
Multistep Multivariate Scenario Generation and Forecasting for Power Systems using  

Machine Learning  

by 

Mohammed Alhazmi 
 
 
 
 
 

A Thesis Presented in Partial Fulfillment  
of the Requirements for the Degree  

Master of Science  
 
 
 
 
 
 
 
 
 
 

Approved October 2021 by the 
Graduate Supervisory Committee:  

 
Anamitra Pal, Chair 

Raja Ayyanar 
Keith Holbert 

 
 
 
 
 
 
 
 
 
 
 
 

ARIZONA STATE UNIVERSITY  

December 2021



 i 

ABSTRACT 

 

The penetration of renewable energy in the power system has grown considerably in the 

past few years. While this use may come with an abundance of advantages, it also 

introduces new challenges in operating the 100+ years old electrical network. 

Fundamentally, the power system relies on a real-time balance of generation and demand.  

However, renewable resources such as solar and wind farms are not available throughout 

the day. Furthermore, they introduce temporal variability to the generation process due to 

metrological factors, making the balance of generation and demand precarious. Utilities 

use standby units with reserve power and high ramp-up, ramp-down capabilities to ensure 

balance. However, such solutions can be very costly. An accurate scenario generation and 

forecasting of the stochastic variables (load and renewable resources) can help reduce the 

cost of these solutions.   

The goal of this research is to solve the scenario generation and forecasting problems 

using state-of-the-art machine learning techniques and algorithms. The training database 

is created using publicly available data obtained from NREL and the Texas-2000 bus 

system. The IEEE-30 bus system is used as the test system for the analysis conducted 

here. The conventional generators of this system are replaced with solar farms and wind 

farms. The ability of four machine learning algorithms in addressing the scenario 

generation and forecasting problems are investigated using appropriate metrics. 

The first machine learning algorithm is the convolutional neural network (CNN). It is 

found to be well-suited for the scenario generation problem. However, its inability to 
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capture certain intricate details about the different variables was identified as a possible 

drawback. The second algorithm is the long-short term memory-variational auto-encoder 

(LSTM-VAE). It generated scenarios that are very similar to the actual scenarios 

indicating that it is suitable for solving the forecasting problem. The third algorithm is the 

conditional generative adversarial network (C-GAN). It was extremely effective in 

generating scenarios when the number of variables were small. However, its scalability 

was found to be a concern. The fourth algorithm is the spatio-temporal graph 

convolutional network (STGCN). It was found to generate representative correlated 

scenarios effectively. 
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CHAPTER 1 

1. INTRODUCTION 
 
Over the past 50 years, penetration of renewable energy has been increasing in the 

electricity supply mix. Figure 1-1 shows renewable generation in 2021 for some of the 

countries of the world. Renewable energy has increased by more than 8% compared to 

2020 to reach an all-time high of 8,300 TWh in 2021[1]. China solely is responsible for 

50% of this global growth with more than double the renewable generation of the United 

States and Europe. This accelerated growth is the highest since the 1970s and it is largely 

due to the advancement in wind and solar generation as they constitute two-thirds of this 

rapid growth.   

 

Figure 1-1: Renewable electricity generation increase by technology, country and region, 2020-2021 [1] 
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In order for the electric grid to accommodate the large and growing penetration of 

renewable energy, it has to be more flexible. The old framework where the load is 

changing, and the conventional generators are ready to follow that change is no longer 

valid. Renewable energies such as solar farms and wind farms have their own ebbs and 

flows irrespective of the load behavior. This puts a huge strain on the 100+ years old 

power network that was originally designed around the idea of controllable and 

predictable generation. If nothing is done, this new variability on the generation side can 

result in cascading failures, including blackouts [2][13].  

The rapid growth and utilization of renewable resource brings about many difficulties and 

challenges in operating and controlling the electrical network effectively and efficiently. 

These difficulties include low fault ride through capabilities, high fault currents[14], low 

power quality, low system inertia, and high variability [15].  In this work, we address the 

high variability difficulty by generating accurate forecasts of generation and demand so 

that the power system operators can use them to operate the network safely and allocate 

planned resources appropriately. However, this is not easy because of the inherent nature 

and stochasticity of renewable resources such as wind and solar – their output depends on 

metrological and geographical factors which have no apparent relation to the load 

demand.  

1.1 Motivation 
 
 The variability and intermittency of renewable energy poses a challenge to the 

operation of the power system using conventional (currently used) methods. For example, 

power system operators presently use reserve power and units with fast ramp-up/down 

capabilities to compensate for the fast fluctuations of solar, wind, and other renewable 
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sources[15]. While these solutions may work now, they will incur a huge investment as 

more renewable resources penetrate the gird with widespread adoption of wind and solar.   

Accurate forecasting of renewable generation can have financial savings and save lives 

alike. Being able to predict and forecast renewable energies allows (a) designers to design 

plants economically and safely, and (b) operators to optimally plan and manage network 

devices and resources. Finally, the reduction of the uncertainties and variability of 

renewable resources improves the stability of the network and allows for higher 

penetration level of renewables [7]. 

Realization of the different scenarios that can be generated by diverse renewable 

resources and loads allows for better system reliability. By considering those 

representative and extreme scenarios, operators are able to better assess the behavior of 

the network. This enables them (the operators) to take the correct operational strategies 

which will avoid system collapse or cascading failures. 

1.2 Objectives 
 
 The objective of this thesis is to utilize state-of-the-art machine learning 

algorithms for the problem of multistep, multivariate scenario generation and forecasting 

and evaluate the results of these algorithms. In order to achieve this objective, different 

algorithms must be integrated, and their architectures and objectives reformulated to 

include the physics of the electrical network. Some of those algorithms have been used in 

univariate scenario generation or forecasting. However, including more variables, 

extending the problem to include different time horizons, and scaling them for larger 

networks are some of the novel aspects of this study. The analysis conducted here also 
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accounts for the spatial and temporal correlations existing between the different variables, 

which have often been ignored in prior research.   

The advancement of machine learning and the computing power that we have today 

enables us to design models with complicated architectures that are able to approximate 

nonlinear relations and generalize these functions to unseen data. The different models 

designed will be tested to see if they are able to capture inherent details of the power 

system variables and the results will be compared using known metrics. 

The goal of this thesis is to make the following contributions: 

1. Reformulate existing machine learning models for multistep, multivariate 

scenario generation and forecasting. 

2. Test scalability of the models. 

3. Detailed evaluation of the results generated by the different models. 

4. Investigate the pros and cons of the models.   

1.3 Structure of the Thesis 
 
 The rest of the thesis is organized as follows. 

Chapter 2 goes over the definitions of forecasting and scenario generation and explains 

the problem formulation of multistep, multivariate forecasting and scenario generation. It 

also reviews some of the prominent literature work that has been done on forecasting and 

scenario generation using statistical and machine learning algorithms. 

Chapter 3 describes and elucidates some of the machine learning models used in this 

work. Specifically, it describes the inner workings of Convolutional Neural Networks 

(CNNs), Recurrent Neural Networks (RNNs), Generative Models (Generative 
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Adversarial Networks and Variational Auto-Encoders) and Graph Models (Graph 

Convolutional Neural Networks). 

 Chapter 4 builds the different machine learning models, generates results, and tests the 

performance of the models identified in Chapter 3. 

Chapter 5 concludes the research and discusses the results and merits of each model used 

in this work. It also gives future directions for this work.  
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CHAPTER 2 

2. PROBLEM FORMULATION AND LITERATURE REVIEW 
 
2.1 Problem Formulation 
 
In this work, we solve two problems both of which have unique attributes. The first is the 

forecasting problem. Forecasting in machine learning is the ability to use historical data to 

try and make informed estimates and predictions extrapolated from those historical data. 

Forecasting is a deterministic problem where using the same input over and over will 

generate the same expected output over and over since the input data has not changed.  This 

can be defined as: 

 𝑦 = 𝑎𝑥! + 𝑏𝑥" + 𝑐𝑥# (2.1) 
 

Where 𝑥!, 𝑥", 𝑥# are the historical data and 𝑎, 𝑏, 𝑐 are constants.  

The second problem, namely the scenario generation problem, is a more challenging 

problem since the output is a collection of predictions. The same input can be used to 

generated different outputs. While (2.1) can still be used to predict the output, the 

assumption that 𝑎, 𝑏, 𝑐 are constants is no longer valid as they are sampled from 

distributions, resulting in different outputs for the same input.  

At the same time, in an electrical network we have different types of variables such as 

loads, conventional generators, solar farms, and wind farms. To include the impacts of 

these variables and make the two problems more realistic, we consider multivariate 

scenario generation and forecasting. This results in the following new formulation: 

 𝑦$%! = 𝑎(𝑥$ + 𝑥$&!) + 𝑏(𝑤$ +𝑤$&!) + 𝑐(𝑦$ + 𝑦$&!) 2.2) 
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Where 𝑥$,$&!, 𝑤$,$&!, 𝑦$,$&! are the historical data for each of the variables and 𝑎, 𝑏, 𝑐 are 

constants in the case of forecasting and sampled from a distribution in the case of scenario 

generation. 

Day ahead planning and forecasting is an indispensable part of power system operations. 

It allows utilities to reserve and prepare units with high ramp up and ramp down capabilities 

to compensate for the uncertainties and the fluctuations that are inherent to renewable 

(mainly solar and wind) generation. Consequently, we reformulate the above problem to 

multistep, multivariate scenario generation and forecasting so that it is more suitable for 

power system operation. In this thesis, we focus on a 24-hour time horizon. 

 
2.2 Literature Review 
 

2.2.1  Forecasting 
 
Univariate forecasting for solar, wind, and other renewable resources has been explored 

previously using statistical and machine learning algorithms. In[16], the use of physical 

model information, characteristics of PV panels, and simple statistical models was 

explored. However, the relative error exceeded 10% which was due to the use of bad 

forecasted metrological data and the need for more complex statistical model to account 

for the different intercorrelations between the input variables. In [17], the authors have also 

explored the use of metrological data and machine learning to forecast one-hour ahead 

solar output. The combination of long short-term memory (LSTM) and XGBoost models 

was shown to be a good candidate for addressing the problem effectively. The paper also 

tested the model with different input horizons (1-hour to 24-hours) and 1-hour look ahead.  
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In [18], the authors have addressed the forecasting problem by using deterministic and 

probabilistic models with the latter models improving the results of forecasting as they 

bode well with the stochastic nature of solar power. Authors of [19] used seasonal 

autoregressive integrated moving average (SARIMA) model for a multistep forecasting of 

solar output. autocorrelation coefficient (ACF) was used to determine the order of the terms 

in the model and the time lags needed to generate good predictions of solar output.  

While deterministic models were able to perform relatively good for solar forecasting [18], 

the same cannot be said about wind power forecasting due to the higher variability and 

stochasticity in wind. In [20] a Markov Chain model was used to predict day-ahead wind 

power output. The results presented had high accuracies, but the model needed significant 

amount of data preprocessing and clustering based on windspeed. The use of deep belief 

networks (DBNs) for this purpose have also been considered. In [21], a DBN model was 

developed to forecast wind power at the rate of 10 minutes for 24 hours. K-means clustering 

was used to identify the largest sample in the data that has influence on the forecasting 

accuracy and only that sample was used. 

While there is an abundant of research on solar or wind forecasting, only a few have 

addressed the two variables together. In [22], the use of a software called SPSS is used to 

forecast wind and solar outputs simultaneously. The paper does not provide any 

information about the machine learning models incorporated in the software to generate 

the forecasting results. Other machine learning algorithms that have been investigated to 

solve the multivariable problem coupled the algorithms with other techniques. For 

example, neural networks and fuzzy logic was used in [23] to solve long-term multivariate 

input and multivariate output effectively for both solar and wind.    
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However, the problem of multistep, multivariate forecasting for day-ahead operation that 

is scalable to real networks has not been looked into yet. 

2.2.2  Scenario Generation 
 
 Scenario generation in a univariate setting, i.e., wind and solar separately, using 

machine learning algorithms has been researched extensively in[24]. It used improved 

conditional generative adversarial networks (C-GANs) with Wasserstein distance to 

generate univariate scenarios. Initially it used GANs to create representative scenarios of 

either solar or wind. For both cases, the model was trained separately on solar or wind 

datasets but not jointly. It then used C-GANs to generate extreme scenarios by categorizing 

the historical data based on the average power of each day.    

The problem of multivariate scenario generation has not received as much attention. One 

of the most prominent works is [25] which developed a probabilistic model using copula 

joint distribution and Spearman rank. The model generated scenarios for two wind farms 

and two solar farms simultaneously.  

Similar to the forecasting problem, multistep, multivariate scenario generation for day-

ahead operation that is scalable to real networks has not been looked into yet. 
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CHAPTER 3 

3. MACHINE LEARNING MODELS 
 
3.1 Convolutional Neural Networks (CNNs) 
 
CNNs are one of the most basic and widely used Artificial Intelligence (AI) architectures. 

They have gained popularity due to their ability to perform well in multitude of tasks 

such as classification of videos and images, natural language processing, and prediction 

in regression problems. They are also relatively easy to implement [26].  

CNNs are a deep learning algorithm that takes a matrix as an input, e.g., 𝑥	 ∈ ℝ(∗*∗+, 

where 𝐻,𝑊,𝐷 are the height, width, and depth of the matrix, respectively, and outputs a 3-

dimentional matrix with different channels. Each channel provides important yet distinct 

information about the input. The information embedded in each of the channels are the 

results of training learnable filters (kernels) as seen in Figure 3-1.  

 

Figure 3-1: CNN Architecture  
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The filters are multiplied by the input sequentially and then moved based on the stride 

value (usually 1) until a smaller version of the initial input is created. This is done 

multiple times and each time the filters focus on a smaller section of the input and 

thereby extract higher-level information (see Figure 3-2). 

 

Figure 3-2: Filters or Kernels Applied to CNNs  

 
CNNs are generally followed by fully connected layers in classification and regression 

problems as can be seen in Figure 3-1. The fully connected layers have their own 

learnable parameters (weights and biases). The output of the linear layers can be the raw 

output of the algorithm for a regression problem or a probability distribution of the 

classes in case of a classification problem. 

There are two major parts to the learning process of machine learning algorithms, in 

general, and CNN, in particular. The first is the feed-forward phase where the input goes 

through the different layers (CNNs and fully connected layers alike), and the learnable 

parameters are applied to generate the output. The result is then compared to the true 

result and the error is calculated (usually) through the mean squared error (MSE). The 
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MSE calculates the squared difference between the true and predicted output over the 

samples. 

 𝑀𝑆𝐸 = 	
1
𝑁4(𝑦, − 𝑦6-)"

.

-/!

 (3.1) 

 

During the second phase, called back-propagation, the learnable parameters are 

calculated and updated through techniques such as stochastic gradient descent (SGD). 

SGD updates the parameter for each training sample 𝑥 and their corresponding label 𝑦 

with a regularized version of the newly learned parameters so that the distribution does 

not shift suddenly based on one sample of the training: 

 𝜃 = 𝜃 − 𝛼∇0𝐽(𝜃; 𝑥; 𝑦) (3.2) 

 

In (3.2), the partial derivative is taken of the layers with respect to their weights and 

multiplied by the learning rate to update the layers’ new weights. Learning rate is the 

regularization mentioned earlier in this chapter that controls how much we want to learn. 

In Figure 3-3, learning rate is represented by the black arrow – a small learning rate will 

allow us to move slowly until the training loop is over and we still might be far away 

from the optimal solution. A large learning rate on the other hand, might let the weights 

(represented by the black dot) roll and pass the optimal solution back and forth. 
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Figure 3-3: Performing Gradient Descent for Weights  

 
Activation Functions: 
 
Each of the outputs of the intermediate layers is usually activated using an activation 

function such as Rectified Linear Unit (ReLU), hyperbolic tangent (tanh) or a simple 

linear layer to improve the generalization of the network. ReLU is one of the most widely 

used activation functions in neural networks [27] and therefore, it is used in this thesis to 

activate the fully connected layers. ReLU function can be seen in Figure 3-4 and the 

mathematical formulation is shown in (3.3).  
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Figure 3-4: ReLU Activation Function  

 𝑔(𝑥) = =𝑥, 𝑤ℎ𝑒𝑛	𝑥	 ≥ 0
0,𝑤ℎ𝑒𝑛	𝑥	 ≤ 0 (3.3) 

Pooling Layer 
 
The pooling layers operate on each channel independently and divide the input matrix of 

size 𝐻 ×𝑊 into subregions of smaller sizes and perform operations on them (see Figure 

3-5). In the work presented in this thesis, max-pooling is used. The pooling operation 

divides the input features into subregions, operate on those subregions to summarize 

those features. In Figure 3-5, a max-pooling layer is passed through the input and we see 

that the pooling layer divides the input features to 4 regions. It reduces each subregion to 

its maximum features. We see the 5 is the maximum value in the blue region, 9 in the 

green region, 8 and 9 in the yellow and red region respectively. 
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Figure 3-5: Max-pooling Applied to CNN  

 
3.2 Variational Auto Encoders (VAE) 
 
To understand VAE, we need to explain Auto-Encoders. Auto-Encoders are a type of 

generative models that try to reconstruct the original input by reducing the high 

dimensionality of the input to a latent vector through a neural network (encoder part of 

the architecture). Then, a second neural network (namely, decoder) that has the opposite 

architecture of the encoder network, tries to map that low dimensional vector to a 

reconstruction of the input, see Figure 3-6. In AEs, the goal is to generate images that are 

very similar to the input images. That is, once trained, AEs generate similar 

representation or a reconstruction of the input. 

 
Figure 3-6: Auto-Encoders  
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VAEs follow the same general structure of AEs, namely, the encoder, decoder, and the 

latent representation between the encoder-decoder network.  The main difference lies in 

the fact that now we want to reconstruct our input (similar to AEs) while also learning the 

different distributions of our data. The encoder tries to encode the high dimensional input 

features into means and variances that describe the different data distributions. The 

decoder inputs are randomly sampled from those learned distributions (from the encoder 

part). The decoder generates new data based on the sampled information, see Figure 3-7. 

The loss function is shown in (3.4). It consists of two parts, the first part, log 𝑝(𝑥|𝑧)	, is 

similar to AE’s loss which is the reconstruction loss between input and output that we 

want to minimize. The second term is the Kullback-Leibler (KL) divergence, which 

makes sure that the distributions learned in z space are not far away from a normal 

distribution.  

 𝐸1(𝑧|𝑥) log 𝑝(𝑥|𝑧) − 𝐾𝐿(𝑞(𝑧|𝑥)||𝑝(𝑧)) (3.4) 

 

Figure 3-7: Architecture of Variational Auto Encoders  
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3.3 Long Short-Term Memory networks (LSTM) 
 
LSTMs are used in state-of-the-art natural language processing such as search 

autocompletion in Google, recommendation system in Amazon, and Netflix[28], [29]. 

They perform exceptionally when dealing with sequential data due to their ability to 

retain long-term dependencies. A single LSTM cell (see Figure 3-8) encloses what is 

referred to as “gates” and takes in an input 𝑋$, information from the previous time step 

𝐶$ − 1, and ℎ$ − 1, and creates outputs ℎ$ and 𝐶$ for the next cell if the information still 

needs to be processed. 

 

Figure 3-8: LSTM Cells [30] 

 

The information going through the LSTM cell is processed through gates and the first 

gate is the forget gate. This gate basically decides what information from the previous 

step in 𝐶$ − 1 is to be forgotten based on the new information 𝑋$. This is done through 

the sigmoid function (highlighted in yellow in Figure 3-9) which squashes the 

information between 0 and 1 with 0 being forget that information and 1 being completely 

remember that information. 
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Figure 3-9: LSTM Forget Gate [30] 

The second gate, namely the remember gate, is concerned with what is currently 

important and must be remembered so it can be added to 𝐶$ to build a long-term memory. 

Both the input 𝑋$ and the information from the previous time step ℎ$ − 1, are passed 

through a sigmoid function and a tanh function. The sigmoid function is used similar to 

the previous step, i.e., to decide which information is relevant and must be remembered. 

However, the tanh function is used to prioritize the information in 𝑋$ by squashing it 

between -1 and 1, see Figure 3-10.  

 
Figure 3-10: Remember Gate [30] 

 
The output is then added to 𝐶$ − 1 and passed to the next cell 𝐶$ accumulating more 

long-term information, see Figure 3-11. 
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Figure 3-11: Remember Gate (Cell State) [30] 

The last gate in the process is the output gate. It basically takes the summarized version 

of the long-term memory, 𝐶$, pushes the values between -1 and 1, reduces the current 

time input to probabilities using the sigmoid function, and multiplies the two to generate 

the output ℎ$, see Figure 3-12.  

 

Figure 3-12: Output Gate [30] 

3.4 Conditional Generative Adversarial Networks (C-GANs) 
 
GANs are a clever way of setting up two neural networks with opposing objectives to 

play against each other to see if they are able to learn how the other operates and find 

equilibrium. GAN algorithms essentially use two blocks, a generative block and a 

discriminator block, both of which are represented by a deep neural network. The 

generator takes in a random vector and tries to create an output that is similar to the input 

dataset. The discriminator tries to distinguish between the real input data and the 
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synthetic data created by the generator (see Figure 3-13). The GAN algorithm is 

analogous to a two-player game with opposing and adversarial objectives. 

 

Figure 3-13: GAN General Architecture  

 

 𝑚𝑖𝑛0!𝑚𝑎𝑥0"[Ε5~789$9𝑙𝑜𝑔𝐷0"(𝑥) 	+	Ε:~7(:)log	(1 − 𝐷0" Y𝐺0!(𝑧)[)] (3.5) 

 
In the loss function for a GAN shown above, the discriminator, described by the 

parameters (𝜃8), tries to maximize the loss function (𝑚𝑎𝑥0"[Ε5~789$9𝑙𝑜𝑔𝐷0"(𝑥)]). That 

is, it tries to correctly identify real images from fake images generated by the generator 

block. The generator, described by the parameters (𝜃;), tries to minimize the second term 

of the equation (𝑚𝑖𝑛0![Ε:~7(:)log	(1 − 𝐷0" Y𝐺0!(𝑧)[)]. That is, it tries to fool the 

discriminator into thinking that those synthetic images are real images. Both 𝜃8 and 𝜃; 

are some form of neural networks. 

3.5 Graph Convolutional Neural Network (GCNN) 
 

GCNNs are unstructured CNNs where the spatial relations are not limited to nearby data. 

In reality, two adjacent loads can be connected to the same circuit but also, they can be 
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connected to different sources that do not meet at all. That is where CNNs fail and 

GCNNs succeed. 

 Spatio-Temporal Graph Convolutional Networks (STGCN) 

STGCN [31] is a special type of GCNN where the application is a regression problem 

and not a classification problem. STGCN was introduced in 2017, where it was applied to 

forecast traffic. STGCN consists of two main blocks, see Figure 3-14: 

1- Spatio-Temporal Convolutional Block: The input time series is passed through a 

temporal gated convolutional network to extract temporal features and a spatial graph 

convolutional network where the spatial relations of the network are utilized to help in 

prediction. 

2- Output Layer: The output layer is a linear Bayesian layer to generate the 

scenarios.  

 

Figure 3-14: STGCN General Architecture [31] 

Temporal Gated Convolutional Network: 

The temporal layer simply applies the following equation: 
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 Γ ∗ 𝒯	𝑌 = 	𝑃 ⊙ 	𝜎(𝑄) (3.6) 

Where 𝑃 is the raw data of the time series,  𝑄 is the raw data of the time series passed 

through a 1-D CNN to summarize and learn temporal relations and 𝜎 is the sigmoid 

function that squashes the results between 0 and 1 and acts as a gate to control the flow of 

data. The elements of the original time series (𝑃) is then multiplied by the elements of the 

summarized version of the time series (𝑄). The result of this temporal layer is an 

evaluation of the importance of each input in the time series. 

Spatial-Graph Convolution: 

In the [31], for the traffic forecasting application, the term in the parentheses in (3.7) was 

used to normalize a given adjacency matrix since 1 and 0 or completely connected and 

unconnected nodes, did not stabilize the learning process. 

 Θ ∗𝒢 (𝑥) = 	𝜃(𝐷f&=.?𝑊f𝐷f&=.?)𝑥 (3.7) 

However, since the connection in an electrical network is characterized by the Ybus 

matrix (admittance matrix) and since the Ybus actually quantifies how strong and how 

week is the connection between each node, it was logical to replace that normalization 

with the Ybus so that the new formulation becomes: 

 Θ ∗𝒢 (𝑥) = 	𝜃(𝑌𝑏𝑢𝑠)𝑥 (3.8) 

 
The above, (3.8), simply states that the output of the temporal layer is multiplied by the 

Ybus and the result is multiplied with theta (a neural network with learnable parameters).  

ST-Conv Block: 

The final result of each spatio-temporal block is expressed below: 

 𝑣@%! =	Φ0(Γ!@ ∗ 𝒯	𝑅𝑒𝐿𝑈	(Θ@ ∗𝒢 mΓ!@ ∗ 𝒯𝑣@n)) (3.9) 
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Starting with the rightmost parentheses, we see that the time series input (𝑣@) is passed 

through the temporal gated convolutional layer. The result is then passed through the 

spatial-graph convolution. The result is then activated by a ReLU function and passed 

through another temporal gated convolutional layer. Finally, the result is passed through a 

Bayesian network to generate the desired scenarios.    

 

 

3.6 Error Metrics 
 
RMSE: Root Mean Squared Error (RMSE) is a standard measure of error used to 

quantify the prediction error of a model and it is defined as: 

 𝑅𝑀𝑆𝐸 = 	o4
(𝑦6- − 𝑦-)"

𝑛

A

-/!

 (3.10) 

The problem is, this metric in itself cannot determine the quality of scenario generation 

models. This is because scenarios are supposed to be different and sometimes extreme. 

Therefore, this metric is employed to check if the model struggles across the different 

variables (solar, wind, and load), but is not used to compare the accuracy of the different 

algorithms identified in this thesis. 

Mean Absolute Error: Mean Absolute Error is another error metric between paired time 

series, and it is employed in the same way as the RMSE. 

 𝑀𝐴𝐸 =	
1
𝑁4|𝑦- − 𝑦6-|

.

-/!

 (3.11) 
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3.7 Autocorrelation Coefficient Function (ACF) 
 
Time observations can be correlated with other forms of lagged versions of the same time 

series. ACF quantifies how those data points relate to the preceding time steps. It 

essentially measures the self-similarity of the times series between different time-lags.  

 𝑝B =
∑ (𝑟$ − �̅�)(𝑟$&B − �̅�)C
$/B%!

∑ (𝑟$ − �̅�)"C
$/!

 (3.12) 

For example, time series with adjacent measurements have similar values and distant 

measurements have values with higher deviations. That is, the ACF tends to decrease 

over larger time-lags. A positive value in the ACF means that the data points for this 

particular time lag stay consistently above or below the mean of the time series, while a 

negative value means that the data points alternate across the mean. In this thesis, ACF is 

used to see if the generated scenarios and the original input signals behave similarly over 

different time lags. 

 

3.8 Cumulative Distribution Function (CDF) 
 
CDF is defined mathematically as: 

 𝐹D(𝑥) = 𝑃(𝑋 ≤ 𝑥) (3.13) 

It is the probability that the variable 𝑋 takes a value less than 𝑥. CDF is used to compare 

the real and generated scenarios. 
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CHAPTER 4 

4. PROPOSED ARCHITICURES 
 

In this chapter we are going to prepare our dataset, define some preprocessing techniques 

and apply them our data, prepare the test system, and design the architecture of the 

different ML models. For each of the models, we are going to show different seasonal 

results for wind and solar farms, weekday and weekend results for load and discuss the 

results. Lastly, we will compare the different algorithms and their performances, discuss 

the weak points and superiority of each model and their application.  

4.1 Data Preprocessing 

Machine learning models depend heavily on the quality and the quantity of the dataset 

utilized. In order to build our training dataset, we need realistic data for solar farms, wind 

farms, and loads. For solar and wind farms, the NREL integration dataset [32] was used. 

It provides one-year worth of hourly data for different solar and wind farms in the US. 

Due to the lack of load datasets, the information of the synthetic 2000-bus Texas system 

[33] was utilized. It provides an hourly load reading for one year. Hence, we have a total 

of 8,760 data points for each variable. 

4.2 The Test Model 

The IEEE-30 bus system was chosen to test the different machine learning models 

identified in Chapter 3. The two conventional generators located at buses 1 and 2 of this 

system were replaced by solar farms and wind farms, respectively. The loads of each of 

the buses were compared to the average of each of the load buses in the Texas 2000 bus 

test case and the mapping of the buses was done accordingly.  
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Figure 4-1: IEEE-30 Bus System  

4.3 Data Normalization 

Data normalization is a very important and an integral step of any regression problem. It 

makes models process data faster [34] and learn quicker than when raw data are used. It 
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also avoids explosion of learnable parameters in neural networks during training. 

Therefore, we need to normalize our data before using them in training or prediction. 

The equation used to normalize the data is shown below: 

 𝑧 = 	
𝑥 − 𝜇
𝜎  (4.1) 

Where z is the normalized value, x is the raw data, 𝜇 is the mean of the data and 𝜎 is the 

standard deviation of the data. This normalization is done variable wise in a multivariate 

problem. In this setting, for each variable, we calculate its mean and standard deviation 

and apply the normalization for that variable.  

4.4 Label Encoding 

Label encoding is a process to convert categorical classes into numerical forms as 

machine learning algorithms are unable to work with labeled data. One form of label 

encoding is integer encoding where each category is converted into an integer [35]. For 

example, if we have 3 different labels for the different classes, each label can be given an 

integer value between 1 and 3. However, this might create an ordering problem since 

three is bigger than one. The algorithm might translate that as class “3” has higher 

probability of happening compared to class “1”. The second method is to use One-Hot 

Encoding [35]. One-Hot Encoding is the process of labeling the different classes with 0 

and 1. So for the same 3 class example, one hot encoding would generate a vector of size 

3 and the correct class will be 1 and all the other classes will be given 0. 

4.5 CNN Model 

CNNs have performed exceptionally when it comes to image classification problems due 

to the way the filters process spatial patterns in pictures. They also have great merits 
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when it comes to forecasting because the same filters can be used to process limited 

temporal and spatial relations. However, using a combination of CNN and Multi-Layer 

Perceptron (MLP) can only result in the same output over and over given a fixed input. 

This is due to the fact that all the learnable parameters (weights and biases of the neurons 

and filters), are set after the model is trained. However, that is not the purpose of scenario 

generation as we want to generate different scenarios given the same input. The way to 

overcome this problem is to use a distribution over the weights for the last layer. That 

will allow for the CNN to capture and learn temporal and spatial relation for different 

types of variables and then generate scenarios at the last layer by sampling from the 

weights of the last layer instead of using set parameters that generate the same output 

repeatedly given an input. 

4.5.1 Data 

To test the algorithm, we are using the IEEE-30 bus test case illustrated previously. The 

input data to the algorithm has the following structure: 

- Original input matrix has 2 dimensions where the rows are the time steps and the 

columns are the number of variables (e.g., 30 variables in the IEEE-30 bus system), in the 

network. 

-  The input data preprocessor function will normalize the data, generate input and 

output data sequences, and train, validate and test data sequences. The input and output 

sequence matrices have 3 and 2 dimensions, respectively, where the input matrix has the 

final shape of (number_of_samples, input_time_window, number of variables), see 

Figure 4-2, and the output matrix has the shape of (number_of_samples, 

output_time_window*number of variables). 
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Figure 4-2: Data Input to CNN Model 
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4.5.2 Hyperparameters 

Table 4-1: CNN Hyperparameters 

Input Horizon 48 

Output Horizon 24 

Stride 24 

Number of Epochs 1000 

CNN 

Filters 64 

Filter Size 1x2 

Maxpooling 2x2 

Linear Layer 

1st Layer Size 800 neurons 

Activation Function Relu 

2nd Layer Size 30 neurons 

Activation Function Linear 

Learning Rate 0.001 

Optimizer Adam 

Loss Mean Squared Error 

Data 

Train 80% 

Validation 10% 

Testing 10% 
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The above-mentioned hyperparameters were the best parameters found during the 

training of the neural network.  

4.5.3 Results 

 

After training the CNN model to generate scenarios, we sample from those scenarios and 

analyze if the model is able to generate representative scenarios. First, we compare 

sample summer and winter scenarios for the solar farms. In order to generate the 

scenarios, we need to repeatedly input distinct summer and winter power profiles for the 

solar farms. The same scenarios used here will be used for the other algorithms for 

benchmarking and comparison. Figure 4-3-Figure 4-8 show the results. 

 

Figure 4-3: Solar Generated Scenarios During Summer 
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Figure 4-4: Solar Generated Scenarios During Winter 

 

Figure 4-5: Average Hourly Power for Solar Farms in Summer Scenarios 

 

[M
W

] 

[Hours] 

[M
W

] 

[Hours] 



   33 

 

Figure 4-6: Average Hourly Power for Solar Farms in Winter Scenarios 

 

Figure 4-7: Average Daily Power for Summer Scenario 
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Figure 4-8: Average Daily Power for Winter Scenario 

Looking at those scenarios, we notice that CNN is able to generate reasonable scenarios 

that are able to capture the intricate seasonal behavior of solar farms in summer and 

winter. We notice that in summer scenarios (see Figure 4-3), the solar farms generate 

more for longer hours. It starts producing as early as 5 A.M, reaches its capacity at 8 A.M 

and generally stays at that level for most of the day, before dying down as late as 6 or 7 

P.M. During the winter scenario (see Figure 4-4), we notice that the level of production 

has decreased by 30% during the day and that the duration has also shrunk significantly. 

From the average hourly production (see Figure 4-5 and Figure 4-6), we notice a higher 

variability during the day. This could be due to the presence of more cloudy days during 

the winter season (see Figure 4-6). Looking at the average production for the generated 

scenarios (see Figure 4-7 and Figure 4-8), it is clear that summer scenarios have a higher 

average production compared to winter scenarios. This is expected and conforms to a 

solar farm’s production behavior. 

Feeding-in summer and spring wind scenarios generates the following results (see Figure 

4-9-Figure 4-14). 
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Figure 4-9: Wind Generated Scenarios During Summer 

 

 

Figure 4-10: Wind Generated Scenarios During Spring 
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Figure 4-11: Average Hourly Power for Wind Farms in Summer Scenarios 

 

  

Figure 4-12: Average Hourly Power for Wind Farms in Spring Scenarios 
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Figure 4-13: Average Daily Power for Summer Scenario 

 

    

Figure 4-14: Average Daily Power for Spring Scenario 

 

For a wind farm producing during the spring season (see Figure 4-10), the algorithm is 

able to capture the pattern of high-power production. However, the variability that is 

inherent to wind farms is not particularly captured as can be seen by the hourly average 

power production (see Figure 4-12). This is not the case for a wind farm producing in the 
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summer season (see Figure 4-9), where the algorithm is able to capture the lower 

production level during the summer season as well as the variability of wind (see Figure 

4-11). Examining the average power production for summer (see Figure 4-13) and spring 

(see Figure 4-14) scenarios, we notice a lower average production during summer and a 

higher production level during spring, which is what we expect during those two seasons. 

Examining load scenarios during weekdays and weekdays, and feeding-in corresponding 

inputs, we get the following outputs (see Figure 4-15-Figure 4-20). 

                           

Figure 4-15: Load Generated Scenarios During Weekday 
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Figure 4-16: Load Generated Scenarios During Weekend 

            

Figure 4-17: Average Hourly Demand for Load Weekday Scenarios 
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Figure 4-18: Average Hourly Demand for Load Weekend Scenarios 
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Figure 4-19: Average Daily Demand for Weekday Scenario 

 

 

Figure 4-20: Average Daily Demand for Weekend Scenario 

 

Investigating the behavior of the load during weekdays and weekends, we find that the 

algorithm is able to generate different scenarios that are in line with our expectations. 

Given a weekday load profile, the model is able to capture the pattern of the load where 

there is a heavy consumption during the morning and afternoon hours, and it drops during 
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the nighttime (see Figure 4-15). The behavior changes a little bit during the weekends, 

where the load rise starts later in the day and starts decreasing later in the afternoon (see 

Figure 4-16). The scenarios generated are still not able to capture the variability of the 

load and that is evident by the hourly average consumptions (see Figure 4-17 and Figure 

4-18).  The scenarios for the weekday load consumption is generally higher when 

compared to weekends and that also is aligned with our expectations (see Figure 4-19 and 

Figure 4-20).   

4.5.4 Autocorrelation and Error Metrics 

 

Sampling randomly generated scenarios and comparing them temporally to real scenarios 

using the ACF gives us insights into the quality of the generated scenarios, particularly if 

they capture the temporal behavior of each variable. 
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Figure 4-21: Autocorrelation of Real and Generated Scenarios 

Looking at the ACF plots in Figure 4-21, we see that the algorithm generally tries to 

generate scenarios that mimic the temporal behavior of the real scenarios, especially the 

solar scenarios, but struggles with some of the load and wind scenarios. This can be seen 

from the ACF (bottom left corner on Figure 4-21) and the ACF next to it. 

 To further validate the quality of the generated scenarios compared to the real scenarios, 

we look into the CDFs (see Figure 4-22-Figure 4-24) of the generated scenarios 

compared to the real ones. 
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Figure 4-22: CDF of Real and Generated Load Scenarios 

 

Figure 4-23: CDF of Real and Generated Wind Scenarios 
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Figure 4-24: CDF of Real and Generated Solar Scenarios 

The CDF profiles for the different variables further reinforces the belief that has been 

established by the ACF, which is that the algorithm struggles more to create wind and 

load scenarios due to the higher variability of wind and load present in the data.   

4.5.5 Error Metrics: 

The standard errors shown below are used to check which variable the model struggles 

with the most. As it was evident by the previous results, the model struggles the most 

with wind and load scenarios compared to solar scenarios, and this is reflected in the 

error metric as well. 
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Table 4-2: MAE and RMSE Error for CNN 

 Load Solar Wind 

MAE 1.994 0.322 2.938 

RMSE 12.960 0.135 17.094 

 

4.6 LSTM-VAE 

 

LSTMs have gained their popularity from their ability to process sequential data 

effectively even with arbitrary hyperparameters. They are able to subsume sequential data 

due to their structure that was explained previously in Chapter 3.3. However, LSTMs, 

like a neural network’s learnable parameters, are fixed. Hence, for the same input only 

one output is generated and that is not the purpose of scenario generation. So, to 

overcome this issue, VAE structure is employed. LSTM is used in the encoder part to 

summarize the input sequential data of the different variables. The VAE then tries to 

learn the different means and variances of those variables. The VAE samples from the 

different categorical embeddings and an LSTM that has the reverse architecture to the 

one used in the encoder, is used to decode and generate new data in the decoder. An 

architecture of the model is shown in Figure 4-25. 
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Figure 4-25: LSTM Model Architecture  

4.6.1 Data: 

To test the algorithm, we use the IEEE-30 bus test case illustrated previously. The input 

data to the algorithm has the following structure: 

- Original input matrix has 2 dimensions where the rows are the time steps and the 

columns are the number of variables (e.g., 30 variables in the IEEE-30 bus system), in the 

network. 

-  The input data preprocessor function will normalize the data, generate input and 

output data sequences, and train, validate and test the data sequence. The input and output 

sequence matrices have 3 and 2 dimensions, respectively, where the input matrix has the 

final shape of (input_time_window, number_of_samples, number of variables) and the 

output matrix has the shape of (output_time_window, number of variables). 
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4.6.2 Hyperparameters: 

Table 4-3: LSTM-VAE Hyperparameters 

Input Horizon 120 

Output Horizon 24 

Number of Recurrent Layers 1 

Batch size 35 

Hidden Size 44 

Number of Epochs 200 

Teaching vs Recursive  Mixed (30% Teacher Forcing) 

Learning Rate 0.005963 

Optimizer Adam 

Loss Mean Squared Error 

Data 

Train 80% 

Validation 10% 

Testing 10% 

 

A random search was done over the different hyperparameters to finetune the results of 

the network with the objective of minimizing the loss function (see Figure 4-26). The 

objective of this random search is to find the best combination of hyperparameters to 

minimize the loss. The highlighted line in Figure 4-26 shows the best combination of 

hyperparameter.  
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Figure 4-26: Hyperparameter Search for LSTM-VAE 

4.6.3 Results: 

Now that the LSTM-VAE model is trained, we are able to sample different scenarios for 

given inputs to evaluate the quality of those scenarios with what we know from the 

characteristics of solar and wind farms, and loads. We also evaluate them with correlation 

and error metrics. First, we generate scenarios based on random inputs from our dataset. 

In this case we do not have control over picking seasonal data. The aim is to generate 

random scenarios and the results obtained for each given input are as follows. 
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Figure 4-27: Real and Generated Sample Scenarios 

A distinct feature of the LSTM-VAE algorithm as seen in Figure 4-27 is that although it 

is not able to generate scenarios as we had hoped, it does succeed in solving the 

forecasting problem. This is because there is little to no variability when sampling one or 

two scenarios from a given input. However, we will consider generating more scenarios 

in subsequent analysis (Figure 4-28-Figure 4-43) to see if that is able to create more 

variability.  

We first try the same input for solar farms for both summer and winter seasons and 

compare the results. 
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Figure 4-28: Solar Generated Scenarios During Summer 

 

            

Figure 4-29: Solar Generated Scenarios During Winter 
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Figure 4-30: Average Hourly Power for Solar Summer Scenarios 

 

 

 

Figure 4-31: Average Hourly Power for Solar Winter Scenarios 
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Figure 4-32: Average Daily Power for Summer Scenario 

 

 

 

Figure 4-33: Average Daily Power for Winter Scenario 
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Sampling more scenarios from a given input does generate a little variability to our 

scenarios as illustrated by summer and winter scenarios for solar farms (seeFigure 4-28-

Figure 4-33). Similarly, just like the CNN model, the LSTM-VAE model is able to 

capture different seasonal behavior for different inputs without being explicitly told. In 

summer scenarios (see Figure 4-28), the solar farm generates more power and for 

extended periods of time during the day and early evenings. In winter (see Figure 4-29), 

the production level drops by 36% and the production hours starts later in the day and 

drops much earlier compared to summer scenarios. We also notice that unlike the CNN 

model, LSTM-VAE is able to capture small details about solar farms such as the fact that 

the production level does not fall below zero (see Figure 4-28). In the average power 

production per hour (see Figure 4-30 and Figure 4-31), we see little to no variation. This 

is due to the ability of LSTMs to retain temporal information accurately. Comparing the 

average power for the generated scenarios during summer and winter (see Figure 4-32 

and Figure 4-33), we see that the solar farm produces much more electricity during the 

summer while the output is close to zero in the winter. 

Moving the attention to wind farms, and sampling different scenarios from summer and 

spring we see the following outputs (see Figure 4-34-Figure 4-39).  
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Figure 4-34: Wind Generated Scenarios During Spring 

 

Figure 4-35: Wind Generated Scenarios During Summer 
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Figure 4-36: Average Hourly Power for Wind Spring Scenarios 

 

Figure 4-37: Average Hourly Power for Wind Summer Scenarios 
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Figure 4-38: Average Daily Power for Spring Scenario 

 

Figure 4-39: Average Daily Power for Summer Scenario 

Although the model is able to distinguish between different seasons and generate 

scenarios accordingly, it still suffers from generating scenarios that look very similar to 

each other, i.e., with little variations (see Figure 4-34 and Figure 4-35). The spring 

scenarios tend to have higher production level compared to the summer scenarios and the 

summer scenarios tend to have a bigger dip early in the day. Generally, the average 
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power of the generated scenarios during spring is higher compared to the average power 

production during summer season (see Figure 4-38 and Figure 4-39). 

The load scenarios during weekday and weekend are very distinct (see Figure 4-40 and 

Figure 4-41) and the model is able to capture that but the same invariability between 

scenarios is observed (see Figure 4-42 and Figure 4-43).  

 

Figure 4-40: Load Generated Scenarios During Weekday 
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Figure 4-41: Load Generated Scenarios During Weekend 

 

Figure 4-42: Average Hourly Demand for Load Weekday Scenarios 
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Figure 4-43: Average Hourly Demand for Load Weekend Scenarios 

4.6.4 Autocorrelation and Error Metrics: 

Sampling generated scenarios and comparing them temporally to real scenarios using the 

ACF gives us insights into the quality of the generated scenarios, particularly if they 

capture the temporal behavior of each variable. 

[M
W

] 

[Hours] 



   61 

 

Figure 4-44: Autocorrelation of Real and Generated Scenarios 

Looking at the ACF plot (see Figure 4-44), we see that the algorithm mimics the temporal 

behavior of all input scenarios perfectly and that further verifies our assumption that 

LSTM-VAE solves the forecasting problem rather than the scenario generation problem. 

With all the variables, ACF of the real and generated scenarios are undistinguishable and 

the model does not struggle with any type of variable in particular. 

Next we look at the CDFs (see Figure 4-45 and Figure 4-47) of both the real and 

generated data to see if they mimic the temporal behavior perfectly as seen from the 

ACF. 
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Figure 4-45: CDF of Real and Generated Load Scenarios 
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Figure 4-46: CDF of Real and Generated Wind Scenarios 
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Figure 4-47: CDF of Real and Generated Solar Scenarios 

It is evident from the above plots that the CDF of real and generated data are a match. 

4.6.5 Error Metrics: 

The results of MAE and RMSE shown below further validate the inference that the 

LSTM-VAE model is suitable for forecasting across all variables. 

Table 4-4: MAE and RMSE for LSTM-VAE 

 Load Solar Wind 

MAE 0.397 0.193 0.296 

RMSE 0.264 0.051 0.176 
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4.7 Conditional GANs 

GANs are the epitome of generation models. They are able to generate images, 

sequences, codes, sentences, and much more [36]. However, GANs are infamous when it 

comes to training [37]. The generator needs to learn the dataset distribution and fool the 

discriminator. However, more often than not, the generator finds an easy way of fooling 

the discriminator, but not by actually mimicking the distribution of the dataset. Sampling 

from this generator would yield noise or in some cases zeros, which is known as model 

collapse as the generator is not able to learn the data distribution but is able to outsmart 

the discriminator. There are abundant ways to facilitate the training process and mitigate 

the model collapse problem such as using Wasserstein distance and improved GANs.  

Although these methods work, their scalability is still a concern because the generator 

needs to learn different distributions. 

To put this into test, we start with a simple problem where the generator has to learn three 

different variables. We evaluate the results to check if it is successful. Subsequently, we 

will try to increase the number of variables and conditions to 10 (2 wind farms, 2 solar 

farms and 6 loads) and 40 (4 seasons per variable), respectively. If the model is able to 

perform well, only then we will test it on the IEEE-30 bus system with 30 variables and 

120 conditions. 

4.7.1 Data: 

To test the algorithm, we are initially training and testing on three variables. The input 

data to the algorithm has the following structure: 

- Original input matrix has 2 dimensions where the rows are the time steps and the 

columns are the number of variables, namely three (wind, solar, and load). 
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- Since GANs are not able to distinguish between the different variables, we also 

need integer representation for those variables. This is as follows: 0 = wind, 1 = solar, 2 = 

load 

- The input data preprocessor function will normalize the data, generate input and 

output data sequences, and train, validate and test data sequence, as well as one-hot 

encode the integer representation of the variables. The input and output sequence 

matrices have 2 and 2 dimensions, respectively, where the input matrix has the final 

shape of (number_of_samples, input_time_step+encoding_of_the_variable) and the 

output matrix has the shape of (number_of_samples, output_time_step) 

4.7.2 Hyperparameters: 

The hyperparameters were taken from [24]. 

    

Figure 4-48: C-GANs Hyperparameters [24] 

On the left-hand side of each column in Figure 4-48, we see the type of layer used and on 

the right-hand side we see the size of the output. MLP is a linear layer and Conv is a 

convolutional layer (CNN) and Conv_transpose is a deconvolution layer that has the 

opposite structure than the Conv layer. 
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4.7.3 Results:  

Unlike the previous models, the input to the trained model is not a time series of solar, 

wind, or load. Instead, the input to the model is a random latent vector 𝑧 sampled from a 

normal distribution and an encoded value for the variable (0=wind, 1=solar, and 2=load), 

which makes it very difficult to control the output. We only have control using the stated 

conditions (wind, solar, or load). For the previous algorithms, we used to input a summer 

scenario for solar or a weekday for load and expect results that behave similarly to the 

input. For C-GANs we sample and evaluate the results to see if they conform to a certain 

seasonal characteristic for the given variable. 

However, since the input is a random variable, the need for a Bayesian layer is no longer 

a must and as the input is random (and not a real scenario), we can generate distinct 

scenarios from different seasons and days simultaneously. This can be seen as a huge 

advantage for scenario generation as the algorithm is not governed by the input time 

series and can generate representative and extreme scenarios at the same time.  

Looking at generated scenarios for solar (see Figure 4-49), we can see that the results are 

different from our previous generated scenarios. We see that the output is higher than all 

previously generated scenarios but at the same time, the duration of the power generated 

during the day is less compared to the previous results, the average power generated (see 

Figure 4-51) is less and we can also see higher variability (see Figure 4-50) in the results, 

especially during ramp-up and ramp-down, which was not captured by the previous 

algorithms. 
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Figure 4-49: Solar Generated Scenarios During Summer 

 

 

            

Figure 4-50: Average Hourly Power for Solar Summer Scenarios 
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Figure 4-51: Average Daily Power for Summer Scenario 

Looking at wind or load generated scenarios does not give us a lot of information about 

seasonal or weekly data. Generating data for wind scenarios results in the scenarios 

shown below (see Figure 4-52-Figure 4-54). The same conclusion can be drawn as the 

solar scenarios regarding variability and the difficulty to categorize these scenarios into a 

single season.  

                        

Figure 4-52: Wind Generated Scenarios 
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Figure 4-53: Average Hourly Power for Wind Scenarios 

 

 

 

Figure 4-54: Average Daily Power for Wind Scenario 
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Nonetheless, the C-GAN works and is able to generate distinct scenarios which was the 

ultimate goal of this test. Next, we scale up the data and investigate the ability of the 

model to work with 10 variables and 40 conditions. The hyperparameters of the generator 

and the discriminator do not change. The only change happens in the number of inputs 

and the one-hot encoding of the different variables. 

Sampling outputs from the scaled-up version of the model gives the results shown below 

(see Figure 4-55-Figure 4-57). 

                           

Figure 4-55: Solar Generated Scenarios 
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Figure 4-56: Load Generated Scenarios 

          

Figure 4-57: Wind Generated Scenarios 

 

It is clear from Figure 4-55-Figure 4-57 that the model has failed and collapsed during 

training due to the number of conditions that the generator tries to learn, especially when 

those distributions overlap. To further investigate this issue, we sample results during the 
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training process of the generator for the initial 3 variable case and the scaled-up 10 

variable case. The results obtained are as follows. 

 

Figure 4-58: Sampled Output During Training (Epoch = 50) 

 

Figure 4-59: Sampled Output During Training (Epoch = 100) 
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Figure 4-60: Sampled Output During Training (Epoch = 150) 

 

Figure 4-61: Sampled Output During Training (Epoch = 200) 

 

Figure 4-58-Figure 4-61 show the progression of the training process for the three-

variable case. We are able to see that the generator starts with random variables but over 

the training epochs, it is able to learn the different distributions of the variables. Looking 

closely at the generated scenarios, one can also distinguish solar scenarios from wind or 

load (see  Figure 4-61).  
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Figure 4-62: Sampled Output During Training (Epoch = 50) 

 

 

 

Figure 4-63: Sampled Output During Training (Epoch = 100) 
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Figure 4-64: Sampled Output During Training (Epoch = 150) 

 

        

Figure 4-65: Sampled Output During Training (Epoch = 200) 
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Figure 4-66: Sampled Output During Training (Epoch =250) 

 

       

Figure 4-67: Sampled Output During Training (Epoch = 300) 

 

Figure 4-62-Figure 4-67 show the progression of the training process for the 10 variable 

case. We are able to see that the generator starts with random variables, and over the 

training epochs, tries to learn the different distributions of the variables. However, over 

time, it collapses and starts generating constant values that do not relate to the original 

dataset. 
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4.8 STGCN 

 

STGCN is a type of graph neural network that does sequential temporal and spatial 

manipulations over the data based on the raw input data and an adjacency matrix. Ybus is 

used as the adjacency matrix in this thesis. The algorithm tries to do a node level (bus 

level) predictions for all the nodes in the system simultaneously. 

4.8.1 Data: 

 

To test the algorithm, we use the IEEE-30 bus test case illustrated previously. The input 

data to the algorithm has the following structure: 

- Original input matrix has 2 dimensions where the rows are the time steps and the 

columns are the number of variables (e.g., 30 variables in the IEEE-30 bus system), in the 

network. 

-  The input data preprocessor function will normalize the data, generate input and 

output data sequences, and train, validate and test data sequence. The input and output 

sequence matrices have 3 and 2 dimensions, respectively, where the input matrix has the 

final shape of (input_time_step , number_of_samples, number of variables) and the 

output matrix has the shape of (output_time_step, number of variables). 
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4.8.2 Hyperparameter: 

Input Horizon 24 

Output Horizon 24 

Batch size 50 

Number of Epochs 200 

Learning Rate 0.001 

Optimizer Adam 

Loss Mean Squared Error 

Data 

Train 80% 

Validation 10% 

Testing 10% 

 

These parameters were obtained from [31]. 

4.8.3 Results: 

After training the model, we first test it visually to see if the model is able to generate 

distinct scenarios that have similar temporal patterns. Inputting random sampled signals 

and sampling two scenarios we obtain the following outputs. 
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Figure 4-68: Sample Generated Scenarios 

Unlike the LSTM-VAE model, it is very clear from Figure 4-68 that the model is able to 

generate distinct scenarios that follow the same temporal pattern as the input. Now we 

need to validate and compare the model with the baseline inputs that were used in the 

previous algorithms. 

Testing the model on summer and winter solar scenarios yields the following outputs. 
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Figure 4-69: Solar Generated Scenarios During Summer 

 

 

 

Figure 4-70: Solar Generated Scenarios During Winter 
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Figure 4-71: Average Hourly Power for Solar Summer Scenarios 

 

          

Figure 4-72: Average Hourly Power for Solar Winter Scenarios 
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Figure 4-73: Average Daily Power for Summer Scenario 

 

 

   

Figure 4-74: Average Daily Power for Winter Scenario 

Similar to the previous algorithms (CNN and LSTM-VAE), and as seen in Figure 4-69-

Figure 4-74, the (STGCN) model is able to capture key differences between solar farm 

outputs in summer and winter seasons accurately. However, unlike the CNNs, the model 

Day 

Day 
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learns that the power does not go below zero (see Figure 4-69). The means of the 

generated scenarios are actually closer to the means of the generated scenarios using 

LSTM-VAE indicating that the model is also able to generate representative scenarios 

that are closer to the forecasted scenarios. 

Examining the wind farm generated scenarios during summer and spring seasons by 

utilizing the same input used before for comparison, generates the following results.  

              

Figure 4-75: Wind Generated Scenarios During Spring 
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Figure 4-76: Wind Generated Scenarios During Summer 

          

Figure 4-77: Average Daily Power for Spring Scenario 

 

 

[M
W

] 

[Hours] 

Day 



   86 

         

Figure 4-78: Average Daily Power for Summer Scenario 

        

Figure 4-79: Average Hourly Power for Wind Spring Scenarios 
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Figure 4-80: Average Hourly Power for Wind Summer Scenarios 

The model is able to capture seasonal differences in the wind behavior for summer and 

spring seasons (see Figure 4-75-Figure 4-80).  Interestingly, the model was also able to 

capture the big dip in power during the day for the summer scenarios (see Figure 4-76) 

just like the LSTM-VAE model. Note that this behavior was not captured by the CNN 

model. 

Evaluating the performance of the model on weekday and weekend load scenarios 

generate the following outputs.  
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Figure 4-81: Load Generated Scenarios During Weekday 

 

           

Figure 4-82: Load Generated Scenarios During Weekend 
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Figure 4-83: Average Hourly Demand for Load Weekday Scenarios 

 

          

Figure 4-84: Average Hourly Demand for Load Weekend Scenarios 

[M
W

] 

[Hours] 

[M
W

] 

[Hours] 



   90 

            

Figure 4-85: Average Daily Demand for Weekday Scenario 

 

 

           

Figure 4-86: Average Daily Demand for Weekend Scenario 
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As can be seen from Figure 4-81-Figure 4-86, the model is able to capture the high 

pattern of demand during the day and the high variability early in the morning and late in 

the afternoon (see Figure 4-83).  

 

4.8.4 Autocorrelation and Error Metrics: 

 

To test for autocorrelation and to see if the generated and real scenarios are characterized 

by the same temporal behavior, we perform the ACF test. 

 

Figure 4-87: Autocorrelation of Real and Generated Scenarios 

 



   92 

Looking at the ACF plots in Figure 4-87, we see that the algorithm mimics the temporal 

behavior of all input scenarios very well. This is an indication that the algorithm is 

suitable for forecasting problems. 

Next we look at the CDFs (Figure 4-88-Figure 4-90) of both the real and generated data 

to see if they struggle with overfitting like we have seen with LSTM-VAE or big gaps 

between real and generated scenarios like in the case of CNN. 

 

Figure 4-88: CDF of Real and Generated Load Scenarios 
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 Figure 4-89: CDF of Real and Generated Wind Scenarios 
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Figure 4-90: CDF of Real and Generated Solar Scenarios 

 

It is obvious from the CDFs that there are differences between real and generated 

scenarios as they are not perfectly on top of each other like the results of the LSTM-VAE 

and there are differences between the samples. Hence, the model is able to generate 

representative scenarios. 

4.8.5 Error Metrics: 

 

The error results obtained below show that the algorithm has higher MAE and RMSE for 

load and wind when compared to solar. It also shows higher errors when compared to 

LSTM-VAE but lower results than CNN. 
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Table 4-5: MAE and RMSE Error for STGCN 

 Load Solar Wind 

MAE 1.329 0.242 2.623 

RMSE 10.145 0.066 13.771 

 

4.9 Discussion 

 

It is obvious from the results that for generating distinct scenarios, C-GANs are the best 

candidate. This is simply because the initial starting point or the input to the model is a 

random vector 𝑧 (sampled from a normal distribution), whereas all the other algorithms 

need an input time series. We believe that this allows the model to generate very distinct 

scenarios that have not been seen by the model before. While solar farms generally have 

higher power production in summer compared to other seasons, there are still days where 

those solar farms generate little to no power because of cloudy skies. The C-GANs are 

conditions on seasons only. Hence, the algorithm has a bigger sample pool from which 

results can be generated. The other algorithms are conditioned on an input, so the 

generated scenarios are also conditioned on that same input, which is why we do not see 

very distinct and extreme scenarios.  The problem with C-GANs arises when we try to 

scale it up to more variables and conditions. The model fails strikingly as seen by the 

earlier results in Chapter 4.7. Hence, scaling up of the algorithm for use in electrical 

networks is extremely challenging. This is primarily due to the adversarial nature of the 

algorithm as explained in Chapter 3.4 which makes it difficult for the generator to learn 

the different distributions of the data and fool the discriminator. 
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LSTM-VAE generates results that are very close to the real scenario and this is due to the 

architecture of LSTM cells, their ability to learn temporal behavior, and the absence of 

spatial information. They are able to learn seasonal and daily behaviors and mimic them 

with little variations. They are perfect when it comes to multivariate and multistep 

forecasting as proved by the ACF, CDF, and the error metrics in Chapter 4.6; the results 

are near perfect for forecasting purposes. 

STGCN and CNNs are better suited for scenario generation problems. They both 

generate representative scenarios accurately. However, CNNs lack the ability to capture 

certain intricate details about the different variables such as the ability to capture large 

dips or not allowing solar generation to go below zero. CNNs also do not incorporate the 

physics of the power network and the graphical relations that exist. While filters do 

account for spatial relations, they are not necessarily true relations (from a power systems 

perspective) as CNNs account for spatial relations based on proximity, and not 

connections due to the usage of filters (Chapter 4.5).  

In terms of scalability, theoretically STGCN is the best candidate since it does not have 

the adversarial nature of C-GANs, and it is not limited to the rigid structure of filters in 

CNNs that account for special relations. The connections are also fluid since not all buses 

are connected to each other. Lastly, while CNNs are easier to implement compared to 

STGCN, CNNs require more time to train due to the large number of epochs and that can 

be a huge hurdle, refer Table 4-1. 
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CHAPTER 5 

5. CONCLUSION AND FUTURE DIRECTIONS 
 
The goal of this thesis was to address multivariate, multistep scenario generation and 

forecasting for solar, wind, and load through machine learning algorithms while 

accounting for the intercorrelations. State-of-the-art algorithms such as CNN, LSTM-

VAE, C-GAN and STGCN were utilized to solve this problem. The IEEE-30 bus system 

was used for this analysis and the conventional generators were replaced by solar and 

wind farms. Each of the algorithms had their own pros and cons and all of those were 

detailed in the thesis.  

C-GANs generate distinct scenarios but are very difficult to train due to the opposing 

objectives of the generator and discriminator networks. The model works perfectly when 

tested on smaller number of variables with distinct distributions. Three variables (solar, 

wind, and load) were initially used to train model. However, extending the model to a 

real system such as the IEEE-30 bus system was not possible due to the larger number of 

conditions for each of the variables and the overlap of the distributions of the different 

variables.  

LSTM-VAE model was able to address the forecasting problem and generate scenarios 

with very little variations. The resulting scenarios were astoundingly similar to the real 

scenario.  The correlation results and the error metrics both confirmed this observation. 

This makes LSTM-VAE perfect for multivariate and multistep forecasting.  
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Both STGCN and CNNs were able to generate representative scenarios for all the 

variables. However, STGCN model was able to capture very detailed information about 

the variables that were missed by the (simpler) CNN model.   

 

This work lays the foundation for a hybrid framework of STGCN and LSTM-VAE that 

can be utilized in the day-to-day operation of the electrical network and for day-ahead 

planning. While an hourly reading of load and generation were used in this thesis, a 

smaller time scale can also be used to capture smaller variations. Moreover, a different 

time horizon (other than 24 hours) can also be used. The readings for load demand and 

generation can be set as inputs to both the models with LSTM-VAE generating accurate 

forecasts that can be used to allocate resources accordingly, while STGCN can generate 

different scenarios to test the reliability of the system. Particularly, the scenarios 

generated in this work can also be used for battery energy storage systems (BESS) 

allocation [38].  

5.1 Future Directions 

The work presented in this thesis can be extended in different ways: 

• Transductive learning can be used in GCNN. Transductive learning in 

GCNN provides the ability to add nodes or change the structure of the graph 

completely. This opens up a new research frontier to solve problems of 

optimal placement of wind or solar farms based on historical data and the 

spatio-temporal relationships. Designers can idnetify new locations for wind 

and solar farms, connect them to the existing network, and run GCNN to 
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forecast and generate scenarios to see if it is viable to place a wind or solar 

farm at those locations.   

• Another future research direction is to apply the machine learning models 

at the distribution level and include other variables with unique 

characteristics (such as electric vehicles [39]) to see how these models 

perform. 

• The addition of clustering techniques can help improve the results by 

focusing on generating unique scenarios based on those clusters. Hence, 

incorporating a clustering model as a precursor to the models discussed in 

this thesis can be explored in the future.  
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APPENDIX A 

A. GITHUB REPO  
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All the codes can be found at:  
https://github.com/Anamitra-Pal-Lab/Scenario-Generation-and-Forecasting 
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APPENDIX B 

B. CNN PSEUDO CODE 
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# define model 
model = Sequential() 
model.add(Conv1D(filters=64, kernel_size=2, activation='relu', 
input_shape=(n_steps_in, n_features))) 
model.add(MaxPooling1D(pool_size=2)) 
model.add(Flatten()) 
model.add(Dense(50, activation='relu')) 
model.add(Dense(n_output)) 
model.compile(optimizer='adam', loss='mse') 
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APPENDIX C 

C. LSTM-VAE PSEUDO CODE 
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class lstm_encoder(nn.Module): 
    ''' Encodes time-series sequence ''' 
 
    def __init__(self, input_size, hidden_size, num_layers = 2): 
         
        ''' 
        : param input_size:     the number of features in the input 
X 
        : param hidden_size:    the number of features in the hidden 
state h 
        : param num_layers:     number of recurrent layers (i.e., 2 
means there are 
        :                       2 stacked LSTMs) 
        ''' 
         
        super(lstm_encoder, self).__init__() 
        self.input_size = input_size 
        self.hidden_size = hidden_size 
        self.num_layers = num_layers 
 
        # define LSTM layer 
        self.lstm = nn.LSTM(input_size = input_size, hidden_size = 
hidden_size, 
                            num_layers = num_layers) 
 
    def forward(self, x_input): 
         
        ''' 
        : param x_input:               input of shape (seq_len, # in 
batch, input_size) 
        : return lstm_out, hidden:     lstm_out gives all the hidden 
states in the sequence; 
        :                              hidden gives the hidden state 
and cell state for the last 
        :                              element in the sequence  
        ''' 
         
        lstm_out, self.hidden = 
self.lstm(x_input.view(x_input.shape[0], x_input.shape[1], 
self.input_size)) 
         
        return lstm_out, self.hidden      
     
    def init_hidden(self, batch_size): 
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        ''' 
        initialize hidden state 
        : param batch_size:    x_input.shape[1] 
        : return:              zeroed hidden state and cell state  
        ''' 
         
        return (torch.zeros(self.num_layers, batch_size, 
self.hidden_size), 
                torch.zeros(self.num_layers, batch_size, 
self.hidden_size)) 
 

class lstm_decoder(nn.Module): 
    ''' Decodes hidden state output by encoder ''' 
     
    def __init__(self, input_size, hidden_size, num_layers = 2): 
 
        ''' 
        : param input_size:     the number of features in the input 
X 
        : param hidden_size:    the number of features in the hidden 
state h 
        : param num_layers:     number of recurrent layers (i.e., 2 
means there are 
        :                       2 stacked LSTMs) 
        ''' 
         
        super(lstm_decoder, self).__init__() 
        self.input_size = input_size 
        self.hidden_size = hidden_size 
        self.num_layers = num_layers 
 
        self.lstm = nn.LSTM(input_size = input_size, hidden_size = 
hidden_size, 
                            num_layers = num_layers) 
        self.linear = nn.Linear(hidden_size, input_size)            
 
    def forward(self, x_input, encoder_hidden_states): 
         
        '''         
        : param x_input:                    should be 2D 
(batch_size, input_size) 
        : param encoder_hidden_states:      hidden states 
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        : return output, hidden:            output gives all the 
hidden states in the sequence; 
        :                                   hidden gives the hidden 
state and cell state for the last 
        :                                   element in the sequence  
  
        ''' 
         
        lstm_out, self.hidden = self.lstm(x_input.unsqueeze(0), 
encoder_hidden_states) 
         
        output = self.linear(lstm_out.squeeze(0))      
        return output, self.hidden 
 
class lstm_seq2seq(nn.Module): 
    ''' train LSTM encoder-decoder and make predictions ''' 
     
    def __init__(self, input_size, hidden_size): 
 
        ''' 
        : param input_size:     the number of expected features in 
the input X 
        : param hidden_size:    the number of features in the hidden 
state h 
        ''' 
 
        super(lstm_seq2seq, self).__init__() 
 
        self.input_size = input_size 
        self.hidden_size = hidden_size 
 
        self.encoder = lstm_encoder(input_size = input_size, 
hidden_size = hidden_size) 
        self.decoder = lstm_decoder(input_size = input_size, 
hidden_size = hidden_size) 
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APPENDIX D 

D. C-GANS PSEUDO CODE 
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class Generator(nn.Module): 
    def __init__(self, channels_noise=100, channels_img=1, 
features_g=64, label=3,batch_size = 32): 
        super(Generator, self).__init__() 
        self.label = label 
        self.batch_size = batch_size 
        self.fc1 = nn.Linear(channels_noise+label,features_g*16) 
        self.fc2 = nn.Linear(features_g*16+label, features_g*72) 
        self.deconv1 = nn.ConvTranspose2d(features_g*2+label , 
features_g, kernel_size=2, stride=2, padding=0) 
        self.deconv2 = nn.ConvTranspose2d(features_g+label , 
channels_img, kernel_size=2, stride=2, padding=0) 
        self.activation = nn.ReLU() 
 
    def forward(self, z, y): 
        #print("Initializing the generator") 
        #print("Input Z shape", z.shape) 
        #print("Input Y shape", y.shape) 
        yb =y.unsqueeze(2).unsqueeze(2).to(device) 
        z = torch.cat([z, y],1) 
        #print("Input Z shape", z.shape) 
        out = self.activation(batchnormalize(self.fc1(z))) 
        #print("h1 shape", out.shape) 
        out = torch.cat([out, y],1) 
        #print("h1 shape", out.shape) 
        out = self.activation(batchnormalize(self.fc2(out))) 
        #print("h2 shape", out.shape) 
        out =  out.view([-1,128,6,6]) 
        #print("h2 shape", out.shape) 
        temp12 = (yb.to(device)*torch.ones([self.batch_size, 
self.label,6, 6]).to(device)) 
        out = torch.cat([out, temp12],1) 
        n=yb*torch.ones([self.batch_size, self.label,6, 
6]).to(device) 
        #print("shape of yb new",n.shape ) 
        #print("h2 shape", out.shape) 
        out = self.activation(batchnormalize(self.deconv1(out))) 
        #print("h3 shape", out.shape) 
        temp22 = yb*torch.ones([self.batch_size, self.label, 12, 
12]).to(device) 
        out = torch.cat([out, temp22], 1) 
        #print("h3 shape", out.shape) 
        out = self.deconv2(out) 
        #print("h4 shape", out.shape) 
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        out = torch.sigmoid(out) 
        return out 
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APPENDIX E 

E. STGCN PSEUDO CODE 
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class STGCN(nn.Module): 
    """ 
    Spatio-temporal graph convolutional network  
    Input has shape (batch_size, num_nodes, num_input_time_steps, 
    num_features). 
    """ 
 
    def __init__(self, num_nodes, num_features, num_timesteps_input, 
                 num_timesteps_output): 
        """ 
        :param num_nodes: Number of nodes in the graph. 
        :param num_features: Number of features at each node in each 
time step. 
        :param num_timesteps_input: Number of past time steps fed 
into the 
        network. 
        :param num_timesteps_output: Desired number of future time 
steps 
        output by the network. 
        """ 
        super(STGCN, self).__init__() 
        self.block1 = STGCNBlock(in_channels=num_features, 
out_channels=64, 
                                 spatial_channels=16, 
num_nodes=num_nodes) 
        self.block2 = STGCNBlock(in_channels=64, out_channels=64, 
                                 spatial_channels=16, 
num_nodes=num_nodes) 
        self.block3 = STGCNBlock(in_channels=64, out_channels=64, 
                                 spatial_channels=16, 
num_nodes=num_nodes) 
        self.last_temporal = TimeBlock(in_channels=64, 
out_channels=64) 
        self.fully = nn.Linear((num_timesteps_input - 20) * 64, 
                               num_timesteps_output) 
         


