
Advances at the Interface of Combinatorial Optimization and Computations Social

Choice: Mathematical Formulations, Structural Decompositions, and Analytical

Insights

by

Sina Akbari

A Dissertation Presented in Partial Fulfillment
of the Requirement for the Degree

Doctor of Philosophy

Approved September 2022 by the
Graduate Supervisory Committee:

Adolfo R. Escobedo, Chair
Geunyeong Byeon

Jorge Sefair
Shin-yi Wu

ARIZONA STATE UNIVERSITY

December 2022

ABSTRACT

The rank aggregation problem has ubiquitous applications in operations research,

artificial intelligence, computational social choice, and various other fields. Generally,

rank aggregation is utilized whenever a set of judges (human or non-human) express

their preferences over a set of items, and it is necessary to find a consensus ranking

that best represents these preferences collectively. Many real-world instances of this

problem involve a very large number of items, include ties, and/or contain partial

information, which brings a challenge to decision-makers. This work makes several

contributions to overcoming these challenges.

Most attention on this problem has focused on an NP-hard distance-based variant

known as Kemeny aggregation, for which solution approaches with provable guaran-

tees that can handle difficult large-scale instances remain elusive. Firstly, this work

introduces exact and approximate methodologies inspired by the social choice founda-

tions of the problem, namely the Condorcet criterion, to decompose the problem. To

deal with instances where exact partitioning does not yield many subsets, it proposes

Approximate Condorcet Partitioning, which is a scalable solution technique capable

of handling large-scale instances while providing provable guarantees.

Secondly, this work delves into the rank aggregation problem under the generalized

Kendall-tau distance, which contains Kemeny aggregation as a special case. This new

problem provides a robust and highly-flexible framework for handling ties. First, it

derives exact and heuristic solution methods for the generalized problem. Second,

it introduces a novel social choice property that encloses existing variations of the

Condorcet criterion as special cases.

Thirdly, this work focuses on top-k list aggregation. Top-k lists are a special form

of item orderings wherein out of n total items only a small number of them, k, are

explicitly ordered. Top-k lists are being increasingly utilized in various fields includ-

i

ing recommendation systems, information retrieval, and machine learning. This work

introduces exact and inexact methods for consolidating a collection of heterogeneous

top- lists. Furthermore, the strength of the proposed exact formulations is analyzed

from a polyhedral point of view. Finally, this work identifies the top-100 U.S. univer-

sities by consolidating four prominent university rankings to assess the computational

implications of this problem.

ii

I dedicate this work to my beloved family, my mother Farangis, my late father

Masoud, my sisters Maryam and Samira, and my brother Saeed

iii

ACKNOWLEDGMENTS

First and foremost, I would like to express my sincere gratitude to my advisor, Dr.

Adolfo R. Escobedo, for his immense support, help, and guidance. He had a profound

impact on my professional and personal growth, and helped me to become a better

researcher and a better person. He was very compassionate, understating, and helpful.

I am grateful for having him as my advisor. Without him this dissertation would not

exist.

I would like to thank Dr. Jorge Sefair, Dr. Geunyeong Byeon, and Dr. Shin-

yi WU for taking part in my dissertation committee and providing comments and

guidance that improved this work.

Finally, I would like to thank my family for their irreplaceable and invaluable love

and support.

iv

TABLE OF CONTENTS

Page

LIST OF TABLES . viii

LIST OF FIGURES . x

CHAPTER

1 Introduction. 1

1.1 Motivation and Overview . 1

1.2 Existing Challenges . 9

1.3 Contributions and Overview of the Dissertation 13

2 Notation and Preliminaries . 16

2.1 Mathematical Notation. 16

2.2 Distance-Based Approaches . 17

2.3 Kemeny Aggregation . 20

2.3.1 Underlying Distance and Properties . 20

2.3.2 Review of Notable Approximation Algorithms for KEMENY-

AGG . 23

2.4 The Condorcet Criterion and its Variants . 26

3 Lower and Upper Bounding Techniques for KEMENY-AGG 28

3.1 The finest-Condorcet partition . 29

3.1.1 Definition and Properties . 29

3.1.2 An Efficient Algorithm for Constructing Xf 33

3.2 Upper Bounding via Approximate Condorcet Partitioning 39

3.2.1 Provable Guarantees from Partitioning . 43

3.2.2 Computational Comparisons . 48

3.3 Lower Bounding Techniques . 55

3.3.1 Pairwise Comparison Methods . 56

v

CHAPTER Page

3.3.2 Cycle-Based Methods . 57

3.3.3 LP-relaxation-Based Methods . 63

3.3.4 Computational Results . 64

3.4 Concluding Remarks . 68

4 The Generalized Rank Aggregation Problem . 70

4.1 Overview. 70

4.2 Notation and Preliminaries . 71

4.3 The Generalized Rank Aggregation Problem . 72

4.3.1 Definition and Formulation . 73

4.3.2 Constraint Relaxation Method . 77

4.3.3 The Least Imposed Cost Heuristic (LICH) 78

4.4 Generalizing the Condorcet Criterion and its Variants 81

4.4.1 Enlarged GXCC Partitions . 85

4.5 Effect of Modifying the Penalty Parameter . 88

4.6 Computational Results . 92

4.7 Conclusion . 98

5 Top-k List Aggregation . 100

5.1 Notations . 100

5.2 Distance-based Top-k List Aggregation . 101

5.2.1 Generalized Kendall-tau Distance . 103

5.3 Exact Optimization Models and Theoretical Insights 105

5.3.1 Effect of the Penalty Parameter p on the Consensus List 113

5.4 Polyhedral Comparison . 116

5.5 Heuristic Methods . 120

vi

CHAPTER Page

5.6 Data Reduction . 123

5.7 Computational Experiments . 125

5.7.1 Data Set . 125

5.7.2 Computational Results . 128

5.8 Case Study: University Rankings . 132

5.9 Concluding Remarks . 157

6 GENERAL DISCUSSION AND CONCLUSIONS . 158

REFERENCES . 161

vii

LIST OF TABLES

Table Page

3.1 Performance Metrics of the Selected Approximation Algorithms for

Solving Biomedical Instances . 53

3.2 Performance Metrics of the Selected Approximation Algorithms for

Solving Toc Instances with More than 100 Items . 54

3.3 Performance Metrics of the Selected Approximation Algorithms for

Solving SOC Instances with More than 100 Items . 55

3.4 Computational Results of Different Lower Bounding Techniques 65

4.1 Solution Time (in Seconds) of Different Exact Methods with and With-

out Prior GXCC Partitioning for Different Values of p for TOC In-

stances With 40 ≤ n ≤ 400 . 94

4.2 Solution Time (in Seconds) of Different Exact Methods with and With-

out Prior GXCC Partitioning for Different Values of p for the Cohen-

boulakia et al. Cohen-Boulakia et al. (2011) data set 94

4.3 Number of Items in the Enlarged GXCC Partition’s Subsets for Certain

Large Instances . 95

4.4 Solution Time (in Seconds) and %deviation of LICH with and Without

Prior GXCC Partitioning for Different Values of p for TOC Instances

With 40 ≤ n ≤ 400 . 97

4.5 Solution Time (in Seconds) and %deviation of LICH with and With-

out Prior GXCC Partitioning for Different Values of p of The Cohen-

Boulakia et al. Cohen-Boulakia et al. (2011) data set 97

5.1 Geometric Mean of Run Time (in Seconds) And %Relative Gap of

MIPs#1 and #4 . 129

5.2 %Relative Gap of The Tested Methods . 130

viii

Table Page

5.3 Geometric Mean of Run Time of the Tested Methods (in Seconds) 130

5.4 %Relative Gap of The Tested Methods . 131

5.5 Geometric Mean of Run Time of the Tested Methods (in Seconds) 131

5.6 Global Rank of U.S. Universities That Have Appeared at Least Once

in the Input 2022 Top-100 U.S. Universities Lists . 136

5.7 2022 Consensus Top-100 U.S. Universities . 140

5.8 Global Rank of U.S. Universities That Have Appeared at Least Once

in the Input 2021 Top-100 U.S. Universities Lists . 143

5.9 2021 Consensus Top-100 U.S. Universities . 147

5.10 Global Rank of U.S. Universities That Have Appeared at Least Once

in the Input 2020 Top-100 U.S. Universities Lists . 150

5.11 2020 Consensus Top-100 U.S. Universities . 154

5.12 K(p) Distance, # of Full Rank Reversals, and # of and Partial Rank

Reversals, Respectively, Between the Inputs Lists and Consensus, For

2022 . 156

5.13 K(p) Distance, # of Full Rank Reversals, and # of and Partial Rank

Reversals, Respectively, Between the Inputs Lists and Consensus, For

2021 . 156

5.14 K(p) Distance, # of Full Rank Reversals, and # of and Partial Rank

Reversals, Respectively, Between the Inputs Lists and Consensus, For

2020 . 157

ix

LIST OF FIGURES

Figure Page

3.1 Preference-cycles in Non-strict Rankings (Yoo and Escobedo, 2021) 59

4.1 Example Depiction of Objective Function Values Obtained over All

Values of p by Three Different Solution Non-strict Rankings (the Piece-

wise Linear Envelope Is Shown in Bolded Red) . 90

5.1 Example Depiction of Objective Values Obtained over All Values of p

by Four Different Solution Top-k Lists (the Piecewise Linear Envelope

Is Shown in Red). 115

x

Chapter 1

INTRODUCTION

1.1 Motivation and Overview

Rank aggregation is a well-studied problem in operations research, computer sci-

ence, and computational social choice, which arises in a variety of situations where m

judges (i.e., voters) are asked to rank n items (i.e., candidates) based on some specific

quality of interest; effectively, the rankings submitted by the judges’ can be consid-

ered as their ballots in an election. The objective is to find a consensus ranking that

represents the opinion of the group in the best manner, with respect to how the items

should be ordered. Rank aggregation is rooted in the voting theory field and early

works of Jean-Charles de Borda (1733–1799) and Marie Jean Antoine Nicolas de Car-

itat (1743–1794), better known as the Marquis de Condorcet. These two politicians

presented two very important ideas in voting theory. Borda’s proposal was to deter-

mine winner of an election by assigning scores to the candidates based on what rank

position they occupy in each ballot. Condorcet’s proposal, known as the Condorcet

criterion, was to determine the winner based on the majority’s preferences over the

candidate pairs. Formally, the Condorcet criterion declares that a candidate that is

ranked ahead of every other candidate in the pairwise comparisons by a majority of

votes must be declared as top-ranked candidate in the outcome of the election; such

a candidate is denoted as the Condorcet Winner. Additionally, Condorcet presented

a related important concept known as Condorcet Paradox upon observing that a ma-

jority of voters can prefer candidate x to candidate y and a majority of voters can

prefer candidate y to candidate z, and still a majority of voters can prefer candidate

1

z to candidate x, causing a paradoxical outcome. A milestone in the field of social

choice theory emerged years later in the works of Kenneth Arrow (Brandt et al.,

2016), especially the Arrow’s Impossibility Theorem (Arrow, 1951). This theorem is

motivated by the intuitive requirement that any reasonable social welfare function

(SWF)—a function that maps the ranking ballots into one consensus total ordering

of the candidates—should simultaneously be weakly Paretian and independent of ir-

relevant alternatives (IIA). The weakly Paretian paradigm states that if all the voters

strictly prefer candidate x to candidate y, then x must be strictly ranked ahead of

y in the consensus ranking. The IIA paradigm states that the relative ordering of x

and y in the consensus ranking only depends on the relative ordering of x and y in

the input votes and nothing else; for example, not a third candidate z. Arrow (1951)

proved that the only aggregation function that simultaneously is weakly Paretian

and IIA is dictatorship, which is a voting rule if there exists a single fixed voter (i.e.,

dictator) whose vote is returned as the consensus vote regardless of other votes. The

Impossibility Theorem demonstrated that certain basic and desirable properties of

voting systems are incompatible. Simply put, there exists no perfect voting rule or

aggregation function! Hence, many researchers have developed different social welfare

functions that relax some of these desirable properties.

It is needless to say that the above concepts and fundamental theoretical results

have important implications. Consider the case of voting rules in U.S. elections, which

have garnered significant attention. Recently, the states of Alaska and Maine adopted

a method called Ranked-Choice Voting (RCV) (Hare, 1861) for their primary and

congressional elections (ALA, 2022; Mai, 2022), and more than twenty other states

use RCV for their local elections (Ran, 2022). RCV is a multi-round voting rule where

the candidate who receives the lowest number of first-places in each round is dropped

from all ballots for the next round—the relative ordering of the remaining candidates

2

remains unchanged— until a surviving candidate is ranked first in the majority of

the votes. While RCV fails to satisfy the Condorcet criterion and monotonicity—if

candidate x is the winner of an election, changing a vote to rank x first never causes

x to lose the election— it is nonetheless regarded as being superior to the plurality

or first-past-the-post voting methods (Brandt et al., 2016).

Over the past recent years, rank aggregation has found widespread applications

in other fields outside of voting theory and computational social choice. It has been

advocated as a systematic approach to guide decision-making processes, especially

in multi-criteria decision-making (MCDM) (Beńıtez-Fernández and Ruiz, 2020; Chen

et al., 2013; Liao and Wu, 2020; Mohammadi and Rezaei, 2020). MCDM meth-

ods evaluate alternatives based on predefined criteria and subsequently sort or rank

them based on the evaluations (Mohammadi and Rezaei, 2020). Prominent exam-

ples include AHP (analytic hierarchy process) (Saaty, 1977), ANP (analytic network

process) (Saaty, 2001), and ELECTRE (ELimination and Choice Expressing RE-

ality) (Figueira et al., 2016). Since different MCDM methods produce conflicting

rankings, finding an overall consensu ranking that resolves these disagreements is of

paramount importance (Mohammadi and Rezaei, 2020). In the context of informa-

tion retrieval, analogous concerns fall under the umbrella of data fusion, where the

goal is to derive a collective ranking of different information retrieval systems (Kle-

mentiev et al., 2008); rank aggregation methods have been effective in this context

as well (Hsu and Taksa, 2005). Furthermore, rank aggregation has also gained atten-

tion as a robust mechanism for consolidating heterogeneous ordered output lists by

different machine learning techniques (Klementiev et al., 2008). Related applications

within this context include meta-search engines and spam detection (Desarkar et al.,

2016; Dwork et al., 2001), feature selection (Bolón-Canedo and Alonso-Betanzos,

2019; Sarkar et al., 2014; Onan and Korukoğlu, 2017), natural language processing

3

(Cascaro et al., 2019; Mehta and Majumder, 2019), and label ranking (Aledo et al.,

2017; Werbin-Ofir et al., 2019). Furthermore, rank aggregation has other applications

such as crowdsourcing (Chatterjee et al., 2018; Kemmer et al., 2020), bioinformatics

(Dimitrakopoulos et al., 2018; Galdi et al., 2019; Li et al., 2019; Quillet et al., 2020),

journal rankings (Aledo et al., 2018; Cook et al., 2010), university rankings (Tavanaei

et al., 2018), supplier selection (Peng et al., 2011), and network inference (Marbach

et al., 2012; Puerta et al., 2021).

Rank aggregation methodologies are broken down into two categories: distance-

based and ad hoc methods (Cook, 2006). The techniques in the latter category are

further divided into elimination and non-elimination methods. A prominent example

of elimination ad hoc methods is RCV; furthermore, the popular score-based meth-

ods fall into non-elimination ad hoc methods. Techniques in the score-based category

rank items based on their scores according to a specified scoring function. Exam-

ples of score-based methods are the Borda rule (Borda, 1784) and the Copeland rule

(Copeland, 1951). Techniques in the distance-based category aim to find a ranking

among all possible rankings with the least distance to all input rankings according

to a specified distance measure. There are various such measures between rankings

including the Kemeny-Snell distance (Kemeny and Snell, 1962), the Kendall-tau dis-

tance (Kendall, 1938), and the Spearman’s footrule distance(Diaconis and Graham,

1977). We refer the reader to Diaconis (1988) and Fagin et al. (2006) for more details

on distance measures between rankings.

This work focuses on distance-based methods to take advantage of their rigor-

ous axiomatic foundations and associated sociotheoretic properties (Brandt et al.,

2016) including being more robust to outliers and manipulation than ad hoc meth-

ods (Brandt et al., 2016). An important aspect addressed in this dissertation is that

distance-based aggregation problems tend to be more computationally demanding

4

and are often NP-hard (Brandt et al., 2016).

Before proceeding, it is important to explain that rankings can be categorized as

strict and non-strict. Strict rankings refer to the case where there are no ties, while

non-strict rankings refer to the case where there may be ties. Both strict and non-

strict rankings can even further be categorized as complete and incomplete, e.g. see

Dwork et al. (2001), Moreno-Centeno and Escobedo (2016); all items are ranked in

the former and some items may be unranked in the latter. Top-k lists are a popular

form of incomplete rankings where only the ordering of the top-k ranked items are

given—it is implicitly assumed that all items that are not in a top-k list are tied

together for position k + 1. Furthermore and as a convention, let a full rank reversal

denote the case where two rankings fully disagree over the relative ordering of some

distinct item-pair and a partial rank reversal denote the case where some distinct

item-pair is tied in one ranking, but not in the other.

Kemeny and Snell (1962) introduced the first and perhaps the most popular

distance-based rank aggregation framework. The authors proposed a set of axioms

(non-negativity, triangular inequality, anonymity, extension, scaling, and commuta-

tivity) that must be satisfied by any distance metric on rankings, and introduced a

distance that uniquely satisfies them. Rank aggregation using this distance metric

is known as the Kemeny aggregation problem (KEMENY-AGG). The social welfare

function represented by this problem uniquely satisfies five key social choice properties

simultaneously: anonymity, neutrality, unanimity, reinforcement, and local stability

(Brandt et al., 2016; Young, 1988; Young and Levenglick, 1978). These theoretical

benefits come at a high computational price as KEMENY-AGG is NP-hard even for

only four input rankings (Bartholdi et al., 1989; Dwork et al., 2001). Due to this

fact, many heuristic (e.g., see Aledo et al. (2019); Amodio et al. (2016); Ding et al.

(2018a,b)) and approximation algorithms (e.g., see Ailon et al. (2008); Ailon (2010))

5

have been proposed. We refer the reader to Section 2.3.2 for a detailed review of

existing approximation algorithms for KEMENY-AGG. It is worth adding that the

Kendall-tau distance (Kendall, 1945) is another prominent distance measure, which

is equivalent to the Kemeny-Snell distance in the space of strict rankings. Fagin et al.

(2004) and Fagin et al. (2003) proposed two separate generalization of the Kendall-tau

distance for comparing non-strict rankings and top-k lists, respectively. These two

generalized distances and their associated rank aggregation problems serve as one of

the backbones of this work.

There is also growing interest in exact solution techniques for KEMENY-AGG.

In particular, KEMENY-AGG has been formulated as binary programming for strict

rankings in Conitzer et al. (2006); Cook (2006); Pedings et al. (2012), and for non-

strict rankings in Yoo and Escobedo (2021). Emond and Mason (2002) proposed a

specialized branch and bound algorithm that implicitly enumerates all possible non-

strict complete rankings. This method is only capable of handling small instances

with up to 20 items; Yoo et al. (2020) modified this method for handling incomplete

rankings. Other exact methods include the iterative algorithms of Azzini and Munda

(2020) and Rico et al. (2022) for strict and non-strict rankings, respectively. It is

worth adding that there are n! and 0.5[(1.4)n+1n!] >> n! strict and non-strict rank-

ings. To highlight the increased difficulty of the rank aggregation problem engendered

by this increased solution universe, when n = 5, there are 120 strict rankings and

approximately 452 non-strict rankings; and when n = 50, there are 3.04× 1064 strict

rankings and approximately 4.31× 1071 non-strict rankings.

A small number of works have focused on partitioning KEMENY-AGG based

on certain social choice properties its optimal solution(s) is guaranteed to satisfy.

Through these partitioning approaches, certain instances can be decomposed into a

set of smaller subproblems while guaranteeing that solving them independently still

6

induces an optimal solution to the original problem. A notable scheme is based on

the Extended Condorcet Criterion (XCC) proposed by Truchon (1998), who proved

that the optimal solutions to KEMENY-AGG with strict rankings are consistent with

XCC. Betzler et al. (2014) introduced another scheme based on the 3/4-Majority Rule

and concept of dirty pairs. The authors proved that the 3/4-Majority Rule cannot

further partition an instance that has already been partitioned by XCC, meaning that

XCC partitioning is always at least as good as partitioning using the 3/4-Majority

Rule. Additionally, Milosz and Hamel (2020) introduced a related approach that

finds the relative ordering of certain item-pairs in the optimal solution(s). While it

was shown to be more effective than XCC in in providing the partial structure of

the solution to KEMENY-AGG, its associated algorithm has a complexity of O(n3),

whereas XCC has a complexity of O(n2)—and it is only applicable for strict rankings.

Recently, Yoo and Escobedo (2021) proposed the Non-strict Extended Condorcet

Criterion (NXCC), which is a generalization of XCC for non-strict rankings, and in-

troduced a partitioning algorithm based on sequential pairwise comparisons. The

authors reported that whenever tested instances from the Preflib database (Mattei

and Walsh, 2013) with up to 300 items were partitionable, the combined exact so-

lution times of the decomposed subproblems—using their exact binary programming

formulation—were at least 25% and up to 96% faster than those of the full problem.

Another important focus is obtaining high-quality lower bounds for the KEMENY-

AGG, especially for assessing the solution quality of inexact methods. More specifi-

cally, a low-quality lower bound may lead to the incorrect conclusion that an optimal

or near-optimal solution is of low quality. Davenport and Kalagnanam (2004) intro-

duced the first lower bound using the pairwise comparison information. There are

three general classes of lower bounding techniques for KEMENY-AGG: 1) pairwise

comparison methods, 2) cycle-based methods, and 3) LP-relaxation methods. Pair-

7

wise comparison methods leverage the fact that each pair of alternatives contributes a

minimum amount to the overall distance. Cycle-based methods seek to improve pair-

wise comparison lower bounding techniques by taking advantage of the fact that the

preferences returned by the solution must be transitive. Finally, a lower bound can

be obtained by solving the LP-relaxation of KEMENY-AGG formulation. We remark

that there are other infrequently used lower bounding techniques with strict rankings

such as using Spearman’s footrule (Dwork et al., 2001) and Borda count (Coppersmith

et al., 2010), based on their relationship with the Kemeny-Snell distance; however, to

the best of our knowledge, these relationships have not been extended to the case of

non-strict rankings.

In recent years, top-k lists have attracted significant attention due to their vari-

ous advantages and real-world applications. Examples of top-k lists are the top-250

movies on IMDB or the top-10 played songs on Spotify (Pedroche and Conejero,

2020). Top-k lists have many advantages that can overcome some of the practical

drawbacks of the traditional full-list approach: a collection of items may be too large

to rank or even present, processing the full list could present a massive computa-

tional/cognitive load, and it may be impossible or meaningless to compare and rank

items beyond a certain point (Chierichetti et al., 2018). Due to the increased use of

such lists, the top-k list aggregation problem (TOP-k-AGG) has attracted considerable

attention. The aim of TOP-k-AGG is to find a consensus list, either another top-k

list or a full list (i.e., an ordering of all n items), that best represents the input lists.

TOP-k-AGG is interrelated with many problems in information retrieval including

top-k recommendation (Chen et al., 2022; Lee et al., 2021; Kabra and Agarwal, 2021;

Tang et al., 2021) and top-k query (Mackenzie and Moffat, 2020; Shanbhag et al.,

2018; Xie et al., 2020) problems. In top-k recommendation, a small number of items

must be recommended among a larger set of available items to a user. Top-k recom-

8

mender systems are utilized by companies like Amazon, Netflix, and Hulu, and they

are widely used in social networks and various other contexts (Song et al., 2015). Rec-

ommender systems are hardly accurate due to data sparsity (Park et al., 2016) and

the results of multiple recommender systems are usually different from one another

(Oliveira et al., 2020); hence, there is growing interest in improving the quality of the

recommendation list (e.g. see Ma et al. (2021); Zhu et al. (2019); Lee et al. (2021); Hu

et al. (2018)). Recently, Oliveira et al. (2020) performed an extensive study on the

effectiveness of rank aggregation techniques in top-k recommender systems. A total

of 19 techniques were implemented and the quality of recommendations was improved

on all but one of seven tested data sets. In top-k query, given a database and a query,

the aim is to retrieve the top-k associated items in the database. Applications of

top-k query processing include image retrieval (Zhang et al., 2019), search engines

(Long and Suel, 2003), and digital libraries (Lu and Callan, 2005). The relevance of

the selected items to the given query is usually calculated by a scoring function. To

neutralize the effect of using different algorithms or scoring functions, one can use

TOP-k-AGG to consolidate these lists and derive a more coherent and effective list.

TOP-k-AGG can be considered as an ensemble technique for those machine learning

algorithms whose output is an ordered list.

1.2 Existing Challenges

Even though variations of the rank aggregation problem have been around for

centuries, recent applications of this problem in various fields have prompted new

practical challenges. One of the existing challenges is reliably solving large-scale in-

stances of this problem mainly arising from the field of artificial intelligence. For

example, there are various studies in bioinformatics to identify genes possibly asso-

ciated with a certain disease. Since different studies identify different genes, there is

9

an essential need to combine the results of different studies instead of relying upon a

single experiment, where each experiment may identify thousands of genes (Cohen-

Boulakia et al., 2011; Marbach et al., 2012). Recommender systems (Oliveira et al.,

2020) and web query systems (Dwork et al., 2001) are other fields where most rank

aggregation instances have thousands of items. The exact methods of KEMENY-

AGG are capable of solving instances mostly with tens and no more than a few

hundred items reliably.. For example, the largest strict ranking instance solved ex-

actly in Emond and Mason (2002), Conitzer et al. (2006), Betzler et al. (2014), had

15, 40, and 200 items, respectively, and the largest non-strict ranking instance solved

exactly in Rico et al. (2022) and Yoo and Escobedo (2021) had 15 and 210 items,

respectively. Condorcet partitions can be very useful for expediting exact techniques,

particularly when the resulting partition has many small subsets. However, some in-

stances are not partitionable, and in various other cases when they are, the partition

may yield relatively few subsets and/or very large subsets. Yoo and Escobedo (2021)

reported that a sizeable fraction of the real-world instances with ties drawn from the

Preflib data set (Mattei and Walsh, 2013) yielded Condorcet partitions with these

disadvantageous characteristics. Betzler et al. (2014) reported similar results on syn-

thetic instances generated via the Plackett-Luce model (Luce, 2012; Plackett, 1975).

Such results indicate that exact decomposition is useful only for a limited number

of instances. Since exact methods fail to solve large-scale instances, even with the

help of Condorcet partitions, one may reasonably turn to an approximation algo-

rithm. However, the state-of-the-art approximation algorithm for KEMENY-AGG,

LP-KwikSort (Ailon et al., 2008), is only suitable for strict rankings and requires

solving the LP-relaxed formulation, which again can only be used for instances with

a few hundred items. On the other hand, the approximation ratio of other algorithms

is not appealing: two for strict rankings and nine for non-strict rankings. To over-

10

come this challenge, this work proposes Approximate Condorcet Partitioning (ACP),

a highly scalable decomposition-based solution technique with instance-specific solu-

tion guarantees that can reliably solve large-scale instances with thousands of items

in seconds.

Another existing challenge comes in the form of handling ties as there is no unan-

imous agreement on how to handle partial rank reversals. In recent years, non-strict

rankings have increased in prominence due to their enhanced flexibility for represent-

ing preference data. Dealing with non-strict rankings in real-world applications is the

rule rather than the exception (D’Ambrosio et al., 2019; Emond and Mason, 2002).

In particular, it may not possible for humans to express their preferences strictly over

more than a very small number of items, or a subset of items may be considered

indistinguishable to a specific MCDM or machine learning algorithm (e.g, it may

award the same score to multiple items). Moreover, forcing human judges to express

their preferences in a strict manner may not reflect their true opinion. Therefore, de-

veloping rank aggregation frameworks capable of handling this type of ranking data

is crucial. Setting aside the rather unacceptable process of breaking ties randomly,

there are three prevalent treatments for handling partial rank reversal: 1) assuming

full agreement (Kendall, 1942); 2) assuming complete disagreement (Andrieu et al.,

2021); and 3) Reflecting a level of agreement halfway between the two extremes (Ke-

meny and Snell, 1962). To elaborate, assume that every full rank reversal has unit

weight. Then, each partial rank reversal has a weight of 0, 1, and 0.5 under treatments

1-3, respectively. Recently, Fagin et al. (2004) proposed the generalized Kendall-tau

distance with parameter 0 ≤ p ≤ 1, which contains the entire agreement-disagreement

spectrum. Despite the high flexibility of this distance measure, its associated rank

aggregation problem has received little to no attention in the literature. To overcome

this gap in the literature, this work studies the rank aggregation problem under this

11

generalized distance for the first time, both theoretically and computationally.

TOP-k-AGG has been studied probabilistically (Chen et al., 2019; Collas and

Irurozki, 2021) and deterministically (Dwork et al., 2001; Fagin et al., 2003). In the

probabilistic approach, it is assumed that the observed lists are realizations of a prob-

abilistic model on ranking data, such as the Mallows model (Mallows, 1957), Thur-

stone (Thurstone, 1927), and Bradley-Terry-Luce (Bradley and Terry, 1952; Luce,

2012), and the goal is to recover the ground-truth list. Deterministic approaches are

comprised of score-based and distance-based methods. Distance-based TOP-k-AGG

techniques can be divided based on whether the output ranking is considered a full list

or another top-k list. Dwork et al. (2001), Ailon (2010), and Nápoles et al. (2017) fall

into the first category; Fagin et al. (2003) falls into the second category. Fagin et al.

(2003)’s method provides higher flexibility, and it induces a far smaller solution space.

There are
(
n
k

)
k! possible top-k lists using the latter approach, which is (n− k)! times

smaller than n! (the number of possible full strict lists over n). Despite the high flex-

ibility of Fagin et al. (2003)’s method and its desirable applications in recommender

systems—where the ordering of items at the bottom of the list is irrelevant— it has

received little attention. This work facilitates the use of this method by proposing

several exact and inexact solution techniques.

TOP-k-AGG has many real-world applications. A motivating example concerns

competing university ranking lists, which are compiled by different services who apply

various objective and subjective criteria and weights. Such lists can exhibit signifi-

cant differences among one another and have strong implications on universities and

students. Thus, it may be ill-advised to rely solely on one such source of information

to judge the comparative standings of universities. To highlight this concern, consider

a recent scandal that caused Columbia University to be dropped from rank 2 to 18 in

the U.S. News Best National Universities list due to the submission of inaccurate data

12

by university officials (Col, 2022). The case was exposed by a whistleblower, suggest-

ing that there might be other similar yet unreported instances since U.S. News and

other services that publish university rankings rely on self-reported data.

TOP-k-AGG provides a mechanism for consolidating the information from multiple

rankings of top universities. The version of the problem studied in this dissertation

was first introduced in Fagin et al. (2003). It is worth elaborating on the sheer

computational difficulty of this aggregation problem and the need for effective solution

techniques for addressing it. The solution space is very large and difficult to explore;

for example, one of the university instances solved herein has around 1.87 × 10198

possible solutions. Fagin et al. (2003) introduced a 2-approximation algorithm, which

is to our knowledge the only known technique with rigorous guarantees for solving

TOP-k-AGG. Applying it to the featured instance results in a solution that deviates

by over 14% from the optimal solution—which is calculated using the exact methods

introduced in Chapter 5 of this dissertation. To highlight the differences between

the exact and approximate solutions to the 2022 university rankings TOP-k-AGG

instance, four universities not in the top-10 in the optimal solution returned by the

exact method appear in the suboptimal top-10 list list obtained via the approximate

method. The top-ranked universities of the two methods differ as well. Harvard is the

highest-ranked university in 2022 when using the exact method; however, Stanford

University occupies the top position when using the approximate method.

1.3 Contributions and Overview of the Dissertation

This dissertation makes three main contributions to the study of rank aggrega-

tion problems. First, it derives a scalable solution approach for solving large-scale

instances of KEMENY-AGG, while providing formal guarantees; its implications will

enable the use of robust ranking aggregation to problems in artificial intelligence and

13

various other fields. Second, it facilitates the consideration of non-strict rankings by

introducing and studying RANK-AGG, which can benefit a wide array of applica-

tions in MCDM. Third, it derives the first mathematical programming formulations

and solution techniques for TOP-k-AGG, which may be used to mitigate the high

variability of recommender and query processing systems. The ensuing paragraphs

summarize the contents of the remaining four chapters.

Chapter 2 introduces the mathematical notation used throughout the dissertation.

Furthermore, it provides an overview of distance-based and score-based rank aggre-

gation frameworks. Furthermore, it reviews various prominent techniques for solving

rank aggregation problems. Finally, it provides an overview of the social choice prop-

erties that KEMENY-AGG has been shown to satisfy. A few of these properties serve

as one of the backbones of this dissertation.

Chapter 3 is devoted to deriving lower and upper bounding techniques for KEMENY-

AGG. In particular, it introduces exact and approximate methodologies inspired by

the social choice foundations of KEMENY-AGG; additionally, it generalizes existing

lower bounds for strict rankings to the case of non-strict rankings, and it proposes

shortcuts for reducing the run time of these techniques. This chapter makes several

contributions: formalizing the concept of a finest-Condorcet partition and proposing

an efficient algorithm for deriving it; developing Approximate Condorcet Partitioning

(ACP), a scalable method for solving very large strict and non-strict rank aggrega-

tion instances; presenting formal solution guarantees (approximation factors) for any

item-partitioning method; and providing improved solution guarantees for ACP. ACP

is designed to solve very large-scale instances. Even though exact methods are only

capable of handling a few hundred items, ACP is capable of producing high-quality

solutions for instances with thousands of items1. As its final contribution, this chap-

1The contents of Sections 3.1-3.2 resulted in Akbari and Escobedo (2022a).

14

ter generalizes some of the existing lower bounding techniques for KEMENY-AGG

with strict rankings for the case of non-strict rankings. Furthermore, it uses Con-

dorcet criterion variations and a constraint relaxation method to accelerate the lower

bounding process2.

Chapter 4 delves into the rank aggregation problem under the generalized Kendall-

tau distance (RANK-AGG). This chapter makes the following contributions: propos-

ing an exact formulation of RANK-AGG; developing a new social choice property,

which generalizes the Condorcet criterion and its variants beyond KEMENY-AGG;

developing an algorithm for constructing a GXCC partition; and deriving new theo-

retical insights on the effect of the Kendall-tau distance penalty parameter3.

Chapter 5 is dedicated to TOP-k-AGG. This chapter makes the following contri-

butions: introducing a binary nonlinear programming formulation and four mixed-

integer linear programming (MIP) formulations—two of which result from the intro-

duction of a novel set of preference cycle-prevention constraints specific to TOP-k-

AGG; comparing the strength of the MIP formulations using techniques from polyhe-

dral theory; and introducing several heuristic algorithms and a data reduction tech-

nique for accelerating the solution to large-scale instances. Lastly, this work applies

this framework to identify the top-100 U.S. universities by consolidating four promi-

nent university rankings: U.S. News, Times Higher Education, QS World Ranking,

and Academic Ranking of World Universities 4 .

2The contents of Section 3.3 appeared in Akbari and Escobedo (2021).

3The contents of Chapter 4 resulted in Akbari and Escobedo (2022b).

4A shorter preliminary version of Chapter 5 led to Akbari and Escobedo (2022c).

15

Chapter 2

NOTATION AND PRELIMINARIES

This chapter is organized as follows. Section 2.1 describes basic mathematical nota-

tions to introduce the rank aggregation problems covered in the dissertation. Sec-

tion 2.2 reviews the prominent distance-based rank aggregation methods. Section

2.3 describes the Kemeny-Snell distance and its associated aggregation problem, and

Section 2.4 describes pertinent social choice-inspired decomposition schemes for these

problems.

2.1 Mathematical Notation

Let X = {1, 2, . . . , n} be the set of items, L = {1, 2, . . . ,m} be the set of indices

of input rankings over X , and Σ ⊂ Zn be the set of all possible complete ranking

vectors over X . Additionally, let σl be the input ranking l ∈ L, and σli be the rank

of item i in σl. As a convention, i �σl j indicates that item i is preferred over item

j in σl, i.e., σli < σlj, and i ≈σl j indicates that i and j are tied in σl, i.e., σli = σlj.

Furthermore, let Λ = {(i, j)|i, j ∈ X , j > i} be the set of distinct item-pairs.

Definition 1 Let sij = |l ∈ L : i �σl j| and tij = |l ∈ L : i ≈σl j| be the number

of input rankings in which item i is preferred over item j, and the number of input

rankings in which i and j are tied, respectively.

Definition 2 (Yoo and Escobedo, 2021) Item i is pairwise preferred by a decisive

majority over item j if sij > sji + tij, that is, the number of input rankings which

prefer i to j is greater than the number of input rankings which prefer j to i, plus

16

those which tie them. If neither i is preferred over j nor j is preferred over i, then

there is no decisive majority that prefers i over j, and vice versa.

For the rest of the dissertation, we use the term pairwise preferred instead of pairwise

preferred by a decisive majority, for succinctness.

Definition 3 Let [cij] ∈ Zn×n be the Cumulative Ranking (CR) matrix whose indi-

vidual entries are obtained as cij = sij+tij−sji when the input rankings are complete.

The CR matrix is used to linearize KEMENY-AGG problem in Yoo and Escobedo

(2021). Here, it is also employed to reduce the space requirements of one of the

proposed algorithms (see Algorithms 1 and 2).

A sequence of subsets denoted as X = {X1, X2, . . . , Xw} is a partition of X if

∪wk=1Xk = X and Xk ∩ X ′k = ∅,∀k, k′ ∈ {1, . . . , w}, with k 6= k′. Subset Xk is said

to be preferred over subset X ′k, written as Xk � X ′k, if all items in Xk are pairwise

preferred over all items in X ′k. Similar to Laslier (1997), we call partition X a null

partition if |X| = 1, a trivial partition if |X| = n, and a proper partition otherwise.

2.2 Distance-Based Approaches

Definition 4 (Distance-Based Rank Aggregation) Given X and L, let d(., .) be a

distance measure between rankings. The distance-based rank aggregation problem seeks

to find a complete ranking σ∗ ∈ Σ with the lowest cumulative distance to the input

rankings; it can be written succinctly as

σ∗ = argmin
σ∈Σ

∑
l∈L

d(σ,σl) (2.1)

The rest of this section reviews three prominent distance measures between rankings,

namely the Kemeny-Snell distance, Kendall-tau distance, and Spearman’s footrule

distance.

17

Definition 5 The Kemeny-Snell distance (Kemeny and Snell, 1962) between two

complete rankings σ1,σ2, denoted by dKS(σ1,σ2), is given by

dKS(σ1,σ2) =
1

2

∑
i,j∈X

∣∣sign(σ1
i − σ1

j)− sign(σ2
i − σ2

j)
∣∣ . (2.2)

The function sign(v) returns 1 if v > 0, −1 if v < 0, and 0 otherwise. In the case of

strict rankings, dKS counts the number of full rank reversals; in the case of non-strict

rankings, every full rank reversal has twice the weight of every partial rank reversal.

Definition 6 The Kendall-tau distance (Kendall, 1938) between two complete strict

rankings σ1,σ2, denoted by dKT (σ1,σ2), is given by

dKT (σ1,σ2) =
∑

(i,j)∈Λ

Ki,j(σ
1,σ2), (2.3)

where Ki,j(σ
1,σ2) is set to 1 if the relative orderings of i and j are different in σ1

and σ2, and 0 otherwise. In other words, we have

Ki,j(σ
1,σ2) =

1 (i �σ1 j ∧ j �σ2 i) ∨ (j �σ1 i ∧ i �σ2 j)

0 otherwise.

As stated earlier, whenever the input rankings are strict, dKT and dKS are equivalent;

however, unlike dKS, dKT is not capable of handling ties (Fagin et al., 2004). In two

separate works, Fagin et al. (2003) and Fagin et al. (2004) proposed two generalization

of the Kendall-tau distance for comparing top-k lists and non-strict rankings, respec-

tively. These generalized distances and their associated rank aggregation problems

are studied in Chapter 5 and Chapter 4, respectively.

Definition 7 The Spearman’s footrule distance between two strict rankings σ1 and

18

σ2, denoted by F (σ1,σ2), is defined as

F (σ1,σ2) =
∑
i∈X

|σ1
i − σ2

i |,

that is the sum of absolute difference between the rank of all items in the two rankings.

Given two strict rankings σ1 and σ2, we have (Diaconis and Graham, 1977)

dKS(σ1,σ2) ≤ F (σ1,σ2) ≤ 2dKS(σ1,σ2).

It is worth mentioning that the distance-based rank aggregation problem has an

interesting statistical interpretation. To that end, we first review the Mallows model

(Mallows, 1957), which is a popular probabilistic model on ranking data and has the

nice property of scalability (Marden, 2014). The model induces a distribution on Σ

such that

Pr[σ ∈ Σ] =
1

Zβ
e−β.d(σ

′,σ), (2.4)

where β > 0 is the decay parameter, d is a distance measure between rankings, σ′

is the ground-truth permutation, and Zβ is a normalizing constant. Mallows model

specifies that the probability of observing a permutation has a reverse relationship

with its distance from the ground-truth ranking. As β approaches zero, the distri-

bution gets closer to a uniform distribution on Σ, i.e., any permutation has equal

probability of occurring, and as β approaches infinity, the distribution becomes more

concentrated around σ′ (Chierichetti et al., 2014). Using distance d, the solution

to the distance-based rank aggregation problem is equivalent to the maximum likeli-

hood estimator of the Mallows probabilistic model, assuming the input rankings are

19

independent realizations (Braverman and Mossel, 2009), that is,

σ∗ = argmin
σ∈Σ

∑
l∈L

d(σ,σl) = argmax
σ∈Σ

Πl∈LPr[σ
l]. (2.5)

A systematic way of comparing the performance of ranking aggregation methods is

to generate random instances by sampling a set of input rankings from a Mallows

distribution (e.g., see D’Ambrosio et al. (2017); Yoo and Escobedo (2021)).

2.3 Kemeny Aggregation

KEMENY-AGG is a popular variant of the distance-based rank aggregation prob-

lem, which is capable of handling ties and satisfying various desirable properties

(Brandt et al., 2016). Section 2.3.1 introduces the components of this formal frame-

work, and Section 2.3.2 reviews notable approximation algorithms, which will serve

to introduce subsequent chapters.

2.3.1 Underlying Distance and Properties

KEMENY-AGG, i.e., rank aggregation under the Kemeny-Snell distance, has re-

ceived significant attention as its solution uniquely satisfies five key social choice

properties simultaneously: anonymity, neutrality, unanimity, reinforcement, and local

stability. Moreover, Kemeny and Snell (1962) showed that the dKS distance uniquely

satisfies the following set of axioms:

Axiom 1: (Non-negativity) d(σ1,σ2) ≥ 0; and equality holds if and only if σ1 and

σ2 are the same ranking.

Axiom 2: (Commutativity) d(σ1,σ2) = d(σ2,σ1).

Axiom 3: (Triangular inequality) d(σ1,σ2) + d(σ2,σ3) ≥ d(σ1,σ3).

Axiom 4: (Anonymity) if σ1′ results from σ1 by a permutation of the objects in V ,

20

and σ2′ results from σ2 by the same permutation, then d(σ1,σ2) = d(σ1′ ,σ2′).

Axiom 5: (Extensions) If two rankings σ1 and σ2 agree except from a set S of

k elements, then d(σ1,σ2) must be computed as if these k objects were the only

objects being ranked.

Axiom 6: (Scaling) This minimum positive distance is 1.

Definition 8 The optimal ranking obtained from KEMENY-AGG can be mathemat-

ically stated as

σ∗KEM = argmin
σ∈Σ

∑
l∈L

dKS(σ, σl). (2.6)

The solution to Problem (2.6) is known as the Kemeny ranking, Kemeny consensus,

and Kemeny median in the literature.

Definition 9 Let d∗KS denote the Kemeny-Snell distance of σ∗KEM to all of the input

rankings.

The dKS distance has been shown to be related to the Kendall-tau correlation co-

efficient (τx) for complete rankings (Emond and Mason, 2002). The Kendall-tau

correlation coefficient between two complete rankings σ1 and σ2 is defined as

τx(σ
1,σ2) =

∑n
i=1

∑n
j=1 σ

1
ijσ

2
ij

n(n− 1)
, (2.7)

where n is the number of items and σij is defined as

σij =

1 if σi ≤ σi,

−1 if σi > σi,

0 if i = j.

(2.8)

21

τx(σ
1,σ2) and dKS(σ1,σ2) are related via the following equation (Emond and Mason,

2002):

τx(σ
1,σ2) = 1− 2dKS(σ1,σ2)

n(n− 1)
. (2.9)

Leveraging Eq. (2.9), we have (Emond and Mason, 2002)

argmin
σ

∑
l∈L

dKS(σ, σl) = argmax
σ

∑
l∈L

τx(σ, σ
l). (2.10)

Yoo and Escobedo (2021) exploited this relationship to propose the Generalized Ke-

meny Binary Programming (GKBP) formulation for solving KEMENY-AGG, which

serves as the state-of-the-art formulation of KEMENY-AGG, to the best of our knowl-

edge. Furthermore, Yoo et al. (2020) extended this relation to the case of incomplete

rankings. GKBP is given by:

max z =
∑
i,j∈X

cij(2yij − 1) (2.11a)

s.t. yij − ykj − yik ≥ −1 ∀i, j, k ∈ X , i 6= j 6= k, (2.11b)

yij + yji ≥ 1 ∀i, j,∈ X , j > i, (2.11c)

yii = 0 ∀i ∈ X , (2.11d)

yij ∈ {0, 1}, ∀i, j ∈ X , i 6= j. (2.11e)

Here, decision variable yij is equal to 1 if alternative i is ranked ahead or tied with

alternative j and 0 otherwise; i and j are tied in the ranking if yij = yji = 1. Ob-

jective function (2.11a) maximizes the extended Kendall tau correlation coefficient.

Constraint (2.11b) prevents preference cycles; this means that if i is ranked ahead

of j and j is ranked ahead of k, then i must be ranked ahead of k as well. Con-

22

straint (2.11c) enforces that for each pair of alternatives, one of them must be ranked

ahead, after, or tied with the other. Constraint (2.11e) determines the domain of

the variables. The rank of alternative i can be calculated as σi = n −
∑

j 6=i yij. To

be the best of our knowledge, GKBP is the state-of-the-are formulation for solving

KEMENY-AGG.

Definition 10 Let dKS(σ) be the cumulative Kemeny-Snell distance of a given rank-

ing σ ∈ Σ to the input rankings; it is useful to also expand dKS(σ) as
∑

(i,j)∈Λ

dKS(σij),

where dKS(σij) is the contribution of each pair of distinct item-pair (i, j) ∈ Λ in

dKS(σ), which is given by

dKS(σij) =

2sji + tij if i �σ j,

2sij + tij if j �σ i,

sij + sji if i ≈σ j.

(2.12)

Eq. (2.12) follows from the definition of dKS (see Eq. (2.2)). Intuitively, dKS assigns

a weight of 2 for each full rank reversal and a weight of 1 for each partial rank reversal.

Therefore, if i is ranked ahead of j in σ, the imposed distance for this pair equals

the number of input rankings where j is ranked ahead of i, times 2, plus the number

of input rankings where i and j are tied. Furthermore, if i and j are tied in σ, the

imposed distance for this pair equals the number of input rankings where either i is

ranked ahead of j or vice versa.

2.3.2 Review of Notable Approximation Algorithms for KEMENY-AGG

Various methods with formal guarantees have been introduced to solve the rank

aggregation problem induced by the Kemeny-Snell distance. First, we review approx-

imation algorithms designed for KEMENY-AGG with strict rankings. The consensus

23

list obtained with the rank aggregation problem induced by the Spearman’s footrule

distance is a 2-approximation algorithm (Dwork et al., 2001); this distance calcu-

lates the sum of the absolute differences between the rank positions assigned to each

of the items. Ailon et al. (2008) proposed KwikSort and LP-KwikSort. KwikSort,

an expected 2-approximation algorithm, repeatedly chooses a random item as the

pivot, and it divides the remaining items into two groups—the sets of items ranked

ahead and behind the pivot item, based on the pairwise comparison information;

LP-KwikSort also chooses a random item as the pivot, and it divides the remaining

items into two groups based on the linear programming (LP) relaxation solution of

a KEMENY-AGG formulation. The authors proved that the best of KwikSort and

Pick-A-Perm (see the next paragraph) yields an expected 11/7-approximation, and

the best of LP-KwikSort and Pick-A-Perm yields an expected 4/3-approximation. In

effect, KwikSort and LP-KwikSort do well on instances in which the Pick-A-Perm

does not, and vice versa. Kenyon-Mathieu and Schudy (2007) derived the first poly-

nomial time approximation scheme (PTAS) for the feedback arc set problem (FASP)

on tournaments; a PTAS is a (1 + ε)-approximation—i.e., it returns a solution up

to (1 + ε) times the optimal objective function value, for any fixed value of ε > 0.

The authors also introduced a weighted generalization of the PTAS for FASP to pro-

vide the first PTAS for KEMENY-AGG. Because the time complexity of this PTAS

is doubly exponential in 1/ε, its implementation becomes impractical for sufficiently

small ε (Betzler et al., 2014).

Next, we review approximation algorithms suitable for strict and non-strict rank-

ings. Pick-A-Perm (Ailon et al., 2008) selects one of the input rankings at random,

and its deterministic version called BestInput, picks the input ranking with the lowest

cumulative Kemeny-Snell distance to the input rankings. Pick-A-Perm and BestIn-

put are expected 2-approximation algorithms for strict rankings; however, their ap-

24

proximation factors have not yet been defined for the case of non-strict rankings.

Ailon (2010) proposed RepeatChoice, an expected 2-approximation algorithm, and

LPKwikSorth, an expected 3/2-approximation. While these two algorithms allow the

input rankings to be non-strict, the consensus ranking is required to be strict, which

is not be suitable for many applications. RepeatChoice repeatedly and without re-

placement chooses an input ranking and refines an initial non-strict ranking until all

ties are broken. LPKwikSorth uses a novel LP rounding technique and is the first

algorithm that, by itself, provides an (expected) approximation factor lower than 2.

Van Zuylen and Williamson (2007) proposed a derandomized version of KwikSort,

referred to herein as DeterministicKwikSort, which is an expected 2-approximation

algorithm and showed that the best solution achieved by their algorithm and Re-

peatChoice provides an expected 8/5-approximation. Their work, similar to Ailon

(2010), allows the input rankings to be non-strict but not the consensus ranking.

Gionis et al. (2006) proposed BucketPivot, an expected 9-approximation algorithm,

which is a generalization of KwikSort for non-strict rankings; its approximation factor

reduces to 5 and 3 for special cases.

It is important to remark that, except for Spearman’s footrule, the reviewed al-

gorithms do not guarantee their respective approximation factor over all instances.

Rather, their guarantees are achieved on average. We illustrate the potential for

high variability in solution quality of such expected approximation algorithms using

Pick-A-Perm. Let σ1 = · · · = σ9 = [1, 2, 3]T and σ10 = [1, 3, 2]T . Here, σ∗ = σ1,

with a cumulative Kemeny-Snell distance to the input rankings of 2. However, Pick-

A-Perm may still choose σ10 (with a probability of 1/10), which has a cumulative

Kemeny-Snell distance to the input rankings of 18 (9-times the expected factor).

25

2.4 The Condorcet Criterion and its Variants

The Condorcet criterion (CC), first proposed by Marquis de Condorcet (1785), is

among the most prominent social choice properties. CC states that a candidate that

is pairwise preferred over all other candidates must be declared as the top-ranked

candidate, formally known as the Condorcet Winner. CC can be formally stated as

(Young, 1988)

if ∃ i ∈ X : sij > sji ∀j ∈ X\{i} =⇒ i �σ j ∀j ∈ X\{i},

where σ is the optimal ranking(s). A voting rule is said to be Condorcet consistent if it

always selects the Condorcet Winner as the top-ranked item in its consensus ranking

σ, when one exists (Brandt et al., 2016). Apart from KEM-AGG, there are other

Condorcet consistent rank aggregation methods such as Dodgson’s rule (Dodgson,

1876), maximin rule (Young, 1977), and the ranked pairs rule (Tideman, 2017).

Truchon (1998) proposed the Extended Condorcet criterion (XCC), which gen-

eralizes CC to guarantee an ordering of item-subsets in the aggregate ranking(s).

XCC states that if X can be arranged into a partition such that Xk � X ′k, ∀k, k′ ∈

{1, . . . , w}, with k < k′, then all items in Xk must be ranked ahead of all items in X ′k

in the consensus ranking. XCC can be stated formally as:

if sij > sji ∀i ∈ Xk ∀j ∈ X ′k ∀k < k′ =⇒ i �σ j ∀i ∈ Xk ∀j ∈ X ′k ∀k < k′.

Truchon (1998) proved that the solution to KEMENY-AGG satisfies XCC. Note that

the exact ordering of the full set of items is determined by solving the separate

KEMENY-AGG subproblems induced by the items in each subset of the partition.

Recently, Yoo and Escobedo (2021) showed that KEMENY-AGG for non-strict

26

rankings is inconsistent with XCC. That is, solutions to this problem, which allows

rankings with and without ties, may violate XCC. The authors defined a social choice

property called the Non-strict Extended Condorcet Criterion (NXCC), which can be

stated formally as:

if sij > sji + tij ∀i ∈ Xk ∀j ∈ X ′k ∀k < k′ =⇒ i �σ j ∀i ∈ Xk ∀j ∈ X ′k ∀k < k′.

Observe that, for the case with all strict rankings (i.e., tij = 0 ∀i, j ∈ X), NXCC

becomes XCC. It was formally demonstrated in Yoo and Escobedo (2021) that the

consensus rankings returned by KEMENY-AGG for non-strict rankings are consistent

with NXCC.

27

Chapter 3

LOWER AND UPPER BOUNDING TECHNIQUES FOR KEMENY-AGG

This chapter focuses on lower and upper bounding techniques for KEMENY-AGG,

and it makes four main related contributions. First, it improves Condorcet partition-

ing by defining the finest possible partition that is consistent with XCC and NXCC.

This finest-Condorcet partition yields the most subsets among all such possible de-

compositions, maximizing their potential computational benefits to exact KEMENY-

AGG approaches. Second, this chapter derives an efficient algorithm to construct

the finest-Condorcet partition, which provides other structurally useful information.

As its third main contribution, this chapter leverages these insights to introduce

Approximate Condorcet Partitioning (ACP), an efficient technique that can further

decompose KEMENY-AGG instances whose finest-Condorcet partition contains one

or more subsets that are too large to solve using exact methods. This contribution

is accompanied by the derivation of instance-specific approximation factors, which

are applicable to any item-partitioning scheme, including those that may not be con-

sistent with Condorcet extensions. Improved guarantees are derived for the ACP

solution; although these approximation factors are also instance-specific, their values

were lower than those offered by all constant-factor approximation algorithms known

to date, for all benchmark instances tested in this chapter. As a result, ACP serves a

new upper bounding technique for KEMENY-AGG. As its fourth and final contribu-

tion, this chapter generalizes existing lower bounding techniques for KEMENY-AGG

with strict rankings to non-strict rankings.

The rest of this chapter is organized as follows. Section 3.1 introduces the finest-

Condorcet partition and proves its uniqueness; furthermore, it develops an efficient

28

algorithm to construct it. Section 3.2 introduces the Approximate Condorcet Parti-

tioning technique and derives its provable guarantees, and compares this technique

with various prominent approximation algorithms for KEMENY-AGG. Section 3.3 re-

views some of the existing lower bounding techniques for KEMENY-AGG and extends

these techniques to the case of non-strict rankings. Finally, Section 3.4 concludes the

chapter.

3.1 The finest-Condorcet partition

Henceforth, we will denote partitions based on XCC and NXCC simply as Con-

dorcet Partitions to distinguish them from those based on item exact and heuristic

partitioning schemes (e.g. see Betzler et al. (2014) and Aledo et al. (2021)). The rest

of this section is organized as follows. Section 3.1.1 formally introduces the concept

of the finest-Condorcet partition, specifies its conditions, and proves that it is unique.

Section 3.1.2 proposes a novel algorithm for obtaining the finest-Condorcet partition.

3.1.1 Definition and Properties

Let ℘(X) denote the class of partitions satisfying NXCC. This class can contain

more than one partition; however, certain members of ℘(X) are more computation-

ally expedient than others. In particular, after obtaining a Condorcet Partition, it

is necessary to solve a KEMENY-AGG subproblem for each subset of the partition

and then to concatenate the separate solutions, in proper order, to obtain a solution

to the original problem. The worst case happens when the instance has a null Con-

dorcet Partition (|X| = 1), and the best case happens when the instance has a trivial

Condorcet Partition (|X| = n) (i.e., the order of the singleton subsets in the partition

provides the optimal ranking of all items). For this reason, it is desirable to obtain

partitions with more subsets and/or with smaller subsets. The ensuing example il-

29

lustrates the differences between multiple NXCC partitions and motivates our focus

on the finest among all such partitions.

Example 1 Consider an instance with 6 rankings of 6 items. The input rankings

and the pairwise comparison matrices, S = [sij] ∈ Z6×6 and T = [tij] ∈ Z6×6, are

given by

Item
Input Rankings

σ1 σ2 σ3 σ4 σ5 σ6

1 1 1 1 1 1 1
2 3 3 3 2 2 1
3 2 2 4 4 2 2
4 3 3 3 3 3 5
5 4 4 2 4 5 3
6 5 5 5 5 4 4

S =

0 6 6 6 6 6
0 0 3 3 5 6
0 2 0 4 4 6
0 0 2 0 4 5
0 1 1 2 0 5
0 0 0 1 1 0

, T =

0 0 0 0 0 0
0 0 1 3 0 0
0 1 0 0 1 0
0 3 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0

There are seven NXCC partitions: X1 = {{1}, {2, 3, 4}, {5}, {6}}, X2 = {{1, 2, 3,

4}, {5}, {6}}, X3 = {{1, 2, 3, 4, 5}, {6}}, X4 = {{1}, {2, 3, 4}, {5, 6}}, X5 = {{1, 2, 3,

4}, {5, 6}}, X6 = {{1}, {2, 3, 4, 5}, {6}}, and X7 = {{1, 2, 3, 4, 5, 6}}. The first is the

finest and most desirable, as it has the highest number of subsets; indeed, the only

subproblem that needs to be solved is the one corresponding to items 2, 3, and 4 (since

the other subsets are singletons). Notice that it is possible to further partition at least

one subset in X2-X7 while satisfying NXCC.

The concept of a finest-Condorcet partition was first introduced in Truchon (1998),

although its formal definition or required conditions were not provided therein. This

partition is an adaption of the unique minimal decomposition (Laslier, 1997) of a

tournament, which is applicable only for aggregating strict rankings. Next, we for-

mally define an extension of the finest-Condorcet partition that is suitable for both

strict and non-strict rankings, and we specify its required conditions.

Definition 11 Partition Xf ∈ ℘(X) is the finest-Condorcet partition if there is no

other partition X ∈ ℘(X) such that |X| > |Xf |, that is, Xf is the partition with the

30

most subsets.

For any X ∈ ℘(X)\Xf—i.e., all but the finest partition of the class—it is possible

to further decompose at least one of the subsets such that the resulting partition

still satisfies NXCC. To improve both XCC and NXCC, we add a requirement that

is only satisfied by Xf . Let ℘f (X) be the class of finest-Condorcet partitions. Any

Xf ∈ ℘f (X) must satisfy

∀Xk ∈ Xf , @Xk ⊂ Xk : sij > sji + tij, ∀i ∈ Xk, ∀j ∈ Xk\Xk. (3.1)

Condition (3.1) does not allow a subset of items in Xk to be pairwise preferred over the

rest of the items in Xk, for all Xk ∈ Xf (i.e., the subsets cannot be further decomposed

while satisfying NXCC). Later we prove that NXCC and Condition (3.1) are the

necessary and sufficient conditions for the finest-Condorcet partition. Beforehand,

Theorem 1 proves that |℘f (X)| = 1, meaning that Xf is unique.

Theorem 1 The finest-Condorcet partition is unique. Let Xf ,X′ ∈ ℘f (X), where

Xf = {Xf
1 , X

f
2 , . . . , X

f
w}, X′ = {X ′1, X ′2, . . . , X ′w}, and Xf 6= X′. Since both Xf

and X′ are distinct finest-Condorcet partitions, they must have the same number of

subsets, but the contents of some of their subsets must be different.

Consider Xf
1 and X ′1. If Xf

1 = X ′1, this part of the proof is trivially satisfied. Oth-

erwise, assume that Xf
1 6= X ′1 and consider two cases based on the relative cardinality

of the subsets.

Case 1. |Xf
1 | = |X ′1|. There exist items i and j such that i ∈ Xf

1 , i /∈ X ′1 and

j /∈ Xf
1 , j ∈ X ′1. This implies that i is pairwise preferred over j and j is pairwise

preferred over i, a contradiction.

Case 2. |Xf
1 | 6= |X ′1|. Without loss of generality assume that |Xf

1 | > |X ′1|.

Case 2.1: X ′1 ⊂ Xf
1 . In this case, the contents of the respective partitions are given

31

by

Xf = {

Xf
1︷ ︸︸ ︷

{X ′1, X
f
1 \X ′1}, . . . , Xf

w},

X′ = {X ′1, . . . , {X
f
1 \X ′1, X ′k\(X

f
1 \X ′1)}︸ ︷︷ ︸

X′k

, . . . , X ′w}.

Without loss of generality, assume that Xf
1 \X ′1 ⊂ Xk′ (considering a subset of Xf

1 \X ′1

also works). The X′ is a finest-Condorcet partition and, therefore, all items in X ′1 are

pairwise preferred over all items in Xf
1 \X ′1; thus, it is possible to decompose Xf

1 and

obtain a finer partition, contradicting the assumption that Xf is a finest-Condorcet

partition.

Case 2.2: X ′1 6⊂ Xf
1 . This leads to a similar contradiction as in Case 1, since there

exists items i and j such that i ∈ Xf
1 , i /∈ X ′1 and j /∈ Xf

1 , j ∈ X ′1.

These cases prove that Xf
1 = X ′1. Next, consider partitions Xf\Xf

1 and X′\X ′1

and apply the above chain of arguments to show that Xf
2 = X ′2. Continuing in this

manner gives that Xf
k = X ′k, for k = 3, . . . , w. Therefore, we can conclude that the

finest-Condorcet partition is unique.

Theorem 2 Xf ∈ ℘(X) is the finest-Condorcet partition if and only if it satisfies

Condition (3.1).

=⇒ We need to prove that if Xf satisfies Condition (3.1), then it is the finest-

Condorcet partition. Note that X has the most subsets among all partitions in ℘(X)

if it is not possible to further decompose its subsets. This is indeed equivalent to

satisfying Condition (3.1).

⇐= We need to prove that the finest-Condorcet partition must satisfy Condition

(3.1). We use contradiction. Assume that at least one of the subset of X, say Xk,

32

does not satisfy Condition (3.1). Then, we can further decompose Xk into Xk and

Xk\Xk and increase the size of X by 1. However, this contradicts the fact that X is

the finest-Condorcet partition, as we can construct another valid partition that has

more subsets.

3.1.2 An Efficient Algorithm for Constructing Xf

This section presents an algorithm for constructing the finest-Condorcet partition.

Beforehand, it is expedient to link the pairwise preference relationships, i.e., sij >

sji + tij, with the elements of the CR matrix (see Subsection 2.1), namely to reduce

storage requirements and computational effort.

Proposition 1 Item i is pairwise preferred over item j if and only if cij > 0 and

cji < 0.

Recall that sij, sji, tij ≥ 0, tij = tji, and cij = sij + tij − sji ∀i, j ∈ X .

=⇒ Assume that sij > tij + sji.

Case 1. tij = 0. By substituting sij > sji in the expressions for cij and cji we have

that cij > 0, cji < 0.

Case 2. tij > 0. By substituting sij > sji + tij in the expressions for cij and cji we

have:

cij = sij + tij − sji > sji + tij + tij − sji = 2tij > 0,

cji = sji + tij − sij < sji + tij − sji − tij = sji − sji < 0

⇐= Now, assume that cij > 0, cji < 0. Here, we have cij = sij + tij − sji > 0, which

results in sij > sji − tij. Similarly, cji = sji + tij − sij < 0 results in sij > sji + tij.

Since sji + tij ≥ sji − tij, we can conclude that sij > sji + tij.

33

From Proposition 1, the CR matrix contains sufficient information to determine

the pairwise preferences of all item-pairs and thereby enable Condorcet Partitioning.

Its use reduces storage requirements since instead of having to store [sij] ∈ Zn×n and

[tij] ∈ Zn×n, only [cij] ∈ Zn×n is needed. Next, we define the parameters needed by

the presented algorithm.

Definition 12 Let Γi be the set of items over which item i is pairwise preferred; its

contents are given by Γi := {j ∈ X : sij > sji + tij}, or equivalently, Γi := {j ∈ X :

cij > 0, cji < 0}. Additionally, let γi := |Γi| denote the number of items over which i

is pairwise preferred.

Definition 13 Let Γi := X\(Γi ∪ {i}) be the set of items over which item i is not

preferred.

The following proposition serves as the foundation of the proposed algorithm, which

connects the γ-values of a distinct item-pair to their relative positions in the subsets

of Xf .

Proposition 2 If γi > γj, then item j cannot belong to a lower-indexed subset than

item i in Xf ; additionally, if γi = γj, then i and j must belong to the same subset.

We prove this by contradiction. Let Xf = {X1, X2, . . . , Xw} be the finest-Condorcet

partition. Additionally, let item i to belong to Xk ∈ Xf and item j to belong to

Xk′ ∈ Xf , where k, k′ ∈ {1, . . . , w}, with k < k′. This gives that

Xf = {X1, . . . , {j, . . . }︸ ︷︷ ︸
Xk

, . . . , {i, . . . }︸ ︷︷ ︸
Xk′

, . . . , Xw}.

Letting |Xk| be the number of items in subset Xk, bounds on γi and γj can be obtained

34

as

|Xk+1|+ · · ·+ |Xk′|+ · · ·+ |Xw| ≤γj ≤ |Xk|+ · · ·+ |Xk′ |+ · · ·+ |Xw| − 1, and

|Xk′+1|+ · · ·+ |Xw| ≤γi ≤ |Xk′|+ · · ·+ |Xw| − 1.

The lower bound on γj comes from the definition of Xf , since each item in Xk must

be pairwise preferred over all items in subsets Xk+1, . . . , Xw. The upper bound on

γj comes from the fact that, when |Xk| > 1, j can be pairwise preferred over some

items in Xk, but there must be at least one item in this subset over which j is not

pairwise preferred; otherwise, j must belong to Xk−1. Lower and upper bounds on

γi are calculated in the same fashion. The values of γi and γj can be connected as

follows:

γj ≥
w∑

t=k+1

|Xt| =
k′−1∑
t=k+1

|Xt|+
w∑
t=k′

|Xt| ≥
w∑
t=k′

|Xt| >
w∑
t=k′

|Xt| − 1 ≥ γi.

Therefore, this gives that γj > γi, which contradicts the starting assumption. In

summary, when γi > γj, j cannot belong to a lower-indexed subset than i in Xf .

Through a parallel chain of arguments, a similar contradiction results when γi = γj,

meaning that i and j must belong to the same subset in the latter case. The

pseudocode of the proposed partitioning procedure is presented in Algorithm 1, and it

consists of two phases: 1) construction of an initial partition, 2) validation & merging.

The algorithm utilizes Proposition 2 to build an initial partition X0. According to

this proposition, if γi = γj, then i and j must belong to the same subset in Xf ;

additionally, if γi > γj, j cannot belong to a lower-indexed subset than i in Xf .

Hence, {X0
1 , X

0
2 , . . . , X

0
w} = X0 is constructed by ordering the items by non-increasing

γ-values; items with a distinct value are placed in separate subsets, and items with

the same value are placed in the same subset. In more detail, the item(s) with the

35

Algorithm 1: Finest-Condorcet Partition

Input : [cij] ∈ Zn×n (CR matrix)
Output: Finest-Condorcet partition (Xf), initial partition (X0)

1 Apply Definitions 12 and 13 to calculate parameters Γi, Γi, and γi using [cij],
for i ∈ X ;

2 Construct the initial partition X0 by placing all item(s) with the highest
γ-value in X0

1 , all item(s) with the next highest γ-value in X0
2 , etc.;

3 X̃← {X0
1 , X

0
2 , . . . , X

0
w} = X0 ; // set working partition to initial

partition

4 k = 1;

5 while k < |X0| do

6 Γ(X̃k)← ∪i∈X̃k
Γi ; // get items over which items in X̃k are not

pairwise preferred

7 if Γ(X̃k)\ ∪kt=1 X̃t = ∅ ; // if X̃k does not violate NXCC

then
8 k ← k + 1;

else

9 while Γ(X̃k)\ ∪kt=1 X̃t 6= ∅ do ; // while subset X̃k violates NXCC

10 k′ ← max{g : i ∈ Γ(X̃k)\ ∪kt=1 X̃t ∧ i ∈ X̃g} ; // get max-index

subset where a violation is detected

11 X̃k ← ∪k
′

t=kX̃t ; // merge subsets causing NXCC violation

into X̃k

12 k ← k′ + 1;

13 Xf ← X̃;

14 return Xf ,X0

maximum γ-value are placed in X0
1 , item(s) with the next highest value is placed

in X0
2 , etc. The second phase checks whether X0 satisfies NXCC; if it does not, it

merges the subsets that have caused the violation. This process is repeated until the

working partition satisfies NXCC. The next two theorems prove that Algorithm 1 is

correct, meaning that its output satisfies NXCC and Condition (3.1) (even though this

algorithm never checks Condition (3.1) in its process), and it has a time complexity

of O(n2).

36

Theorem 3 Algorithm 1 is correct.

Assume that the initial partition X0 = {X0
1 , X

0
2 , . . . , X

0
w} has been accordingly con-

structed, per Algorithm 1, and let X̃ be the working partition which is initially set

to X0. Let Γ(X̃k) = ∪i∈X̃k
Γi denote the set of items over which at least one of the

items in X̃k ∈ X̃ is not pairwise preferred. If all items in Γ(X̃k) belong to X̃k or to

other lower-indexed subsets, X̃ does not violate NXCC, otherwise, there is a violation.

Whenever a violation is detected, the associated subsets (see the next paragraph) are

merged. The process continues until the working partition does not violate NXCC.

The validation & merging starts from subset X̃1. Generally, if Γ(X̃k)\∪kt=1 X̃t = ∅,

all items in X̃k are pairwise preferred over all items in X̃t, for t = k+1, . . . , |X̃|. There-

fore, subset X̃k satisfies NXCC and remains unchanged in this case. If Γ(X̃k)\ ∪kt=1

X̃t 6= ∅, there is at least one item in subsets X̃k+1, . . . , X|X̃| that not all items in

X̃k are pairwise preferred over, which causes a violation of NXCC. Let X̃k′ be the

highest-indexed subset to which an item from Γ(X̃k)\ ∪kt=1 X̃t belongs, where k′ > k.

Therefore, subsets X̃k, . . . , X̃k′ are merged and placed into subset X̃k. Validation &

merging is repeated for X̃k, which is now defined as ∪k′t=kX̃t, until Γ(X̃k)\∪kt=1 X̃k = ∅;

this process is performed on the remaining subsets until the working partition satisfies

NXCC. Hence, the output of the algorithm satisfies NXCC.

Furthermore, we prove that the output of the algorithm satisfies Condition (3.1).

Recall that Condition (3.1) states that a subset cannot be further split into two

subsets while satisfying NXCC. For this part of the proof, we emphasize that

{Xf
1 , X

f
2 , . . . , X

f

|Xf |} = Xf refers to the partition output by the algorithm. Assume

that subset Xf
k ∈ Xf has not undergone validation & merging, therefore, it remains

unchanged after implementing the algorithm. If |Xf
k | = 1, then the subset trivially

satisfies Condition (3.1). We use contradiction for the case when |Xf
k | > 1. Assume

that subset Xf
k does not satisfy Condition (3.1), meaning it can be decomposed into

37

X
f

k and Xf
k \X

f

k . Consider items i ∈ Xf

k and j ∈ Xf
k \X

f

k . This gives that γi > γj,

contradicting the fact that γi = γj (since all items with the same γ-values were placed

in the same subset in X0 and hence X̃).

Now, assume that subset Xf
k has undergone the merging process and that a se-

quence of consecutive subsets {X̃k, . . . , X̃k′} ⊆ X̃ were merged to form subset Xf
k .

Additionally, assume that Xf
k does not satisfy Condition (3.1) and, hence, it is possi-

ble to further decompose Xf
k into {Xf

k , . . . , X
f
t } and {Xf

t+1, . . . , X
f
k′} while satisfying

NXCC. This contradicts the fact that Xf
k has triggered the merging process as at least

one item in Xf
k is not pairwise preferred over at least one item in Xf

k′ . Therefore, Xf
k

satisfies Condition (3.1) and Algorithm 1 is correct.

Theorem 4 Algorithm 1 has a time complexity of O(n2).

Lines 1-2 of the algorithm construct the initial partition. In line 1, calculating the

Γ-parameter sets has a time complexity of O(n2), and calculating the Γ-parameter

sets and γ-values has a time complexity of O(n).

Lines 5-12 perform validation & merging. In this process, the number of inner and

outer while loops iterations are dependent on each other. The extreme cases are:

Case 1. the initial partition has n subsets and the output partition has n subsets.

In this case, the outer while loop is performed n times but the inner while loop is

never performed. In this case, lines 6-8 have a constant time, therefore, validation &

merging has a time complexity of O(n).

Case 2. the initial partition has n subsets and the output partition has 1 subset

and each time, two adjacent subsets are merged. In this case, the inner while loop

is performed n − 1 times but the outer while loop is performed only once. Lines

10-11 have a constant time complexity, and line 12 has a time complexity of O(n).

Therefore, validation & merging has a time complexity of O(n2).

38

Finally, the finest-Condorcet partition algorithm has a time complexity of O(n2).

Example 2 Consider the instance given in Example 1. The γ-values for this instance

are

γ1 = 5, γ2 = 3, γ3 = 3, γ4 = 2, γ5 = 1, γ6 = 0.

The initial partition is X0 = {{1}, {2, 3}, {4}, {5}, {6}}. Here, item 1 has the highest

γ-value, items 2 and 3 have the second highest value, etc. Next, set the working par-

tition to the initial partition (i.e., X̃← X0). Afterward, start validation & merging.

Iteration 1: Item 1 is pairwise preferred over all items in the higher-indexed subsets;

hence, the working partition remains unchanged.

Iteration 2: Item 2 is not pairwise preferred over item 4. Hence, subsets {2, 3}

and {4} are merged to satisfy NXCC. This gives that X̃ = {{1}, {2, 3, 4}, {5}, {6}}.

Iteration 3: Items 2, 3, and 4 are pairwise preferred over items 5 and 6; hence, the

working partition remains unchanged.

Iteration 4: Item 5 is pairwise preferred over item 6. Therefore, we have

Xf = {{1}, {2, 3, 4}, {5}, {6}}.

3.2 Upper Bounding via Approximate Condorcet Partitioning

Condorcet partitioning can be very useful for expediting KEMENY-AGG, partic-

ularly when the resulting partition has many small subsets. However, some instances

do not have a proper partition and, in various other cases when they do, the parti-

tion may yield relatively few subsets and/or very large subsets. Yoo and Escobedo

(2021) reported that a sizeable fraction of the real-world instances with ties tested

therein yielded Condorcet partitions with these disadvantageous characteristics. For

these reasons, exact decomposition is useful only for a limited number of problems.

39

This section introduces Approximate Condorcet Partitioning (ACP), which is useful

for any strict or non-strict instance of KEMENY-AGG. ACP is designed to return

a partition with relatively more and smaller subsets, which is not strictly a Con-

dorcet partition (i.e., the subset orderings may conflict with the Kemeny optimal

solution(s)) but retains some of the computationally beneficial structure of this social

choice-inspired concept. Formal guarantees of the resulting solutions are also derived.

Whenever Xf contains one or more large subsets, ACP constructs a partition of

X that leverages the finest-Condorcet partition, Xf , and the initial partition, X0,

both obtained from Algorithm 1. Recall that X0 is easily constructed based on

the calculated parameter γi, defined as the number of items over which item i is

pairwise preferred. Typically, X0 consists of many subsets, a large fraction of which

are subsequently merged in Algorithm 1 to satisfy NXCC. Whenever the validation &

merging step creates large subsets in Xf , ACP builds a different item partition from

X0, which may violate NXCC but retains some of the convenient structure of Xf .

That is, only those subsets of Xf which are difficult to solve by exact methods are

broken down by ACP; all other subsets are left unchanged, and this preserves some

of the ordered subsets. Thus, this new partition is designed to yield a higher number

of computationally manageable subsets, i.e., whose KEMENY-AGG subproblems are

solvable with exact methods. A key insight behind ACP is that items that have

close γ-values are more likely to be close to each other in the consensus ranking;

hence, smaller subsets are formed based on these calculated parameters, keeping those

with similar values near one another. The pseudocode of the proposed algorithm for

ACP is presented in Algorithm 2. To summarize its steps, let h be a user-specified

threshold, which can be set to the maximum KEMENY-AGG instance size that is

solvable to optimality within a reasonable time (i.e., based on prior findings and

available computational resources). That is, for some subset Xf
k ∈ Xf with |Xf

k | ≤ h,

40

Algorithm 2: Approximate Condorcet Partitioning

Input : [cij] ∈ Zn×n (CR matrix), h
Output: Approximate Condorcet Partition (XACP

h)
1 Xf , X0 ← Finest-Condorcet Partition([cij]);

2 XACP
h ← ∅;

3 for k = 1 to |Xf | do

4 if |Xf
k | ≤ h then

5 Append Xf
k to XACP

h ;

else
6 Let {X0

u, . . . , X
0
v} = X0

uv be the set of consecutive subsets of X0 that

have been merged together to form Xf
k ;

7 q ← u;
8 while q ≤ v − 1 do

9 if |X0
q | ≥ h or q = v − 1 then

10 Append X0
q to XACP

h ;

11 q ← q + 1;

else
12 Let l ≤ v be the highest index such that |X0

q ∪ · · · ∪X0
l | ≤ h;

13 Merge subsets X0
q , . . . , X

0
l and append it to XACP

h ;

14 q ← l + 1;

15 return XACP
h

ACP skips this subset. However, if |Xf
k | > h, then the algorithm evaluates the

corresponding adjacent subsets in X0, say {X0
u, . . . , X

0
v} = X0

uv, which were merged

together during the validation & merging step of Algorithm 1 to form Xf
k . In the next

step, the algorithm tries to merge adjacent subsets of X0
uv as long as their combined

size does not exceed h. During this process, if the size of a subset of X0
uv is already

greater than h, the subset is not merged with any other subsets and is left unchanged

for the remainder of the algorithm.

Let XACP
h denote the partition obtained using threshold h. After obtaining ACP,

the ensuing steps aim to obtain a high-quality solution via ACP: 1) solve those subsets

of XACP
h whose size is at most h to optimality, 2) for each subset whose size exceeds

41

h, tie all its items in the case of non-strict rankings and permute its items randomly

in the case of strict rankings. Step 2 aims to find a quick solution for those subsets

that are deemed difficult to solve to optimality. Similar to Condorcet Partitioning, to

obtain a complete ordering of X , items in lower-indexed subsets of XACP
h are strictly

ranked ahead of items in higher-indexed subsets

Remark 1 The proposed solution method via ACP becomes an exact method if |Xf
k | ≤

h ∀Xk ∈ Xf .

The ensuing small example helps illustrate ACP.

Example 3 Consider an instance with 5 rankings of 10 items and set the threshold

as h = 3. The input rankings (σ1, . . . ,σ5), consensus ranking (σ∗), and γ-value of

each item are given by

Item
Input Rankings

σ∗ Item γ
σ1 σ2 σ3 σ4 σ5

1 8 1 9 10 1 7 1 3
2 2 3 7 6 8 4 2 5
3 5 10 2 4 10 5 3 4
4 6 5 5 2 2 2 4 8
5 3 4 10 9 9 10 5 1
6 1 9 1 1 4 1 6 9
7 10 7 6 5 5 9 7 2
8 9 6 4 8 7 8 8 2
9 7 2 8 7 3 6 9 4
10 4 8 3 3 6 3 10 7

The initial partition is X0 = {{6}, {4}, {10}, {2}, {3, 9}, {1}, {7, 8}, {5}} and the

finest-Condorcet partition is Xf = {{6}, {4}, {10}, {1, 2, 3, 5, 7, 8, 9}}. The ACP al-

gorithm leaves subsets {6}, {4} and {10} unchanged, as their size is less than h, but

it seeks to further decompose the fourth subset of Xf whose size exceeds h. Note that,

subsets {2}, {3, 9}, {1}, {7, 8}, {5} ∈ X0 were merged in the validation & merging to

42

form subset {1, 2, 3, 5, 7, 8, 9}. ACP proceeds by merging subsets {2}, {3, 9} to form

subset {2, 3, 9} whose size reaches h; subsets {1}, {7, 8} are merged to form subset

{1, 7, 8} whose size also reaches the threshold; and subset {5} is left unchanged. There-

fore, the output ACP is given by XACP
h=3 = {{6}, {4}, {10}, {2, 3, 9}, {1, 7, 8}, {5}}. Af-

terward, one KEMENY-AGG subproblem is solved for each subset and their respective

solutions are concatenated (for completeness, the concatenated subproblem solutions

matches the optimal solution of the full problem).

3.2.1 Provable Guarantees from Partitioning

This subsection derives three different approximation factors, all of which are easy

to calculate and specific to the characteristics of an instance. The first of these is

applicable to any item-partitioning scheme, including those that may not be consistent

with Condorcet properties—e.g., see Aledo et al. (2021) for a decomposition based on

Borda scores and Liu et al. (2021) for a hierarchical clustering method. The second

and third derived approximation factors provide improved guarantees for the ACP

solution, for non-strict and strict ranking instances, respectively. For the remainder

of this section, let LB be a lower bound on d∗KS.

Lemma 1 Let X = {X1, X2, . . . , Xw} be any given partition of X and σ̂ be a com-

plete ranking obtained by independently solving the subsets of X and concatenating

the solutions of these subproblems. If dKS(σ̂)− dKS(σ∗) is bounded by a constant β,

the complete ranking σ̂ is an (1 + α)-approximate solution, where α = β/LB.

dKS(σ̂) ≤ dKS(σ∗) + β = dKS(σ∗) + αLB ≤ dKS(σ∗) + αdKS(σ∗) = (1 + α)dKS(σ∗).

Lemma 2 Let X = {X1, X2, . . . , Xw} be any given partition of X and σ̂ be a com-

plete ranking obtained by independently solving the subsets of X (using any method

43

of choice) and concatenating the solutions of these subproblems. The term dKS(σ̂)−

dKS(σ∗) is bounded by

2
w−1∑
k=1

w∑
k=k+1

∑
i∈Xk

∑
j∈Xk′

max (0, (2sji + tij)− (2sij + tij), (2sji + tij)− (sij + sji)) +

w∑
k=1

∑
(i,j)∈Xk

max (2sij + tij, 2sji + tij, sij + sji)−min (2sij + tij, 2sji + tij, sij + sji) .

(3.2)

Consider an item pair (i, j), where i ∈ Xk, j ∈ Xk′ , k < k′ (items from different

subsets); since σ̂i < σ̂j, the contribution of this pair in dKS(σ̂) is 2sji + tij, while the

contribution of this pair in dKS(σ∗) must be exactly one of 2sji + tij, 2sij + tij, or

sij + sji. Therefore, the additional distance accrued by (i, j) in dKS(σ̂) relative to

dKS(σ∗) is at most

max
(

0, (2sji + tij)− (2sij + tij), (2sji + tij)− (sij + sji)
)
.

Consider a pair of distinct items (i, j), where i, j ∈ Xk (items within the same subset);

the additional distance accrued by (i, j) in dKS(σ̂) relative to dKS(σ∗) is at most

max
(

2sij + tij, 2sji + tij, sij + sji

)
−min

(
2sij + tij, 2sji + tij, sij + sji

)
. (3.3)

Since the exact orderings of i and j in σ∗ and σ̂ are not yet known, Eq. (3.3)

considers the worst case. Expressly, the contribution of (i, j) in dKS(σ∗) is taken

as the smallest of the three possible values of dKS(σij), whereas the contribution of

this pair in dKS(σ̂) is taken as the largest of the three possible values of dKS(σij).

Finally, the right-hand side of Eq. (3.2) has been multiplied by 2 since dKS counts

each item-pair twice.

44

Combining Lemmas 1 and 2 provides a formal guarantee of the solution quality

of an arbitrary partition of X. The approximation factor holds regardless of how the

items within each subset in the partition are ordered (i.e., it is a worst-case bound),

and thus any method of choice can be used. As such, the quality of the solution is

improved by determining orderings that more closely align with the optimal solution.

The next two theorems derive a tighter guarantee by leveraging the specific solution

methods for solving the subsets of XACP
h .

Theorem 5 Assume that the input rankings are non-strict and let

XACP
h = {X1, . . . , Xw} be the ACP partition obtained using threshold h. Let σ̂ be the

complete ranking obtained via ACP from the following two steps: 1) solve subsets of

at most size h to optimality, 2) tie all items in subsets of size greater than h. The

term dKS(σ̂)− dKS(σ∗) is bounded by

2
w−1∑
k=1

w∑
k=k+1

∑
i∈Xk

∑
j∈Xk′

max (0, (2sji + tij)− (2sij + tij), (2sji + tij)− (sij + sji)) +

w∑
k=1

∑
(i,j)∈Xk

(
(sij + sji)−min (2sij + tij, 2sji + tij, sij + sji)

)
.

(3.4)

Let σ be an auxiliary ranking obtained from XACP
h , whereby all items in each subset

Xk ∈ XACP
h are tied ∀k ∈ {1, . . . , w} (items in lower-indexed subsets remain ranked

ahead of items in higher-indexed subsets). Since σ̂ solves all the subsets whose size is

at most h to optimality and ties all the items in subsets whose size is greater than h,

we have that dKS(σ̂) ≤ dKS(σ). Furthermore, we show that dKS(σ)− dKS(σ∗) ≤ β.

Consider an item pair (i, j), where i ∈ Xk, j ∈ Xk′ , k < k′ (items from different

subsets); since σi < σj, the contribution of this pair in dKS(σ) is 2sji + tij, while the

contribution of this pair in dKS(σ∗) must be exactly one of 2sji + tij, 2sij + tij, or

45

sij + sji. Therefore, the additional distance accrued by (i, j) in dKS(σ) relative to

dKS(σ∗) is at most

max (0, (2sji + tij)− (2sij + tij), (2sji + tij)− (sij + sji)) .

Consider a pair of distinct items (i, j), where i, j ∈ Xk (items within the same subset);

the additional distance accrued by (i, j) in σ relative to dKS(σ∗) is at most

(sij + sji)−min (2sij + tij, 2sji + tij, sij + sji) . (3.5)

Since the exact orderings of i and j in σ∗ are not yet known, Eq. (3.5) considers the

worst case. Expressly, the contribution of (i, j) in dKS(σ∗) is taken as the smallest of

the three possible values of dKS(σij), whereas the contribution of this pair in dKS(σ̂)

is (sij + sji) as σ ties all items within each subset. Finally, the first term of Eq. (3.4)

has been multiplied by 2 since dKS counts each item-pair twice.

Theorem 6 Assume that the input rankings are strict and let XACP
h = {X1, . . . , Xw}

be the ACP partition obtained using threshold h. Let σ̂ be the complete ranking

obtained via ACP from the following two steps: 1) solve subsets of at most size h

to optimality, 2) randomly permute items within subsets of size greater than h. The

term dKS(σ̂)− dKS(σ∗) is bounded by

4
w−1∑
k=1

w∑
k=k+1

∑
i∈Xk

∑
j∈Xk′

max (0, sji − sij)+2
w∑
k=1

∑
(i,j)∈Xk

(
sji1σi<σj +sij1σj<σi−min (sij , sji)

)
;

(3.6)

where σ is an auxiliary ranking obtained by randomly permuting all items in subset

Xk, ∀k ∈ {1, . . . , w} (while ranking items in the lower-indexed subsets strictly ahead

of items in the higher-indexed subsets), and 1 is an indicator function.

46

Order the items within subset Xk ∈ XACP
h whose size is greater than h in σ̂ the same

as in σ. Since σ̂ solves all subsets whose size is at most h to optimality whereas σ̂

randomly permutes these items, we have that dKS(σ̂) ≤ dKS(σ). Next, we show that

dKS(σ)− dKS(σ∗) ≤ β.

Consider an item pair (i, j), where i ∈ Xk, j ∈ Xk′ , k < k′ (items from different

subsets); since σi < σj, the contribution of this pair in dKS(σ) is 2sji, while the

contribution of this pair in dKS(σ∗) must be exactly one of 2sji or 2sij (when the

input rankings are strict, dKS(σij) has only two possible values since the aggregate

ranking is assumed to be strict as well). Therefore, the additional distance accrued

by (i, j) in dKS(σ) relative to dKS(σ∗) is at most

max (0, (2sji − 2sij)) .

Consider a pair of distinct items (i, j), where i, j ∈ Xk (items within the same subset);

the additional distance accrued by (i, j) in σ relative to dKS(σ∗) is at most

2sji1σi<σj
+ 2sij1σj<σi

−min (2sij, 2sji) . (3.7)

Since the exact orderings of i and j in σ∗ is not yet known, Eq. (3.7) considers the

worst case. Expressly, the contribution of (i, j) in dKS(σ∗) is taken as the smallest of

the three possible values of dKS(σij), whereas the contribution of this pair in dKS(σ̂)

is is 2sji if σi < σj, and 2sij otherwise. Finally, the first term of Eq. (3.6) has been

multiplied by 2 since dKS counts each item-pair twice. The approximation factors are

computed after a partition is obtained, meaning they are instance-specific and not

constant; their value becomes relatively small when the given partition aligns well

with the structure of the consensus ranking. ACP offers significant advantages over

47

various other partitioning methods in this regard. Furthermore, it uses the calculated

γ-parameters used to obtain X0 to reduce the number of rank reversals between

items across many more subsets than are contained in Xf . It leverages structural

information from Xf by retaining item-ordering of subsets that are relatively easy to

solve and their relative ordering to other subsets. It is important to emphasize that,

while the derived approximation factors provide a guarantee of the solution quality,

we are interested in partitions that tend to produce high-quality solutions rather than

those that minimize the approximation factor. Indeed, by increasing the number of

subsets (i.e., reducing the value of h), one may decrease their values; however, doing so

can also negatively impact the resulting solution, as increasing the number of subsets

can be viewed as placing more constraints on the ordering of certain items.

Lemma 1, Theorem 5, and Theorem 6 require a lower bound on KEMENY-AGG.

The lower bound using pairwise information (presented later in the chapter) is used

in the computational results. This lower bound equals zero if and only if all input

rankings are identical, which would render the approximation factors incomputable;

since this special case does not require analysis of any kind (i.e., the consensus ranking

equals the unanimous ranking), this does not pose a serious issue for the proposed

approximation algorithm.

3.2.2 Computational Comparisons

This section compares ACP with some of the prominent approximation algorithms

mentioned in Chapter 1. The selected methods for instances with strict rankings are

the proposed solution method via ACP, BestInput, DeterministicKwikSort, Kwik-

Sort, LPKwikSort, and Spearman’s footrule; and for instances with non-strict rank-

ings, they are the proposed solution method via ACP, BestInput, and BucketPivot

(using the algorithm’s default parameter). Note that not all algorithms mentioned in

48

Chapter 1 are tested on all instances, as some are not designed to handle non-strict

rankings. Specifically, RepeatChoice and LPKwikSorth are not applied to such in-

stances, as they restrict the consensus ranking to be strict, which does not align with

the more general assumption that the output rankings may also be non-strict. Note

that when the input rankings are strict, RepeatChoice becomes KwikSort.

We use two real-world data sets. The first data set is from Cohen-Boulakia et al.

(2011) and is henceforth denoted as the Biomedical data set. Each instance contains

four non-strict rankings of genes possibly associated with Breast Cancer, Prostate

Cancer, Bladder Cancer, Neuroblastoma, Retinoblastoma, ADHD (Attention Deficit

Hyperactivity Disorder), and LQTS (Long QT Syndrome). Each set of input rankings

is the result of querying for the respective diseases in biological databases using four

different methods. The objective of the referenced study is to reduce the variability of

information retrieval techniques by consolidating their outputs. The second data set

consists of instances with and without ties from Preflib (Mattei and Walsh, 2013), a

library of preference data; namely instances from “TOC - Orders with Ties - Complete

List” and “SOC - Strict Orders - Complete List” with over 100 items 1 .

All experiments were carried out on a PC with an Intel(R) Xeon(R) CPU E5-2680

@ 2.40 GHz with 64 GB RAM. All KEMENY-AGG subproblems were solved using

the exact binary programming formulation of Yoo and Escobedo (2021) via CPLEX

solver version 12.10.0. The Spearman’s footrule rank aggregation problem was solved

via minimum cost perfect matching in bipartite graphs (Dwork et al., 2001). For

ACP, we tested thresholds h = 30, 40, 50. The experimental results report, for each

instance, number of items (n), number of input rankings (m), size of the largest subset

of Xf ((Xf
l)max), run-time (Time) and relative optimality gap (Gap %) attained by

1The Preflib data set presents the input rankings in the form of sorted lists, but a few items repeat
in certain instances, presumably due to error. To overcome this issue, we adjusted these instances
by keeping the first appearance of each item in each list and deleting any extra occurrences

49

each tested method. Run-times include pre-processing time required by each specific

method. The relative optimality gap for each method is calculated as the difference

between its objective value and the lower bound (Eq. (3.9)), divided by its objec-

tive value. It is displayed as a percentage, for convenience (relative optimality gap,

multiplied by 100); the best relative optimality gap % attained for each instance is

shown in bold. For ACP, the tested threshold value (h) and calculated approximation

factor (AF) are reported. Lastly, for each data set, the average relative optimality

gap and the geometric mean of run-times achieved by each of the selected algorithms

are displayed. All statistics are rounded to two decimal points.

Table 3.1 reports the computational results for the Biomedical data set. These

results exclude the ADHD and LSQT instances since they were both relatively small

and could be easily solved to optimality without partitioning. By comparing n and

(Xf
l)max columns (the number of items and the size of the largest subset of Xf)

, we can see that the finest-Condorcet partition over all instances is either null or it

contains a rather large subset that is difficult to solve to optimality. Overall, none

of the selected methods had a dominant performance on all of these instances. On

average, BestInput had the lowest relative optimality gap, ACP the second lowest, and

BucketPivot the third lowest. As Table 3.1 shows, BestInput had a top-2 performance

in terms of solution quality for all 5 instances, ACP for 3 out of 5 instances, and

BucketPivot for 2 out of 5 instances. Among the three tested threshold values for

ACP, h = 50 achieved the best solution quality, but it also had higher run-times

and approximation factor. The average approximation factor achieved over these

instances was 1.14. Finally, ACP yielded near-optimal solutions (with gaps of up to

0.11%) on Bladder Cancer and Retinoblastoma for which each Xf contained multiple

subsets of small-to-medium sizes.

Table 3.2 reports the results of the Preflib TOC data set. The general character-

50

istics of Xf were the same as for the Biomedical data set. Overall, ACP exhibited

a dominant performance, achieving the lowest relative optimality gap for all 85 in-

stances. In fact, its worst optimality gap over all instances and three tested thresholds

of 3.37% was lower than the best optimality gap achieved by either BucketPivot or

BestInput. Most impressively, the average approximation factor was 1.02, further

highlighting the comparative robustness of ACP. It is important to remark that the

best approximation factor for the methods that allow ties in the output ranking is 9.

To round out the results, BucketPivot was faster but yielded a lower solution quality

than BestInput. BucketPivot had an optimality gap of up to 97.92% and BestInput

of up to 41.08%. BestInput did not terminate after 1 hour of run-time for instances

#77-#80, likely owing to its quadratic complexity with respect to both the number

of items and the number of input rankings. These four instances are much larger than

the rest: #77-#78 have 5,000 input rankings and #79-#80 have at least 379 items

and at least 556 input rankings.

Table 3.3 reports the results of the Preflib SOC data set. The general charac-

teristics of Xf were the same as for the TOC and the Biomedical data sets. Since

all of the item methods tested for this data set output a strict ranking, the output

ranking of ACP was forced to be strict as well. While this restriction does not take

full advantage of its intended purpose, ACP still exhibited a very good performance,

headlined by its average approximation factor of 1.06 over this data set. While LP-

KwikSort dominated in solution quality, achieving the lowest optimality gap in all

but 2 of the 22 instances, it also had relatively high run-times of over 10 minutes—in

fact, its lowest run-time was greater than the highest run-time attained by all other

methods. This is due to fact that LPKwikSort requires solving an LP with O(n3)

constraints, which causes memory issues for large instances. Conversely, ACP pro-

duced competitive solutions in far less time (it solved each SOC instance in under 30

51

seconds). In the 20 instances where LPKwikSort had the lowest optimality gap, ACP

had the second lowest in 13 instances and BestInput in 7 instances; however, the worst

relative optimality gap of BestInput (13%) was much higher than ACP’s (not more

than 3.91%). Furthermore, apart from instances #1 and #5 (for which ACP achieved

the lowest optimality gap), the relative optimality gaps attained by LPKwikSort and

ACP were very close, differing by no more than 2.8 percentage points. To round

out the results, DeterministicKwikSort produced neither high-quality solutions nor

low run-times. While KwikSort had quick run-times, they were similar to those of

BestInput and Spearman’s footrule, which yielded better solutions.

All things considered, BestInput had a good performance on the Biomedical and

SOC data sets, but performed poorly on the TOC data set, especially when the num-

ber of input rankings was high. LPKwikSort had an excellent performance on strict

rankings, but its run-time increases very fast with n, which makes it unattractive for

large-scale problems. Additionally, this method is only able to handle strict rankings,

and its non-strict variant, LPKwikSorth, does not allow the consensus ranking to in-

clude ties, thereby limiting its general application. ACP has a very good performance

on the Biomedical and SOC data sets and a dominant performance on the TOC data

set. Overall, it had a very robust performance in terms of solution quality and run-

times on both strict and non-strict rankings instances. Quite remarkably, none of the

tested instances of up to 2,820 items exceeded 90 seconds in run-time, which includes

the time to construct Xf and XACP and to solve the corresponding KEMENY-AGG

subproblems for all ACP subsets whose size is under threshold h. In fact, the time

to calculate the CR matrix, to construct Xf and XACP , and to calculate the respec-

tive approximation factor took less than 1 second for each instance of the Biomedical

and SOC data sets and less than 12 seconds for each instance of the TOC data set.

As a final note, it is important to highlight that although the approximation factors

52

achieved by ACP are instance-specific, they are considerably lower for all 112 tested

instances than the guarantees offered by any existing constant-factor approximation

algorithm for KEMENY-AGG. Indeed, the worst ACP approximation factor obtained

was 1.3.

Table 3.1: Performance Metrics of the Selected Approximation Algorithms for Solving
Biomedical Instances

Instance n m (X
f
l
)max BucketPivot BestInput

Approximate Condorcet Partitioning
h=30 h=40 h=50

Gap % Time Gap % Time Gap % Time AF Gap % Time AF Gap % Time AF
Bladder Cancer 308 4 266 14.19 0.11 0.00 0.45 0.01 0.95 1.01 0.01 0.85 1.01 0.01 2.19 1.01
Breast Cancer 386 4 386 25.91 0.18 5.05 0.67 22.55 2.72 1.29 22.67 4.78 1.29 22.79 6.39 1.3
Neuroblastoma 431 4 431 13.63 0.18 5.15 0.82 4.06 1.4 1.05 3.76 4.55 1.04 3.62 7.74 1.04
Prostate Cancer 218 4 216 29.13 0.05 11.35 0.21 18.69 1.07 1.23 18.30 1.92 1.22 18.26 2.28 1.22
Retinoblastoma 402 4 358 0.87 0.18 0.19 0.74 0.11 0.51 1.01 0.11 1.6 1.01 0.11 2.55 1.01

Average 16.75 0.13 4.35 0.52 9.08 1.15 1.12 8.97 2.24 1.12 8.96 3.63 1.14

53

Table 3.2: Performance Metrics of the Selected Approximation Algorithms for Solving
Toc Instances with More than 100 Items

Instance n m Xlf)max
BucketPivot BestInput

Approximate Condorcet Partitioning
h = 30 h = 40 h = 50

(%) Gap Time (%) Gap Time (%) Gap Time AF (%) Gap Time AF (%) Gap Time AF
ED-14-02 100 5,000 100 0 2.48 – ≥ 3, 600 0.00 2.5 1.00 0.00 2.5 1.00 0.00 2.5 1.00
ED14-03 100 5,000 100 0 2.17 – ≥ 3, 600 0.00 2.17 1.00 0.00 2.17 1.00 0.00 2.19 1.00

MD-03-03 102 32 102 0 0.01 34.24 4.07 0.00 0.02 1.00 0.00 0.02 1.00 0.00 0.02 1.00
MD-03-05 103 31 103 0 0.02 40.94 4.85 0.00 0.02 1.00 0.00 0.02 1.00 0.00 0.02 1.00
MD-03-06 133 38 133 0 0.02 41.08 11.56 0.00 0.02 1.00 0.00 0.02 1.00 0.00 0.02 1.00
MD-03-08 147 51 147 0 0.02 36.54 25.17 0.00 0.03 1.00 0.00 0.03 1.00 0.00 0.05 1.00
MD-03-07 155 51 155 0 0.03 41.08 20.96 0.00 0.06 1.00 0.00 0.06 1.00 0.00 0.06 1.00
ED-10-50 170 4 170 26.81 0.02 12.41 0.14 1.42 1.48 1.07 1.55 1.86 1.10 1.45 3.2 1.13
ED-10-49 351 4 351 13.34 0.30 14.22 0.77 0.74 2.85 1.03 0.74 4.19 1.04 0.65 7.32 1.04
ED-18-01 379 723 379 98.84 0.41 – ≥ 3, 600 0.00 0.44 1.00 0.00 0.45 1.00 0.00 0.42 1.00
ED-18-03 477 556 476 99.36 0.45 – ≥ 3, 600 0.00 0.48 1.00 0.00 0.48 1.00 0.00 0.47 1.00
ED-11-12 1,210 4 1,207 10.05 1.27 4.70 6.36 2.73 6.13 1.03 2.71 9.24 1.03 2.70 13.44 1.03
ED-11-31 1,223 4 1,223 14.30 1.16 8.07 6.58 1.70 5.77 1.02 1.69 8.63 1.02 1.66 12.24 1.02
ED-11-09 1,272 4 1,272 18.40 1.52 7.79 6.85 3.37 8.59 1.04 3.34 13.83 1.04 3.28 20.90 1.04
ED-11-23 1,342 4 1,341 9.88 1.39 8.58 7.98 1.65 6.77 1.02 1.62 10.72 1.02 1.59 15.36 1.02
ED-11-21 1,347 4 1,347 9.32 1.56 4.98 7.69 2.64 8.16 1.03 2.61 12.47 1.03 2.59 19.13 1.03
ED-11-37 1,351 4 1,351 14.09 1.66 4.33 8.11 3.05 9.86 1.04 2.99 15.83 1.04 2.95 24.15 1.04
ED-11-25 1,356 4 1,353 15.42 1.55 8.07 7.89 2.33 8.56 1.03 2.26 14.05 1.03 2.22 19.42 1.03
ED-11-13 1,363 4 1,363 4.79 1.47 6.18 8.2 1.60 6.44 1.02 1.58 9.38 1.02 1.57 13.38 1.02
ED-11-29 1,368 4 1,368 20.58 1.75 3.92 8.55 3.29 10.20 1.04 3.26 16.67 1.04 3.20 25.94 1.04
ED-11-14 1,375 4 1,372 21.44 1.77 3.73 8.36 3.21 9.89 1.04 3.14 16.03 1.04 3.10 23.74 1.04
ED-11-30 1,386 4 1,384 4.73 1.64 5.89 8.78 2.40 8.85 1.03 2.35 14.41 1.03 2.32 21.21 1.03
ED-11-06 1,449 4 1,449 15.03 1.77 4.96 10.02 2.72 9.69 1.03 2.68 14.52 1.03 2.64 22.66 1.03
ED-11-04 1,467 4 1,463 32.45 1.91 4.71 10.63 2.57 8.85 1.03 2.54 13.3 1.03 2.52 19.86 1.03
ED-11-07 1,474 4 1,470 3.59 1.73 7.89 10.19 1.81 7.3 1.02 1.79 10.61 1.02 1.78 15.7 1.02
ED-11-34 1,509 4 1,509 11.44 1.77 6.49 10.02 1.52 7.36 1.03 1.49 10.68 1.03 1.48 14.91 1.03
ED-11-22 1,514 4 1,513 15.78 1.86 5.59 10.09 1.86 9.52 1.02 1.82 14.7 1.02 1.80 20.88 1.02
ED-11-11 1,545 4 1,542 28.0 2.08 5.44 10.36 2.06 10.91 1.02 2.00 17.04 1.02 1.97 25.27 1.03
ED-11-15 1,563 4 1,560 27.96 1.97 6.05 10.74 2.02 9.36 1.02 1.99 14.82 1.02 1.97 20.75 1.02
ED-11-08 1,572 4 1,569 6.93 1.94 6.37 11.73 1.26 6.75 1.02 1.25 9.31 1.02 1.24 13.25 1.02
ED-11-28 1,616 4 1,611 2.69 1.89 12.57 12.05 0.78 6.72 1.01 0.77 9.0 1.01 0.77 12.38 1.01
ED-11-40 1,623 4 1,623 26.22 1.59 16.09 11.88 0.33 6.43 1.01 0.32 10.49 1.01 0.32 11.64 1.02
ED-11-36 1,634 4 1,632 22.43 2.06 7.52 11.85 1.53 9.03 1.02 1.50 13.19 1.02 1.49 18.36 1.02
ED-11-33 1,646 4 1,644 9.06 2.3 5.50 12.5 1.90 10.35 1.02 1.86 15.31 1.02 1.82 22.41 1.02
ED-11-05 1,673 4 1,672 3.91 1.98 18.91 13.52 0.66 9.91 1.01 0.64 17.89 1.01 0.63 88.36 1.01
ED-11-18 1,681 4 1,676 10.98 2.22 5.87 12.14 1.94 8.85 1.02 1.93 13.56 1.02 1.90 18.66 1.02
ED-11-16 1,708 4 1,707 6.48 2.19 7.47 13.07 1.18 8.73 1.02 1.16 12.64 1.02 1.16 17.61 1.02
ED-11-32 1,751 4 1,751 8.63 2.3 5.28 13.1 1.68 8.92 1.02 1.65 12.56 1.02 1.65 17.69 1.02
ED-11-38 1,754 4 1,752 12.13 2.36 5.69 14.16 1.98 9.06 1.02 1.95 12.83 1.02 1.93 17.92 1.02
ED-11-39 1,788 4 1,788 26.11 2.2 15.39 13.75 0.39 9.22 1.01 0.37 18.8 1.01 0.35 24.71 1.01
ED-11-68 1,826 4 1,826 31.41 2.14 9.27 14.36 0.62 6.3 1.01 0.62 7.74 1.01 0.62 9.11 1.01
ED-11-49 1,845 4 1,844 2.86 2.6 6.28 14.74 0.90 6.56 1.01 0.89 8.1 1.01 0.89 9.17 1.01
ED-11-20 1,870 4 1,866 2.91 2.77 6.99 15.13 1.53 11.7 1.02 1.49 17.33 1.02 1.45 24.35 1.02
ED-11-26 1,931 4 1,930 6.9 2.80 5.98 16.63 1.37 11.03 1.02 1.34 16.85 1.02 1.31 23.24 1.02
ED-11-35 1,936 4 1,935 14.67 2.80 5.88 16.69 1.56 11.02 1.02 1.54 15.58 1.02 1.51 21.99 1.02
ED-11-74 1,976 4 1,976 5.43 2.92 5.6 17.89 1.15 9.91 1.02 1.13 13.7 1.02 1.12 18.69 1.02
ED-11-60 1,977 4 1,976 3.57 2.69 9.89 16.94 0.86 7.94 1.01 0.86 10.22 1.01 0.86 12.66 1.01
ED-11-58 2,011 4 2,010 3.32 2.94 6.77 17.28 1.09 8.95 1.02 1.08 11.77 1.02 1.08 15.36 1.02
ED-11-62 2,014 4 2,013 3.88 2.86 11.10 17.50 0.88 9.53 1.01 0.86 12.7 1.01 0.85 16.69 1.01
ED-11-17 2,015 4 2,014 12.94 3.08 5.69 17.68 1.29 11.49 1.03 1.26 16.78 1.03 1.24 22.6 1.03
ED-11-66 2,024 4 2,024 7.13 3.22 4.86 18.31 1.97 11.64 1.02 1.95 16.32 1.03 1.94 22.28 1.03
ED-11-24 2,049 4 2,049 5.92 3.11 5.44 18.28 1.42 11.92 1.03 1.40 16.83 1.03 1.39 23.02 1.03
ED-11-67 2,066 4 2,066 7.11 3.16 7.01 18.43 1.29 10.17 1.02 1.28 14.09 1.03 1.28 19.19 1.02
ED-11-27 2,092 4 2,088 18.22 3.11 6.82 19.39 1.12 9.92 1.02 1.1 13.46 1.02 1.1 17.97 1.02
ED-11-10 2,096 4 2,095 5.82 2.95 12.00 19.08 0.65 10.53 1.01 0.63 13.88 1.01 0.62 19.52 1.01
ED-11-19 2,104 4 2,102 9.51 3.25 6.16 19.24 1.26 12.38 1.02 1.24 17.78 1.02 1.22 25.38 1.02
ED-11-50 2,111 4 2,111 1.79 3.01 7.57 20.30 0.62 7.95 1.01 0.61 9.12 1.01 0.61 10.89 1.01
ED-11-51 2,112 4 2112 6.37 3.28 4.69 19.6 1.52 10.81 1.02 1.50 14.85 1.02 1.49 19.92 1.02
ED-11-65 2,119 4 2,118 3.03 2.84 17.50 19.91 0.28 7.30 1.00 0.27 8.92 1.00 0.28 9.66 1.00
ED-11-41 2,123 4 2,123 7.78 3.28 6.98 19.6 1.04 9.03 1.01 1.03 11.45 1.01 1.03 14.25 1.02
ED-11-71 2,127 4 2,127 15.45 3.13 8.22 19.55 0.52 8.10 1.01 0.51 9.41 1.01 0.51 12.25 1.01
ED-11-46 2,133 4 2,133 4.61 3.22 9.35 20.11 1.35 9.96 1.02 1.34 12.92 1.02 1.34 16.47 1.02
ED-11-43 2,153 4 2,153 5.04 3.3 6.38 20.41 1.27 9.88 1.02 1.26 12.88 1.02 1.25 16.36 1.02
ED-11-48 2,194 4 2,194 8.6 3.64 10.28 20.86 1.14 12.08 1.02 1.13 16.55 1.02 1.11 21.72 1.02
ED-11-52 2,242 4 2,239 10.15 3.47 7.88 21.67 0.63 10.24 1.01 0.63 13.36 1.01 0.62 16.50 1.01
ED-11-73 2,258 4 2,257 6.07 3.47 10.51 22.06 0.30 9.34 1.00 0.30 11.36 1.00 0.29 13.49 1.00
ED-11-45 2,265 4 2,264 0.43 3.33 10.41 22.50 0.07 7.25 1.00 0.07 7.39 1.00 0.07 7.25 1.00
ED-11-70 2,276 4 2,274 3.18 3.61 7.79 22.40 0.50 10.06 1.01 0.50 12.16 1.01 0.49 15.48 1.01
ED-11-59 2,281 4 2,280 7.89 3.58 8.02 23.10 0.70 10.28 1.01 0.70 12.97 1.01 0.68 16.75 1.01
ED-11-77 2,317 4 2,317 0.10 2.88 22.13 25.64 0.09 8.13 1.00 0.08 8.72 1.00 0.08 10.22 1.00
ED-11-53 2,321 4 2,320 0.83 3.7 9.41 24.0 0.29 9.89 1.01 0.28 12.28 1.01 0.28 14.63 1.01

54

Instance n m Xlf)max
BucketPivot BestInput

Approximate Condorcet Partitioning
h = 30 h = 40 h = 50

(%) Gap Time (%) Gap Time (%) Gap Time AF (%) Gap Time AF (%) Gap Time AF
ED-11-69 2,338 4 2,338 4.4 3.68 6.83 25.81 0.53 11.55 1.01 0.53 10.69 1.01 0.52 13.77 1.01
ED-11-55 2,353 4 2,350 2.05 3.69 7.81 23.82 0.59 9.02 1.01 0.59 10.63 1.01 0.59 11.57 1.01
ED-11-75 2,391 4 2,390 23.09 3.86 6.90 25.1 0.75 9.66 1.01 0.75 10.80 1.01 0.75 12.64 1.01
ED-11-44 2,434 4 2,430 3.44 3.95 8.61 25.66 0.56 9.83 1.01 0.56 11.52 1.01 0.55 14.72 1.01
ED-11-64 2,446 4 2,444 11.65 3.89 9.94 26.19 0.60 10.52 1.01 0.60 12.72 1.01 0.59 15.59 1.01
ED-11-72 2,447 4 2,446 3.96 4.03 9.50 27.50 0.82 11.29 1.01 0.81 14.75 1.01 0.81 18.32 1.01
ED-11-63 2,510 4 2,509 14.75 4.22 11.09 27.08 0.67 12.39 1.01 0.66 15.83 1.01 0.65 20.58 1.01
ED-11-54 2,512 4 2,511 5.23 4.28 10.37 27.32 0.67 12.85 1.01 0.66 16.77 1.01 0.66 21.93 1.01
ED-11-57 2,559 4 2,559 16.09 4.42 10.28 28.71 0.77 12.72 1.01 0.75 16.95 1.01 0.75 22.46 1.01
ED-11-76 2,581 4 2,581 3.77 3.81 17.86 30.16 0.11 11.17 1.00 0.11 14.18 1.00 0.10 16.30 1.00
ED-11-42 2,598 4 2,598 2.11 4.10 21.40 30.32 0.16 11.66 1.00 0.16 32.91 1.00 0.15 17.24 1.00
ED-11-56 2,632 4 2,630 3.69 4.60 11.46 30.21 0.56 12.94 1.01 0.55 15.88 1.01 0.55 19.63 1.01
ED-11-61 2,726 4 2,726 6.46 4.88 6.72 32.41 0.96 14.31 1.01 0.96 17.88 1.01 0.95 22.94 1.02
ED-11-47 2,819 4 2,819 4.16 4.72 19.94 34.68 0.24 12.28 1.00 0.23 14.20 1.00 0.23 16.66 1.01
Average 11.52 1.73 10.58 ≥ 18.32 1.12 5.79 1.02 1.10 7.45 1.02 1.09 10.14 1.02

Table 3.3: Performance Metrics of the Selected Approximation Algorithms for Solving
SOC Instances with More than 100 Items

Instance n m (Xf
l)max

KwikSort
Deterministic

KwikSort LPKwikSort BestInput
Spearman’s

footrule
Approximate Condorcet Partitioning

h=30 h=40 h=50
Gap % Time Gap % Time Gap % Time Gap % Time Gap % Time Gap % Time AF Gap % Time AF Gap % Time AF

ED-15-12 100 4 99 11.80 0.06 11.28 0.45 0.42 6.25 5.49 0.02 6.14 0.06 1.73 0.59 1.06 1.20 1.23 1.06 1.37 1.87 1.06
ED-15-42 100 4 100 12.62 0.06 9.45 0.44 0.85 6.16 13.0 0.02 6.25 0.05 1.38 0.64 1.04 0.94 1.31 1.04 1.24 1.84 1.04
ED-15-28 102 4 99 10.37 0.06 4.87 0.47 0.15 6.50 1.96 0.02 7.97 0.06 1.61 0.64 1.07 1.11 1.38 1.07 0.76 1.94 1.07
ED-15-36 102 4 100 14.30 0.06 7.26 0.48 0 6.41 0.20 0.02 7.04 0.06 0.93 0.61 1.08 1.22 1.33 1.08 0.69 2.00 1.08
ED-15-05 103 4 94 12.44 0.06 11.94 0.55 0.11 10.24 10.92 0.03 6.25 0.06 0.21 0.95 1.03 0.11 1.05 1.03 0.21 1.64 1.03
ED-11-03 103 5 90 6.48 0.06 12.79 0.47 2.77 6.56 9.50 0.03 7.09 0.06 2.85 1.11 1.05 2.83 1.05 1.05 2.85 1.53 1.05
ED-15-29 106 4 105 13.97 0.06 9.46 0.59 0.32 7.39 1.49 0.02 5.52 0.06 1.28 0.66 1.06 1.44 1.41 1.06 1.28 1.85 1.06
ED-15-07 110 4 106 13.90 0.06 13.23 0.59 0.16 7.86 2.40 0.02 6.29 0.08 1.14 1.06 1.05 0.73 1.13 1.05 0.57 2.00 1.05
ED-15-22 112 4 110 10.21 0.08 16.16 0.67 0.05 8.67 0.90 0.02 5.82 0.06 1.30 0.66 1.07 1.30 1.55 1.07 1.21 1.92 1.07
ED-15-18 115 4 112 10.78 0.08 21.88 0.70 0 9.28 1.32 0.03 6.13 0.08 1.37 0.73 1.06 0.75 1.61 1.06 0.58 2.02 1.06
ED-15-25 115 4 114 10.12 0.06 15.24 0.70 0.08 9.24 1.44 0.03 7.25 0.08 1.79 0.72 1.06 0.92 1.64 1.06 1.00 1.98 1.06
ED-15-09 115 4 115 14.48 0.06 15.85 0.69 0.22 9.44 1.27 0.03 5.01 0.08 1.48 1.19 1.06 1.53 1.35 1.06 0.92 2.3 1.06
ED-15-20 122 4 116 16.08 0.06 24.35 0.94 0.19 10.99 1.38 0.03 6.97 0.09 3.06 0.78 1.08 1.91 1.87 1.08 1.48 1.91 1.08
ED-15-17 127 4 124 12.47 0.08 9.47 1.00 0.10 12.72 0.37 0.03 6.43 0.10 1.99 0.86 1.07 1.66 2.03 1.07 1.27 2.00 1.07
ED-15-33 128 4 126 13.69 0.08 15.34 1.00 0.70 12.5 2.46 0.03 6.74 0.08 3.47 0.80 1.08 2.75 2.02 1.08 1.94 2.13 1.08
ED-15-40 131 4 131 15.12 0.09 15.65 1.14 0.26 13.52 0.96 0.03 8.33 0.09 1.80 0.78 1.06 1.63 1.30 1.06 1.63 2.83 1.06
ED-15-23 142 4 135 21.48 0.09 15.33 1.55 0.03 17.58 1.04 0.05 7.50 0.11 2.19 0.91 1.07 1.93 1.37 1.07 1.77 3.06 1.07
ED-15-32 153 4 153 15.18 0.13 17.97 2.09 0.26 21.56 1.04 0.05 7.93 0.13 2.57 0.94 1.07 2.23 1.59 1.07 1.44 3.67 1.07
ED-15-14 163 4 160 14.50 0.16 18.28 2.67 0.04 26.32 0.65 0.05 8.91 0.14 2.00 1.09 1.07 1.59 3.25 1.07 1.76 2.83 1.07
ED-15-01 240 4 240 3.37 0.28 10.59 12.13 0.35 84.28 8.40 0.13 4.25 0.33 0.89 1.67 1.03 0.83 2.77 1.03 0.83 7.77 1.03
ED-11-01 240 5 229 4.38 0.39 8.82 12.38 2.22 85.31 7.09 0.19 5.22 0.39 2.37 1.75 1.04 2.27 2.58 1.04 2.28 3.89 1.04
ED-15-03 242 4 242 4.87 0.30 10.03 13.03 1.08 95.98 8.39 0.11 5.59 0.33 3.69 1.75 1.10 3.08 2.80 1.12 3.09 4.44 1.12
ED-11-02 242 5 239 6.22 0.47 10.75 12.20 3.89 93.31 7.37 0.19 6.94 0.39 3.91 2.02 1.06 3.72 6.86 1.06 3.83 5.22 1.06
Average 11.69 0.10 13.30 1.26 0.62 14.66 3.87 0.04 6.59 0.10 1.96 0.93 1.06 1.64 1.72 1.06 1.48 2.35 1.06

3.3 Lower Bounding Techniques

This section focuses on the lower bounds on KEMENY-AGG. As mentioned ear-

lier, obtaining high quality is crucial for evaluating the solution quality of heuristic

methods; furthermore, the instance-specific approximation ratio of ACP requires a

lower bound on KEMENY-AGG. This chapter generalizes some of the existing lower

bounds for strict rankings to the case of non-strict rankings and proposes shortcuts

for reducing the run time of these techniques. More specifically, we use Condorcet

55

criterion variations and the Constraint Relaxation method to accelerate the lower

bounding process.

The rest of the section is organized as follows. Section 3.3.1 reviews the lower

bound obtained from pairwise comparison information for strict rankings and gener-

alizes this method for non-strict rankings. Section 3.3.2 focuses on cycle-based lower

bounding techniques and leverages social choice properties that KEMENY-AGG is

guaranteed to satisfy for the purpose of accelerating cycle-based methods. Section

3.3.3 focuses on the linear programming (LP) relaxation lower bounding techniques.

Section 3.3.4 describes the experiments and discusses the results.

3.3.1 Pairwise Comparison Methods

Davenport and Kalagnanam (2004) proposed the first lower bound for KEMENY-

AGG with strict ranking as follows

LB0 = 2
∑

(i,j)∈Λ

min(sij, sji). (3.8)

Eq. (3.8) obtains a lower bound on dKS(σ) by simply summing the smallest contri-

bution of all distinct pair of items. Note that Eq. (3.8) has been scaled by a factor

of 2 herein to facilitate the generalization of this lower bound for non-strict rankings.

Proposition 3 Given an instance of KEMENY-AGG, a lower bound on dKS(σ) is

given by

LB1 =
∑

(i,j)∈Λ

min(2sij + tij, 2sji + tij, sij + sji). (3.9)

Similar to LB0, Eq. (3.9) obtains a lower bound on dKS(σ) by simply summing the

smallest contribution of all distinct pair of items. LB1 reduces to LB0 when the input

56

rankings are strict, i.e., if tij = 0 ∀i, j ∈ X .

3.3.2 Cycle-Based Methods

Cycle-Based Methods for Strict Rankings

KEMENY-AGG with strict rankings can be solved via the Weighted Minimum Feed-

back Arc Set Problem (WMFASP), and vice versa (Kenyon-Mathieu and Schudy,

2007; Conitzer et al., 2006). Let G = (V,E) be a weighted directed graph where V is

the set of vertices and E is the set of arcs (edges). The objective of WMFASP is to find

a subset of arcs E ′ ⊂ E with minimum weight such that its removal would make the

resulting graph, i.e., G′ = (V,E\E ′), acyclic (Younger, 1963). Conitzer et al. (2006)

provided various lower bounds for the equivalent WMFASP of KEMENY-AGG with

strict rankings on the pairwise majority graph. The nodes of this graph are the items;

there is a directed arc from i to j if pij > pji with a weight of wij = pij−pji; and there

is no arc from i to j and vice versa if pij = pji. The lower bounds on the WMFASP

pairwise majority graph in Conitzer et al. (2006) do not provide any information on

how to obtain the respective lower bounds on the equivalent KEMENY-AGG. For

this reason, Milosz and Hamel (2018) utilized methods developed in Conitzer et al.

(2006) to improve LB0.

Recall that LB0 considers the smallest contribution for each pair of items. How-

ever, the resulting solution obtained by this selection may not be transitive as it may

contain preference-cycles, which can make this bound unattainable. Nevertheless,

this information can be utilized to improve this lower bound.

Let C = {c1, c2, . . . , cs} be any set of edge-disjoint preference-cycles. For each

cycle, the consensus ranking disagrees with at least one of the edges in the cycle

(Conitzer et al., 2006). Hence, the lower bound can be improved by adding the

57

minimum cost of reverting an edge of cycle, i.e., the minimum cost of breaking the

preference-cycle. Therefore, a new lower bound can be calculated as follows (Conitzer

et al., 2006; Milosz and Hamel, 2018):

LB2 = LB0 +
∑
cr∈C

min
(i,j)∈cr

wij. (3.10)

When only edge-disjoint preference-cycles are considered, a part of the cycles remains

unused. Conitzer et al. (2006) proposed a method to leverage this underutilized

information. Let C = {c1, c2, . . . , cs} be any set of preference-cycles, and δ ((i, j), cr)

be an indicator function which is set to 1 if (i, j) ∈ cr, and 0 otherwise. Additionally,

let vl = min(i,j)∈cr{wij −
∑l−1

q=1 δ ((i, j), cq) .vq} (Conitzer et al., 2006). Intuitively, vl

calculates the minimum portion of the weights of cr edges that have not been used

by prior cycles in C. A lower bound on KEMENY-AGG with strict rankings can be

calculated as Conitzer et al. (2006); Milosz and Hamel (2018)

LB3 = LB0 +
∑
cr∈C

vl. (3.11)

Notice that LB3 is at least as good as LB2 (Conitzer et al., 2006).

Cycle-Based Methods for Non-Strict Rankings

LB1 provides a lower bound on KEMENY-AGG with non-strict rankings using pair-

wise comparison information by considering the smallest among all three possible

values. Similar to the case of strict rankings, the resulting ranking of this selection

may contain preference-cycles, which can be similarly broken to boost LB1.

Similar to Conitzer et al. (2006) and Milosz and Hamel (2018), we focus only

on preference-cycles of length 3 for the purposes of simplicity and computational

58

efficiency. These preference-cycles are much easier to find, and every preference-cycle

of length 4 or higher contains at least a preference-cycle of length 3 (Gass, 1998).

As mentioned earlier, KEMENY-AGG with strict rankings and WMFASP are

equivalent problems. However, this claim has not yet been proven for non-strict

rankings. We reckon that, to the best of our knowledge, it may not be possible to

represent KEMENY-AGG with non-strict rankings via an equivalent WMFASP. The

reason is that, for every pair of distinct items (i, j), there are 3 parameters involved,

namely pij, pji, tij. Additionally, in the case of strict rankings, items i, j, k form a

preference-cycle if i � j � k � i; however, in the case of non-strict rankings, there are

additional types of preference cycles as shown in Fig. 3.1, where arc (i, j) is drawn

if i � j; and arcs (i, j) and (j, i) are simultaneously drawn if i ≈ j. In the case of

strict rankings, it is possible to break a preference-cycle of length 3 by reversing the

edge with the lowest weight, however, this method cannot be applied to non-strict

rankings, as edges are not weighted; additionally, reversing certain individual edges

may not break the cycle. For example, reversing edge (k, j) in Fig. 3.1 (b) does not

make the resulting graph acyclic. Consequently, it is not possible to directly apply the

previously reviewed techniques for strict rankings to the case of non-strict rankings.

We propose a new method to boost LB1 using preference-cycles. Let C = {c1, . . . , cs}

Figure 3.1: Preference-cycles in Non-strict Rankings (Yoo and Escobedo, 2021)

59

be any set of edge-disjoint preference-cycles of length 3. For each cycle cr ∈ C, we

explicitly evaluate all 13 possible non-strict rankings (i.e., acyclic preferences) of 3

items, and we define X∗r as the minimum dKS distance of KEMENY-AGG restricted

to the items in cycle cr. X
∗
r is the minimum possible contribution of items i, j, k in

d∗KS, i.e., consensus ranking. On the other hand, the contribution of pairs (i, j), (i, k),

and (j, k) to LB1, denoted by dijk, is equal to

dijk = 2 [min dKS(σij) + min dKS(σik) + min dKS(σjk)] . (3.12)

We remark that Eq. (3.12) has been multiplied by 2 since dKS counts each pair of

items twice.

Hence, the improvement caused by breaking cycle cr, denoted by Qr, is equal to

Qr = X∗r − dijk.

As a result, an improved lower bound can be obtained as

LB4 = LB1 +
∑
cr∈C

Qr. (3.13)

Given a set of cycles, it is possible to construct different edge-disjoint sets that can

result in different values of LB4. Since LB1 is a fixed value, LB4 is maximized by

focusing on the second term of Eq. (3.13).

The problem of finding the set of disjoint cycles that yields the highest LB4 value

can be formulated as a weighted node packing problem (WNP). Let G = (V,E,W) be

an undirected graph where V is the set of nodes, E is the set of edges, and W is the

set of nodes’ weights. The goal of WNP is to find a subset of nodes with maximum

total weight such that no pair of nodes share an edge (Nemhauser and Sigismondi,

60

1992). Here, V is the set of cycles, i.e., V = C. There is an edge between cycles

cr, cg ∈ C if cr and cg are not edge-disjoint. The weight of node cr is its improvement

to the lower bound, i.e., Qr.

Let C = {c1, . . . , cs} be the set of all cycles of length 3, which may not neces-

sary be edge-disjoint. Given C, the ensuing optimization problem maximizes LB4.

Beforehand, we introduce the decision variables and parameters of the model. Let

decision variable vl be equal to 1 if cycle cr ∈ C is in the selected set of edge-disjoint

cycles, and 0 otherwise. Additionally, let Ξ be the set of cycle pairs that share an

edge. The binary programming formulation is given by

max
∑
cr∈C

Qrvr (3.14a)

subject to vr + vg ≤ 1, ∀(cr, cg) ∈ Ξ (3.14b)

vr ∈ {0, 1}, ∀cr ∈ C. (3.14c)

Objective function (3.14a) maximizes LB4; Constraint (3.14b) enforces that, when-

ever cycles cr and cg share one edge, at most one of them can belong to the set of edge-

disjoint cycles; and Constraint (3.14c) specifies the domain of the decision variables.

WNP is an NP-hard problem for general graphs and even finding an approximation

algorithm for this problem is NP-hard (Nemhauser and Sigismondi, 1992). WNP

has stronger formulations using cliques (Nemhauser and Sigismondi, 1992). However,

solving this problem to optimality still may be computationally demanding. Here,

we propose a simple add-swap heuristic method to find a high quality set of edge-

disjoint cycles for our problem of interest. The pseudocode of the proposed method

is presented in Algorithm 3, which begins by sorting cycles based on non-increasing

improvement in the lower bound, i.e., Q-values. Additionally, let C ′ be the working

61

Algorithm 3: Lower Bound Improvement Using Preference-cycles

Input : Set of cycles of length 3 (C), Q = [Qr] ∈ Z|C|
Output: Overall improvement in the lower bound

1 Sort cycles based on non-increasing Q-values;
2 Discard cycles with zero improvement;
3 C ′ ← ∅; // Set of edge disjoint cycles

4 Q← 0; // Overall improvement in the lower bound

5 for l = 1 to |C| do

6 if Cycle cr is mutually edge-disjoint with all cycles in C ′ then

7 C ′ ← C ′ ∪ cr;
8 Q← Q+Qr

while True do
9 Swap cycles cm, cn /∈ C ′ with cg ∈ C ′ if this swap allows the set to remain

edge-disjoint and increases Q;
10 Otherwise, set to False

11 return Q

set of edge-disjoint cycles, which initially is set to be empty. Next, starting with

the cycle that yields the highest improvement, the algorithm adds this cycle to C ′

if its addition keeps the working set edge-disjoint. After this step, the algorithm

checks whether it is possible to swap one cycle in C ′ with two mutually edge-disjoint

cycles that are not in C ′, such that this swap keeps C ′ to remain edge-disjoint and

simultaneously increases the overall lower bound improvement of C ′.

Scaling up Cycle-Based Methods with Social Choice Properties

Detecting preference-cycles of length 3 has a time complexity of O(n3), which makes

this lower bound boosting technique suitable only for small- to medium-sized prob-

lems. Here, we use partitioning to reduce the run time of this process. Since applying

XCC and NXCC has a time complexity of O(n2) (Yoo and Escobedo, 2021; Truchon,

1998), this modification can make cycle detection operation less expensive and maybe

even suitable for certain large-scale problems. Let X = {X1, X2, · · · , Xw} be the par-

62

titioned problem according to NXCC, denoted by NXCC partition. In the original

problem, all
(
n
3

)
triplet items must be checked for possible preference cycles, however,

in the partitioned problem with NXCC it is sufficient to evaluate all subsets of X

for possible preference cycles independently as there are no preference cycles between

items from different subsets. Hence, in the partitioned problem only
(|X1|

3

)
+
(|X2|

3

)
+ . . . +

(|Xw|
3

)
triplets must be checked.

Proposition 4 Given an instance of KEMENY-AGG, the set of cycles obtained from

the partitioned problem by XCC and NXCC and the original problem are the same.

All the items that form a preference-cycle must belong to the same subset in the

NXCC partition Truchon (1998). Therefore, there are no preference cycles between

items from different subsets.

3.3.3 LP-relaxation-Based Methods

It is well known that the LP-relaxation version of a minimization Binary Lin-

ear Programming (BLP) model provides a valid lower bound on the respective BLP

model. Conitzer et al. (2006) explored this type of lower bound on the WMFASP

version of KEMENY-AGG with strict rankings. This method yields tighter bounds

than cycle-based methods; however, it takes more time as well. This is not sur-

prising, since the exact formulation of KEMENY-AGG, and hence the LP-relaxation

version, has O(n3) constraints, which can be cumbersome to solve for large values of

n. However, a large portion of these constraints are trivially satisfied at the optimal

solution (Pedings et al., 2012), which is a fact that can be utilized to simplify the

solution to the LP-relaxation models of KEMENY-AGG. Here, we explore an item

exact solution approach for solving the LP-relaxation problem, the Constraint Re-

laxation (CR) method (Dantzig et al., 1954, 1959). CR is an iterative optimization

63

approach that begins with a relaxed version of a problem’s exact formulation; the

relaxation usually excludes a large number of the constraints and is, hence, easier to

solve. Here, the cycle-prevention constraints are excluded from the model at first.

At each iteration, the working relaxation is solved to optimality and the solution is

analyzed to determine if any of the excluded constraints are violated, in which case

the respective constraints are added back into the working relaxation model. This

process is repeated until there are no such violations.

Furthermore, the process of obtaining a lower bound using the LP-relaxation

method can be accelerated by deploying NXCC partitioning. If the instance of interest

is partitionable, the original problem can be equivalently solved as a collection of

smaller subproblems, which can decrease run times.

3.3.4 Computational Results

This section compares the quality and run time of the various lower bounding

techniques for non-strict rankings discussed in this chapter. Condorcet-based parti-

tioning was performed using the algorithm proposed in Yoo and Escobedo (2021),

which works by carrying out sequential pairwise comparisons. All experiments were

carried out on a computer with an Intel(R) Xeon(R) CPU E5-2680 @ 2.40 GHz

with 64 GB RAM. The optimization models were solved using CPLEX solver version

12.10.0.

We use the Mallows model (see Section 2.1) to generate synthetic instances. Using

the Mallows model, we can control the difficulty of generated instances and investigate

the performance of the algorithms under different conditions.

Doignon et al. (2004) introduced the Repeated Insertion Model (RIM) for gen-

erating strict rankings, which encompasses the Mallows model as a special case. To

describe RIM, assume without loss of generality, that the ground truth ranking σ′ is

64

Table 3.4: Computational Results of Different Lower Bounding Techniques

N=50
Pairwise Comparison (PC) Cycle-Based (CB) LP-relaxation (LPR)

φ LB Time LB Time LB Time
Ave Min Max PC Ave Min Max CB CB + NXCC Ave Min Max LPR LPR + CR LPR + CR + NXCC

0.8 6490.25 5974 6892 0.00 6510.35 6004 6906 0.06 0.01 6513.05 6006 6906 4.20 1.68 0.22
0.85 8651.65 7940 9418 0.00 8684.85 7956 9452 0.06 0.03 8689.7 7956 9458 4.27 1.84 0.41
0.9 11782.75 10726 12854 0.00 11842.35 10796 11806.5 0.09 0.10 11852.55 10810 12940 4.24 1.94 1.20
0.95 16705.15 15633 17906 0.00 16856.75 15777 16790.5 0.37 0.39 16892.55 15811 16817.5 4.35 1.93 1.86

N=100
Pairwise Comparison (PC) Cycle-Based (CB) LP-relaxation (LPR)

φ LB Time LB Time LB Time
Ave Min Max PC Ave Min Max CB CB + NXCC Ave Min Max LPR LPR + CR LPR + CR + NXCC

0.8 14263.8 13585 15073 0.01 14304.8 13615 15109 0.38 0.03 14311.7 13617 15117 35.8 15.20 1.34
0.85 19654.55 18644 20615 0.01 19725.55 18724 20701 0.39 0.08 19738.95 18738 20727 35.63 15.57 1.62
0.9 29167.35 27445 30625 0.01 29308.45 27583 30799 0.53 0.51 29335.85 27623 30831 35.56 15.98 10.01
0.95 49735.15 46784 52936 0.01 50059.35 47030 53310 2.16 2.19 50137.35 47091 53392 36.11 15.38 15.41

N=150
Pairwise Comparison (PC) Cycle-Based (CB) LP-relaxation (LPR)

φ LB Time LB Time LB Time
Ave Min Max PC Ave Min Max CB CB + NXCC Ave Min Max LPR LPR + CR LPR + CR + NXCC

0.8 22276.6 21578 23189 0.02 22345.3 21642 23273 1.26 0.08 22357.1 21652 23291 122.32 52.67 3.43
0.85 30640.1 29563 31850 0.02 30745.6 29669 31974 1.26 0.18 30766.75 29692 32004 122.30 56.02 3.96
0.9 47121.75 44486 49368 0.02 47324.25 44686 49624 1.49 1.46 47364.05 44718 49682 121.75 55.65 31.92
0.95 85673.6 84089 86765 0.02 86168 84577 87315 6.75 6.76 86282 84713 87451 121.06 58.80 58.81

N=200
Pairwise Comparison (PC) Cycle-Based (CB) LP-relaxation (LPR)

φ LB Time LB Time LB Time
Ave Min Max PC Ave Min Max CB CB + NXCC Ave Min Max LPR LPR + CR LPR + CR + NXCC

0.8 29850.1 29046 30894 0.03 29935.1 29118 30980 2.79 0.11 29948.1 29120 31002 294.98 131.80 8.28
0.85 41825.2 40709 43203 0.03 41969.4 40855 43339 2.86 0.28 41992 40879 43363 296.57 135.50 6.71
0.9 64462.8 62991 68004 0.04 64742.6 63239 68290 3.40 2.84 64792.7 63285 68332 298.87 128.01 61.59
0.95 122121.6 118772 125625 0.03 122824.4 119506 126353 13.68 13.72 122968.6 119645 126533 292.13 130.89 130.92

the permutation (1, 2, . . . , n). The method starts by placing item 1 into an initially

empty working ranking vector; in each succeeding iteration and until the target size is

reached, the next item from σ′ is inserted in a specific position in the working ranking

vector based on the Mallows probabilities. Specifically, item i is inserted before item

j < i in the working ranking vector with probability pij = φi−j/(1 + φ+ · · ·+ φi−1).

Yoo et al. (2020) developed a modified RIM sampling process for generating non-strict

rankings, which is used herein. In this sampling process, after generating strict rank-

ings via RIM, a random number u is drawn from a uniform distribution U(1, n− 1),

and the item with rank u is tied with the item with the next higher (i.e., worse) rank.

The process is repeated until the number of items that are tied reaches a specific

threshold, herein set to 0.25n. Please refer to Doignon et al. (2004) and Yoo et al.

(2020) for more information.

65

The tested parameter settings are φ ∈ {0.8, 0.85, 0.9, 0.95}, n ∈ {50, 100, 150, 200},

and m = 20; we chose only high values of φ because they are more difficult to solve,

as they correspond to low group cohesion and higher noise levels (Yoo et al., 2020).

For each combination of (φ, n), we perform 20 replications. Since the ground truth

ranking used in the Mallows model are the same for each combination of (φ, n), the

d∗KS values very close to each other. For all three tested lower bounding techniques, the

experimental results shown in Table 3.4 report the average, minimum, and maximum

lower bound over the 20 replications for each combination of (φ, n). Furthermore,

Table 3.4 reports the geometric mean run time of the pairwise comparison (PC); the

run time of the cycle-based method (CB) and its run time with NXCC (CB + NXCC);

and the run time of LP-relaxation (LPR), its run time with CR (LPR + CR), and

its run time with CR and NXCC (LPR + CR + NXCC) over the 20 replications for

each combination of (φ, n).

Instances with a lower φ value yielded a partition with more subsets than those

with a higher value. This was expected since higher values of φ correspond to more

noise in the generated rankings, which induces less agreement on the relative ordering

of items in these instances. All tested instances with a φ value of 0.8, 0.85, 0.9 yielded

a non-trivial NXCC partition, however, all tested instances with a φ value of 0.95

were not partitionable. Whenever NXCC yielded a non-trivial partition, it was able

to accelerate the preference-cycle detection process rather significantly, especially for

instances with a φ value of 0.8 and 0.85 where the NXCC partition had the most

subsets.

For all tested combinations of (φ, n), the LP-relaxation method achieves a bet-

ter average, minimum, and maximum lower bound than the other two techniques;

furthermore, this was true for all the individual instances. On the other hand, LP-

relaxation had the highest average run time for all tested combinations of (φ, n);

66

this was true for all the individual instances as well. As expected, the cycled-based

technique achieves a better lower bound than the pairwise comparison method; on

the other hand, it takes significantly more time. The pairwise comparison method

achieves the worst bounds. However, the highest run time of this technique was only

0.04 seconds, which makes this method very attractive whenever a very fast lower

bounding technique is required.

The cycle-based technique was able to improve the pairwise comparison lower

bound in up to a handful of seconds. In fact, this technique was able to achieve

bounds that were competitive with the LP-relaxation technique in far less time. De-

ploying NXCC makes this method even more attractive as, whenever NXCC yielded

a non-trivial partition, it was able to accelerate the cycle-based technique rather im-

pressively, especially for instances with a φ value of 0.8 and 0.85. For example, NXCC

was able to reduce the average run time of this technique from 2.79 to 0.11 seconds,

which represents a 25x computational speedup.

Even though theLP-relaxation technique achieves the best bounds, its run time

is considerably larger than the other two methods, which may make this technique

somewhat less useful in real-world applications. However, incorporating the B&C

method was able to reduce the run time significantly, specifically by more than half

in all tested instances. Moreover, NXCC was able to accelerate the LP-relaxation

technique with B&C rather remarkably for instances with a φ value of 0.8,0.85, and

0.9. For example, it was able to reduce the average run time of this technique from

135.5 to 6.71 seconds, which represents a 20x computational speedup.

It is important to remark that the maximum NXCC partitioning time over all

tested instances was only 0.09 seconds, which makes this computationally inexpensive

operation worthwhile to lower bounding techniques for KEMENY-AGG.

All in all, the pairwise comparison method is suitable when a very fast lower

67

bounding technique is required. When high-quality bounds are desired, the cycle-

based method combined with NXCC partitioning is probably the best candidate,

as it can produce competitive bounds in up to a handful of seconds. Finally, LP-

relaxation combined with B&C and NXCC method produces the tightest bounds in

considerably more time.

3.4 Concluding Remarks

This chapter explores the partitioning of KEMENY-AGG based on Condorcet

extensions. These partitioning schemes offer theoretical guarantees that enable the

decomposition of certain large instances of this NP-hard problem into a set of smaller

subproblems that can be solved independently. Since there may exist more than one

partition that satisfies the criteria of the Condorcet variants, we formalize the concept

of the finest-Condorcet partition, which is designed to provide the highest possible

computational advantages among all such partitions. We specify the requirements

of the finest-Condorcet partition, prove its uniqueness, and derive an algorithm for

its construction. Condorcet Partitioning is useful for a small portion of problem in-

stances, as it often yields a few large subsets which may be too difficult to solve with

exact methods. To overcome this issue, we propose Approximate Condorcet Parti-

tioning (ACP) that breaks down these larger subsets based on the number of times

an item is pairwise preferred over other items. The resulting partition has more sub-

sets than the finest-Condorcet partition and is therefore easier to solve. Furthermore,

we propose an efficient solution technique for strict and non-strict rankings, which

is accompanied by instance-specific approximation factors. Although the approxima-

tion factors are not constant, ACP often achieves better solution guarantees than

all known approximation factors, including all instances tested herein. The average

approximation ratio for the strict and non-strict rankings instances tested herein was

68

1.06 and 1.03, respectively, whereas the best-known approximation factors for strict

and non-strict rankings are 4/3 and 9, respectively. Experiments on a variety of very

large benchmark instances demonstrate the scalability and robustness of the pro-

posed approximation algorithm. The conducted experiments on real-world instances

showed that LPKiwkSort and the proposed solution technique via ACP had the best

and second best performances in terms of solution quality on strict rankings, differing

by no more than 2.8 percentage points; however, ACP was on average nearly 5 times

faster than LPKiwkSort. On the other hand, ACP had a dominant performance on

non-strict rankings, achieving near-optimal solutions on the majority of the tested

instances.

Additionally, this chapter explores the lower bounding techniques for KEMENY-

AGG with non-strict rankings. In particular, it generalizes the existing techniques,

i.e., pairwise comparison, cycle-based, and LP-relaxation, for strict rankings to the

case of non-strict rankings. Additionally, it utilizes partitioning using variations of the

formative Condorcet criterion and Constraint Relaxation (CR) methods to accelerate

the lower bounding process. The experimental results demonstrate that LP-relaxation

provides the tightest bounds, but it is substantially computationally more demanding

than other techniques. However, deploying partitioning and CR can drastically reduce

the run time of this technique. Moreover, cycle-based method produces high-quality

bounds in a reasonable time, additionally, the run time of this method can further be

reduced by partitioning.

69

Chapter 4

THE GENERALIZED RANK AGGREGATION PROBLEM

4.1 Overview

This chapter delves into the rank aggregation problem under the generalized

Kendall-tau distance (Fagin et al., 2004), which contains KEMENY-AGG as a special

case. First, it derives exact and heuristic solution methods for the generalized prob-

lem. Second, it introduces a social choice property that encloses existing variations of

the Condorcet criterion as special cases, thereby expanding this seminal social choice

concept beyond Kemeny aggregation for the first time. Through a specialized parti-

tioning algorithm designed herein to implement this property, many instances of the

NP-hard general rank aggregation problem can be decomposed into smaller subprob-

lems, while guaranteeing that solving them independently still produces the optimal

solution to the original problem. Experiments on two benchmark datasets conducted

herein show that the featured exact and heuristic solution methods can benefit from

this property. Finally, this work derives new theoretical insights into the effects of

the generalized Kendall-tau distance penalty parameter on the optimal ranking and

on the proposed social choice property.

The rest of this chapter is organized as follows. Section 4.2 introduces notations

used throughout the paper and establishes some preliminaries. Section 4.3 introduces

various exact and heuristic methods. Section 4.4 generalizes the Condorcet criterion

and its variants. Section 4.5 studies the effect of the generalized Kendall-tau distance

penalty parameter on the optimal solution. Section 4.6 presents the computational

results. Finally, Section 4.7 concludes the chapter.

70

4.2 Notation and Preliminaries

Fagin et al. (2004) proposed a generalization of the Kendall-tau distance for non-

strict rankings using bucket orders, otherwise known as weak orders. A bucket order

B is a transitive, total, and reflexive binary relation � in which buckets B1, . . . , Bt

form a partition of X such that i � j if and only if i ∈ Bk and j ∈ Bk′ , with

k < k′. Members of the same bucket are considered as being tied. The position of

bucket Bk is defined as pos(Bk) = (
∑

k′<k |Bk′ |) + (|Bk| + 1)/2, and it indicates the

average location within bucket Bk. A bucket order becomes a linear order when the

cardinality of all buckets equals one. A non-strict ranking σ can be mapped to a

bucket order by letting σi = pos(B), where B is the bucket containing item i (Fagin

et al., 2004).

Next, we restate the definition of the generalized Kendall-tau distance introduced

by Fagin et al. (2004). Given a fixed penalty parameter 0 ≤ p ≤ 1 and two rankings

σ1 and σ2, let K
(p)
ij (σ1,σ2) be the contribution to the distance function, for each pair

(i, j) ∈ Λ. There are three cases with respect to the relative orderings of items i and

j in σ1 and σ2:

Case 1. There is a strict ordering between i and j in σ1 and σ2. If i and j are in the

same order in both rankings, set K
(p)
ij (σ1,σ2) = 0; otherwise, set K

(p)
ij (σ1,σ2) = 1.

Case 2. Both rankings tie i and j. In this case, set K
(p)
ij (σ1,σ2) = 0.

Case 3. One of the rankings ties i and j, but not the other. In this case, set

K
(p)
ij (σ1,σ2) = p.

Piecing together the above three cases, K
(p)
ij (σ1,σ2) can be succinctly written as

K
(p)
ij (σ1,σ2) =

1 if (i �σ1 j ∧ j �σ2 i) ∨ (j �σ1 i ∧ i �σ2 j)

p if (i ≈σ1 j ∧ (i �σ2 j ∨ j �σ2 i)) ∨ (i ≈σ2 j ∧ (i �σ1 j ∨ j �σ1 i))

0 otherwise.

71

Taking this one step further, the Kendall-tau distance with penalty parameter p,

denoted as K(p), can be abbreviated as

K(p)(σ1,σ2) =
∑

(i,j)∈Λ

K
(p)
ij (σ1,σ2). (4.1)

Note that Case 1 corresponds to a full rank reversal, and Case 3 corresponds to a

partial rank reversal. Additionally, K(p) induces the Kemeny-Snell distance (scaled

by 1/2) and the Kendall-tau distance as special cases, namely for p = 1/2 and p = 0,

respectively. The K(p) distance is a metric for 1/2 ≤ p ≤ 1, a near metric for

0 < p < 1/2, and not a metric for p = 0 (Fagin et al., 2004); for the rest of the paper,

we focus on the values of p for which K(p) is a metric. We close this section with an

example that helps illustrate the use of this distance.

Example 4 Let σ1 = (1, 2, 3, 3) and σ2 = (2, 1, 1, 1) be two non-strict rankings of

four items; the bucket orders corresponding to these two rankings are {{1}, {2}, {3, 4}}

and {{2, 3, 4}, {1}}, respectively. The example highlights all three cases of the dis-

tance: K
(p)
12 (σ1,σ2) = 1 (Case 1), K

(p)
34 (σ1,σ2) = 0 (Case 2), and K

(p)
23 (σ1,σ2) = p

(Case 3). Considering all distinct item-pairs, we obtain K(p)(σ1,σ2) = 3 + 2p.

4.3 The Generalized Rank Aggregation Problem

The K(p) distance has been utilized for comparing non-strict rankings in numerous

applications such as multiagent system evaluation (Rowland et al., 2019), CP-nets

(Loreggia et al., 2018), and social network analysis (Zhang et al., 2018). In its general

form, the distance has not been studied in the context of ranking aggregation; how-

ever, apart from KEMENY-AGG, Brancotte et al. (2015) and Andrieu et al. (2021)

have used this distance for the special case induced by fixing the penalty parameter to

p = 1. Section 4.3.1 formally defines RANK-AGG, proves it is NP-hard and proposes

an exact formulation of this problem. Section 4.3.2 devises a constraint relaxation

72

method for solving the formulation more efficiently. Finally, Section 4.3.3 proposes a

novel heuristic algorithm.

4.3.1 Definition and Formulation

RANK-AGG seeks a ranking σ∗—either strict or non-strict—with the lowest cu-

mulative K(p) distance to all the input rankings.

Definition 14 The optimal ranking obtained from RANK-AGG can be mathemati-

cally stated as

σ∗ = argmin
σ∈Σ

∑
l∈L

K(p)(σ,σl) = argmin
σ∈Σ

∑
l∈L

∑
(i,j)∈Λ

K
(p)
ij (σ,σl). (4.2)

Theorem 7 RANK-AGG is NP-hard for m ≥ 4.

KEMENY-AGG was shown to be NP-hard for m ≥ 4 by an encoding of the feedback

arc set problem (Bartholdi et al., 1989; Dwork et al., 2001). Since KEMENY-AGG is

only a special case of RANK-AGG, the latter inherits the computational complexity

of the former. It is pertinent to add that m = 2 has a trivial solution as both of the

input lists are optimal solutions. The computational complexity of the feedback arc

set problem and KEMENY-AGG for m = 3 is an open problem (Dwork et al., 2001),

to the best of our knowledge.

To introduce an exact formulation for RANK-AGG, the cumulative K(p) distance

between a given ranking σ ∈ σ and all the input rankings is expressed equivalently

as
∑

(i,j)∈Λ

K
(p)
ij (σ) where,

K
(p)
ij (σ) =

sji + p tij if i �σ j,

sij + p tij if j �σ i,

p(sij + sji) if i ≈σ j.

(4.3)

73

Eq. (5.7) states that, whenever item i is ranked ahead of item j in σ, the imposed K(p)

distance between σ and all the input rankings for this item-pair equals the number

of input rankings where j is ranked ahead of i, plus p-times the number of input

rankings where i and j are tied. Whenever the pair is tied, the imposed K(p) distance

is p-times the number of input rankings where there is a strict ordering between i and

j.

Brancotte et al. (2015) proposed a mixed-integer linear programming formulation

for solving Problem (4.2) for p = 1. Herein, we revise their objective function to

reflect any possible value of p as follows:

min
∑
i∈X

∑
j∈X

[
(sji + p tij)xi�j + (sij + p tij)xj�i + p(sij + sji)xi≈j

]
(4.4a)

s.t. xi�j + xj�i + xi≈j = 1 ∀i, j ∈ X ; j > i (4.4b)

xi�j − xk�j − xi�k ≥ −1 ∀i, j, k ∈ X ; i 6= j 6= k (4.4c)

2xi�j + 2xj�i + 2xj�k + 2xk�j − xi�k − xk�i ≥ 0 ∀i, j, k ∈ X ; k > i, j 6= k

(4.4d)

xi�j, xi≈j ∈ B ∀i, j ∈ X ; i 6= j. (4.4e)

Decision variable xi�j is equal to 1 if item i is ranked ahead of item j and 0 otherwise,

and decision variable xi≈j is equal to 1 if i and j are tied, and 0 otherwise. Objective

function (4.4a) minimizes the cumulative K(p) distance to all the input rankings using

Eq. (5.7). Constraint (4.4b) enforces that, for every distinct item-pair (i, j), either i

is ranked ahead of j, j is ranked of i, or i and j are tied. Constraint (4.4c) enforces

transitivity by preventing preference cycles (Fiorini and Fishburn, 2004; Grötschel

et al., 1984); for example, if i is ranked ahead of j, and j is ranked ahead of k, then i

must be ranked of k as well. Constraint (4.4d) enforces that if i and j are tied, and

j and k are tied, then i and k must be tied as well (see Yoo and Escobedo (2021) for

74

more types of preference cycles for non-strict rankings). Constraint (4.4e) specifies

the domain of the variables.

Yoo and Escobedo (2021) reported that their formulation for KEMENY-AGG with

non-strict rankings, denoted as GKBP, outperformed the variant of Formulation (4.4)

induced by fixing p = 1/2. Because their formulation takes advantage of the specific

relationship between Kemeny-Snell distance and the extended Kendall’s correlation

coefficient (Emond and Mason, 2002; Yoo et al., 2020), GKBP cannot be directly

applied to RANK-AGG. Nevertheless, inspired by its computational performance and

the fact that its constraints are equivalent to the axiomatic facet defining inequalities

of the weak order polytope (Fiorini and Fishburn, 2004; Yoo and Escobedo, 2021),

we propose an alternative formulation for solving Problem (4.2) with the same set

of constraints. The proposed formulation is a non-linear binary programming model

and is given by:

min
∑
i∈X

∑
j∈X

(sji + p tij)yij +
∑
i∈X

∑
j∈X :j>i

(
p(sij + sji)− sij − sji − 2p tij

)
yijyji

(4.5a)

s.t. yij + yji ≥ 1 ∀i, j ∈ X ; j > i (4.5b)

yij − ykj − yik ≥ −1 ∀i, j, k ∈ X ; i 6= j 6= k (4.5c)

yij ∈ B ∀i, j ∈ X ; i 6= j. (4.5d)

Here, the decision variable yij is equal to 1 if item i is ranked ahead of or tied with item

j, and 0 otherwise. Item i is ranked ahead of item j if yij = 1, yji = 0 (giving yijyji =

0), and items i and j are tied whenever yij = yji = 1 (giving yijyji = 1). Objective

function (4.5a) minimizes the cumulative K(p) distance to all the input rankings.

Constraint (4.5b) enforces that i and j cannot be simultaneously dispreferred over

each other. Constraint (4.5c) imposes transitivity, and Constraint (4.5d) specifies

75

the domain of variables. Let σ be the corresponding non-strict ranking induced by

a feasible solution to Formulation (4.5); in particular, the rank of item i in σ is

calculated as σi := n−
∑

j∈X :i 6=j yij.

The objective function (4.5a) can be linearized using a technique proposed by

Glover and Woolsey (1974). For each distinct item-pair (i, j), the binary product

yijyji in the objective function can be replaced by the auxiliary continuous variable

zij, with the addition of four constraints: zij ≤ yij, zij ≤ yji, zij ≥ yij+yji−1, zij ≥ 0.

However, since the objective coefficient of yijyji, i.e.,
(
p(sij + sji)− sij − sji − 2p tij

)
,

is always less than or equal to zero, constraint zij ≥ yij + yji− 1 becomes redundant;

that is, whenever yij = yji = 1, the objective function has incentive to set zij to its

maximum value of 1 and there is no need for this constraint. The full mixed-integer

linear program of Problem (4.2) is as follows:

min
∑
i∈X

∑
j∈X

(sji + p tij)yij +
∑
i∈X

∑
j∈X :j>i

(
p(sij + sji)− sij − sji − 2p tij

)
zij (4.6a)

s.t. yij + yji ≥ 1 ∀i, j ∈ X ; j > i (4.6b)

yij − ykj − yik ≥ −1 ∀i, j, k ∈ X ; i 6= j 6= k (4.6c)

zij ≤ yij ∀i, j ∈ X ; j > i (4.6d)

zij ≤ yji ∀i, j ∈ X ; j > i (4.6e)

zij ≥ 0 ∀i, j ∈ X ; j > i (4.6f)

yij ∈ {0, 1} ∀i, j ∈ X ; i 6= j. (4.6g)

It is possible to derive a lower bound on Problem (4.2) using the pairwise comparison

information provided in Eq. (5.7).

Proposition 5 A lower bound on Problem (4.2) can be obtained as:

LB =
∑

(i,j)∈Λ

min (sji + p tij, sij + p tij, p(sij + sji)) . (4.7)

76

For every distinct item-pair, Eq. (4.7) selects the smallest contribution among all

three possible preference relationships between the items. Proposition 5 effectively

generalizes the lower bound for KEMENY-AGG with strict rankings introduced in

Davenport and Kalagnanam (2004) and with non-strict rankings introduced in Akbari

and Escobedo (2021). Furthermore, this lower bound can be boosted by detecting

preference cycles in the input rankings, as the solution obtained by selecting the

smallest contribution for each pair of distinct items may not be transitive (Conitzer

et al., 2006; Milosz and Hamel, 2018). Another lower bound can be obtained by

solving the linear programming relaxation of Formulations (4.4) or (4.6).

4.3.2 Constraint Relaxation Method

Formulation (4.6) hasO(n3) transitivity constraints (i.e., Constraints (4.6c)) which

makes solving it to optimality very difficult and practically impossible for large values

of n. However, only a very small fraction of these constraints are typically necessary

to solve rank aggregation models to optimality (Pedings et al., 2012). Motivated by

the performance of CR in accelerating lower bounding technique of KEMENY-AGG,

we use CR to solve instances that are practically unsolvable with off-the-shelf meth-

ods. The pseudocode of CR is presented in Algorithm 4, which begins by dropping

all transitivity constraints from Formulation (4.6)—this is denoted as the Relaxed

Formulation. At each iteration of CR, the Relaxed Formulation is solved and the so-

lution is inspected to determine whether there are unsatisfied transitivity constraints,

which are added to the model. This process is repeated until the solution does not

violate any transitivity constraints. CR is guaranteed to obtain an optimal solution,

as all transitivity constraints (which are finite) are added to the Relaxed Formulation

in the worst-case scenario.

77

Algorithm 4: Constraint Relaxation (CR) Method

Input : p, [sij] ∈ Zn.n, [tij] ∈ Zn.n
Output: Optimal solution to Formulation (4.6)

1 t := 0;
2 Ξ := {(i, j, k) | i, j, k ∈ X ; i 6= j 6= k} ; // set of all item-triplets

3 Ξ′ := ∅ ; // set of item-triplets whose preference transitivity

constraints are included in the Relaxed Formulation (see the

next line)

4 Build the Relaxed Formulation:

min
∑
i∈X

∑
j∈X

(sji + p tij)yij +
∑
i∈X

∑
j∈X :j>i

(
p(sij + sji)− sij − sji − 2p tij

)
zij

s.t. (4.6b), (4.6d)− (4.6g)

yij − ykj − yik ≥ −1 ∀(i, j, k) ∈ Ξ′

5 Transitivity Violation = False;
6 while Transitivity Violation is not True do
7 t← t+ 1;

8 Solve the Relaxed Formulation and obtain solution y
(t)
ij , where

i, j ∈ X , i 6= j;
9 for (i, j, k) ∈ Ξ\Ξ′ do

10 if y
(t)
ij − y

(t)
kj − y

(t)
ik � −1 then

11 Transitivity Violation = True;
12 Ξ′ ← Ξ′ ∪ {(i, j, k)};

Return σ∗ = [n−
∑

j∈X :i 6=j yij for i in X]

4.3.3 The Least Imposed Cost Heuristic (LICH)

In this section, we propose a greedy iterative algorithm, denoted as the Least

Imposed Cost Heuristic (LICH), for solving RANK-AGG. Placing item i at any posi-

tion of a bucket order contributes a certain amount to the objective function (4.6a);

denote this imposed cost as υ(i). The algorithm works by iteratively adding an item

among a small number of positions in a working bucket order, namely the available

item with the lowest associated υ-value.

LICH’s pseudocode is presented in Algorithm 7 and is summarized as follows. In

78

the first iteration, one item needs to be selected to initialize the working bucket order.

Placing item i in the first place, assuming that it is ranked ahead of all other items,

imposes the following cost:

υ(i) =
∑

j∈X\{i}

sji + p tij.

A working bucket order B is initialized by placing the item with the lowest imposed

cost in the first bucket.

In the next iterations, the remaining items are compared with only the items in

the last bucket of the working bucket order, for the sake of efficiency. At each iteration

and for each remaining item i, three different imposed costs are calculated based on

where i is added to the working bucket order: 1) in the last bucket, 2) a new bucket

right after the last bucket, and 3) a new bucket right before the last bucket. For each

item, consider the minimum of the three calculated imposed costs. Formally, let Bw

be the last bucket of the working bucket order B and X r be the set of remaining

items to be placed in the working bucket order, calculate

υ(i) = min

(∑
j∈Bw

p(sij + sji),
∑
j∈Bw

(sij + p tij),
∑
j∈Bw

(sji + p tij)

)
∀i ∈ X r.

The item with the lowest imposed cost overall is added to the working bucket order

in the appropriate manner (according to the aforementioned three cases). As a post-

processing subroutine, adjacent buckets are merged if doing so decreases the value of

the objective function (4.6a).

Theorem 8 Algorithm 7 has a time complexity of O(n3).

The worst time complexity of Algorithm 7 occurs when the working bucket order has

only one bucket; in this case, the last bucket of the working bucket order is always of

maximum size. In this case, the number of distinct item-pairs for which we need to

79

Algorithm 5: The Least Imposed Cost Heuristic (LICH)

Input : p,X , [sij] ∈ Rn×n, [tij] ∈ Rn×n
Output: Solution non-strict ranking

1 i′ := arg min
i∈X

∑
j∈X

sji + p tij;

2 B := {{i′}} ; // initialize the working bucket order

3 X r := X\{i′} ; // set of remaining items

4 for t = 1, . . . , n− 1 do
5 Let Bw be the last bucket of the working bucket order B;
6 for i ∈ X r do

7 υ(i) = min

(∑
j∈Bw

(sji + p tij),
∑
j∈Bw

(sij + p tij),
∑
j∈Bw

p(sij + sji)

)
;

8 i′ = arg min
i∈X r

υ(i) ; // find the item with the lowest imposed

cost

9 X r ← X r\{i′} ; // remove i′ from the set of remaining items

// The next block of code adds i′ to the working bucket

order in a way that it induces the lowest imposed cost

10 if υ(i′) =
∑
j∈Bw

p(si′j + sji′) then

11 B ← {B1, . . . , Bw−1, Bw ∪ {i′}};
12 if υ(i′) =

∑
j∈Bw

(si′j + pti′j) then

13 B ← {B1, . . . , Bw−1, Bw, {i′}};
14 if υ(i′) =

∑
j∈Bw

(sji′ + pti′j) then

15 B ← {B1, . . . , Bw−1, {i′}, Bw}

16 Merge adjacent buckets of B if doing so improves the value of objective
function (4.6a);

17 Obtain σ from B (as explained in Section 4.2);
Return σ;

calculate the imposed cost is given by

n(n− 1) + (n− 1)(1) + (n− 2)(2) + · · ·+ (1)(n− 1) = n(n− 1) +
n−1∑
i=1

(n− i)i

= n(n− 1) +
1

6
(n− 1)n(n+ 1)

The imposed costs of each item-pair can be obtained in constant time. Therefore,

80

the complexity of the full algorithm is O(n3). Note that the worst time complexity

of Algorithm 7 occurs when at least n− 1 items are tied in the optimal ranking, and

its time complexity reduces to O(n2) in the case of strict rankings, as all buckets are

singletons in this case.

4.4 Generalizing the Condorcet Criterion and its Variants

XCC and NXCC have been defined only for KEMENY-AGG. This subsection

expands the concept of Condorcet partitions to RANK-AGG. To that end, it first

redefines the concept of pairwise preference to adapt to the nature of the generalized

problem, and it introduces a novel social choice property termed as the Generalized

Extended Condorcet Criterion (GXCC).

Definition 15 Item i is (strictly) pairwise preferred over item j if

sij > max
((1− p

p

)
sji + tij, sji

)
,

and it is weakly pairwise preferred over j if

sij ≥ max
((1− p

p

)
sji + tij, sji

)
.

Definition 16 (GXCC) Given a fixed penalty parameter p, assume that X can be

arranged into a partition X(p) = {X1, X2, . . . , Xw} such that

sij > max
((1− p

p

)
sji + tij, sji

)
∀i ∈ Xk, ∀j ∈ Xk′ , ∀k < k′. (4.8)

GXCC specifies that σ∗ must rank all items in lower-indexed subsets of X(p) ahead

of all items in higher-indexed subsets. That is, when (4.8) holds, then

i �σ∗ j ∀i ∈ Xk, ∀j ∈ Xk′ , ∀k < k′.

GXCC contains XCC and NXCC as special cases: it becomes NXCC when p = 1/2,

and it becomes XCC when the same penalty is used and all the input rankings are

81

strict.

To explain the rationale for Definition 16, recall that in KEMENY-AGG item i is

said to be pairwise preferred by a decisive majority over item j if the number of input

rankings who rank i ahead of j is greater than those who rank j ahead of i, plus who

those tie them. This is related to the Kemeny-Snell distance’s fixed penalty of 1/2

for every partial rank reversal between the solution ranking and the input rankings

and NXCC’s consideration of both full and partial rank reversals to determine when

j cannot be ahead of i. However, in RANK-AGG every partial rank reversal yields

penalty p. The coefficient 1−p
p

accounts for the contribution of every full and every

partial rank reversal in the overall decisive majority associated with the generalized

Kendall tau distance.

The following theorem proves that the optimal solutions to RANK-AGG are con-

sistent with GXCC. This means that solving the subproblems induced by the subsets

of the GXCC partition independently to optimality and then concatenating the re-

sults in the proper order (placing all items in the lower-indexed subsets ahead of all

items in the higher-indexed subsets) is guaranteed to yield an optimal solution to

RANK-AGG. To the best of our knowledge, this is the first time exact Condorcet

partitioning scheme has been applied to a problem other than KEMENY-AGG in its

general form.

Theorem 9 RANK-AGG satisfies GXCC.

We use contradiction. Without loss of generality, let X(p) = {X,Xc} be a GXCC

bipartition of X , where X
c

= X\X, and let π∗ be an optimal ranking where at least

one item in X
c

is ranked ahead of or tied with at least one item in X. Consider a

ranking π′ obtained by modifying π∗ such that all items of X are ranked ahead of

all items in X
c
, and the relative orderings of all items within X and X

c
are as in π∗.

82

The difference between the cumulative K(p) distances (i.e., to all the input rankings)

accrued with π∗ versus π′, denoted by ∆, is given by

∆ =
∑
l∈L

K(p)(π∗,πl)−
∑
l∈L

K(p)(π′,πl)

=
∑
i∈X

∑
j∈Xc

∑
l∈L

K
(p)
ij (π∗,πl)−

∑
i∈X

∑
j∈Xc

∑
l∈L

K
(p)
ij (π′,πl)

=
∑
i∈X

∑
j∈Xc

∑
l∈L

K
(p)
ij (π∗,πl)−

∑
i∈X

∑
j∈Xc

(sji + p tij).

The last equation comes from the starting assumption that π′ ranks all items in X

ahead of all items in X
c
. Therefore, the contribution of every distinct item-pair (i, j)

where i ∈ X and j ∈ Xc
in
∑
l∈L

K(p)(π′,πl) is equal to sji + p tij. Observe that item-

pairs from different subsets do not contribute to ∆ as their relative orderings are the

same in π∗ and π′. To determine the sign of ∆, we compare the terms
∑
l∈L

K
(p)
ij (π∗,πl)

and sji + p tij. From Eq. (5.7), for every distinct item-pair (i, j), i ∈ X and j ∈ Xc
,

we have

∑
l∈L

K
(p)
ij (π∗,πl) =

sji + p tij if i �π∗ j,

sij + p tij if j �π∗ i,

p(sij + sji) if i ≈π∗ j.

(4.9)

Next, we show that for such a distinct item-pair, sji + p tij does not exceed∑
l∈L

K
(p)
ij (π∗,πl) in cases where j �π∗ i and i ≈π∗ j (K

(p)
ij (π∗,πl) equals sji + p tij

when i �π∗ j). Based on the starting assumption that X(p) satisfies GXCC, for every

distinct item-pair (i, j), i ∈ X and j ∈ Xc
, the following inequalities can be derived

sij > max
((1− p

p

)
sji + tij , sji

)
=⇒ sij >

(1− p
p

)
sji + tij =⇒ p(sij + sji) > sji + p tij .

83

Furthermore, we have

sij > max
((1− p

p

)
sji + tij, sji

)
=⇒ sij > sji =⇒ sij + p tij > sji + p tij.

Therefore, for every distinct item-pair (i, j), where i ∈ X and j ∈ Xc
, we have∑

l∈L

K
(p)
ij (π∗,πl) ≥ sji + p tij, (4.10)

and summing over all distinct item-pairs (i, j), where i ∈ X and j ∈ Xc
, gives∑

i∈X

∑
j∈Xc

∑
l∈L

K
(p)
ij (π∗,πl) ≥

∑
i∈X

∑
j∈Xc

sji + p tij.

The above inequality implies that ∆ ≥ 0. According to the given assumption, there

exists at least one item in X
c

that is ranked ahead of or tied with at least one item in

X. Hence , Eq. (4.10) holds strictly for at least one item-pair, meaning that ∆ > 0,

which contradicts the optimality of π∗. Therefore, we can conclude that all items in

X must be ranked ahead of all items in X
c

in the optimal ranking.

Finally, we extend the proof to the case with |X(p)| = w > 2. Consider a GXCC

bipartition X(p) = {X,Xc} where X = X1 and X
c

= {X2, X3, . . . , Xw}. Applying

the prior result, all items in X1 must be ranked ahead of all items in X\X1. Next,

consider bipartition X(p) = {X,Xc} where X = {X1, X2} and X
c

= {X3, . . . , Xw};

from the preceding case, all items in X1 and X2 must be ranked ahead of all items in

X\(X1∪X2), and all items in X1 must be ranked ahead of all items in X2. Continuing

in this manner, the only way that this statement holds for all bipartitions of the form

X(p) = {{X1, . . . , Xk}, {Xk+1, . . . , Xw}}, where k ∈ {1, . . . , w − 1}, is if π∗ ranks all

items in lower-indexed subsets of X(p) ahead of all items in higher-indexed subsets.

84

4.4.1 Enlarged GXCC Partitions

Let ℘(X) denote the class of partitions that satisfy GXCC and consider the case

when there are multiple optimal rankings. The fact that all optimal rankings must

be consistent with any X ∈ ℘(X) can be viewed as a restrictive condition. It might

be possible to make the partition finer, i.e., one with more subsets, by requiring that

it respects at least one rather than all of the optimal rankings. We refer to such

partitions as enlarged GXCC partitions, denoted as Xe. Schalekamp and Zuylen

(2009) defined a type of enlarged XCC partitions for strict rankings as follows. As-

sume that X can be arranged into a partition Xe = {X1, X2, . . . , Xw} such that

sij ≥ sji ∀i ∈ Xk∀j ∈ Xk′ , ∀k < k′. Then, solving the subsets of Xe independently

and concatenating the results will respect at least one of the optimal strict rankings.

It is possible to extend this idea to GXCC to obtain possibly more effective partitions.

Corollary 1 (Enlarged GXCC) Given a fixed penalty parameter p, assume that X

can be arranged into a partition X(p)
e = {X1, X2, . . . , Xw} such that

sij ≥ max
((1− p

p

)
sji + tij, sji

)
∀i ∈ Xk, ∀j ∈ Xk′ , ∀k < k′. (4.11)

Then, there exists at least one optimal ranking in which all items in the lower-indexed

subsets of X(p)
e are ranked ahead of all items in its higher-indexed subsets. That is,

when (4.11) holds,

∃σ∗ ∈ Π : i �σ∗ j ∀i ∈ Xk, ∀j ∈ Xk′ , ∀k < k′.

The rationale mirrors that of the proof of Theorem 9 up to the point where it concludes

that ∆ ≥ 0. Applying those steps, since σ∗ is an optimal ranking according to the

starting assumption and ∆ ≥ 0, it can be concluded that σ′ is an optimal ranking as

well. Notice that enlarged GXCC requires items in the lower-indexed subsets to be

only weakly pairwise preferred over items in the higher-indexed subsets.

85

Example 5 Consider an instance with 10 rankings of 6 items. The input rankings

and the pairwise comparison matrices, S = [sij] ∈ Z6×6 and T = [tij] ∈ Z6×6, are

given by

Item
Input Rankings

σ1 σ2 σ3 σ4 σ5 σ6 σ7 σ8 σ9 σ10

1 2 4 2 2 3 4 5 2 1 5
2 3 1 3 5 1 3 5 1 1 5
3 3 3 1 3 1 1 2 5 2 3
4 1 3 1 1 5 1 1 5 3 1
5 4 5 4 1 2 2 3 4 4 2
6 5 2 5 4 4 5 4 3 5 4

S =

0 3 4 3 5 7
4 0 3 4 6 7
6 5 0 2 7 8
7 6 4 0 7 7
5 4 3 2 0 8
3 3 2 3 2 0

, T =

0 3 0 0 0 0
3 0 2 0 0 0
0 2 0 4 0 0
0 0 4 0 1 0
0 0 0 1 0 0
0 0 0 0 0 0

The standard GXCC partitions for p = 1/2, 3/4, and 1 are given by X(1/2) =

{{1, 2, 3, 4, 5}, {6}}, X(3/4) = {{3, 4}, {1, 2, 5}, {6}}, and X(1) = {{3, 4}, {2}, {1, 5},

{6}}, respectively. The enlarged GXCC partitions are given by X(1/2)
e = {{3, 4}, {1,

2}, {5}, {6}}, X(3/4)
e = {{3, 4}, {2}, {5}, {1}, {6}}, and X(1)

e = {{4}, {3}, {2}, {5},

{1}, {6}}.

Example 5 illustrates the improved practicality of enlarged GXCC partitions. Con-

sidering the enlarged GXCC partitions for p = 1/2, only the relative ordering of

item-pairs (3, 4) and (1, 2) needs to be determined; for p = 3/4, only the relative or-

dering of item-pair (3, 4) needs to be determined; and for p = 1, an optimal solution is

trivially obtained from the partition. Clearly this accelerates the solution to RANK-

AGG as each of enlarged GXCC partitions improves on its standard counterpart.

Due to the enhanced practicality of enlarged GXCC, we focus on this partitioning

mechanism for the rest of the paper. To obtain an enlarged GXCC partition, we mod-

ify the algorithm of Yoo and Escobedo (2021), which conducts NXCC partitioning by

performing sequential pairwise comparisons. The modified algorithm is presented in

Algorithm 6. It starts by placing the first item in a subset of the working partition.

Then, it adds exactly one item to the working partition at each iteration. Let item i

86

Algorithm 6: Enlarged GXCC Partitioning

Input : p, [sij] ∈ Zn×n, [tij] ∈ Zn×n
Output : Enlarged GXCC Partition

1 X(p)
e = {{1}};

2 for i = 2 to |X | do
3 k = 1;

4 if ∀j ∈ X1 s.t., sij ≥ max
((

1−p
p

)
sji + tij , sji

)
then

5 Insert i before X1, and increment the index of subsets after Xκ(i) by 1;
6 k ← 3;

else if ∀j ∈ X1 s.t., sji ≥ max
((

1−p
p

)
sij + tij , sji

)
then

7 Insert i after X1, and increment the index of subsets after Xκ(i) by 1;
8 k ← 3;

else
9 Insert i in X1;

10 k ← 2;

11 while k ≤ |X | do
12 if ∀j ∈ Xk s.t., sij ≥ max

((
1−p
p

)
sji + tij , sji

)
then

13 k ← k + 1;

else if ∀j ∈ Xk s.t., sji ≥ max
((

1−p
p

)
sij + tij , sij

)
then

14 if |κ(i)− k| = 1 and |Xκ(i)| = 1 then
15 Move Xκ(i) after Xk;

else
16 Merge subsets from Xκ(i) to Xk;
17 Decrease the index of subsets after Xk by (k − κ(i));
18 k ← κ(i) + 1;

else if ∃j ∈ Xk s.t., sji > max
((

1−p
p

)
sij′ + tij′ , sij

)
then

19 Merge subsets from Xκ(i) to Xk;
20 Decrease the index of subsets after Xk by (k − κ(i));
21 k ← κ(i) + 1;

22 Return X(p)
e ;

* κ(i) is the index of the subset containing item i.

denote the added item at any iteration and X(p)
e = {X1, . . . , Xw} denote the working

partition. The algorithm compares i with all items in the first subset of the working

partition, i.e., X1, leading to three possible outcomes. If item i is weakly pairwise

preferred over all items in X1, it is placed in a new subset right before X1; if all

items in X1 are weakly pairwise preferred over i, i is placed in a new subset right

after X1; otherwise, it is placed in X1. Subsequently, the algorithm iteratively checks

87

whether the current working partition is a valid enlarged GXCC partition by vali-

dating whether all items in lower-indexed subsets are weakly pairwise preferred over

all items in higher-indexed subsets. Whenever violations are detected, the respective

subsets are merged/moved until there are no violations. The algorithm has a time

complexity of O(n2) (Yoo and Escobedo, 2021)

Note that GXCC and enlarged GXCC rely only on parameters used by the exact

formulations; this fact, coupled with the quadratic time complexity of its algorithm,

makes enlarged GXCC a great and fast pre-processing step for solving RANK-AGG

via exact and heuristic methods.

We close this section by comparing GXCC and enlarged GXCC with the ex-

act graph-based partitioning scheme of Andrieu et al. (2021) for the special case of

RANK-AGG induced by setting p = 1. Upon close inspection, their method’s re-

quired conditions translate to a relaxed version of GXCC but stricter than enlarged

GXCC. To elaborate, this method requires all items in lower-indexed subsets to be

weakly pairwise preferred (according to Definition 15 induced by setting p = 1) over

all items in the higher-indexed subsets except for adjacent subsets, for which a strict

pairwise preference is required. This relaxed version of GXCC will respect all the

optimal solutions (Andrieu et al., 2021); however, it is more restrictive that enlarged

GXCC, since the latter respects at least one but not necessarily all optimal solu-

tions. Nonetheless, enlarged GXCC is guaranteed to have at least as many subsets

as Andrieu et al. (2021)’s method.

4.5 Effect of Modifying the Penalty Parameter

The value of penalty parameter p can have a big impact on the outcome of RANK-

AGG, as it can alter the optimal ranking and the very nature of the problem. Consider

two extreme values of p over which K(p) is a distance metric, namely 1/2 and 1. For

88

p = 1/2, this induces KEMENY-AGG, in which every full rank reversal of item-pair

(corresponding to case 1 of the K(p) distance) has twice the weight of every partial

rank reversal (corresponding to case 3). As the value of p increases, the weight of a

partial rank reversal increases; finally, for p = 1, a partial rank reversal has the same

weight as a full rank reversal.

Beyond the fact that p = 1/2 is the most frequently used value, there have been

no attempts to guide the choice of p or to analyze its implications. The ensuing

paragraphs provide useful insights regarding the impact of p of the resulting GXCC

and enlarged GXCC partitions and on the optimal ranking.

Proposition 6 The set of optimal objective values of RANK-AGG for all values of

p forms a piecewise linear envelope.

The cumulative K(p) distance between any solution ranking σ ∈ σ and all the input

rankings, i.e.,
∑
l∈L

K(p)(σ,σl), can be expressed as a(σ) + pb(σ), which is an affine

function in terms of p, where

a(σ) =
∑

(i,j)∈Λ

(
sij1j�σi + sji1i�σj

)
and

b(σ) =
∑

(i,j)∈Λ

(
(sij + sji)1i≈σj + tij(1j�σi + 1i�σj)

)
.

Here, the function 1v returns 1 if v is true, and 0 otherwise; a(σ) is the number of

full rank reversals between σ and all the input rankings, and b(σ) is the number of

partial rank reversals. More specifically, if items i and j are tied in σ, b(σ) counts

the number of input rankings in which i and j are not tied; conversely, if there is a

strict ordering between i and j in σ, b(σ) counts the number of input rankings where

they are tied. Since the objective function values can be expressed as a series of affine

functions, and the K(p) distance is non-decreasing in p (Fagin et al., 2004), the set of

89

optimal objective values for all values of p forms a piecewise linear envelope. Fig.

4.1 illustrates an example of RANK-AGG with two items. There are three possible

rankings σ1,σ2,σ3, whose respective affine functions are displayed; the piecewise

linear envelope is shown in red. Proposition 6 will be used to derive additional

insights regarding the effect of penalty parameter p.

Figure 4.1: Example Depiction of Objective Function Values Obtained over All Values
of p by Three Different Solution Non-strict Rankings (the Piecewise Linear Envelope
Is Shown in Bolded Red)

Corollary 2 If σ∗ is the optimal ranking for two distinct penalty parameters p1 and

p2 such that 0 ≤ p1 < p2 ≤ 1, then σ∗ is also the optimal rankings for any p1 < p < p2.

Furthermore, if σ∗ is the optimal ranking for p1 but not for p2, it will not be the

optimal ranking for any penalty parameter p > p2.

Corollary 2 is a direct outcome of Proposition 6. This corollary can help overcome the

difficulty of selecting the exact value of penalty p in certain instances. For example,

if σ∗ is the optimal ranking for p = 1/2 and p = 1, then it is also the optimal ranking

for every intermediate value.

Additionally, we show that using p = 3/4 has an interesting interpretation, as it

produces a robust solution. In particular, one may also be interested in finding the

90

optimal ranking with the minimum average K(p) distance to the input rankings over

all possible values of p for which the resulting function is a metric, i.e., ∀p ∈ [1/2, 1],

instead of only one specific value.

Proposition 7 The optimal ranking obtained by using p = 3/4 has the least average

cumulative K(p) distance to the input rankings over the interval of penalty parameter

p, where K(p) is a distance metric.

Since all values of p are given the same weight, p can be treated as a random variable

with a continuous uniform distribution over [1
2
, 1]. Hence, the problem of finding a

ranking with the least average cumulative K(p) distance to all the input rankings with

respect to all values of p ∈ [1
2
, 1] is equivalent to

σ∗ = arg min
σ∈σ

Ep∈[1
2
,1]

[∑
l∈L

K(p)(σ,σl)

]
= arg min

σ∈σ
Ep∈[1

2
,1]

[
a(σ) + pb(σ)

]
= arg min

σ∈σ

[
a(σ) + b(σ)Ep∈[1

2
,1](p)

]
= arg min

σ∈σ

[
a(σ) + 3/4b(σ)

]
= arg min

σ∈σ

∑
l∈L

K(3/4)(σ,σl).

As the last insight, when p increases, the cardinality of the GXCC and enlarged

GXCC partitions may at times increase, but it cannot decrease.

Proposition 8 Consider two fixed penalty parameters p1, p2, with 0 < p1 < p2 ≤ 1.

For penalty parameter p2, the GXCC and enlarged GXCC partitions have at least

as many subsets as their respective partitions with penalty parameter p1. That is

|X(p2)| ≥ |X(p1)| and |X(p2)
e | ≥ |X(p1)

e |.

For every item pair (i, j) ∈ Λ, we have

sij > max
((1− p1

p1

)
sji + tij, sji

)
≥ max

((1− p2
p2

)
sji + tij, sji

)
.

91

Therefore, if i is pairwise preferred over j using penalty parameter p1, it will also be

pairwise preferred over j using the penalty parameter p2. Hence, X(p1) is also a valid

GXCC partition for RANK-AGG using penalty parameter p2. As a result, X(p2) will

have at least as many subsets as X(p1). A parallel set of arguments can be applied

to enlarged GXCC partitions. Proposition 8 indicates that partitioning may have a

more impact on large values of p. The possible effect of increasing p on the cardinality

of the GXCC and enlarged GXCC partitions is demonstrated in Example 5, where

|X(1/2)| = 2, |X(3/4)| = 3, |X(1)| = 4, and |X(1/2)
e | = 4, |X(3/4)

e | = 5, |X(1)
e | = 6.

4.6 Computational Results

This section performs computational studies to: 1) compare the solution times

of the revised Brancotte et al. (2015) formulation (Formulation (4.4)), the proposed

formulation (Formulation (4.6)), and the CR method; 2) investigate the effect of

enlarged GXCC partitioning on the solution times of the proposed formulation and

the CR method; 3) evaluate the performance of the proposed heuristic, both in terms

of solution quality and run time; and 4) investigate the effect of enlarged GXCC

partitioning on the solution quality and run time of the heuristic method.

For all tested instances, we use three penalty values p ∈ {1/2, 3/4, 1}. All experi-

ments herein were carried out on a PC with an Intel(R) Xeon(R) CPU E5-2680 2.40

GHz with 64 GB RAM. All optimization models were solved using CPLEX solver

version 20.1, with a time limit of 7,200 seconds. The %Deviation from optimality of

LICH is calculated as

%Deviation =
objective function value of LICH - optimal objective function value

optimal objective function value
.

For the remainder of this section and the associated tables, the revised Brancotte

et al. (2015) binary programming formulation is denoted as BBP, and the proposed

92

mixed-integer programming formulation is denoted as MIP. Additionally, the solution

method consists of solving the partitioned problem via enlarged GXCC and then MIP

as GXCC MIP, solving the partitioned problem via enlarged GXCC and then CR as

GXCC CR, and solving the partitioned problem via enlarged GXCC and then LICH

as GXCC LICH.

The experiments consider two real-world data sets introduced in Section 3.2.2:

the Biomedical data set (Cohen-Boulakia et al., 2011) and the TOC - “Orders with

Ties - Complete List” data set from Preflib (Mattei and Walsh, 2013). From TOC,

only those instances with 40 to 351 items are used, as other instances of this data set

are either too small and easy to solve or too large to be solved using exact methods.

First, we compare the solution times of the exact methods, beginning with the results

of the TOC data set reported in Table 4.1; the best solution time(s) attained for

each instance and each of tested values of p is shown in bold. On average, MIP and

CR were more than 2x and 12x faster than BBP, respectively. In fact, BBP had

a higher run time than MIP, and MIP than CR, for each of tested instances and

values of p. BBP failed to obtain the optimal solution of “ED-10-50” for p = 1/2

and p = 1 within the two-hour time limit; however, MIP and CR were able to solve

these two cases in less than four minutes. Additionally, “ED-10-49” could not be

directly solved via BBP and MIP due to out-of-memory errors, however, CR was

able to solve it to optimality. Table 4.2 reports the solution times of the Cohen-

Boulakia et al. Cohen-Boulakia et al. (2011) data set, where a similar pattern can

be observed; the best solution time(s) attained for each instance and each of tested

values of p is shown in bold. BBP had a higher run time than MIP, and MIP had

a higher run time than CR for each of tested instances and each of tested values of

p, except in one case. Additionally, BBP failed to obtain the optimal solution of

“Prostate Cancer” for p = 1/2 and p = 1 within the two-hour time limit; however,

93

Table 4.1: Solution Time (in Seconds) of Different Exact Methods with and Without
Prior GXCC Partitioning for Different Values of p for TOC Instances With 40 ≤ n ≤
400

Instance id% n
p = 1/2 p = 3/4 p = 1

BBP MIP CR GXCC MIP GXCC CR BBP MIP CR GXCC MIP GXCC CR BBP MIP CR GXCC MIP GXCC CR

ED-10-21 40 3.34 1.76 1.04 0.47 0.97 3.41 1.85 1.08 0.13 0.51 3.38 1.81 0.63 0.12 0.21
ED-10-22 40 3.79 1.74 1.37 1.74 1.37 3.41 1.75 1.13 1.75 1.13 3.36 1.73 0.99 1.73 0.99
ED-10-30 40 3.56 1.86 0.90 0.09 0.34 3.38 1.69 1.00 0.09 0.40 3.28 1.74 0.55 0.20 0.13
ED-10-20 41 3.87 1.93 1.41 0.34 0.80 3.67 1.90 1.70 0.23 0.90 3.70 1.94 0.83 0.34 0.68
ED-10-31 41 3.88 1.98 1.37 0.18 0.90 3.64 1.89 1.39 0.31 0.85 3.53 1.90 1.03 0.18 0.29
ED-10-4 42 4.25 2.05 1.28 1.40 1.18 3.83 2.05 1.24 1.42 1.07 3.87 2.05 1.01 0.47 0.76
ED-10-09 42 3.94 2.01 0.69 1.01 0.81 3.94 2.06 0.73 0.87 0.98 3.94 2.00 0.96 0.84 0.85
ED-10-06 43 4.65 2.17 0.94 2.06 1.19 4.18 2.20 1.17 2.06 1.15 4.18 2.29 1.35 2.06 1.29
ED-10-10 43 4.81 2.15 1.02 2.15 1.02 4.25 2.13 0.97 2.13 0.97 4.29 2.18 1.12 0.55 0.70
ED-10-08 44 4.56 2.34 1.71 0.70 1.13 4.53 2.32 1.28 0.74 1.47 4.44 2.30 1.55 0.76 0.70
ED-10-12 44 4.94 2.42 0.98 1.86 1.43 4.40 2.45 1.16 0.36 1.20 4.52 2.49 1.61 0.50 0.96
ED-10-13 44 4.42 2.5 0.71 0.95 0.81 4.44 2.30 0.61 1.02 0.78 4.42 2.39 0.99 0.97 0.81
ED-10-34 46 5.88 2.57 1.46 0.68 1.15 5.20 2.61 0.97 0.70 1.56 5.11 2.68 1.30 0.25 0.64
ED-10-07 47 6.18 2.87 0.79 2.11 0.73 5.69 2.79 0.77 2.33 1.12 5.70 2.79 1.49 0.82 0.46
ED-10-29 47 6.54 2.94 1.16 0.55 0.67 5.51 2.98 1.59 0.38 1.11 5.59 2.79 0.89 0.53 0.46
ED-10-18 49 6.84 3.20 1.46 0.88 1.50 6.68 3.28 1.33 0.33 1.43 6.35 3.26 1.41 0.47 0.89
ED-10-11 50 6.99 3.46 0.67 2.54 0.92 6.81 3.49 1.01 2.50 1.21 6.91 3.53 1.39 0.68 0.87
ED-10-02 51 7.54 3.78 0.55 2.85 0.54 8.22 4.09 0.69 1.74 1.02 8.13 4.26 1.95 2.23 1.12
ED-10-05 52 8.51 3.93 1.22 3.05 0.97 7.67 3.89 0.70 1.13 0.79 7.53 3.99 1.13 1.09 0.98
ED-10-15 52 8.40 3.94 1.32 2.23 1.68 7.69 3.88 1.02 2.31 1.45 7.65 3.93 1.98 2.23 1.71
ED-10-01 54 10.10 4.46 1.85 1.81 0.89 8.51 4.58 1.13 1.80 1.00 8.75 4.43 1.91 1.77 1.18
ED-10-03 54 10.16 5.13 0.99 2.59 1.99 9.40 4.26 0.83 2.41 1.06 8.70 4.42 1.53 1.50 1.37
MD-03-02 56 9.40 4.74 0.66 4.74 0.66 9.58 4.78 0.41 4.78 0.41 9.58 4.80 0.46 4.80 0.46
ED-10-16 57 11.26 5.49 1.74 1.24 1.61 10.00 5.42 0.91 1.32 1.20 10.46 5.48 1.68 0.84 0.95
MD-03-01 61 14.65 6.52 0.42 6.52 0.42 12.33 6.66 0.47 6.66 0.47 12.70 6.62 0.37 6.62 0.37
ED-10-17 61 13.48 6.48 1.27 5.24 0.80 12.70 6.37 1.35 1.61 1.76 12.49 6.32 1.38 1.54 1.06
ED-10-14 62 14.71 6.89 0.78 2.80 0.67 13.45 6.93 1.07 2.92 0.74 13.41 6.86 1.27 1.56 1.32
MD-03-04 63 13.86 7.12 0.40 7.12 0.40 13.66 6.99 0.47 6.99 0.47 13.73 7.33 0.50 7.33 0.50
ED-14-02 100 60.06 30.46 0.73 30.46 0.73 59.47 30.04 0.75 30.04 0.75 60.01 29.77 0.76 29.77 0.76
ED-14-03 100 60.08 30.41 0.65 30.40 0.65 59.42 29.96 0.72 29.96 0.72 60.09 29.53 1.78 29.53 1.78
MD-03-03 102 82.60 39.83 0.59 39.83 0.59 82.32 39.21 0.69 39.21 0.69 83.54 39.06 1.02 39.06 1.02
MD-03-05 103 84.11 38.35 1.90 38.35 1.90 81.71 38.35 0.72 38.35 0.72 81.48 38.92 0.61 38.92 0.61
MD-03-06 133 229.78 103.57 1.18 103.57 1.18 229.38 102.56 1.26 102.56 1.26 230.01 101.72 1.20 101.72 1.20
MD-03-08 147 305.83 136.26 1.31 136.26 1.31 307.80 136.98 1.48 136.98 1.48 303.46 137.33 1.29 137.33 1.29
MD-03-07 155 374.99 166.21 1.64 166.21 1.64 375.27 167.16 1.57 167.16 1.57 375.51 164.65 1.46 164.65 1.46
ED-10-50 170 1,144.02 207.24 152.53 202.63 110.08 ≥ 7, 400.04# 201.65 282.36 162.57 159.5 ≥ 7, 392.48& 251.31 145.99 252.3 192.23
ED-10-49 351 – – 1393.73 – 673.40 – – 4,260.8 – 3,057.86 – – 5,956.47 – 4,303.28

Geometric Mean∗ ≥ 13.51 6.33 1.16 3.41 1.06 ≥ 13.74 6.27 1.12 2.81 1.09 ≥ 13.44 6.34 1.25 2.43 0.90
% The instance names have been shortened. The original names include three zeros before the firs number and six zeros before the second number
∗ The geometric mean does not include the ED-10-49 instance
The model had a relative optimality gap of 0.49% at the time of termination
& The model had a relative optimality gap of 0.12% at the time of termination

Table 4.2: Solution Time (in Seconds) of Different Exact Methods with and Without
Prior GXCC Partitioning for Different Values of p for the Cohen-boulakia et al.
Cohen-Boulakia et al. (2011) data set

Instance n
p = 1/2 p = 3/4 p = 1

BBP MIP CR GXCC MIP GXCC CR BBP MIP CR GXCC MIP GXCC CR BBP MIP CR GXCC MIP GXCC CR

LQTS 35 2.19 1.11 1.11 0.17 0.86 2.20 1.05 1.25 0.23 0.43 2.50 1.15 1.26 0.18 0.25
ADHD 45 5.73 2.52 1.27 0.48 0.43 6.11 2.70 2.09 0.41 0.56 5.92 2.61 1.18 0.39 0.42

Prostate Caner 218 ≥ 7, 421∗ 1,147.64 290.29 387.15 64.27 3,115.36 1,231.01 167.46 436.89 43.66 ≥ 7, 389# 1,199.35 132.29 423.15 40.62
Bladder Caner 308 – – 526.08 1,034.96 95.54 – – 226.31 1,042.19 108.72 – – 255.08 1,030.73 122.69
Breast Caner 386 – – 2,254.51 – 2,545.23 – – 4,863.50 – 3,332.51 – – 1,275.95 – 945.36

Retinoblastoma 402 – 1,245.65 – 652.19 – – 673.61 – 466.96 – – 659.78 – 547.62
Neuroblastoma 431 – 1,502.60 – 396.60 – – 1,098.71 – 369.04 – – 730.46 – 347.05
∗ The model had a relative optimality gap of 32.33% at the time of termination
The model had a relative optimality gap of 98.25% at the time of termination

MIP and CR were able to solve these two cases in less than 1,200 and 291 seconds,

respectively. Additionally, “Bladder Cancer”, “Breast Cancer”, “Retinoblastoma”,

and “Neuroblastoma” could not be directly solved via BBP and MIP due to out-of-

94

Table 4.3: Number of Items in the Enlarged GXCC Partition’s Subsets for Certain
Large Instances

Instance n |X1|, |X2|, . . . , |Xw|
ED-10-50 170 1, 5, 1, 1, 1, 161

ED-10-49 351 5, 3, 3, 7, 333

LQTS 35 3, 1, 1, 1, 3, 1, 2, 1, 2, 2, 16, 2

ADHD 45 1, 2, 5, 1, 3, 1, 1, 1, 1, 25, 4

Prostate Cancer 218 1, 17, 1, 166, 15, 16, 2

Bladder Cancer 308 1, 4, 21, 13, 3, 69, 197

Breast Cancer 386 1, 362, 11, 12

Retinoblastoma 402 1, 1, 1, 33, 1, 1, 2, 4, 17, 341

Neuroblastoma 431 6, 55, 29, 9, 9, 1, 322

memory errors. On the other hand, CR was able to solve each of these instances in

less than 4,900 seconds. Interestingly, all instances of the TOC data set with 100 to

155 items did not require any of the preference-transitivity constraints to be included

in the optimization model, which resulted in a significant differences in the run time

of MIP and CR on those instances. As a final note, the average and maximum percent

of preference-transitivity constraints added by the CR method were 0.61% and 5.41%

for the TOC data set, and they were 2.67% and 7.48% for the Cohen-Boulakia et al.

Cohen-Boulakia et al. (2011) data set.

Next, we examine the impact of enlarged GXCC partitioning on the run times

of MIP and CR. Beforehand, Table 4.3 reports the size of subsets of the enlarged

GXCC partitions for the Cohen-Boulakia et al. Cohen-Boulakia et al. (2011) data

set and the two largest instances of the TOC data set; the partitions matched for

each of tested values of p; other instances of TOC data set with more than 100 items

were not partitionable. As Table 4.1 shows, enlarged GXCC partitioning was able

to reduce the run times of both methods on the TOC data set for each of tested

values of p. Impressively, it reduced the geometric mean run time of MIP from 6.34

95

to 2.43 seconds for p = 1. Enlarged GXCC partitioning decreased the run times of all

instances with more than 62 items; however, it increased the run time of a handful

of smaller instances. In fact, enlarged GXCC partitioning was able to reduce the

run time of CR on “ED-10-49” approximately from 5,956 to 4,303 seconds, while

it required only .02 seconds to obtain the partition. As Table 4.2 shows, enlarged

GXCC partitioning reduced the run times of both methods on all instance of the

Cohen-Boulakia et al. Cohen-Boulakia et al. (2011) data set for each of tested values

of p. It is worth adding that MIP was not able to solve “Bladder Cancer” due to

out-of-memory error; however, with the help of enlarged GXCC partitioning, MIP

was able to solve this instance to optimality in approximately 1,043 seconds. Most

impressively, enlarged GXCC partitioning was able to reduce the run time of CR on

“Bladder Cancer” approximately from 526 to 95 seconds, a 5.5x improvement, and

the run time of MIP on “Prostate Cancer” approximately from 1,098 to 369 seconds,

close to a 3x improvement. The highest partitioning time of instances in this data

set only took .07 seconds.

Next, we evaluate the performance of the LICH method. Table 4.4 reports the

run time and %Deviation of the TOC data set; the best %Deviation attained for each

instance and each of tested values of p is shown in bold. LICH achieved an average

%Deviation of at most 0.90 and an geometric mean run time of 0.02 seconds on this

data set. It obtained the optimal solution in 10 instances for each of tested values of

p; its highest %Deviation on this data set was 3.29. Table 4.5 reports the run time

and %Deviation of the Cohen-Boulakia et al. Cohen-Boulakia et al. (2011) data set;

the best %Deviation attained for each instance and each of tested values of p is shown

in bold. LICH achieved an average %Deviation of 1.93, 2.28, and 11.77 for p = 1/2,

p = 3/4, and p = 1, respectively; its highest %Deviation was 37.50. However, the

geometric mean run time of this method was less than one second on this data set,

96

Table 4.4: Solution Time (in Seconds) and %deviation of LICH with and Without
Prior GXCC Partitioning for Different Values of p for TOC Instances With 40 ≤ n ≤
400

Instance n
p = 1/2 p = 3/4 p = 1

Time %Deviation Time %Deviation Time %Deviation
LICH GXCC LICH LICH GXCC LICH LICH GXCC LICH LICH GXCC LICH LICH GXCC LICH LICH GXCC LICH

ED-10-21 40 0.01 0.01 0.57 0.85 0.01 0.01 0.39 0.18 0.01 0.01 0.38 0.17
ED-10-22 40 0.01 0.01 0.92 0.92 0.01 0.01 0.70 0.70 0.01 0.01 0.71 0.71
ED-10-30 40 0.01 0.01 0.68 0 0.01 0.01 0.35 0 0.01 0.01 0.62 0.08
ED-10-20 41 0.01 0.01 0.30 0.54 0.01 0.01 0.43 0.27 0.01 0.01 0.74 0.54
ED-10-31 41 0.01 0.01 1.35 0.15 0.01 0.01 0.67 0.23 0.01 0.01 0.82 0.14
ED-10-04 42 0.01 0.01 1.35 1.15 0.01 0.01 1.49 0.48 0.01 0.01 0.96 0.82
ED-10-09 42 0.01 0.01 2.75 2.62 0.01 0.01 1.06 1.06 0.01 0.01 0.72 0.72
ED-10-06 43 0.01 0.01 0.45 0.45 0.01 0.01 0.34 0.34 0.01 0.01 0.29 0.29
ED-10-10 43 0.01 0.01 2.71 2.71 0.01 0.01 0.22 0.22 0.01 0.01 0.19 0.21
ED-10-08 44 0.01 0.01 2.61 2.11 0.01 0.01 0.63 0.09 0.01 0.01 0.54 0.08
ED-10-12 44 0.01 0.01 1.48 1.21 0.01 0.01 1.14 0.24 0.01 0.01 1.30 0.35
ED-10-13 44 0.01 0.01 3.29 0.12 0.01 0.01 0.04 0.01 0.01 0.01 0.03 0
ED-10-34 46 0.01 0.01 0.50 0.44 0.01 0.01 0.36 0.25 0.01 0.01 0.43 0.23
ED-10-07 47 0.01 0.01 1.06 1.06 0.01 0.01 0.42 0.42 0.01 0.01 0.35 0.15
ED-10-29 47 0.01 0.01 0.75 0.21 0.01 0.01 0.56 0.04 0.01 0.01 0.81 0
ED-10-18 49 0.01 0.01 0.42 0.32 0.01 0.01 0.43 0.06 0.01 0.01 0.38 0.05
ED-10-11 50 0.01 0.01 0.38 0.40 0.01 0.01 0.26 0.26 0.01 0.01 0.34 0.25
ED-10-02 51 0.01 0.01 0.55 0.55 0.01 0.01 1.47 1.47 0.01 0.01 .03 0.03
ED-10-05 52 0.01 0.01 0.76 0.49 0.01 0.01 0.23 0 0.01 0.01 0.14 0.14
ED-10-15 52 0.01 0.01 1.47 1.47 0.01 0.01 1.02 0.33 0.01 0.01 0.83 0.71
ED-10-01 54 0.01 0.01 1.12 0.51 0.01 0.01 1.60 1.60 0.01 0.01 0.05 0
ED-10-03 54 0.01 0.01 0.15 0.15 0.01 0.01 0.29 0.11 0.01 0.01 0.30 0.15
MD-03-02 56 0.01 0.01 0 0 0.01 0.01 0 0 0.01 0.01 0 0
ED-10-16 57 0.01 0.01 1.12 1.72 0.01 0.01 0.14 0.05 0.01 0.01 0.20 0
MD-03-01 61 0.01 0.01 0 0 0.01 0.01 0 0 0.01 0.01 0 0
ED-10-17 61 0.01 0.01 1.97 1.97 0.01 0.01 0.53 0.43 0.01 0.01 0.17 0.07
ED-10-14 62 0.01 0.01 0.97 1.55 0.01 0.01 0.18 0.06 0.01 0.01 0.15 0
MD-03-04 63 0.01 0.01 0 0 0.01 0.01 0 0 0.01 0.01 0 0
ED-14-02 100 0.19 0.19 0 0 0.19 0.19 0 0 0.23 0.23 0 0
ED-14-03 100 0.20 0.20 0 0 0.18 0.18 0 0 0.23 0.23 0 0
MD-03-03 102 0.19 0.19 0 0 0.19 0.19 0 0 0.24 0.24 0 0
MD-03-05 103 0.20 0.20 0 0 0.20 0.20 0 0 0.25 0.25 0 0
MD-03-06 133 0.46 0.46 0 0 0.44 0.44 0 0 0.55 0.55 0 0
MD-03-08 147 0.60 0.60 0 0 0.60 0.60 0 0 0.60 0.60 0 0
MD-03-07 155 0.67 0.67 0 0 0.72 0.72 0 0 0.85 0.85 0 0
ED-10-50 170 0.12 0.14 2.52 2.01 0.09 0.12 1.31 1.32 0.09 0.11 1.41 1.21
ED-10-49 351 2.33 2.27 1.00 1.02 1.22 1.19 1.35 1.39 1.52 1.52 0.87 0.93

Average 0.02 0.02 0.90 0.78 0.02 0.02 0.48 0.31 0.02 0.02 0.37 0.22

Table 4.5: Solution Time (in Seconds) and %deviation of LICH with and Without
Prior GXCC Partitioning for Different Values of p of The Cohen-Boulakia et al.
Cohen-Boulakia et al. (2011) data set

Instance n
p = 1/2 p = 3/4 p = 1

Time %Deviation Time %Deviation Time %Deviation
LICH GXCC LICH LICH GXCC LICH LICH GXCC LICH LICH GXCC LICH LICH GXCC LICH LICH GXCC LICH

Long QT Syndrome 35 0.02 0.01 0 0 0.01 0.01 0 0 0.01 0.01 3.69 3.69
ADHD 45 0.01 0.01 0 0 0.01 0.01 6.74 3.37 0.01 0.01 7.33 7.33

Prostate Cancer 218 1.11 0.62 2.90 2.85 0.81 0.52 0.53 0.51 0.56 0.64 8.79 0.35
Bladder Cancer 308 2.11 0.40 0.41 0.34 1.99 1.46 1.09 0.96 2.46 1.76 0.12 0.06
Breast Cancer 386 5.91 4.97 0.98 0.98 4.89 3.89 1.32 1.32 2.28 1.89 37.50 8.85

Retinoblastoma 402 4.94 4.99 0.77 0.05 4.08 3.84 0.28 0.28 5.17 4.85 0.54 0.54
Neuroblastoma 431 4.59 4.58 9.30 3.08 5.21 4.63 4.06 3.76 1.29 0.41 15.83 15.57

Average 0.67 0.43 1.93 1.19 0.56 0.47 2.28 1.66 0.41 0.33 11.77 5.20

97

and its highest run time was 5.91 seconds.

Finally, we investigate the effect of enlarged GXCC partitioning on the run time

and solution quality of LICH. As Table 4.4 shows, enlarged GXCC partitioning was

able to slightly reduce the average %Deviation of the TOC data set for each of tested

values of p, while maintaining the same geometric mean run time. On the other hand,

it was able to reduce both the geometric mean run time and the average %Deviation

of the Cohen-Boulakia et al. Cohen-Boulakia et al. (2011) data set for all of tested

values of p, especially for p = 1. Remarkably, it reduced %Deviation of “Breast

Cancer” for p = 1 from 37.50 to 8.85, and %Deviation of “Prostate Cancer” for p = 1

from 8.79 to 0.35.

Putting together all of these pieces, CR outperformed MIP, and MIP outper-

formed BBP. Additionally, enlarged GXCC partitioning reduced the run time of ex-

act methods by up to 20x. The majority of the best run times of the exact methods

were achieved by GXCC CR. LICH achieved a near optimal solution on the most

instances of the TOC data set, but it had a less commanding performance on the

Cohen-Boulakia et al. Cohen-Boulakia et al. (2011) data set. However, enlarged

GXCC partitioning reduced the run time and %Deviation of this method. Combin-

ing LICH with enlarged GXCC partitioning was shown to yield high-quality solutions

in a short amount of time.

4.7 Conclusion

This chapter introduces and studies RANK-AGG, which contains KEMENY-AGG

as a special case. It provides various analytical and computational contributions eval-

uated over two real-world data sets. It introduces a new mixed-integer programming

formulation that outperformed a (revised) existing formulation over the featured in-

stances. Additionally, it proposes a constraint relaxation technique, which was the

98

only exact method capable of solving several large instances (with up to 431 items).

Furthermore, it presents a greedy heuristic algorithm for obtaining high-quality solu-

tions to RANK-AGG. The overage %Deviation from optimality of this heuristic was

0.57 and 4.2 on the two tested data sets.

Additionally, this chapter broadens the applicability of Condorcet criterion vari-

ants to RANK-AGG by introducing a new social choice property (GXCC). It provides

an algorithm for obtaining a valid GXCC partition and various analytical insights on

the effect of the penalty parameter of the generalized Kendall-tau distance on the

optimal ranking and GXCC partitions. GXCC proved to be effective in accelerating

the run time of exact methods, as demonstrated by the featured experiments. It

was able to decrease the run time exact and heuristic methods by up to 20x, and it

improved %Deviation of the proposed heuristic by up to 19.14% percentage points.

99

Chapter 5

TOP-K LIST AGGREGATION

This chapter is organized as follows. Section 5.1 introduces the notations used

throughout the chapter. Section 5.2 provides an overview of the distance-based top-

k list aggregation problem. Section 5.3 introduces a binary nonlinear programming

formulation and four mixed-integer linear programming (MIP) formulations of TOP-

k-AGG under the generalized Kendall-tau distance. Two of these formulations result

from the introduction of preference cycle-prevention constraints specific to TOP-k-

AGG. Section 5.4 compares the strengths of the MIP formulations using techniques

from polyhedral theory. Section 5.5 introduces various heuristic methods for solving

the problem at hand. Section 5.6 proposes a data reduction technique to acceler-

ate the solution to certain large-scale instances. Section 5.7 conducts computational

experiments and reports their results. Section 5.8 studies the university rankings

aggregation problem as a case study. Finally, Section 5.9 concludes the chapter.

5.1 Notations

Let n denote the number of items and B denote an ordering of n items. A top-k

list τ is a bijection from a domain Iτ (the members of τ) to [k] = {1, . . . , k}, where

k < n. All items in τ are presumed to be ranked ahead of items not in τ . The exact

ordering of items not in the list is unknown; however, it is implicitly assumed that

all of these items are tied at position k + 1. Let i ∈ τ indicate that item i appears

in the top-k list, and let τ (i) denote the rank or position of i therein. Additionally,

let i �τ j denote that item i is rank ahead of item j in τ , that is if i but not j is

present in τ or if both are present and i is ranked ahead of j, that is (i ∈ τ ∧ j /∈ τ)

100

OR (i, j ∈ τ ∧ (τ (i) < τ (j))). Given top-k lists τ 1 and τ 2, let Λ(τ 1, τ 2) be the set

of all unordered pairs of distinct items in Iτ1

⋃
Iτ2 .

5.2 Distance-based Top-k List Aggregation

This section reviews existing distance-based top-k list aggregation techniques. As

mentioned in Section 1, these techniques can be categorized based on whether the out-

put ranking is considered a full list over I or another top-k list. Note, however, that

if a smaller consensus top-k list is desired in the former category, it can be extracted

from the full consensus list. Dwork et al. (2001), Ailon (2010), and Nápoles et al.

(2017) fall into the first category; Fagin et al. (2003) falls into the second category.

The works referenced under the first category define the top-k list aggregation prob-

lem as finding a complete list with the least cumulative distance to the input lists

using the induced Kendall-tau, Kendall-tau, and Hausdorff distances, respectively.

The ensuing paragraphs explore two Kendall-tau distance-based variants.

Dwork et al. (2001) introduced the top-k list aggregation problem under the in-

duced Kendall-tau distance, where the goal is to find a full list with the least cu-

mulative such distance to the input lists. Given a full list B and a top-k list τ ,

the projection of B with respect to τ , denoted as B|τ , is a new reduced top-k list

that contains only those elements in τ . The induced Kendall-tau distance then is

obtained by calculating the Kendall-tau distance between the projection of the lists

with respect to the set of items they share in common (i.e., since the projected lists

are equal in size). For example, let B = {1, 2, 3, 4, 5, 6} be an ordering of 6 items,

and τ = {5, 3, 2} be a top-3 list. Here, B|τ = {2, 3, 5} and the induced Kendall-tau

distance between B|τ and τ is 3. Let L = {1, 2, . . . ,m} be the set of indices of the

input top-k lists and τ l be the input top-k list l ∈ L. The optimal solution to this

101

problem can be written as

B∗ = arg min
B∈Σ

∑
l∈L

K(B|τ l , τ l). (5.1)

Ailon (2010) proposed an alternative variant, where the goal is to find a full list of

items with the least cumulative Kendall-tau distance to the input lists. The Kendall-

tau distance between a full list and a top-k list is equal to the number of item-pairs

whose relative orderings are different. The optimal solution to this problem can be

written as

B∗ = arg min
B∈Σ

∑
l∈L

K(B, τ l). (5.2)

Dwork et al. (2001)’s method retains less information compared to Ailon (2010)’s

method. Expressly, Ailon (2010)’s method uses the information that items not on a

top-k list are ranked lower than all items on the list, whereas the projection opera-

tion completely discards this information. Nonetheless, both approaches discard the

partial information corresponding to case where two items are present in one list but

neither is present in the other. Additionally, neither of these variants is a metric nor

a pseudo-metric (Ailon, 2010; Dwork et al., 2001), meaning that they do not satisfy

the triangle inequality—a fundamental property of distance measures (Brandt et al.,

2016)—or even a relaxed version of it. This also means that the consensus top-k lists

obtained by these approaches may not match.

Among the aforementioned distance-based approaches, Fagin et al. (2003)’s method

provides higher flexibility and it induces a far smaller solution space. Specifically, since

the output is another top-k list rather than a full list over I, there are |T | =
(
n
k

)
k!

possible top-k lists, which is (n − k)! times smaller than n! (the number of possible

complete strict lists over I). As such, this method provides relatively more flexibil-

ity and practicality. Next, we formally present the associated top-k list aggregation

102

problem, which is denoted as TOP-k-AGG.

Definition 17 (TOP-k-AGG) Let L = {1, 2, . . . ,m} be the set of indices of the

input top-k lists, τ l be the input top-k list l ∈ L, I =
⋃
l∈L
Iτ l be the universe of

items, n := |I| be the number of items in the universe I, T be the set of all possible

top-k lists over I, and d(., .) be a distance measure between top-k lists. TOP-k-AGG

seeks to find a top-k list τ ∗ ∈ T with the lowest cumulative distance to the input lists;

it can be written succinctly as

τ ∗ = arg min
τ∈T

∑
l∈L

d(τ , τ l). (5.3)

Going forward, we refer to optimal solution of TOP-k-AGG as the consensus top-k

list.

Various distance measures between top-k lists have been introduced including gen-

eralized Kendall-tau, generalized Spearman’s footrule, Spearman’s rho (Fagin et al.,

2003), Hausdorff, (Critchlow, 2012; Fagin et al., 2003), Goodman and Kruskal’s

gamma (Goodman and Kruskal, 1959), and Canberra (Jurman et al., 2009). Ad-

ditionally, there are other ways to compare top-k lists. For example, Collier and

Konagurthu (2014) defines an information-theoretic perspective and focuses on the

amount of information conveyed. More specifically, this method compares top-k lists

based on their compressibility, which is related to their similarity (i.e., lists with more

information in common are more compressible). We refer the reader to Fagin et al.

(2003) for more information on comparing top-k lists.

5.2.1 Generalized Kendall-tau Distance

The rest of this chapter focuses on the generalized Kendall-tau distance (Fagin

et al., 2003) since the Kendall-tau distance and its variants have been shown to be

effective for rank aggregation (Dwork et al., 2001), especially in the context of infor-

103

mation retrieval (Fagin et al., 2003). Despite the focus on this particular distance, the

mathematical formulations and polyhedral analyses presented herein can be extended

to TOP-k-AGG under any other distance measure between top-k lists by modifying

the objective functions accordingly. This distance measure is restated in the following.

Let p be a fixed parameter, with 0 ≤ p ≤ 1, and let K
(p)
ij (τ 1, τ 2) be the contribution

to the distance function, for each item-pair (i, j) ∈ Λ(τ 1, τ 2). K
(p)
ij (τ 1, τ 2) is divided

into four cases based on the relative positions of i and j within τ 1 and τ 2:

Case 1. i and j appear in both top-k lists. If i and j are in the same order in both

lists, then set K
(p)
i,j (τ 1, τ 2) = 0; otherwise, set K

(p)
i,j (τ 1, τ 2) = 1.

Case 2. i and j appear in one top-k list, say τ 1, and exactly one of i or j, say

i, appears in the other top-k list (τ 2) . If i is ranked ahead of j in τ 1, then set

K
(p)
i,j (τ 1, τ 2) = 0; otherwise, set K

(p)
i,j (τ 1, τ 2) = 1.

Case 3. i, but not j, appears in one top-k list, say τ 1, and j but not i, appears in

the other top-k list, τ 2; then, set K
(p)
i,j (τ 1, τ 2) = 1.

Case 4. i and j both appear in one top-k list, say τ 1, but neither i nor j appear in

the other list (τ 2). Such pairs are called special pairs, and the penalty is set to the

fixed penalty parameter, that is, K
(p)
i,j (τ 1, τ 2) = p.

Piecing together the above four cases, K
(p)
ij (τ 1, τ 2) can be succinctly written as

K
(p)
ij (τ 1, τ 2) =

1 (i �τ1 j ∧ j �τ2 i) ∨ (j �τ2 i ∧ i �τ1 j)

p (i, j ∈ τ 1 ∧ i, j /∈ τ 2) ∨ (i, j /∈ τ 1 ∧ i, j ∈ τ 2)

0 otherwise.

Considering all distinct item-pairs, the generalized Kendall-tau distance with penalty

parameter p, denoted as K(p), is defined as

K(p)(τ 1, τ 2) =
∑

(i,j)∈Λ(τ1,τ2)

K
(p)
ij (τ 1, τ 2). (5.4)

104

K(p) is a near metric since it satisfies a relaxed version of the triangle inequality

(Fagin et al., 2003). TOP-k-AGG under K(p) is a combinatorial NP-hard problem

(Fagin et al., 2003), which includes KEMENY-AGG with strict rankings as a special

case (when k = n).

In analogous fashion, Fagin et al. (2003) proposed the footrule distance with loca-

tion parameter l, denoted by F (l), to generalize the footrule distance for comparing

top-k lists. Distance F (l) is obtained by placing all items not in a top-k list at position

l (this transforms a top-k list into a full list) and then computing the footrule distance

of the completed lists. An intuitive and convenient choice is to set l = k + 1.

Chierichetti et al. (2018) generalized Mallow’s model to distribution on top-k lists

using K(p). The model induces a distribution on T such that

Pr[τ ∈ T] =
1

Zβ
exp(−β.K(p)(τ ′, τ)), (5.5)

where β is the decay parameter, Zβ is a normalizing constant, and τ ′ is the ground-

truth top-k list. Similar to full strict rankings, the solution to TOP-k-AGG can be

interpreted statistically as a maximum likelihood estimator wherein the input lists

are independent realizations of the Mallows probabilistic model using distance K(p),

that is,

τ ∗ = argmin
τ∈T

∑
l∈L

K(p)(τ , τ l) = argmax
τ∈T

Πl∈LPr[τ
l].

5.3 Exact Optimization Models and Theoretical Insights

To the best of our knowledge, no efforts have been made to derive an explicit

mathematical model of TOP-k-AGG. This section presents various formulations.

First, we define the required parameters for defining the objective functions of the

presented formulations of TOP-k-AGG under K(p). Let µil be an indicator parameter

that is equal to 1 if i ∈ τ l, where l ∈ L. Additionally, let sij denote the number of

105

input lists where item i is ranked ahead of item j, which can be expressed as

sij =
∑
l∈L

1(i, j∈ τ l ∧ (τ l(i) < τ l(j)) ∨ (i ∈ τ l∧ j /∈ τ l)

=
∑
l∈L

[
µilµjl1τ l(i) < τ l(j) + µil(1− µjl)

]
.

(5.6)

In words, sij tallies the number of input lists in which i is ranked ahead of j, that is,

the number of input lists in which both items are present and i is ranked ahead of j,

plus the number of inputs lists in which i is present but j is not.

Using these parameters, the cumulative K(p) distance between a given top-k list

τ ∈ T and all of the input top-k lists, i.e.,
∑
τ l∈L

∑
(i,j)∈Λ(τ ,τ l)

K
(p)
ij (τ , τ l), can be ex-

pressed as
∑

(i,j)∈Λ

K
(p)
ij (τ) where Λ is set of all unordered pairs of distinct items in I,

and

K
(p)
ij (τ) =

sji + p
∑
l∈L

(1− µil)(1− µjl) if i, j ∈ τ ∧ (τ (i) < τ (j)),

sji if i ∈ τ ∧ j /∈ τ ,

p
∑
l∈L

µilµjl if i, j /∈ τ .

(5.7)

Eq. (5.7) states that whenever item i and j are both present in τ (the solution top-k

list) and i is ranked ahead of item j, the imposed K(p) distance between τ and all

of the input lists for this pair of items equals the number of input lists where j is

ranked ahead of i, plus p-times the number of input lists neither i nor j is present in

the same list. Whenever i but not j is present in τ , the imposed K(p) distance equals

the number of input lists where j is ranked ahead of i. Finally, whenever neither i

nor j is present in τ , the imposed K(p) distance equals p times the number of input

lists where i and j are simultaneously present.

The first formulation is a MIP possessing an assignment problem-like structure,

with which exactly k items are assigned to the k available positions of the solution

106

top-k list. Its decisions variables are as follows:

uit =

1 if i is assigned to position t ∈ [k]

0 otherwise;

wij =

1 if i and j are in the top-k list, and i is ranked ahead of j

0 otherwise;

w′ij =

1 if i is in the top-k list, but not j

0 otherwise;

w′′ij =

1 if neither i nor j is present in the top-k list, where j > i

0 otherwise.

From the definitions, item i is present in the top-k list if
∑k

t=1 uit = 1, and it is

absent if
∑k

t=1 uit = 0. The variables w,w′, and w′′ determine the relative ordering

of the items; these are dependent variables, as their exact values are determined by

the values of the u-variables. The first formulation (MIP#1) is as follows.

min
u,w,w′,w′′

∑
i∈I

∑
j∈I

[
(sji + p

∑
l∈L

(1− µil)(1− µjl))wij + sjiw
′
ij

]
+

p
∑

i,j∈I,j>i

∑
l∈L

µilµjlw
′′
ij

(5.8a)

s.t.
∑
i∈I

uit = 1 ∀t ∈ [k] (5.8b)

∑
t∈[k]

uit ≤ 1 ∀i ∈ I (5.8c)

wij ≥
t∑

t′=1

uit′ +
k∑

t′′=t+1

ujt′′ − 1 ∀i, j ∈ I, i 6= j; ∀t ∈ [k − 1] (5.8d)

∑
i,j∈I

wij ≤
k(k − 1)

2
(5.8e)

107

w′ij ≥
∑
t∈[k]

uit −
∑
t∈[k]

ujt ∀i, j ∈ I, i 6= j (5.8f)

∑
i,j∈I

w′ij = k(n− k) (5.8g)

w′′ij ≥ 1−
∑
t∈[k]

uit −
∑
t∈[k]

ujt ∀i, j ∈ I, i 6= j (5.8h)

∑
i,j∈I,j>i

w′′ij =
(n− k)(n− k − 1)

2
(5.8i)

uit ∈ {0, 1} ∀i ∈ I; ∀t ∈ [k] (5.8j)

wij, w
′
ij ≥ 0 ∀i, j ∈ I, i 6= j (5.8k)

w′′ij ≥ 0 ∀i, j ∈ I, j > i. (5.8l)

Objective function (5.8a) minimizes the cumulative K(p) distance to the input lists

according to Eq. (5.7). Constraint (5.8b) enforces that exactly one item must be

assigned to each position of the top-k list. Constraint (5.8c) enforces that every item

must be assigned to at most one position of the list. Constraint (5.8d) determines

the respective values of the w-variables. More specifically, wij = 1 if i occupies one of

the first t positions (
∑t

t′=1 uit′ = 1) and j occupies position t′′, where t + 1 ≤ t′′ ≤ k

(
∑k

t′′=t+1 ujt′′ = 1); otherwise, this constraint becomes redundant. Constraint (5.8d)

and (5.8e) together impose preference transitivity (i.e., prevent preference cycles); this

means that if h is ranked ahead of i, and i is ranked of j, then h must be ranked ahead

of j as well (see Theorem 10). Constraint (5.8f) determines the respective values ofw′-

variables; it enforces that w′ij = 1 if i is present in the top-k list but not j; otherwise,

this constraint becomes redundant. Constraint (5.8g) enforces that at most k(n− k)

of the w′-variables can take a value of 1 as there are k(n − k) distinct item-pairs

where exactly one of the items appears in the list. Constraint (5.8h) enforces that

w′′ij = 1 if neither i nor j is present in the top-k list; otherwise, this constraint becomes

redundant. Constraint (5.8i) enforces that at most (n − k)(n − k − 1)/2 of the w′′-

108

variables can take a value of 1 as this is the number of distinct item-pairs where both

items are absent from the list. Constraints (5.8j)-(5.8l) specify the domain of the

variables.

Taking a closer look at the structure of the constraints, we can observe that even

though variables w,w′ and w′′ are specified as binary, they can be treated as non-

negative continuous variables since the constraints of the model alone enforce them

to only take a value of 0 or 1. It is important also to remark that the reason for

including Constraints (5.8f) and (5.8g) is that the objective function coefficients are

not necessarily positive. More specifically, if both i and j are present in the solution

top-k list, Constraint (5.8f) implies that w′ij ≥ 0; however, if the objective function

coefficient sij is 0, then any value of w′ij results in the same objective function value,

which is not desirable.

Theorem 10 Constraints (5.8d)-(5.8e) impose preference transitivity.

Assume that items h, i, j are present in the solution top-k list with h placed in position

t ≥ 1, i in position t′ > t, and j in position t′′, where k ≥ t′′ > t′. Constraint (5.8d)

enforces that whi = whj = wij = 1. However, this constraint only implies that

wjh ≥ −1. In other words, the optimization model may have an incentive to assign

wjh = 1, creating a preference cycle, in order to decrease the objective function value.

Hence, Constraint (5.8d) on its own does not prevent preference cycles.

However, the total number of w-variables that must take a value of 1 is given

by (k − 1) + (k − 2) + · · · + 1 + 0 = k(k − 1)/2—the first-ranked item is ahead of

k − 1 other items in the list, the second-ranked item is ahead of k − 2 items, . . . ,

and the item at the bottom of the list is not ranked ahead of any other items on the

list. For this reason, Constraint (5.8e) allows at most k(k − 1)/2 of the w-variables

to take a value of 1, forcing all other variables (including wjh) to equal 0. Therefore,

109

Constraints (5.8d)-(5.8e) together impose preference transitivity on the solution top-k

list returned by solving MIP#1.

Since KEMENY-AGG is a special case of TOP-k-AGG, MIP#1 provides a novel

formulation for that problem as well; however, it does not apply to the variant of

the problem with ties. It is important to mention that Cook (2006) proposed a

binary linear programming formulation of KEMENY-AGG using the structure of the

assignment problem; however, their set of preference cycle prevention constraint is

different from Constraints (5.8d)-(5.8e).

Next, we present a binary non-linear programming formulation for TOP-k-AGG.

The formulation uses the w-variables defined for MIP#1 as well as the following

decision variables:

zi =

1 if i is in the top-k list

0 otherwise.

The formulation is given by:

min
w,z

∑
i∈I

∑
j∈I

[
(sji + p

∑
l∈L

(1− µil)(1− µjl))wij + sjizi(1− zj)
]
+

p
∑

i,j∈I,j>i

∑
l∈L

µilµjl(1− zi)(1− zj)
(5.9a)

s.t.
∑
i∈I

zi = k (5.9b)

whi + wij + wjh ≤ 2 ∀h, i, j ∈ I, i, j > h, i 6= j (5.9c)

wij + wji = zizj ∀i, j ∈ I, j > i (5.9d)

zi, wij ∈ {0, 1} ∀i, j ∈ I, i 6= j. (5.9e)

Objective function (5.9a) minimizes the cumulative K(p) distance to the input lists.

Constraint (5.9b) restricts k items to be present in the top-k list. Constraint (5.9c)

imposes preference transitivity only whenever items h, i, j all appear in the list; oth-

110

erwise, it becomes redundant, with the help of Constraint (5.9d). Constraint (5.9d)

enforces that, when both i and j are present in the list, one must proceed the other.

Constraint (5.9e) specifies the domains of the variables. Given a feasible solution, the

output top-k items are defined by the set τ := {i ∈ I|zi = 1}, and the exact rank of

item i ∈ τ is obtained as τ (i) := k −
∑

j∈τ wij.

The above non-linear optimization model can be linearized using a technique from

Glover and Woolsey (1974). Specifically, Constraint (5.9d) can be replaced with three

linear constraints for each distinct item pair (i, j): wij + wji ≤ zi, wij + wji ≤ zj,

and wij + wji ≥ zi + zj − 1. Similarly, the term zi(1 − zj) in the objective function

is replaced by auxiliary continuous variable x′ij and constraints x′ij ≥ zi − zj and

x′ij ≥ 0; and the term (1−zi)(1−zj) in the objective function is replaced by auxiliary

continuous variable x′′ij and constraints x′′ij ≥ 1− zi − zj and x′′ij ≥ 0. The latter two

cases use the fact the objective function coefficients of zi(1− zj) and (1− zi)(1− zj)

are non-negative, leading to a reduction in the number of constraints required by the

linearization. The resulting formulation (MIP#2) is given by:

min
w,x′,x′′,z

∑
i∈I

∑
j∈I

[
(sji + p

∑
l∈L

(1− µil)(1− µjl))wij + sjix
′
ij

]
+

p
∑

i,j∈I,j>i

∑
l∈L

µilµjlx
′′
ij

(5.10a)

s.t. (5.9b), (5.9c), (5.9e) (5.10b)

wij + wji ≥ zi + zj − 1 ∀i, j ∈ I, j > i (5.10c)

wij + wji ≤ zi ∀i, j ∈ I, i 6= j (5.10d)

x′ij ≥ zi − zj ∀i, j ∈ I, i 6= j (5.10e)∑
i,j∈I

x′ij = k(n− k) (5.10f)

x′′ij ≥ 1− zi − zj ∀i, j ∈ I, j > i (5.10g)

111

∑
i,j∈I,j>i

x′′ij =
(n− k)(n− k − 1)

2
(5.10h)

x′ij ≥ 0 ∀i, j ∈ I, i 6= j, (5.10i)

x′′ij ≥ 0 ∀i, j ∈ I, j > i. (5.10j)

The rationale behind including Constraints (5.10f) and (5.10h) is the same as Con-

straints (5.8g) and (5.8i) in MIP#1.

Next, we define two variants of the preference transitivity constraints utilized in

MIP#2.

Proposition 9 Constraint (5.9c) can be replaced by non-linear constraints

whi + wij + wjh ≤ 3− zhzizj ∀i, j > h, i 6= j, or (5.11)

whi + wij + wjh ≤ 1 + zhzizj ∀i, j > h, i 6= j. (5.12)

Furthermore, these constraints can be linearized respectively as

whi + wij + wjh ≤ 3− 1

3
(zh + zi + zj) ∀h, i, j ∈ I, i, j > h, i 6= j, (5.13)

whi + wij + wjh ≤ 1 +
1

3
(zh + zi + zj) ∀h, i, j ∈ I, i, j > h, i 6= j. (5.14)

The right-hand side of Constraints (5.11)-(5.14) becomes 2, as desired, when items

h, i, j are all in the solution top-k list, i.e., when zh = zi = zj = 1. For the remaining

cases, these constraints become redundant, with the help of Constraint (5.10d). In

particular, assume i is not in the top-k list; Constraint (5.10d) enforces that wij+wji ≤

0 and wih + whi ≤ 0; hence, Constraints (5.11)-(5.14) effectively reduce to wjh ≤ 1,

which is redundant. Replacing Constraint (5.9c) with Constraints (5.13) and (5.14),

respectively, induces two additional MIPs.

MIP#3:

min
w,x′,x′′,z

(5.10a)

112

s.t. (5.9b), (5.9e), (5.10c)− (5.10g)

whi + wij + wjh ≤ 3− 1

3
(zh + zi + zj) ∀h, i, j ∈ I, i, j > h, i 6= j.

MIP#4:

min
w,x′,x′′,z

(5.10a)

s.t. (5.9b), (5.9e), (5.10c)− (5.10g)

whi + wij + wjh ≤ 1 +
1

3
(zh + zi + zj) ∀h, i, j ∈ I, i, j > h, i 6= j.

5.3.1 Effect of the Penalty Parameter p on the Consensus List

Similar to RANK-AGG, the value of penalty parameter p could have a big impact

on the resulting consensus top-k list. It is worth highlighting three settings of p

previously discussed in Fagin et al. (2003). Using p = 0 is called the optimistic

approach; it corresponds to the situation where K
(p)
ij (τ 1, τ 2) is set to 0 whenever

there is not enough information to determine whether the penalty should be 0 or 1.

Using p = 0.5 is called the neutral approach; it corresponds to the situation where

K
(p)
ij (τ 1, τ 2) is set to 0.5 when there is not enough information to determine whether

the penalty should be 0 or 1 (Fagin et al., 2003). Conversely, using p = 1 can be

called the pessimistic approach; it corresponds to the situation where K
(p)
ij (τ 1, τ 2) is

set to 1 whenever there is not enough information to determine whether the penalty

should be 0 or 1. Beyond these general descriptions, there have been no attempts

to help guide the choice of p or to analyze its implications. The ensuing paragraphs

provide useful insights for this purpose.

Proposition 10 The set of optimal objective values of problem (5.3) over all values

of p ∈ [0, 1] forms a piecewise linear envelope.

113

The cumulative K(p) distance of a solution top-k list τ ∈ T to the input lists,∑
l∈L

K(p)(τ , τ l), can be expressed as a(τ) + pb(τ), which is an affine function in terms

of p, where

a(τ) =
∑
i,j∈Iτ

(
sji1τ (i)<τ (j) + sij1τ (j)<τ (i)

)
+
∑
i∈Iτ

∑
j /∈Iτ

sji,

and

b(τ) =
∑
i,j∈Iτ

∑
l∈L

(1− µil)(1− µjl) +
∑

i,j∈I\Iτ

∑
l∈L

µilµjl.

Here, a(τ) captures cases 1-3 of the K(p) distance between τ and input lists , while

b(τ) captures case 4 using the parameters defined herein. More specifically, if items i

and j are simultaneously in τ , b(τ) equals the number of input lists in which i and j

are both absent, and if neither i nor j is present in τ , b(τ) equals the number of input

lists in which i and j are simultaneously present. Furthermore, the K(p) distance

between two top-k lists is non-decreasing in p (Fagin et al., 2003) and, therefore, the

set of optimal objective values for all values of p forms a piecewise linear envelope.

Proposition 10 demonstrates that the set of optimal objective values for all values of

p forms a piecewise linear envelope; an example is depicted in Fig. 5.1. This result

will be used to derive further insights of the effect of penalty parameter p on the

solution of problem (5.3). Expressly, the problem has the property that if a solution

is the consensus list for two distinct values of p, it will also be the consensus list for

any value in between.

Corollary 3 If τ ∗ is the consensus top-k for two distinct penalty parameters p1 and

p2 such that 0 ≤ p1 < p2 ≤ 1, then τ ∗ is also the consensus top-k for any p1 < p < p2.

Corollary 3 is a direct outcome of Proposition 10. Corollary 3 can help overcome the

difficulty of selecting the value of penalty p. For example, if τ ∗ is the consensus top-k

list for p = 0 and p = 1, then it is also the consensus top-k list for every value of p.

114

Figure 5.1: Example Depiction of Objective Values Obtained over All Values of p by
Four Different Solution Top-k Lists (the Piecewise Linear Envelope Is Shown in Red).

One may also be interested in finding the consensus list with the minimum average

K(p) distance to the input lists over all possible values of p for which the resulting

function is a metric, i.e., ∀p ∈ [0, 1], instead of only one specific value of p. We show

that this robust solution is obtained by a specific value of p.

Proposition 11 Given an instance of problem (5.3), the consensus list obtained by

using p = 0.5 has the least average distance K(p) to the input lists.

We treat p as a random variable with a continuous uniform distribution over [0, 1].

The solution to the problem of finding a top-k list with the least average K(p) distance

to the input lists with respect to all values of p ∈ [0, 1] can be expressed as

τ ∗ = arg min
τ∈T

Ep∈[0,1]

[∑
l∈L

K(p)(τ , τ l)

]

= arg min
τ∈T

Ep∈[0,1]
[
a(τ) + pb(τ)

]
= arg min

τ∈T

[
a(τ) + Ep∈[0,1](p)b(τ)

]
= arg min

τ∈T

[
a(τ) + 0.5b(τ)

]

115

= arg min
τ∈T

∑
l∈L

K(0.5)(τ , τ l).

5.4 Polyhedral Comparison

Next, we compare the strength of the proposed MIPs based on their LP-relaxation

models. First, we compare the strength of MIPs#2, #3, and #4. To that end, notice

that these three MIPs become equivalent when k ≤ 2—when the preference transi-

tivity relations are irrelevant—or when n = k—when all items appear in the solution

top-k list. For the remainder of the paper, let P1,P2,P3,P4 be the polyhedral cor-

responding to the LP relaxations of MIPs#1, #2, #3, #4, respectively.

Theorem 11 For any instance of TOP-k-AGG, P4 ⊆ P2 ⊆ P3, and these inclusions

can be strict.

Note that MIPs#2, #3, and #4 differ only in their preference transitivity constraints.

First, we show that P4 ⊆ P2 ⊆ P3.

Since 0 ≤ zi ≤ 1 ∀i ∈ I, for every feasible solution in P2,P3,P4, we have that

(zh + zi + zj)/3 ≤ 1 ∀h, i, j ∈ I, i, j > h, i 6= j. Letting (w,x′,x′′, z)(4) ∈ P4 be a

feasible solution to MIP#4, we have that

w
(4)
hi + w

(4)
ij + w

(4)
jh ≤ 1 +

1

3
(z

(4)
i + z

(4)
j + z

(4)
h) ≤ 2 ≤ 3− 1

3
(z

(4)
i + z

(4)
j + z

(4)
h).

Therefore, all feasible solutions to MIP#4 are also feasible to MIPs#2 and #3. Using

the same logic, all feasible solutions to MIP#2 are feasible to MIP#3. This gives that

P4 ⊆ P2 ⊆ P3.

To show that the inclusion P4 ⊆ P2 can be strict, consider a small instance with

I = {1, 2, 3, 4} and k = 3. Fix the solution (w,x′,x′′, z)(2) ∈ P2 as

x
′(2)
14 = x

′(2)
24 = x

′(2)
34 = 0.24, w

(2)
12 = w

(2)
23 = w

(2)
31 = 0.62, w

(2)
14 = w

(2)
24 = w

(2)
34 = 0.38,

116

z
(2)
1 = z

(2)
2 = z

(2)
3 = 0.81, z

(2)
4 = 0.57;

with all other variables equal to 0. By inspection, this solution satisfies all constraints

of MIP#2. However, we have that

w
(2)
12 + w

(2)
23 + w

(2)
31 = 1.86 � 1 +

0.81 + 0.81 + 0.81

3
= 1.81.

This indicates that this solution does not satisfy the preference transitivity constraints

of MIP#4.

Next, we use a similar process to show that the inclusion P2 ⊆ P3 can be

strict. Consider a small instance with I = {1, 2, 3, 4} and k = 3. Fix the solu-

tion (w,x′,x′′, z)(3) ∈ P3 as

x
′(3)
14 = x

′(3)
24 = x

′(3)
34 = 0.4, w

(3)
12 = w

(3)
23 = w

(3)
31 = 0.7, w

(3)
14 = w

(3)
24 = w

(3)
34 = 0.3,

z
(2)
1 = z

(3)
2 = z

(3)
3 = 0.85, z

(3)
4 = 0.45;

with all other variables equal to 0. By inspection, this solution satisfies all constraints

of MIP#3. However, we have that

w
(3)
12 + w

(3)
23 + w

(3)
31 = 2.1 � 2.

This indicates that this solution does not satisfy the preference transitivity constraints

of MIP#2. Next, we compare MIP#1 with MIPs#2, 3, 4. Since MIP#1 uses

different variables than MIPs#2, 3, 4, their respective polytopes are in different

dimensions and cannot be directly compared. However, since these formulations

have a set of variables in common, w, we compare the projections of their respective

polytopes on thew-space. For doing so, first we restate the definition of the projection

operation.

Definition 18 (Balas, 2005) Given a polyhedron of the form Q := {(u, x) ∈ Rp×Rq :

Au+Bx ≤ b}, where A,B and b have m rows, the projection of Q onto Rq, or onto

117

the x-space, is defined as projxQ := {x ∈ Rq : ∃u ∈ Rp : (u, x) ∈ Q}.

Theorem 12 For any instance of TOP-k-AGG, projw P2, projw P3, projw P4 ⊆ projw P1,

and these inclusions can be strict.

First, we prove that projwP3 ⊆ projwP1. We show that, starting from an arbitrary

solution (w,x′,x′′, z) ∈ P3, we can deduce a solution (u,w,w′,w′′) ∈ P1. To this

end, we define the following affine mappings of variables from P3 to P1:

uit =
zi
k
∀i ∈ I, ∀t ∈ {1, . . . , k} →

k∑
t=1

uit = zi ∀i ∈ I, (5.16a)

w′ij = x′ij ∀i, j ∈ I, i 6= j, (5.16b)

w′′ij = x′′ij ∀i, j ∈ I, j > i. (5.16c)

Mapping (5.16b)-(5.16c) guarantees that the objective function values achieved by

the respective feasible points are equal. To establish that projwP3 ⊆ projwP1, it

is sufficient to show that, given a feasible solution in P3, the mapped variables are

guaranteed to satisfy all constraints of MIP#1 (i.e., this point belongs to P1).

Consider Constraint (5.8b). For any t ∈ {1, . . . , k}, we have∑
i∈I

uit =
∑
i∈I

zi
k

=

∑
i∈I zi

k

∑
i∈I zi=k−−−−−−→

∑
i∈I

uit = 1.

Therefore, mapping (5.16a) provides a solution that is guaranteed to satisfy Con-

straint (5.8b).

Consider Constraint (5.8c). For every i ∈ I, we have

k∑
t=1

uit =
k∑
t=1

zi
k

=
kzi
k

= zi ≤ 1.

The last inequality follows from the fact that the z-variables are binary. Therefore,

mapping (5.16a) provides a solution that is guaranteed to satisfy Constraint (5.8c).

Next, consider Constraint (5.8d); we focus on the maximum value of the right-

hand side of this constraint given mapping (5.16a). For any arbitrary item-pair (i, j)

118

and any t ∈ {1, . . . , k − 1} we have

t∑
t′=1

uit′ +
k∑

t′′=t+1

ujt′′ − 1 =
t∑

t′=1

zi
k

+
k∑

t′′=t+1

zj
k
− 1

=
tzi
k

+
(k − t)zj

k
− 1

≤ t

k
+
k − t
k
− 1 =

k

k
− 1 = 1− 1 = 0.

The above equation states that using mapping (5.16a), the left-hand side values of

Constraint (5.8d) will be non-positive. Since wij ≥ 0, mapping (5.16a) provides a

solution that is guaranteed to satisfy Constraint (5.8d).

Next, consider Constraint (5.8e). By summing over Constraint (5.10d), we have

2
∑
i,j∈I

wij ≤ (k − 1)
∑
i∈I

zi = k(k − 1)→
∑
i,j∈I

wij ≤
k(k − 1)

2
,

which is exactly Constraint (5.8e).

Finally, consider Constraints (5.8f)-(5.8i). Mappings (5.16a)-(5.16c) imply that

all feasible solutions to Constraints (5.10e)-(5.10h) are feasible to Constraints (5.8f)-

(5.8i). Putting all pieces together, we have projw P3 ⊆ projw P1.

Note that the preference cycle-prevention constraints of MIP#3 have no counter-

part in MIP#1. Therefore, we can show that the inclusion projw P3 ⊆ projw P1 can

be strict by providing a solution that satisfies Constraints (5.10c)-(5.10f) but violates

preference cycle-prevention Constraint (5.13), as this solution satisfies all constraints

of MIP#1. There is an infinite number of such solutions; for example, consider a

small instance with I = {1, 2, 3, 4} and k = 3. Fix the solution (w,x′,x′′, z)(3) as

x
′(3)
14 = x

′(3)
24 = x

′(3)
34 = 0.44, w

(3)
12 = w

(3)
23 = w

(3)
31 = 0.72, w

(3)
14 = w

(3)
24 = w

(3)
34 = 0.28,

z
(2)
1 = z

(3)
2 = z

(3)
3 = 0.86, z

(3)
4 = 0.42;

with all other variables equal to 0. By inspection, this solution satisfies Constraints

119

(5.10c)-(5.10f); however, it violates the preference transitivity constraints involved in

MIP#3, as we have

w12 + w23 + w31 = 2.16 6≤ 3− (0.86 + 0.86 + 0.86)/3 = 2.14.

Finally, from Theorem 11, we have that P4 ⊆ P2 ⊆ P3; therefore, we can conclude

that projw P2, projw P4 ⊆ projw P1, and these inclusions can be strict.

5.5 Heuristic Methods

As the value of k and/or especially as the number of input lists increases, the

universe of items can increase rapidly, which makes exact formulations computation-

ally difficult or practically impossible to solve to optimality using exact methods,

owing to the fact that the presented formulation has O(n3) constraints. Therefore,

we adapt various heuristics defined for the rank aggregation problem, and we intro-

duce a new greedy algorithm based on the proposed exact optimization models to

find high-quality solutions. The rest of this section describes these methods.

BestInput: Similar to KEMENY-AGG (Ailon et al., 2008), one can simply pick

the input list with the least cumulative K(p) distance to the input lists. Stated

otherwise, this method represents a simplified version of TOP-k-AGG where T :=

{τ 1, . . . , τm}. It has a time complexity of O(k2m2).

Sort by Average Rank (SAR): This method sorts the items based on their

average rank positions in the input lists, denoted by τ (i), and picks the k items with

the lowest average ranks; ties are broken arbitrarily. Specifically, τ (i) is calculated as

τ (i) =

∑
l∈L τ

l(i)1i∈τ l

ηi
. (5.17)

Sort by Number of Appearance (SNA): This method sorts the items based

on their number of appearances in the input lists, denoted by η(i), and it picks the k

120

items with the highest number of appearances; ties are broken arbitrarily. Specifically,

η(i) is calculated as

η(i) =
∑
l∈L

µil. (5.18)

Hybrid SAR-SNA (H-SA-SN): This hybrid method is the same as SAR with

a modification that items with the same average rank are sorted by a non-increasing

number of appearances.

Hybrid SNA-SAR (H-SN-SA): This hybrid method is the same as SNA with

a modification that items with the same number of appearances are sorted by non-

decreasing average ranks.

Heuristics SAR, SNA, H-SA-SN, and H-SN-SA all output a full list over I whose

top-k ranked items are returned as the solution. Their outputs are independent of

the distance used to aggregate the top-k lists. Each of these four heuristics has a time

complexity of O (mk + n).

Spearman’s Footrule: Fagin et al. (2003) proposed the only known solution

method for TOP-k-AGG. It is a 2-approximation algorithm that uses the F (k+1) dis-

tance, in which all items that are not in a top-k list are tied together in position

k + 1. TOP-k-AGG using the F (k+1) distance can be solved in polynomial time via

the minimum-cost perfect matching problem (Dwork et al., 2001; Fagin et al., 2003).

This method outputs a full list over I whose top-k items are returned as the solution.

It has a time complexity of O(mn2).

Iterative Greedy Heuristic (IGH): This is a greedy iterative algorithm that

uses objective function (5.10a) of the exact formulation featured herein; its pseu-

docode is presented in Algorithm 7 and summarized as follows. Placing item i at

position t of the solution top-k list leads to an imposed cost, denoted by ICt
i , on the

objective function, where 1 ≤ t ≤ k. The algorithm iteratively adds an item to the

121

top-k list, namely, the available item with the lowest ICt
i value.

In greater detail, placing item i in first place of the solution top-k list imposes the

cost

IC1
i =

∑
j∈I\{i}

sji.

The item with the lowest imposed cost is placed first in the solution top-k list; assume

that item i1 has the lowest imposed cost, and, hence, place i1 at the first position

(rank). In the second step, calculate the imposed cost of placing each item in the

second position while holding item i1 in first place, and place the item with the lowest

imposed cost in the second position of the solution top-k list. More generally, assume

that at step 1 ≤ t ≤ k, items i1, i2, . . . , it−1 have been placed in positions 1, 2, . . . , t−1,

respectively. Placing item i ∈ I\{i1, i2, . . . , it−1} in position t of the solution top-k

list imposes the cost

ICt
i =

∑
j∈I\{i,i1,i2,...,it−1}

sji + p
∑
l∈L

∑
r∈{i,i1,i2,...,it−1}

(1− µil)(1− µrl).

If there are multiple items with the same imposed cost at some iteration, one is

selected arbitrarily. After the second step, the ICt
i values can be easily updated in

linear time for the remaining items. Hence, this method has a time complexity of

O (n2).

A few last remarks on this heuristic are in order. Since it is not known which

items will be in the top-k list until the conclusion of the algorithm, the third term

in the objective function (5.10a) is dropped from computations (the contribution of

this term in the objective function is relatively small compared to other terms, espe-

cially for small values of p). Additionally, the second term in the objective function

is effectively neglected in the first iteration; however, it is added back in the subse-

quent iterations. As a post-processing subroutine for all of the presented heuristic

122

Algorithm 7: Iterative Greedy Heuristic (IGH)

Input : p,I, pairwise preference matrix, [µil] ∈ Bn×|L|
Output: Solution top-k list (τ)

1 τ ← ∅;
2 for t = 1, . . . , k do
3 i = arg min

i∈I\τ
ICt

i = arg min
i∈I\τ

∑
j∈I\(τ ∪{i})

pji + p
∑
l∈L

∑
r∈τ

(1− µil)(1− µrl)4 τ

← τ ∪ i;
5 τ (i) = t;

Return τ ;

algorithms, we implement a variant of local search (Dwork et al., 2001). This sub-

routine performs “single adjacent swap”, where two adjacent items in the top-k list

swap positions if doing so improves the objective function value. Letting τ denote a

solution top-k list output by a given heuristic, notice that changing the position of

i and j, where τ (j) = τ (i) + 1, reduces the current objective function value only if

sji > sij.

5.6 Data Reduction

Exact methods and even certain heuristics can become computationally demand-

ing with increasing the size of the universe. Yet, it is straightforward to discern that,

when k is small relative to n, a large number of items will have little relevance to

the consensus top-k list. This observation is the motivation for the data reduction

technique introduced in this section. The proposed technique discards items that are

unlikely to appear in the consensus list in order to boost the computational viability

of exact and certain inexact methods.

The proposed data reduction technique leverages parameters τ and η—the aver-

age rank and the number of appearances, respectively—to reduce the size of I. It

identifies items that have a high τ -value and a low η-value to be discarded, as these

123

items are unlikely to appear in the consensus top-k list. Let τtr and ηtr be the thresh-

olds of τ and η-values of discarded items, respectively, and define Ir as the subset of

items identified by the data reduction to be discarded, that is,

Ir = {i ∈ I : τ (i) > τtr and ηi < ηtr}.

As an example, consider the following top-4 lists:

τ 1 = · · · = τ 6 = {5, 6, 7, 8}, τ 7 = {1, 2, 3, 4}.

The consensus top-k list for p < 1/3 is {5, 6, 7, 8}, the consensus top-k list for p > 2/3

is {5, 6, 7, 1}, and both are consensus top-k lists for p = 1/3. Note that all items that

appeared in the consensus list either have a high τ -value, η-value, or both.

The size of Ir is affected by the user-specified thresholds τtr and ηtr. Based on a

set of independently conducted experiments, recommended settings are τtr = k/3 and

ηtr = m/3; however, these values can be changed depending on the size of Ir and the

context at hand. It is important to mention that the outputs of the data reduction

technique may deviate from the optimal solution to Problem (5.3), meaning that

the items in Ir might appear in the consensus top-k list. Nonetheless, discarding

these items typically leads to no more than minor differences with the outputs of

exact methods, while it can result in significant improvements in the run time of the

proposed techniques, especially for large-scale problem instances.

We propose two different ways to handle items identified by the proposed data

reduction technique: Explicit reduction and implicit reduction. In explicit reduction,

all items are completely removed from the universe of items, resulting in a new smaller

problem. This removal could impact other items in I\Ir that could end up in

the consensus top-k list. In implicit reduction, all items in Ir are restricted from

appearing in the solution top-k list, but they factor into the calculations of other

124

eligible items that may appear.

Implicit reduction may be implemented on certain exact and inexact solution

approaches as follows. In the exact formulation, the constraint zi = 0 is added ∀i ∈

Ir; as a result, all preference cycle prevention constraints that involve any discarded

items become redundant and are omitted from the formulation. The implicit (and

explicit) reduction has no impact on BestInput; moreover, only explicit reduction can

be applied to Spearman’s footrule. Finally, the implicit reduction is implemented

in IGH by excluding items Ir as candidates from the solution top-k list, i.e., by

modifying line 3 of Algorithm 7.

5.7 Computational Experiments

This section compares the solution quality and run time of the different so-

lution methods presented in Sections 5.3-5.6. More specifically, we compare the

run time and solution quality of MIP#1, MIP#4, MIP#4 with implicit reduction

(MIP#4 Implicit), MIP#4 with explicit reduction (MIP#4 Explicit), BestInput, Spear-

man’s footrule (Spearman), SAR, SAN, H-SA-SN, H-SN-SA, IGH, IGH with implicit

reduction (IGH Implicit), and IGH with explicit reduction (IGH Explicit). All ex-

periments were carried out on a computer with an Intel(R) Core(TM) i7-7700 CPU

3.60GHz with 32 GB RAM. The optimization models were solved using CPLEX solver

version 12.10.0 to a relative optimality gap of 1% or until a 600-second time limit is

reached. The rest of this section is organized as follows. Section 5.7.1 describes the

data set, and Section 5.7.2 presents the computational results.

5.7.1 Data Set

We use Mallow’s model proposed in Chierichetti et al. (2018) to generate syn-

thetic top-k lists (see Section 5.2.1). Chierichetti et al. (2018) proposed two sampling

125

methods for generating input lists from this model: an exact sampling method using

dynamic programming with time complexity of O
(
k24k + k2 log n

)
, and an approx-

imate sampling method using a Markov chain model with a relaxed time bound of

O (k5 log k). To describe the steps of the Markov chain method used herein, let τ ∈ T

be a randomly selected top-k list, τ−1t denote the item in position t of τ , τ c = I\τ

be the set of items not in τ , and τ ′ be the ground-truth list. Two items i and j

are said to be τ ′-adjacent if there is no item h such that τ ′(i) < τ ′(h) < τ ′(j) or

τ ′(j) < τ ′(h) < τ ′(i). Let C be a Markov chain on a state space Ω = T (the states

of this Markov Chain are the possible top-k lists). Additionally, let C(s1, s2) denote

the transition probabilities from state s1 ∈ C to state s2 ∈ C; C is an ergodic chain,

guaranteeing convergence to the unique stationary distribution (Chierichetti et al.,

2018). The Markov chain C is defined as follows. Choose 1 ≤ t ≤ k − 1 u.a.r. and

equiprobably do one of (Chierichetti et al., 2018):

1. Transposition step: Equiprobably do one of:

(a) If τ−1t ∈ τ ′, find minimum v > t such that τ−1v ∈ τ ′, and put them in the

order of τ ′ w.p. eβ/(1 + eβ) and the opposite order w.p. 1/(1 + eβ).

(b) If τ−1t /∈ τ ′, find minimum v > t such that τ−1v /∈ τ ′ and put them in the

order of τ w.p. 0.5 and the opposite order w.p. 0.5.

(c) If (τ−1t ∈ τ ′ and τ−1t+1 /∈ τ ′) or (τ−1t /∈ τ ′ and τ−1t+1 ∈ τ ′), put them in the

order of τ ′ w.p. eβ/(1 + eβ) and in the opposite order w.p. eβ/(1 + eβ).

2. Substitution step: W.p. 0.5 stay at the current state, and w.p. 0.5 equiprobably

do one of:

(a) A homogeneous substitution:

126

i. If τ−1t ∈ τ ′, let j be the τ ′-adjacent item to τ−1t such that τ ′(j) >

τ ′(τ−1t) and if j /∈ τ , replace τ−1t by j w.p. eβ/(1 + eβ). If τ−1t ∈ τ ′,

let j be the τ ′-adjacent item to τ−1t such that τ ′(j) < τ ′(τ−1t) and if

j /∈ τ , replace τ−1t by j w.p. 1/(1 + eβ).

ii. If τ−1t /∈ τ ′, pick item c u.a.r. from τ c, and if c /∈ τ ′, replace τ−1t by

item c w.p. 0.5.

(b) A non-homogeneous substitution: choose item c u.a.r. from τ c and com-

pare it with τk, if only one of them is in τ ′, keep the τ ′ item inside w.p.

eβ(1+p.i)/(1 + eβ(1+p.i)) and the item outside τ ′ w.p. 1/(1 + eβ(1+p.i)) where

i = |τ [1, k − 1] ∩ τ ′c|.

If the premise is not satisfied in any of the above, do nothing.

Similar to Chierichetti et al. (2018), we use β = 1; note that using small val-

ues of β translates to introducing more noise in the generated data. We use 1,000

iterations of the Markov chain, and we set the ground truth as the identity top-k

list, i.e., τ ′ = {1, 2, . . . , k}. Additionally, let m = |L| denote the number of input

lists. We use different settings of three parameters, k,m, p to generate instances; for

each combination of k and m values, we use p ∈ {0, 0.5, 1}. The initial size of the

universe is set to mk for the purpose of sampling to allow the lists to be less cohesive

collectively, which makes aggregation a much more difficult task; however, the precise

size is typically much smaller and is determined after sampling, as some items do not

appear in any of the generated lists. Note that the k ≤ n ≤ mk; we have n = k

whenever exactly k items appear in all list, and n = mk whenever all items in all

lists are different. The thresholds of the data reduction technique were initially set

to τtr = k/3 and ηtr = m/3; however, if the size of remaining items was less than k,

these values were increased to τtr = k/5 and ηtr = m/5. All reported numbers are

127

rounded to two decimal points.

5.7.2 Computational Results

The computational results compare the featured methods based on the cumulative

K(p) distance of the aggregated list to all input lists (i.e., their objective function

values). The experiments are divided into three parts. The first part compares

MIPs#1 and #4. The second part compares MIP#4 and the introduced heuristics

on small- to medium-sized instances. After evaluating the results, the third part

selects the best-performing methods from the second part for further testing on larger

instances. For comparing the solution quality of different methods, we define the

%Relative Gap of a method x as the difference between objective function values

of method x from the best found objective function value, divided by best found

objective function value.

For the first experiment, the tested generating parameters are (k = 10,m = 5, p),

(k = 10,m = 20, p), and (k = 25,m = 5, p), where p ∈ {0, 0.5, 1}. For each of the

nine nine resulting parameter configurations, 20 instances are generated. Table 5.1

reports the average size of the universe and the geometric mean run time of MIPs#1

& #4.

Overall, MIP#4 had a dominant performance: It either achieved the optimal

solutions faster or achieved a higher-quality solution by the time of termination. The

biggest differences are highlighted by cases (k = 10,m = 5, p = 1), where MIP#4

was more than 60x faster than MIP#1, and (k = 25,m = 5, p = 1), where MIP#4

had a geometric run time of 173.34 and MIP#1 had a %Relative Gap of 147.59 after

623.33 seconds.

For the second experiment, the tested generating parameters are (k = 10,m =

20, p), (k = 25,m = 5, p), and (k = 50,m = 5, p), where p ∈ {0, 0.5, 1}. For each of

128

Table 5.1: Geometric Mean of Run Time (in Seconds) And %Relative Gap of MIPs#1
and #4

n
MIP#1 MIP#4

Time %Relative Gap Time %Relative Gap
k = 10,m = 5, p = 0 25.65 601.65 1.41 1.63 0 (118.55)
k = 10,m = 5, p = 0.5 23.4 207.67 0 (95.8) 1.72 0 (95.8)
k = 10,m = 5, p = 1 23.25 80.06 0 (91.05) 1.34 0 (91.05)
k = 10,m = 20, p = 0 112.05 659.07 1.15 619.37 0 (1,226)
k = 10,m = 20, p = 0.5 115.30 610.71 0.62 415.85 0 (949.35)
k = 10,m = 20, p = 1 116.40 615.51 1.82 373.58 0 (1,079.3)
k = 25,m = 5, p = 0 81.75 631.84 31.09 620.74 0 (1,564.05)
k = 25,m = 5, p = 0.5 80.9 623.89 122.18 214.31 0 (1455.75)
k = 25,m = 5, p = 1 85.55 623.33 147.59 173.34 0 (1661.7)

the nine nine resulting parameter configurations, 20 instances are generated. Table

5.2 reports the average size of the universe and the average size of |Ir| (average

number of discarded items). It also reports the average objective function value

achieved by each tested method. The latter are reported in terms of the percentage

difference to the best performing method (i.e., the relative gap); in other words, a

value of zero under these columns indicates the best performing method (with the

corresponding objective value shown in parentheses) along that specific each row

(i.e., parameter setting). Table 5.3 reports the geometric mean run times of tested

methods. Highlights of the obtained results are as follows. MIP#4 achieved the lowest

%Relative Gap for four data sets, IGH for four data sets, IGH Implicit for three data

sets, and Exact Implicit for one data set. H-SN-SA dominated other sorting-based

methods (SAR, SNA, H-SA-SN) in terms of solution quality while maintaining a

similar run time. Whenever MIP#4 did not terminate within the time limit, the best

solution found up to that point was used in the computations.

Data reduction was helpful for exact methods; it reduced the run time or im-

proved the solution quality or both. The effect of data reduction on IGH was highly

dependent on the data set; IGH Implicit outperformed IGH Explicit in terms of so-

129

lution quality, whereas the reverse was true for run time. To round out the re-

sults, Spearman’s footrule and BestInput produced neither high-quality solutions nor

low run times. Based on the discussed results, we selected IGH, IGH Implicit,

Table 5.2: %Relative Gap of The Tested Methods

n |Ir| BestInput Spearman SAR SNA H-SA-SN H-SN-SA IGH IGH Implicit IGH Explicit MIP#4 MIP#4 Implicit MIP#4 Explicit
k = 50,m = 5, p = 0 165.6 70.4 20.65 35.53 25.56 10.45 25.47 7.52 0 (6301.65) 0 (6301.65) 20.93 25.03 15.18 16.52
k = 50,m = 5, p = 0.5 162.35 69.15 30.78 5.37 39.38 6.91 39.02 4.82 0 (7829.8) 0 (7829.8) 11.66 26.37 15.38 16.67
k = 50,m = 5, p = 1 161.3 68.65 38.93 46.48 48.67 5.45 48.60 3.76 0 (9329.6) 0 (9329.6) 13.13 27.86 13.87 15.72
k = 10,m = 20, p = 0 99.0 86.6 16.96 38.49 25.47 0.76 24.93 0.45 0 (972.4) 0.36 2.81 0.28 2.66 2.75
k = 10,m = 20, p = 0.5 89.9 61.7 28.03 45.16 31.02 1.51 31.07 0.92 0.30 0.63 1.65 0 (689.3) 1.13 1.02
k = 10,m = 20, p = 1 65.95 55.75 29.34 45.96 0.45 0.89 1.87 35.88 1.86 35.84 1.17 0 (704.3) 0.99 0.99
k = 25,m = 5, p = 0 75.25 36.65 26.80 39.42 28.49 12.40 28.32 8.71 1.33 1.33 12.78 6.94 0 (1243.7) 0.38
k = 25,m = 5, p = 0.5 66.25 29.75 36.97 48.08 51.83 51.38 51.75 5.05 1.49 1.49 5.20 0 (1306.05) 0.18 0.46
k = 25,m = 5, p = 1 67.7 31.15 42.56 47.99 61.35 7.19 61.28 5.00 1.09 1.09 5.50 0 (1564.9) 0.17 0.54

Table 5.3: Geometric Mean of Run Time of the Tested Methods (in Seconds)

BestInput Spearman SAR SNA H-SA-SN H-SN-SA IGH IGH Implicit IGH Explicit MIP#4 MIP#4 Implicit MIP#4 Explicit
k = 50,m = 5, p = 0 0.17 0.90 0.00 0.00 0.00 0.00 0.03 0.03 0.03 736.56 736.56 634.92
k = 50,m = 5, p = 0.5 0.19 0.97 0.00 0.00 0.00 0.00 0.03 0.02 0.02 747.58 714.66 633.93
k = 50,m = 5, p = 1 0.19 0.95 0.00 0.00 0.00 0.00 0.04 0.03 0.03 784.54 743.44 635.63
k = 10,m = 20, p = 0 0.07 0.60 0.00 0.00 0.00 0.00 0.02 0.01 0.01 633.68 37.87 6.65
k = 10,m = 20, p = 0.5 0.05 0.31 0.00 0.00 0.00 0.00 0.01 0.01 0.01 83.29 12.98 0.3
k = 10,m = 20, p = 1 0.04 0.26 0.00 0.00 0.00 0.00 0.01 0.01 0.01 45.95 9.61 0.15
k = 25,m = 5, p = 0 0.02 0.10 0.00 0.00 0.00 0.00 0.01 0.01 0.01 612.48 107.33 317.69
k = 25,m = 5, p = 0.5 0.02 0.11 0.00 0.00 0.00 0.00 0.01 0.01 0.01 154.67 25.98 36.81
k = 25,m = 5, p = 1 0.02 0.10 0.00 0.00 0.00 0.00 0.01 0.01 0.01 40.55 22.07 22.38

IGH Explicit, and H-SN-SA for further testing on larger instances in the third part

of the experiments. Specifically, we tested these algorithms on generated instances

with the following characteristics: (k = 125,m = 20, p), (k = 500,m = 5, p), and

(k = 1000,m = 20, p), where p ∈ {0, 0.5, 1}. For each of the nine nine resulting pa-

rameter configurations, 20 instances are generated. Tables 5.4 and 5.5 report the same

statistics as Tables 5.2 and 5.3, respectively. In the second part, IGH achieved the

best performance in all data sets; it shared the best performance with IGH Implicit

in four data sets. H-SN-SA had a very good performance, differing by less than 1%

from IGH in four data sets. However, IGH and its variant had a geometric mean

of 3.43 seconds or higher, whereas H-SN-SA took 0.00 seconds. To round out the

results, IGH Explicit was dominated by H-SN-SA, both in terms of solution quality

and run time. Most impressively, IGH had the best performance similar to the second

experiment. As a final note, the local search subroutine was able to improve the

130

Table 5.4: %Relative Gap of The Tested Methods

n |Ir| H-SN-SA IGH IGH Implicit IGH Explicit
k = 125,m = 20, p = 0 1,976 1,381.55 0.86 0 (219,729.45) 1.23 4.24
k = 125,m = 20, p = 0.5 1,935 1,395.65 0.43 0 (317,769.9) 2.39 3.31
k = 125,m = 20, p = 1 2,011 1,421.95 0.40 0 (409,687) 3.31 4.57
k = 500,m = 5, p = 0 2,043 1,092.6 1.76 0 (762,631.9) 0 (762,631.9) 12.16
k = 500,m = 5, p = 0.5 2,062 1,095.9 4.89 0 (1,000,518) 0.00 11.09
k = 500,m = 5, p = 1 2,086.5 1,098.6 1.14 0 (1,238,945.6) 0.00 13.35
k = 1000,m = 5, p = 0 4,170 2,177.4 1.64 0 (3,054,883.2) 0 (3054883.2) 11.81
k = 1000,m = 5, p = 0.5 4,096 2,202.1 0.71 0 (4,026,861.8) 0 (4026861.8) 11.08
k = 1000,m = 5, p = 1 4,024 2,190.75 1.12 0 (4,975,294.0) 0 (4975294.0) 13.38

Table 5.5: Geometric Mean of Run Time of the Tested Methods (in Seconds)

H-SN-SA IGH IGH Implicit IGH Explicit
k = 125,m = 20, p = 0 0.00 3.47 3.45 3.43
k = 125,m = 20, p = 0.5 0.00 3.45 3.43 3.40
k = 125,m = 20, p = 1 0.00 3.58 3.57 3.54
k = 500,m = 5, p = 0 0.00 3.94 3.90 3.81
k = 500,m = 5, p = 0.5 0.00 3.69 3.66 3.57
k = 500,m = 5, p = 1 0.00 3.92 3.87 3.80
k = 1000,m = 5, p = 0 0.00 15.65 15.19 14.59
k = 1000,m = 5, p = 0.5 0.00 15.32 15.02 14.55
k = 1000,m = 5, p = 1 0.00 15.56 15.22 14.76

solution quality of the aggregated list of the heuristic algorithms by up to 1.82%. This

subroutine had the most effect on SAR and SAN methods; however, its improvement

on all other methods was less than 1%. Nevertheless, the required time for applying

this subroutine was completely negligible.

All things considered, IGH had the best performance in terms of solution quality;

however, its run time rapidly increased with the size of the problem. On the other

hand, H-SN-SA yielded competitive solutions (differing by less than 8% from IGH),

but in far less time. Most impressively, H-SN-SA is a distance-free aggregation tech-

nique, and it is robust to the size of the problem. This feature makes it very suitable

for solving very large instances.

131

5.8 Case Study: University Rankings

To assess the practical implications of TOP-k-AGG, we study the university rank-

ing problem. Many university rankings have been proposed in recent years including

the U.S. News and World Report Best Global Universities (USNEWS) (USN, 2022),

the Times Higher Education World University Rankings (TIMES) (TIM, 2022), the

Quacquarelli Symonds World University Rankings (QS) (QS, 2022), and the Aca-

demic Ranking of World Universities (ARWU) (ARW, 2022a). University rankings

have many implications for universities and their students. They impact prospective

students, especially international students, who use them to identify the universities

where they will submit an application (Bowman and Bastedo, 2009; Çakır et al.,

2015). Additionally, they have implications on the status of higher education in-

stitutions and their external funding, as universities use rankings to promote their

educational excellence. Naturally, a higher rank attracts more funding and high-

quality scholars. However, there is a discrepancy between the criteria and associated

weights used by each ranking institution (Çakır et al., 2015). U.S. News utilizes 13 cri-

teria: research reputation (12.5%), regional research reputation (12.5%), publications

(10%), books (2.5%), conferences (2.5%), normalized citation impact (10%), total

citations (7.5%), number of publications that are among the 10% most cited (12.5%),

percentage of total publications that are among the 10% most cited (10%), inter-

national collaboration – relative to country (5%), international collaboration (5%),

number of highly cited papers that are among the top 1% most cited in their re-

spective field (5%), percentage of total publications that are among the top 1% most

highly cited papers (5%) (Morse and Castonguay, 2021). TIMES utilizes 5 main cri-

teria: teaching (reputation survey, staff-to-student ratio, doctorate-to-bachelor’s ra-

tio, doctorates-awarded-to-academic-staff ratio, institutional income) (30%), research

132

(reputation survey, research income, research productivity) (30%), citations (30%),

international outlook (proportion of international students, proportion of interna-

tional staff, international collaboration) (7.5%), and industry income (2.5%) (Ross,

2021). QS utilizes 5 main criteria: academic reputation (40%), faculty/student ratio

(20%), employer reputation (10%), citations per faculty (10%), international student

ratio & international faculty ratio (10%) (Laura, 2022). Finally, ARWU utilizes 5

main criteria: quality of education (10%), quality of faculty (20%), research output

(40%), and per capita performance (10%) (ARW, 2022b).

There is an ongoing debate on variable selection, weights, and variable interde-

pendencies involved in the difference university ranking methodologies(Çakır et al.,

2015). Some recent studies have addressed the university ranking aggregation prob-

lem using score-based methods. Tavanaei et al. (2018) addressed this problem by

minimizing the cumulative deviation of the rank of each university in the aggregate

list from its average rank in the input lists. Furthermore, Zhang et al. (2021) pro-

posed sorting universities based on their out-in degree ratio in the university graph,

where each node represents a university, and there is a directed arc from node i to

node j if university i has been ranked ahead of university j in more than half of the

input lists.

The goal of this study is to identify the top-100 U.S. universities by using TOP-

k-AGG to aggregate the USNEWS, QS, TIMES, and ARWU obtained from their

websites. The input lists are truncated to the first 100 universities, and the universe

of items, I, is formed by considering all universities that have appeared at least once

in the top-100 positions of the input lists. Furthermore, if two universities i and j

are tied in an input list, this is assumed to contribute 0.5 to sij and sji instead of

1. The rationale for doing this is as follows. We can break the ties in the input lists

by considering all strict rankings involving any permutation of the tied items and

133

redistributing the unit weight of each input list over the created lists. In doing so, if i

and j are tied in one input list, i will be ranked ahead of j in half of the created strict

rankings and j in the other half. For example, consider a top-4 list τ = {a ≈ b, c ≈ d}

(a and b are tied but ranked ahead of c and d who are also tied) with a unit weight.

We can break the ties by creating four strict lists: τ 1 = {a, b, c, d}, τ 2 = {a, b, d, c},

τ 3 = {b, a, c, d}, τ 4 = {b, a, d, c}, each with a weight of 0.25. Note that a is ranked

ahead of b in half of the created lists, and b is ranked of a in the other half; the

same is true for c and d. A similar approach is taken for dealing with items tied

at the bottom of the list while truncating the lists. For example, consider the 2022

ARWU list where 85 universities occupy the first 85 positions and 21 universities are

tied for positions 85-106, clearly, only 15 of the 21 tied universities can be included

in the top-100 list. To describe how such lists are truncated, let n′ be the number

of tied universities at the bottom of top-100 list where only k′ < n′ of them can be

included in the top-100 list. Similar to the above treatment of ties, we can consider

all strict rankings involving any permutation of k′ out of n′ items at the bottom of

the list by redistributing the unit weight of each input list over the created lists, that

is, create
(
n′

k′

)
k′! strict lists, each with a weight of 1/

(
n′

k′

)
k′!. Two universities i and

j both will be both present and i will be ranked ahead of j in 0.5
(
n′−2
k′−2

)
k′! of the

created lists; i, but not j, will be present in
(
n′−2
k′−1

)
k′! of the created lists; and neither

i nor j will be present in
(
n′−2
k′

)
k′! of the created lists. This will allow us to process

the data without actually creating all the possible strict lists, which can be in the

order of billions. Furthermore, the penalty parameter p is set to 0.5, mainly due to

Proposition 11. After obtaining the consensus list, a subset of adjacent universities is

tied if any permutation of them, while keeping the rest of the orderings the same, does

not change the optimal objective function value. The complete input lists and the

consensus top-100 U.S. universities in 2022, 2021, and 2020 are displayed in Tables

134

5.6-5.11

Perhaps, the most interesting parts of the results are that the Harvard University,

Stanford University, and MIT are tied as the highest-ranked universities in the U.S.

in 2020; Harvard University and Stanford University are tied as the highest-ranked

universities in the U.S. in 2021; but only Harvard University is identified as the

highest-ranked university in the U.S. in 2022.

As a final note, the K(p) distance, # of full rank reversals, and # of partial rank

reversals between the four input lists, and between each input list and the consensus

list for 2022, 2021, and 2020 are reported in Tables 5.12-5.14. Interestingly, for all

three years, USNEWS and ARWU are similar to each other, as are TIMES and QS

(they have the lowest K(p) distance, # of full rank reversals, and # of partial rank

reversals to each other compared to other lists). Furthermore, for all three years,

USNEWS is the most similar input list to the consensus list, i.e., it is the solution to

the BestInput method (see Section 5.5)).

135

Table 5.6: Global Rank of U.S. Universities That Have Appeared at Least Once in
the Input 2022 Top-100 U.S. Universities Lists

University US News Times QS ARWU
Harvard University 1 2 5 1
Massachusetts Institute of Technology 2 5 1 3
Stanford University 3 4 3 2
University of California–Berkeley 4 8 32 5
Columbia University 6 11 19 8
University of Washington 7 29 85 17
California Institute of Technology 9 2 6 9
Johns Hopkins University 9 13 25 14
University of California–San Francisco 11 −− −− 19
Yale University 12 9 14 11
University of Pennsylvania 13 13 13 15
University of California–Los Angeles 14 20 40 13
University of Chicago 15 10 10 10
Princeton University 16 7 20 6
University of Michigan–Ann Arbor 19 24 23 28
University of California–San Diego 21 34 48 21
Cornell University 22 22 21 12
Duke University 23 23 52 31
Northwestern University 24 24 30 30
New York University 30 26 42 25
Washington University in St. Louis 31 51 107 27
University of North Carolina–Chapel Hill 39 52 100 29
University of Pittsburgh 42 140 163 82
University of Texas–Austin 43 47 67 37
Ohio State University–Columbus 52 85 120 101
University of Wisconsin–Madison 52 58 75 33
University of Minnesota–Twin Cities 55 86 186 44
Icahn School of Medicine at Mount Sinai 57 −− −− 101
Georgia Institute of Technology 58 45 88 151
University of Maryland–College Park 60 93 158 50
University of Colorado–Boulder 62 158 251 51
Boston University 65 62 112 101
University of California–Davis 67 67 108 101
University of California–Santa Barbara 67 68 146 57
University of Southern California 70 63 112 53
University of Illinois–Urbana-Champaign 72 48 82 49
Vanderbilt University 73 113 218 64

136

University US News Times QS ARWU
Emory University 74 82 160 101
Pennsylvania State University–University
Park

80 119 96 101

University of California–Irvine 86 98 232 61
Rockefeller University 89 −− −− 44
University of Arizona 99 150 268 101
University of Florida 99 154 173 94
Carnegie Mellon University 102 28 53 101
University of California–Santa Cruz 103 201 347 151
Michigan State University 108 93 157 151
University of Virginia 110 127 226 201
Brown University 119 64 60 99
University of Texas Southwestern Medical
Center–Dallas

124 −− −− 52

Purdue University–West Lafayette 127 105 116 83
Rutgers, The State University of New
Jersey–New Brunswick

130 190 264 101

Baylor College of Medicine 135 −− −− 151
Texas A&M University–College Station 140 193 168 151
Indiana University–Bloomington 141 167 311 101
Case Western Reserve University 144 126 161 101
University of Alabama–Birmingham 147 −− −− 301
University of Massachusetts–Amherst 148 201 246 151
Oregon Health and Science University 151 251 201
University of Utah 151 251 358 101
University of Rochester 161 142 154 151
Arizona State University–Tempe 165 132 216 101
Rice University 167 136 94 101
University of California–Riverside 169 251 403 201
University of Iowa 174 251 455 201
Northeastern University 176 168 340 201
University of Colorado Anschutz Medical
Campus

176 251 −− −−

University of Cincinnati 191 −− 601 301
Stony Brook University–SUNY 195 301 378 301
Tufts University 198 172 275 151
University of Tennessee 218 301 541 201
Florida State University 223 251 475 201
North Carolina State University–Raleigh 227 301 300 201
University of Illinois–Chicago 227 301 285 301

137

University US News Times QS ARWU
Iowa State University 237 401 494 501
University of Miami 241 201 311 201
University of Oregon 244 351 651 301
Dartmouth College 247 99 191 301
George Washington University 247 201 355 201
Virginia Tech 250 251 346 201
Yeshiva University 250 −− 252 −−
Colorado State University 266 351 431 201
University of Maryland–Baltimore 266 −− −− 301
University of Texas Health Science Center–
Houston

266 −− −− 301

University at Buffalo–SUNY 280 251 388 301
University of Kansas 280 401 387 201
University of Notre Dame 284 183 222 301
University of New Mexico 289 251 651 501
Oregon State University 295 −− 531 201
University of South Florida 298 201 581 201
Washington State University 302 351 427 301
Temple University 303 301 751 401
University of Georgia 303 351 541 301
University of Texas–Dallas 308 351 477 301
Georgetown University 314 130 248 401
Brandeis University 320 251 455 301
University of Connecticut 324 401 373 301
University of South Carolina–Columbia 330 401 601 401
University at Albany–SUNY 339 351 751 601
University of Delaware 346 301 531 201
University of Kentucky 348 501 651 301
Drexel University 354 351 651 301
University of Colorado–Denver 360 414 −− 201
Wayne State University 361 401 511 501
University of Nebraska–Lincoln 367 401 571 201
Baylor University 376 801 1001 501
University of Hawaii–Manoa 376 251 340 301
University of Massachusetts–Worcester 379 201 −− −−
Syracuse University 383 351 651 701
Tulane University 417 401 436 601
University of Massachusetts–Boston 417 201 651 901
Virginia Commonwealth University 417 −− 701 201
University of Missouri 425 501 476 201

138

University US News Times QS ARWU
Wake Forest University 425 301 429 501
University of Houston 439 601 701 201
George Mason University 453 251 801 201
Rush University 461 301 −− 501
William & Mary 541 301 651 −−
Colorado School of Mines 577 401 461 701
Boston College 625 251 494 401
Rensselaer Polytechnic Institute 647 501 431 401
University of California–Merced 718 301 401
Illinois Institute of Technology 729 351 444 901
Howard University 736 251 651 −−
Missouri University of Science and Technol-
ogy

821 401 511 901

Nova Southeastern University 870 301 −− −−
Lehigh University 890 601 531 801
University of Massachusetts–Dartmouth 1035 201 −− −−
University of Massachusetts–Lowell 1141 201 −− 901
Hofstra University 1237 301 −− −−
Clark University −− 501 601 −−
The New School −− 801 561 −−
Smith College −− −− 601 −−
The University of Texas M. D. Anderson
Cancer Center

−− −− −− 71

Mayo Clinic Alix School of Medicine −− −− −− 101
University of Massachusetts Medical School
- Worcester

−− −− −− 201

139

Table 5.7: 2022 Consensus Top-100 U.S. Universities

University Rank
Harvard University 1
Massachusetts Institute of Technology 2
Stanford University 3
University of California–Berkeley 4
California Institute of Technology 4
Columbia University 6
University of Chicago 6
Yale University 6
Princeton University 6
Johns Hopkins University 10
University of Pennsylvania 11
University of California–Los Angeles 12
Cornell University 12
University of Michigan–Ann Arbor 14
University of Washington 14
Northwestern University 16
University of California–San Diego 16
New York University 18
Duke University 18
Washington University in St. Louis 20
University of North Carolina–Chapel Hill 21
University of Texas–Austin 21
Carnegie Mellon University 21
University of Wisconsin–Madison 24
Georgia Institute of Technology 25
University of Illinois–Urbana-Champaign 25
Boston University 27
University of Southern California 28
Brown University 29
University of California–Davis 30
Ohio State University–Columbus 31
University of California–Santa Barbara 31
University of Minnesota–Twin Cities 33
University of Maryland–College Park 34
Emory University 35
University of Pittsburgh 35
Vanderbilt University 35
Pennsylvania State University–University Park 38
Michigan State University 39

140

University Rank
University of California–Irvine 39
Purdue University–West Lafayette 41
Case Western Reserve University 42
University of Florida 42
Arizona State University–Tempe 44
University of Colorado–Boulder 44
University of Virginia 44
Rice University 47
University of Rochester 48
University of Arizona 48
Rutgers, The State University of New Jersey–New Brunswick 50
Indiana University–Bloomington 51
Texas A&M University–College Station 51
University of Massachusetts–Amherst 53
Tufts University 54
University of California–Santa Cruz 55
Northeastern University 55
University of Miami 57
University of California–San Francisco 57
Dartmouth College 57
Rockefeller University 60
University of Utah 60
George Washington University 60
University of California–Riverside 63
University of Iowa 64
University of Notre Dame 64
Florida State University 66
University of Texas Southwestern Medical Center–Dallas 66
Baylor College of Medicine 68
Oregon Health and Science University 69
North Carolina State University–Raleigh 70
Georgetown University 70
Virginia Tech 72
Stony Brook University–SUNY 73
University of Tennessee 74
University of Illinois–Chicago 75
Colorado State University 76
University of Kansas 77
University of South Florida 78
University of Hawaii–Manoa 79
University at Buffalo–SUNY 79

141

University Rank
Washington State University 81
Brandeis University 82
University of Texas–Dallas 83
University of Delaware 83
University of Oregon 85
University of Connecticut 86
University of Missouri 87
Boston College 88
Iowa State University 89
Oregon State University 90
University of Georgia 91
University of Nebraska–Lincoln 92
University of Cincinnati 93
University of New Mexico 94
Drexel University 95
Temple University 95
University of South Carolina–Columbia 97
Wake Forest University 97
Wayne State University 99
University of Kentucky 99

142

Table 5.8: Global Rank of U.S. Universities That Have Appeared at Least Once in
the Input 2021 Top-100 U.S. Universities Lists

University US News Times QS ARWU
Harvard University 1 3 3 1
Massachusetts Institute of Technology 2 5 1 3
Stanford University 3 2 2 2
University of California–Berkeley 4 7 30 5
Columbia University 6 17 19 8
University of Washington 8 29 72 19
California Institute of Technology 7 4 4 9
Johns Hopkins University 10 12 25 16
University of California–San Francisco 15 −− −− 20
Yale University 11 8 17 11
University of Pennsylvania 14 13 16 15
University of California–Los Angeles 13 15 36 14
University of Chicago 15 10 9 10
Princeton University 11 9 12 6
University of Michigan–Ann Arbor 17 22 21 26
University of California–San Diego 21 33 54 18
Cornell University 22 19 18 12
Duke University 23 20 42 32
Northwestern University 24 24 29 34
New York University 29 26 35 27
Washington University in St. Louis 33 50 105 23
University of North Carolina–Chapel Hill 36 56 95 29
University of Pittsburgh 43 133 156 101
University of Texas–Austin 38 44 71 41
Ohio State University–Columbus 45 80 108 101
University of Wisconsin–Madison 41 49 65 31
University of Minnesota–Twin Cities 47 85 177 40
Icahn School of Medicine at Mount Sinai 62 −− −− 101
Georgia Institute of Technology 66 38 80 101
University of Maryland–College Park 60 90 152 56
University of Colorado–Boulder 59 131 230 46
Boston University 57 54 110 95
University of California–Davis 66 64 112 100
University of California–Santa Barbara 56 68 152 57
University of Southern California 70 53 121 61
University of Illinois–Urbana-Champaign 60 48 82 55
Vanderbilt University 72 111 187 65

143

University US News Times QS ARWU
Emory University 71 85 158 101
Pennsylvania State University–University
Park

75 114 101 101

University of California–Irvine 78 98 210 70
Rockefeller University 76 −− −− 42
University of Arizona 97 124 273 101
University of Florida 107 152 162 97
Carnegie Mellon University 94 28 51 97
University of California–Santa Cruz 81 201 416 151
Michigan State University 100 105 157 101
University of Virginia 109 117 217 151
Brown University 101 61 60 101
University of Texas Southwestern Medical
Center–Dallas

139 −− −− 48

Purdue University–West Lafayette 114 94 109 86
Rutgers, The State University of New
Jersey–New Brunswick

113 166 258 101

Baylor College of Medicine 132 −− −− 151
Texas A&M University–College Station 130 197 169 151
Indiana University–Bloomington 127 140 320 101
Case Western Reserve University 142 121 162 101
University of Alabama–Birmingham 155 169 −− 301
University of Massachusetts–Amherst 142 201 270 201
Oregon Health and Science University 148 251 −− 201
University of Utah 142 201 333 101
University of Rochester 140 147 165 151
Arizona State University–Tempe 146 184 220 101
Rice University 128 124 89 101
University of California–Riverside 158 251 449 201
University of Iowa 160 201 420 201
Northeastern University 177 176 362 201
University of Colorado Anschutz Medical
Campus

−− 301 −− −−

University of Cincinnati 202 251 601 201
Stony Brook University–SUNY 176 301 373 301
Tufts University 182 155 260 151
University of Tennessee 217 301 432 201
Florida State University 195 251 456 201
North Carolina State University–Raleigh 226 301 295 201
University of Illinois–Chicago 212 251 256 201

144

University US News Times QS ARWU
Iowa State University 231 −− 541 301
University of Miami 236 201 291 201
University of Oregon 232 301 601 301
Dartmouth College 226 101 203 301
George Washington University 258 187 353 301
Virginia Tech 247 201 326 201
Yeshiva University 261 −− 341 701
Colorado State University −− −− 443 201
University of Maryland–Baltimore 271 −− −− 301
University of Texas Health Science Center–
Houston

261 −− −− 301

University at Buffalo–SUNY 277 251 346 301
University of Kansas 284 351 383 201
University of Notre Dame 238 170 211 301
University of New Mexico 256 251 601 401
Oregon State University 277 −− 499 201
University of South Florida 312 201 581 251
Washington State University 297 301 411 301
Temple University 312 301 701 501
University of Georgia 310 −− 501 201
University of Texas–Dallas 269 301 531 301
Georgetown University 322 120 230 201
Brandeis University 224 201 446 301
University of Connecticut 332 −− 501 201
University of South Carolina–Columbia −− −− 571 −−
University at Albany–SUNY 297 251 751 401
University of Delaware 336 301 541 201
University of Kentucky 358 −− 601 301
Drexel University 387 351 601 301
University of Colorado–Denver 363 −− 398 201
University of Mississippi 355 −− 801 −−
Wayne State University 327 351 477 401
University of Nebraska–Lincoln 349 −− 561 201
University of Hawaii–Manoa 378 201 333 301
Syracuse University 370 301 601 601
Tulane University 440 301 414 601
Virginia Commonwealth University 402 −− 651 201
University of Missouri −− −− 483 201
Wake Forest University 419 251 380 401
University of Houston 399 −− 701 201

145

University US News Times QS ARWU
George Mason University 453 251 801 201
Rush University 467 301 −− 501
University of Texas–San Antonio 504 501 −− 501
William & Mary 564 251 651 −−
Boston College 595 301 454 401
Rensselaer Polytechnic Institute 577 501 470 401
University of California–Merced 693 301 −− 401
Illinois Institute of Technology 736 301 426 801
Howard University 761 201 651 −−
California State University–Fresno 494 −− −− −−
University of Alaska–Fairbanks 736 401 −− 501
Nova Southeastern University 877 251 −− −−
Lehigh University 850 601 551 801
Clark University −− −− 581 −−
The New School −− 801 561 −−
The University of Texas M. D. Anderson Cancer Center −− −− 67 −−
Mayo Clinic Alix School of Medicine −− −− −− 101
University of Massachusetts Medical– School
- Worcester

374 −− −− 201

146

Table 5.9: 2021 Consensus Top-100 U.S. Universities

University Rank
Harvard University 1
Stanford University 1
Massachusetts Institute of Technology 3
University of California–Berkeley 4
California Institute of Technology 4
Princeton University 6
University of Chicago 7
Yale University 7
Columbia University 7
Johns Hopkins University 10
University of Pennsylvania 10
University of California–Los Angeles 12
Cornell University 12
University of Michigan–Ann Arbor 14
University of Washington 14
Duke University 16
Northwestern University 17
New York University 18
University of California–San Diego 18
University of Texas–Austin 20
Washington University in St. Louis 20
Carnegie Mellon University 20
University of Wisconsin–Madison 20
University of North Carolina–Chapel Hill 24
University of Illinois–Urbana-Champaign 24
Georgia Institute of Technology 24
Boston University 27
University of Southern California 27
University of California–Davis 29
University of California–Santa Barbara 29
Brown University 29
Ohio State University–Columbus 32
University of Minnesota–Twin Cities 33
University of Maryland–College Park 34
Emory University 35
Vanderbilt University 36
Pennsylvania State University–University Park 37
University of Colorado–Boulder 37
Purdue University–West Lafayette 37

147

University Rank
University of Pittsburgh 40
University of California–Irvine 40
Michigan State University 42
University of Florida 43
Rice University 43
University of Virginia 45
Case Western Reserve University 45
University of Arizona 47
Rutgers, The State University of New Jersey–New Brunswick 48
Indiana University–Bloomington 49
University of Rochester 50
Arizona State University–Tempe 51
Texas A&M University–College Station 51
Tufts University 53
Dartmouth College 53
Georgetown University 55
University of Utah 55
University of California–Santa Cruz 57
University of Massachusetts–Amherst 58
Northeastern University 59
University of Iowa 60
University of California–San Francisco 60
University of Notre Dame 60
University of Illinois–Chicago 63
University of Miami 64
Virginia Tech 65
Rockefeller University 65
Icahn School of Medicine at Mount Sinai 65
University of California–Riverside 68
Florida State University 69
University of Cincinnati 70
Oregon Health and Science University 70
University of Alabama–Birmingham 72
North Carolina State University–Raleigh 72
George Washington University 74
University of Hawaii–Manoa 75
University at Buffalo–SUNY 76
Stony Brook University–SUNY 77
University of Tennessee 78
University of Kansas 79
Brandeis University 79

148

University Rank
Oregon State University 81
University of Texas–Dallas 81
Washington State University 81
University of Georgia 84
University of Connecticut 85
University of Delaware 86
University of Colorado–Denver 87
University of South Florida 87
Iowa State University 89
University of Oregon 90
University of New Mexico 91
Wake Forest University 91
University at Albany–SUNY 93
Tulane University 94
Boston College 95
Wayne State University 96
University of Nebraska–Lincoln 97
Syracuse University 98
Drexel University 99
Rensselaer Polytechnic Institute 100

149

Table 5.10: Global Rank of U.S. Universities That Have Appeared at Least Once in
the Input 2020 Top-100 U.S. Universities Lists

University US News Times QS ARWU
Harvard University 1 7 3 1
Massachusetts Institute of Technology 2 5 1 4
Stanford University 3 4 2 2
University of California–Berkeley 4 13 28 5
Columbia University 7 14 18 7
University of Washington 10 26 68 16
California Institute of Technology 6 2 5 8
Johns Hopkins University 11 12 24 15
University of California–San Francisco 15 −− 1001 21
Yale University 12 8 17 11
University of Pennsylvania 16 11 15 19
University of California–Los Angeles 14 17 35 13
University of Chicago 13 9 10 10
Princeton University 8 6 13 6
University of Michigan–Ann Arbor 17 21 21 22
University of California–San Diego 19 31 45 18
Cornell University 23 19 14 12
Duke University 22 20 25 27
Northwestern University 24 22 31 30
New York University 28 29 39 27
Washington University in St. Louis 31 52 108 23
University of North Carolina–Chapel Hill 33 54 90 30
University of Pittsburgh 47 113 140 96
University of Texas–Austin 34 38 65 41
Ohio State University–Columbus 45 70 101 101
University of Wisconsin–Madison 37 51 56 32
University of Minnesota–Twin Cities 47 79 156 40
Icahn School of Medicine–Mount Sinai 67 −− −− 101
Georgia Institute of Technology 62 38 72 101
University of Maryland–College Park 51 91 136 53
University of Colorado–Boulder 50 124 206 44
Boston University 51 61 98 90
University of California–Davis −− 55 104 91
University of California–Santa Barbara 41 57 135 49
University of Southern California 69 62 129 61
University of Illinois–Urbana-Champaign 59 48 75 45
Vanderbilt University 72 116 200 62

150

University US News Times QS ARWU
Emory University 71 80 156 101
Pennsylvania State University–University
Park

72 78 93 101

University of California–Irvine 78 96 219 69
Rockefeller University 62 −− −− 43
University of Arizona 85 104 262 101
University of Florida 105 175 167 88
Carnegie Mellon University 82 27 48 95
University of California–Santa Cruz 76 179 367 151
Michigan State University 101 84 144 101
University of Virginia 107 107 198 151
Brown University 102 53 57 101
University of Texas Southwestern Medical
Center–Dallas

146 −− −− −−

Purdue University–West Lafayette 114 88 111 79
Rutgers, The State University of New
Jersey–New Brunswick

105 168 262 101

Baylor College of Medicine 132 −− 1001 151
Texas A&M University–College Station 134 178 189 151
Indiana University–Bloomington 136 134 312 101
Case Western Reserve University 155 119 167 101
University of Alabama–Birmingham 175 172 −− 301
University of Massachusetts–Amherst 136 201 305 151
Oregon Health and Science University 152 251 −− 201
University of Utah 139 201 353 101
University of Rochester 125 173 170 151
Arizona State University–Tempe 146 155 215 101
Rice University 108 105 85 101
University of California–Riverside 149 251 454 201
University of Iowa 161 201 421 201
Northeastern University 200 173 344 201
University of Cincinnati 196 251 561 201
Stony Brook University–SUNY 171 301 359 201
Tufts University 190 139 253 151
University of Tennessee 217 301 407 201
Florida State University 190 251 448 201
North Carolina State University–Raleigh 214 301 285 201
University of Illinois–Chicago 217 251 231 201
Iowa State University 220 351 511 201
University of Miami 235 201 271 201

151

University US News Times QS ARWU
University of Oregon 220 251 601 301
Dartmouth College 214 94 207 201
George Washington University 255 198 336 301
Virginia Tech 253 201 327 201
Yeshiva University 262 359 201
Colorado State University −− 401 442 201
University of Maryland–Baltimore 257 201
University at Buffalo–SUNY 266 251 340 301
University of Kansas 279 401 372 201
University of Notre Dame 223 157 210 301
University of New Mexico 253 301 601 301
Oregon State University 266 351 461 201
University of South Florida 310 201 601 201
Washington State University 290 351 400 301
Temple University 319 301 651 301
University of Georgia 290 401 474 201
University of Texas–Dallas 273 301 501 301
Georgetown University 298 102 226 201
Brandeis University 250 201 468 301
University of Connecticut 325 351 377 201
University of South Carolina–Columbia −− 401 561 301
University at Albany–SUNY 298 351 701 501
University of Delaware 311 251 491 201
University of Kentucky 349 401 601 301
Drexel University 405 401 561 301
University of Colorado–Denver 338 −− 392 201
Wayne State University 309 351 484 501
University of Nebraska–Lincoln 290 401 561 201
Baylor University 353 601 801 501
University of Hawaii–Manoa 379 201 326 301
Syracuse University 346 251 581 601
Tulane University 469 301 419 601
University of Massachusetts–Boston 528 −− 571 901
Virginia Commonwealth University 402 −− 601 201
University of Missouri −− 401 551 151
University of Oklahoma 405 −− 571 401
Wake Forest University 401 201 398 401
University of Houston 385 401 651 201
George Mason University 434 251 801 201

152

University US News Times QS ARWU
Rush University 443 301 −− 501
Indiana University-Purdue University–
Indianapolis

315 −− 651 301

William & Mary 497 201 601 901
Colorado School of Mines 503 301 601
Boston College 536 301 432 501
Rensselaer Polytechnic Institute 519 401 383 401
University of California–Merced 667 351 −− 401
Illinois Institute of Technology 682 −− 421 −−
Howard University 774 201 581 901
University of Maryland–Baltimore County 660 601 460 601
University of Alaska–Fairbanks 676 351 −− 601
University of Denver 727 351 651 901
Nova Southeastern University 928 301 −− −−
Lehigh University 799 601 551 701
Clark University −− 351 531 −−
The New School −− 801 561 −−
The University of Texas M. D. Anderson Cancer Center −− −− −− 67
University of Massachusetts Medical– School
- Worcester

374 −− 151

153

Table 5.11: 2020 Consensus Top-100 U.S. Universities

University Rank
Harvard University 1
Stanford University 1
Massachusetts Institute of Technology 1
California Institute of Technology 4
Princeton University 5
University of California–Berkeley 5
Columbia University 7
University of Chicago 7
Yale University 7
University of Pennsylvania 10
Johns Hopkins University 10
Cornell University 10
University of California–Los Angeles 13
University of Michigan–Ann Arbor 14
University of Washington 14
Duke University 16
University of California–San Diego 16
Northwestern University 18
New York University 19
University of Wisconsin–Madison 20
University of Texas–Austin 20
Washington University in St. Louis 20
Carnegie Mellon University 20
Georgia Institute of Technology 24
University of Illinois–Urbana-Champaign 24
Brown University 26
University of North Carolina–Chapel Hill 26
University of California–Santa Barbara 28
Boston University 29
Ohio State University–Columbus 30
University of Minnesota–Twin Cities 31
University of Southern California 31
University of California–Davis 31
Pennsylvania State University–University Park 34
Purdue University–West Lafayette 35
University of Maryland–College Park 35
University of Pittsburgh 37
Emory University 38
Michigan State University 39

154

University Rank
University of Colorado–Boulder 39
Vanderbilt University 39
University of California–Irvine 42
University of Arizona 43
University of Florida 43
Rice University 45
Case Western Reserve University 46
University of Virginia 46
Rutgers, The State University of New Jersey–New Brunswick 48
Indiana University–Bloomington 49
University of Rochester 49
Texas A&M University–College Station 51
Arizona State University–Tempe 51
Tufts University 53
Dartmouth College 53
University of California–Santa Cruz 55
Georgetown University 55
University of Massachusetts–Amherst 57
Northeastern University 58
University of Utah 58
University of Notre Dame 58
University of Iowa 61
University of Illinois–Chicago 62
University of Miami 63
Virginia Tech 64
University of California–Riverside 65
University of California–San Francisco 65
Rockefeller University 67
Oregon Health and Science University 68
Stony Brook University–SUNY 69
Florida State University 70
University of Cincinnati 71
North Carolina State University–Raleigh 72
University of Alabama–Birmingham 72
George Washington University 74
University of Tennessee 74
University of Hawaii–Manoa 76
Brandeis University 76
Iowa State University 76
Yeshiva University 79
University at Buffalo–SUNY 79

155

University Rank
Oregon State University 81
University of Kansas 82
University of South Florida 83
University of Delaware 84
University of Connecticut 85
University of Oregon 85
University of New Mexico 87
University of Texas–Dallas 87
Washington State University 89
University of Georgia 90
University of Colorado–Denver 91
Wake Forest University 92
Wayne State University 93
University of Missouri 94
University of Nebraska–Lincoln 95
Syracuse University 96
Colorado State University 96
Temple University 96
University of Kentucky 99
Drexel University 99

Table 5.12: K(p) Distance, # of Full Rank Reversals, and # of and Partial Rank
Reversals, Respectively, Between the Inputs Lists and Consensus, For 2022

USNEWS TIMES QS ARWU Consensus
USNEWS 0 1,432; 1,209; 206 1,414; 1,296; 26 938.5; 661; 483 718; 670; 54
TIMES 1,432; 1,209; 206 0 1,112; 859; 200 1,736; 1257; 578 997; 745; 232
QS 1,414; 1,296; 26 1,112; 859; 200 0 1,658.5; 1,283; 479 867.5; 763, 53
ARWU 938.5; 661; 483 1,736; 1257; 578 1,658.5; 1,283; 479 0 972; 659; 516
Consensus 718, 670, 54 997, 745, 232 867.5, 763, 53 972, 659, 516 0

Table 5.13: K(p) Distance, # of Full Rank Reversals, and # of and Partial Rank
Reversals, Respectively, Between the Inputs Lists and Consensus, For 2021

USNEWS TIMES QS ARWU Consensus
USNEWS 0 1,210; 1,004; 202 1,370; 1269; 21 850; 564; 516 662; 606; 56
TIMES 1,210; 1,004; 202 0 1,006.5; 801; 201 1,583.5; 1,115; 595 789.5; 585; 227
QS 1,370; 1,269; 21 1,006.5; 801; 201 0 1,504; 1,153; 520 895; 791; 52
ARWU 850; 564; 516 1,583.5; 1,115; 595 1,504; 1,153; 520 0 949; 626; 556
Consensus 662; 606; 56 789.5; 585; 22 895; 791; 52 949; 626; 556 0

156

Table 5.14: K(p) Distance, # of Full Rank Reversals, and # of and Partial Rank
Reversals, Respectively, Between the Inputs Lists and Consensus, For 2020

USNEWS TIMES QS ARWU Consensus
USNEWS 0 1,252; 1,082; 184 1,385.5; 1251; 29 944; 621; 574 633; 579; 66
TIMES 1,252; 1,082; 184 0 981; 775, 172 1,555; 1,114; 610 837.5; 641; 211
QS 1,385.5; 1251; 29 981, 775; 172 0 1,465.5; 1,067; 557 935.5; 784; 63
ARWU 944; 621; 574 1,555; 1,114; 610 1,465.5; 1,067; 557 0 1,020.5; 658; 593
Consensus 633; 579; 66 837.5; 642; 211 933.5; 783; 63 1,020.5; 659; 593 0

5.9 Concluding Remarks

This chapter studies the top-k list aggregation problem. It presents a binary

non-linear and four mixed-integer linear programming formulations. Furthermore,

it studies the strength of the four mixed-integer linear programming formulations

using polyhedral analysis. Our findings show that the presented formulations can be

ordered based on the strength of their LP relaxations. The strongest formulation is

induced by a novel set of preference cycle-prevention constraints tailored to the specific

structure of the top-k list aggregation problem introduced herein. Furthermore, it

studies the theoretical insights for setting the associated fixed penalty parameter and

the implications thereof, and it introduces various heuristics and a data reduction

technique for improving their run time on certain large-scale instances. In experiments

conducted on synthetic instances ranging from top-10 to top-1,000 lists, the proposed

IGH and H-SN-SA methods had the best performance; IGH produced the highest-

quality solutions among the heuristic methods, while H-SN-SA yielded competitive

solutions in much less time. Based on the conducted experiments, H-SN-SA is the

only technique that can be applied on massive instances. Data reduction proved to

be a valuable technique, especially for exact methods. Based on a broad spectrum of

generated data sets, implicit reduction performed much better, especially on large-

scale instances. Finally, this chapter studies the university rankings problem by

aggregating the top-100 U.S. universities, as ranked by four different services.

157

Chapter 6

GENERAL DISCUSSION AND CONCLUSIONS

Rank aggregation is increasingly being utilized in various fields, bringing new chal-

lenges to this well-studied problem. In particular, recent applications in artificial intel-

ligence have raised new challenges such as high-dimensionality and ubiquity of partial

information. Another challenge comes perhaps from the group decision-making ap-

plications where it is not possible for humans to express their preference in a strict

manner over more than a handful of items.

This dissertation revolves around robust mathematical frameworks to overcome

some of the existing challenges in the literature. It seeks to overcome the difficulty of

solving high-dimensional instances by proposing Approximate Condorcet Partitioning

(ACP). More specifically, we formalize the concept of the finest-Condorcet partition,

specify its requirements, prove its uniqueness, and derive an efficient algorithm for its

construction. However, the finest-Condorcet partition often yields a few large subsets

which may be too difficult to solve with exact methods. To overcome this issue, ACP

tries to further break down the larger subsets. ACP is accompanied by instance-

specific approximation factors. Although the approximation factors are not constant,

they were lower than the best-known approximation factors. Future research will

explore other approximate partitioning schemes. Additionally, investigating whether

the run time of ACP can be decreased by using specialized solution techniques such

as constraint relaxation can be another direction for future research.

Moreover, this work utilizes the generalized Kendall-tau distance (Fagin et al.,

2004) to introduce and study RANK-AGG, which contains KEMENY-AGG as a

special case. Specifically, it introduces various exact and inexact solution techniques.

158

Additionally, this dissertation broadens the applicability of Condorcet extensions by

introducing a new social choice property (GXCC), which includes XCC and NXCC

as special cases. Using GXCC, many instances of this NP-hard problem can be

decomposed into smaller subproblems, while proving that solving the subproblems

independently and concatenating the results still provides an optimal solution to the

original problem. Conducted computations demonstrates that GXCC can be effective

in reducing the run time of exact methods and improving the solution quality of

inexact methods. Future research will explore the development of additional exact,

approximate, and heuristic algorithms for RANK-AGG.

Finally, this work explores the top-k list aggregation problem. The top-k list ag-

gregation problem can be divided based on whether the output ranking is considered

a full list or another top-k list. Even though the former type of top-k list aggregation

problem has been studied in the literature, there are little to no studies on the latter

type of top-k list aggregation problem, which is studied herein. This work derives the

first exact mathematical formulations for this problem and compares the strength of

the proposed formulations from a polyhedral point of view. Additionally, it intro-

duces various heuristics and a data reduction technique for improving their run time

on certain large-scale instances. Even though there are various distance measures

between top-k lists, this work focuses on the generalized Kendall-tau distance (Fa-

gin et al., 2003); however, the mathematical formulations can be used by modifying

their objective functions accordingly. Moreover, their results on comparing proposed

formulations hold regardless of the distance measure. This work also derives theoret-

ical insights for setting the associated fixed penalty parameter and the implications

thereof. Future research will explore additional exact and heuristic algorithms and

data reduction techniques.

In spite of the fact that this dissertation addresses some of the existing challenges,

159

various others highlighted in the literature remain. An existing challenge is finding all

optimal solutions. Rank aggregation problems may return many alternative optimal

solutions (Pedings et al., 2012); in order to be fair to all candidates, it is very impor-

tant to identify them all. To the best of our knowledge, the only solution technique

that is capable of recovering all optimal solutions is the branch & bound method;

however, this method is capable of handling instances with less than 20 items (Yoo

et al., 2020). This topic becomes very important in voting theory and in situations

where the aggregate ranking has strong implications such as the university rankings

studied in Chapter 5.

Most importantly, the topic of incomplete rank aggregation requires significantly

more attention. There are numerous situations in group decision-makings context

where judges are not able to express their preferences over all items to produce a

complete ranking; in these circumstances, usually judges rank only a subset of items,

which may differ in size. The reasons include practicality, feasibility, and judiciousness

(Moreno-Centeno and Escobedo, 2016). Examples of this happening are the National

Science Foundation (NSF) proposal review process (Moreno-Centeno and Escobedo,

2016), student paper competition (Escobedo et al., 2022), and corporate project se-

lection (Yoo et al., 2020). Another example is the case where judges are asked to

rank movies, songs, books, brands, etc (Xiao et al., 2021). Aside from the frequent

settings where judges are not able to rank all items, one of the main advantages of

using incomplete rankings is to avoid overranking fatigue and bias (Moreno-Centeno

and Escobedo, 2016). Due to the high frequency of this phenomenon, developing

adequate aggregation functions capable of aggregating incomplete rankings is piv-

otal. Additionally, developing specialized partitioning techniques for incomplete rank

aggregation is another promising research direction as these techniques have been

shown, partly in this dissertation, to be very powerful at solving large instances.

160

REFERENCES

“Alaska better elections implementation”, https://www.elections.alaska.gov/
RCV.php, retrieved August 25, 2022 (2022). 1.1

“Best global universities”, https://www.usnews.com/education/
best-global-universities, retrieved August 25, 2022 (2022). 5.8

“Best global universities”, https://www.timeshighereducation.com/
world-university-rankings/2022, retrieved August 25, 2022 (2022). 5.8

“Best global universities”, https://www.shanghairanking.com/rankings, retrieved
August 25, 2022 (2022a). 5.8

“Columbia whistleblower on exposing college rankings: ‘they are
worthless”’, https://www.theguardian.com/us-news/2022/sep/16/
columbia-whistleblower-us-news-rankings-michael-thaddeus, retrieved
August 25, 2022 (2022). 1.2

“Qs world university rankings”, https://www.topuniversities.com/
qs-world-university-rankings, retrieved August 25, 2022 (2022). 5.8

“Ranked choice voting in maine”, https://legislature.maine.gov/lawlibrary/
ranked-choice-voting-in-maine/9509, retrieved August 25, 2022 (2022). 1.1

“Shanghairanking’s academic ranking of world universities methodology 2022”,
https://www.shanghairanking.com/methodology/arwu/2022, retrieved August
18, 2022 (2022b). 5.8

“Where ranked choice voting is used”, http://www.fairvote.org/where_is_
ranked_choice_voting_used, retrieved August 25, 2022 (2022). 1.1

Ailon, N., “Aggregation of partial rankings, p-ratings and top-m lists”, Algorithmica
57, 2, 284–300 (2010). 1.1, 1.2, 2.3.2, 5.2, 5.2, 5.2

Ailon, N., M. Charikar and A. Newman, “Aggregating inconsistent information: rank-
ing and clustering”, Journal of the ACM (JACM) 55, 5, 1–27 (2008). 1.1, 1.2, 2.3.2,
5.5

Akbari, S. and A. R. Escobedo, “Lower bounds on kemeny rank aggregation with non-
strict rankings”, in “2021 IEEE Symposium Series on Computational Intelligence
(SSCI)”, pp. 1–8 (IEEE, 2021). 2, 4.3.1

Akbari, S. and A. R. Escobedo, “Approximate condorcet partitioning: Solving very
large rank aggregation problems at scale”, under review (2022a). 1

Akbari, S. and A. R. Escobedo, “Beyond kemeny aggregation: Theoretical and com-
putational insights for robust ranking aggregation”, under review (2022b). 3

161

https://www.elections.alaska.gov/RCV.php
https://www.elections.alaska.gov/RCV.php
https://www.usnews.com/education/best-global-universities
https://www.usnews.com/education/best-global-universities
https://www.timeshighereducation.com/world-university-rankings/2022
https://www.timeshighereducation.com/world-university-rankings/2022
https://www.shanghairanking.com/rankings
https://www.theguardian.com/us-news/2022/sep/16/columbia-whistleblower-us-news-rankings-michael-thaddeus
https://www.theguardian.com/us-news/2022/sep/16/columbia-whistleblower-us-news-rankings-michael-thaddeus
https://www.topuniversities.com/qs-world-university-rankings
https://www.topuniversities.com/qs-world-university-rankings
https://legislature.maine.gov/lawlibrary/ranked-choice-voting-in-maine/9509
https://legislature.maine.gov/lawlibrary/ranked-choice-voting-in-maine/9509
https://www.shanghairanking.com/methodology/arwu/2022
http://www.fairvote.org/where_is_ranked_choice_voting_used
http://www.fairvote.org/where_is_ranked_choice_voting_used

Akbari, S. and A. R. Escobedo, “Top-k list aggregation: Mathematical formulations
and polyhedral comparisons”, in “To appear in International Symposium on Com-
binatorial Optimization(ISCO), Lecture Notes in Computer Science”, (2022c). 4

Aledo, J. A., J. A. Gámez and D. Molina, “Tackling the supervised label ranking
problem by bagging weak learners”, Information Fusion 35, 38–50 (2017). 1.1

Aledo, J. A., J. A. Gámez and D. Molina, “Approaching the rank aggregation prob-
lem by local search-based metaheuristics”, Journal of Computational and Applied
Mathematics 354, 445–456 (2019). 1.1

Aledo, J. A., J. A. Gámez, D. Molina and A. Rosete, “Consensus-based journal rank-
ings: A complementary tool for bibliometric evaluation”, Journal of the Association
for Information Science and Technology 69, 7, 936–948 (2018). 1.1

Aledo, J. A., J. A. Gámez and A. Rosete, “A highly scalable algorithm for weak
rankings aggregation”, Information Sciences 570, 144–171 (2021). 3.1, 3.2.1

Amodio, S., A. D’Ambrosio and R. Siciliano, “Accurate algorithms for identifying the
median ranking when dealing with weak and partial rankings under the kemeny
axiomatic approach”, European Journal of Operational Research 249, 2, 667–676
(2016). 1.1

Andrieu, P., B. Brancotte, L. Bulteau, S. Cohen-Boulakia, A. Denise, A. Pierrot and
S. Vialette, “Efficient, robust and effective rank aggregation for massive biological
datasets”, Future Generation Computer Systems (2021). 1.2, 4.3, 22

Arrow, K. J., Social choice and individual values (New Haven, CT: Cowles Founda-
tion, 1951). 1.1

Azzini, I. and G. Munda, “A new approach for identifying the kemeny median rank-
ing”, European Journal of Operational Research 281, 2, 388–401 (2020). 1.1

Balas, E., “Projection, lifting and extended formulation in integer and combinatorial
optimization”, Annals of Operations Research 140, 1, 125–161 (2005). 18

Bartholdi, J., C. A. Tovey and M. A. Trick, “Voting schemes for which it can be
difficult to tell who won the election”, Social Choice and welfare 6, 2, 157–165
(1989). 1.1, 4.3.1

Beńıtez-Fernández, A. and F. Ruiz, “A meta-goal programming approach to cardinal
preferences aggregation in multicriteria problems”, Omega 94, 102045 (2020). 1.1

Betzler, N., R. Bredereck and R. Niedermeier, “Theoretical and empirical evaluation
of data reduction for exact kemeny rank aggregation”, Autonomous Agents and
Multi-Agent Systems 28, 5, 721–748 (2014). 1.1, 1.2, 2.3.2, 3.1

Bolón-Canedo, V. and A. Alonso-Betanzos, “Ensembles for feature selection: A review
and future trends”, Information Fusion 52, 1–12 (2019). 1.1

162

Borda, J. d., “Mémoire sur les élections au scrutin”, Histoire de l’Academie Royale
des Sciences pour 1781 (Paris, 1784) (1784). 1.1

Bowman, N. A. and M. N. Bastedo, “Getting on the front page: Organizational
reputation, status signals, and the impact of us news and world report on student
decisions”, Research in Higher Education 50, 5, 415–436 (2009). 5.8

Bradley, R. A. and M. E. Terry, “Rank analysis of incomplete block designs: I. the
method of paired comparisons”, Biometrika 39, 3/4, 324–345 (1952). 1.2

Brancotte, B., B. Yang, G. Blin, S. Cohen-Boulakia, A. Denise and S. Hamel, “Rank
aggregation with ties: Experiments and analysis”, Proceedings of the VLDB En-
dowment (PVLDB) 8, 11, 1202–1213 (2015). 4.3, 4.3.1, 4.6

Brandt, F., V. Conitzer, U. Endriss, J. Lang and A. D. Procaccia, Handbook of
computational social choice (Cambridge University Press, 2016). 1.1, 2.3, 2.4, 5.2

Braverman, M. and E. Mossel, “Sorting from noisy information”, arXiv preprint
arXiv:0910.1191 (2009). 2.2

Çakır, M. P., C. Acartürk, O. Alaşehir and C. Çilingir, “A comparative analysis of
global and national university ranking systems”, Scientometrics 103, 3, 813–848
(2015). 5.8

Cascaro, R. J., B. D. Gerardo and R. P. Medina, “Aggregating filter feature selection
methods to enhance multiclass text classification”, in “Proceedings of the 2019 7th
International Conference on Information Technology: IoT and Smart City”, pp.
80–84 (2019). 1.1

Chatterjee, S., A. Mukhopadhyay and M. Bhattacharyya, “A weighted rank aggre-
gation approach towards crowd opinion analysis”, Knowledge-Based Systems 149,
47–60 (2018). 1.1

Chen, S., J. Liu, H. Wang and J. C. Augusto, “Ordering based decision making–a
survey”, Information Fusion 14, 4, 521–531 (2013). 1.1

Chen, Y., J. Fan, C. Ma and K. Wang, “Spectral method and regularized mle are
both optimal for top-k ranking”, Annals of statistics 47, 4, 2204 (2019). 1.2

Chen, Y., H. Guo, Y. Zhang, C. Ma, R. Tang, J. Li and I. King, “Learning bina-
rized graph representations with multi-faceted quantization reinforcement for top-k
recommendation”, arXiv preprint arXiv:2206.02115 (2022). 1.1

Chierichetti, F., A. Dasgupta, S. Haddadan, R. Kumar and S. Lattanzi, “Mallows
models for top-k lists”, in “Advances in Neural Information Processing Systems”,
pp. 4382–4392 (2018). 1.1, 5.2.1, 5.7.1, 5.7.1

Chierichetti, F., A. Dasgupta, R. Kumar and S. Lattanzi, “On reconstructing a hidden
permutation”, in “Approximation, Randomization, and Combinatorial Optimiza-
tion. Algorithms and Techniques (APPROX/RANDOM 2014)”, (Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik, 2014). 2.2

163

Cohen-Boulakia, S., A. Denise and S. Hamel, “Using medians to generate consensus
rankings for biological data”, in “International Conference on Scientific and Statis-
tical Database Management”, pp. 73–90 (Springer, 2011). (document), 1.2, 3.2.2,
4.6, 4.6, 4.2, 4.6, 4.5

Collas, F. and E. Irurozki, “Concentric mixtures of mallows models for top-k rankings:
sampling and identifiability”, in “International Conference on Machine Learning”,
pp. 2079–2088 (PMLR, 2021). 1.2

Collier, J. H. and A. S. Konagurthu, “An information measure for comparing top
k lists”, in “2014 IEEE 10th international conference on e-science”, vol. 1, pp.
127–134 (IEEE, 2014). 5.2

Conitzer, V., A. Davenport and J. Kalagnanam, “Improved bounds for computing
kemeny rankings”, in “AAAI”, vol. 6, pp. 620–626 (2006). 1.1, 1.2, 3.3.2, 3.3.2,
3.3.2, 3.3.2, 3.3.3, 4.3.1

Cook, W. D., “Distance-based and ad hoc consensus models in ordinal preference
ranking”, European Journal of operational research 172, 2, 369–385 (2006). 1.1,
5.3

Cook, W. D., T. Raviv and A. J. Richardson, “Aggregating incomplete lists of journal
rankings: An application to academic accounting journals”, Accounting perspec-
tives 9, 3, 217–235 (2010). 1.1

Copeland, A. H., “A reasonable social welfare function”, Tech. rep., mimeo, 1951.
University of Michigan (1951). 1.1

Coppersmith, D., L. K. Fleischer and A. Rurda, “Ordering by weighted number
of wins gives a good ranking for weighted tournaments”, ACM Transactions on
Algorithms (TALG) 6, 3, 1–13 (2010). 1.1

Critchlow, D. E., Metric methods for analyzing partially ranked data, vol. 34 (Springer
Science & Business Media, 2012). 5.2

Dantzig, G., R. Fulkerson and S. Johnson, “Solution of a large-scale traveling-
salesman problem”, Journal of the operations research society of America 2, 4,
393–410 (1954). 3.3.3

Dantzig, G. B., D. R. Fulkerson and S. M. Johnson, “On a linear-programming,
combinatorial approach to the traveling-salesman problem”, Operations Research
7, 1, 58–66 (1959). 3.3.3

Davenport, A. and J. Kalagnanam, “A computational study of the kemeny rule for
preference aggregation”, in “AAAI”, vol. 4, pp. 697–702 (2004). 1.1, 3.3.1, 4.3.1

Desarkar, M. S., S. Sarkar and P. Mitra, “Preference relations based unsupervised
rank aggregation for metasearch”, Expert Systems with Applications 49, 86–98
(2016). 1.1

164

Diaconis, P., “Group representations in probability and statistics”, Lecture notes-
monograph series 11, i–192 (1988). 1.1

Diaconis, P. and R. L. Graham, “Spearman’s footrule as a measure of disarray”,
Journal of the Royal Statistical Society: Series B (Methodological) 39, 2, 262–268
(1977). 1.1, 2.2

Dimitrakopoulos, C., S. K. Hindupur, L. Häfliger, J. Behr, H. Montazeri, M. N. Hall
and N. Beerenwinkel, “Network-based integration of multi-omics data for prioritiz-
ing cancer genes”, Bioinformatics 34, 14, 2441–2448 (2018). 1.1

Ding, J., D. Han, J. Dezert and Y. Yang, “A new hierarchical ranking aggregation
method”, Information Sciences 453, 168–185 (2018a). 1.1

Ding, J., D. Han and Y. Yang, “Iterative ranking aggregation using quality improve-
ment of subgroup ranking”, European Journal of Operational Research 268, 2,
596–612 (2018b). 1.1

Dodgson, C., “A method of taking votes on more than two issues”, The theory of
committees and elections (1876). 2.4

Doignon, J.-P., A. Pekeč and M. Regenwetter, “The repeated insertion model for
rankings: Missing link between two subset choice models”, Psychometrika 69, 1,
33–54 (2004). 3.3.4

Dwork, C., R. Kumar, M. Naor and D. Sivakumar, “Rank aggregation methods for
the web”, in “Proceedings of the 10th international conference on World Wide
Web”, pp. 613–622 (2001). 1.1, 1.2, 2.3.2, 3.2.2, 4.3.1, 5.2, 5.2, 5.2.1, 5.5, 5

D’Ambrosio, A., C. Iorio, M. Staiano and R. Siciliano, “Median constrained bucket
order rank aggregation”, Computational Statistics 34, 2, 787–802 (2019). 1.2

D’Ambrosio, A., G. Mazzeo, C. Iorio and R. Siciliano, “A differential evolution al-
gorithm for finding the median ranking under the kemeny axiomatic approach”,
Computers & Operations Research 82, 126–138 (2017). 2.2

Emond, E. J. and D. W. Mason, “A new rank correlation coefficient with application
to the consensus ranking problem”, Journal of Multi-Criteria Decision Analysis 11,
1, 17–28 (2002). 1.1, 1.2, 2.3.1, 2.3.1, 2.3.1, 4.3.1

Escobedo, A. R., E. Moreno-Centeno and R. Yasmin, “An axiomatic distance method-
ology for aggregating multimodal evaluations”, Information Sciences 590, 322–345
(2022). 6

Fagin, R., R. Kumar, M. Mahdian, D. Sivakumar and E. Vee, “Comparing and ag-
gregating rankings with ties”, in “Proceedings of the twenty-third ACM SIGMOD-
SIGACT-SIGART symposium on Principles of database systems”, pp. 47–58
(2004). 1.1, 1.2, 2.2, 4.1, 4.2, 4.2, 4.5, 6

Fagin, R., R. Kumar, M. Mahdian, D. Sivakumar and E. Vee, “Comparing partial
rankings”, SIAM Journal on Discrete Mathematics 20, 3, 628–648 (2006). 1.1

165

Fagin, R., R. Kumar and D. Sivakumar, “Comparing top k lists”, SIAM Journal on
discrete mathematics 17, 1, 134–160 (2003). 1.1, 1.2, 2.2, 5.2, 5.2, 5.2, 5.2.1, 5.2.1,
5.3.1, 5.3.1, 5.5, 6

Figueira, J. R., V. Mousseau and B. Roy, “Electre methods”, in “Multiple criteria
decision analysis”, pp. 155–185 (Springer, 2016). 1.1

Fiorini, S. and P. C. Fishburn, “Weak order polytopes”, Discrete mathematics 275,
1-3, 111–127 (2004). 4.3.1

Galdi, P., M. Fratello, F. Trojsi, A. Russo, G. Tedeschi, R. Tagliaferri and F. Esposito,
“Stochastic rank aggregation for the identification of functional neuromarkers”,
Neuroinformatics 17, 4, 479–496 (2019). 1.1

Gass, S. I., “Tournaments, transitivity and pairwise comparison matrices”, Journal
of the Operational Research Society 49, 6, 616–624 (1998). 3.3.2

Gionis, A., H. Mannila, K. Puolamäki and A. Ukkonen, “Algorithms for discovering
bucket orders from data”, in “Proceedings of the 12th ACM SIGKDD international
conference on Knowledge discovery and data mining”, pp. 561–566 (2006). 2.3.2

Glover, F. and E. Woolsey, “Converting the 0-1 polynomial programming problem to
a 0-1 linear program”, Operations research 22, 1, 180–182 (1974). 4.3.1, 5.3

Goodman, L. A. and W. H. Kruskal, “Measures of association for cross classifica-
tions. ii: Further discussion and references”, Journal of the American Statistical
Association 54, 285, 123–163 (1959). 5.2

Grötschel, M., M. Jünger and G. Reinelt, “A cutting plane algorithm for the linear
ordering problem”, Operations research 32, 6, 1195–1220 (1984). 4.3.1

Hare, T., A treatise on the election of representatives, parliamentary and municipal
(Longman, Green, Longman, & Roberts, 1861). 1.1

Hsu, D. F. and I. Taksa, “Comparing rank and score combination methods for data
fusion in information retrieval”, Information retrieval 8, 3, 449–480 (2005). 1.1

Hu, B., C. Shi, W. X. Zhao and P. S. Yu, “Leveraging meta-path based context for
top-n recommendation with a neural co-attention model”, in “Proceedings of the
24th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining”, pp. 1531–1540 (2018). 1.1

Jurman, G., S. Riccadonna, R. Visintainer and C. Furlanello, “Canberra distance
on ranked lists”, in “Proceedings of advances in ranking NIPS 09 workshop”, pp.
22–27 (Citeseer, 2009). 5.2

Kabra, A. and A. Agarwal, “Personalized and dynamic top-k recommendation system
using context aware deep reinforcement learning”, in “2021 IEEE 45th Annual
Computers, Software, and Applications Conference (COMPSAC)”, pp. 238–247
(IEEE, 2021). 1.1

166

Kemeny, J. G. and L. Snell, “Preference ranking: an axiomatic approach”, Mathe-
matical models in the social sciences pp. 9–23 (1962). 1.1, 1.2, 5, 2.3.1

Kemmer, R., Y. Yoo, A. Escobedo and R. Maciejewski, “Enhancing collective es-
timates by aggregating cardinal and ordinal inputs”, Proceedings of the AAAI
Conference on Human Computation and Crowdsourcing 8, 1, 73–82 (2020). 1.1

Kendall, M. G., “A new measure of rank correlation”, Biometrika 30, 1/2, 81–93
(1938). 1.1, 6

Kendall, M. G., “Partial rank correlation”, Biometrika 32, 3/4, 277–283 (1942). 1.2

Kendall, M. G., “The treatment of ties in ranking problems”, Biometrika 33, 3, 239–
251 (1945). 1.1

Kenyon-Mathieu, C. and W. Schudy, “How to rank with few errors”, in “Proceedings
of the thirty-ninth annual ACM symposium on Theory of computing”, pp. 95–103
(2007). 2.3.2, 3.3.2

Klementiev, A., D. Roth and K. Small, “Unsupervised rank aggregation with distance-
based models”, in “Proceedings of the 25th international conference on Machine
learning”, pp. 472–479 (2008). 1.1

Laslier, J.-F., Tournament solutions and majority voting, no. 7 (Springer, 1997). 2.1,
3.1.1

Laura, L., “Qs world university rankings methodology: Using rankings
to start your university search”, URL https://www.topuniversities.com/
qs-world-university-rankings/methodology (2022). 5.8

Lee, H., S. Cho, Y. Jang, J. Kim and H. Woo, “Differentiable ranking metric using
relaxed sorting for top-k recommendation”, IEEE Access (2021). 1.1

Li, X., X. Wang and G. Xiao, “A comparative study of rank aggregation methods for
partial and top ranked lists in genomic applications”, Briefings in bioinformatics
20, 1, 178–189 (2019). 1.1

Liao, H. and X. Wu, “Dnma: A double normalization-based multiple aggregation
method for multi-expert multi-criteria decision making”, Omega 94, 102058 (2020).
1.1

Liu, N., Z. Xu, X.-J. Zeng and P. Ren, “An agglomerative hierarchical clustering
algorithm for linear ordinal rankings”, Information Sciences 557, 170–193 (2021).
3.2.1

Long, X. and T. Suel, “Optimized query execution in large search engines with global
page ordering”, in “Proceedings 2003 VLDB Conference”, pp. 129–140 (Elsevier,
2003). 1.1

Loreggia, A., N. Mattei, F. Rossi and K. B. Venable, “A notion of distance between
cp-nets”, in “Proc. of AAMAS”, pp. 955–963 (2018). 4.3

167

https://www.topuniversities.com/qs-world-university-rankings/methodology
https://www.topuniversities.com/qs-world-university-rankings/methodology

Lu, J. and J. Callan, “Federated search of text-based digital libraries in hierarchical
peer-to-peer networks”, in “European Conference on Information Retrieval”, pp.
52–66 (Springer, 2005). 1.1

Luce, R. D., Individual choice behavior: A theoretical analysis (Courier Corporation,
2012). 1.2

Ma, C., L. Ma, Y. Zhang, H. Wu, X. Liu and M. Coates, “Knowledge-enhanced top-k
recommendation in poincaré ball”, in “Proceedings of the AAAI Conference on
Artificial Intelligence”, vol. 35, pp. 4285–4293 (2021). 1.1

Mackenzie, J. and A. Moffat, “Examining the additivity of top-k query processing
innovations”, in “Proceedings of the 29th ACM International Conference on Infor-
mation & Knowledge Management”, pp. 1085–1094 (2020). 1.1

Mallows, C. L., “Non-null ranking models. i”, Biometrika 44, 1/2, 114–130 (1957).
1.2, 2.2

Marbach, D., J. C. Costello, R. Küffner, N. M. Vega, R. J. Prill, D. M. Camacho,
K. R. Allison, M. Kellis, J. J. Collins and G. Stolovitzky, “Wisdom of crowds for
robust gene network inference”, Nature methods 9, 8, 796–804 (2012). 1.1, 1.2

Marden, J. I., Analyzing and Modeling Rank Data (CRC Press, 2014). 2.2

Marquis de Condorcet, M. J. A., Essai sur l’application de l’analyse a la probabilite
des decisions: rendues a la pluralite de voix (De l’Imprimerie royale, 1785). 2.4

Mattei, N. and T. Walsh, “Preflib: A library for preferences http://www. preflib.
org”, in “International Conference on Algorithmic DecisionTheory”, pp. 259–270
(Springer, 2013). 1.1, 1.2, 3.2.2, 4.6

Mehta, P. and P. Majumder, “Improving sentence extraction through rank aggrega-
tion”, in “From Extractive to Abstractive Summarization: A Journey”, pp. 49–68
(Springer, 2019). 1.1

Milosz, R. and S. Hamel, “Exploring the median of permutations problem”, Journal
of Discrete Algorithms 52, 92–111 (2018). 3.3.2, 3.3.2, 3.3.2, 4.3.1

Milosz, R. and S. Hamel, “Space reduction constraints for the median of permutations
problem”, Discrete Applied Mathematics 280, 201–213 (2020). 1.1

Mohammadi, M. and J. Rezaei, “Ensemble ranking: Aggregation of rankings pro-
duced by different multi-criteria decision-making methods”, Omega 96, 102254
(2020). 1.1

Moreno-Centeno, E. and A. R. Escobedo, “Axiomatic aggregation of incomplete rank-
ings”, IIE Transactions 48, 6, 475–488 (2016). 1.1, 6

Morse, R. and A. Castonguay, “How u.s. news calculated the best
global universities rankings”, URL https://www.usnews.com/education/
best-global-universities/articles/methodology (2021). 5.8

168

https://www.usnews.com/education/best-global-universities/articles/methodology
https://www.usnews.com/education/best-global-universities/articles/methodology

Nápoles, G., R. Falcon, Z. Dikopoulou, E. Papageorgiou, R. Bello and K. Vanhoof,
“Weighted aggregation of partial rankings using ant colony optimization”, Neuro-
computing 250, 109–120 (2017). 1.2, 5.2

Nemhauser, G. L. and G. Sigismondi, “A strong cutting plane/branch-and-bound
algorithm for node packing”, Journal of the Operational Research Society 43, 5,
443–457 (1992). 3.3.2, 3.3.2

Oliveira, S. E., V. Diniz, A. Lacerda, L. Merschmanm and G. L. Pappa, “Is rank
aggregation effective in recommender systems? an experimental analysis”, ACM
Transactions on Intelligent Systems and Technology (TIST) 11, 2, 1–26 (2020).
1.1, 1.2

Onan, A. and S. Korukoğlu, “A feature selection model based on genetic rank ag-
gregation for text sentiment classification”, Journal of Information Science 43, 1,
25–38 (2017). 1.1

Park, C., D. Kim, J. Oh and H. Yu, “Improving top-k recommendation with truster
and trustee relationship in user trust network”, Information Sciences 374, 100–114
(2016). 1.1

Pedings, K. E., A. N. Langville and Y. Yamamoto, “A minimum violations ranking
method”, Optimization and engineering 13, 2, 349–370 (2012). 1.1, 3.3.3, 4.3.2, 6

Pedroche, F. and J. A. Conejero, “Corrected evolutive kendall’s τ coefficients for
incomplete rankings with ties: Application to case of spotify lists”, Mathematics
8, 10, 1828 (2020). 1.1

Peng, Y., G. Kou, G. Wang and Y. Shi, “Famcdm: A fusion approach of mcdm
methods to rank multiclass classification algorithms”, Omega 39, 6, 677–689 (2011).
1.1

Plackett, R. L., “The analysis of permutations”, Journal of the Royal Statistical
Society: Series C (Applied Statistics) 24, 2, 193–202 (1975). 1.2

Puerta, J. M., J. A. Aledo, J. A. Gámez and J. D. Laborda, “Efficient and accurate
structural fusion of bayesian networks”, Information Fusion 66, 155–169 (2021).
1.1

Quillet, A., C. Saad, G. Ferry, Y. Anouar, N. Vergne, T. Lecroq and C. Dubessy,
“Improving bioinformatics prediction of microrna targets by ranks aggregation”,
Frontiers in Genetics 10, 1330 (2020). 1.1

Rico, N., C. R. Vela and I. Dı́az, “Reducing the time required to find the kemeny
ranking by exploiting a necessary condition for being a winner”, European Journal
of Operational Research (2022). 1.1, 1.2

Ross, D., “World university rankings 2022: methodology”, URL
https://www.timeshighereducation.com/world-university-rankings/
world-university-rankings-2022-methodology (2021). 5.8

169

https://www.timeshighereducation.com/world-university-rankings/world-university-rankings-2022-methodology
https://www.timeshighereducation.com/world-university-rankings/world-university-rankings-2022-methodology

Rowland, M., S. Omidshafiei, K. Tuyls, J. Perolat, M. Valko, G. Piliouras and
R. Munos, “Multiagent evaluation under incomplete information”, arXiv preprint
arXiv:1909.09849 (2019). 4.3

Saaty, T. L., “A scaling method for priorities in hierarchical structures”, Journal of
mathematical psychology 15, 3, 234–281 (1977). 1.1

Saaty, T. L., Decision making for leaders: the analytic hierarchy process for decisions
in a complex world (RWS publications, 2001). 1.1

Sarkar, C., S. Cooley and J. Srivastava, “Robust feature selection technique using
rank aggregation”, Applied Artificial Intelligence 28, 3, 243–257 (2014). 1.1

Schalekamp, F. and A. v. Zuylen, “Rank aggregation: Together we’re strong”, in
“2009 Proceedings of the Eleventh Workshop on Algorithm Engineering and Ex-
periments (ALENEX)”, pp. 38–51 (SIAM, 2009). 4.4.1

Shanbhag, A., H. Pirk and S. Madden, “Efficient top-k query processing on mas-
sively parallel hardware”, in “Proceedings of the 2018 International Conference on
Management of Data”, pp. 1557–1570 (2018). 1.1

Song, D., D. A. Meyer and D. Tao, “Top-k link recommendation in social networks”,
in “2015 IEEE International Conference on Data Mining”, pp. 389–398 (IEEE,
2015). 1.1

Tang, H., G. Zhao, Y. Wu and X. Qian, “Multisample-based contrastive loss for top-k
recommendation”, IEEE Transactions on Multimedia (2021). 1.1

Tavanaei, A., R. Gottumukkalay, A. S. Maida and V. V. Raghavan, “Unsupervised
learning to rank aggregation using parameterized function optimization”, in “2018
International Joint Conference on Neural Networks (IJCNN)”, pp. 1–8 (IEEE,
2018). 1.1, 5.8

Thurstone, L. L., “The method of paired comparisons for social values.”, The Journal
of Abnormal and Social Psychology 21, 4, 384 (1927). 1.2

Tideman, N., Collective decisions and voting: the potential for public choice (Rout-
ledge, 2017). 2.4

Truchon, M., An extension of the Condorcet criterion and Kemeny orders (Citeseer,
1998). 1.1, 2.4, 3.1.1, 11, 11

Van Zuylen, A. and D. P. Williamson, “Deterministic algorithms for rank aggrega-
tion and other ranking and clustering problems”, in “International Workshop on
Approximation and Online Algorithms”, pp. 260–273 (Springer, 2007). 2.3.2

Werbin-Ofir, H., L. Dery and E. Shmueli, “Beyond majority: Label ranking ensembles
based on voting rules”, Expert Systems with Applications 136, 50–61 (2019). 1.1

Xiao, Y., H.-Z. Deng, X. Lu and J. Wu, “Graph-based rank aggregation method
for high-dimensional and partial rankings”, Journal of the Operational Research
Society 72, 1, 227–236 (2021). 6

170

Xie, M., R. C.-W. Wong and A. Lall, “An experimental survey of regret minimization
query and variants: bridging the best worlds between top-k query and skyline
query”, The VLDB Journal 29, 1, 147–175 (2020). 1.1

Yoo, Y. and A. R. Escobedo, “A new binary programming formulation and social
choice property for kemeny rank aggregation”, Decision Analysis 18, 4, 296–320
(2021). (document), 1.1, 1.2, 2, 2.1, 2.2, 2.3.1, 2.4, 3.2, 3.2.2, 3.1, 11, 3.3.4, 4.3.1,
22

Yoo, Y., A. R. Escobedo and J. K. Skolfield, “A new correlation coefficient for com-
paring and aggregating non-strict and incomplete rankings”, European Journal of
Operational Research (2020). 1.1, 2.3.1, 3.3.4, 3.3.4, 4.3.1, 6

Young, H. P., “Extending condorcet’s rule”, Journal of Economic Theory 16, 2, 335–
353 (1977). 2.4

Young, H. P., “Condorcet’s theory of voting”, American Political science review 82,
4, 1231–1244 (1988). 1.1, 2.4

Young, H. P. and A. Levenglick, “A consistent extension of condorcet’s election prin-
ciple”, SIAM Journal on applied Mathematics 35, 2, 285–300 (1978). 1.1

Younger, D., “Minimum feedback arc sets for a directed graph”, IEEE Transactions
on Circuit Theory 10, 2, 238–245 (1963). 3.3.2

Zhang, C., K. Cheng, L. Zhu, R. Chen, Z. Zhang and F. Huang, “Efficient continuous
top-k geo-image search on road network”, Multimedia Tools and Applications 78,
21, 30809–30838 (2019). 1.1

Zhang, Y., T. Bouadi and A. Martin, “A clustering model for uncertain preferences
based on belief functions”, in “International Conference on Big Data Analytics and
Knowledge Discovery”, pp. 111–125 (Springer, 2018). 4.3

Zhang, Y., Y. Xiao, J. Wu and X. Lu, “Comprehensive world university ranking based
on ranking aggregation”, Computational Statistics 36, 2, 1139–1152 (2021). 5.8

Zhu, Z., J. Wang and J. Caverlee, “Improving top-k recommendation via jointcol-
laborative autoencoders”, in “The World Wide Web Conference”, pp. 3483–3482
(2019). 1.1

171

	LIST OF TABLES
	LIST OF FIGURES
	1 Introduction
	1.1 Motivation and Overview
	1.2 Existing Challenges
	1.3 Contributions and Overview of the Dissertation

	2 Notation and Preliminaries
	2.1 Mathematical Notation
	2.2 Distance-Based Approaches
	2.3 Kemeny Aggregation
	2.3.1 Underlying Distance and Properties
	2.3.2 Review of Notable Approximation Algorithms for KEMENY-AGG

	2.4 The Condorcet Criterion and its Variants

	3 Lower and Upper Bounding Techniques for KEMENY-AGG
	3.1 The finest-Condorcet partition
	3.1.1 Definition and Properties
	3.1.2 An Efficient Algorithm for Constructing Xf

	3.2 Upper Bounding via Approximate Condorcet Partitioning
	3.2.1 Provable Guarantees from Partitioning
	3.2.2 Computational Comparisons

	3.3 Lower Bounding Techniques
	3.3.1 Pairwise Comparison Methods
	3.3.2 Cycle-Based Methods
	3.3.3 LP-relaxation-Based Methods
	3.3.4 Computational Results

	3.4 Concluding Remarks

	4 The Generalized Rank Aggregation Problem
	4.1 Overview
	4.2 Notation and Preliminaries
	4.3 The Generalized Rank Aggregation Problem
	4.3.1 Definition and Formulation
	4.3.2 Constraint Relaxation Method
	4.3.3 The Least Imposed Cost Heuristic (LICH)

	4.4 Generalizing the Condorcet Criterion and its Variants
	4.4.1 Enlarged GXCC Partitions

	4.5 Effect of Modifying the Penalty Parameter
	4.6 Computational Results
	4.7 Conclusion

	5 Top-k List Aggregation
	5.1 Notations
	5.2 Distance-based Top-k List Aggregation
	5.2.1 Generalized Kendall-tau Distance

	5.3 Exact Optimization Models and Theoretical Insights
	5.3.1 Effect of the Penalty Parameter p on the Consensus List

	5.4 Polyhedral Comparison
	5.5 Heuristic Methods
	5.6 Data Reduction
	5.7 Computational Experiments
	5.7.1 Data Set
	5.7.2 Computational Results

	5.8 Case Study: University Rankings
	5.9 Concluding Remarks

	6 GENERAL DISCUSSION AND CONCLUSIONS

	REFERENCES

