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ABSTRACT  
   

Historically, researchers in the gut microbiome have deemed the composition of 

the microbiome as being adult by the age of two. However, recent studies have 

contradicted this, demonstrating statistically significant differences in the microbiome 

even through childhood and adolescence. This difference is important in the field of 

microbiome research, particularly in studies examining this relationship with weight, 

because even though there have been significant associations between the gut 

microbiome and weight, they have been largely studied in adults. The freshman year of 

college is an interesting time to study this relationship in younger populations, due to the 

lifestyle changes that make them vulnerable to weight gain. This study included N=139 

participants, a majority female (N=97, 69.8%), white (N=59, 42.4%), and non-Hispanic 

(N=89, 64%). Participants were only included in this analysis if they gave 2 or more fecal 

samples over the 4 timepoint study. Samples were sequenced using the Illumina MiSeq 

instrument after polymerase chain reaction (PCR) amplification was performed on the V4 

region of the 16S rRNA gene sequence. Statistical analysis was performed using the 

longitudinal plugin of QIIME2. Results demonstrate that low abundance features seemed 

to drive a majority of the differences in variability between those who maintained their 

weight over the course of the study and those who gained weight. This was demonstrated 

through many significant Unweighted UniFrac results with corresponding nonsignificant 

Weighted UniFrac data. This study demonstrated that changes in lower abundance 

features may have driven the significant differences in weight status in this study. This 

study emphasized the importance of low abundance features and how this relates to 
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changes in weight status during a period of major lifestyle changes. Further work is 

needed to confirm these findings and explore how gut microbes change in free-living 

individuals gaining weight over time.  
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CHAPTER 1 

INTRODUCTION 

College is a defining moment in one’s life. It is the first-time many adolescents are 

on their own, away from their parents and their home. While this is an exciting time, it can 

also be detrimental to health. College students are also at particular risk for weight gain, so 

much so that this phenomenon was even coined "the freshman 15"(Corder et al., 2019). 

The lifestyle of a college freshman can be characterized by low levels of physical activity, 

increased alcohol consumption, poor diet quality, increased stress, decreased sleep, and an 

environment that does not promote healthy habits (Chen et al., 2008; Laska et al., 2009; 

Levitsky et al., 2004; Nelson et al., 2008). Lifestyle factors contribute to about 70% of 

students gaining weight during their freshman year, with studies reporting an average 

weight gain of 4-5 lbs (Gropper et al., 2012; Racette et al., 2005, 2008). Students who gain 

weight during their freshman year are also more likely to continue gaining weight 

throughout college (Gropper et al., 2012; Pope et al., 2017). This weight gain in adolescents 

can continue into adulthood, as overweight or obese adolescents are more likely to be 

overweight and obese adults (Deshmukh-Taskar et al., 2006). This can lead to chronic 

health conditions and a myriad of adverse physical, psychological, and economic outcomes 

(Dietz, 1998; Pan et al., 2013; Reilly & Kelly, 2011; Russell-Mayhew et al., 2012; 

Weighing Down America, n.d.). 

With this burgeoning problem of excessive weight gain and obesity, it is in our best 

public health interest to try to mitigate this trend. Weight loss interventions are widely 

ineffective in adults with long term success as a rare outcome, indicating prevention may 
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be a more effective strategy (Anderson et al., 2003; Booth et al., 2014; Lawlor & 

Chaturvedi, 2006; Miller, 1999). Adolescent populations are an ideal cohort to target with 

prevention interventions as adolescence has been identified as a time in life where one sets 

up health related habits and skills that will follow them the rest of their lives (Anderson et 

al., 2003; Lau et al., 1990; Nelson et al., 2008; Truesdale et al., 2006). Research has also 

shown that adolescent populations, in particular, are an effective population to target for 

preventative weight interventions and in extreme circumstances weight loss (Anderson et 

al., 2003; Boff et al., 2017; Truesdale et al., 2006; Wing et al., 2017). Weight gain and 

obesity is a multifactorial problem involving the food environment, genetics, physical 

activity, lifestyle, demographics, and diet (“A Framework for Human Microbiome 

Research,” 2012; Trends in Intake of Energy and Macronutrients --- United States, 1971--

2000, n.d.; Biro & Wien, 2010; Chung & Leibel, 2008; Hales, 2017; Reilly & Kelly, 2011; 

Twenge & Campbell, 2018). The complexity of the problem of excessive weight gain has 

led professionals to seek novel approaches. Researchers and clinicians in the emerging 

field of gut microbiome research can address the etiology of adolescent obesity and weight 

gain, particularly in this vulnerable population of college freshmen.  

         Microbes make up a significant part of this world, especially within the human body 

(Turnbaugh et al., 2007). Microbial communities inhabit locations in the human body 

including the skin, vagina, and mouth with the highest concentration found in the digestive 

system (Conlon & Bird, 2014). In the digestive system, they support a multitude of 

functions that would not be possible without the interactions that they foster including; 

metabolism of indigestible carbohydrates and proteins, production of short-chain fatty 
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acids (SCFAs), enzyme production, modulating inflammation, interacting with the immune 

system, and synthesizing vitamins (Allaband et al., 2019; Belizário et al., 2018; Cani et al., 

2007; Conlon & Bird, 2014; Thursby & Juge, 2017). Diversity of the gut microbiome can 

be an indicator of overall health of the microbiome (“Structure, Function and Diversity of 

the Healthy Human Microbiome,” 2012). Studies have shown there are a multitude of 

factors affecting the diversity of the microbiome, particularly diet, physical activity, 

physiology, antibiotic use, age and overall health (Agans et al., 2011; Allaband et al., 2019; 

Clarke et al., 2014b; Cotillard et al., 2013; Dethlefsen & Relman, 2011; Ley et al., 2006; 

Turnbaugh et al., 2009). Change in diversity can be favorable or pathogenic to the human 

host as increases in diversity of the microbial communities of the vagina can lead to 

bacterial vaginosis, and decreases in diversity in the gut microbiome can lead to irritable 

bowel disorder (IBD) or obesity (“Structure, Function and Diversity of the Healthy Human 

Microbiome,” 2012). Research into the relationship between microbial diversity and 

weight is still a relatively new field, and a majority of the available research has utilized 

cross-sectional study designs (Wagner et al., 2018).  

Studies linking the microbiome and obesity were first conducted in mice (Ley et 

al., 2006). In Turnbaugh et al, germ-free mice were given fecal transplants from obese and 

lean individuals fed the same amount and type of food (Ley et al., 2006). Mice that received 

microbial communities from obese individuals gained significantly more weight than those 

with microbes from lean individuals (Ley et al., 2006). Subsequent studies testing 

manipulations of the microbial communities, whether from obese donors or tests on germ-

free (GF) mice, have shown interactions inducing weight gain (Bäckhed et al., 2004, 2007; 
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Ley et al., 2005; Murphy et al., 2010; Ridaura et al., 2013).  Among humans, differences 

in the composition of gut microbial communities have been observed between obese and 

lean individuals (Angelakis et al., 2011; Ley et al., 2005; Turnbaugh et al., 2009). While 

early studies focused on the compositional changes between phyla such as the ratio of 

Firmicutes to Bacteroidetes, or the F/B ratio, research is now focusing on the dynamic 

changes in diversity at lower taxonomic levels within the individual microbiome as an 

indication of health (Flores et al., 2014). Flores et al suggests that longitudinal studies 

which examine temporal changes in the composition and diversity of microbial taxa are 

more useful indications of health (Flores et al., 2014).  With regards to weight gain 

however, it is difficult to determine if it is weight gain that impacts the microbiome or vice 

versa as a causal relationship is hard to determine in humans (Harley & Karp, 2012). 

Results from animal models have implied that it is the microbes influencing the weight 

gain, but this relationship has not been shown in humans (Harley & Karp, 2012). 

Age is an important contributor to changes in microbial diversity (Agans et al., 

2011; H.-J. Hu et al., 2015; Hollister et al., 2015; Palmer et al., 2007; Yatsunenko et al., 

2012). It was initially believed that the microbiome reached maturity by the age of three, 

and thus children over that age were characterized as having a mature and stable adult-like 

microbiome (H.-J. Hu et al., 2015; Palmer et al., 2007; Yatsunenko et al., 2012). However, 

there is new research suggesting that the microbiome continues to change throughout 

adolescence (Agans et al., 2011; Hollister et al., 2015). Statistically significant differences 

in abundance and diversity have been seen in the gut microbiome of children and 

adolescents compared to adults (Agans et al., 2011; Hollister et al., 2015). While core 
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microbial communities as well as the presence of species is similar between all three 

aforementioned age groups, it is suggested that it is abundance that drives the differences 

(Agans et al., 2011; Ringel-Kulka et al., 2013). Children and Adolescents demonstrated a 

higher abundance of certain genera such as Clostridium, Lachnospiraceae, and 

Bifidobacterium, while adults tended to have a higher abundance of Bacteroides spp 

(Agans et al., 2011; Hollister et al., 2015).  With the implications of the microbiome’s 

relationship to obesity and weight gain, understanding this distinction and thus being able 

to use this information for targeted interventions may be the future of obesity interventions.  

Since 1994, the prevalence of obesity in adolescents has doubled (Hales, 2017).  

However, in that time the field of obesity research and prevention has exploded throughout 

the world. Adolescents, in particular college students, are not only a vulnerable group for 

weight gain but also a group where weight mitigation interventions can be efficacious. The 

interaction between obesity and the microbiome is a blossoming field of study. However, 

little research has been conducted looking at how the gut microbiome changes in free-

living populations during periods of expected weight gain. Specifically, longitudinal study 

designs are lacking in microbiome research, especially in populations where there is 

evidence of gain weight over time (Flores et al., 2014; Gropper et al., 2012; Pope et al., 

2017; Wagner et al., 2018). Information is also sparse when it comes to the microbiome of 

adolescent populations, as the composition of their microbiome has largely been viewed as 

similar to communities observed in adults (Agans et al., 2011; Hollister et al., 2015; H.-J. 

Hu et al., 2015; Palmer et al., 2007; Yatsunenko et al., 2012). This combination reveals 
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late adolescence as an ideal time for weight intervention, and study of the microbiome as 

an effective tool for understanding the mechanisms behind weight gain. 

Purpose of Study 

 The purpose of this study is to better understand the mechanisms of weight 

gain in a college-aged population vulnerable to weight gain. Specifically, this study will 

evaluate changes in weight over the freshman year in relation to changes in the gut 

microbiome community structure and diversity.  

Research Aims and Hypothesis 

 The aim of this study is to assess changes in the gut microbiome over the freshmen 

year in relation to changes in weight status.  

H1: Weight gain will be associated with a decrease in the alpha diversity (Shannon 

diversity index) of the microbiome from the beginning to the end of freshman year in 

college students at a large Southwestern University.  

H2: Weight gain will be associated with a decrease in the beta diversity (Jaccard and 

Unweighted UniFrac) of the microbiome from the beginning to the end of freshman year 

in college students at a large Southwestern University. 



 

  7 

CHAPTER 2 

REVIEW OF THE LITERATURE 

Obesity and Weight Gain 

Overweight/ Obesity in the United States 

The rates of obesity and its associations to adverse health outcomes is a well-

studied, multifactorial problem. As obesity reaches epidemic incidence in all age groups, 

the rates of obesity and overweight in adolescents is particularly alarming (Hales, 2017). 

In 1994, 10% of  adolescents aged 12-19 were obese (Hales, 2017). According to the CDC, 

in 2018 over 20% of adolescents were obese (Hales, 2017). Unfortunately, this trend is 

expected to increase in coming years (Hales, 2017). Obesity is especially dangerous when 

diagnosed during adolescence as it is hard for adolescents to return to a normal weight by 

adulthood (The et al., 2010). In fact, nearly 50% of overweight adults were overweight 

children (Deshmukh-Taskar et al., 2006). A meta-analysis from 2002 to 2010 demonstrated 

that people who were overweight or obese in childhood/adolescence were at a higher risk 

for premature mortality, and occurrence of cardiometabolic disease including heart attack, 

stroke, diabetes, and hypertension in adulthood (Reilly & Kelly, 2011). With rates of 

adolescent obesity rising, and its association with a significant disease burden in adulthood 

established, interventions and research should focus on this population and mitigate 

excessive weight gain.  

The definition of obesity and overweight differ slightly between age groups. In 

adults, weight categories are defined by BMI, with a BMI of 25 to 30 being overweight 

and above 30 as obesity (Obesity and Overweight, n.d.).  For children and adolescents 5-
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19 there is a growth chart for reference (Obesity and Overweight, n.d.). Therefore, 

diagnosis of overweight or obesity relies on where the child or adolescent falls on this chart 

with regards to their height and weight (Obesity and Overweight, n.d.). An overweight 

diagnosis is given if the child or adolescent is one standard deviation above the median 

growth on the WHO chart with an obese diagnosis is if the child or adolescent is 2 standard 

deviations above the reference median on the chart (Barlow & Expert Committee, 2007). 

Children under 5 have a separate growth chart but are still measured regarding this chart 

(Obesity and Overweight, n.d.). An overweight diagnosis is given if the child falls 2 

standard deviations above the median or between the 85th and 95th percentiles, and obese 

if they are 3 or more above the median, or in the 95th percentile (Barlow & Expert 

Committee, 2007).  

Consequences of obesity are also monetary (Weighing Down America, n.d.). Not 

only do people with obesity spend more annually on personal healthcare, but as a nation 

we spend more than 10% of all healthcare expenses directly on obesity and diseases linked 

to obesity (Dietz, 1998). In 2014, the U.S. healthcare system spent $427 billion on treating 

conditions linked to overweight or obesity, in addition to the almost $1 trillion in lost 

wages, deaths, and lost productivity (Dietz, 1998). 

Weight Gain Etiologies 

Weight gain, especially to the point of obesity, is a complex and multifactorial 

problem. General mechanisms include decreased energy expenditure due to inactivity or 

sedentary lifestyle, increased consumption of energy dense foods and calories, genetic 

predispositions, accessibility to energy dense foods, demographics, behaviors involving 
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food, and our environment (Biro & Wien, 2010; Chung & Leibel, 2008; Hales, 2017; Reilly 

& Kelly, 2011; Story et al., 2008; Trends in Intake of Energy and Macronutrients --- United 

States, 1971--2000, n.d.; Twenge & Campbell, 2018).  The amount of time people spend 

doing sedentary activities such as watching tv, driving or commuting, or on computers or 

cellphones, commonly referred to as “screen time” has increased substantially in recent 

decades (Twenge & Campbell, 2018).  

Not only has overall physical activity decreased dramatically, but processed, calorie 

dense foods have become readily available, leading the average American to consume more 

calories and expend less energy than previous generations (Chung & Leibel, 2008; Story 

et al., 2008). Increased portion sizes have also been associated with obesity due, in large 

part, to the fact that increased portion sizes have led to greater food consumption 

(Livingstone & Pourshahidi, 2014). According to NHANES, or the National Health and 

Nutrition Examination Survey, the average caloric intake for a man in the U.S. increased 

200 calories, and over 300 calories for women, when compared to the first NHANES study 

conducted in the 1970s (Chung & Leibel, 2008).   

Aspects of metabolism like regulation of fat storage, components of energy 

expenditure, and activity of hormones associated with obesity are determined through 

genetics and have been associated with weight gain (Catalano et al., 2009). Genetics can 

also play a role in satiety cues, overall body composition, and individual phenotypes 

(Chung & Leibel, 2008). Genetics is also important in controlling energy balance and 

susceptibility to weight gain or weight maintenance (Bouchard et al., 1994). Epigenetics 

can also play a role in weight gain, as risk children and adolescents becoming obese can 
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increase if they are born premature or if their mother had gestational diabetes (Biro & 

Wien, 2010).  

After the baby is born, demographic characteristics such as gender, socioeconomic 

status, ethnicity, and geographic location can increase their likelihood of gaining weight 

throughout childhood (Biro & Wien, 2010). Minority populations, as well as populations 

of lower socioeconomic status, have a higher prevalence of excessive weight (Hales, 2017). 

As demonstrated by the CDC, the highest growing population for overweight and obesity 

is female minorities (Hales, 2017). The environment around food has also changed 

significantly in recent decades, making energy dense foods readily available, abundant, and 

inexpensive (Rendina et al., 2019). Fast food consumption is high, particularly in locations 

considered to be food deserts (Boone-Heinonen et al., 2011). As demonstrated above, 

weight gain is a multifactorial problem. 

Weight Gain in Adolescents 

Weight gain in adolescent’s has some distinguishing characteristics. Specifically in 

adolescents, lifestyle factors attributed to weight gain include increased screen time, 

decreased physical activity, low consumption of fruits and veggies, and high intake of 

sugary beverages (Aaron et al., 2002).  Physical activity, or lack thereof, is also an 

important component of increased weight gain in this population as most adolescents are 

not participating in the 60 minutes of daily physical activity recommended by the USDA 

(Rendina et al., 2019). The amount of time children spend being physically active is 

declining, while rates of screen time are increasing (Weighing Down America, n.d.). This 

is particularly troublesome in children and adolescence, with the average amount of screen 
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time reported in high school students as 4 or more hours a day (Twenge & Campbell, 2018). 

Increases in screen time often replace physical activity (Twenge & Campbell, 2018). 

Increased energy consumption in adolescents has been attributed to an increase in energy 

dense snacks and the increased availability and consumption of fast food (Rendina et al., 

2019). Parenting styles and home life can also be contributing factors to weight gain in this 

age group (Aaron et al., 2002). The home food environment is not the only potentially 

obesogenic environmental factor that affects adolescents. The community environment 

plays a pivotal role in healthy diet and physical activity levels of the adolescent with 

regards to proximity and abundance of fast food restaurants, supermarkets, or outdoor 

recreation areas being associated with weight (Campbell, 2016). Weight and behavioral 

choices of the parents can also influence the weight of the adolescent (Campbell, 2016).   

 Causal relationships with one of these many factors are difficult to determine in 

obesity studies (Pontzer et al., 2012; Westerterp & Speakman, 2008). Westerterp et al. 

argues that as a society we are not less physically active, concluding that being less 

physically active is not the reason for the obesity epidemic that surged from 1980 to 2005 

(Westerterp & Speakman, 2008). The causal relationship between portion size and obesity 

has not been determined as overfeeding studies can have many confounding factors and 

associations that have been found are weak (Herman et al., 2016; Livingstone & 

Pourshahidi, 2014). Studies demonstrating causation between excessive sugar 

consumption and weight gain in humans are weak, especially in isocaloric feeding studies. 

A meta-analysis by Malik et al. demonstrates an average weight gain of roughly a pound 

or two. Even the genetic etiology is difficult to defend, with monozygotic twin studies 
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showing that there can be significant variation in weight gain between twins even when 

given the same number of calories and similar exercise regimens (Bouchard et al., 1994, 

1996). As mentioned above, obesity is a complicated problem with causality being very 

difficult to prove in any of the confounding factors and a myriad of factors that should also 

be examined.   

Overweight/ Obesity Consequences and Outcomes in Adolescents 

Adults who are overweight or obese are at a higher risk for a myriad of comorbid 

conditions including type 2 diabetes, osteoarthritis, pancreatic and prostate cancer, stroke, 

chronic back pain, and cardiovascular disease (Dietz, 1998). Two major ways obesity 

affects the body is through the endocrine and immune systems (Singla et al., 2010; Wellen 

& Hotamisligil, 2005). Adipose tissue can be regarded as an endocrine organ, regulating 

hormones such as leptin and adiponectin that in turn negatively affect metabolism (Singla 

et al., 2010). Obesity can also lead to adverse changes in serum lipids including an increase 

in free fatty acids (FFA), triglycerides (TAGs), and changes in cholesterol including a 

decrease in HDL with an increase in LDL (Klop et al., 2013). Another major bodily system 

affected by obesity is the immune system, as obesity can also be characterized by chronic, 

low-grade inflammation (Wellen & Hotamisligil, 2005). When inflammatory cytokines are 

overexpressed in the adipose tissue obese individuals, this can result in inflammation and 

insulin resistance (Wellen & Hotamisligil, 2005). This subsequent insulin resistance can 

be a potential mechanism for the development of type 2 diabetes mellitus (Wellen & 

Hotamisligil, 2005).  
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Consequences of obesity and weight gain on adolescents can be dangerous for their 

physical as well as mental health. Overweight and obese adolescents are more likely to be 

diagnosed with chronic conditions typically acquired in adulthood, such as diabetes, 

hyperinsulinemia, hypertension, pancreatitis, and liver disease (Russell-Mayhew et al., 

2012). Adolescents in this upper weight category also experience depression, sleep apnea, 

social isolation, anxiety, and the presence of an eating disorder at higher rates than their 

normal weight counterparts (Russell-Mayhew et al., 2012). This is detrimental to the 

mental health of the adolescent in a time of their life that should be characterized by fun, 

youth, and curiosity (Russell-Mayhew et al., 2012). They are also more likely to hit puberty 

earlier, thereby increasing their body size and bringing with it a host of mental health 

struggles (Russell-Mayhew et al., 2012). Obese and overweight adolescents are also more 

likely to miss school, having almost 40% more sick days than students of normal weight 

which can negatively impact their academic performance (Pan et al., 2013). Not only is it 

imperative to prevent obesity and overweight in this age group for their physical health, 

but also for their mental health (Truesdale et al., 2006). 

Importance of Focusing on this Age Cohort 

As demonstrated above, the consequences of excessive weight gain can be dire, 

regardless of age. Weight gain, even in adolescents, has shown a significant increase in 

CVD risk factors, regardless of the baseline weight (Gropper et al., 2012). Weight loss, 

although beneficial, is not an easy outcome. Wing et al. conducted a weight loss survey in 

adults and found that a weight decrease of 5% is enough to see significant changes in CVD 

risk and improvements in lipids and glycemic control measures such as insulin and insulin 
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resistance (Wing et al., 2017). Unfortunately, adult weight loss interventions are rarely 

effective long term, with a majority of participants gaining back their weight in 5 years or 

less (Wing et al., 2017). Adolescent studies, on the other hand, have been successful, 

especially interventions that address the causes of obesity and include a behavioral 

component such as diet and physical activity implemented with the whole family (Boff et 

al., 2017; Miller, 1999).  Similar interventions involving behavior change have not been as 

effective in adults, even when administered in the clinical setting (Booth et al., 2014).  

Therefore, preventing weight gain, or addressing it in the adolescent population is 

important for cardiometabolic health (Gropper et al., 2012). 

Overweight adolescents are likely to remain overweight into adulthood 

(Deshmukh-Taskar et al., 2006). It is important to mitigate weight gain in adolescence 

because this is a time where they are creating habits for the rest of their lives that can have 

implications for health and reduced disease risk (Lau et al., 1990; Nelson et al., 2008). 

Healthy habits, beliefs, and behaviors formed at home through parental modeling have 

been associated with healthier choices throughout adolescence, and particularly in the early 

college years (Lau et al., 1990). This suggests a relationship between habits formed in 

childhood and health behaviors in late adolescence, and the same can be said about physical 

activity. Higher rates of participation in physical activity during youth is associated with 

higher rates of physical activity in adulthood (Corder et al., 2019). This further points out 

that childhood and adolescence is a pivotal time for strengthening health behaviors. A 

particularly vulnerable cohort with regards to weight gain are college students. The 

freshman year of college has been distinguished as a critical period for weight gain and 
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thus is an ideal time for overweight and obesity prevention interventions due to their unique 

lifestyles (Anderson et al., 2003). 

Weight Gain and College Students 

College Student Lifestyle 

College is an important transition period in life marked by increased independence, 

autonomy, and unique experiences. Unfortunately, it is also a time characterized by 

unhealthy lifestyles and poor health choices. College freshmen lifestyles are unfortunately 

characterized by decreased levels of physical activity, poor dietary habits, immersion in 

environments that do not promote healthy habits, inadequate sleep, and increased 

participation in risky behaviors like alcohol consumption and smoking (Chen et al., 2008; 

Corder et al., 2019; Laska et al., 2009; Levitsky et al., 2004; Nelson et al., 2008). Each of 

these factors can be uniquely tied to weight gain.  

This transition period, from late adolescence to early adulthood, is marked by a 

decrease in overall physical activity, with only 12.7-50% of young adults reaching the 

desired weekly physical activity levels (Gordon-Larsen et al., 2004; McArthur, 2009; 

Nelson et al., 2008; Racette et al., 2008). Characteristics of insufficient physical activity 

differ with gender, with low rates of MVPA for females and high rates of leisure time 

computer use by males (Nelson et al., 2009). College-aged adolescents also experience a 

decline in overall diet quality (Nelson et al., 2008). In fact, fast food consumption, sugar 

sweetened beverages intake, and added sugar consumption is highest among the young 

adult age group (Briefel & Johnson, 2004; Nelson et al., 2009). During the transition from 

high school into college, there is also a decrease in fruit and vegetable intake, and increased 
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consumption of salty snacks and beef (Nelson et al., 2009). A reported 33% of college 

freshmen meet the minimum requirements for fruits and vegetables a day (McArthur, 

2009). Poor dietary habits such as high fast food consumption are associated with higher 

weight in this population (Larson et al., 2011).  

Environmental factors also play a role in weight gain for this age group (Levitsky 

et al., 2004). Food availability like ‘all-you-can-eat’ dining options, high rates of snacking, 

eating high-fat foods, general consumption of junk food, and meal frequency are associated 

with weight gain in college students (Levitsky et al., 2004).  Living in a dorm has also been 

associated with weight gain when compared to students who live at home their first year 

(de Vos et al., 2015; Nelson & Story, 2009).  Food typically kept in dorms is indicative of 

the reported diet of early college students; salty snacks, sugar-sweetened beverages, 

processed foods with added sugars, and granola bars, resulting in the average dorm room 

containing approximately 22,888 kcals (Nelson et al., 2009; Nelson & Story, 2009). The 

college campus environment also provides easy access to junk food, snacks, and dining 

halls that favor over consumption of food (Levitsky et al., 2004).  

Suboptimal sleep patterns, poor stress management, and an increase in risky 

behaviors are also part of the college lifestyle, although their relationship to weight gain in 

this cohort is less well defined (Chen et al., 2008; Laska et al., 2009; Pelletier et al., 2016). 

Sleep duration can affect weight as there seems to be an inverse relationship between sleep 

duration and likelihood of obesity (Chen et al., 2008). In the adolescent population 

specifically, this association has held true for males, but results are mixed with females 

(Chen et al., 2008). College lifestyles are associated with an uptick in risky lifestyle 
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behaviors including binge drinking, tobacco smoking, unsafe sex, and illicit drug use 

(Laska et al., 2009). Participation in high risk behaviors is associated with other poor 

lifestyle choices in college students (Laska et al., 2009). Lastly, higher than average stress 

levels and poor stress management have been reported in first year college students 

(Pelletier et al., 2016). The relationship between stress and weight gain in college students 

is not well understood, with studies reporting conflicting results (Aceijas et al., 2017; 

Pelletier et al., 2016). 

Perceived barriers are reported as a deterrent to a healthy lifestyle in college 

underclassmen and can be associated with weight gain (Greaney et al., 2009; Nelson et al., 

2009; Yan & Harrington, 2019).  These include lack of availability and accessibility to 

healthy foods or recreation centers, lack of social support for a healthy lifestyle, lack of 

motivation, not possessing the necessary time management skills, stress eating, lack of 

time, and alcohol-related eating (Greaney et al., 2009; Nelson et al., 2009; Yan & 

Harrington, 2019).  College student knowledge of physical activity recommendations is 

low with only 40% reporting awareness that the recommended amount of physical activity 

is 30 minutes of moderate to vigorous physical activity 5 days a week (McArthur, 2009). 

The most important motivation for exercise was health followed by appearance and mental 

health (McArthur, 2009). Like the etiologies for obesity in general, the relationship 

between weight gain and the lifestyle of college freshman is a multifactorial problem.  

Weight Gain Trajectory in College Students 

The age-old anecdote of the “freshman fifteen” has been tested by scientists and 

effectively debunked in recent years (Vadeboncoeur et al., 2015). While most freshmen 
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don’t gain 15 pounds over their freshman year, they do gain some weight, with about 70%-

80% of freshman gaining weight (Racette et al., 2005; Thursby & Juge, 2017).  After 

conducting a meta-analysis of articles from 1985-2011, Racette et al. found that the results 

are closer to a mean weight of 1.75 kg or about 4 lbs during a student's freshman year of 

college (Racette et al., 2008; Williamson et al., 1990). This average can also be partitioned 

by gender, as one study reported that by the end of freshman year, females had gained an 

average of 1.7 kg +/- 4.5 kg and males averaged a weight gain of 4.2 kg +/- 6.4 kg (Racette 

et al., 2008). While this doesn’t sound like much, even 1.7 kg of weight gain over less than 

a year is a statistically significant amount over that period of time (Racette et al., 2008; 

Williamson et al., 1990).   

Significant weight gain throughout the freshman year is also an indication of weight 

gain throughout college (Gropper et al., 2012; Pope et al., 2017). While the average 

student’s weight gain slowed down after freshman year, the students who gained the most 

weight during their freshman year were likely to continue gaining weight, gaining almost 

5 kgs (11 lbs.), by the end of their college tenure (Palmer et al., 2007; Racette et al., 2008).  

This rate of almost 7 kgs per year is higher than what previous studies have indicated as an 

average weight gain for young adults per year, which is closer to 2.2 to 4.4 kgs (Gropper 

et al., 2012; J. Hu et al., 2013). In one study, the percent of students in the overweight and 

obese category went from 18% freshman year, to 31% in their senior year (Thursby & Juge, 

2017). In another study, a modest but statistically significant weight gain during freshman 

year of just 2.3 kg for a cohort of students was enough to double the number of participants 

who were overweight or obese (Anderson et al., 2003). Weight gain trajectory in college 
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students is also highly variable. A meta-analysis by Racette et al. reported a range of -13.2 

kg to +20.9 kg (Racette et al., 2008). Most troubling, is that researchers have not been able 

to come to a consensus as to the cause of weight gain in college freshman (Palmer et al., 

2007; Racette et al., 2005; Thursby & Juge, 2017).   

The Microbiome 

 Introduction to the Microbiome 

          Microbes make up a large part of our world. The phrase, “the human microbiome” 

refers to the collection of microorganisms that inhabit the human body (Group et al., 2009). 

The main places microbes inhabit are the skin, mouth, vagina, and the gastrointestinal tract 

with each location consisting of its own unique combination of microbes and diverse 

functions (Group et al., 2009). In these environments, a mutualistic relationship takes place, 

as these microbes are essential for our bodies to perform certain tasks while our bodies 

provide a constant supply of nutrients to the microbes (Group et al., 2009; “Structure, 

Function and Diversity of the Healthy Human Microbiome,” 2012). The microbes that live 

on our skin and inside our bodies have implications for the function of our immune system, 

metabolism, mental health, and even in our development of diseases (“Structure, Function 

and Diversity of the Healthy Human Microbiome,” 2012; Thursby & Juge, 2017). When 

babies are born, their first contact with the outside world is through inoculation of their 

mother’s microbes through the vaginal opening (Ma et al., 2012). Humans are in 

continuous contact with microbes, and they are important for health but also have potential 

for disease. 
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While the roles of the microbes are unique in each region of the body, important 

similarities are the ability of microbes to protect against pathogen invasion, and that 

dysbiosis can be a contributing factor in disease (Bäckhed et al., 2007; De Filippo et al., 

2010; Kilian et al., 2016; Ma et al., 2012; Sanford & Gallo, 2013). Dysbiosis is defined as 

a disturbance in organisms composing the microflora of the gut community (Marchesi, 

2011). The microbiota which inhabit the mouth are crucial for homeostasis as well as 

protecting against disease as dysbiosis of the oral microbiome is associated with dental 

diseases such as cavities, periodontitis, and gingivitis (Kilian et al., 2016). In the vagina, a 

community dominated by Lactobacillus, microbes contribute by maintaining the pH of the 

environment and by protecting the community against invasion by potential pathogens that 

cause yeast infections, urinary tract infections, and vaginosis (Ma et al., 2012). The skin, 

which is considered the largest organ of the immune system, contains millions of microbes 

that contribute to immunity as well as health and disease such as psoriasis, dandruff, 

eczema, and acne (Sanford & Gallo, 2013). As part of the gastrointestinal (GI) tract, 

microbes enhance metabolic functions such as increased energy extraction from foods 

called energy harvesting, immune functions, GI functions, and protection against 

pathogens (Bäckhed et al., 2004; De Filippo et al., 2010; Ley et al., 2006; Turnbaugh et al., 

2006). 

         Specifically, in the gut, the microbes have a myriad of functions that contribute to 

the host in essential ways. Most microbial biomass and therefore metabolism occur in the 

luminal contents of the large intestine, as compared to the stomach or duodenum (Allaband 

et al., 2019; Belizário et al., 2018). Through the GI tract, microbes play a vital role in 
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metabolism, synthesis of vitamins, immunological functions, and inflammation (Belizário 

et al., 2018; Conlon & Bird, 2014). Fermentation of carbohydrates by microbes in the large 

intestine creates SCFA, or short chain fatty acids, that are essential in maintaining the 

health of the colon (Belizário et al., 2018; Conlon & Bird, 2014). As part of the immune 

response, microbial metabolites are important signalers helping the immune system 

distinguish self from nonself (Peterson et al., 2015). Aspects of gut permeability are 

maintained through the gut microbiome and disruptions can lead to chronic inflammation 

as potential pathogens enter the circulation (Belizário et al., 2018; Cani et al., 2007; Conlon 

& Bird, 2014; Thursby & Juge, 2017). Systemic and chronic inflammation have been 

associated with diseases (Belizário et al., 2018; Cani et al., 2007). 

 Microbial Diversity and Implications in Health 

  When it comes to stability of any environment, diversity is critical (McCann, 2000).  

Diversity within a community has ecological advantages, including functional redundancy 

and resistance to invasion (McCann, 2000). In the gut microbiome specifically, that can 

also mean increased resilience, improved immune function, and decreased susceptibility to 

GI related disorders as low diversity has been associated with obesity and IBD (Group et 

al., 2009). Diversity is also key in the gut microbiome as many different microbes are 

needed to break down most substrates (Conlon & Bird, 2014). Diversity in the gut 

microbiome is location dependent, with the large intestine and colon being the most diverse 

and small intestine being the least (Group et al., 2009; Turnbaugh et al., 2009). Diversity 

in the microbiome is also not specific to microbes, as there are also archaea, viruses and 

eukaryotic cells present that work together (Segata, 2015). 



 

  22 

Stability within a human host, especially in the gut microbiome is associated with 

health and is measured through diversity (Group et al., 2009; “Structure, Function and 

Diversity of the Healthy Human Microbiome,” 2012). Two ways to measure microbial 

diversity are alpha and beta diversity (Whittaker, 1972). Alpha diversity is the diversity 

within one sample and is a measurement of the richness and evenness of unique members 

present (Whittaker, 1972). These measurements will yield information about the number 

of species at a given time and are important measurements of what is present (Group et al., 

2009; Whittaker, 1972). Microbial diversity between samples, or beta diversity, yields 

information on differences and dissimilarities between samples (Goodrich et al., 2014). 

This can demonstrate differences between geographic regions, in disease and non-disease 

states or between regions on the body (Goodrich et al., 2014).  

While a healthy microbiome can be hard to define, scientists have leaned towards 

a broad characterization. A healthy gut can be characterized by stability, particularly in 

both richness and diversity (Cotillard et al., 2013). Chronic conditions such as 

inflammatory bowel disease (IBD), obesity, and other GI disruptions can affect the health, 

and thus stabilization of diversity of the microbiome. Cross sectional analysis indicates that 

conditions such as IBD, obesity and psychiatric conditions such as attention deficit 

hyperactivity disorder, or ADHD, have been associated with low diversity measurements 

in the gut microbiome (Prehn-Kristensen et al., 2018). An instability or imbalance in 

microbial diversity is referred to as dysbiosis and can have potentially harmful 

consequences for the host (Belizário et al., 2018). Dysbiosis can cause interruptions in gut 

permeability, host metabolism, inflammation, and in turn can lead to adverse health 
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outcomes such as IBD, IBS, obesity, diabetes, and colorectal cancer (Belizário et al., 2018; 

Peterson et al., 2015). Functional redundancy is an important, protective aspect of diversity 

as it ensures that if there is a change in diversity that key functions and processes remain 

uninterrupted (Bäckhed et al., 2007). 

Lifestyle and the Microbiome 

         Modifiable lifestyle factors such as diet and exercise. It is suggested that diet 

accounts for 20% of microbial composition (Leeming et al., 2019). The relationship 

between the microbiome and diet was initially demonstrated in mice (David et al., 2014; 

Turnbaugh et al., 2009; Wu et al., 2011). In mice, these changes can occur almost instantly, 

within hours to a couple days (David et al., 2014; Turnbaugh et al., 2006). When mice are 

fed either a “Western” diet high in fat and sugar, or a high fiber, plant-based diet, rapid 

changes are seen in their microbial communities (Turnbaugh et al., 2006; Wu et al., 2011). 

However, these changes were not stable and once put on a normal diet their microbes 

returned to normal, thus demonstrating that a short-term dietary change did not change the 

composition permanently (Wu et al., 2011). Studies conducted on humans, demonstrate 

changes that occur at a much slower rate (David et al., 2014). These studies demonstrated 

that changes in microbial composition due to diet can take weeks if not months in humans, 

and consistent changes in taxa have not been demonstrated (Allaband et al., 2019; David 

et al., 2014). This demonstrates that the timescale and exact mechanism  of how diet 

changes the microbiome is still inconclusive. 

In the human gut microbiome, compositional changes of the microbes depend on 

the macronutrient composition of the meals and overall diet (Allaband et al., 2019; Conlon 
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& Bird, 2014; David et al., 2014; Wu et al., 2011). The nutrients that are found in the diet 

will fuel microbes that run on those specific nutrients (Cotillard et al., 2013). Microbes 

allow humans to break down carbohydrates by producing enzymes that humans do not 

produce, such as glucoside hydrolase and polysaccharide lyases that are used in the 

metabolism of fiber (Belizário et al., 2018). High fiber and mostly vegetarian diets are 

associated with a higher abundance of Prevotella, Xylanibacter (Bacteroidetes), and 

Treponema (Spirochetes) and subsequently a higher proportion of short chain fatty acids 

(SCFA), greater richness, and enhanced diversity of the microbiome (De Filippo et al., 

2010). Greater dietary fiber intake is associated with higher levels of alpha diversity and is 

slightly protective against weight gain (Baxter et al., 2019; Holscher et al., 2018; Menni et 

al., 2017; Van Hul & Cani, 2019). Diets high in animal fat, sugar, processed foods, and 

starch but  low in fiber tend to be composed of more Firmicutes and Bacteroidetes, 

especially when compared to the previously mentioned high fiber diet (Cani et al., 2007; 

Da Silva et al., 2020; De Filippo et al., 2010). These aforementioned diets high in animal 

fat, sugar, processed foods and starch, are associated with decreases in diversity of the gut 

microbiome (Da Silva et al., 2020; Rampelli et al., 2015). 

 As mentioned above, exercise has been shown to affect the composition and 

diversity of the microbiome. Changes in abundance of microbes in the microbiome have 

been shown to be associated with exercise in human and animal models, though the exact 

measurements, such as changes in alpha diversity, beta diversity, and abundance have been 

inconsistent (Mitchell et al., 2019). This may be due to the effects of two important 

confounding factors, diet and weight status (Allen et al., 2018; Clarke et al., 2014a; 
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Mitchell et al., 2019; Whisner et al., 2018). While Clarke et al demonstrated significant 

differences in diversity between athletes and healthy controls, it may be due to the high 

protein diet of the athletes (Clarke et al., 2014a). The effects of exercise on the microbiome 

can be independent of diet, but not always independent of weight (Allen et al., 2018; 

Mitchell et al., 2019). Lean individuals may respond better to exercise induced changes in 

the microbiome when compared to their overweight or obese counterparts (Allen et al., 

2018). This was associated through changes in species that produce SCFA such as 

Lachnospira and Faecalibacterium were increased in lean but not obese adults (Allen et 

al., 2018; Clarke et al., 2014a; Mitchell et al., 2019). Lachnospira, as well as 

Paraprevotellacae and Lachnospiaceae have been associated with physically active youth 

(Whisner et al., 2018). 

Antibiotic Use and The Microbiome  

Antibiotic use can also contribute to differences in the composition of the microbial 

communities in an individual. Typically, the microbial diversity within a given individual 

remains steady once they reach adulthood (Dethlefsen & Relman, 2011; H.-J. Hu et al., 

2015; Palmer et al., 2007; Yatsunenko et al., 2012). Once given antibiotics however, this 

diversity decreases rapidly and dramatically, with studies showing a significant change 

anywhere from 1-4 days after the first ingestion of an antibiotic (Dethlefsen & Relman, 

2011). Microbial communities begin to shift back to normal after a week, but in some 

patients, microbes never return to normal (Dethlefsen & Relman, 2011). Interestingly, 

antibiotic use has also been associated with improved metabolic and hormonal markers in 
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obese rats, possibly due to diminishing the gap between pro-inflammatory and anti-

inflammatory microbes associated with the obese microbiome (Cotillard et al., 2013). 

 Changes in Microbial Diversity Throughout Life  

Age has a huge impact on the compositional and functional characterization of the 

microbiome (Palmer et al., 2007). The gut microbiome is an important contributor to 

human metabolism beginning at birth and assisting individuals with vital tasks throughout 

life (Palmer et al., 2007). In early life, the composition of the infant’s microbiome is highly 

variable and constantly changing in response to the environment and diet (J. Hu et al., 2013; 

Palmer et al., 2007). It has been shown to be less diverse and more variable when compared 

to the microbiome of an adult (J. Hu et al., 2013). The microbiome of an infant consists 

mostly of two phyla: Actinobacteria and Proteobacteria (Thursby & Juge, 2017). Two 

important and abundant genera, specifically for infants, are Lactobacilius (from the phylum 

Firmicutes), and Bifidobacterium (from the Actinobacteria phylum) (Conlon & Bird, 

2014). These genera are abundant in infants because their main source of fuel is the 

oligosaccharides present in human breast milk (Conlon & Bird, 2014). Infants who are 

formula fed and not breastfed have less Bifidobacterium and greater microbial diversity 

(Thursby & Juge, 2017). Microbes also serve an important role in the development of the 

immune system (Conlon & Bird, 2014). As the infant weans from breast milk to solid food, 

the abundance of Lactobacillus and Bifidobacteria decreases as the functional diversity of 

the microbiome increases to increase the functions (Thursby & Juge, 2017). This is just 

one example of the dynamic way the microbiome adjusts to age and functional needs. It is 

believed that the convergence of the youth and adult microbiome is complete by ages 1-3 
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years, where the child’s abundance of the aforementioned genera is closer to that of an 

adult and begins to remain relatively stable until late adulthood (J. Hu et al., 2013; Palmer 

et al., 2007; Yatsunenko et al., 2012). 

It can be argued that there are interesting changes that take place in the microbiome 

between the age of three to adolescence (Agans et al., 2011; Avershina et al., 2014; Cheng 

et al., 2016; Conlon & Bird, 2014; Hollister et al., 2015; Odamaki et al., 2016). This is due 

to the continued dynamic nature of the gut microbiome into adolescence and even early 

adulthood (Avershina et al., 2014; Cheng et al., 2016; Odamaki et al., 2016). The gut 

microbiome of an adolescence can be characterized by the changing relationship of 

Firmicutes to Bacteroidetes (Cheng et al., 2016; Conlon & Bird, 2014). In a study 

conducted by Hollister et al, researchers found that the gut microbiome of children, as well 

as adults, contained a majority of Bacteroidetes and Firmicutes (Hollister et al., 2015). It 

was at the genus level, however, where statistically significant differences were observed. 

Children's microbiomes had greater abundance of Bifidobacterium, Faecalibacterium, and 

Lachnospiraceae while adults had higher amounts of Bacteroides spp (Hollister et al., 

2015). Upon comparing the microbiome composition of adolescents to adults, adolescents 

had a statistically significant difference in microbiome composition, with adolescent’s 

having a higher abundance of genera Clostridium and Bifidobacterium while adults had a 

greater abundance of Bacteroides spp (Agans et al., 2011; Hollister et al., 2015). 

Specifically, they found a similar abundance of Faecalibacterium in adolescents and adults 

in the study, contrasting a key discovery in Hollister et al (Agans et al., 2011; Hollister et 

al., 2015). 
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Odamaki et al. argues that microbial composition can be grouped into five different 

clusters by age, with significant overlap due to individual uniqueness (Odamaki et al., 

2016). There are certain compositional changes that occur in trends, for example, 

Proteobacteria increases until the age of three, decreases, then increases again in the 70s, 

making the microbiome of infants similar in ways to the microbiome of the elderly (Agans 

et al., 2011). Actinobacteria, which characterizes the infant microbiome, steadily decreases 

once weaning begins, and never regains its numbers held in infancy (Odamaki et al., 2016; 

Palmer et al., 2007). However, other studies have shown that Actinobacteria retain these 

high abundances until about five years of age (Cheng et al., 2016). Throughout the aging 

process, Bacteroidetes increase and Firmicutes decrease (Cheng et al., 2016; Odamaki et 

al., 2016). This is another way that the infant microbiome is like the elderly microbiome 

aged 70 and up, with numbers of Bacteroidetes becoming closer to Firmicutes, which is a 

relationship associated with aging (Odamaki et al., 2016; Palmer et al., 2007). 

A majority of studies pertaining to the composition of the microbiome in humans 

in health and disease assess the microbiome of adults (Agans et al., 2011; Conlon & Bird, 

2014; David et al., 2014; Hollister et al., 2015). However, the composition and diversity of 

an adult’s microbiome is not as comparable to adolescents as most studies have assumed 

(J. Hu et al., 2013; Palmer et al., 2007). Hollister et al. concluded that even though the 

number and taxa were comparable between adults and children, there was a significant 

difference at the genus level that indicated potential functional differences (Hollister et al., 

2015). Studies discussed above have shown that the abundance within the species and not 
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the presence of the species changes as a function of age (Agans et al., 2011; Hollister et 

al., 2015; Ringel-Kulka et al., 2013).   

Weight Gain and the Microbiome 

 Microbes Associated with Weight Gain 

  There are five main phyla that make up a majority of the human gut microbiome; 

Bacteroidetes, Firmicutes, Actinobacteria, Proteobacteria, and Verrucomicrobia (Castaner 

et al., 2018; Chakraborti, 2015; Clarke et al., 2012; Group et al., 2009). When discussing 

the relationship between weight gain and microbes, the two main phyla are Bacteroidetes 

and Firmicutes as they make up about 60%-90% of the gastrointestinal communities 

(Castaner et al., 2018; Conlon & Bird, 2014). The Human Microbiome Project indicates 

that there is wide compositional variety between people (Group et al., 2009). Experimental 

studies conducted in mice initially demonstrated the relationship between these phyla and 

the substantial role they play in energy harvesting and regulation of weight gain (Bäckhed 

et al., 2007; Turnbaugh et al., 2006). The relationship between these phyla has been 

discussed in regard to abundance, with a high ratio of Firmicutes to Bacteroidetes (F/B 

ratio) being associated with obesity and increased energy harvest from the diet (Turnbaugh 

et al., 2006). Preliminary studies in humans show similar results with obese humans having 

more Firmicutes than Bacteroidetes when compared to lean controls (Ley et al., 2005, 

2006). When weight loss was induced, this ratio began to become closer to that of a lean 

individual, further supporting this high F/B ratio as potentially obesogenic (Ley et al., 2005, 

2006). 
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However, experimental studies in humans do not consistently demonstrate a 

relationship between the F/B ratio and weight gain. Contradicting studies describing the 

relationship between these two phyla and weight report no difference (Arumugam et al., 

2011; Da Silva et al., 2020; Fleissner et al., 2010; Ley et al., 2005). With the advent of 

higher sensitivity genetic testing, interactions at the family, genus, and even species levels 

are being reported (Group et al., 2009). Lower level classifications of Firmicutes and 

Bacteroidetes have been shown to be affected by weight gain (Armougom et al., 2009; 

Menni et al., 2017; Remely et al., 2015). An increase in Lactobacillus, a genus in the 

Firmicutes phylum, has been associated with weight gain in mice, children, and adults 

(Armougom et al., 2009). Individuals with a higher abundance of Ruminococcaceae are 

thought to have a lower risk for weight gain, suggesting a potential protective effect against 

obesity for this Firmicutes family member (Menni et al., 2017). 

Weight loss also has an impact on lower level classifications of microbes in the 

Firmicutes and Bacteroidetes phyla (Remely et al., 2015). As one would expect, during 

times of induced weight loss, the F/B ratio decreased (Remely et al., 2015). Weight loss is 

also associated with an increase in abundance of the genus Lactobacilius and species 

Faecalibacterium prausnitzii that also belongs to the Firmicutes phyla (Remely et al., 

2015). The family Lachnospiraceae, from the Firmicutes phylum, is associated with a 

lower weight, lower energy consumption, and higher levels of leptin (Remely et al., 2015). 

Medically induced weight loss such as bariatric surgery also affects the microbial 

community in the gut, by increasing alpha and beta diversity up to one year after surgery 

(Shen et al., 2019). After bariatric surgery, the abundance of Akkermansia  muciniphilia 
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increased in patients, demonstrating a positive change in the gut microbiome (Roopchand 

et al., 2015). 

       Firmicutes and Bacteroidetes are not the only phyla observed to impact weight gain. 

Two other abundant phyla in the gut microbiome that have shown a relationship to obesity 

and weight gain are Verrucimicrobia and Actinobacteria (Chakraborti, 2015; Group et al., 

2009; Naito et al., 2018). The Verrucomicrobia phylum, in particular Akkermansia 

muciniphila sp., is present in low levels in people with obesity and metabolic syndrome 

(Chakraborti, 2015; Naito et al., 2018). Akkermansia muciniphilia sp. degrades mucin  in 

the intestine, eventually leading to increased mucus production and thickening the 

intestinal barrier (Naito et al., 2018). This species is thought to promote mucus layer 

turnover in the intestinal lumen and prevent translocation of endotoxins and its subsequent 

role in inflammation (Naito et al., 2018). Actinobacteria has also been noted in associations 

between obesity and the microbiome. In particular, rats supplemented with the genus 

Bifidobacterium, from the Actinobacteria phylum, had better metabolic outcomes and 

lower weight suggesting that this bacterium has anti-obesogenic effects (Yin et al., 2010). 

However, a higher abundance of Actinobacteria has been associated with obesity 

(Chakraborti, 2015; Turnbaugh et al., 2009).   

Most studies on the relationship between obesity and the microbiome are done on 

adults, not adolescents or children (Castaner et al., 2018). Recall there are statistically 

significant differences between the two age groups and the composition of the microbiome 

(Agans et al., 2011; Hollister et al., 2015; Palmer et al., 2007). However, there are similar 

inconsistencies to adults as some studies demonstrate a relationship between the F/B ratio 
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and weight, in children and adolescents, while others do not (Bervoets et al., 2013; Da Silva 

et al., 2020; J. Hu et al., 2013; Ignacio et al., 2016; Murugesan et al., 2015; Whisner et al., 

2018). Da Silva et al, like other studies, also demonstrated a positive linear relationship 

between Firmicutes and weight and an inverse relationship between Bacteroidetes and 

Firmicutes in children (Da Silva et al., 2020). A significantly lower number of 

Bacteroidetes and Bifidobacterium were observed in the overweight cohort when compared 

to normal weight children (Da Silva et al., 2020). In two studies out of South America, 

increased abundance of the family Enterobacteriaceae from the Firmicutes phyla, was 

associated with obesity and overweight (Karlsson et al., 2012; Murugesan et al., 2015). 

However, in Hu et al, no relationship was found between F/B ratio and weight in 

adolescents (J. Hu et al., 2013). Another report by Ignacio et al only found a slight, not 

statistically significant increase in Firmicutes with weight (Ignacio et al., 2016). 

Bacteroidetes appeared to decrease between normal weight and overweight, but then 

increase between overweight to obese, contradicting results mentioned above (Da Silva et 

al., 2020; Ignacio et al., 2016). 

Again, interesting differences can also be seen at the family, genus, or species level, 

with weight being associated with a myriad of different taxa (Da Silva et al., 2020; J. Hu 

et al., 2013). A higher abundance of the family Bifidobacteriaceae and genus 

Bifidobacterium have been associated with normal weight children and may have potential 

anti-obesogenic effects through reducing body fat stores (Da Silva et al., 2020). Another 

bacterium reported in higher abundance in normal weight youth when compared to obese 

was Akkermansia muciniphila (Journey et al., 2020; Karlsson et al., 2012). On the other 
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hand, Lactobacilius was associated with overweight and obesity in children (Bervoets et 

al., 2013; Da Silva et al., 2020). Bervoets et al reported a positive linear relationship 

between C reactive protein (CRP) concentrations and abundance of Lactobacilius in 

overweight children, suggesting a potential role of this bacteria in low grade inflammation 

(Bervoets et al., 2013). The phyla Proteobacteria is also higher in normal weight children 

when compared to overweight or obese (Murugesan et al., 2015). Faecalibacterium sp. and 

Roseburia sp. have also been seen in a higher abundance in overweight or obese youth 

(Murugesan et al., 2015). However, Hu et al reported no changes in abundance of 

Faecalibacterium sp. in normal weight compared to overweight or obese adolescents (J. 

Hu et al., 2013). 

Potential Mechanisms of Action  

The main mechanisms by which the gut microbiome affects weight gain are energy 

harvesting, inflammation and gut permeability, regulation of fat storage, and production of 

microbial metabolites such as short chain fatty acids (Bäckhed et al., 2004, 2007; Cani et 

al., 2007; Conlon & Bird, 2014; Harley & Karp, 2012; Heiss & Olofsson, 2018; Lin et al., 

2012; Turnbaugh et al., 2006, 2009). The relationship between weight gain and microbes 

inhabiting the gut was first discovered in mice (Turnbaugh et al., 2006). A pivotal study 

by Turnbaugh et al. in 2006 discovered the transmissibility of the “obese microbiome” as 

well as the concept of energy harvesting (Turnbaugh et al., 2006). Once transplanted with 

microbes from the gut of overweight individuals, mice gained significantly more weight 

than mice transplanted with microbes from lean individuals, leading to the conclusion that 

microbes from obese individuals must be more efficient at harvesting energy from the diet 
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(Turnbaugh et al., 2006). These results are not always reproducible however, with no 

significant difference being observed between obese and lean transplanted mice (Bäckhed 

et al., 2007). Due to inconsistencies in results, the suggestion has been made that the 

concept of energy harvesting may be more complicated than initially thought (Murphy et 

al., 2010). Microbes inhabiting the intestines are also associated with an increased uptake 

of glucose from the diet, leading to an increase in the macronutrient content of the diet and 

strengthening the concept of energy harvesting (Bäckhed et al., 2004). One of the key roles 

of the microbes that inhabit the gut is to break down the contents of the diet that the human 

body is not naturally equipped to do through fermentation which results in the production 

of SCFA (Heiss & Olofsson, 2018). 

Recall above that important byproducts of microbial metabolism are SCFAs which 

are used by colonocytes in the GI tract for energy, maintenance of luminal tissue, or for 

delivery to the liver (Chittim et al., 2018; Conlon & Bird, 2014). The three main SCFA 

produced through microbial fermentation are acetate, propionate and butyrate (Chittim et 

al., 2018; Conlon & Bird, 2014; Le Chatelier et al., 2013; Lin et al., 2012). The role of 

short-chain fatty acids, or SCFA, and weight maintenance has been studied extensively in 

rat models. One study by Lin et al. found that mice supplemented with butyrate and 

propionate completely avoided weight gain while acetate-fed mice had 40% less weight 

gain than the controls (Lin et al., 2012). Rats were fed high fat diets, HFD, to try to induce 

weight gain (Lin et al., 2012). Other metrics such as fasting glucose, glucose tolerance, 

fasting insulin and leptin levels all improved in each group (Lin et al., 2012). Another study 

by the same authors found that supplementation with SCFAs only resulted in reduced food 



 

  35 

intake when butyrate was given (Lin et al., 2012). After conducting these studies the 

authors concluded that the SCFAs butyrate, acetate, and propionate protected the mice in 

these studies from the obesogenic effects of a HFD (Lin et al., 2012).  

         Another potential mechanism is the potential proinflammatory effect of the 

microbiome (Verdam et al., 2013). Inflammation is regulated through the immune system 

and is associated with an increase in proinflammatory cytokines (Cani et al., 2007). These 

are modulated through bacterial lipopolysaccharides, or LPS, in which a higher amounts 

of this endotoxin can cause inflammation in the tissues (Cani et al., 2007; Conlon & Bird, 

2014; Naito et al., 2018). Obesity, particularly related to high fat diets, has been associated 

with an increased amount of LPS (Cani et al., 2007). Individuals with greater alpha 

diversity present with more Faecalibacterium prausnitzii, a species that is associated with 

anti-inflammatory properties, whereas individuals with a lower alpha diversity had more 

proinflammatory Bacteroides (Le Chatelier et al., 2013). Mechanisms through which low 

alpha diversity can contribute to the proinflammatory effects of the microbiome include; 

increased mucus degradation of the gut through a decrease in Akkermansia and decrease in 

butyrate-producing bacteria (Le Chatelier et al., 2013). 

There are two main mechanisms by which fat storage is regulated through the 

microbiome, fat induced adipose factor (FIAF) and AMP-activated protein kinase (AMPK) 

(Bäckhed et al., 2007). FIAF is a circulating lipoprotein lipase (LPL) inhibitor (Bäckhed et 

al., 2004). Bacterial reduction in FIAF activity promotes adiposity and subsequent weight 

gain by upregulating LPL and thus triacylglycerol (TAG) storage in adipose tissue 

(Bäckhed et al., 2004). This suggests that an increase in FIAF activity could increase 



 

  36 

leanness (Bäckhed et al., 2004). Another metabolite that is modulated through the gut 

microbiome is AMPK. This signaling molecule is associated with leanness (Bäckhed et al., 

2007). AMPK is a key metabolite in fatty acid oxidation (Bäckhed et al., 2007). As a result 

of energy harvesting through the microbiome, microbes are thought to have a role in 

decreasing AMPK and thus decreasing fatty acid oxidation (Bäckhed et al., 2007). When 

GF mice are inoculated with microbes from conventionally raised mice, they became 

hyperglycemic and hyperinsulinemia, both of which stimulate lipogenesis and de novo 

lipogenesis in the liver; this resulted in body fat gain and increased insulin resistance 

(Bäckhed et al., 2004). The relationship between fat storage regulation and the microbiome 

is not always clear, with some studies reporting increases in adiposity that are not 

associated with microbes (Fleissner et al., 2010).   

Therapeutic Applications Using the Microbiome  

Understanding the microbiome and the way it changes and responds to the health 

of the human host can have potential therapeutic and public health implications for a 

multitude of conditions such as obesity, IBD, or other metabolic conditions (Brusaferro et 

al., 2018; Van Hul & Cani, 2019; Wang et al., 2019). Therapeutic ways in which the 

microbiome can be used include probiotics, prebiotics, polyphenol supplementation, and 

fecal microbiota Transplants, or FMT (Belizário et al., 2018; Brusaferro et al., 2018; Harley 

& Karp, 2012; Van Hul & Cani, 2019; Wang et al., 2019). Polyphenols are chemical 

compounds found in plants that are beneficial to humans (Van Hul & Cani, 2019). 

Probiotics supplements are live microorganisms while prebiotics are composed of 

selectively fermented nondigestible substrate provided by food, both of which have been 
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shown, along with polyphenols, to have positive health benefits (Everard et al., 2011; 

Harley & Karp, 2012; Marchesi, 2011; Van Hul & Cani, 2019).  

The use of probiotics to modulate the microbiome has been used for thousands of 

years with yogurt and other fermented foods (Harley & Karp, 2012). Prebiotics have been 

associated with an increase in alpha diversity, as well as a decrease in the F/B ratio, which 

in turn can affect fat storage and inflammation (Everard et al., 2011). Studies using 

probiotic or prebiotic supplementation have shown positive results in energy homeostasis, 

metabolism, and maintaining a healthy weight (Cani et al., 2007; Harley & Karp, 2012). 

Supplementing with polyphenols has also demonstrated positive outcomes on the 

composition of the gut microbiome including an increase in the abundance of Akkermansia 

muciniphilia and increase in alpha diversity (Anhê et al., 2015; Roopchand et al., 2015). 

However, no one strain of probiotic demonstrated the same metabolic effect on every rat 

in one review (Cani et al., 2007). Probiotic, prebiotic, and polyphenol supplementation 

offer exciting ways to manipulate the microbiome, but more research is needed (Cani & 

Van Hul, 2015; Harley & Karp, 2012). 

While the use of probiotics is a promising therapy, little is known about duration, 

frequency, dosage, and long-term effects of probiotic supplementation (Brusaferro et al., 

2018). In addition to the potentially therapeutic uses of probiotics, fecal microbiota 

transplants have been used in the 21st century as an incredibly effective treatment for the 

pathogenic and deadly infection of Clostridium difficile (Wang et al., 2019). A fecal 

microbiota transplant, or FMT, is when a healthy person donates a sample of their stool 

which is then transferred to a sick person as a means of therapy (Wang et al., 2019). The 
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reported effectiveness of this treatment is roughly 90%, whereas the other typical treatment 

option of multiple antibiotics has an effectiveness rate closer to 20-30% (Wang et al., 

2019). However, like probiotics, long-term effects of FMT are also unknown, and more 

research is needed (Brusaferro et al., 2018; Wang et al., 2019). Modulation and 

manipulation of the gut microbiome can have exciting implications in weight loss 

interventions, as they are usually ineffective over the long term (Van Hul & Cani, 2019). 
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CHAPTER 3 

METHODS 

Participants and Study Design 

Participants for devilWASTE were recruited through a larger study, Social impact 

of Physical Activity and nutRition in College, or SPARC, which sought to analyze the 

influence between lifestyle factors, health, and the social networks of college freshman 

(Bruening et al., 2016). Participants were recruited for SPARC from six residence halls 

across three different Arizona State University campuses with the help of residence hall 

employees, flyers, and emails (Bruening et al., 2016). Monetary incentives were used to 

increase participation and retention rates throughout the study (Bruening et al., 2016). Once 

eligible students were enrolled in the larger study, they were given the opportunity to enroll 

in the devilWASTE study (Bruening et al., 2016). The exclusion criteria for devilWASTE 

included being under the age of 18, certain GI conditions such as malabsorptive disease, 

history of an eating disorder, antibiotic use 2-3 months prior, and current conditions that 

affect the microbiome including HIV infection, diabetes, or high blood pressure (Bruening 

et al., 2016). Inclusion criteria were living in a residence hall at ASU, English speaking, 

and participation in SPARC study (Bruening et al., 2016).  

Informed consent was obtained from those who met the inclusion and exclusion 

criteria for the microbiome study. The devilWASTE study, as well as the parent SPARC 

study were approved by the Arizona State University Institutional Review Board. The 

study design for devilWASTE was a longitudinal observational design.  
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Study Measures and Methods 

Recruitment for devilWASTE took place in August 2015 and longitudinal data 

collection continued through May 2016. There were four collection time points offered at 

the beginning and end of each semester. However, participants only selected three to 

complete the longitudinal nature of the study. The third collection time was added as an 

additional mid-point collection to increase participation rates due to low turnout for the 

second time point as it was during finals. At each time point, anthropometrics was taken as 

well as web-based self-reported data for dietary intake and physical activity. 

Anthropometrics were taken by trained research staff using instruments such as scales 

(SECA, USA) for weight, stadiometers (SECA, USA) for height, and flexible, spring 

loaded measuring tapes for waist circumference measurements. These measurements were 

completed up to three times to ensure accuracy. The two measures that were in 0.5 kg and 

0.5 cm were averaged to get a measurement. This measurement was subsequently taken 

down and used for BMI calculations and waist circumference references. Demographics 

were self-reported.  

Dietary Intake 

Diet data were obtained using a validated National Cancer Institute Dietary 

Screener Questionnaire or DSQ (Dietary Screener Questionnaire, n.d.). This questionnaire 

does not determine caloric intake for study participants; however, it can be used to ascertain 

intake of certain food groups such as fruits, vegetables, or meat over the past month 

(Dietary Screener Questionnaire in the National Health Interview Survey Cancer Control 

Supplement 2010: Overview, n.d.). Validation of the DSQ in this population was conducted 
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during the pilot study using a 24-hour recall as suggested in Thompson et al when 

validating the DSQ for study populations (Bruening et al., 2016; Thompson et al., 2017). 

The correlation between 24-hr recall and DSQ in child and adolescent populations is 

reported between 0.34 and 0.50 depending on the type of food in the adolescent population 

(Hewawitharana et al., 2018). In an adult population, the correlation has been reported 

between 0.5-0.8 (Thompson et al., 2004). It is a validated measurement to “screen” for 

consumption of certain nutrients or components of the diet, mentioned above, and not as 

an indicator of overall diet (Thompson et al., 2017). Strengths of a dietary screener are that 

it is self-administered, low cost, and convenient (Dietary Screener Questionnaire in the 

National Health Interview Survey Cancer Control Supplement 2010: Overview, n.d.). This 

screener is an asset in studies where general diet data is all that is needed (Thompson et al., 

2017). Considered a more accurate measure of overall diet, the 24-hour recall is preferred 

in studies where diet and caloric intake of study participants is scrutinized (Thompson et 

al., 2017).  

Physical Activity and Sedentary Behavior 

The Godin-Shephard Leisure-Time Physical Activity Questionnaire was used to 

measure the physical activity of the study participants. This is an assessment that asks 

questions regarding the strenuousness of exercise categorized in terms of vigorous, 

moderate, or light, and the number of hours per week spent doing each of these activities 

(Godin, n.d.).  An additional question was included to assess sedentary time in hours per 

day (Bruening et al., 2016). These numbers were then combined, and a score was given for 

both leisure-time physical activity and sedentary time for study participants (Bruening et 
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al., 2016). The Godin-Shephard questionnaire has been validated against an accelerometer 

in adolescent populations with a correlation of 0.81 (Sirard et al., 2013). Actigraph 

accelerometers are a quantitative measurement device of physical activity in individuals 

wearing the equipment and are considered accurate (Sirard et al., 2013). A questionnaire 

like the Godin-Shephard is advantageous in this study due to the ease of administration, 

reliability for study population, and cost-effectiveness when compared to accelerometers 

(Sirard et al., 2013).  

 Fecal Collection 

After anthropometrics and assessments were completed, participants were given a 

stool sample collection kit (Commode Specimen Collection Kit, Fisher Scientific, Anthem, 

AZ) and a brief demonstration on how to properly collect a sample. This kit was labeled 

with a devilWASTE specific participant ID as well as contact information for the study 

staff and written instructions. Contents of the kit included a collection bowl and bag that 

were pre-weighed as well as a cooler and ice pack to keep the sample cold until it reached 

the Healthy Lifestyles Research Center on the Downtown ASU campus. Participants were 

instructed to call research staff within 30-60 minutes to pick up their samples to avoid 

bacterial growth and changes in microbial communities. Fecal samples were then 

processed within 24 hours of collection and stored at -80 degree Celsius until extraction. 

Samples were processed using our unique processing protocol which included defrosting 

samples and completing the information on the “Sample Processing Log”. This included 

weighing the sample and taking the pH of the stool in three separate locations. Then, 

between 0.150-0.250 g of sample was put into a 2mL PowerBead tube (Catalog No. 12888-
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100-5, QIAGEN, Germantown, MD, USA) and stored in a -80-degrees Celsius freezer until 

extraction. Weight of the tube and weight of the tube plus the fecal sample were also 

recorded in a sample processing log.  

DNA Extraction 

DNeasy Powersoil Isolation Kits (Catalog No. 12888-100, QIAGEN, Germantown, 

MD, USA) were used to extract microbial DNA from fecal samples. These kits combine a 

series of salt and ethanol-based solutions as well as heating, cooling, filtering, and 

centrifugation methods to first decrease the amount of fecal matter in the sample then break 

the cell membranes of microbial cells to release the DNA. In addition to the manufacturer 

steps, a heating step was incorporated at the beginning of the protocol as well as an 

additional cleaning protocol to ensure no fecal inhibitors remained in the final DNA 

sample. Once the DNA was isolated, it was tested using a QIAGEN spectrophotometer 

machine (Catalog No. 9002340, QIAGEN, Germantown, MD, USA) to test for the 

appropriate quality and concentration of the samples. A quality of at least 1.7 (ng/microL) 

and a concentration of roughly 10 (A260/A280) were considered adequate. Samples were 

tested for quality and concentration by putting 2 microliters of the DNA solution into a 

QIAxpert Slide-40 (Catalog No. 990700, QIAGEN, Germantown, MD, USA) and inserted 

into the QIAxpert spectrophotometer. If samples were of the appropriate quality and 

concentration, they were placed into the DNA box and stored at -80 degrees Celsius. If 

they were not, it was noted, and they were later reprocessed and extracted again. A total of 

491 samples from 262 participants were extracted and sent for sequencing.  
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DNA Sequencing 

Samples were sequenced at The Biodesign Institute at Arizona State University 

Tempe Campus in the Genomics Core Lab. At the lab, sequences were quantified using 

Quant-iT PicoGreen/ assay (Catalog No. P7589, Invitrogen, Carlsbad, CA, USA). 

Sequencing methods began with amplification through triplicate PCR in 96 well plates to 

distinguish the presence of archaea from the bacteria, and next generation sequencing to 

identify bacterial species. This was done through amplification of the 16S rRNA gene 

sequence using primers for the conserved V4 region of the bacterial genome. The V4 region 

was identified through the use of the forward 515F primers and 806R reverse primers 

containing Illumina adaptor sequences (Turnbaugh et al., 2007). Purification and 

quantification materials used for PCR in the Genomics Core Lab included QIAquick PCR 

Purification Kit (Catalog No. 28106, Qiagen, Germantown, MD, USA), and the KAPA 

Library Quantification Kit (Catalog No. KK4824, Kapa Biosystems, Wilmington, MA, 

USA). After PCR was completed, the Illumina MiSeq instrument, (Catalog No. SY-410-

1003, Illumina, Inc., San Diego, CA) was used for sequencing. All protocols were 

completed in accordance with best practices established by the Human Microbiome Project 

guidelines.  

Sequence Analysis 

Quantitative Insights Into Microbial Ecology 2 (QIIME2) was the bioinformatics 

software in which statistics were performed on the sequences (Bolyen et al., 2019). After 

sequences were demultiplexed, they were added into the QIIME2 pipeline where they were 

denoised by using the DADA2 command to account for inherent errors produced through 
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sequencing. Samples were then rarified to determine a workable sequencing depth. 

Phylogeny and taxonomy were performed next. The FastTree command was used to 

analyze phylogeny of the sequences while a naive-Bayes classifier from the GreenGenes 

13.8 database was used to assess taxonomy (DeSantis et al., 2006; FastTree 2 – 

Approximately Maximum-Likelihood Trees for Large Alignments, n.d.). With sequences 

now categorized, diversity measures and statistics were performed to test the hypothesis.  

Statistical Analysis 

A convenience sample was used in this study and thus the sample size was not 

powered. Metadata for these analyses were taken from the parent, SPARC Study (Bruening 

et al., 2016). The mean and standard deviation were assessed in SPSS for the descriptive 

statistics including gender, race/ethnicity, age, height, weight, BMI, waist circumference, 

PA level, diet, date of last period, and antibiotic use within the last 2-3 months. Normality 

was assessed using the Shapiro-Wilk test. The independent variable of weight will be 

assessed as a categorical and continuous variable. Change in weight will be categorized as 

weight loss, weight gain and weight maintenance defined as a loss of more than 3% 

participants baseline, a gain of more than 3% and in between, respectively.  

The QIIME2 platform was used to run diversity statistics. Longitudinal analysis 

was performed using QIIME2 Longitudinal plugin which assessed the volatility of the 

community’s abundance over time (Bokulich et al., 2018). Features within this plugin that 

were used include feature volatility, first differences and first distances (Bokulich et al., 

2018). Linear effects modeling (LME) was used to analyze changes using multiple 

variables, such as time (random effect), subject ID (random effect), and baseline BMI 
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(fixed effect), and sex (fixed effect). LME modeling can take into account fixed effects 

such as sex, baseline BMI, timepoint and random effects such as changes in weight.  These 

data were then visualized using the Vega, QIIME2’s visualization feature, through 

volatility plots (Bokulich et al., 2018). A volatility plot will be able to visualize changes in 

abundance and potential perturbation between an individual or categories of weight gain 

over time (Bokulich et al., 2018). A significance value of 0.05 was used.  

Statistical Analysis by Hypothesis 

H1: Longitudinal changes in alpha diversity will be assessed using the linear model 

above, incorporating feature volatility as the outcome measure, which takes into account 

changes in relative abundance of microbial taxa between samples over time using machine 

learning. LME modeling will account for the covariates sex, baseline BMI, subject ID, and 

time.  

 
H2: Longitudinal changes in beta diversity will be assessed using the linear model 

above, incorporating first differences and first distances to assess broad community 

structure changes over time. First differences measures magnitude of change between 

communities over time whereas first distances measures rate of change. Unweighted 

UniFrac will be one of the beta diversity metrics used in this model which accounts for 

taxa phylogeny between subject samples. This will be able to demonstrate if there are 

differences in rate of phylogenetic transitions of microbial taxa between weight groups. 

Jaccard will also be used as a metric of beta diversity; this measure accounts for 

dissimilarity between communities using the presence/absence of taxa. LME modeling will 

account for the covariates sex, baseline BMI, subject ID, and time.  
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CHAPTER 4 

RESULTS 

Participant Characteristics 
 

A total of 231 participants were included in the devilWASTE study; n=139 that 

provided two or more stool samples, n=90 provided only one and were excluded from 

this analysis. Of the 139 participants, 69.8% were female and 30.2% were male. A 

majority of participants were white (N=59, 42.4%) and non-Hispanic (N=89, 64%). A 

further breakdown of the race/ethnicity of participants can be found in Table 1.  A 

majority of participants (N=114, 82%) reported more than 30 minutes of vigorous 

physical activity a week. In response to the Godin-Shepard Physical Activity 

Questionnaire, which measures moderate-to-vigorous physical activity in hours per week, 

64.7% of participants were grouped into the “Active” category with a score of 24 or 

higher. Moderately active, defined as a score of 14-23, accounted for 18.7% of 

participants and lastly, 16.6% of participants were grouped into the sedentary category 

with a score of less than 14. A majority of participants (N=102, 73.4%) reported over 360 

minutes of screen time per week. The average number of days from their first stool 

collection date to their last was 216 (median) with an IQR of 77 days. At baseline, a 

majority of participants were in the normal weight or underweight BMI category, 25 

kg/m2 or below (N=91, 65.5%), with the underweight category including 4.3% (N=6) and 

the normal weight group including 61.2% (N=85) of the study cohort. There were 48 

(34.5%) participants that were overweight or obese, with a BMI of over 25 kg/m2. 
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Participants were distributed into three weight change groups that included weight loss 

(N=13, 9.4%), weight maintenance (N=59, 42.4%), and weight gain (N=67, 48.2%).  

Table 1 

 Sociodemographic and Key Variables of Participants (n=139)

 

Note:  1N=139 

1Age (years) mean ± SD 18.6 ± 0.7 
1Sex, % 

Male 
            Female 

 
30.2 
69.8 

1Race/ ethnicity, % 
White 
Black 
Hispanic 

            Other  

 
42.4 
12.9 
25.9 
18.7 

1Height (cm) median (IQR) 165.6 (14.3) 
1Weight (kg) median (IQR) 66.2 (22.9) 
1Waist circumference (cm) median (IQR) 79 (16.8) 
1Median weight change (kg) (Range) 1.8 (-9.3- 16.8) 
1Body Mass Index (BMI) Category, %  

<18.5 kg/m2 (underweight)  
18.5-24.9 kg/m2 (normal) 
25-29.9 kg/m2 (overweight) 

            ≥30 kg/m2  (obese) 

 
4.3 
61.2 
23.7 
10.8 

1BMI  measured (kg/m2) median (IQR) 23.4 (5) 
1BMI Dichotomized, % 

Not overweight/ obese 
            Overweight/ obese 

 
65.5 
34.5 

1Weight change between timepoint 1 and 2, % 
Weight maintenance 
Weight gain 

            Weight loss 

 
42.4 
48.2 
9.4 

1Screen time (minutes per week) dichotomized, % 
≥360  

            <360 

 

26.6 
73.4 

1Screen time (minutes per week) categorical, % 
0-75  
195 

            315-360 

 

26.6 
35.3 
38.1 

1Moderate to vigorous activity (based on mean score from Godin-
Shepard Questionnaire, % 

Active (score of ≥24) 
Moderately active (score of 14-23) 

            Sedentary (score <14) 

 

64.7 
18.7 
16.6 

1Days between timepoint 1 and 2, median (IQR) 216 (77) 
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Gut Microbiome Analysis 
 

Sampling depth was based on the minimum frequency for the samples (7335) then 

confirmed using an alpha rarefaction curve for OTUs (Figure 1). A depth of 7335 

included all samples as well as a majority of their OTUs. Increasing the depth to 10,000 

would have excluded 4 participants. By 25,000, which is where OTU counts increased, 

the sample size of the weight gain group would have gone from 180 to 40 (Figure 2). 

 
Figure 1 
 
Observed OTUs by Sampling Depth Across Weight Categories 
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Figure 2 

 

Number of Samples by Sampling Depth Across Weight Categories 
 

 

 

 

 

 

 

 

 

Feature Volatility 

Feature volatility can be used to assess the volatility of a feature over time. The 

family Lachnospiraceae, genus Ruminococcus (from Lachnospiraceae family), and 

species lavalense were all found to be important drivers of volatility. (Figure 3). The 

features used for subsequent analysis were determined according to the high importance 

and global mean on (Figure 3). Feature volatility for Lachnospiraceae, Ruminococcus, 

and lavalense were then included in linear mixed effects models to test the impact of 

weight change and covariates of interest such as time, baseline BMI, gender, and 

race/ethnicity. Relative abundance of Lachnospiraceae was significantly impacted by 

race/ethnicity, with white participants having a 1181.807 unit greater increase (P>|z|= 

0.016) in this feature when compared to students classified as Other. Significance with 

race ethnicity was also demonstrated in feature volatility in Ruminococcus, with black 
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race/ethnicity associated with a 306.286 unit decrease (P>|z|= 0.022) and Hispanic 

race/ethnicity associated with a 223.696 unit decrease (P>|z|= 0.046) in feature 

abundance over time. Lastly, the feature volatility for lavalense was significantly 

impacted by time (P>|z|= 0.001) measured in days from the first time point to the last 

time point, demonstrating that a one-unit change in days leads to a 0.023 decrease in this 

species. It should be noted that results for Lachnospiraceae and Ruminococcus should be 

interpreted with caution due to high group variance variable (model error) of 

1,343,652.014 and 110,752.998, respectively. See (Table 2) below for all results from the 

Feature Volatility Linear Mixed Effects model for Lachnospiraceae. Similar results were 

seen in genus Ruminococcus (Table 3) and species lavalense (Table 4).  

 

Figure 3 

Feature Volatility Plot with Importance and Global Mean for lavalense 
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Table 2 
 
 Linear Mixed Model for Feature Volatility Lachnospiraceae 

  
Coefficient Standard 

Error 
z P>|z| [0.025 0.975] 

Intercept 6073.155 782.186 7.764 0.000 4540.099 7606.211 
Baseline BMI 
[Obese] 

148.397 558.918 0.266 0.791 -947.062 1243.856 

Baseline BMI 
[Overweight] 

-78.711 415.739 -
0.189 

0.850 -893.545 736.122 

Baseline BMI 
[Underweight] 

-65.689 842.978 -
0.078 

0.938 -
1717.895 

1586.518 

Race/ 
Ethnicity 
[Black] 

-1063.293 638.234 -
1.666 

0.096 -
2314.209 

187.623 

Race/ 
Ethnicity 
[Hispanic] 

-25.621 534.662 -
0.048 

0.962 -
1073.539 

1022.297 

Race/ 
Ethnicity 
[White] 

1181.807 492.427 2.400 0.016 216.667 2146.947 

Weight 
category 
[weight loss] 

-711.072 632.158 -
1.125 

0.261 -
1950.080 

527.936 

Weight 
category 
[weight 
maintenance] 

-315.858 363.050 -
0.870 

0.384 -
1027.423 

395.706 

Days in study 2.385 3.140 0.760 0.448 -3.769 8.539 
Gender[male] -74.438 379.497 -

0.196 
0.844 -818.238 669.363 

Group 
Variance 

1343652.044 234.710 
    

 
Note: Numbers are bolded to indicate significant results. 
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Table 3 

 

 Linear Mixed Model for Feature Volatility Ruminococcus 

  
Coefficient Standard 

Error 
z P>|z| [0.025 0.975] 

Intercept 581.010 161.150 3.605 0.000 265.162 896.859 

Baseline BMI 
[Obese] 

-104.771 118.261 -
0.886 

0.376 -
336.558 

127.016 

Baseline BMI 
[Overweight] 

12.833 87.425 0.147 0.883 -
158.517 

184.182 

Baseline BMI 
[Underweight] 

-160.063 178.670 -
0.896 

0.370 -
510.250 

190.125 

Race/ Ethnicity 
[Black] 

-306.286 133.776 -
2.290 

0.022 -
568.482 

-44.091 

Race/ Ethnicity 
[Hispanic] 

-223.696 112.061 -
1.996 

0.046 -
443.332 

-4.061 

Race/ Ethnicity 
[White] 

-130.745 103.421 -
1.264 

0.206 -
333.447 

71.957 

Weight category 
[weight loss] 

-115.668 80.052 -
1.445 

0.148 -
272.567 

41.231 

Weight category 
[weight 
maintenance] 

-154.006 133.026 -
1.158 

0.247 -
414.733 

106.721 

Days in study -52.712 76.539 -
0.689 

0.491 -
202.725 

97.302 

Gender[male] 0.236 0.646 0.366 0.715 -1.029 1.501 

Group Variance 110752.998 69.493 
    

 
Note: Numbers are bolded to indicate significant results. 
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Table 4 
 

Linear Mixed Model for Feature Volatility lavalense 

  
Coefficient Standard 

Error 
z P>|z| [0.025 0.975] 

Intercept 5.153 1.743 2.956 0.003 1.736 8.569 

Baseline BMI [Obese] -0.766 1.405 -
0.545 

0.586 -3.521 1.988 

Baseline BMI 
[Overweight] 

-0.437 1.178 -
0.371 

0.710 -2.745 1.871 

Baseline BMI 
[Underweight] 

0.398 1.085 0.367 0.713 -1.728 2.525 

Race/ Ethnicity [Black] -0.375 0.831 -
0.451 

0.652 -2.004 1.254 

Race/ Ethnicity 
[Hispanic] 

1.508 1.389 1.085 0.278 -1.215 4.231 

Race/ Ethnicity [White] 0.555 0.797 0.696 0.486 -1.007 2.118 
Weight category 
[weight loss] 

0.504 1.222 0.412 0.680 -1.891 2.900 

Weight category 
[weight maintenance] 

0.511 0.914 0.559 0.576 -1.280 2.302 

Days in study 1.887 1.844 1.024 0.306 -1.727 5.501 

Gender[male] -0.024 0.007 -
3.389 

0.001 -0.037 -0.010 

Group Variance 2.742 0.666 
    

 

Note: Numbers are bolded to indicate significant results. 
 

Pairwise Differences and Pairwise Distances 

The next metric used to assess diversity was pairwise differences. According to 

Shannon pairwise differences (Figure 4), the weight maintenance group experienced a 

statistically significant decrease in Shannon diversity (richness) over time (p=0.036), but 

this significant change was lost when adjusting for multiple comparisons (FDR= 0.108). 

There were no significant differences in the weight gain (p=0.51) and weight loss 
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(p=0.97) groups over time. The omnibus Kruskal-Wallis test to compare the deltas 

between these groups was not significant (p=0.102. H= 4.55) indicating that changes 

across groups did not differ. Statistical significance was not observed following pairwise 

difference analyses using Faith’s PD. However, evenness, which was measured using 

Pielou’s evenness metric (Figure 5), demonstrated that the weight maintenance group 

experienced statistically significant changes in microbial taxa evenness over time 

following a Wilcoxon signed-rank test (W=601.0, p=0.032), but this was no longer 

significant after adjustment for multiple comparisons (FDR p=0.096). When comparing 

the delta values for each weight change group, no significant differences were observed 

(Kruskal-Wallis omnibus test p=0.209, H=3.13).  

 
Figure 4 
 
Shannon Pairwise Differences by Weight Category 
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Figure 5 
 
Pielou’s Evenness Pairwise Differences by Weight Category 
 

 
 
 

Pairwise differences were also investigated using beta diversity inputs to compare 

weight change categories. No significant differences were found for Jaccard and Bray-

Curtis diversity metrics. In the pairwise difference tests for changes within each weight 

change group by time using the Unweighted UniFrac metric (Figure 6), the weight gain 

(W=802.0, p=0.053, FDR p=0.083) and weight maintenance (W=631.0, p=0.055, FDR 

p=0.083) groups experienced a slight increase and decrease, respectively. Overall, the 

changes in the multiple group Kruskal-Wallis test were significant as well (p=0.029, 

omnibus H= 7.07). This was driven by the significant pairwise, post-hoc group 

comparison between the weight maintenance and weight gain groups which remained 
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significant after adjustment for multiple comparisons (Mann-Whitney U=1410.0, 

p=0.008, FDR p=0.024). Results between weight gain and weight loss (p=0.797) or 

weight loss and weight maintenance (p=0.272) groups were not significant. Following 

pairwise differences analysis using the Weighted UniFrac metric, trends were observed 

for all three weight change groups (Figure 7) with all three groups experiencing a small 

decrease in this metric over time. This trend was most pronounced for the weight gain 

group, but the pre-post difference was not significant after FDR adjustment (W=749, 

p=0.023, FDR p=0.068). The Kruskal-Wallis test comparing the differences between 

weight change groups was not significant when using the Weighted UniFrac metric 

(p=0.431, H= 1.68).   

 

Figure 6 
 
Unweighted UniFrac Pairwise Differences by Weight Category 
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Figure 7 

 

Weighted UniFrac Pairwise Differences by Weight Category 

 
 
 

Beta diversity metrics were the only inputs into the pairwise distances metric to 

evaluate the stability of the gut microbiome community over time. The Kruskal-Wallis 

test for multiple group comparisons were not significant for any of the beta diversity 

metrics including Jaccard (p= 0.455, H=1.58), Bray-Curtis (p=0.454, H=1.58), 

Unweighted UniFrac (p=0.474, H= 1.49) and Weighted UniFrac (p=0.127, H=4.12). This 

suggests that the overall community structure remains stable over time relative to how 

weight status changed. 

First Differences and First Distances 
 

Lastly, differences over time were assessed by calculating first differences and 

first distances. Once calculated these values were input into linear mixed models to 

determine significance and relationships with covariates. For alpha diversity metrics with 

first differences, Shannon diversity (Table 5) was associated with change in weight such 
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that a statistically significant decrease of 0.235 units was observed in the weight 

maintenance category (P>|z|= 0.030) when compared to the weight gain group 

(reference). While the linear mixed model for Faith’s PD demonstrated no relationship 

with any of the covariates, first differences using Pielou’s Evenness demonstrated a 

decreasing trend (P>|z|= 0.085) in the weight maintenance group, relative to the weight 

gain group, as well. Meaning, people who maintained their weight over the course of the 

study had less change in Shannon and Pielou’s in relation to those who gained weight.  

Table 5 

 

 Linear Mixed Model for First Difference Shannon  
Coefficient Standard 

Error 
z P>|z| [0.025 0.975] 

Intercept -0.167 0.247 -
0.674 

0.500 -0.652 0.318 

Baseline BMI [Obese] -0.032 0.165 -
0.194 

0.846 -0.355 0.291 

Baseline BMI 
[Overweight] 

0.024 0.131 0.181 0.856 -0.233 0.281 

Baseline BMI 
[Underweight] 

0.124 0.254 0.489 0.625 -0.374 0.622 

Race/ Ethnicity [Black] 0.193 0.209 0.920 0.358 -0.218 0.445 

Race/ Ethnicity 
[Hispanic] 

0.109 0.171 0.639 0.523 -0.226 0.445 

Race/ Ethnicity [White] 0.040 0.159 0.249 0.803 -0.273 0.352 

Weight category 
[weight loss] 

-0.103 0.195 -
0.531 

0.596 -0.485 0.278 

Weight category 
[weight maintenance] 

-0.235 0.113 -
2.076 

0.038 -0.458 -0.013 

Days in study 0.001 0.001 1.419 0.156 -0.001 0.003 

Gender[male] -0.152 0.117 -
1.292 

0.196 -0.382 0.078 

Group Variance 0.000 0.230 
    

 

Note: Numbers are bolded to indicate significant results. 
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For beta diversity measures, PCoA plots, like Figure 8 below for Bray-Curtis, 

were used in the model and demonstrate change around the primary axis. Both Bray- 

Curtis and Jaccard demonstrated significance in relation to weight in these linear mixed 

models. First differences Bray- Curtis was associated with a significant decrease of 0.077 

units in students with a baseline BMI classifying as overweight (P>|z|= 0.039) and first 

differences Jaccard was associated with a decrease of 0.044 units in the weight 

maintenance group (P>|z|= 0.014) relative to the normal weight BMI group and weight 

gain groups, respectively. On the other hand, first differences analysis using the 

Unweighted UniFrac metric revealed a small but statistically significant increase over 

time of less than 1 unit per day (P>|z|= 0.016). This significance in time however was lost 

with the Weighted UniFrac (P>|z|= 0.518) metric which adjusts for microbial abundance, 

which may suggest the importance of abundance in driving differences over time. Lastly, 

beta diversity could also be measured using first distances which uses a distance metric as 

the input, then again everything was input into a linear mixed effects model. First 

distances using the Jaccard diversity metric (Table 6) was significantly associated with a 

0.095 increase in weight loss (P>|z|= 0.020) relative to weight gain. This metric was also 

significantly associated with time as there was a decrease of 0.001 units per day (P>|z|= 

0.000). Like first differences, first distances Unweighted UniFrac was significantly 

associated with time (P>|z|= 0.000) although in this case it demonstrated a decrease by 

0.001 units per day. However, as demonstrated above, Weighted UniFrac was not 

significantly associated with time (P>|z|= 0.511).   
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Figure 8 

PCoA Plot for Bray-Curtis Distinguished by Weight Category 
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Table 6 
 
Linear Mixed Model for First Distances Jaccard 
  

Coefficient Standard 
Error 

z P>|z| [0.025 0.975] 

Intercept 0.649 0.053 12.166 0.000 0.544 0.753 

Baseline BMI [Obese] 0.025 0.035 0.711 0.477 -0.044 0.094 

Baseline BMI 
[Overweight] 

-0.037 0.028 -1.319 0.187 -0.093 0.018 

Baseline BMI 
[Underweight] 

-0.054 0.055 -0.987 0.324 -0.161 0.053 

Race/ Ethnicity 
[Black] 

0.073 0.044 1.636 0.102 -0.014 0.160 

Race/ Ethnicity 
[Hispanic] 

0.024 0.037 0.660 0.509 -0.048 0.097 

Race/ Ethnicity 
[White] 

0.037 0.034 1.075 0.282 -0.030 0.104 

Weight category 
[weight loss] 

0.095 0.041 2.332 0.020 0.015 0.174 

Weight category 
[weight maintenance] 

0.020 0.024 0.835 0.404 -0.028 0.068 

Days in study -0.001 0.000 -3.583 0.000 -0.001 -0.000 

Gender[male] 0.021 0.025 0.821 0.412 -0.029 0.071 

Group Variance 0.000 0.038 
    

 
Note: Numbers are bolded to indicate significant results. 
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CHAPTER 5 

DISCUSSION 

The aim of this study was to assess the changes in community structure and 

diversity of the gut microbiome in relation to changes in weight status in an adolescent 

population from the beginning to the end of freshman year. The average weight change of 

participants over this time was +1.8 kg, or 3.96 lbs., with almost half of the participants 

gaining weight. This is just under previously reported averages of weight gain over the 

freshman year of 4-5 lbs (Gropper et al., 2012; Racette et al., 2005, 2008). In this study 

cohort, both time and weight had an impact on the diversity and variability of the gut 

microbiome. Linear mixed models were used to test the impact of time and weight as 

variables, while adjusting for covariates. Several results were deemed to be significantly 

influenced by either time or weight status in these models, but no results demonstrated a 

significant interaction between the two. Alpha diversity was only significantly associated 

with weight in the first differences Shannon diversity test while beta diversity seemed to 

be most significantly associated with both weight and time. Particularly, Unweighted 

UniFrac analysis illustrated that inter-individual changes were greater than intra-

individual changes in microbial community structure when considering weight and time 

as a variable. 

Weight, the first outcome of interest, had statistically significant results in both 

alpha and beta diversity measurements. With regards to alpha diversity metrics and their 

relation to weight or time metrics, there were only a couple relevant results. Weight was 

significantly related to microbial richness (Shannon Diversity First Differences) such that 
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a decrease in richness was observed in the weight maintenance category relative to the 

weight gain group.  A trend for microbial evenness (Pielou’s Diversity First Differences) 

was also observed when the weight maintenance group was compared to the reference 

weight gain group.  Together, these findings demonstrate that the participants who 

maintained their weight over the course of the study had less change in richness and 

evenness when compared to those who gained weight. Few human studies have evaluated 

changes in microbial diversity in relation to weight change over time which makes 

comparison to other studies difficult. While cross-sectional studies have observed 

differences in richness and evenness between normal weight adults and those with 

overweight or obesity (Sze, Schloss), a large cohort study of school-aged children 

(KOALA Cohort Study) found no differences in microbial diversity and richness when 

comparing children of different weight status (Mbakwa et al., 2018; Sze & Schloss, 

2016).  

Regarding gut microbial community similarity, Jaccard metric first difference 

analysis revealed that the weight maintenance group was different from weight gain and 

loss groups. Meaning that, when compared to weight gain, those who maintained their 

weight from the beginning to the end of the study had less variability in community 

similarities. Interestingly, in this study, the First Distances Jaccard linear mixed model 

results showed that those who lost weight had a higher microbial turnover than those who 

gained weight. In longitudinal studies by Frost et al and Shen et al, increases in beta 

diversity were reported with weight loss among obese adults (Frost et al., 2019; Shen et 

al., 2019). However, the significant metrics were Bray-Curtis in Frost et al. and UniFrac 
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in Shen et al (Frost et al., 2019; Shen et al., 2019). Compared to results from our study, 

the results from Shen et al. indicated that the significance was in phylogeny whereas the 

results from Frost et al., much like the results in our study, were driven by either 

similarity of dissimilarity indexes. Another significant result in our study is related to 

First Differences Bray-Curtis which was significantly associated with the overweight 

baseline BMI group. These results may be interpreted as the overweight baseline BMI 

group had less change in variability on Axis 1 relative to the normal weight group. Bray- 

Curtis takes into account presence and absence with abundance while Jaccard is related to 

presence and absence. A significant result in Bray-Curtis but not Jaccard may indicate 

that these differences were driven by abundance. Again, the meta-analysis by Sze and 

Schloss et al. reaffirms this result, as they also found that Bray-Curtis was significantly 

different in obese populations when compared to non-obese, but were unable to find the 

directionality of this change as this meta-analysis was only of cross-sectional studies (Sze 

& Schloss, 2016). Again, in our study, abundance was also seen to impact weight groups 

in the UniFrac Pairwise Differences tests. The significant omnibus test for pairwise 

differences in Unweighted UniFrac, was driven by the significant post-hoc pairwise test 

between the weight maintenance and weight gain groups. Meaning that the difference 

from baseline to the end of the study was significantly lower for those who maintained 

their weight when compared to those who gained weight. Significance was lost in the 

Weighted UniFrac test, which may signify that this result was driven by low abundance 

features.  



 

  66 

Temporal variability in microbial communities is well known, and while 

communities are mostly stable, some change over time is expected. Time, the other 

outcome of interest, was a statistically significant predictor of qualitative first differences 

using the Unweighted UniFrac metric, but not in the quantitative first differences linear 

model using the Weighted UniFrac metric. This potentially demonstrates that the increase 

in microbial composition variability over time may be driven by low abundance features. 

A similar trend was seen in the first distances linear mixed effect model for Unweighted 

versus Weighted UniFrac. However, in the first differences model time is shown to 

increase Unweighted UniFrac whereas in the first distances model, time is shown to 

decrease Unweighted UniFrac. This difference may be due to the nature of the tests, first 

differences measure the rate of change from first to last sample whereas first distances 

measure the difference between successive samples. This may make first distances 

susceptible to extenuating circumstances, while first differences specifically measures 

beginning and end. Lastly, time was also statistically significant in the First Distances 

Bray-Curtis and the First Distances Jaccard linear mixed models, showing decreased 

diversity over time. Significance in both tests may indicate that time not only impacts the 

overall community structure, or turnover, but abundance as well. Similar results were 

seen in Fu et al. and Marti et al (Fu et al., 2019; Marti et al., 2017). Results in these 

longitudinal studies indicated stability in high abundance features and more variability in 

the lower abundance features over time (Fu et al., 2019; Marti et al., 2017). These two 

studies, along with our study, were the only studies found emphasizing the importance of 

low abundance features and time. However, both Fu et al. and Marti et al. were 
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conducted in adult populations, indicating that studies in youth, focusing on changes in 

low abundance features over time, are an area for further investigation.  

 To our knowledge, this is the first longitudinal study to date that has found a 

significant relationship between weight gain in adolescents and low abundance features 

in a myriad of tests. Whisner et al, using data from a cross-sectional study of first-year 

college students, also found significant relationships with low abundance features but 

only in relation to self-reported physical activity levels and not overweight/obesity status 

(Whisner et al., 2018). The importance of low abundance features is a different focus 

than a majority of studies have taken on the relationship between weight and diversity of 

the microbiome. Historically, studies have focused on two of the most common and 

abundant phyla in the gut microbiome, Firmicutes and Bacteroidetes (Ley et al., 2005; 

Turnbaugh et al., 2009). While the gut microbiome is largely composed of high 

abundance phyla members from Firmicutes and Bacteroidetes, there is also a large 

amount of low abundant features which may also be important (Claussen et al., 2017). 

Parsing out low abundance features for analysis is difficult, as most analyses are not 

sensitive to low abundance features (Claussen et al., 2017). It is suggested that these 

lower abundant features may contribute to more specific functions in the body, and the 

absence of these low abundance features may leave a specific but vital function 

incomplete thereby leaving the host vulnerable adverse health outcomes (e.g. obesity, 

cardiometabolic disease) (Claussen et al., 2017; Shafquat et al., 2014).  

A majority of existing studies examining the changes in diversity of the gut 

microbiome in relation to weight are done in adult populations. These studies have 
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demonstrated that diversity and species richness can be associated with obesity or weight 

gain over time (Le Chatelier et al., 2013). However, there are significant differences 

between the adult and adolescent microbiome and it has been suggested that abundance 

may drive these differences in community composition (Agans et al., 2011; Hollister et 

al., 2015).  For example, Agans et al. reported in their cross-sectional analysis that, in 

both adult and adolescent samples, high abundance features were relatively similar but 

the low abundance features had high between-sample variation (Agans et al., 2011). 

Without adult samples in the current study, it is hard to say whether the information 

determined in this study marks a significant difference between adult and adolescent 

microbial composition. As demonstrated above, there were statistically significant 

differences with regards to abundance in both weight and time in this adolescent group. 

Also taking into account the fact that abundance may be what drives the significant 

differences between adult and adolescent microbiomes, it is difficult to apply findings in 

adult populations, with regards to changes in the gut microbiome diversity and weight 

across time, to adolescents. Again, this demonstrates the need for further investigation 

into this population.  

There were several variables that did not seem to impact the gut microbiome but 

have been reported in other studies. Initially, the linear mixed models were adjusted with 

weight and time as an interaction. However, this interaction was not significant in any of 

the models. Other than the feature volatility analysis, race/ethnicity, as well as gender, 

were not significant predictors of gut microbial diversity. However, Menni et al. found 

that Lachnospiraceae, which was identified in this study as being associated with 
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race/ethnicity, was associated with lower weight gain (Menni et al., 2017). Overall, many 

studies have identified significant results in relation to differences in race/ethnicity and 

are well summarized in a review by Gupta et al (Gupta et al., 2017). This study also did 

not take into account diet or physical activity to avoid over burdening the linear mixed 

models. Another study done on a similar college-aged population found that fiber 

consumption as well as moderate to vigorous physical activity played a role in 

differential abundance (Whisner et al., 2018). The effect of exercise as a modulator of 

changes in the gut microbiome is becoming increasingly studied, and may induce 

changes in the gut microbiome in adolescents that were previously sedentary, especially 

in terms of beta diversity which were the most significant results in our study (Allen et 

al., 2018).  

 As noted above, there are many factors known to influence the diversity and 

community structure of the microbiome, some that were addressed in this study, but 

many that were not. A majority of current research has focused thus far on cross-sectional 

analysis of the gut microbiome in relation to weight status, and few longitudinal studies 

have been done in humans. In addition, the adolescent microbiome has been greatly 

under researched since prior consensus has been that the gut microbiome reaches 

maturity by childhood. This highlights two major strengths of this study: the adolescent 

population and the longitudinal study design. Additional strengths include the larger 

sample size and the racial and ethnic diversity of the sample. There were also several 

limitations to the study design including a limited sample size in certain groups such as 

the weight loss group leading to low power; a convenience sample; high attrition rates; 
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and limited range in participant age. The specific age range does not make it 

generalizable to the broader public; however, the racial/ethnic diversity and size of the 

study sample makes it a good representation of college freshmen. While this research is 

not enough to determine exact differences between the gut microbiome of adults versus 

adolescents in weight change, it may be enough to warrant future studies to try to 

determine if differences in the gut microbiome occur at different ages experiences 

changes in weight.  

Previous studies have reported that weight is negatively associated with microbial 

diversity, but few studies have looked at this relationship longitudinally, especially in a 

weight gain vulnerable adolescent population. This study demonstrated that over time, 

those who maintained their weight had less variability in beta diversity when compared to 

those who gained weight. These findings were particularly significant in Unweighted 

UniFrac analyses and this metric is particularly sensitive to low abundance features. This 

contradicts many reported outcomes in relation to weight and microbial diversity of the 

gut microbiome that primarily focuses on phylum-level changes. Since most of this work 

was done on adult populations, these findings suggest that there may be another 

mechanism at work in the weight gain of the adolescent microbiome. Future directions 

should focus on addressing these changes in microbial abundance in longitudinal studies 

and may include trying to determine which low abundant features are the ones driving 

these changes. Researchers may also try to include both adults and adolescents in future 

longitudinal studies analyzing changes in the gut microbiome in relation to changes in 

weight.  
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Preliminary Analysis 

Importing 

qiime tools import \ 
  --type 'SampleData[PairedEndSequencesWithQuality]' \ 
  --input-path /mnt/c/Users/Mary/desktop/devilWASTEfastq-1 \ 
  --input-format CasavaOneEightSingleLanePerSampleDirFmt \ 
  --output-path demux-paired-end-1.qza 
 
qiime tools import \ 
  --type 'SampleData[PairedEndSequencesWithQuality]' \ 
  --input-path /mnt/c/Users/Mary/desktop/devilWASTEfastq-2 \ 
  --input-format CasavaOneEightSingleLanePerSampleDirFmt \ 
  --output-path demux-paired-end-2.qza 
 
Visualized Import 
qiime demux summarize \ 
  --i-data demux-paired-end-1.qza \ 
  --o-visualization devilWASTE-1.qzv 
 
qiime demux summarize \ 
  --i-data demux-paired-end-2.qza \ 
  --o-visualization devilWASTE-2.qzv 
 
Denoising 
qiime dada2 denoise-paired \ 
  --i-demultiplexed-seqs demux-paired-end-1.qza \ 
  --p-trunc-len-f 250 \ 
  --p-trunc-len-r 250 \ 
--p-trim-left-f 14 \ 
 --p-trim-left-r 14 \ 
  --p-chimera-method consensus \ 
  --o-representative-sequences fastq-dada2-1.qza \ 
  --o-table table-dada2-1.qza \ 
  --o-denoising-stats stats-dada2-1.qza 
 
qiime dada2 denoise-paired \ 
  --i-demultiplexed-seqs demux-paired-end-2.qza \ 
  --p-trunc-len-f 250 \ 
  --p-trunc-len-r 250 \ 
--p-trim-left-f 14 \ 
 --p-trim-left-r 14 \ 
  --p-chimera-method consensus \ 
  --o-representative-sequences fastq-dada2-2.qza \ 
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  --o-table table-dada2-2.qza \ 
  --o-denoising-stats stats-dada2-2.qza 
 
Visualize Denoised Data  
 
qiime metadata tabulate \ 
  --m-input-file stats-dada2-1.qza \ 
  --o-visualization denoising-stats-1.qzv 
qiime metadata tabulate \ 
  --m-input-file stats-dada2-2.qza \ 
  --o-visualization denoising-stats-2.qzv 
 
Merge Denoised Data 
 
qiime feature-table merge \ 
  --i-tables table-dada2-1.qza \ 
  --i-tables table-dada2-2.qza \ 
--p-overlap-method sum \ 
  --o-merged-table tableDW.qza 
 
qiime feature-table merge-seqs \ 
  --i-data fastq-dada2-1.qza \ 
  --i-data fastq-dada2-2.qza \ 
  --o-merged-data rep-seqsDW.qza 
 
Filtering  
 
qiime feature-table filter-samples \ 
  --i-table tableDW.qza \ 
  --m-metadata-file DWmetadata.txt \ 
  --o-filtered-table id-filtered-tableDW.qza 
 
Visualize 
 
qiime feature-table summarize \ 
  --i-table id-filtered-tableDW.qza \ 
  --o-visualization tableDW.qzv \ 
  --m-sample-metadata-file DWmetadata.txt 
 
Taxonomy 
 
qiime feature-classifier classify-sklearn \ 
  --i-classifier v3v4-99-gg-nb-classifier.qza \ 
  --i-reads rep-seqsDW.qza \ 
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  --o-classification taxonomyDW.qza 
 
 
qiime metadata tabulate \ 
  --m-input-file taxonomyDW.qza \ 
  --o-visualization taxonomyDW.qzv 
 
qiime taxa barplot \ 
  --i-taxonomy taxonomyDW.qza \ 
--i-table  id-filtered-tableDW.qza \ 
  --m-metadata-file DWmetadata.txt \ 
  --o-visualization taxa-bar-plotsDW.qzv 
 
Alpha Rarefaction Curve 
 
qiime diversity alpha-rarefaction \ 
--i-table id-filtered-tableDW.qza \ 
--i-phylogeny rooted-treeDW.qza \ 
--p-max-depth 59227 \ 
--m-metadata-file DWmetadata.txt \ 
--o-visualization alpha-rarefactionDW.qzv 
 
Phylogeny 
qiime phylogeny align-to-tree-mafft-fasttree \ 
  --i-sequences rep-seqsDW.qza \ 
  --o-alignment alignedfastqDW.qza \ 
  --o-masked-alignment maskedfastqDW.qza \ 
  --o-tree unrooted-treeDW.qza \ 
  --o-rooted-tree rooted-treeDW.qza 
 
qiime diversity core-metrics-phylogenetic \ 
  --i-phylogeny rooted-treeDW.qza \ 
  --i-table id-filtered-tableDW.qza \ 
  --p-sampling-depth 7335 \ 
  --m-metadata-file DWmetadata.txt \ 
  --output-dir core-metrics-resultsDW 
 
Alpha Diversity 
 
qiime diversity alpha-group-significance \ 
  --i-alpha-diversity core-metrics-resultsDW/faith_pd_vector.qza \ 
  --m-metadata-file DWmetadata.txt \ 
  --o-visualization core-metrics-resultsDW/faith-pd-group-significance.qzv 
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qiime diversity alpha-group-significance \ 
  --i-alpha-diversity core-metrics-resultsDW/evenness_vector.qza \ 
  --m-metadata-file DWmetadata.txt \ 
  --o-visualization core-metrics-resultsDW/evenness-group-significance.qzv 
 
qiime diversity alpha-group-significance \ 
 --i-alpha-diversity core-metrics-resultsDW/shannon_vector.qza \ 
 --m-metadata-file DWmetadata.txt \ 
 --o-visualization core-metrics-resultsDW/shannon_group-significance.qzv 
 
Beta Diversity by Variables 
 
qiime diversity beta-group-significance \ 
  --i-distance-matrix core-metrics-resultsDW/unweighted_unifrac_distance_matrix.qza \ 
  --m-metadata-file DWmetadata.txt \ 
  --m-metadata-column weight_category \ 
  --o-visualization core-metrics-resultsDW/unweighted-unifrac-weightcategory.qzv \ 
--p-pairwise 
 
qiime diversity beta-group-significance \ 
  --i-distance-matrix core-metrics-resultsDW/unweighted_unifrac_distance_matrix.qza \ 
  --m-metadata-file DWmetadata.txt \ 
  --m-metadata-column w_weightstatus4_num \ 
  --o-visualization core-metrics-resultsDW/unweighted-unifrac-BMI.qzv \ 
--p-pairwise 
 
qiime diversity beta-group-significance \ 
  --i-distance-matrix core-metrics-resultsDW/unweighted_unifrac_distance_matrix.qza \ 
  --m-metadata-file DWmetadata.txt \ 
  --m-metadata-column w_ovobmeasured2 \ 
  --o-visualization core-metrics-resultsDW/unweighted-unifrac-overweight.qzv \ 
--p-pairwise 
 
qiime diversity beta-group-significance \ 
--i-distance-matrix core-metrics-resultsDW/jaccard_distance_matrix.qza \ 
--m-metadata-file DWmetadata.txt \ 
--m-metadata-column weight_category \ 
--o-visualization core-metrics-resultsDW/jaccard-distance-matrix-weightcategory.qzv \ 
--p-pairwise 
 
qiime diversity beta-group-significance \ 
--i-distance-matrix core-metrics-resultsDW/jaccard_distance_matrix.qza \ 
--m-metadata-file DWmetadata.txt \ 
--m-metadata-column w_weightstatus4_num \ 
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--o-visualization core-metrics-resultsDW/jaccard-distance-matrix-BMI.qzv \ 
--p-pairwise 
 
qiime diversity beta-group-significance \ 
--i-distance-matrix core-metrics-resultsDW/jaccard_distance_matrix.qza \ 
--m-metadata-file DWmetadata.txt \ 
--m-metadata-column w_ovobmeasured2 \ 
--o-visualization core-metrics-resultsDW/jaccard-distance-matrix-overweight.qzv \ 
--p-pairwise 
 
qiime diversity beta-group-significance \ 
--i-distance-matrix core-metrics-resultsDW/bray_curtis_distance_matrix.qza \ 
--m-metadata-file DWmetadata.txt \ 
--m-metadata-column weight_category \ 
--o-visualization core-metrics-resultsDW/bray-curtis-matrix-weightcategory.qzv \ 
--p-pairwise 
 
qiime diversity beta-group-significance \ 
--i-distance-matrix core-metrics-resultsDW/bray_curtis_distance_matrix.qza \ 
--m-metadata-file DWmetadata.txt \ 
--m-metadata-column w_weightstatus4_num \ 
--o-visualization core-metrics-resultsDW/bray-curtis-matrix-BMI.qzv \ 
--p-pairwise 
 
qiime diversity beta-group-significance \ 
--i-distance-matrix core-metrics-resultsDW/bray_curtis_distance_matrix.qza \ 
--m-metadata-file DWmetadata.txt \ 
--m-metadata-column w_ovobmeasured2 \ 
--o-visualization core-metrics-resultsDW/bray-curtis-matrix-overweight.qzv \ 
--p-pairwise 
 
qiime diversity beta-group-significance \ 
--i-distance-matrix core-metrics-resultsDW/weighted_unifrac_distance_matrix.qza \ 
--m-metadata-file DWmetadata.txt \ 
--m-metadata-column weight_category \ 
--o-visualization core-metrics-resultsDW/weighted-unifrac-weightcategory.qzv \ 
--p-pairwise 
 
qiime diversity beta-group-significance \ 
--i-distance-matrix core-metrics-resultsDW/weighted_unifrac_distance_matrix.qza \ 
--m-metadata-file DWmetadata.txt \ 
--m-metadata-column w_weightstatus4_num \ 
--o-visualization core-metrics-resultsDW/weighted-unifrac-BMI.qzv \ 
--p-pairwise 
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qiime diversity beta-group-significance \ 
--i-distance-matrix core-metrics-resultsDW/weighted_unifrac_distance_matrix.qza \ 
--m-metadata-file DWmetadata.txt \ 
--m-metadata-column w_ovobmeasured2 \ 
--o-visualization core-metrics-resultsDW/weighted-unifrac-overweight.qzv \ 
--p-pairwise 
 

Longitudinal Analysis 
Feature Volatility 

 
Taxa Collapse by Family 
 
qiime taxa collapse \ 
--i-table id-filtered-tableDW.qza \ 
--i-taxonomy taxonomyDW.qza \ 
--p-level 5 \ 
--o-collapsed-table DW-family-collasped.qza 
 
Feature Volatility- Family 
 
qiime longitudinal feature-volatility \ 
  --i-table DW-family-collasped.qza \ 
  --m-metadata-file DWmetadata.txt \ 
  --p-state-column days_tp2 \ 
  --p-individual-id-column sparkid \ 
  --output-dir DW-feat-volatilityFamily 
 
Taxa Collapse by Genus 
 
qiime taxa collapse \ 
--i-table id-filtered-tableDW.qza \ 
--i-taxonomy taxonomyDW.qza \ 
--p-level 6 \ 
--o-collapsed-table DW-genus-collasped.qza 
 
Feature Volatility- Genus 
 
qiime longitudinal feature-volatility \ 
  --i-table DW-genus-collasped.qza \ 
  --m-metadata-file DWmetadata.txt \ 
  --p-state-column days_tp2 \ 
  --p-individual-id-column sparkid \ 
  --output-dir DW-feat-volatilityGenus 
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Taxa Collapse by Species 
 
qiime taxa collapse \ 
--i-table id-filtered-tableDW.qza \ 
--i-taxonomy taxonomyDW.qza \ 
--p-level 7 \ 
--o-collapsed-table DW-species-collasped.qza 
 
Feature Volatility- Species 
 
qiime longitudinal feature-volatility \ 
  --i-table DW-species-collasped.qza \ 
  --m-metadata-file DWmetadata.txt \ 
  --p-state-column days_tp2 \ 
  --p-individual-id-column sparkid \ 
  --output-dir DW-feat-volatilitySpecies 
 

First Differences 
 
First Differences- Shannon  
  
qiime longitudinal first-differences \ 
  --m-metadata-file DWmetadata.txt \ 
  --m-metadata-file shannon_vector.qza \ 
  --p-state-column FecalTP \ 
  --p-metric shannon \ 
  --p-individual-id-column sparkid \ 
 --p-replicate-handling random \ 
  --o-first-differences shannon-first-differencesFecalTP.qza 
 
First Differences- Faith 
  
qiime longitudinal first-differences \ 
  --m-metadata-file DWmetadata.txt \ 
   --m-metadata-file faith_pd_vector.qza \ 
  --p-metric faith_pd \ 
  --p-state-column FecalTP \ 
  --p-individual-id-column sparkid \ 
 --p-replicate-handling random \ 
  --o-first-differences faiths-first-differencesFecalTP.qza 
 
First Differences- Evenness 
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qiime longitudinal first-differences \ 
  --m-metadata-file DWmetadata.txt \ 
  --m-metadata-file evenness_vector.qza \ 
  --p-state-column FecalTP \ 
  --p-metric pielou_e \ 
  --p-individual-id-column sparkid \ 
 --p-replicate-handling random \ 
  --o-first-differences evenness-first-differencesFecalTP.qza 
 
 
 
First Differences- Bray Curtis 
  
 qiime longitudinal first-differences \ 
--m-metadata-file DWmetadata.txt \ 
--m-metadata-file bray_curtis_pcoa_results.qza \ 
--p-state-column FecalTP \--p-metric "Axis 1" \ 
--p-individual-id-column sparkid \ 
--p-replicate-handling random \ 
--o-first-differences braycurtis-first-differencesFecalTP.qza 
 
First Differences- Unweighted UniFrac  
 
qiime longitudinal first-differences \ 
--m-metadata-file DWmetadata.txt \ 
--m-metadata-file unweighted_unifrac_pcoa_results.qza \ 
--p-state-column FecalTP \--p-metric "Axis 1" \ 
--p-individual-id-column sparkid \ 
--p-replicate-handling random \ 
--o-first-differences unweighted-first-differencesFecalTP.qza 
 
First Differences- Weighted UniFrac  
 
qiime longitudinal first-differences \ 
--m-metadata-file DWmetadata.txt \ 
--m-metadata-file weighted_unifrac_pcoa_results.qza \ 
--p-state-column FecalTP \ 
--p-metric "Axis 1" \ 
--p-individual-id-column sparkid \ 
--p-replicate-handling random \ 
--o-first-differences weighted-first-differencesFecalTP.qza 
 
First Differences- Jaccard 
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qiime longitudinal first-differences \ 
--m-metadata-file DWmetadata.txt \ 
--m-metadata-file jaccard_pcoa_results.qza \ 
--p-state-column FecalTP \--p-metric "Axis 1" \ 
--p-individual-id-column sparkid \ 
--p-replicate-handling random \ 
--o-first-differences jaccard-first-differencesFecalTP.qza 

 
 
 
 
 
 

First Distances 
 

First Distances- Bray Curtis 
 
qiime longitudinal first-distances \ 
  --i-distance-matrix bray_curtis_distance_matrix.qza \ 
  --m-metadata-file DWmetadata.txt \ 
  --p-state-column FecalTP \ 
  --p-individual-id-column sparkid \ 
  --p-replicate-handling random \ 
  --o-first-distances braycurtis-first-distancesFecalTP.qza 
  
 First Distances- Unweighted UniFrac 
 
qiime longitudinal first-distances \ 
  --i-distance-matrix unweighted_unifrac_distance_matrix.qza \ 
  --m-metadata-file DWmetadata.txt \ 
  --p-state-column FecalTP \ 
  --p-individual-id-column sparkid \ 
  --p-replicate-handling random \ 
  --o-first-distances unweighted-first-distancesFecalTP.qza 
  
 First Distances- Weighted UniFrac 
 
qiime longitudinal first-distances \ 
  --i-distance-matrix weighted_unifrac_distance_matrix.qza \ 
  --m-metadata-file DWmetadata.txt \ 
  --p-state-column FecalTP \ 
  --p-individual-id-column sparkid \ 
  --p-replicate-handling random \ 
  --o-first-distances weighted-first-distancesFecalTP.qza 
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First Distances- Jaccard 
 
qiime longitudinal first-distances \ 
  --i-distance-matrix jaccard_distance_matrix.qza \ 
  --m-metadata-file DWmetadata.txt \ 
  --p-state-column FecalTP \ 
  --p-individual-id-column sparkid \ 
  --p-replicate-handling random \ 
  --o-first-distances jaccard-first-distancesFecalTP.qza 
 
 

 
 
 

Pairwise Differences 
 
Pairwise Differences- Shannon 
 
qiime longitudinal pairwise-differences \ 
  --m-metadata-file DWmetadata.txt \ 
  --m-metadata-file shannon_vector.qza \ 
  --p-metric shannon \ 
--p-group-column weight_category \ 
  --p-state-column tp2 \ 
  --p-state-1 A \ 
  --p-state-2 B \ 
  --p-individual-id-column sparkid \ 
  --o-visualization pairwise-differences-shannon.qzv 
 
Pairwise Differences- Evenness 
 
qiime longitudinal pairwise-differences \ 
  --m-metadata-file DWmetadata.txt \ 
  --m-metadata-file evenness_vector.qza \ 
  --p-metric pielou_e \ 
--p-group-column weight_category \ 
  --p-state-column tp2 \ 
  --p-state-1 A \ 
  --p-state-2 B \ 
  --p-individual-id-column sparkid \ 
  --o-visualization pairwise-differences-evenness.qzv 
 
Pairwise Differences- Faith 
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qiime longitudinal pairwise-differences \ 
  --m-metadata-file DWmetadata.txt \ 
  --m-metadata-file faith_pd_vector.qza \ 
  --p-metric faith_pd \ 
--p-group-column weight_category \ 
  --p-state-column tp2 \ 
  --p-state-1 A \ 
  --p-state-2 B \ 
  --p-individual-id-column sparkid \ 
  --o-visualization pairwise-differences-faiths-pd.qzv 
 
Pairwise Differences- Unweighted UniFrac 

qiime longitudinal pairwise-differences \ 
  --m-metadata-file DWmetadata.txt \ 
  --m-metadata-file unweighted_unifrac_pcoa_results.qza \ 
  --p-metric “Axis 1” \ 
--p-group-column weight_category \ 
  --p-state-column tp2 \ 
  --p-state-1 A \ 
  --p-state-2 B \ 
  --p-individual-id-column sparkid \ 
  --o-visualization pairwise-differences-unweightedUniFrac.qzv 
 
Pairwise Differences- Weighted UniFrac 
 
qiime longitudinal pairwise-differences \ 
  --m-metadata-file DWmetadata.txt \ 
  --m-metadata-file weighted_unifrac_pcoa_results.qza \ 
  --p-metric “Axis 1” \ 
--p-group-column weight_category \ 
  --p-state-column tp2 \ 
  --p-state-1 A \ 
  --p-state-2 B \ 
  --p-individual-id-column sparkid \ 
  --o-visualization pairwise-differences-weightedUniFrac.qzv 
 
Pairwise Differences- Bray Curtis 
 
qiime longitudinal pairwise-differences \ 
  --m-metadata-file DWmetadata.txt \ 
  --m-metadata-file bray_curtis_pcoa_results.qza \ 
  --p-metric “Axis 1” \ 
--p-group-column weight_category \ 
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  --p-state-column tp2 \ 
  --p-state-1 A \ 
  --p-state-2 B \ 
  --p-individual-id-column sparkid \ 
  --o-visualization pairwise-differences-bray-curtis.qzv 
 
Pairwise Differences- Jaccard 
 
qiime longitudinal pairwise-differences \ 
  --m-metadata-file DWmetadata.txt \ 
  --m-metadata-file jaccard_pcoa_results.qza \ 
  --p-metric “Axis 1” \ 
--p-group-column weight_category \ 
  --p-state-column tp2 \ 
  --p-state-1 A \ 
  --p-state-2 B \ 
  --p-individual-id-column sparkid \ 
  --o-visualization pairwise-differences-jaccard.qzv 
 
Pairwise Differences- Unweighted UniFrac 
 
qiime longitudinal pairwise-differences \ 
  --m-metadata-file DWmetadata.txt \ 
  --m-metadata-file unweighted_unifrac_pcoa_results.qza \ 
  --p-metric “Axis 1” \ 
--p-group-column w_weightstatus4_num \ 
  --p-state-column tp2 \ 
  --p-state-1 A \ 
  --p-state-2 B \ 
  --p-individual-id-column sparkid \ 
  --o-visualization pairwise-differences-unweightedUniFracBMI.qzv 
 
Pairwise Differences- Weighted UniFrac 
 
qiime longitudinal pairwise-differences \ 
  --m-metadata-file DWmetadata.txt \ 
  --m-metadata-file weighted_unifrac_pcoa_results.qza \ 
  --p-metric “Axis 1” \ 
--p-group-column w_weightstatus4_num \ 
  --p-state-column tp2 \ 
  --p-state-1 A \ 
  --p-state-2 B \ 
  --p-individual-id-column sparkid \ 
  --o-visualization pairwise-differences-weightedUniFracBMI.qzv 
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Pairwise Differences- Bray Curtis 
 
qiime longitudinal pairwise-differences \ 
  --m-metadata-file DWmetadata.txt \ 
  --m-metadata-file bray_curtis_pcoa_results.qza \ 
  --p-metric “Axis 1” \ 
--p-group-column w_weightstatus4_num \ 
  --p-state-column tp2 \ 
  --p-state-1 A \ 
  --p-state-2 B \ 
  --p-individual-id-column sparkid \ 
  --o-visualization pairwise-differences-bray-curtisBMI.qzv 
 
Pairwise Differences- Jaccard 
 
qiime longitudinal pairwise-differences \ 
  --m-metadata-file DWmetadata.txt \ 
  --m-metadata-file jaccard_pcoa_results.qza \ 
  --p-metric “Axis 1” \ 
--p-group-column w_weightstatus4_num \ 
  --p-state-column tp2 \ 
  --p-state-1 A \ 
  --p-state-2 B \ 
  --p-individual-id-column sparkid \ 
  --o-visualization pairwise-differences-jaccardBMI.qzv 
 
Pairwise Differences- Weighted UniFrac 
 
qiime longitudinal pairwise-differences \ 
  --m-metadata-file DWmetadata.txt \ 
  --m-metadata-file weighted_unifrac_pcoa_results.qza \ 
  --p-metric “Axis 1” \ 
--p-group-column w_ovomeasured2 \ 
  --p-state-column tp2 \ 
  --p-state-1 A \ 
  --p-state-2 B \ 
  --p-individual-id-column sparkid \ 
  --o-visualization pairwise-differences-weightedUniFracOvob.qzv 
 
Pairwise Differences- Bray Curtis 
 
qiime longitudinal pairwise-differences \ 
  --m-metadata-file DWmetadata.txt \ 
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  --m-metadata-file bray_curtis_pcoa_results.qza \ 
  --p-metric “Axis 1” \ 
--p-group-column w_ovomeasured2 \ 
  --p-state-column tp2 \ 
  --p-state-1 A \ 
  --p-state-2 B \ 
  --p-individual-id-column sparkid \ 
  --o-visualization pairwise-differences-bray-curtisOvob.qzv 
 
Pairwise Differences- Jaccard 
 
qiime longitudinal pairwise-differences \ 
  --m-metadata-file DWmetadata.txt \ 
  --m-metadata-file jaccard_pcoa_results.qza \ 
  --p-metric “Axis 1” \ 
--p-group-column w_ovomeasured2 \ 
  --p-state-column tp2 \ 
  --p-state-1 A \ 
  --p-state-2 B \ 
  --p-individual-id-column sparkid \ 
  --o-visualization pairwise-differences-jaccardOvob.qzv 

 
 

Pairwise Distances 
 
 
Pairwise Distances- Unweighted UniFrac 
 
qiime longitudinal pairwise-distances \ 
  --i-distance-matrix unweighted_unifrac_distance_matrix.qza \ 
  --m-metadata-file DWmetadata.txt \ 
--p-group-column weight_category \ 
  --p-state-column tp2 \ 
  --p-state-1 A \ 
 --p-state-2 B \ 
  --p-individual-id-column sparkid \ 
  --o-visualization pairwise-distances-unifrac.qzv 
 
Pairwise Distances- Jaccard 
 
qiime longitudinal pairwise-distances \ 
  --i-distance-matrix jaccard_distance_matrix.qza \ 
  --m-metadata-file DWmetadata.txt \ 
--p-group-column weight_category \ 
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  --p-state-column tp2 \ 
  --p-state-1 A \ 
  --p-state-2 B \ 
  --p-individual-id-column sparkid \ 
  --o-visualization pairwise-distances-jaccard.qzv 
 
Pairwise Distances- Weighted UniFrac 
 
qiime longitudinal pairwise-distances \ 
  --i-distance-matrix weighted_unifrac_distance_matrix.qza \ 
  --m-metadata-file DWmetadata.txt \ 
--p-group-column weight_category \ 
  --p-state-column tp2 \ 
  --p-state-1 A \ 
  --p-state-2 B \ 
  --p-individual-id-column sparkid \ 
  --o-visualization pairwise-distances-weightedunifrac.qzv 
 
Pairwise Distances- Bray Curtis 
 
qiime longitudinal pairwise-distances \ 
  --i-distance-matrix bray_curtis_distance_matrix.qza \ 
  --m-metadata-file DWmetadata.txt \ 
--p-group-column weight_category \ 
  --p-state-column tp2 \ 
  --p-state-1 A \ 
  --p-state-2 B \ 
  --p-individual-id-column sparkid \ 
  --o-visualization pairwise-distances-bray-curtis.qzv 
 

Linear Mixed Effects Models  
Feature Volatility LME- Family 
 
qiime longitudinal linear-mixed-effects \ 
--m-metadata-file DWmetadataBaseline_categorical.txt \ 
--m-metadata-file DW-family-collasped.qza \ 
--p-state-column days_tp2 \ 
--p-metric 
'k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Lachnospiraceae' \ 
--p-individual-id-column sparkid \ 
--p-group-columns baseline_BMI,d_raceeth4_num,d_gen_num,weight_category \ 
--p-formula 
'k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Lachnospiraceae'~days_tp
2+baseline_BMI+d_raceeth4_num+d_gen_num+weight_category \ 



 

  108 

--o-visualization LME-featurevolatility-family_categorical.qzv 
 
Feature Volatility LME- Genus 
 
qiime longitudinal linear-mixed-effects \ 
--m-metadata-file DWmetadataBaseline_categorical.txt \ 
--m-metadata-file DW-genus-collasped.qza \ 
--p-metric 
'k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Lachnospiraceae;g__[Rum
inococcus]' \ 
--p-group-columns d_raceeth4_num,d_gen_num,weight_category,baseline_BMI \ 
--p-formula 
'k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Lachnospiraceae;g__[Rum
inococcus]'~days_tp2+baseline_BMI+d_raceeth4_num+d_gen_num+weight_category \ 
--p-state-column days_tp2 \ 
--p-individual-id-column sparkid \ 
--o-visualization LME-feature-volatility-genus_categorical.qzv 
 
Feature Volatility LME- Species 
 
qiime longitudinal linear-mixed-effects \ 
--m-metadata-file DWmetadataBaseline_categorical.txt \ 
--m-metadata-file DW-species-collasped.qza \ 
--p-metric 
'k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Lachnospiraceae;g__Clost
ridium;s__lavalense' \ 
--p-group-columns d_raceeth4_num,d_gen_num,weight_category,baseline_BMI \ 
--p-formula 
'k__Bacteria;p__Firmicutes;c__Clostridia;o__Clostridiales;f__Lachnospiraceae;g__Clost
ridium;s__lavalense'~days_tp2+d_raceeth4_num+d_gen_num+weight_category+baseline
_BMI \ 
--p-state-column days_tp2 \ 
--p-individual-id-column sparkid \ 
--o-visualization LME-feature-volatility-species_categorical.qzv 
 
First Differences LME- Shannon 
 
qiime longitudinal linear-mixed-effects \ 
--m-metadata-file DWmetadataBaseline_categorical.txt \ 
--m-metadata-file shannon-first-differencesFecalTP.qza \ 
--p-state-column days_tp2 \ 
--p-metric Difference \ 
--p-formula 
Difference~days_tp2+baseline_BMI+d_raceeth4_num+d_gen_num+weight_category \ 
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--p-individual-id-column sparkid \ 
--p-group-columns baseline_BMI,d_raceeth4_num,d_gen_num,weight_category \ 
--o-visualization LME-firstdiff-shannon-categorical.qzv 
 
First Differences LME- Faith 
 
qiime longitudinal linear-mixed-effects \ 
--m-metadata-file DWmetadataBaseline_categorical.txt \ 
--m-metadata-file faiths-first-differencesFecalTP.qza \ 
--p-state-column days_tp2 \ 
--p-metric Difference \ 
--p-formula 
Difference~days_tp2+baseline_BMI+d_raceeth4_num+d_gen_num+weight_category \ 
--p-individual-id-column sparkid \ 
--p-group-columns baseline_BMI,d_raceeth4_num,d_gen_num,weight_category \ 
--o-visualization LME-firstdiff-faiths_categorical.qzv 
 
First Differences LME- Evenness 
qiime longitudinal linear-mixed-effects \ 
--m-metadata-file DWmetadataBaseline_categorical.txt \ 
--m-metadata-file evenness-first-differencesFecalTP.qza \ 
--p-state-column days_tp2 \ 
--p-metric Difference \ 
--p-formula 
Difference~days_tp2+baseline_BMI+d_raceeth4_num+d_gen_num+weight_category \ 
--p-individual-id-column sparkid \ 
--p-group-columns baseline_BMI,d_raceeth4_num,d_gen_num,weight_category \ 
--o-visualization LME-firstdiff-evenness_categorical.qzv 
  
First Differences LME- Bray 
qiime longitudinal linear-mixed-effects \ 
--m-metadata-file DWmetadataBaseline_categorical.txt \ 
--m-metadata-file braycurtis-first-differencesFecalTP.qza \ 
--p-state-column days_tp2 \ 
--p-metric Difference \ 
--p-individual-id-column sparkid \ 
--p-group-columns baseline_BMI,d_raceeth4_num,d_gen_num,weight_category \ 
--p-formula 
Difference~days_tp2+baseline_BMI+d_raceeth4_num+d_gen_num+weight_category \ 
--o-visualization LME-firstdiff-braycurtis_categorical.qzv 
  
First Differences LME- Jaccard 
 
qiime longitudinal linear-mixed-effects \ 
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--m-metadata-file DWmetadataBaseline_categorical.txt \ 
--m-metadata-file jaccard-first-differencesFecalTP.qza \ 
--p-state-column days_tp2 \ 
--p-metric Difference \ 
--p-individual-id-column sparkid \ 
--p-group-columns baseline_BMI,d_raceeth4_num,d_gen_num,weight_category \ 
--p-formula 
Difference~days_tp2+baseline_BMI+d_raceeth4_num+d_gen_num+weight_category \ 
--o-visualization LME-firstdiff-jaccard_categorical.qzv 
  
First Differences LME- Unweighted UniFrac 
 
qiime longitudinal linear-mixed-effects \ 
--m-metadata-file DWmetadataBaseline_categorical.txt \ 
--m-metadata-file unweighted-first-differencesFecalTP.qza \ 
--p-state-column days_tp2 \ 
--p-metric Difference \ 
--p-individual-id-column sparkid \ 
--p-group-columns baseline_BMI,d_raceeth4_num,d_gen_num,weight_category \ 
--p-formula 
Difference~days_tp2+baseline_BMI+d_raceeth4_num+d_gen_num+weight_category \ 
--o-visualization LME-firstdiff-unweighted_categorical.qzv 
 
First Differences LME- Weighted UniFrac 
 
qiime longitudinal linear-mixed-effects \ 
--m-metadata-file DWmetadataBaseline_categorical.txt \ 
--m-metadata-file weighted-first-differencesFecalTP.qza \ 
--p-state-column days_tp2 \ 
--p-metric Difference \ 
--p-individual-id-column sparkid \ 
--p-group-columns baseline_BMI,d_raceeth4_num,d_gen_num,weight_category \ 
--p-formula 
Difference~days_tp2+baseline_BMI+d_raceeth4_num+d_gen_num+weight_category \ 
--o-visualization LME-firstdiff-weighted_categorical.qzv 
 
First Distances LME- Bray Curtis 
 
qiime longitudinal linear-mixed-effects \ 
  --m-metadata-file DWmetadataBaseline_categorical.txt \ 
  --m-metadata-file braycurtis-first-distancesFecalTP.qza \ 
  --p-state-column days_tp2 \ 
  --p-metric Distance \ 
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--p-formula 
Distance~days_tp2+baseline_BMI+d_raceeth4_num+d_gen_num+weight_category \ 
  --p-individual-id-column sparkid \ 
--p-group-columns d_raceeth4_num,d_gen_num,weight_category,baseline_BMI \ 
  --o-visualization LME-firstdist-braycurtis_categorical.qzv 
  
First Distances LME- Jaccard 
 
qiime longitudinal linear-mixed-effects \ 
  --m-metadata-file DWmetadataBaseline_categorical.txt \ 
  --m-metadata-file jaccard-first-distancesFecalTP.qza \ 
  --p-state-column days_tp2 \ 
  --p-metric Distance \ 
--p-formula 
Distance~days_tp2+baseline_BMI+d_raceeth4_num+d_gen_num+weight_category \ 
  --p-individual-id-column sparkid \ 
--p-group-columns d_raceeth4_num,d_gen_num,baseline_BMI,weight_category \ 
  --o-visualization LME-firstdist-jaccard_categorical.qzv 
  
First Distances LME- Unweighted Unifrac 
 
qiime longitudinal linear-mixed-effects \ 
  --m-metadata-file DWmetadataBaseline_categorical.txt \ 
  --m-metadata-file unweighted-first-distancesFecalTP.qza \ 
  --p-state-column days_tp2 \ 
  --p-metric Distance \ 
--p-formula 
Distance~days_tp2+baseline_BMI+d_raceeth4_num+d_gen_num+weight_category \ 
  --p-individual-id-column sparkid \ 
--p-group-columns d_raceeth4_num,d_gen_num,baseline_BMI,weight_category \ 
  --o-visualization LME-firstdist-unwtd_categorical.qzv 
 
First Distances LME- Weighted Unifrac 
 
qiime longitudinal linear-mixed-effects \ 
  --m-metadata-file DWmetadataBaseline_categorical.txt \ 
  --m-metadata-file weighted-first-distancesFecalTP.qza \ 
  --p-state-column days_tp2 \ 
  --p-metric Distance \ 
--p-formula 
Distance~days_tp2+baseline_BMI+d_raceeth4_num+d_gen_num+weight_category \ 
  --p-individual-id-column sparkid \ 
--p-group-columns d_raceeth4_num,d_gen_num,baseline_BMI,weight_category \ 
  --o-visualization LME-firstdist-wtd_categorical.qzv 
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qiime longitudinal volatility \ 
  --m-metadata-file DWmetadataBaseline.txt \ 
  --m-metadata-file jaccard-first-differencesFecalTP.qza \ 
--m-metadata-file jaccard-first-distancesFecalTP.qza \ 
   --p-state-column FecalTP \ 
  --p-individual-id-column sparkid \ 
  --o-visualization volatilityFD-jaccard-FecalTP.qza 

 

 


