Output During Training (Epoch =250) ... 77

4-67: Sampled Output During Training (Epoch = 300) .. 77

4-68: Sample Generated Scenarios ... 80

4-69: Solar Generated Scenarios During Summer .. 81

4-70: Solar Generated Scenarios During Winter .. 81

4-71: Average Hourly Power for Solar Summer Scenarios 82

 xii

Figure Page

4-72: Average Hourly Power for Solar Winter Scenarios .. 82

4-73: Average Daily Power for Summer Scenario ... 83

4-74: Average Daily Power for Winter Scenario .. 83

4-75: Wind Generated Scenarios During Spring .. 84

4-76: Wind Generated Scenarios During Summer ... 85

4-77: Average Daily Power for Spring Scenario .. 85

4-78: Average Daily Power for Summer Scenario ... 86

4-79: Average Hourly Power for Wind Spring Scenarios .. 86

4-80: Average Hourly Power for Wind Summer Scenarios 87

4-81: Load Generated Scenarios During Weekday ... 88

4-82: Load Generated Scenarios During Weekend ... 88

4-83: Average Hourly Demand for Load Weekday Scenarios 89

4-84: Average Hourly Demand for Load Weekend Scenarios 89

4-85: Average Daily Demand for Weekday Scenario .. 90

4-86: Average Daily Demand for Weekend Scenario .. 90

4-87: Autocorrelation of Real and Generated Scenarios .. 91

4-88: CDF of Real and Generated Load Scenarios ... 92

4-89: CDF of Real and Generated Wind Scenarios .. 93

4-90: CDF of Real and Generated Solar Scenarios .. 94

 1

CHAPTER 1

1. INTRODUCTION

Over the past 50 years, penetration of renewable energy has been increasing in the

electricity supply mix. Figure 1-1 shows renewable generation in 2021 for some of the

countries of the world. Renewable energy has increased by more than 8% compared to

2020 to reach an all-time high of 8,300 TWh in 2021[1]. China solely is responsible for

50% of this global growth with more than double the renewable generation of the United

States and Europe. This accelerated growth is the highest since the 1970s and it is largely

due to the advancement in wind and solar generation as they constitute two-thirds of this

rapid growth.

Figure 1-1: Renewable electricity generation increase by technology, country and region, 2020-2021 [1]

 2

In order for the electric grid to accommodate the large and growing penetration of

renewable energy, it has to be more flexible. The old framework where the load is

changing, and the conventional generators are ready to follow that change is no longer

valid. Renewable energies such as solar farms and wind farms have their own ebbs and

flows irrespective of the load behavior. This puts a huge strain on the 100+ years old

power network that was originally designed around the idea of controllable and

predictable generation. If nothing is done, this new variability on the generation side can

result in cascading failures, including blackouts [2][13].

The rapid growth and utilization of renewable resource brings about many difficulties and

challenges in operating and controlling the electrical network effectively and efficiently.

These difficulties include low fault ride through capabilities, high fault currents[14], low

power quality, low system inertia, and high variability [15]. In this work, we address the

high variability difficulty by generating accurate forecasts of generation and demand so

that the power system operators can use them to operate the network safely and allocate

planned resources appropriately. However, this is not easy because of the inherent nature

and stochasticity of renewable resources such as wind and solar – their output depends on

metrological and geographical factors which have no apparent relation to the load

demand.

1.1 Motivation

 The variability and intermittency of renewable energy poses a challenge to the

operation of the power system using conventional (currently used) methods. For example,

power system operators presently use reserve power and units with fast ramp-up/down

capabilities to compensate for the fast fluctuations of solar, wind, and other renewable

 3

sources[15]. While these solutions may work now, they will incur a huge investment as

more renewable resources penetrate the gird with widespread adoption of wind and solar.

Accurate forecasting of renewable generation can have financial savings and save lives

alike. Being able to predict and forecast renewable energies allows (a) designers to design

plants economically and safely, and (b) operators to optimally plan and manage network

devices and resources. Finally, the reduction of the uncertainties and variability of

renewable resources improves the stability of the network and allows for higher

penetration level of renewables [7].

Realization of the different scenarios that can be generated by diverse renewable

resources and loads allows for better system reliability. By considering those

representative and extreme scenarios, operators are able to better assess the behavior of

the network. This enables them (the operators) to take the correct operational strategies

which will avoid system collapse or cascading failures.

1.2 Objectives

 The objective of this thesis is to utilize state-of-the-art machine learning

algorithms for the problem of multistep, multivariate scenario generation and forecasting

and evaluate the results of these algorithms. In order to achieve this objective, different

algorithms must be integrated, and their architectures and objectives reformulated to

include the physics of the electrical network. Some of those algorithms have been used in

univariate scenario generation or forecasting. However, including more variables,

extending the problem to include different time horizons, and scaling them for larger

networks are some of the novel aspects of this study. The analysis conducted here also

 4

accounts for the spatial and temporal correlations existing between the different variables,

which have often been ignored in prior research.

The advancement of machine learning and the computing power that we have today

enables us to design models with complicated architectures that are able to approximate

nonlinear relations and generalize these functions to unseen data. The different models

designed will be tested to see if they are able to capture inherent details of the power

system variables and the results will be compared using known metrics.

The goal of this thesis is to make the following contributions:

1. Reformulate existing machine learning models for multistep, multivariate

scenario generation and forecasting.

2. Test scalability of the models.

3. Detailed evaluation of the results generated by the different models.

4. Investigate the pros and cons of the models.

1.3 Structure of the Thesis

 The rest of the thesis is organized as follows.

Chapter 2 goes over the definitions of forecasting and scenario generation and explains

the problem formulation of multistep, multivariate forecasting and scenario generation. It

also reviews some of the prominent literature work that has been done on forecasting and

scenario generation using statistical and machine learning algorithms.

Chapter 3 describes and elucidates some of the machine learning models used in this

work. Specifically, it describes the inner workings of Convolutional Neural Networks

(CNNs), Recurrent Neural Networks (RNNs), Generative Models (Generative

 5

Adversarial Networks and Variational Auto-Encoders) and Graph Models (Graph

Convolutional Neural Networks).

 Chapter 4 builds the different machine learning models, generates results, and tests the

performance of the models identified in Chapter 3.

Chapter 5 concludes the research and discusses the results and merits of each model used

in this work. It also gives future directions for this work.

 6

CHAPTER 2

2. PROBLEM FORMULATION AND LITERATURE REVIEW

2.1 Problem Formulation

In this work, we solve two problems both of which have unique attributes. The first is the

forecasting problem. Forecasting in machine learning is the ability to use historical data to

try and make informed estimates and predictions extrapolated from those historical data.

Forecasting is a deterministic problem where using the same input over and over will

generate the same expected output over and over since the input data has not changed. This

can be defined as:

 𝑦 = 𝑎𝑥! + 𝑏𝑥" + 𝑐𝑥# (2.1)

Where 𝑥!, 𝑥", 𝑥# are the historical data and 𝑎, 𝑏, 𝑐 are constants.

The second problem, namely the scenario generation problem, is a more challenging

problem since the output is a collection of predictions. The same input can be used to

generated different outputs. While (2.1) can still be used to predict the output, the

assumption that 𝑎, 𝑏, 𝑐 are constants is no longer valid as they are sampled from

distributions, resulting in different outputs for the same input.

At the same time, in an electrical network we have different types of variables such as

loads, conventional generators, solar farms, and wind farms. To include the impacts of

these variables and make the two problems more realistic, we consider multivariate

scenario generation and forecasting. This results in the following new formulation:

 𝑦$%! = 𝑎(𝑥$ + 𝑥$&!) + 𝑏(𝑤$ +𝑤$&!) + 𝑐(𝑦$ + 𝑦$&!) 2.2)

 7

Where 𝑥$,$&!, 𝑤$,$&!, 𝑦$,$&! are the historical data for each of the variables and 𝑎, 𝑏, 𝑐 are

constants in the case of forecasting and sampled from a distribution in the case of scenario

generation.

Day ahead planning and forecasting is an indispensable part of power system operations.

It allows utilities to reserve and prepare units with high ramp up and ramp down capabilities

to compensate for the uncertainties and the fluctuations that are inherent to renewable

(mainly solar and wind) generation. Consequently, we reformulate the above problem to

multistep, multivariate scenario generation and forecasting so that it is more suitable for

power system operation. In this thesis, we focus on a 24-hour time horizon.

2.2 Literature Review

2.2.1 Forecasting

Univariate forecasting for solar, wind, and other renewable resources has been explored

previously using statistical and machine learning algorithms. In[16], the use of physical

model information, characteristics of PV panels, and simple statistical models was

explored. However, the relative error exceeded 10% which was due to the use of bad

forecasted metrological data and the need for more complex statistical model to account

for the different intercorrelations between the input variables. In [17], the authors have also

explored the use of metrological data and machine learning to forecast one-hour ahead

solar output. The combination of long short-term memory (LSTM) and XGBoost models

was shown to be a good candidate for addressing the problem effectively. The paper also

tested the model with different input horizons (1-hour to 24-hours) and 1-hour look ahead.

 8

In [18], the authors have addressed the forecasting problem by using deterministic and

probabilistic models with the latter models improving the results of forecasting as they

bode well with the stochastic nature of solar power. Authors of [19] used seasonal

autoregressive integrated moving average (SARIMA) model for a multistep forecasting of

solar output. autocorrelation coefficient (ACF) was used to determine the order of the terms

in the model and the time lags needed to generate good predictions of solar output.

While deterministic models were able to perform relatively good for solar forecasting [18],

the same cannot be said about wind power forecasting due to the higher variability and

stochasticity in wind. In [20] a Markov Chain model was used to predict day-ahead wind

power output. The results presented had high accuracies, but the model needed significant

amount of data preprocessing and clustering based on windspeed. The use of deep belief

networks (DBNs) for this purpose have also been considered. In [21], a DBN model was

developed to forecast wind power at the rate of 10 minutes for 24 hours. K-means clustering

was used to identify the largest sample in the data that has influence on the forecasting

accuracy and only that sample was used.

While there is an abundant of research on solar or wind forecasting, only a few have

addressed the two variables together. In [22], the use of a software called SPSS is used to

forecast wind and solar outputs simultaneously. The paper does not provide any

information about the machine learning models incorporated in the software to generate

the forecasting results. Other machine learning algorithms that have been investigated to

solve the multivariable problem coupled the algorithms with other techniques. For

example, neural networks and fuzzy logic was used in [23] to solve long-term multivariate

input and multivariate output effectively for both solar and wind.

 9

However, the problem of multistep, multivariate forecasting for day-ahead operation that

is scalable to real networks has not been looked into yet.

2.2.2 Scenario Generation

 Scenario generation in a univariate setting, i.e., wind and solar separately, using

machine learning algorithms has been researched extensively in[24]. It used improved

conditional generative adversarial networks (C-GANs) with Wasserstein distance to

generate univariate scenarios. Initially it used GANs to create representative scenarios of

either solar or wind. For both cases, the model was trained separately on solar or wind

datasets but not jointly. It then used C-GANs to generate extreme scenarios by categorizing

the historical data based on the average power of each day.

The problem of multivariate scenario generation has not received as much attention. One

of the most prominent works is [25] which developed a probabilistic model using copula

joint distribution and Spearman rank. The model generated scenarios for two wind farms

and two solar farms simultaneously.

Similar to the forecasting problem, multistep, multivariate scenario generation for day-

ahead operation that is scalable to real networks has not been looked into yet.

 10

CHAPTER 3

3. MACHINE LEARNING MODELS

3.1 Convolutional Neural Networks (CNNs)

CNNs are one of the most basic and widely used Artificial Intelligence (AI) architectures.

They have gained popularity due to their ability to perform well in multitude of tasks

such as classification of videos and images, natural language processing, and prediction

in regression problems. They are also relatively easy to implement [26].

CNNs are a deep learning algorithm that takes a matrix as an input, e.g., 𝑥	 ∈ ℝ(∗*∗+,

where 𝐻,𝑊,𝐷 are the height, width, and depth of the matrix, respectively, and outputs a 3-

dimentional matrix with different channels. Each channel provides important yet distinct

information about the input. The information embedded in each of the channels are the

results of training learnable filters (kernels) as seen in Figure 3-1.

Figure 3-1: CNN Architecture

 11

The filters are multiplied by the input sequentially and then moved based on the stride

value (usually 1) until a smaller version of the initial input is created. This is done

multiple times and each time the filters focus on a smaller section of the input and

thereby extract higher-level information (see Figure 3-2).

Figure 3-2: Filters or Kernels Applied to CNNs

CNNs are generally followed by fully connected layers in classification and regression

problems as can be seen in Figure 3-1. The fully connected layers have their own

learnable parameters (weights and biases). The output of the linear layers can be the raw

output of the algorithm for a regression problem or a probability distribution of the

classes in case of a classification problem.

There are two major parts to the learning process of machine learning algorithms, in

general, and CNN, in particular. The first is the feed-forward phase where the input goes

through the different layers (CNNs and fully connected layers alike), and the learnable

parameters are applied to generate the output. The result is then compared to the true

result and the error is calculated (usually) through the mean squared error (MSE). The

 12

MSE calculates the squared difference between the true and predicted output over the

samples.

 𝑀𝑆𝐸 = 	
1
𝑁4(𝑦, − 𝑦6-)"

.

-/!

 (3.1)

During the second phase, called back-propagation, the learnable parameters are

calculated and updated through techniques such as stochastic gradient descent (SGD).

SGD updates the parameter for each training sample 𝑥 and their corresponding label 𝑦

with a regularized version of the newly learned parameters so that the distribution does

not shift suddenly based on one sample of the training:

 𝜃 = 𝜃 − 𝛼∇0𝐽(𝜃; 𝑥; 𝑦) (3.2)

In (3.2), the partial derivative is taken of the layers with respect to their weights and

multiplied by the learning rate to update the layers’ new weights. Learning rate is the

regularization mentioned earlier in this chapter that controls how much we want to learn.

In Figure 3-3, learning rate is represented by the black arrow – a small learning rate will

allow us to move slowly until the training loop is over and we still might be far away

from the optimal solution. A large learning rate on the other hand, might let the weights

(represented by the black dot) roll and pass the optimal solution back and forth.

 13

Figure 3-3: Performing Gradient Descent for Weights

Activation Functions:

Each of the outputs of the intermediate layers is usually activated using an activation

function such as Rectified Linear Unit (ReLU), hyperbolic tangent (tanh) or a simple

linear layer to improve the generalization of the network. ReLU is one of the most widely

used activation functions in neural networks [27] and therefore, it is used in this thesis to

activate the fully connected layers. ReLU function can be seen in Figure 3-4 and the

mathematical formulation is shown in (3.3).

 14

Figure 3-4: ReLU Activation Function

 𝑔(𝑥) = =𝑥, 𝑤ℎ𝑒𝑛	𝑥	 ≥ 0
0,𝑤ℎ𝑒𝑛	𝑥	 ≤ 0 (3.3)

Pooling Layer

The pooling layers operate on each channel independently and divide the input matrix of

size 𝐻 ×𝑊 into subregions of smaller sizes and perform operations on them (see Figure

3-5). In the work presented in this thesis, max-pooling is used. The pooling operation

divides the input features into subregions, operate on those subregions to summarize

those features. In Figure 3-5, a max-pooling layer is passed through the input and we see

that the pooling layer divides the input features to 4 regions. It reduces each subregion to

its maximum features. We see the 5 is the maximum value in the blue region, 9 in the

green region, 8 and 9 in the yellow and red region respectively.

 15

Figure 3-5: Max-pooling Applied to CNN

3.2 Variational Auto Encoders (VAE)

To understand VAE, we need to explain Auto-Encoders. Auto-Encoders are a type of

generative models that try to reconstruct the original input by reducing the high

dimensionality of the input to a latent vector through a neural network (encoder part of

the architecture). Then, a second neural network (namely, decoder) that has the opposite

architecture of the encoder network, tries to map that low dimensional vector to a

reconstruction of the input, see Figure 3-6. In AEs, the goal is to generate images that are

very similar to the input images. That is, once trained, AEs generate similar

representation or a reconstruction of the input.

Figure 3-6: Auto-Encoders

 16

VAEs follow the same general structure of AEs, namely, the encoder, decoder, and the

latent representation between the encoder-decoder network. The main difference lies in

the fact that now we want to reconstruct our input (similar to AEs) while also learning the

different distributions of our data. The encoder tries to encode the high dimensional input

features into means and variances that describe the different data distributions. The

decoder inputs are randomly sampled from those learned distributions (from the encoder

part). The decoder generates new data based on the sampled information, see Figure 3-7.

The loss function is shown in (3.4). It consists of two parts, the first part, log 𝑝(𝑥|𝑧)	, is

similar to AE’s loss which is the reconstruction loss between input and output that we

want to minimize. The second term is the Kullback-Leibler (KL) divergence, which

makes sure that the distributions learned in z space are not far away from a normal

distribution.

 𝐸1(𝑧|𝑥) log 𝑝(𝑥|𝑧) − 𝐾𝐿(𝑞(𝑧|𝑥)||𝑝(𝑧)) (3.4)

Figure 3-7: Architecture of Variational Auto Encoders

 17

3.3 Long Short-Term Memory networks (LSTM)

LSTMs are used in state-of-the-art natural language processing such as search

autocompletion in Google, recommendation system in Amazon, and Netflix[28], [29].

They perform exceptionally when dealing with sequential data due to their ability to

retain long-term dependencies. A single LSTM cell (see Figure 3-8) encloses what is

referred to as “gates” and takes in an input 𝑋$, information from the previous time step

𝐶$ − 1, and ℎ$ − 1, and creates outputs ℎ$ and 𝐶$ for the next cell if the information still

needs to be processed.

Figure 3-8: LSTM Cells [30]

The information going through the LSTM cell is processed through gates and the first

gate is the forget gate. This gate basically decides what information from the previous

step in 𝐶$ − 1 is to be forgotten based on the new information 𝑋$. This is done through

the sigmoid function (highlighted in yellow in Figure 3-9) which squashes the

information between 0 and 1 with 0 being forget that information and 1 being completely

remember that information.

 18

Figure 3-9: LSTM Forget Gate [30]

The second gate, namely the remember gate, is concerned with what is currently

important and must be remembered so it can be added to 𝐶$ to build a long-term memory.

Both the input 𝑋$ and the information from the previous time step ℎ$ − 1, are passed

through a sigmoid function and a tanh function. The sigmoid function is used similar to

the previous step, i.e., to decide which information is relevant and must be remembered.

However, the tanh function is used to prioritize the information in 𝑋$ by squashing it

between -1 and 1, see Figure 3-10.

Figure 3-10: Remember Gate [30]

The output is then added to 𝐶$ − 1 and passed to the next cell 𝐶$ accumulating more

long-term information, see Figure 3-11.

 19

Figure 3-11: Remember Gate (Cell State) [30]

The last gate in the process is the output gate. It basically takes the summarized version

of the long-term memory, 𝐶$, pushes the values between -1 and 1, reduces the current

time input to probabilities using the sigmoid function, and multiplies the two to generate

the output ℎ$, see Figure 3-12.

Figure 3-12: Output Gate [30]

3.4 Conditional Generative Adversarial Networks (C-GANs)

GANs are a clever way of setting up two neural networks with opposing objectives to

play against each other to see if they are able to learn how the other operates and find

equilibrium. GAN algorithms essentially use two blocks, a generative block and a

discriminator block, both of which are represented by a deep neural network. The

generator takes in a random vector and tries to create an output that is similar to the input

dataset. The discriminator tries to distinguish between the real input data and the

 20

synthetic data created by the generator (see Figure 3-13). The GAN algorithm is

analogous to a two-player game with opposing and adversarial objectives.

Figure 3-13: GAN General Architecture

 𝑚𝑖𝑛0!𝑚𝑎𝑥0"[Ε5~789$9𝑙𝑜𝑔𝐷0"(𝑥) 	+	Ε:~7(:)log	(1 − 𝐷0" Y𝐺0!(𝑧)[)] (3.5)

In the loss function for a GAN shown above, the discriminator, described by the

parameters (𝜃8), tries to maximize the loss function (𝑚𝑎𝑥0"[Ε5~789$9𝑙𝑜𝑔𝐷0"(𝑥)]). That

is, it tries to correctly identify real images from fake images generated by the generator

block. The generator, described by the parameters (𝜃;), tries to minimize the second term

of the equation (𝑚𝑖𝑛0![Ε:~7(:)log	(1 − 𝐷0" Y𝐺0!(𝑧)[)]. That is, it tries to fool the

discriminator into thinking that those synthetic images are real images. Both 𝜃8 and 𝜃;

are some form of neural networks.

3.5 Graph Convolutional Neural Network (GCNN)

GCNNs are unstructured CNNs where the spatial relations are not limited to nearby data.

In reality, two adjacent loads can be connected to the same circuit but also, they can be

 21

connected to different sources that do not meet at all. That is where CNNs fail and

GCNNs succeed.

 Spatio-Temporal Graph Convolutional Networks (STGCN)

STGCN [31] is a special type of GCNN where the application is a regression problem

and not a classification problem. STGCN was introduced in 2017, where it was applied to

forecast traffic. STGCN consists of two main blocks, see Figure 3-14:

1- Spatio-Temporal Convolutional Block: The input time series is passed through a

temporal gated convolutional network to extract temporal features and a spatial graph

convolutional network where the spatial relations of the network are utilized to help in

prediction.

2- Output Layer: The output layer is a linear Bayesian layer to generate the

scenarios.

Figure 3-14: STGCN General Architecture [31]

Temporal Gated Convolutional Network:

The temporal layer simply applies the following equation:

 22

 Γ ∗ 𝒯	𝑌 = 	𝑃 ⊙ 	𝜎(𝑄) (3.6)

Where 𝑃 is the raw data of the time series, 𝑄 is the raw data of the time series passed

through a 1-D CNN to summarize and learn temporal relations and 𝜎 is the sigmoid

function that squashes the results between 0 and 1 and acts as a gate to control the flow of

data. The elements of the original time series (𝑃) is then multiplied by the elements of the

summarized version of the time series (𝑄). The result of this temporal layer is an

evaluation of the importance of each input in the time series.

Spatial-Graph Convolution:

In the [31], for the traffic forecasting application, the term in the parentheses in (3.7) was

used to normalize a given adjacency matrix since 1 and 0 or completely connected and

unconnected nodes, did not stabilize the learning process.

 Θ ∗𝒢 (𝑥) = 	𝜃(𝐷f&=.?𝑊f𝐷f&=.?)𝑥 (3.7)

However, since the connection in an electrical network is characterized by the Ybus

matrix (admittance matrix) and since the Ybus actually quantifies how strong and how

week is the connection between each node, it was logical to replace that normalization

with the Ybus so that the new formulation becomes:

 Θ ∗𝒢 (𝑥) = 	𝜃(𝑌𝑏𝑢𝑠)𝑥 (3.8)

The above, (3.8), simply states that the output of the temporal layer is multiplied by the

Ybus and the result is multiplied with theta (a neural network with learnable parameters).

ST-Conv Block:

The final result of each spatio-temporal block is expressed below:

 𝑣@%! =	Φ0(Γ!@ ∗ 𝒯	𝑅𝑒𝐿𝑈	(Θ@ ∗𝒢 mΓ!@ ∗ 𝒯𝑣@n)) (3.9)

 23

Starting with the rightmost parentheses, we see that the time series input (𝑣@) is passed

through the temporal gated convolutional layer. The result is then passed through the

spatial-graph convolution. The result is then activated by a ReLU function and passed

through another temporal gated convolutional layer. Finally, the result is passed through a

Bayesian network to generate the desired scenarios.

3.6 Error Metrics

RMSE: Root Mean Squared Error (RMSE) is a standard measure of error used to

quantify the prediction error of a model and it is defined as:

 𝑅𝑀𝑆𝐸 = 	o4
(𝑦6- − 𝑦-)"

𝑛

A

-/!

 (3.10)

The problem is, this metric in itself cannot determine the quality of scenario generation

models. This is because scenarios are supposed to be different and sometimes extreme.

Therefore, this metric is employed to check if the model struggles across the different

variables (solar, wind, and load), but is not used to compare the accuracy of the different

algorithms identified in this thesis.

Mean Absolute Error: Mean Absolute Error is another error metric between paired time

series, and it is employed in the same way as the RMSE.

 𝑀𝐴𝐸 =	
1
𝑁4|𝑦- − 𝑦6-|

.

-/!

 (3.11)

 24

3.7 Autocorrelation Coefficient Function (ACF)

Time observations can be correlated with other forms of lagged versions of the same time

series. ACF quantifies how those data points relate to the preceding time steps. It

essentially measures the self-similarity of the times series between different time-lags.

 𝑝B =
∑ (𝑟$ − �̅�)(𝑟$&B − �̅�)C
$/B%!

∑ (𝑟$ − �̅�)"C
$/!

 (3.12)

For example, time series with adjacent measurements have similar values and distant

measurements have values with higher deviations. That is, the ACF tends to decrease

over larger time-lags. A positive value in the ACF means that the data points for this

particular time lag stay consistently above or below the mean of the time series, while a

negative value means that the data points alternate across the mean. In this thesis, ACF is

used to see if the generated scenarios and the original input signals behave similarly over

different time lags.

3.8 Cumulative Distribution Function (CDF)

CDF is defined mathematically as:

 𝐹D(𝑥) = 𝑃(𝑋 ≤ 𝑥) (3.13)

It is the probability that the variable 𝑋 takes a value less than 𝑥. CDF is used to compare

the real and generated scenarios.

 25

CHAPTER 4

4. PROPOSED ARCHITICURES

In this chapter we are going to prepare our dataset, define some preprocessing techniques

and apply them our data, prepare the test system, and design the architecture of the

different ML models. For each of the models, we are going to show different seasonal

results for wind and solar farms, weekday and weekend results for load and discuss the

results. Lastly, we will compare the different algorithms and their performances, discuss

the weak points and superiority of each model and their application.

4.1 Data Preprocessing

Machine learning models depend heavily on the quality and the quantity of the dataset

utilized. In order to build our training dataset, we need realistic data for solar farms, wind

farms, and loads. For solar and wind farms, the NREL integration dataset [32] was used.

It provides one-year worth of hourly data for different solar and wind farms in the US.

Due to the lack of load datasets, the information of the synthetic 2000-bus Texas system

[33] was utilized. It provides an hourly load reading for one year. Hence, we have a total

of 8,760 data points for each variable.

4.2 The Test Model

The IEEE-30 bus system was chosen to test the different machine learning models

identified in Chapter 3. The two conventional generators located at buses 1 and 2 of this

system were replaced by solar farms and wind farms, respectively. The loads of each of

the buses were compared to the average of each of the load buses in the Texas 2000 bus

test case and the mapping of the buses was done accordingly.

 26

Figure 4-1: IEEE-30 Bus System

4.3 Data Normalization

Data normalization is a very important and an integral step of any regression problem. It

makes models process data faster [34] and learn quicker than when raw data are used. It

 27

also avoids explosion of learnable parameters in neural networks during training.

Therefore, we need to normalize our data before using them in training or prediction.

The equation used to normalize the data is shown below:

 𝑧 = 	
𝑥 − 𝜇
𝜎 (4.1)

Where z is the normalized value, x is the raw data, 𝜇 is the mean of the data and 𝜎 is the

standard deviation of the data. This normalization is done variable wise in a multivariate

problem. In this setting, for each variable, we calculate its mean and standard deviation

and apply the normalization for that variable.

4.4 Label Encoding

Label encoding is a process to convert categorical classes into numerical forms as

machine learning algorithms are unable to work with labeled data. One form of label

encoding is integer encoding where each category is converted into an integer [35]. For

example, if we have 3 different labels for the different classes, each label can be given an

integer value between 1 and 3. However, this might create an ordering problem since

three is bigger than one. The algorithm might translate that as class “3” has higher

probability of happening compared to class “1”. The second method is to use One-Hot

Encoding [35]. One-Hot Encoding is the process of labeling the different classes with 0

and 1. So for the same 3 class example, one hot encoding would generate a vector of size

3 and the correct class will be 1 and all the other classes will be given 0.

4.5 CNN Model

CNNs have performed exceptionally when it comes to image classification problems due

to the way the filters process spatial patterns in pictures. They also have great merits

 28

when it comes to forecasting because the same filters can be used to process limited

temporal and spatial relations. However, using a combination of CNN and Multi-Layer

Perceptron (MLP) can only result in the same output over and over given a fixed input.

This is due to the fact that all the learnable parameters (weights and biases of the neurons

and filters), are set after the model is trained. However, that is not the purpose of scenario

generation as we want to generate different scenarios given the same input. The way to

overcome this problem is to use a distribution over the weights for the last layer. That

will allow for the CNN to capture and learn temporal and spatial relation for different

types of variables and then generate scenarios at the last layer by sampling from the

weights of the last layer instead of using set parameters that generate the same output

repeatedly given an input.

4.5.1 Data

To test the algorithm, we are using the IEEE-30 bus test case illustrated previously. The

input data to the algorithm has the following structure:

- Original input matrix has 2 dimensions where the rows are the time steps and the

columns are the number of variables (e.g., 30 variables in the IEEE-30 bus system), in the

network.

- The input data preprocessor function will normalize the data, generate input and

output data sequences, and train, validate and test data sequences. The input and output

sequence matrices have 3 and 2 dimensions, respectively, where the input matrix has the

final shape of (number_of_samples, input_time_window, number of variables), see

Figure 4-2, and the output matrix has the shape of (number_of_samples,

output_time_window*number of variables).

 29

Figure 4-2: Data Input to CNN Model

 30

4.5.2 Hyperparameters

Table 4-1: CNN Hyperparameters

Input Horizon 48

Output Horizon 24

Stride 24

Number of Epochs 1000

CNN

Filters 64

Filter Size 1x2

Maxpooling 2x2

Linear Layer

1st Layer Size 800 neurons

Activation Function Relu

2nd Layer Size 30 neurons

Activation Function Linear

Learning Rate 0.001

Optimizer Adam

Loss Mean Squared Error

Data

Train 80%

Validation 10%

Testing 10%

 31

The above-mentioned hyperparameters were the best parameters found during the

training of the neural network.

4.5.3 Results

After training the CNN model to generate scenarios, we sample from those scenarios and

analyze if the model is able to generate representative scenarios. First, we compare

sample summer and winter scenarios for the solar farms. In order to generate the

scenarios, we need to repeatedly input distinct summer and winter power profiles for the

solar farms. The same scenarios used here will be used for the other algorithms for

benchmarking and comparison. Figure 4-3-Figure 4-8 show the results.

Figure 4-3: Solar Generated Scenarios During Summer

[M
W

]

[Hours]

 32

Figure 4-4: Solar Generated Scenarios During Winter

Figure 4-5: Average Hourly Power for Solar Farms in Summer Scenarios

[M
W

]

[Hours]

[M
W

]

[Hours]

 33

Figure 4-6: Average Hourly Power for Solar Farms in Winter Scenarios

Figure 4-7: Average Daily Power for Summer Scenario

[M
W

]

[Hours]

 34

Figure 4-8: Average Daily Power for Winter Scenario

Looking at those scenarios, we notice that CNN is able to generate reasonable scenarios

that are able to capture the intricate seasonal behavior of solar farms in summer and

winter. We notice that in summer scenarios (see Figure 4-3), the solar farms generate

more for longer hours. It starts producing as early as 5 A.M, reaches its capacity at 8 A.M

and generally stays at that level for most of the day, before dying down as late as 6 or 7

P.M. During the winter scenario (see Figure 4-4), we notice that the level of production

has decreased by 30% during the day and that the duration has also shrunk significantly.

From the average hourly production (see Figure 4-5 and Figure 4-6), we notice a higher

variability during the day. This could be due to the presence of more cloudy days during

the winter season (see Figure 4-6). Looking at the average production for the generated

scenarios (see Figure 4-7 and Figure 4-8), it is clear that summer scenarios have a higher

average production compared to winter scenarios. This is expected and conforms to a

solar farm’s production behavior.

Feeding-in summer and spring wind scenarios generates the following results (see Figure

4-9-Figure 4-14).

 35

Figure 4-9: Wind Generated Scenarios During Summer

Figure 4-10: Wind Generated Scenarios During Spring

[M
W

]

[Hours]

[M
W

]

[Hours]

 36

Figure 4-11: Average Hourly Power for Wind Farms in Summer Scenarios

Figure 4-12: Average Hourly Power for Wind Farms in Spring Scenarios

[M
W

]

Time Step [Hours]

[M
W

]

Time Step [Hours]

 37

Figure 4-13: Average Daily Power for Summer Scenario

Figure 4-14: Average Daily Power for Spring Scenario

For a wind farm producing during the spring season (see Figure 4-10), the algorithm is

able to capture the pattern of high-power production. However, the variability that is

inherent to wind farms is not particularly captured as can be seen by the hourly average

power production (see Figure 4-12). This is not the case for a wind farm producing in the

 38

summer season (see Figure 4-9), where the algorithm is able to capture the lower

production level during the summer season as well as the variability of wind (see Figure

4-11). Examining the average power production for summer (see Figure 4-13) and spring

(see Figure 4-14) scenarios, we notice a lower average production during summer and a

higher production level during spring, which is what we expect during those two seasons.

Examining load scenarios during weekdays and weekdays, and feeding-in corresponding

inputs, we get the following outputs (see Figure 4-15-Figure 4-20).

Figure 4-15: Load Generated Scenarios During Weekday

[M
W

]

[Hours]

 39

Figure 4-16: Load Generated Scenarios During Weekend

Figure 4-17: Average Hourly Demand for Load Weekday Scenarios

[M
W

]

[Hours]

[M
W

]

Time Step [Hours]

 40

Figure 4-18: Average Hourly Demand for Load Weekend Scenarios

[M
W

]

Time Step [Hours]

 41

Figure 4-19: Average Daily Demand for Weekday Scenario

Figure 4-20: Average Daily Demand for Weekend Scenario

Investigating the behavior of the load during weekdays and weekends, we find that the

algorithm is able to generate different scenarios that are in line with our expectations.

Given a weekday load profile, the model is able to capture the pattern of the load where

there is a heavy consumption during the morning and afternoon hours, and it drops during

 42

the nighttime (see Figure 4-15). The behavior changes a little bit during the weekends,

where the load rise starts later in the day and starts decreasing later in the afternoon (see

Figure 4-16). The scenarios generated are still not able to capture the variability of the

load and that is evident by the hourly average consumptions (see Figure 4-17 and Figure

4-18). The scenarios for the weekday load consumption is generally higher when

compared to weekends and that also is aligned with our expectations (see Figure 4-19 and

Figure 4-20).

4.5.4 Autocorrelation and Error Metrics

Sampling randomly generated scenarios and comparing them temporally to real scenarios

using the ACF gives us insights into the quality of the generated scenarios, particularly if

they capture the temporal behavior of each variable.

 43

Figure 4-21: Autocorrelation of Real and Generated Scenarios

Looking at the ACF plots in Figure 4-21, we see that the algorithm generally tries to

generate scenarios that mimic the temporal behavior of the real scenarios, especially the

solar scenarios, but struggles with some of the load and wind scenarios. This can be seen

from the ACF (bottom left corner on Figure 4-21) and the ACF next to it.

 To further validate the quality of the generated scenarios compared to the real scenarios,

we look into the CDFs (see Figure 4-22-Figure 4-24) of the generated scenarios

compared to the real ones.

 44

Figure 4-22: CDF of Real and Generated Load Scenarios

Figure 4-23: CDF of Real and Generated Wind Scenarios

 45

Figure 4-24: CDF of Real and Generated Solar Scenarios

The CDF profiles for the different variables further reinforces the belief that has been

established by the ACF, which is that the algorithm struggles more to create wind and

load scenarios due to the higher variability of wind and load present in the data.

4.5.5 Error Metrics:

The standard errors shown below are used to check which variable the model struggles

with the most. As it was evident by the previous results, the model struggles the most

with wind and load scenarios compared to solar scenarios, and this is reflected in the

error metric as well.

 46

Table 4-2: MAE and RMSE Error for CNN

 Load Solar Wind

MAE 1.994 0.322 2.938

RMSE 12.960 0.135 17.094

4.6 LSTM-VAE

LSTMs have gained their popularity from their ability to process sequential data

effectively even with arbitrary hyperparameters. They are able to subsume sequential data

due to their structure that was explained previously in Chapter 3.3. However, LSTMs,

like a neural network’s learnable parameters, are fixed. Hence, for the same input only

one output is generated and that is not the purpose of scenario generation. So, to

overcome this issue, VAE structure is employed. LSTM is used in the encoder part to

summarize the input sequential data of the different variables. The VAE then tries to

learn the different means and variances of those variables. The VAE samples from the

different categorical embeddings and an LSTM that has the reverse architecture to the

one used in the encoder, is used to decode and generate new data in the decoder. An

architecture of the model is shown in Figure 4-25.

 47

Figure 4-25: LSTM Model Architecture

4.6.1 Data:

To test the algorithm, we use the IEEE-30 bus test case illustrated previously. The input

data to the algorithm has the following structure:

- Original input matrix has 2 dimensions where the rows are the time steps and the

columns are the number of variables (e.g., 30 variables in the IEEE-30 bus system), in the

network.

- The input data preprocessor function will normalize the data, generate input and

output data sequences, and train, validate and test the data sequence. The input and output

sequence matrices have 3 and 2 dimensions, respectively, where the input matrix has the

final shape of (input_time_window, number_of_samples, number of variables) and the

output matrix has the shape of (output_time_window, number of variables).

 48

4.6.2 Hyperparameters:

Table 4-3: LSTM-VAE Hyperparameters

Input Horizon 120

Output Horizon 24

Number of Recurrent Layers 1

Batch size 35

Hidden Size 44

Number of Epochs 200

Teaching vs Recursive Mixed (30% Teacher Forcing)

Learning Rate 0.005963

Optimizer Adam

Loss Mean Squared Error

Data

Train 80%

Validation 10%

Testing 10%

A random search was done over the different hyperparameters to finetune the results of

the network with the objective of minimizing the loss function (see Figure 4-26). The

objective of this random search is to find the best combination of hyperparameters to

minimize the loss. The highlighted line in Figure 4-26 shows the best combination of

hyperparameter.

 49

Figure 4-26: Hyperparameter Search for LSTM-VAE

4.6.3 Results:

Now that the LSTM-VAE model is trained, we are able to sample different scenarios for

given inputs to evaluate the quality of those scenarios with what we know from the

characteristics of solar and wind farms, and loads. We also evaluate them with correlation

and error metrics. First, we generate scenarios based on random inputs from our dataset.

In this case we do not have control over picking seasonal data. The aim is to generate

random scenarios and the results obtained for each given input are as follows.

 50

Figure 4-27: Real and Generated Sample Scenarios

A distinct feature of the LSTM-VAE algorithm as seen in Figure 4-27 is that although it

is not able to generate scenarios as we had hoped, it does succeed in solving the

forecasting problem. This is because there is little to no variability when sampling one or

two scenarios from a given input. However, we will consider generating more scenarios

in subsequent analysis (Figure 4-28-Figure 4-43) to see if that is able to create more

variability.

We first try the same input for solar farms for both summer and winter seasons and

compare the results.

 51

Figure 4-28: Solar Generated Scenarios During Summer

Figure 4-29: Solar Generated Scenarios During Winter

[M
W

]

[Hours]

[M
W

]

[Hours]

 52

Figure 4-30: Average Hourly Power for Solar Summer Scenarios

Figure 4-31: Average Hourly Power for Solar Winter Scenarios

[M
W

]

[Hours]

[M
W

]

[Hours]

 53

Figure 4-32: Average Daily Power for Summer Scenario

Figure 4-33: Average Daily Power for Winter Scenario

 54

Sampling more scenarios from a given input does generate a little variability to our

scenarios as illustrated by summer and winter scenarios for solar farms (seeFigure 4-28-

Figure 4-33). Similarly, just like the CNN model, the LSTM-VAE model is able to

capture different seasonal behavior for different inputs without being explicitly told. In

summer scenarios (see Figure 4-28), the solar farm generates more power and for

extended periods of time during the day and early evenings. In winter (see Figure 4-29),

the production level drops by 36% and the production hours starts later in the day and

drops much earlier compared to summer scenarios. We also notice that unlike the CNN

model, LSTM-VAE is able to capture small details about solar farms such as the fact that

the production level does not fall below zero (see Figure 4-28). In the average power

production per hour (see Figure 4-30 and Figure 4-31), we see little to no variation. This

is due to the ability of LSTMs to retain temporal information accurately. Comparing the

average power for the generated scenarios during summer and winter (see Figure 4-32

and Figure 4-33), we see that the solar farm produces much more electricity during the

summer while the output is close to zero in the winter.

Moving the attention to wind farms, and sampling different scenarios from summer and

spring we see the following outputs (see Figure 4-34-Figure 4-39).

 55

Figure 4-34: Wind Generated Scenarios During Spring

Figure 4-35: Wind Generated Scenarios During Summer

[M
W

]

[Hours]

[M
W

]

[Hours]

 56

Figure 4-36: Average Hourly Power for Wind Spring Scenarios

Figure 4-37: Average Hourly Power for Wind Summer Scenarios

[M
W

]

[Hours]

[M
W

]

[Hours]

 57

Figure 4-38: Average Daily Power for Spring Scenario

Figure 4-39: Average Daily Power for Summer Scenario

Although the model is able to distinguish between different seasons and generate

scenarios accordingly, it still suffers from generating scenarios that look very similar to

each other, i.e., with little variations (see Figure 4-34 and Figure 4-35). The spring

scenarios tend to have higher production level compared to the summer scenarios and the

summer scenarios tend to have a bigger dip early in the day. Generally, the average

 58

power of the generated scenarios during spring is higher compared to the average power

production during summer season (see Figure 4-38 and Figure 4-39).

The load scenarios during weekday and weekend are very distinct (see Figure 4-40 and

Figure 4-41) and the model is able to capture that but the same invariability between

scenarios is observed (see Figure 4-42 and Figure 4-43).

Figure 4-40: Load Generated Scenarios During Weekday

[M
W

]

[Hours]

 59

Figure 4-41: Load Generated Scenarios During Weekend

Figure 4-42: Average Hourly Demand for Load Weekday Scenarios

[M
W

]

[Hours]

[M
W

]

[Hours]

 60

Figure 4-43: Average Hourly Demand for Load Weekend Scenarios

4.6.4 Autocorrelation and Error Metrics:

Sampling generated scenarios and comparing them temporally to real scenarios using the

ACF gives us insights into the quality of the generated scenarios, particularly if they

capture the temporal behavior of each variable.

[M
W

]

[Hours]

 61

Figure 4-44: Autocorrelation of Real and Generated Scenarios

Looking at the ACF plot (see Figure 4-44), we see that the algorithm mimics the temporal

behavior of all input scenarios perfectly and that further verifies our assumption that

LSTM-VAE solves the forecasting problem rather than the scenario generation problem.

With all the variables, ACF of the real and generated scenarios are undistinguishable and

the model does not struggle with any type of variable in particular.

Next we look at the CDFs (see Figure 4-45 and Figure 4-47) of both the real and

generated data to see if they mimic the temporal behavior perfectly as seen from the

ACF.

 62

Figure 4-45: CDF of Real and Generated Load Scenarios

 63

Figure 4-46: CDF of Real and Generated Wind Scenarios

 64

Figure 4-47: CDF of Real and Generated Solar Scenarios

It is evident from the above plots that the CDF of real and generated data are a match.

4.6.5 Error Metrics:

The results of MAE and RMSE shown below further validate the inference that the

LSTM-VAE model is suitable for forecasting across all variables.

Table 4-4: MAE and RMSE for LSTM-VAE

 Load Solar Wind

MAE 0.397 0.193 0.296

RMSE 0.264 0.051 0.176

 65

4.7 Conditional GANs

GANs are the epitome of generation models. They are able to generate images,

sequences, codes, sentences, and much more [36]. However, GANs are infamous when it

comes to training [37]. The generator needs to learn the dataset distribution and fool the

discriminator. However, more often than not, the generator finds an easy way of fooling

the discriminator, but not by actually mimicking the distribution of the dataset. Sampling

from this generator would yield noise or in some cases zeros, which is known as model

collapse as the generator is not able to learn the data distribution but is able to outsmart

the discriminator. There are abundant ways to facilitate the training process and mitigate

the model collapse problem such as using Wasserstein distance and improved GANs.

Although these methods work, their scalability is still a concern because the generator

needs to learn different distributions.

To put this into test, we start with a simple problem where the generator has to learn three

different variables. We evaluate the results to check if it is successful. Subsequently, we

will try to increase the number of variables and conditions to 10 (2 wind farms, 2 solar

farms and 6 loads) and 40 (4 seasons per variable), respectively. If the model is able to

perform well, only then we will test it on the IEEE-30 bus system with 30 variables and

120 conditions.

4.7.1 Data:

To test the algorithm, we are initially training and testing on three variables. The input

data to the algorithm has the following structure:

- Original input matrix has 2 dimensions where the rows are the time steps and the

columns are the number of variables, namely three (wind, solar, and load).

 66

- Since GANs are not able to distinguish between the different variables, we also

need integer representation for those variables. This is as follows: 0 = wind, 1 = solar, 2 =

load

- The input data preprocessor function will normalize the data, generate input and

output data sequences, and train, validate and test data sequence, as well as one-hot

encode the integer representation of the variables. The input and output sequence

matrices have 2 and 2 dimensions, respectively, where the input matrix has the final

shape of (number_of_samples, input_time_step+encoding_of_the_variable) and the

output matrix has the shape of (number_of_samples, output_time_step)

4.7.2 Hyperparameters:

The hyperparameters were taken from [24].

Figure 4-48: C-GANs Hyperparameters [24]

On the left-hand side of each column in Figure 4-48, we see the type of layer used and on

the right-hand side we see the size of the output. MLP is a linear layer and Conv is a

convolutional layer (CNN) and Conv_transpose is a deconvolution layer that has the

opposite structure than the Conv layer.

 67

4.7.3 Results:

Unlike the previous models, the input to the trained model is not a time series of solar,

wind, or load. Instead, the input to the model is a random latent vector 𝑧 sampled from a

normal distribution and an encoded value for the variable (0=wind, 1=solar, and 2=load),

which makes it very difficult to control the output. We only have control using the stated

conditions (wind, solar, or load). For the previous algorithms, we used to input a summer

scenario for solar or a weekday for load and expect results that behave similarly to the

input. For C-GANs we sample and evaluate the results to see if they conform to a certain

seasonal characteristic for the given variable.

However, since the input is a random variable, the need for a Bayesian layer is no longer

a must and as the input is random (and not a real scenario), we can generate distinct

scenarios from different seasons and days simultaneously. This can be seen as a huge

advantage for scenario generation as the algorithm is not governed by the input time

series and can generate representative and extreme scenarios at the same time.

Looking at generated scenarios for solar (see Figure 4-49), we can see that the results are

different from our previous generated scenarios. We see that the output is higher than all

previously generated scenarios but at the same time, the duration of the power generated

during the day is less compared to the previous results, the average power generated (see

Figure 4-51) is less and we can also see higher variability (see Figure 4-50) in the results,

especially during ramp-up and ramp-down, which was not captured by the previous

algorithms.

 68

Figure 4-49: Solar Generated Scenarios During Summer

Figure 4-50: Average Hourly Power for Solar Summer Scenarios

[M
W

]

[Hours]

[M
W

]

[Hours]

 69

Figure 4-51: Average Daily Power for Summer Scenario

Looking at wind or load generated scenarios does not give us a lot of information about

seasonal or weekly data. Generating data for wind scenarios results in the scenarios

shown below (see Figure 4-52-Figure 4-54). The same conclusion can be drawn as the

solar scenarios regarding variability and the difficulty to categorize these scenarios into a

single season.

Figure 4-52: Wind Generated Scenarios

[M
W

]

[Hours]

 70

Figure 4-53: Average Hourly Power for Wind Scenarios

Figure 4-54: Average Daily Power for Wind Scenario

[M
W

]

[Hours]

Day

[M
W

]

 71

Nonetheless, the C-GAN works and is able to generate distinct scenarios which was the

ultimate goal of this test. Next, we scale up the data and investigate the ability of the

model to work with 10 variables and 40 conditions. The hyperparameters of the generator

and the discriminator do not change. The only change happens in the number of inputs

and the one-hot encoding of the different variables.

Sampling outputs from the scaled-up version of the model gives the results shown below

(see Figure 4-55-Figure 4-57).

Figure 4-55: Solar Generated Scenarios

[M
W

]

[Hours]

 72

Figure 4-56: Load Generated Scenarios

Figure 4-57: Wind Generated Scenarios

It is clear from Figure 4-55-Figure 4-57 that the model has failed and collapsed during

training due to the number of conditions that the generator tries to learn, especially when

those distributions overlap. To further investigate this issue, we sample results during the

[M
W

]

[Hours]

[M
W

]

[Hours]

 73

training process of the generator for the initial 3 variable case and the scaled-up 10

variable case. The results obtained are as follows.

Figure 4-58: Sampled Output During Training (Epoch = 50)

Figure 4-59: Sampled Output During Training (Epoch = 100)

Po
w

er
 [M

W
]

Time [Hours]

Po
w

er
 [M

W
]

Time [Hours]

 74

Figure 4-60: Sampled Output During Training (Epoch = 150)

Figure 4-61: Sampled Output During Training (Epoch = 200)

Figure 4-58-Figure 4-61 show the progression of the training process for the three-

variable case. We are able to see that the generator starts with random variables but over

the training epochs, it is able to learn the different distributions of the variables. Looking

closely at the generated scenarios, one can also distinguish solar scenarios from wind or

load (see Figure 4-61).

Po
w

er
 [M

W
]

Time [Hours]

Resembles solar
pattern for multiple
days

Resembles wind
or load patterns
multiple days

Po
w

er
 [M

W
]

Time [Hours]

 75

Figure 4-62: Sampled Output During Training (Epoch = 50)

Figure 4-63: Sampled Output During Training (Epoch = 100)

Po
w

er
 [M

W
]

Time [Hours]

Po
w

er
 [M

W
]

Time [Hours]

 76

Figure 4-64: Sampled Output During Training (Epoch = 150)

Figure 4-65: Sampled Output During Training (Epoch = 200)

Po
w

er
 [M

W
]

Time [Hours]

Po
w

er
 [M

W
]

Time [Hours]

 77

Figure 4-66: Sampled Output During Training (Epoch =250)

Figure 4-67: Sampled Output During Training (Epoch = 300)

Figure 4-62-Figure 4-67 show the progression of the training process for the 10 variable

case. We are able to see that the generator starts with random variables, and over the

training epochs, tries to learn the different distributions of the variables. However, over

time, it collapses and starts generating constant values that do not relate to the original

dataset.

Po
w

er
 [M

W
]

Time [Hours]

Po
w

er
 [M

W
]

Time [Hours]

 78

4.8 STGCN

STGCN is a type of graph neural network that does sequential temporal and spatial

manipulations over the data based on the raw input data and an adjacency matrix. Ybus is

used as the adjacency matrix in this thesis. The algorithm tries to do a node level (bus

level) predictions for all the nodes in the system simultaneously.

4.8.1 Data:

To test the algorithm, we use the IEEE-30 bus test case illustrated previously. The input

data to the algorithm has the following structure:

- Original input matrix has 2 dimensions where the rows are the time steps and the

columns are the number of variables (e.g., 30 variables in the IEEE-30 bus system), in the

network.

- The input data preprocessor function will normalize the data, generate input and

output data sequences, and train, validate and test data sequence. The input and output

sequence matrices have 3 and 2 dimensions, respectively, where the input matrix has the

final shape of (input_time_step , number_of_samples, number of variables) and the

output matrix has the shape of (output_time_step, number of variables).

 79

4.8.2 Hyperparameter:

Input Horizon 24

Output Horizon 24

Batch size 50

Number of Epochs 200

Learning Rate 0.001

Optimizer Adam

Loss Mean Squared Error

Data

Train 80%

Validation 10%

Testing 10%

These parameters were obtained from [31].

4.8.3 Results:

After training the model, we first test it visually to see if the model is able to generate

distinct scenarios that have similar temporal patterns. Inputting random sampled signals

and sampling two scenarios we obtain the following outputs.

 80

Figure 4-68: Sample Generated Scenarios

Unlike the LSTM-VAE model, it is very clear from Figure 4-68 that the model is able to

generate distinct scenarios that follow the same temporal pattern as the input. Now we

need to validate and compare the model with the baseline inputs that were used in the

previous algorithms.

Testing the model on summer and winter solar scenarios yields the following outputs.

 81

Figure 4-69: Solar Generated Scenarios During Summer

Figure 4-70: Solar Generated Scenarios During Winter

[M
W

]

[Hours]

[M
W

]

[Hours]

 82

Figure 4-71: Average Hourly Power for Solar Summer Scenarios

Figure 4-72: Average Hourly Power for Solar Winter Scenarios

[M
W

]

[Hours]

[M
W

]

[Hours]

 83

Figure 4-73: Average Daily Power for Summer Scenario

Figure 4-74: Average Daily Power for Winter Scenario

Similar to the previous algorithms (CNN and LSTM-VAE), and as seen in Figure 4-69-

Figure 4-74, the (STGCN) model is able to capture key differences between solar farm

outputs in summer and winter seasons accurately. However, unlike the CNNs, the model

Day

Day

 84

learns that the power does not go below zero (see Figure 4-69). The means of the

generated scenarios are actually closer to the means of the generated scenarios using

LSTM-VAE indicating that the model is also able to generate representative scenarios

that are closer to the forecasted scenarios.

Examining the wind farm generated scenarios during summer and spring seasons by

utilizing the same input used before for comparison, generates the following results.

Figure 4-75: Wind Generated Scenarios During Spring

[M
W

]

[Hours]

 85

Figure 4-76: Wind Generated Scenarios During Summer

Figure 4-77: Average Daily Power for Spring Scenario

[M
W

]

[Hours]

Day

 86

Figure 4-78: Average Daily Power for Summer Scenario

Figure 4-79: Average Hourly Power for Wind Spring Scenarios

Day

[M
W

]

[Hours]

 87

Figure 4-80: Average Hourly Power for Wind Summer Scenarios

The model is able to capture seasonal differences in the wind behavior for summer and

spring seasons (see Figure 4-75-Figure 4-80). Interestingly, the model was also able to

capture the big dip in power during the day for the summer scenarios (see Figure 4-76)

just like the LSTM-VAE model. Note that this behavior was not captured by the CNN

model.

Evaluating the performance of the model on weekday and weekend load scenarios

generate the following outputs.

[M
W

]

[Hours]

 88

Figure 4-81: Load Generated Scenarios During Weekday

Figure 4-82: Load Generated Scenarios During Weekend

[M
W

]

[Hours]

[M
W

]

[Hours]

 89

Figure 4-83: Average Hourly Demand for Load Weekday Scenarios

Figure 4-84: Average Hourly Demand for Load Weekend Scenarios

[M
W

]

[Hours]

[M
W

]

[Hours]

 90

Figure 4-85: Average Daily Demand for Weekday Scenario

Figure 4-86: Average Daily Demand for Weekend Scenario

Day

[M
W

]

Day

[M
W

]

 91

As can be seen from Figure 4-81-Figure 4-86, the model is able to capture the high

pattern of demand during the day and the high variability early in the morning and late in

the afternoon (see Figure 4-83).

4.8.4 Autocorrelation and Error Metrics:

To test for autocorrelation and to see if the generated and real scenarios are characterized

by the same temporal behavior, we perform the ACF test.

Figure 4-87: Autocorrelation of Real and Generated Scenarios

 92

Looking at the ACF plots in Figure 4-87, we see that the algorithm mimics the temporal

behavior of all input scenarios very well. This is an indication that the algorithm is

suitable for forecasting problems.

Next we look at the CDFs (Figure 4-88-Figure 4-90) of both the real and generated data

to see if they struggle with overfitting like we have seen with LSTM-VAE or big gaps

between real and generated scenarios like in the case of CNN.

Figure 4-88: CDF of Real and Generated Load Scenarios

 93

 Figure 4-89: CDF of Real and Generated Wind Scenarios

 94

Figure 4-90: CDF of Real and Generated Solar Scenarios

It is obvious from the CDFs that there are differences between real and generated

scenarios as they are not perfectly on top of each other like the results of the LSTM-VAE

and there are differences between the samples. Hence, the model is able to generate

representative scenarios.

4.8.5 Error Metrics:

The error results obtained below show that the algorithm has higher MAE and RMSE for

load and wind when compared to solar. It also shows higher errors when compared to

LSTM-VAE but lower results than CNN.

 95

Table 4-5: MAE and RMSE Error for STGCN

 Load Solar Wind

MAE 1.329 0.242 2.623

RMSE 10.145 0.066 13.771

4.9 Discussion

It is obvious from the results that for generating distinct scenarios, C-GANs are the best

candidate. This is simply because the initial starting point or the input to the model is a

random vector 𝑧 (sampled from a normal distribution), whereas all the other algorithms

need an input time series. We believe that this allows the model to generate very distinct

scenarios that have not been seen by the model before. While solar farms generally have

higher power production in summer compared to other seasons, there are still days where

those solar farms generate little to no power because of cloudy skies. The C-GANs are

conditions on seasons only. Hence, the algorithm has a bigger sample pool from which

results can be generated. The other algorithms are conditioned on an input, so the

generated scenarios are also conditioned on that same input, which is why we do not see

very distinct and extreme scenarios. The problem with C-GANs arises when we try to

scale it up to more variables and conditions. The model fails strikingly as seen by the

earlier results in Chapter 4.7. Hence, scaling up of the algorithm for use in electrical

networks is extremely challenging. This is primarily due to the adversarial nature of the

algorithm as explained in Chapter 3.4 which makes it difficult for the generator to learn

the different distributions of the data and fool the discriminator.

 96

LSTM-VAE generates results that are very close to the real scenario and this is due to the

architecture of LSTM cells, their ability to learn temporal behavior, and the absence of

spatial information. They are able to learn seasonal and daily behaviors and mimic them

with little variations. They are perfect when it comes to multivariate and multistep

forecasting as proved by the ACF, CDF, and the error metrics in Chapter 4.6; the results

are near perfect for forecasting purposes.

STGCN and CNNs are better suited for scenario generation problems. They both

generate representative scenarios accurately. However, CNNs lack the ability to capture

certain intricate details about the different variables such as the ability to capture large

dips or not allowing solar generation to go below zero. CNNs also do not incorporate the

physics of the power network and the graphical relations that exist. While filters do

account for spatial relations, they are not necessarily true relations (from a power systems

perspective) as CNNs account for spatial relations based on proximity, and not

connections due to the usage of filters (Chapter 4.5).

In terms of scalability, theoretically STGCN is the best candidate since it does not have

the adversarial nature of C-GANs, and it is not limited to the rigid structure of filters in

CNNs that account for special relations. The connections are also fluid since not all buses

are connected to each other. Lastly, while CNNs are easier to implement compared to

STGCN, CNNs require more time to train due to the large number of epochs and that can

be a huge hurdle, refer Table 4-1.

 97

CHAPTER 5

5. CONCLUSION AND FUTURE DIRECTIONS

The goal of this thesis was to address multivariate, multistep scenario generation and

forecasting for solar, wind, and load through machine learning algorithms while

accounting for the intercorrelations. State-of-the-art algorithms such as CNN, LSTM-

VAE, C-GAN and STGCN were utilized to solve this problem. The IEEE-30 bus system

was used for this analysis and the conventional generators were replaced by solar and

wind farms. Each of the algorithms had their own pros and cons and all of those were

detailed in the thesis.

C-GANs generate distinct scenarios but are very difficult to train due to the opposing

objectives of the generator and discriminator networks. The model works perfectly when

tested on smaller number of variables with distinct distributions. Three variables (solar,

wind, and load) were initially used to train model. However, extending the model to a

real system such as the IEEE-30 bus system was not possible due to the larger number of

conditions for each of the variables and the overlap of the distributions of the different

variables.

LSTM-VAE model was able to address the forecasting problem and generate scenarios

with very little variations. The resulting scenarios were astoundingly similar to the real

scenario. The correlation results and the error metrics both confirmed this observation.

This makes LSTM-VAE perfect for multivariate and multistep forecasting.

 98

Both STGCN and CNNs were able to generate representative scenarios for all the

variables. However, STGCN model was able to capture very detailed information about

the variables that were missed by the (simpler) CNN model.

This work lays the foundation for a hybrid framework of STGCN and LSTM-VAE that

can be utilized in the day-to-day operation of the electrical network and for day-ahead

planning. While an hourly reading of load and generation were used in this thesis, a

smaller time scale can also be used to capture smaller variations. Moreover, a different

time horizon (other than 24 hours) can also be used. The readings for load demand and

generation can be set as inputs to both the models with LSTM-VAE generating accurate

forecasts that can be used to allocate resources accordingly, while STGCN can generate

different scenarios to test the reliability of the system. Particularly, the scenarios

generated in this work can also be used for battery energy storage systems (BESS)

allocation [38].

5.1 Future Directions

The work presented in this thesis can be extended in different ways:

• Transductive learning can be used in GCNN. Transductive learning in

GCNN provides the ability to add nodes or change the structure of the graph

completely. This opens up a new research frontier to solve problems of

optimal placement of wind or solar farms based on historical data and the

spatio-temporal relationships. Designers can idnetify new locations for wind

and solar farms, connect them to the existing network, and run GCNN to

 99

forecast and generate scenarios to see if it is viable to place a wind or solar

farm at those locations.

• Another future research direction is to apply the machine learning models

at the distribution level and include other variables with unique

characteristics (such as electric vehicles [39]) to see how these models

perform.

• The addition of clustering techniques can help improve the results by

focusing on generating unique scenarios based on those clusters. Hence,

incorporating a clustering model as a precursor to the models discussed in

this thesis can be explored in the future.

 100

REFERENCES

[1] "Global Energy Review 2021," IEA, 2021. [Online]. Available:
https://www.iea.org/reports/global-energy-review-2021/renewables.

[2] R. S. Biswas, A. Pal, T. Werho, and V. Vittal, “Mitigation of saturated cut-
sets during multiple outages to enhance power system security,” accepted for
publication in IEEE Transactions on Power Systems.

[3] R. S. Biswas, A. Pal, T. Werho, and V. Vittal, “A graph theoretic approach
to power system vulnerability identification,” IEEE Trans. Power Syst., vol. 36, no.
2, pp. 923-935, Mar. 2021.

[4] T. Wang, J. Yang, M. Padhee, A. Pal, J. Bi, and Z. Wang, “Robust
coordinated control of sub-synchronous oscillation in wind integrated power
system,” IET Renewable Power Gener., vol. 14, no. 6, pp. 1031-1043, Apr. 2020.

[5] C. Mishra, R. S. Biswas, A. Pal, and V. A. Centeno, “Critical clearing time
sensitivity for inequality constrained systems,” IEEE Trans. Power Syst., vol. 35,
no. 2, pp. 1572-1583, Mar. 2020.

[6] C. Mishra, A. Pal, J. S. Thorp, and V. A. Centeno, “Transient stability
assessment of prone-to-trip renewable generation rich power systems using
Lyapunov’s direct method,” IEEE Trans. Sustainable Energy, vol. 10, no. 3, pp.
1523-1533, Jul. 2019.

[7] H. Albhrani, R. S. Biswas, and A. Pal, “Identification of utility-scale
renewable energy penetration threshold in a dynamic setting,” in Proc. IEEE North
American Power Symposium (NAPS), Tempe, AZ, pp. 1-6, 11-13 Apr. 2021.

[8] C. Wang, C. Mishra, R. S. Biswas, A. Pal, and V. A. Centeno, “Adaptive
LVRT settings adjustment for enhancing voltage security of renewable-rich electric
grids,” in Proc. IEEE Power Eng. Soc. General Meeting, Montreal, Canada, pp. 1-
5, 2-6 Aug. 2020.

[9] A. Nath, R. S. Biswas, and A. Pal, “Application of machine learning for
online dynamic security assessment in presence of system variability and additive

 101

instrumentation errors,” in Proc. IEEE North American Power Symposium
(NAPS), Wichita, KS, pp. 1-6, 13-15 Oct. 2019.

[10] T. Wang, J. Yang, J. Liu, P. Gupta, A. Pal, and J. Deng, “SDAE-based
probabilistic stability analysis of wind integrated power systems,” in Proc. 2nd
IEEE Conf. Energy Internet and Energy System Integration (EI2), Beijing, China,
pp. 1-6, 20-22 Oct. 2018.

[11] M. Padhee, and A. Pal, “Effect of solar PV penetration on residential energy
consumption pattern,” in Proc. IEEE North American Power Symposium (NAPS),
Fargo, ND, pp. 1-6, 9-11 Sep. 2018.

[12] T. Chakraborty, and A. Pal, “Controller tuning of generic positive sequence
solar PV models used in interconnection studies,” in Proc. IEEE North American
Power Symposium (NAPS), Morgantown, WV, pp. 1-6, 17-19 Sep. 2017.

[13] M. Padhee, A. Pal, and K. A. Vance, “Analyzing effects of seasonal
variations in wind generation and load on voltage profiles,” in Proc. IEEE North
American Power Symposium (NAPS), Morgantown, WV, pp. 1-6, 17-19 Sep.
2017.

[14] S. Wang, P. Dehghanian, M. Alhazmi, J. Su and B. Shinde, "Resilience-
Assured Protective Control of DC/AC Inverters Under Unbalanced and Fault
Scenarios," 2019 IEEE Power & Energy Society Innovative Smart Grid
Technologies Conference (ISGT), 2019, pp. 1-5, doi:
10.1109/ISGT.2019.8791659.

[15] S. Impram, S. Varbak Nese and B. Oral, "hallenges of renewable energy
penetration on power system flexibility: A survey," Energy Strategy Reviews,
2020.

[16] D. A. Snegirev, S. A. Eroshenko, R. T. Valiev and A. I. Khalyasmaa,
"Algorithmic realization of short-term solar power plant output forecasting," 2017
IEEE II International Conference on Control in Technical Systems (CTS), 2017,
pp. 228-231.

 102

[17] Y. -J. Zhong and Y. -K. Wu, "Short-Term Solar Power Forecasts
Considering Various Weather Variables," 2020 International Symposium on
Computer, Consumer and Control (IS3C), 2020, pp. 432-435.

[18] F. Serttas, F. O. Hocaoglu and E. Akarslan, "Short Term Solar Power
Generation Forecasting: A Novel Approach," 2018 International Conference on
Photovoltaic Science and Technologies (PVCon), 2018, pp. 1-4.

[19] V. Kushwaha and N. M. Pindoriya, "Very short-term solar PV generation
forecast using SARIMA model: A case study," 2017 7th International Conference
on Power Systems (ICPS), 2017, pp. 430-435.

[20] S. M. Verma, V. Reddy, K. Verma and R. Kumar, "Markov Models Based
Short Term Forecasting of Wind Speed for Estimating Day-Ahead Wind
Power," 2018 International Conference on Power, Energy, Control and
Transmission Systems (ICPECTS), 2018, pp. 31-35.

[21] X. Zheng, X. Qi, H. Liu, X. Liu and Y. Li, "Deep Neural Network for Short-
Term Offshore Wind Power Forecasting," 2018 OCEANS - MTS/IEEE Kobe
Techno-Oceans (OTO), 2018, pp. 1-5.

[22] Y. Zhongping et al., "Integrated wind and solar power forecasting in
China," Proceedings of 2013 IEEE International Conference on Service Operations
and Logistics, and Informatics, 2013, pp. 500-505.

[23] S. Makhloufi, M. Debbache and S. Boulahchiche, "Long-term Forecasting
of Intermittent Wind and Photovoltaic Resources by using Adaptive Neuro Fuzzy
Inference System (ANFIS)," 2018 International Conference on Wind Energy and
Applications in Algeria (ICWEAA), 2018, pp.

[24] Y. Chen, Y. Wang, D. Kirschen and B. Zhang, "Model-Free Renewable
Scenario Generation Using Generative Adversarial Networks," in IEEE
Transactions on Power Systems, vol. 33, no. 3, pp. 3265-3275.

[25] M. Yang, W. Liu, X. Yin, Z. Cui and W. Zhang, "A Two-Stage Scenario
Generation Method for Wind- Solar Joint Power Output Considering Temporal and

 103

Spatial Correlations," 2021 6th Asia Conference on Power and Electrical
Engineering (ACPEE), 2021, pp. 415-423.

[26] S. Albawi, T. A. Mohammed and S. Al-Zawi, "Understanding of a
convolutional neural network," 2017 International Conference on Engineering and
Technology (ICET), 2017, pp. 1-6.

[27] I. Goodfellow, Y. Bengio and A. Courville, Deep Learning, MIT Press,
2016.

[28] J. Schmidhuber, 2017. [Online]. Available:
https://people.idsia.ch/~juergen/impact-on-most-valuable-companies.html.
[Accessed 2021].

[29] F. Beaufays, "The neural networks behind Google Voice transcription,"
2015. [Online]. Available: https://ai.googleblog.com/2015/08/the-neural-
networks-behind-google-voice.html. [Accessed 2021].

[30] C. Olah, "Colah's Blog," 2015. [Online]. Available:
https://colah.github.io/posts/2015-08-Understanding-LSTMs/. [Accessed 2021].

[31] B. Yu, H. Yin and Z. Zhu, "Spatio-temporal graph convolutional networks:
A deep learning framework for traffic forecasting," arXiv preprint
arXiv:1709.04875, 2017.

[32] "NREL," [Online]. Available: https://www.nrel.gov/grid/data-tools.html.
[Accessed 2021].

[33] A. Birchfield, "ELECTRIC GRID TEST CASE REPOSITORY," [Online].
Available: https://electricgrids.engr.tamu.edu/electric-grid-test-
cases/activsg2000/. [Accessed 2021].

[34] Yann LeCun, Leon Bottou, Genevieve B. Orr, and Klaus Robert Müller.,
Efficient BackProp, Springer, 1998.

 104

[35] M. Karakaya, "Medium," 2020. [Online]. Available:
https://medium.com/deep-learning-with-keras/which-activation-loss-functions-in-
multi-class-clasification-4cd599e4e61f. [Accessed 2021].

[36] J. Gui, S. Zhenan, W. Yonggang, D. Tao and J. Ye, "A review on generative
adversarial networks: Algorithms, theory, and applications," arXiv preprint
arXiv:2001.06937 , 2020.

[37] I. Gulrajani, A. Faruk, A. Martin, D. Vincent and C. Aaron, "Improved
training of wasserstein gans," arXiv preprint arXiv:1704.00028, 2017.

[38] M. Padhee, A. Pal, C. Mishra and K. A. Vance, "A Fixed-Flexible BESS
Allocation Scheme for Transmission Networks Considering Uncertainties,"
in IEEE Transactions on Sustainable Energy, vol. 11, no. 3, pp. 1883-1897.

[39] M. Z. Zeb et al., "Optimal Placement of Electric Vehicle Charging Stations
in the Active Distribution Network," in IEEE Access, vol. 8, pp. 68124-68134,
2020.

 105

APPENDIX A

A. GITHUB REPO

 106

All the codes can be found at:
https://github.com/Anamitra-Pal-Lab/Scenario-Generation-and-Forecasting

 107

APPENDIX B

B. CNN PSEUDO CODE

 108

define model
model = Sequential()
model.add(Conv1D(filters=64, kernel_size=2, activation='relu',
input_shape=(n_steps_in, n_features)))
model.add(MaxPooling1D(pool_size=2))
model.add(Flatten())
model.add(Dense(50, activation='relu'))
model.add(Dense(n_output))
model.compile(optimizer='adam', loss='mse')

 109

APPENDIX C

C. LSTM-VAE PSEUDO CODE

 110

class lstm_encoder(nn.Module):
 ''' Encodes time-series sequence '''

 def __init__(self, input_size, hidden_size, num_layers = 2):

 '''
 : param input_size: the number of features in the input
X
 : param hidden_size: the number of features in the hidden
state h
 : param num_layers: number of recurrent layers (i.e., 2
means there are
 : 2 stacked LSTMs)
 '''

 super(lstm_encoder, self).__init__()
 self.input_size = input_size
 self.hidden_size = hidden_size
 self.num_layers = num_layers

 # define LSTM layer
 self.lstm = nn.LSTM(input_size = input_size, hidden_size =
hidden_size,
 num_layers = num_layers)

 def forward(self, x_input):

 '''
 : param x_input: input of shape (seq_len, # in
batch, input_size)
 : return lstm_out, hidden: lstm_out gives all the hidden
states in the sequence;
 : hidden gives the hidden state
and cell state for the last
 : element in the sequence
 '''

 lstm_out, self.hidden =
self.lstm(x_input.view(x_input.shape[0], x_input.shape[1],
self.input_size))

 return lstm_out, self.hidden

 def init_hidden(self, batch_size):

 111

 '''
 initialize hidden state
 : param batch_size: x_input.shape[1]
 : return: zeroed hidden state and cell state
 '''

 return (torch.zeros(self.num_layers, batch_size,
self.hidden_size),
 torch.zeros(self.num_layers, batch_size,
self.hidden_size))

class lstm_decoder(nn.Module):
 ''' Decodes hidden state output by encoder '''

 def __init__(self, input_size, hidden_size, num_layers = 2):

 '''
 : param input_size: the number of features in the input
X
 : param hidden_size: the number of features in the hidden
state h
 : param num_layers: number of recurrent layers (i.e., 2
means there are
 : 2 stacked LSTMs)
 '''

 super(lstm_decoder, self).__init__()
 self.input_size = input_size
 self.hidden_size = hidden_size
 self.num_layers = num_layers

 self.lstm = nn.LSTM(input_size = input_size, hidden_size =
hidden_size,
 num_layers = num_layers)
 self.linear = nn.Linear(hidden_size, input_size)

 def forward(self, x_input, encoder_hidden_states):

 '''
 : param x_input: should be 2D
(batch_size, input_size)
 : param encoder_hidden_states: hidden states

 112

 : return output, hidden: output gives all the
hidden states in the sequence;
 : hidden gives the hidden
state and cell state for the last
 : element in the sequence

 '''

 lstm_out, self.hidden = self.lstm(x_input.unsqueeze(0),
encoder_hidden_states)

 output = self.linear(lstm_out.squeeze(0))
 return output, self.hidden

class lstm_seq2seq(nn.Module):
 ''' train LSTM encoder-decoder and make predictions '''

 def __init__(self, input_size, hidden_size):

 '''
 : param input_size: the number of expected features in
the input X
 : param hidden_size: the number of features in the hidden
state h
 '''

 super(lstm_seq2seq, self).__init__()

 self.input_size = input_size
 self.hidden_size = hidden_size

 self.encoder = lstm_encoder(input_size = input_size,
hidden_size = hidden_size)
 self.decoder = lstm_decoder(input_size = input_size,
hidden_size = hidden_size)

 113

APPENDIX D

D. C-GANS PSEUDO CODE

 114

class Generator(nn.Module):
 def __init__(self, channels_noise=100, channels_img=1,
features_g=64, label=3,batch_size = 32):
 super(Generator, self).__init__()
 self.label = label
 self.batch_size = batch_size
 self.fc1 = nn.Linear(channels_noise+label,features_g*16)
 self.fc2 = nn.Linear(features_g*16+label, features_g*72)
 self.deconv1 = nn.ConvTranspose2d(features_g*2+label ,
features_g, kernel_size=2, stride=2, padding=0)
 self.deconv2 = nn.ConvTranspose2d(features_g+label ,
channels_img, kernel_size=2, stride=2, padding=0)
 self.activation = nn.ReLU()

 def forward(self, z, y):
 #print("Initializing the generator")
 #print("Input Z shape", z.shape)
 #print("Input Y shape", y.shape)
 yb =y.unsqueeze(2).unsqueeze(2).to(device)
 z = torch.cat([z, y],1)
 #print("Input Z shape", z.shape)
 out = self.activation(batchnormalize(self.fc1(z)))
 #print("h1 shape", out.shape)
 out = torch.cat([out, y],1)
 #print("h1 shape", out.shape)
 out = self.activation(batchnormalize(self.fc2(out)))
 #print("h2 shape", out.shape)
 out = out.view([-1,128,6,6])
 #print("h2 shape", out.shape)
 temp12 = (yb.to(device)*torch.ones([self.batch_size,
self.label,6, 6]).to(device))
 out = torch.cat([out, temp12],1)
 n=yb*torch.ones([self.batch_size, self.label,6,
6]).to(device)
 #print("shape of yb new",n.shape)
 #print("h2 shape", out.shape)
 out = self.activation(batchnormalize(self.deconv1(out)))
 #print("h3 shape", out.shape)
 temp22 = yb*torch.ones([self.batch_size, self.label, 12,
12]).to(device)
 out = torch.cat([out, temp22], 1)
 #print("h3 shape", out.shape)
 out = self.deconv2(out)
 #print("h4 shape", out.shape)

 115

 out = torch.sigmoid(out)
 return out

 116

APPENDIX E

E. STGCN PSEUDO CODE

 117

class STGCN(nn.Module):
 """
 Spatio-temporal graph convolutional network
 Input has shape (batch_size, num_nodes, num_input_time_steps,
 num_features).
 """

 def __init__(self, num_nodes, num_features, num_timesteps_input,
 num_timesteps_output):
 """
 :param num_nodes: Number of nodes in the graph.
 :param num_features: Number of features at each node in each
time step.
 :param num_timesteps_input: Number of past time steps fed
into the
 network.
 :param num_timesteps_output: Desired number of future time
steps
 output by the network.
 """
 super(STGCN, self).__init__()
 self.block1 = STGCNBlock(in_channels=num_features,
out_channels=64,
 spatial_channels=16,
num_nodes=num_nodes)
 self.block2 = STGCNBlock(in_channels=64, out_channels=64,
 spatial_channels=16,
num_nodes=num_nodes)
 self.block3 = STGCNBlock(in_channels=64, out_channels=64,
 spatial_channels=16,
num_nodes=num_nodes)
 self.last_temporal = TimeBlock(in_channels=64,
out_channels=64)
 self.fully = nn.Linear((num_timesteps_input - 20) * 64,
 num_timesteps_output)

