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ABSTRACT 

Image-based deep learning (DL) models are employed to enable the detection of 

critical heat flux (CHF) based on pool boiling experimental images. Most machine learning 

approaches for pool boiling to date focus on a single dataset under a certain heater surface, 

working fluid, and operating conditions. For new datasets collected under different 

conditions, a significant effort in re-training the model or developing a new model is 

required under the assumption that the new dataset has a sufficient amount of labeled data. 

This research is to explore supervised, semi-supervised, and unsupervised machine 

learning strategies that are formulated to adapt to two scenarios. The first is when the new 

dataset has limited labeled data available. This scenario was addressed in chapter 2 of this 

thesis, where Convolutional Neural Networks (CNNs) and Transfer learning (TL) were 

used in tackling such situations. The second scenario is when the new dataset has no labeled 

data available at all. In such cases, this research presents a methodology in Chapter 3, where 

one of the state-of-the-art Generative Adversarial Networks (GANs) called Fixed-Point 

GAN is deployed in collaboration with a regular CNN model to tackle the problem. To the 

best of my knowledge, the approaches presented in chapters 2 and 3 are the first of their 

kind to utilize TL and GANs to solve the boiling heat transfer problem within the heat 

transfer community and are a step forward towards obtaining a one-for-all general model. 
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CHAPTER 1 

INTRODUCTION 

1.1 Heat Exchanger Problem  

 Heat transfer refers to the mechanisms that convey energy from one location to 

another. Boiling heat transfer presents itself as one of the most attractive heat transfer 

mechanisms where a high heat transfer rates are achieved via the liquid-vapor interface.  It 

has a wide range of applications such as cooking, water purification, power-generation 

plants, immersion cooling for high-performance electronics and data centers, integrated 

cooling for three-dimensional electronic packaging, among others. Although it is a very 

efficient heat transfer method, boiling heat transfer is sensitive to small changes in the 

power dissipated beyond the critical heat flux. This can quickly convert the desirable 

nucleate boiling regime into film boiling (a.k.a. boiling crisis), overheating the boiling 

surface [1], [2]. Figure 1 shows the steady state boiling curve and the stages the process 

goes through [3]. Based on these stages, boiling is primarily classified into three regimes: 

(1) the nucleate boiling (NB), (2) the transition boiling, and (3) the film boiling [2]. The 

NB regime, which is represented by the region enclosed between points A and B, is the 

desired region where at which the heat transfer is most efficient (very high heat transfer 

under near-isothermal conditions), making it the optimal choice for practical applications 

[2].  
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Figure 1. A Generic Steady-state Boiling Curve: Heat Flux Vs. Surface Superheat 

(Adopted from Hu Et Al., 2017) 

The real danger of the boiling crisis starts beyond critical heat flux (CHF) where the CHF 

condition starts (point B). Boiling transits from the nucleate boiling regime to the film 

boiling regime, where the heater surface is blanketed with a continuous vapor layer, leading 

to a drastic decrease in heat transfer coefficients (HTC) and a rapid increase in temperature 

(couple hundred degrees Celsius in a matter of minutes). Failing to dissipate the heat load 

may lead to detrimental device failures, e.g., thermal breakdown in semiconductor 

junctions, the meltdown in nuclear reactors, etc. To ensure safe operations and enable the 

rational design of boilers, evaporators, and other devices that utilize the boiling process, it 
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is critical to be able to detect or predict the CHF condition accurately and instantaneously 

[1], [2]. 

The importance of this problem forced researchers to focus on advanced diagnostic tools 

to protect the device and prevent hazardous ramifications from happening [2]. The 

difficulty of this problem comes from the vagueness of the mechanisms governing the 

process and the complexity of describing these mechanisms in a mathematical model. 

Although there are existing analytical and computational efforts to describe the 

phenomena, they are either computationally expensive or inaccurate [2]. The void fraction 

and other characteristics in the conventional analysis are generally time-averaged values. 

These characteristics and the heat flux are actually not constant over time even at the 

steady-state because the heat transfer mechanisms are different in different phases of the 

bubble ebullition cycle (nucleation, growth, departure, rewetting). In most of the boiling 

studies, the reported steady-state heat flux is a temporal and spatial average of the heat flux 

on the heating surface. There will never be a one-to-one correlation between a transient 

quantity and a time-averaged quantity. The conventional analysis is focused on one or a 

few selected characteristics of the bubble dynamics. Neglecting other parameters will make 

the analysis lose its generality.  

Recently, a new approach has been trending in tackling this problem. Researchers started 

utilizing computer vision and machine learning to make sense of this phenomena. Although 

these attempts were highly successful, each of these attempts had certain shortcomings. 

Some of them were not able to rely solely on the boiling images and had to incorporate 

some of the physical measurements into their models. Other attempts were not 
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generalizable for different boiling setups and were only valid for a specific one. A new 

machine learning model would have to be trained from scratch on a new data set for each 

setup. Thus, a significant challenge remains to develop a model that could provide near 

real-time analysis and diagnostics of heat flux and one that could be generalized for data 

coming from different setups without the need of creating a model specific for each case. 

This research focuses on developing deep learning strategies to tackle the heat exchanger 

problem.  

1.2 Deep Learning  

Deep Neural Networks (DNNs) are a form of machine learning that uses neural networks 

with many hidden layers. DNNs are considered as a powerful method for solving large-

scale real-world problems such as automated image classification, natural language 

processing, human action recognition, or physics. Although neural networks date back at 

least to the 1950s, the popularity soared a few years ago when deep neural networks 

(DNNs) outperformed other machine learning methods in speech recognition and image 

classification. This was because of the recent improvements DNN training methodologies 

(parallelization, utilization of GPUs and TPUs, etc.). These improvements enabled DNNs 

to harvest extremely large amounts of training data and can thus achieve record 

performances in many research fields [4], [5].  

DNNs alter input features using several layers whose operations consist of element-wise 

nonlinearities and affine transformations. One well-studied DNNs is convolutional neural 

networks (CNN). The main idea of CNN is to base the affine transformations on 

convolution operators with compactly supported filters. Supervised learning aims at 
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learning the filters and other parameters, which are also called weights, from training data. 

CNNs are widely used for solving large-scale learning tasks involving data that represent 

a discretization of a continuous function, e.g., voice, images, and videos [6]. Sophisticated 

algorithms are proposed to support the training and testing of such a complex network, and 

the backpropagation method is widely applied to train the CNN parameters. Furthermore, 

to fine-tune the network to specific functions, large pools of labeled data are required for 

iteratively training the massive neurons and connection weights. Multiple CNN designs 

have been proposed in recent literature to effectively train these networks, such as 

AlexNet[7], VGG[8], etc. Some of these designs surpassed human-level accuracy on object 

recognition tasks because they emulate the human brain’s natural visual perception 

mechanism by systematically learning features through multiple operational layers. Image-

based deep learning models can play a vital role in thoroughly understanding boiling 

physics because boiling images are richly embedded with bubble statistics, which are 

quantitative measurements of the dynamic boiling phenomena [6], [9]. 

Despite all the recent success achieved by DNNs (e.g., CNN), the models suffer from high 

computational cost, slow training speed, and security vulnerability. Some of these 

drawbacks could be attributed to the limited understanding of the internal features learned 

by each convolutional layer, which made many scholars label CNN training as a black-box 

process. The hope is that as our knowledge about what goes on behind the scenes increases, 

we could identify the parts of the process causing these drawbacks. Better network 

interpretability will significantly increase the robustness evaluation of each network layer, 

as well as the network adaptability and transferability to different applications [9]. 
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1.3 Research Objective & Road Map 

The research objective is to develop a deep learning based solution that could provide near 

real-time analysis and diagnostics of heat flux and one that could be generalized for data 

coming from different setups without the need of creating a model specific for each case. 

This objective will be tackled in three progressive steps: 

1. A Supervised Machine Learning Approach: Demonstrate the capability of 

supervised CNNs in correctly classifying the state in which any boiling setup is 

currently at instantaneously, by simply using a model that was trained on labeled 

images coming from that same setup (same domain), without the need of any other 

physical attributes to be incorporated in the model. 

2. A Semi-Supervised Machine Learning Approach: Demonstrate the capability of a 

semi-supervised domain adaptation technique such as transfer learning in utilizing 

pre-trained models (such as the one obtained in step 1) to correctly classify images 

from a different domain in a case where there is a scarcity of labeled data from that 

domain (only a limited number of labeled images are available from the other 

domain), while also providing superior results in terms of computation speed. 

3. An Unsupervised Machine Learning Approach: Demonstrate the capability of 

unsupervised machine learning models such as the Fixed-Point Generative 

Adversarial Network (Fixed-Point GAN) in utilizing a pre-trained model (such as 

the one obtained in step 1) to classify images from a different domain in a case 

where there are no labeled images available from that domain. 
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As demonstrated in the research road map shown in Figure 2, steps 1 and 2 will be 

discussed in chapter 2 of this thesis, while chapter 3 is solely focused on step number 3. 

 

Figure 2. Research Road Map 
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CHAPTER 2 

SUPERVISED AND SEMI-SUPERVISED MACHINE LEARNING 

APPROACH FOR CRITICAL HEAT FLUX DETECTION 

2.1 Introduction 

 Boiling is a central phenomenon in many industrial applications including steam 

generation in power plant boilers and solar collectors [10], immersion cooling for high-

performance electronics and data centers [11][12], integrated cooling for three-dimensional 

electronic packaging [13], cooling of the core and used fuel in nuclear reactors [14], among 

others. Most boiling applications are focused on the nucleate boiling regime with ultra-

high heat transfer coefficients (HTC), whereas a catastrophic point of failure, known as the 

critical heat flux (CHF), limits the heat flux of nucleate boiling. Beyond CHF, boiling 

transits from the nucleate boiling regime to the film boiling regime, where the heater 

surface is blanketed with a continuous vapor layer, leading to a drastic decrease in HTC. 

Failing to dissipate the heat load may lead to detrimental device failures, e.g., thermal 

breakdown in semiconductor junctions, the meltdown in nuclear reactors, etc. To ensure 

safe operations and enable the rational design of boilers, evaporators, and other devices 

that utilize the boiling process, it is critical to be able to detect or predict the CHF condition. 

However, the complex and stochastic nature of the subprocesses involved in boiling, such 

as bubble nucleation, growth, coalescence, and departure make it extremely challenging to 

develop a comprehensive physics-based model for CHF during boiling [15]. To date, 

theoretical models and experimental correlations for boiling CHF, e.g., the hydrodynamic 
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model [16][17], the force-balance model [18], and wicking-based CHF models [19][20], 

differ from each other substantially. Recently, a continuum percolation model for the CHF 

detection has been proposed based on near-wall stochastic interactions of bubbles, but has 

only been tested for a smooth surface [21].  A general deterministic model for predicting 

the CHF condition that can be applied for a large range of physical parameters is not yet 

available. 

 Conventionally, boiling regimes are determined based on the experimentally 

measured heat flux and surface temperature. For example, the onsite of nucleate boiling 

can be recognized as a kink in the boiling curve that represents the transition from the low-

HTC convection regime to the high-HTC nucleate boiling regime [22]. The CHF is 

represented by a huge jump in surface temperature for boiling experiments with controlled 

heat flux and decreasing heat flux for experiments with controlled surface temperature [22]. 

High-speed visualizations of pool boiling experiments have enabled the development of 

regime maps based on bubble morphologies, corresponding to different boiling phenomena 

[23]–[25]. Although such analysis is shown to be successful in lab-scale experiments, the 

time required for the postprocessing of the images to derive the quantitative metrics 

prevents it from real-time prediction or online classification of boiling processes in 

practical applications.  

 Data-driven approaches provide an alternative to physics-based models by taking 

advantage of the available boiling data and the advances in machine learning (ML) 

algorithms. Using pressure, temperature, and heat flux measurements from the boiling 

experiments, machine learning models are developed to predict flow regimes, pressure 



  10 

drop, void fraction, critical heat flux, the onset of nucleate boiling, nucleation site density, 

bubble period, bubble growth time, and heat transfer coefficient [2], [26]–[33]. 

Recognizing boiling images contain rich information on the dynamics of the ebullition 

cycle, increasing efforts on developing machine learning tools using visualization images 

are noted [2], [31]–[33]. For example, Hobold and da Silva [31] used support vector 

machines (SVM) and multi-layer perceptron neural network (MLPNN), a class of artificial 

neural networks (ANN), to classify on-wire pool boiling experimental images (direct 

visualization) into three boiling regimes: natural convection, nucleate boiling, and film 

boiling. Classification accuracy for both SVM and MLPNN was greater than 93% even 

when the pool boiling heater surface was cropped out of the images (indirect visualization). 

In Ravichandran and Bucci [33], a feed-forward neural network (FFNN) was developed as 

an online, quasi-real-time analyzer of the infrared image from the heater surface to quantify 

bubble growth time, bubble period, and nucleation site density, showing a regression 

coefficient of 0.95 or higher compared to conventional image processing techniques.  

 The application of deep learning (DL) models such as convolutional neural networks 

(CNN) emerges due to their recognized performances in analyzing visual imagery [34], 

[35]. CNN has the advantage of learning from multiple features, known as filters, which 

require less pre-processing compared to other image-based classifiers. CNN benefits from 

learnable weights and biases in layers of neurons with a massive number of features and 

flexible network architecture. The functional and efficient controlling parameters in the 

hidden layers help users to optimize network configuration by varying those hyper-

parameters. In addition to the very well-known application of CNN in facial recognition 
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systems [36], it has been adopted as a popular tool in biomedical image analysis [37]–[41] 

and in engineering applications such as combustion [42], [43], aerodynamics [44], [45], 

digital designs [46], mechanical property predictions[47], and damage and fault diagnosis 

and detection [48]–[52]. In the applications related to this research, Hobold and da Silva 

[32] developed CNN in conjunction with Bayesian statistics and successfully detected the 

transition from nucleate boiling to film boiling, again using on-wire pool boiling 

experimental visualizations. Efforts have also been made on using CNN to quantify heat 

flux values from pool boiling images where the heat flux information is embedded in the 

bubble morphologies seen during the boiling phenomena. Hobold and da Silva [2] showed 

that correlations can be drawn between bubble morphologies seen during on-wire pool 

boiling experiments and experimentally measured heat flux values even when the 

resolution and frequency of image acquisition were reduced. This study confirms that 

CNN-based boiling regime classification models have the potential for quantitative 

characterization of the boiling process.  

 While promising, the above-mentioned research has mainly focused on a single 

dataset collected under one condition of heater surfaces, working fluids, operating 

parameters. A comprehensive investigation on the boiling regime would require heater 

surface modifications like microstructures, porous metallic surfaces, wettability 

alterations, and others, which will give rise to different bubble morphologies when used in 

a pool boiling setup. Similar behaviors are observed when working fluid is changed. To 

tackle this challenge, one option is to train, validate, and test a new DL model when a new 

dataset is being collected under different conditions. This is less than desirable because (1) 
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it ignores the knowledge already obtained from the existing DL models; (2) it is under the 

assumption the new dataset has sufficient data; and (3) it is computationally expensive. 

Alternatively, this challenge can be constructed as a Transfer Learning (TL) problem where 

the existing datasets are treated as the source domain with the new dataset being considered 

as the target domain [53]–[55]. TL promotes the idea of dividing the traditional training 

process into two separate steps: pre-training is conducted on the source domain on all the 

layers from the deep model, with later layers being fine-tuned using data from the target 

domain. This is supported by the assumption that the knowledge gained from various 

source domains may help the learning task on the target domain. While the TL concept has 

been widely adopted in different applications such as medical imaging [53], [56]–[59], the 

applicability of TL for heat exchanger design (such as boiling CHF detection) has yet been 

unexploited. We hypothesize that TL is a viable strategy to study boiling imagery data, 

especially when the target domain has limited data available.  

 Here we first develop and train a CNN model for boiling regime classification with 

one public boiling dataset (DS1) and use this CNN as the base model. To classify images 

of new boiling datasets, two sets of comparison experiments are designed where a TL 

model is developed based on the base model and is fine-tuned with a small proportion of 

another public dataset (DS2) in Comparison Experiment I and an in-house dataset (DS3) 

in Comparison Experiment II. A reference case is developed by combining the same small 

proportion of DS2 or DS3 with DS1 to retrain the CNN model. In the first experiment, the 

accuracy and training time of TL and the retrained CNN (reference case) are compared for 

various proportions of DS2, decreasing from 10%, 5%, 2%, 1.5% to 1%. Noting the 
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dominating trends of TL over CNN as data from the target domain decreases, in the second 

experiment, only less than 0.05% of data from DS3 is studied for the comparison. Since 

the small proportion for training is randomly selected from DS2 or DS3, the statistical 

behavior of TL and CNN is analyzed over 15 trials per experiment.  

 

2.2 Methodology 

2.2.1 Dataset preparation for CNN and TL training and testing 

 Three different pool boiling experimental image datasets (DS1, DS2, and DS3) were 

prepared in this study, where DS1 and DS2 were generated using publicly available 

YouTube videos [60], [61], and DS3 was prepared by performing in-house pool boiling 

experiments. Specifically, the video from which DS1 was prepared shows a pool boiling 

experiment performed using a square heater made of high-temperature, thermally-

conductive microporous coated copper where the surface was fabricated by sintering 

copper powder [62]–[65]. The square heater had a surface area of ≈ 100 mm2 and the 

working fluid used was water. All experiments were performed at a steady-state under an 

ambient pressure of 1 atm. A T-type thermocouple was used for temperature 

measurements. The resolution of the video frames was 512×480 pixels. The YouTube 

video from which DS2 was prepared shows a pool boiling experiment performed using a 

circular heater made of microporous coated copper where the surface was fabricated by 

sintering copper powder [66]–[68]. The circular heater had a diameter of ≈ 16 mm and the 

working fluid used was DI water. All experiments were performed at a steady-state under 
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an ambient pressure of 0.5 atm. A T-type thermocouple was used for temperature 

measurements. The resolution of the video frames was 1280×720 pixels. The DS3 videos 

were obtained by performing pool boiling experiments in-house using a square plain 

copper heater with a surface area of ≈ 100 mm2, with water as the working fluid. Prior to 

the experiments, the surface was prepared by polishing with a 320 grit sandpaper and 

subsequently with a 600 grit sandpaper. A Phantom VEO-710 high-speed camera captured 

images at 3000 frames per second with 1280×800 resolution. 

 Images for DS1 and DS2 were prepared by downloading the videos from YouTube 

and extracting individual frames using a MATLAB code via the VideoReader and imwrite 

functions. Recognizing duplicate frames extracted from the YouTube videos, quality 

control was conducted to remove the repeated images by calculating the relative difference 

using the Structural Similarity Index (SSIM) value between two consecutive images where 

images with a relative difference less than 0.03% were removed [69]. This pre-processing 

is important to ensure DL models were not biased by identical image frames. Images for 

DS3 were extracted from high-speed videos captured during in-house pool boiling 

experiments directly without pre-processing as no-repeat frames were observed. The 

images were categorized into three boiling regimes: (1) Discrete bubbles (DB) where only 

discrete bubbles are observed before departure, (2) Bubble interference and coalescence 

(BIC), where frequent bubble coalescence is observed before departure, and (3) Critical 

heat flux (CHF) where a significant drop in the heat transfer coefficient is observed due to 

a continuous vapor layer blanketing the heater surface. While the images of DS1 and DS2 

have been labeled by the authors of the datasets, the images of DS3 are labeled based on 
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the boiling curve and temperature history from our experiments. The representative bubble 

images in the three boiling regimes are shown in Figure 3., DS1, DS2, and DS3 had a total 

of 6158, 3215, and 34422 2D images, respectively. Table 1 shows the number of images 

in each regime for the three datasets. The pixel intensity values in each image were 

normalized to fit in the range [0,1] to ensure uniformity over multiple datasets during deep 

learning training.   

 

Figure 3. Representative Images of Bubble Dynamics Were Observed from Source Videos. 

The Three Rows Indicate the Classes (Regimes) Used for ML Classification. Regimes 

Used Are: Discrete Bubbles (Db), Bubble Interference and Coalescence (Bic), Critical Heat 
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Flux (CHF). Multiple Images with Various Patterns from Different Experiments Were 

Shown for Each Specific Regime. Images for DS1 and DS2 Were Extracted from Various 

Online Sources Open to Public Access [60], [61], and Images for DS3 Were Obtained from 

In-house Pool Boiling Experiments. 

Table 1. Summary of the Three Datasets. 

Datasets DB BIC CHF 

Dataset 1 (DS1) [60] 2304 3068 786 

Dataset 2 (DS2) [61] 693 1289 1233 

Dataset 3 (DS3) in-house 11488 10890 12044 

 

2.2.2 CNN-base and CNN-TL: Convolutional neural network model and Transfer 

learning model architecture 

 Once the data are ready for feeding into the network, it is important to build a robust 

architecture, including layers and settings parameters. After trying different architectures 

and manipulating the number of convolutional, max pooling, and dropout layers; an 

optimum configuration was selected according to the accuracy of training based on 

monitoring the loss (the discrepancy from actual results and predictions) and accuracy 

(what percent of predictions were correct) for both training, and test. Figure 4. (a) illustrates 

the CNN architecture adopted in this research. As seen, six convolutional blocks, each with 
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two dimensional convolutional layers and a rectified linear unit (ReLU) activation 

function, were used. ReLU is defined as the positive part of its argument and is the most 

used activation function, which returns 0 if it receives any negative input but returns the 

exact value of any positive input back. The convolutional layers in every block have 32 

kernels except for block 4 that has 64 kernels. These kernels (also known as filters) are the 

vector of weight and bias, applied to every pixel of an input image. Max pooling layer for 

down-sampling the feature maps with the highest representations of an input image and the 

Dropout layer for preventing the overfitting (accurate only on training data) were used in 

each block except for block 1. Then, a fully connected (dense) layer with 256 nodes with 

a Rectified linear unit (ReLU) activation function was used to interpret the features. ReLU 

is a widely used activation function to ensure model output does not go below zero  

 𝑓(𝑥) = {
0, 𝑥 < 0
𝑥, 𝑥 ≥ 0

  ,   𝑥 = 𝑏 + ∑ 𝑎𝑗𝑤𝑗
𝑁
𝑗=1  (1) 

𝑓(𝑥) is the activation function. 𝑥 is the vector of inputs to the output layer. 𝑎 is the input 

to the neuron, 𝑤 is the weight associated with each neuron, and 𝑏 is the bias as an additional 

input into the next layer. 𝑗 is indexing the output units for the number of inputs, 𝑁.  Finally, 

another dense layer with Softmax activation for the three boiling classes was added to the 

architecture to predict the probability distribution of a test image belonging to each of the 

three classes. The output of Softmax, f (x), is mapped to a [0,1] range and the total sum is 

1 for all classes following 

 𝑓(𝑥)𝑗 =
𝑒

𝑥𝑗

∑ 𝑒
𝑥𝑗𝑁

𝑗

,       𝑓𝑜𝑟 𝑗 = 1, … , 𝑁. (2)  
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 It is well recognized in the data science community that models developed from one 

source of data (e.g., source domain) may perform poorly on a separate data source (e.g., 

target domain), if data distributions between two domains are not similar. Transfer learning 

(TL) has been a viable technique to address this challenge [70]. Transfer learning can be 

integrated with deep learning (DL), resulting in a deep transfer learning framework that 

pre-trains a DL model using a large dataset and then uses the small dataset from the target 

domain to fine-tune the model parameters [56], [70]. TL with DL models have been used 

for image classification in recent years and have shown promising results in broad areas 

such as brain image [53], breast cancer [56]–[58], mouse brain [59], and general image 

classification [71]. The efforts in deep transfer learning have been categorized into 

instance-based, mapping-based, network-based, and adversarial-based [71]. This research 

falls into the network-based category where we utilize the knowledge from the partial of 

network pre-trained in the source domain for the tasks from the target domain.  In this 

research, the CNN model shown in Figure 4. (a) is used as the base model for TL. How to 

utilize knowledge from the sources is key to implementing TL to improve the performance 

of the target task. There are in general three strategies in TL, including parameter transfer, 

feature transfer, and instance transfer [54], [55], [70], [72]. Instance transfer aims to reuse 

the samples (e.g., images), and feature transfer reuses the feature representations from the 

source to the target domain. Both do not apply here due to the interest of the study is the 

image. Therefore, parameter transfer is adopted, that is, the same size of input images for 

the sources (for pre-trained models) and the target is kept, and deep model parameters are 

being transferred [53], [57], [73]. Please note each dataset consists of different 
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characteristics of RGB colors, image intensities, and resolutions, etc. The CNN model 

contains the same low-level information such as edges, corners, emboss, angles like those 

in the desired target dataset. This information is borrowed via model parameters from the 

CNN model and then transferred to the new dataset to train the TL model. The TL 

procedure used in this study is illustrated in Figure 4. (b). The weights of layers in the first 

four blocks of the base model architecture were frozen and transferred to the new model 

with all the parameters (weights) fixed within them, while the weights of the layers in the 

latter four blocks were updated using the target dataset. The rationale behind this design is: 

there are a total of 65,891 parameters in the pre-trained deep learning model as the prior 

knowledge from the images regarding characteristics of boiling regimes. It is desirable that 

as much information from the source as possible and fine-tune them for the target task. If 

only the last layer parameters to be fine tuned, trainable parameters in the TL process are 

only 291 (0.44% of all parameters). This will be extremely challenging to adjust the model 

for the target images, especially when the images from source and target have significantly 

different characteristics. Specifically, images have different RGB colors and intensities, so 

that an additional layer to learn new RGB colors from the target is critical to adapt the deep 

learning model for the target. Also, one convolution layer is needed to help aggregate the 

updated outputs. Based on the empirical exploration, the model is configured as a total of 

65,891 parameters out of which 37,888 (58%, layers 1-4) are transferred from the base 

model and are non-trainable (frozen), while 28,003 (42%, layers 5-8) of them are new 

trainable parameters.  
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 In deep learning efforts, the implementation requires the following configurations: 

architecture, learning methods, hyperparameters, and optimizers to achieve a well-

established model. Random initialization is critical to train the deep learning model. We 

use the standard initializers from Keras API [39], that is, Glorot normal initializer (a.k.a. 

Xavier normal initializer). To prevent the CNN and TL models from overfitting, although 

training in both models was stopped by reaching the predetermined epoch number, the 

model weights were not updated (saved) after every epoch unless there was an 

improvement in the validation loss in that epoch. 



  21 

 

Figure 4. The TL Procedure Operates on (a) Base Model Architecture and (B) New Model 

Architecture. The TL Architecture Was Prepared by 1) Transferring the Layers in Blocks 

1 → 4 and Their Trained Parameters Stored after Training the Base Model (a) Purely on 

DS1, from the Base Model to the New Model. These Layers Were Then Frozen (Non- 

Trainable) in the New Model (B). Usually, the First Layers Contain the Low-level Features 

That Were Learned by the Model. 2) Layers in Blocks 5 → 8 Were Then Removed from 

the Base Model (a) along with Their Stored Parameters and Were Replaced by New Layers 

with New Trainable Parameters (Unfrozen) in the New Model (B). 
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2.3 Results and Discussion 

 In this section, the accuracy and generality of the trained CNN and TL models are 

evaluated and compared with each other. Among these models, CNN 0 is the base model 

trained solely with the DS1. All transfer learning models are trained based on CNN 0 with 

a small portion of the DS2 and DS3. CNN models using the same architecture with the 

base model CNN 0 are also trained using a combined dataset that includes the DS1 along 

with the same small portion of the DS2 and DS3 as used for the TL models.   

2.3.1 Base Experiment: CNN-base model 

 The process of classification using a trained network is that once a test image goes 

through a trained model, the model outputs its highest probability out of all classes as its 

prediction. It is thus important to examine the probability distribution for a test image to 

see how robust a model is classifying. Hence, some images that were neither in the training 

nor the validation dataset were tested (a.k.a. blind test) on the model to find the probability 

and accuracy of predictions. As mentioned earlier, the way that model classifies is by 

reporting the maximum probability of each class as its prediction. To test the 

generalizability of the CNN-base model, three experiments were conducted: (1) train a 

CNN-base model on DS1 (CNN-0) and test it on DS1; (2) train a CNN-base model on DS2 

and test on DS2; (3) train a CNN-base model on DS1 (CNN-0) and test on DS2 (cross-

dataset). The confusion matrices of these three tests are shown in Figures. 5(a), 5(b), and 

5(c), respectively. The first two models show high accuracy (100%), and the third model 

has only 40.09% accuracy. It is noted that Figures. 5(a) and 5(c) show the testing results of 
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the same CNN-base model (CNN-0) on different datasets. The large difference in the 

accuracy indicates a low generality of CNN-0. To confirm that the low accuracy in Figure 

5.(c) is not due to overfitting on DS-1, we have designed a 5-fold cross-validation (CV) 

experiment. For the rigorous design, the dissimilarities of DS1 and DS2 are examined first 

using principal component analysis (PCA) for DS1 and DS2. Figures 6(a)-(c) shows the 

comparison between the two-component PCA decomposition of DS1 and DS2 in the (a) 

DB, (b) BIC, and (c) CHF regimes. Based on these plots, it is evident that the images of 

DS1 and DS2 have significant differences in their features. Figure 6(d)-(f) shows the 

comparison of the 3-component PCA decomposition between DS-1 and DS-2. It is 

observed that the distribution of DS1 and DS2 are different along the third principal 

component as well. In sum, DS1 and DS2 have significantly different features and it should 

not be expected that a CNN model trained by DS1 would classify the regimes of DS2 

images with high accuracy directly. After the dissimilarity between DS1 and DS2 is 

confirmed, a 5-fold CV is conducted, where the accuracy, precision, and F1-Score are all 

100%. This result confirms that the low testing accuracy of CNN-0 on classifying DS-2 is 

not due to overfitting. Instead, it suggests that CNN-based models on different unseen 

datasets do not perform well, which is as expected. This motivates the comparison 

experiments on strategies of incorporating data from new datasets for improved 

performance.  
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Figure 5.  Confusion Matrices of (a) Testing CNN Trained with Ds1 (CNN 0) for 

Classifying DS1; (B) Testing CNN Trained with DS2 for Classifying DS2; And (C) Testing 

CNN 0 for Classifying DS2. 

 

Figure 6. Principal Component Analysis of DS-1 and DS-2 Showing (a)-(c) Two-

component PCA Decomposition of DB, BIC, and CHF Images, and (d)-(f) Three-

component PCA Decomposition of DB, BIC, and CHF Images. 
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2.3.2 Comparison Experiment I: DS1 and DS2 

Using the CNN-base model as CNN 0, five comparison experiments were conducted 

on two public datasets: DS1 vs. DS2. Table 2 summarizes the CNN and TL models trained 

with varying percentages of images from the DS2 dataset. 

Table 2. Summary of the CNN-base and CNN-TL Models in the Cross-dataset (DS1, DS2) 

Study. 

CNN Model # Training dataset  TL Model #* Training dataset 

CNN 0 DS1  
  

CNN 1 DS1 + 1% DS2  TL 1 1% DS2 

CNN 2 DS1 + 1.5% DS2  TL 2 1.5% DS2 

CNN 3 DS1 + 2% DS2  TL 3 2% DS2 

CNN 4 DS1 + 5% DS2  TL 4  5% DS2 

CNN 5 DS1 + 10% DS2  TL 5  10% DS2 

*Note: All TL models are trained using CNN 0 as the base model. 
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As seen in Table 2, the CNN model was trained using combined DS1 with different 

proportion data from DS2, from 10%, 5%, 2%, 1.5% to 1%. In a similar manner, for TL, 

after CNN is pre-trained on DS1, only layers 5-8 were fine-tuned with 10%, 5%, 2%, 1.5% 

to 1%, respectively. The remaining data from DS2 was reserved as test data for the blind 

test. Given the training data, 80% of the data was used for training vs. 20% for validation. 

Multifold cross-validation can help avoid biased results and evaluate the performance with 

robustness and generalization of the trained models. However, when it comes to CNN X 

vs. TL X (X = 1, 2, 3, 4, 5), multifold cross-validation becomes impractical. Since the 

scenario of interest in this study is only limited data available from different data sources 

(e.g., DS2, DS3), by design, we have a small number of images from the different data 

sources included in the training and validation. Taking 1% scenario as an example, given 

100% of DS1 and 1% of DS2, we have (1) DB: 2304 (DS1), 7 (DS2); (2) BIC: 3068 (DS1), 

13 (DS2); (3) CHF: 786 (DS1), 12 (DS2). If a 5-fold CV approach is to be taken, the 

training samples for TL (with fair comparison) are very limited (e.g., only one or two DB 

images from DS2 available for training). To address this challenge while still maintaining 

the confidence of model robustness, we decided to take a random sampling approach. In 

order to avoid any bias from sampling, 15 stratified random samplings were implemented, 

that is, 15 random splits in training, validation, and testing while keeping the same 

proportion of each class across splits. The model was trained and validated using a trained 

dataset then blind tested on the testing dataset. The comparison metrics were collected from 

the 15 trials of the blind test. Please note cross-validation is well-adopted to address the 

overfitting issue, especially when the dataset is small. However, in this research, as the size 
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of the dataset increases, the number of parameters in the deep learning model exponentially 

increases. And, the focus of the study is on a data scarcity scenario where only a small 

percentage from the new dataset is used for training and validation. Taking 1% as an 

example, a full-scale cross-validation implementation will require 65,891 parameters to be 

trained at least 100 times. For these reasons, stratified random sampling is adopted to 

address overfitting and guarantees the comparison is without bias.  

 

Figure 7. (a-b) Confusion Matrices of Testing TL 1 for Classifying DS2 with (a) Highest 

Accuracy and (b) Lowest Accuracy among 15 Trials with Randomly Selected 1% DS2 for 

Training; (c-d) Confusion Matrices of Testing CNN 1 for Classifying DS2 with (a) Highest 

Accuracy and (d) Lowest Accuracy among 15 Trials with Randomly Selected 1% DS2 for 

Training. 

Figure 7 shows representative confusion matrices of the CNN and TL models trained 

with DS1 and a small proportion of DS2, with Figures 7(a), (b), (c), (d) showing TL 1 with 

the highest accuracy, TL 1 with the lowest accuracy, CNN 1 with the highest accuracy, 

CNN 1 with the lowest accuracy, respectively. It is noted for TL 5 and CNN 5, where 1% 

of DS 2 is included for training, all of the TL models retain a very high accuracy, with the 

highest to be 98.71% and the lowest to be 90.02%. On the contrary, CNN models have a 
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huge spread of accuracy, with the highest at 98.24%, which is close to TL, but the lowest 

at 68.20%, much lower than the lowest accuracy of TL.  

The accuracy of the CNN and TL models (averaged over 15 trials) are against the 

percentage of the DS2 data used for training in Figure 8. (a). As shown in Figure 8. (a), TL 

models have higher accuracy than CNN models for the tested entire range of used DS2 

data (1% - 10%). At relatively higher percentages (10% DS2), the difference between TL 

and CNN accuracy is relatively trivial since both models give high accuracy (>99.50%). 

However, with the decreasing percentage of DS2 data, the accuracy of CNN drops 

significantly while the accuracy of TL is kept at a relatively high value. With only 1% of 

DS2 images used for training, the average accuracy of TL is 94.79%, which is more than 

136% improvement compared to the base model with 0% DS2 images, and is well-beyond 

the average accuracy of CNN with 1% DS2 at 85.10%. 

For the application of CHF detection, it is also important to determine how accurately 

the models detect CHF events. For the CHF class, the mistaken classifications include false 

negative, where CHF images are classified as either DB or BIC, and false positive, where 

DB or BIC images are classified as CHF. To mitigate the loss due to CHF, actions will be 

taken when CHF events are captured, e.g., reducing the heating load, activating 

supplementary cooling, etc. The false positive classifications will activate these actions 

when CHF does not occur, lowering the cooling efficiency. On the other hand, the false 

negative classifications will overlook CHF events, leading to overheating-induced device 

failures. It is evident that the false negative is more detrimental. As such, the false negative 

rate (FNR) for CHF becomes an important metric to evaluate the effectiveness of the 
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machine learning models for CHF detection. The best performance is FNR = 0 and the 

worst is FNR = 1. Figure 8 (b) plots the false negative rate for CHF for both CHF-base and 

CHF-TL models. The false negative for CHF of the base model is 1, demonstrating its poor 

performance. While the differences between the CNN and TL models for CNN are 

relatively trivial for models with 5% DS2 and 10% DS2, the FNR for TL models with 1%, 

1.5%, and 2% DS2 is obviously smaller than the CNN models. The FNR of the CNN 

models increases significantly with the decreasing percentage of DS2 data while that of TL 

is kept at a low value (the average FNR for CHF < 0.1 at 1% DS2). This indicates TL 

models yield lower FNR than CNN models for small percentages of DS2 data for training 

and are thus more reliable for applications of CHF detection.  

As expected, with higher percentages of DS2 data used for training, both CNN and 

TL show better performances with increasing accuracy and decreasing false negative rate 

for CHF. However, as noted in Figure 8 (a), CNN 2 (with 1.5% DS2) has a lower mean 

accuracy than CNN 1 (with 1% DS2). To examine the differences between the accuracy of 

CNN 1 and CNN 2 statistically, we have performed a t-test for the accuracy of 15 trials of 

CNN 1 versus 15 trials of CNN 2. The t-test gives a p-value of 0.89, indicating no 

statistically significant difference between the performances from the two models. On the 

other hand, the p-value for other pairs (CNN 2 vs. CNN 3, CNN 3 vs. CNN 4, and CNN 4 

vs. CNN 5) is much smaller (≤ 0.05), supporting our conclusion with statistical 

significance. As such, the trend of decreasing accuracy with decreasing percentages of DS2 

data is valid for CNN with 1.5% - 10% of DS2. The difference between the accuracy for 

1% DS2 and 1.5% DS2 is not statistically significant enough to draw a conclusion. 
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Figure 8. Comparison Between the CNN and TL for (a) the Accuracy and (B) the False 

Negative Rate for CHF as a Function of the Percentage of DS2 Data for Training. The Data 

Points Represent the Mean Values of 15 Trials per Experiment. 

It is noted that the analysis in Figure 8 is based on the accuracy and FNR for CHF 

averaged over 15 trials for each of the CNN and TL models. To better understand the 

robustness of the models, Figure 9. compares the statistical behavior of CNN (blue squares) 

and TL (red triangles) models for (a) the accuracy and (b) the FNR for CHF over varying 

percentages of DS2 for training. In the plots, the box shows the interquartile range (IQR), 

i.e., the range between the first quartile (Q1, 25th percentile) and the third quartile (Q3, 75th 

percentile), the line in the box represents the median, and the whiskers show the minimum 

(Q1 – 1.5 IQR) and the maximum (Q3 + 1.5 IQR). Data points located outside the whiskers 

are the outliers represented with the dots. The box plots in Figure 9 (a) and (b) clearly show 

that the accuracy and the FNR for CHF of TL over 15 trials with random splits are 

converged into a much narrower range than CNN. This is an important advantage of TL 

over CNN that makes the predictions of TL models more reliable with smaller random 
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errors. Combining the results of Figure 8 and Figure 9, it is clear that TL outperforms CNN 

with higher accuracy, lower FNR, and much higher robustness at small percentages of DS2 

(i.e., 1%, 1.5%, and 2%).  

 

Figure 9. Box-plot of (a) the Accuracy and (b) False Negative Rate for CHF Based on 15 

Trials of CNN and TL Experiments with 1%, 1.5%, 2%, 5%, and 10% DS2. 

It is noted that all the CNN and TL experiments were conducted on 4 Nvidia GeForce 

GTX TITAN X graphics cards with 48 GB memory (each has 12 GB memory), Intel Xeon 

Gold 6128 CPU @3.40GHz, 125 GB RAM, using Python 3.6.9, Keras 2.3.0 with 

TensorFlow 1.14.0 as backend. The training time of the CNN and TL models was recorded 

to evaluate the computational cost of the CNN and TL models. Figure 10 compares the TL 

and CNN models for the computational time during training as a function of the percentage 

of the DS2 data for training. The overall computational time of TL is lower than CNN for 

models with 1%, 1.5%, 2%, and 5% DS2. Both the training time for the CNN model and 

that for the TL model scale linearly with the percentage of the DS2 data for training (R2 = 

0.9986 and 0.9948, respectively). The slope for the TL model is much larger than that for 
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the CNN model because the TL model only uses the DS2 data for training while the CNN 

model is trained with both the DS2 data and the DS1 data. Comparison experiment on 10% 

shows higher computing cost of TL vs. CNN. This is because for the 15 trials, the number 

of epochs reaching converged solutions for CNN is within the range of [37, 84], and for 

TL is within [296, 505]. Since the focus here is data scarcity and potential real-time 

implementation, which considers testing time, the reported time is training in 100 epochs 

for CNN and 1000 epochs for TL, respectively. The testing time (including the overhead 

time to calculate the performance metric) was 68.84 microseconds for 3186 images, and 

this translates to ~21.61 nanoseconds per image. 

 

Figure 10. Comparison Between TL and CNN Models for the Computational Time Based 

on 15 Trials of CNN and TL Experiments with 1%, 1.5%, 2%, 5%, and 10% DS2. 

2.3.3 Comparison Experiment II: DS1 and DS3 

Comparison experiment II (CNN 6 vs. TL 6) was conducted on public dataset DS1 

and in-house boiling experiment dataset DS3. With the promising results of TL 
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outperforming CNN on scarce data from the first comparison experiments, we decided to 

explore the lowest number of samples affordable from DS3 for training, which is five 

samples (~0.05%) from DB, BIC, and CHF, respectively. Similar to the first comparison 

experiment, 15 trials were conducted based on a stratified sampling strategy. Figure 11 

shows the comparison of (a) the mean accuracy and (b) mean FNR for CHF over 15 trials 

between CNN and TL with ~0.05% DS3 included during training. The results of DS3 are 

consistent with DS2 showing that the TL model outperforms the CNN model with higher 

mean accuracy (95.31% compared to 85.91%) and a lower mean false negative rate for 

CHF (0.1263 compared to 0.0016). The overall testing time was less than 165 

microseconds for 34,750 images (with the same software and computer configuration as a 

comparison experiment I).   

 

Figure 11. Comparison Between the CNN 6 and TL 6 for (a) the Accuracy and (b) the False 

Negative Rate for CHF with ~0.05% DS3 for Training. 
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2.3.4 Discussion 

Boiling regime experiments often generate massive imagery data under different 

experimental configurations. One challenge facing the application of DL is the lack of a 

generalized approach. Often, a DL model needs to be re-trained on any new dataset 

followed by validation. Ideally, with more datasets gathered, the extensive offline 

modeling efforts can be compensated by having a super-model generalized enough to apply 

to most new datasets. Unfortunately, the efforts of collecting and adding more new datasets 

may not positively correlate with the model performance due to the data noise, data 

heterogeneity, just to name a few. Inappropriate inclusion of more data may be harmful 

instead of helpful for predictive modeling. Transfer Learning (TL) may be a viable strategy 

to support the cross-dataset study.  

While TL concept has been widely adopted in different applications such as medical 

imaging, the applicability of TL for boiling regime, to the best of our knowledge, is new. 

This is becoming a much-needed effort because (1) there is increasing use of data (imaging, 

video) in this research field; and (2) notable data often are from different sources. This may 

be the first attempt to comprehensively evaluate strategies on the cross-dataset study, 

namely, CNN vs. TL, in hoping to draw insights to guide boiling regime study from a data 

science perspective. The model performance on detecting CHF and its nanosecond-scale 

testing time indicate the potential of real-time implementation. Please note the models 

(CNN and TL) developed in this research are all supervised learning models, that is, the 

images are labeled as prior. Exploring the applicability of the model on a new, totally 

“unseen” dataset with no labeling information will require an unsupervised learning model, 
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which currently is not within the scope of this chapter and will be discussed in chapter 3 of 

this document.  

2.4 Conclusion 

 In summary, TL is demonstrated to outperform traditional CNN in terms of detection 

accuracy, robustness, and computational costs, especially when the amount of data for 

training is limited. In the first experiment, as the training samples from DS2 decrease from 

10% to 1%, the detection accuracy of CNN decreases from 99.50±1.72% to 85.10± 9.43% 

while the TL model decreases from 99.96± 0.08% to 94.79±2.97%. The smaller variance 

(measured by standard deviation) is a strong indicator of the robustness of TL comparing 

to CNN. In terms of computational costs, CNN decreases from 12.62± 0.11 min to 10.82 

± 0.08 min while the TL model decreases from 16.76 ± 0.04 min to 1.76 ±0.04 min. We 

want to note that the CNN model was conducted with 100 epochs while TL took 1000 

epochs. Note choosing the optimal epoch depends on the dataset size and the characteristics 

of the model. We want to highlight that the numbers of input images for CNN and TL 

significantly differ. Taking 1% experiments as an example, in one epoch, the TL model is 

trained only on 1% of data from the target, the data used to train the CNN model is a 

combination of the 1% target data and the complete source data. As a result, the number of 

epochs does not directly tell the convergence for comparison. Our empirical experiments 

on 10% study show that the number of epochs reaching converged solutions for CNN is 

within [37, 84], and for TL is within [296, 505]. While it is expected the number of epochs 

varies depending on the training data, as a pilot testing on the feasibility of TL, we decided 
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to take a conservative approach and took 100 epochs vs. 1000 epochs for CNN and TL, 

respectively for all the experiments. Still, as the samples from the new dataset used for 

training decrease, the training time of TL becomes much smaller than CNN. Although TL 

uses a larger epoch to train, the training time is significantly lower than that of CNN. 

 The transfer learning models are shown to be able to minimize the chance of 

overlooking CHF events, demonstrated with an ultra-low false negative rate for the CHF 

class. As such, when used for CHF detection, TL will effectively mitigate CHF-induced 

detrimental failures of devices that use boiling for cooling. Furthermore, the high accuracy 

and robustness of the TL models indicate transfer learning to be promising as the remedy 

for data scarcity, a very common and critical challenge for applying deep learning in 

solving scientific and engineering problems. Therefore, the approach and results of the 

present work will not only make an impact in the heat transfer community but also inspire 

more sophisticated deep learning approaches for engineering applications.  
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CHAPTER 3 

UNSUPERVISED MACHINE LEARNING APPROACH FOR 

CRITICAL HEAT FLUX DETECTION 

3.1 Introduction 

Supervised machine learning has proved itself to be successful across a wide variety 

of real-world applications. However, it is limited to applications where the data source the 

model was trained on comes from the same distribution as the data target that the model 

will be tested on. For the application where the target data drawn from a different 

distribution than the source training data, the performance of the model starts declining to 

the point where some models become worse than random guessing [74].  

An alternative solution is to train a model on another related large-scale source domain 

with labels (e.g., a simulation domain) and adapt it to the unlabeled target domain (e.g., a 

real-world domain), also known as unsupervised domain adaptation. This adaptability is 

important, especially with the rise of deep neural networks that depend heavily on the 

availability of a large amount of labeled data for it to be effective. It becomes even more 

important for applications where obtaining labels for a large amount of data is very 

expensive or simply not possible. It allows for eliminating the costs associated with 

obtaining labeled data from the target domain. Thus, researchers are motivated to explore 

the single source homogenous unsupervised deep domain adaptation problem [74]–[76]. 

Most unsupervised deep domain adaptation methodologies prevail by either designing new 
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distance metrics to measure the discrepancy between two domains to minimize the 

discrepancy between the domains, or by learning domain invariant features using 

adversarial learning-based methods inspired by generative adversarial networks (GANs).  

GAN was firstly presented in 2014. The power of GAN models comes from integrating 

generative modeling techniques alongside deep learning techniques, they utilize supervised 

learning to perform an unsupervised learning task. The GAN model is basically made of 

two sub models, a discriminator, and a generator. The discriminator is simply a binary 

classifier with the task of distinguishing source domain data from target domain data. The 

generator is a generative network with the task of generating images good enough to 

confuse the discriminator. The purpose of this min-max game is to minimize the distance 

between the source and target domains [77]. There has been many updates and 

modifications in the original GAN model ever since it was introduced by several scholars, 

but in general, they all share a common essence, which is basically to train two networks 

in parallel, a generator network (denoted as G) and a discriminator network (denoted as D). 

The discriminator network is a binary classifier that is trained to distinguish between real 

and generated images (fake images). The generator network is trained to produce images 

that are very similar to the real images with a goal to confuse the discriminator in its 

classification task. Optimality is reached when the generator is producing images with a 

distribution that is very similar to the real images’ distribution to the point where the 

discriminator can no longer distinguish between the two [78]–[80]. 

Several GANs have been successfully introduced to suit a variety of real-world 

applications, but despite their success, the training process lacks a suitable stabilizing 
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technique. This is due to a number of different phenomena experienced such as Nash-

equilibrium, internal covariate shift, mode collapse, vanishing gradient, and lack of proper 

evaluation metrics [78]. In this research, we are interested in exploring the applicability of 

Fix-Point GAN to the critical heat flux detection problem. As a continuing effort, the same 

dataset presented in Chapter 2 is used. Please refer to Section 2.2.1 for details on the 

dataset.  

3.2 Fixed-Point GAN 

The Fixed-Point GAN is considered state of the art in the image-to-image 

translation task. This newly proposed GAN dramatically reduces artifacts and faults in 

image-to-image translation. It has been shown to outperform the previous state-of-the-art 

in this task. When given images from two different domains, Fixed-Point GAN learns to 

translate images from one domain to the other. Figure 12 demonstrates a comparison 

between Fixed-Point and its predecessor starGAN. When given a data set of positive cancer 

x-ray images and a data set of negative images, Fixed-Point GAN shows superior capability 

in generating a “cancer free” image from a positive image which enables for a successful 

tumor localization by simply subtracting the two images [79].  
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Figure 12. Comparison Between Fixed-point GAN and Its Predecessor StarGAN on the 

Brain Lesion Localization Task ( Siddique Et Al., 2019) 

Not only was Fixed-Point GAN dominant in single domain translation, but it has also 

shown to surpass state-of-the-art GANs in the multi domain translation task where each 

image has multiple labels. For example, it has shown the ability to outclass previously 

dominant GANs on the publicly available CelebA data set, where images have multiple 

domains (labeled by multiple attributes such as hair color, gender, glasses, etc.) and the 

task is to translate an image from one domain to another without affecting other domains 

(e.g., changing the hair color from blonde to black without changing the gender or hair 

style). Fixed-Point GAN differs from its predecessors with its ability to identify a minimal 

subset of pixels for domain translation or what the authors like to refer to as the “Fixed-

Point translation ability.” It does so by modifying the training process to promote the fixed-
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point translation through supervising same-domain translation through an additional 

identity loss, regularizing cross-domain translation through revised adversarial, domain 

classification, and cycle consistency loss [79].  

3.3 Application of Fixed-Point GAN to Critical Heat Flux Detection 

In this section, Fixed-Point GAN is utilized to perform image-to-image translation 

to transform images coming from one boiling regime to look like images from a different 

boiling regime. The purpose behind this is to come up with a general methodology tool that 

will enable researchers to utilize a classifier that was previously trained on a labeled dataset 

to be used on any other unlabeled data set from a different domain simply by transforming 

the images from the new domain to the original domain that the model was previously 

trained on.  

Figure 13 illustrates the difference between the classical same domain classification 

(Figure 13.a) and the cross-domain classification to be achieved (Figure 13.b). To 

demonstrate this, model CNN-0 from chapter 2 that was purely trained on DS1 will be used 

Figure 13. Same Domain Classification Vs Cross Domain Classification 
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as an example of a base model that could be generalized for usage on images from different 

domains. Fixed-Point GAN will be applied to generate fake DS1 images from the DS2 data 

set and test the generated images on the CNN-0 model. This will allow researchers in the 

heat transfer community to successfully use the model without the need to manually label 

a specific data set and train a model generated specifically for that data.  

Figure 14. summarizes the methodology adopted in this chapter. The red part of the flow 

chart represents the CNN-0 Model training process, while the blue part represents the 

Fixed-Point GAN training process. The yellow part is where the results from both methods 

interact. 
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Figure 14. Unsupervised Learning Methodology Flow Chart 
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3.2.1 CNN-0 Model Training 

Figure 13 shows a summary of the entire training methodology adopted in this 

chapter. The red colored part of the flow chart summarizes the training process adopted to 

produce the CNN-0 model, which is similar to that used in chapter 2. The data set was 

divided into three parts: 1) a training set (80%), 2) a validation set (10%), and 3) a test set 

(10%). A CNN model was trained with the same configurations used in chapter 2 and the 

training was stopped when the validation loss was no longer improving. The model that 

performed the best validation loss was selected. Finally, the selected model was blind tested 

on the test set where the model achieved excellent results as presented in chapter 2. The 

model was saved to be used in the later stage of the methodology, as viewed in Figure 14. 

3.2.2 Fixed-Point GAN Training 

 The blue colored part of Figure 14 summarizes the procedure used in training the 

Fixed-Point GAN model. DS2 was divided into three parts: a) training set, b) validation 

set, and c) testing set. The training set from DS2 was fed into the Fixed-Point GAN model 

along with 100% of DS1. The GAN model was trained for 300,000 epochs, where every 

10,000 epoch a model was saved. A total of 30 GAN models were saved. Unlike the 

supervised machine learning part, finding a proper evaluation metric that indicates when 

to stop the training process is not as easy since that the data is not labeled. All evaluation 

metrics used in the supervised learning process depend on having labels, making them 

useless in this case. The topic of suitable evaluation metrics for GANs is still an area under 

exploring within the unsupervised machine learning community. One of the most used 

metrics is the Fréchet Inception Distance score, or FID for short. The score reflects on the 
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difference between two sets of images in terms of statistical vision features. The lower the 

score is, the better the quality of the generated images by the GAN, with a score of 0.000 

being the best obtainable score possible. Thus, the FID score was adopted in evaluating the 

30 models. The validation data was fed into the 30 models to generate fake DS1 images. 

Thus, a total of 30 sets of generated images are to be evaluated. The FID score was used to 

measure the distance between each of the 30 sets and the original DS1 images. The model 

that scored the lowest FID scored on the validation set was selected to generate fake images 

from the testing data set. Finally, Model CNN-0 was used to classify the newly generated 

fake images and the results were evaluated using traditional supervised learning metrics. 

3.4 Results and Discussion 

3.4.1 CNN-0 Model and Blind Cross Domain Testing 

 In this section, the results obtained from the CNN-0 model training will be 

presented. Moreover, the results will be compared with blindly testing the CNN-0 model 

on DS2 blindly before applying the Fixed-Point GAN model. Figure 15 below shows the 

confusion matrix generated by each experiment and Table 3.  Table 3 shows different 

evaluation metrics for the same experiments. It is quite clear that the model is useless when 

used on images from a different domain. 
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Figure 15. Comparison Between the Confusion Matrices Generated by Using CNN-0 on 

DS1 (Part a) and DS2 (Part b) 

Table 3. Metrics Generated by Using CNN-0 on DS1 and DS2 

 

3.4.2 Fixed-Point GAN Evaluation using FID 

Once the Fixed-Point GAN model started training, the model was saved every 10,000 

epochs for a total fixed training number of epochs equal to 300,000 epochs, generating a 

total of 30 models. Because model evaluation in unsupervised machine learning is 

challenging and it is difficult to decide on when to stop the model from training, each of 

these 30 models were evaluated using the FID metric. The model that scored the best in 

the FID metric (lowest value), was selected to be used in generating fake images from the 
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test data set. Error! Reference source not found. shows the FID values generated for the f

ake images generated from each of the 30 models in comparison with the images in DS1.  

Table 4. Fid Values for Images Generated from the Validation Set Using the 30 Gan 

Models 

 

As seen in Error! Reference source not found., the model saved at epoch 290k was the b

est scoring model. The 290k model is then applied to the testing data set to generate fake 

DS1 images. Figure 16 shows samples generated from each class. The first row shows the 

original DS2 images, while the second row shows the transformed (fake) version of the 

same image generated using the 290k model.  
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Figure 16. Samples Generated by the 290k Model. 
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3.4.3 Testing Fix-Point GAN Images using CNN-0 

 The test set images transformed by the 290k model were tested using the CNN-0 

model. Table 5 summarizes the predictions made by the CNN-0 model on the fake images 

generated by the 290k Fixed-Point GAN model. The table shows that the model is 

providing incredible success in predicting the “BIC” and “ONB” classes but is struggling 

to provide accurate predictions for the “CHF” class. The model tends to misclassify them 

as “BIC” Instead. 

Table 5. CNN-0 Predictions on Fake DS1 - Confusion Matrix 

 

Table 6 shows the evaluation metrics generated for the predictions made by the CNN-0 

model on the fake DS1 images. 

Table 6. CNN-0 Predictions on Fake DS1 - Evaluation Metrics 
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3.4.4 Discussion 

3.4.4.1 FID Results Discussion 

 Looking at the evaluation metrics generated for all three experiments in Table 7, it 

is observed that there is a significant improvement in the results when the images are first 

transformed from DS2 into fake DS1 and then tested by the CNN-0 model rather than 

blindly testing the CNN-0 model on DS2 images without any transformation. All metrics 

has improved significantly, but most importantly, the “balanced accuracy” metric has 

increased by 112%, and the “AUC (one vs. rest)” has increased by 39%. This clearly 

demonstrates the effectiveness of using Fixed-Point GAN in transforming the images to a 

domain that the CNN model has seen before and how this transformation will improve the 

results obtained by the same model on the same images before the transformation.  

Table 7. Comparison Between Evaluation Metrics Generated Using All Methods. 

 

For a more in-depth analysis of the results, the confusion matrices of all three experiments 

are displayed in Figure 17, and the model shows 100% accuracy on both the “BIC” and the 

“ONB” labels. Although the model improved slightly in predicting the “CHF” label, it still 
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fails in predicting most of the “CHF” images correctly. It tends to predict “CHF” images 

as “BIC” instead.  

 

Figure 17. Comparison Between the Confusion Matrices Generated Using All Methods. 

To further understand the reason behind these misclassifications, a comparison between 

the real and the fake images for each class during different time intervals was plotted. 

Figure 18, Figure 19, and Figure 20 show the comparisons for the “ONB”, “BIC”, and 

“CHF” respectively during different stages of the regime. In Figure 18, The model seems 

to be able to identify that “ONB” from DS2 should be transformed to DS1 “ONB” images, 

but it fails however to make the latter stages of DS2 “ONB” look like the later stages of 

DS1 “ONB”. The classification, however still stands correct and justifies the high accuracy 

obtained by the model.  

Similarly, in Figure 19 the model is able to identify that DS2 “BIC” must be transformed 

to DS1 “BIC”, but also failed to make the fake intermediate and later stages look like the 

real stages. Nevertheless, the classifications are correct and explain the results in the 

confusion matrix.  
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As illustrated in Figure 20, one starts to observe the reason behind the misclassifications 

for the “CHF” class. The images seem to be distorted and not as clear as those in the other 

classes. Moreover, some of the fake images such as the one in the left bottom corner 

(GIT_CHF1176) show traces of the old domain. The transformation seems immature in 

this stage which could mean that the model is under trained. It is worth noting that the best 

selected model using the FID score was at epoch 290,000 while the model trained for a 

pre-determined number of epochs of 300,000. This is an indication that more training might 

lead to better results. The reason why the model decided to predict the distorted images as 

“BIC” might be because the transformation was not mature enough for it to be detected by 

the model as the domain it was originally trained for, so it decided to predict it as it would 

with any other domain, which is to predict as the most dominant majority since it is not 

able to confidently assign it to any other class, which is the same thing that happened when 

DS2 images were blindly tested using the CNN-0 model, and the model ended up 

classifying all the images as the majority class “BIC.”  

Although the performance of the model is the worst for the “CHF” class, the model in this 

class doesn’t seem to suffer from the same problem it has with the other classes. The fake, 

intermediate and final stages look like they were drawn from the same stage. This problem 

might be attributed to the fact that the number of images in the DS1 “ONB” and “BIC” 

classes are much larger than the number of images for the same classes in DS2. Looking 

at Table 1, “ONB” in DS1 is almost four times as many as the “ONB” in DS2 and “BIC” 

is two-three times as many as “BIC” in DS2, while the gap in number of “CHF” images 

between the two data sets is much smaller.  
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Figure 18. Real Vs Fake "ONB" Images 

 

Figure 19. Real Vs Fake "BIC" Images 
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Figure 20. Real Vs Fake "CHF" Images 

3.4.4.2 How good is FID in choosing the best GAN model? 

 Out of all 30 Fixed-Point GAN models generated, how good was the FID metric in 

choosing the best model? In a real life application, there is no way of knowing without 

having a labeled validation data set, thus it is not possible to know for sure, but for our case 

study, we do have the actual labels of the validation set (even though unavailability of the 

labels was assumed in our methodology) and we could see how far is the FID selected 

model from the best attainable model out of these 30.Thus, the validation process was done 

again, but this time using a labeled validation set and traditional evaluation metrics used 

for supervised learning. Out of the 30 models, the images generated by model 90k achieved 

the highest balanced accuracy when tested with the CNN-0 model with a value of 79% on 

the validation set compared to 69% achieved by model 290k that was selected by the FID 

metric. The 90k model was then used to generate fake images from the test set and these 
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images were also tested using the CNN-0 model, achieving a balanced accuracy of 81% as 

compared to the 70% achieved when using the 290k model as seen in Table 8. 

Table 8. Metrics Comparison Between the 290k and the 90k Models 

 

The confusion matrices for both models are displayed in Figure 21. There is a notable 

improvement in the prediction accuracy of the “CHF” class. The accuracy for the “CHF” 

class improved from 9.7% to 53.2%, while there was a small decrease in performance in 

predicting the “ONB” class, and the accuracy for the “BIC” class remained the same. 

 

Figure 21. Confusion Matrices Comparison Between the 290k and 90k Models 

As seen from the results above, although the FID metric provides a good solution, it does 

not guarantee the best attainable one.  
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3.5 Conclusion 

 In conclusion, the overall methodology proved to be a successful solution to the 

unsupervised cross domain problem facing the heat transfer community. Using a 

sophisticated generative adversarial network such as the Fixed-Point GAN to transform 

images from a new domain not seen previously by the model to the domain that the model 

previously trained with increases the performance substantially and could be considered as 

a step in the right direction for further future improvement in the solution of this problem. 

The balanced accuracy improved from 33% (random guessing) to 70%, while the AUC 

(one vs. rest) improved from 59% to 82%. 

Although successful, this methodology does not come without its own challenges and 

obstacles. First, the model failed to correctly classify most of the “CHF” images. This 

problem could be attributed to the fact that the model failed in providing good enough 

images of the “CHF” class to fool the CNN-0 model into thinking it is from the original 

domain. The images generated looked distorted, and some had traces of their original 

domain (DS2) which forced the model to predict most of these images as the most dominant 

class in the imbalanced data set which is the “BIC” class. A suggested solution is to allow 

the model to train for a longer period of time in the hopes of improving the quality of the 

images generated. Moreover, the model also failed to transform images into their proper 

time stage in both the “ONB” and “BIC” stages. This problem was attributed to the major 

difference in the number of images in both of these classes between the two datasets DS1 

and DS2. A suggested solution is to try data synthesizing and augmentation methods to 

balance the data sets. Tools such as SMOTE [81] or GANs could be used to generate 
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random images from each class domain to fix the imbalance issue, which is suspected to 

improve the model’s performance.   

In addition, we conclude while FID provides a good model suggestion, it was not able to 

suggest the best suitable model for this problem. Since GANs and their evaluation is still a 

relatively new topic in the machine learning community, we should expect new 

performance measures to emerge in the near future.  
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CHAPTER 4 

CONCLUSION AND FUTURE WORK 

4.1 Conclusion 

 In summary, the first phase of this work focuses on utilizing supervised and semi-

supervised machine learning approaches. In this phase, TL is demonstrated to outperform 

traditional CNN in terms of detection accuracy, robustness, and computational costs, 

especially when the amount of data for training is limited. In the first experiment, as the 

training samples from DS2 decrease from 10% to 1%, the detection accuracy of CNN 

decreases from 99.50±1.72% to 85.10± 9.43% while the TL model decreases from 99.96± 

0.08% to 94.79±2.97%. The smaller variance (measured by standard deviation) is a strong 

indicator of the robustness of TL comparing to CNN. In terms of computational costs, CNN 

decreases from 12.62± 0.11 min to 10.82 ± 0.08 min while the TL model decreases from 

16.76 ± 0.04 min to 1.76 ±0.04 min. We want to note that the CNN model was conducted 

with 100 epochs while TL took 1000 epochs. Note choosing the optimal epoch depends on 

the dataset size and the characteristics of the model. We want to highlight that the numbers 

of input images for CNN and TL significantly differ. Taking 1% experiments as an 

example, in one epoch, the TL model is trained only on 1% of data from the target, the data 

used to train the CNN model is a combination of the 1% target data and the complete source 

data. As a result, the number of epochs does not directly tell the convergence for 

comparison. Our empirical experiments on 10% study show that the number of epochs 
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reaching converged solutions for CNN is within [37, 84], and for TL is within [296, 505]. 

While it is expected the number of epochs varies depending on the training data, as a pilot 

testing on the feasibility of TL, we decided to take a conservative approach and took 100 

epochs vs. 1000 epochs for CNN and TL, respectively for all the experiments. Still, as the 

samples from the new dataset used for training decrease, the training time of TL becomes 

much smaller than CNN. Although TL uses a larger epoch to train, the training time is 

significantly lower than that of CNN. 

The transfer learning models are shown to be able to minimize the chance of overlooking 

CHF events, demonstrated with an ultra-low false negative rate for the CHF class. As such, 

when used for CHF detection, TL will effectively mitigate CHF-induced detrimental 

failures of devices that use boiling for cooling. Furthermore, the high accuracy and 

robustness of the TL models indicate transfer learning to be promising as the remedy for 

data scarcity, a very common and critical challenge for applying deep learning in solving 

scientific and engineering problems. Therefore, the approach and results of the present 

work will not only make an impact in the heat transfer community but also inspire more 

sophisticated deep learning approaches for engineering applications.  

The second phase of this work focuses on extending the previous work to include an 

unsupervised machine learning approach. In conclusion, the overall methodology proved 

to be a successful solution to the unsupervised cross domain problem facing the heat 

transfer community. Using a sophisticated generative adversarial network such as the 

Fixed-Point GAN to transform images from a new domain not seen previously by the 

model to the domain that the model previously trained with increases the performance 
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substantially and could be considered as a step in the right direction for further future 

improvement in the solution of this problem. The balanced accuracy improved from 33% 

(random guessing) to 70% while the AUC (one vs rest) improved from 59% to 82%. 

Although successful, this methodology does not come without its own challenges and 

obstacles. For example, the model failed to correctly classify most of the “CHF” images. 

In addition, further exploration of FID is needed to help develop a new evaluation metric.  

4.2 Future Work 

4.2.1 Model Performance Improvement 

To the best of our knowledge, the proposed unsupervised learning approach is the 

first of its kind to utilize GANs to solve the boiling heat transfer problem within the heat 

transfer community. As the case in any unprecedented work, there is always a spacious 

room for improvement.  There are different areas that could be focused on for future 

research work to improve the performance of this methodology. One of these areas is to 

focus on the hyper parameters tuning for the GAN model. Parameters such as the number 

of epochs to train, the architecture used, etc., could be optimized for better image 

generation results. Another area to focus on is providing a more sophisticated evaluation 

metric than the traditional FID used in this approach. As demonstrated in Chapter 3, the 

290k model suggested to be used by the metric turned out to be sub-optimal. A better 

evaluation metric will help boost the performance of the model significantly. Moreover, 

the data itself could be replaced. There are many different data sources from different 

setups and different liquids under study. Using other data sources as the base model is a 
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topic to be investigated. Rather than having DS1 as the data for the base model, perhaps a 

different base model used from a different data set could prove to be a better model for 

generalization. 

4.2.2 Black Box Unraveling 

 Although these algorithms and methodologies are producing very promising results 

for the heat transfer community, there still is a way to go. Heat transfer scholars to this day 

are still trying to unravel the ambiguity of the boiling heat transfer mechanism. 

Convolutional neural networks demonstrated their abilities in detecting the boiling regime 

with high accuracy merely by looking at the images, a task that experts in the field are 

unable to do without the assistance of quantitative measures such as the heat transfer 

coefficients and the temperature. Making sense of what enables the CNN models to 

correctly identify the boiling regime could help scholars make sense of this critical physical 

phenomena. Tools such as Auto Encoders and Attention Maps could be used for this 

purpose. Figure 22 and Figure 23 show initial efforts to understand what are the most 

important features of the image that is most important in generating these accurate 

predictions. Further work and analysis using such methods seem very promising in helping 

scientists better understand the boiling heat transfer mechanism.  
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Figure 22. CNN Features Extraction Using Auto Encoders 

 

Figure 23. Samples of Attention Maps Generated from Both the CNN and TL Models for Each 

Class. 

Another method worth exploring is utilizing the localization capabilities of Fixed-Point 

GAN. Siddique et al. [79] used their Fixed-Point GAN to generate negative tumor medical 
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images from positive tumor medical images, or what was referenced by the authors as 

“virtual healing.” Having two versions of the same image (one infected and one healed) 

and subtracting the two images from each other would result in an image showing only the 

location of the infected area. Similar to this approach, we could take an image from any 

regime and transfer it to another regime and then subtract the two to understand what it is 

that distinguishes one regime from the other. Correlating the features from these features/ 

locations with the physical properties of the known boiling theories should help scientists 

better understand this phenomenon. 
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