
A Scalable FPGA­based Multi­channel Data Acquisition System

for Parallel Plate Ionization Chamber

by

Rafael Andres Acuna Briceno

A Thesis Presented in Partial Fulfillment
of the Requirements for the Degree

Master of Science

Approved November 2021 by the
Graduate Supervisory Committee:

Hugh Barnaby, Chair
David Blyth

John Brunhaver

ARIZONA STATE UNIVERSITY

December 2021

ABSTRACT

Proton beam therapy has been proven to be effective for cancer treatment. Protons allow

for complete energy deposition to occur inside patients, rendering this a superior treatment

compared to other types of radiotherapy based on photons or electrons. This same charac­

teristic makes quality assurance critical driving the need for detectors capable of direct beam

positioning and fluence measurement.

This work showcases a flexible and scalable data acquisition system for amulti­channel and

segmented readout parallel plate ionization chamber instrument for proton beam fluence and

positioning detection. Utilizing readily available, modern, off­the­shelf hardware components,

including an FPGA with an embedded CPU in the same package, a data acquisition system for

the detector was designed. The undemanding detector signal bandwidth allows the absence of

ASICs and their associated costs and lead times in the system.

The data acquisition system is showcased experimentally for a 96­readout channel detec­

tor demonstrating sub millisecond beam characteristics and beam reconstruction. The system

demonstrated scalability up to 1064­readout channels, the limiting factor being FPGA I/O avail­

ability as well as amplification and sampling power consumption.

i

ACKNOWLEDGMENTS

To my family and friends. Thank you for all the support and encouragement you have

provided across the years. I could not have done it with out you.

To the members of my thesis committee. Professor Barnaby, thank you for encouraging

me to pursue graduate school and for your support these past years. Professor Brunhaver, I will

forever be grateful for introducing me to digital design and your teachings on the subject. Dr.

Blyth, I appreciate your mentorship and time spent together developing the work described in

this thesis.

To Dr. Evgeny Galyaev, for giving me the chance to participate in this project and trusting

me with the contributions about to be explored. Furthermore, thank you for providing support

material used in this document.

This material is based upon work supported by the U.S. Department of Energy, Office of

Science, Nuclear Physics program office under Award Number DE­SC0015136.

ii

TABLE OF CONTENTS

Page

LIST OF TABLES . v

LIST OF FIGURES . vi

CHAPTER

1 INTRODUCTION . 1

1.1 Detector Description . 2

1.2 Thesis Statement . 4

1.3 Contribution . 5

1.4 Thesis Structure . 5

2 DATA ACQUISITION SYSTEM . 6

2.1 Streaming Readout . 6

2.1.1 Streaming Readout Output Format . 7

2.2 Front­End Module . 10

2.2.1 Transimpedance Amplifiers . 12

2.2.2 Analog to Digital Converter . 13

2.3 System on Chip FPGA . 15

2.4 Data Aggregation Server . 17

2.5 Summary . 18

3 FPGA SYSTEM DESIGN . 20

3.1 Block Interfacing . 22

3.1.1 Peripheral Interfacing . 22

3.2 Platform Designer SoC System . 23

3.3 ADC Interface . 24

3.4 Clock Domain Crosser . 27

iii

CHAPTER Page

3.5 Integrator . 29

3.6 Varint Encoder . 29

3.6.1 Combinatorial Varint Encoding . 30

3.6.2 Varint Memory Packing . 31

3.7 Sample Writer . 33

3.7.1 Data Sample Description . 34

3.7.2 Buffering Scheme . 35

3.7.3 Sample Writing Procedure . 36

3.8 Summary . 36

4 DISCUSSION AND RESULTS . 37

4.1 FEM Specifications . 37

4.2 FPGA Design Scaling . 38

4.3 Detector Experimental Measurements . 41

4.4 Summary . 43

5 CONCLUSION . 45

5.1 Future Work . 46

REFERENCES . 47

iv

LIST OF TABLES

Table Page

1. Ready/Valid State Signal Description . 22

2. FPGA and HPS Interfacing Signals . 24

3. ADC Interface Signal Description . 25

4. FEM Specifications . 37

v

LIST OF FIGURES

Figure Page

1. Proton Energy Deposition in Patient . 1

2. Beam Reconstruction from Beam Projections . 3

3. Data Acquisition System Diagram . 7

4. LEB128 Encoding Example . 8

5. Experimental Beam Projections . 9

6. Front­End Module PCB . 11

7. Transimpedance Amplifier Schematic . 12

8. Simplified ADS8598S ADC Diagram . 15

9. MitySOM­5CSx PCB. 16

10. HPS Peripherals and Interfaces . 16

11. Web GUI Live Data Display . 18

12. Top Level FPGA Design Block Diagram . 21

13. SoC System Diagram . 23

14. ADC Serial Interface Waveforms . 25

15. ADC Interface Block Diagram . 26

16. CDC FIFO Block Diagram . 28

17. Combinatorial Varint Encoding . 31

18. Varint Encoder Block Diagram . 33

19. Sample Memory Allocation . 34

20. Sample Buffer Diagram . 35

21. FPGA Design Resource Utilization . 39

22. FPGA Design Fmax . 40

23. Experimental Setup and Beam Reconstruction . 41

vi

Figure Page

24. Temporal Detector Resolution . 43

25. Detector Linearity . 44

vii

Chapter 1

INTRODUCTION

Cancer as a disease has a major impact on society across the world. Techniques and meth­

ods to treat it have been developed with a varying degrees of success which include surgery,

chemotherapy, immunotherapy, ultrasound therapy, and radiotherapy as the most common

treatments. Radiation therapy is based on the idea of damaging cancerous tissue through ex­

posure to a radiation beam, while healthy neighboring tissue regenerates and repairs faster. In

practice, techniques involving photon and electron beams have been proven successful with

proper radiation dose to a target volume of cancerous cells [1].

Figure 1. Protons release most of their energy shortly before the end of their path in matter.
The sharp peak on the plotted linear energy transfer curve depicts the Bragg Peak.

Protons have proven to have an advantage in cancer radiation therapy due to the particles’

energy loss characteristics in tissue. Protons path in matter is virtually straight with velocity

dependent energy loss and therefore most of the energy deposition occurs right until the end

of their trajectory. This phenomenon is defined as Bragg peak [2]. The advantage is clearly

1

depicted in Fig. 1, where radiation dose can be delivered to the volume while minimizing

damage to bystander tissue. Since protons completely stop and deposit their energy inside the

patient, the transverse beam profile, intensity, and depth are all critical features that must be

directly measured. This also implies that treatment must be thoroughly planned to minimize

potential damage. The verification of beam characteristics for treatment purposes is also known

as quality assurance or QA.

This critical application drives the need for detectors capable of direct proton beam mea­

surement. Detectors which require high spatial and temporal resolution, wide dynamic range,

as well as good linearity. The main goal is to enable proper characterization of X­Y beam

position as well as provide accurate fluence measurements.

The application and its corresponding requirements present the need for a data acquisi­

tion (DAQ) system that is compliant to the detector’s specifications. This thesis presents a

scalable DAQ system leveraging off­the­shelf modern components, and therefore abstaining

from using more expensive and less available application specific integrated circuits (ASICs).

By using off­the­shelf components mounted in a standard PCB, manufacturing lead times are

significantly reduced.

1.1 Detector Description

The detector is a parallel plate ionization chamber to be used as a planar proton beam

fluence detector for quality assurance (QA) in cancer treatment. QA aims to ensure safe and

accurate delivery of proton radiation dose to patients, while minimizing damage to healthy

tissue. This detector provides sub­millimeter planar spatial resolution, as well as a temporal

resolution of 25k frames per second (fps) for superior QA.

2

The principle of operation is briefly explained as follows. Through the application of a DC

voltage bias between the detector parallel plates an electric field is created inside the chamber.

Through proton beam exposure (a source of ionizing radiation) ion pairs are formed between

the plates. The electric field is strong enough to reduce recombination of the ion pairs and

induce the collection of electrons. This produces an output ion current, effectively turning the

parallel plates into a cathode and an anode. The amount of current is dependent on the proton

beam energy.

(a) Output strips arrangement (b) Beam projections

Figure 2. Anode composed of collector pads connected to three sets of output strips normal to
the beam separated 120 degrees from one another; 2a. The arrangement enables the readout of
three beam projections which are used for beam reconstruction; 2b.

The anode is made of copper collector pads which are fabricated with readily available stan­

dard Printed Circuit Board (PCB) manufacturing. Copper traces organized as strips are routed

and connected to the collector pads with a PCB via. As depicted in Fig. 2a, three groups of

strips are routed below the ionization chamber’s anode, each in a different direction normal

to the beam on a different PCB layer. The three sets of strips correspond to the three result­

ing signal intensity projections of the originating radiation beam, where each projection is a

one­dimensional perspective of the beam as shown in Fig. 2b. Each output strip carrying an

3

ion current is fed into to the data acquisition (DAQ) system. Using the three projections it is

possible to perform the reconstruction of the particle beam since the pad array and output strip

arrangement are predefined and well known [3]. This idea is depicted in Fig. 2b. Image recon­

struction from its projections is also referred to as tomography. Details on the reconstruction

approach are based on the assumption that the proton beam flux distributes as a covariant 2­D

Gaussian as described on the following work [4].

Due to the nature of the detector and its principle of operation, the frequency components

composing the output signals are on the low end. Therefore, the bandwidth and sampling re­

quirements of the DAQ system are relatively undemanding. The analog circuits should support

10kHz of signal bandwidth. The critical aspect of the system is the dynamic range as well as

performing the sampling of all outputs simultaneously. Dynamic range can be defined as the

range between the noise floor and the maximum output [5]. Maximizing dynamic range en­

ables the instrument to measure beam characteristics in better detail as well as increasing the

instrument flexibility.

1.2 Thesis Statement

The need for superior cancer treatment QA in proton beam therapy drives urgency for better

instruments to measure accurate X­Y beam positioning and radiation beam fluence profile. A

scalable and flexible DAQ system built with off­the­shelf modern components is of interest

in order to avoid ASIC related lead times and costs. Additionally, the system should not only

accommodate to a single detector, but rather support detectors of similar construction with

different output channels and different output current ranges. Scalability and a high dynamic

range of the DAQ system address these challenges.

4

1.3 Contribution

The contributions focus on the hardware design related to the DAQ system. This includes

Printed Circuit Board (PCB) design of the PCB which digitizes detector outputs via an ar­

ray of Transimpedance Amplifiers (TIAs) and Analog to Digital Converters (ADCs). More­

over, a Field Programmable Gate Array (FPGA) design that serves as the intermediary between

ADCs and the software infrastructure was designed, implemented, tested, and deployed for a

96­channel detector prototype. Details about the software infrastructure are mentioned in order

to provide context since the information is pertinent to some FPGA design choices.

1.4 Thesis Structure

The structure of this document is as follows. Both Chapter 2 and 3 correspond to the DAQ

system. Chapter 2 focuses on the detector level context providing details on each block and how

they contribute to the overall system goals. Furthermore Chapter 3 focuses on the FPGA level

design. Even though it is only one part of the system, special attention is given since the device

orchestrates the sampling of the detector’s outputs with the software infrastructure. Chapter

4 elaborates on how the FPGA system scales with incrementing readout channels as well as

providing experimental data. Experimental data showcases spatial and temporal resolution as

well as detector linearity.

5

Chapter 2

DATA ACQUISITION SYSTEM

The data acquisition system is composed by all the elements which together, collect output

data from the detector. In order to understand how each piece contributes and its context, the

output of the system is explored first, then each element in the system is explored from input

to output or from the detector output currents to a digitized data stream.

2.1 Streaming Readout

As mentioned in Chapter 1 the detector supports 25kfps implying a constant readout rate.

This categorizes the data acquisition as a streaming readout system. Classic Data Acquisition

Systems are triggered­based, therefore they rely on a hardware signal, known as the trigger, to

perform data collection. Modern hardware enables a constant sampling rate and moves hard­

ware challenges into software. For example, with a constant sampling rate, noise suppression

can be taken care of in software with an easy to implement digital low pass filter. The main

drawback of a streaming readout system is the inherent increase in data throughput. The solu­

tion to alleviate this concern, is explained in the following Section 2.1.1. Additionally, stream­

ing readout systems consume all generated data as it is constantly being produced. Data can

be consumed by storing the data or by performing operations on the data stream. This enriches

the system by enabling software tools for processing, manipulation, display, and analysis of

the stream on the fly.

As depicted in Fig. 3, the main hardware elements of the DAQ are Front­End Modules,

which feature an array of transimpedance amplifiers as well as analog to digital converters, fol­

6

Figure 3. Data acquisition system diagram. Detector output currents are amplified and digi­
tized on the Front­End Modules while the SoC FPGA Module interfaces with the ADC array
and outputs a ProIO event stream through ethernet to the aggregator server. The modules are
separate PCB boards connected to the same carrier board.

lowed by a System on Chip (SoC) FPGA which outputs a data stream in ProIO format [6] over

the network into a data aggregator server. The data stream can be manipulated (e.g. filtered)

on the server where extensive computing resources are available. ProIO and the reasoning why

it was chosen for the data stream format will be explained shortly.

2.1.1 Streaming Readout Output Format

As previously mentioned, the main drawback of a streaming readout system is a higher

memory bandwidth since data produced by the system increases. For a detector featuring 336

output readout channels, the memory bandwidth needed is∼270Mbps when the sampling rate

is set to be 25kSps. Ethernet supports the throughput, but it now produces a disk bandwidth

concern. LEB128 encoding is performed on the data stream in order to reduce data throughput.

7

LEB128, which stands for Little Endian Base 128, is a binary encoding scheme used in

the DWARF file format, WebAssembly, and Protocol Buffers [7]–[9]. The scheme enables

the storage of a binary number in a lesser number of bytes. Each encoded byte is composed

of seven data bits and one continuation flag bit. Fig. 4 conveys how an a 32­bit integer can

be stored in three bytes or 24 bits, effectively reducing memory allocation. In a worst­case

scenario, a very large LEB encoded 32­bit integer would require five bytes of memory, but this

cases are rare.

Figure 4. 32­bit integer LEB128 encoding example depicting memory allocation reduction
from 4 bytes to 3 bytes.

In the proton beam therapy context, it is reasonable to assume that proton flux measure­

ments are distributed as a covariant 2­D Gaussian when integrated in the order of milliseconds

[10], [11]. This idea is the main approach to perform tomography on the proton beam as de­

picted in Fig. 2b. Furthermore, the 2­DGaussian shape of the beam is also seen in experimental

data as shown in Fig. 5 through the three beam projections. Under this assumption, one can

conclude that a significant amount of detector output values are small. These small values

correspond to the detector area not being irradiated at a particular moment. Therefore, consid­

erable data transfer throughput is saved if LEB128 encoding is performed on all the detector

output values.

8

Figure 5. Experimental proton beam projections in one recorded frame from a 96­channel
detector prototype. A considerable number of channels show small measurements while the
detector is irradiated. Each axis corresponds to a beam projection.

LEB128 is used not only due to the transfer bandwidth reduction, but also because Protocol

Buffers Varints are LEB128 encoded. Varint refers to a variable length integer in Protocol

Buffer terminology. The Varint term will be used for the rest of this document.

Protocol Buffers or Protobufs for short, are Google’s software mechanism to serialize struc­

tured data, its free and open source [12]. Protobufs are efficient for both data transfer as well as

storage in a language­neutral manner. The way Protobufs are created is flexible and powerful.

User defined data structures, called messages, are described in a definition file with the .proto

file extension. The protoc command line tool takes the .proto file and the desired programming

language as arguments, and generates the API necessary to serialize and deserialize messages.

In the software context, serialization is defined as the process of converting data structures into

a byte sequence which can be transmitted among processes or stored, while deserialization

refers to the data structure reconstruction from bits.

Serialization formats like XML, JSON, BJSON (binary JSON) are used extensively for

network and interprocess communication. The most notable differences compared to Protobuf,

is that XML and JSON are both human readable with the exception of BJSON. In recent years

9

Protobuf has become a considerable contender against these widely adopted formats since it

provides superior performance. Protobuf offers both lesser message storage size as well as

lesser serialization and deserialization times [13], [14].

Protocol Buffer’s features like efficient data storage and efficient serial encoding of user

defined data structures, make it an attractive tool. Nevertheless, it still not well suited for

describing rich and extensive datasets collected from DAQ systems. To address the absence

of features ProIO is leveraged. ProIO is a language­neutral event­based stream format for

Protobuf messages [6]. Self­description as well as direct event access are enabled by ProIO

and originally missing from Protobufs. For these reasons, ProIO is used as the output format

of the data stream, as it provides both efficiency and flexibility. On a final note, a ProIO event

is an encapsulation of a structure describing one or several samples of the detector output.

The encapsulation is practical when reading data, as well as accessing a particular section of

data. The DAQ system output is a ProIO event stream which describes the detector values.

Understanding the digitized output format is of importance since it is pertinent to design choices

of the system which will be introduced in Section 2.3.

2.2 Front­End Module

The detector’s outputs are connected to what is defined as Front­End Module (FEM). The

main function of the FEM is to encapsulate all the components needed to convert a detector

output into a digitized binary value on a modular PCB board. By making the FEM modular,

scaling the detector to a different output channel configuration is straightforward. The main

components of the FEM are an array of transimpedance amplifiers as well as corresponding

analog to digital converters. Each FEM supports 56 input signal currents and readout channels.

All the supporting circuits, like power distribution, clocking, voltage references are all mounted

10

in the FEM PCB. The FEM I/O is composed by an input power rail of 5V, analog input currents,

and the digital signals which interface with the ADCs.

A standardized connector for the FEMs is of interest due to ease of use as well as off­

the­shelf availability. The Mobile PCI Express Module (MXM) 3.0 connector was chosen

[15]. Even though the MXM 3.0 standard describes several specific pin assignments as well as

software interface, only the form factor of the mating 314­pin socket connector is considered.

Proper care was taken in designing the FEM PCB. Mixed signal PCB designs must isolate

analog elements from digital elements due to sharp edges associated with digital signals. Digi­

tal signals can couple to analog signals potentially rendering them noisy. Some of the practices

implemented in the design are separating analog and digital ground and power planes, isolating

analog and digital power distribution, as well as shielding for the analog input currents.

Figure 6. FEM PCB board mounted on a MXM 3.0 connector. Left ICs correspond to TIA
opamps and right ICs correspond to the ADCs. Specifications are quoted in the right table.

11

2.2.1 Transimpedance Amplifiers

The transimpedance amplifier (TIA) converts a detector output into a low­impedance volt­

age source through an operational amplifier (opamp) as shown in Fig. 7. The voltage output

can be digitized with an ADC. The circuit bandwidth must be above 10kHz based on the de­

tector’s principle of operation. The bandwidth requirement is easily attainable with modern

operational amplifiers. Additionally, the TIA gain needs to be picked strategically, as it needs

to be high enough in order to satisfy a high dynamic range, but it must avoid output saturation.

Figure 7. Transimpedance amplifier schematic. ±5V rails with decoupling capacitors.
Impedance gain set with Rf resistor value.

As depicted in the TIA schematic shown in Fig. 7, the resistor Rf sets the amplifiers

impedance gain and should be set according the maximum and minimum output voltage, the

maximum input current, and noise requirements. In order to maximize dynamic range, a sub­

stantial Rf value is desired. As shown in Eq. 2.1a and Eq. 2.1b, which describe the output

gain and the output noise of the circuit respectively; the gain of the circuit increases linearly

with Rf while the output voltage noise increases proportionally to the square root of Rf [16].

Therefore, if Rf is increased, the dynamic range of the amplifier is increased as well. A good

compromise was concluded to be 1V/uA or 1MΩ of gain. The type of noise described by

12

2.1b is Johnson–Nyquist noise which is commonly referred to as thermal noise. Thermal noise

occurs due to the vibration of the charge carriers in an electrical conductor [17].

Ai ≈ −isRf (2.1a)

vo_nrms ≈
√
4kBTRf∆f (2.1b)

The high frequency characteristics of the TIA, are set by the feedback capacitor Cf which

determines both amplifier bandwidth, stability, and the opamp gain­bandwidth product (GBW)

requirement. In order to satisfy both the gain and signal bandwidth of 10kHz Cf needs to

less than 15pF. The Cf value was set to 10pF, setting the required GBW to 40kHz with a

conservative estimation [18]. Opamps that comply with the requirement are readily available.

To implement the TIAs the Analog Devices LTC6242 IC opamp was used. This part fea­

tures four opamps in a single package, making it proper to reduce PCB area on the FEM PCB.

The opamp is a low noise (10nV/
√
Hz at 1kHz), low input bias current (1pA max), with a gain

bandwidth product of 18Mhz. Due to its specifications it is adequate for the application.

2.2.2 Analog to Digital Converter

In order to digitize the output voltage of the TIA amplifiers, ADCs are used. A proper

ADC architecture that supports both the effective sampling of the input bandwidth as well as a

high­resolution output is needed. Both Successive­Approximation­Register (SAR) as well as

Sigma Delta ADCs comply with the requirements. SAR ADCs were chosen for the balance

between high resolution, sampling rate, as well as their ease of use. The simplicity of SAR

ADCs is related to its main principle of operation. Conversions are based upon a binary search

algorithm where the final digital output is searched among all the possible quantization values.

13

An output bit is determined from most significant bit (MSB) to least significant bit (LSB) a

clock cycle at a time and converging into a value with each step [5].

According to Nyquist­Shannon theorem, in order to accurately reconstruct an analog signal

using discrete data points while avoiding aliasing, the sample rate needs to be at minimum two

times the highest frequency component of the signal [5]. This sampling rate is also known as

Nyquist rate. In order to account for possible high frequency noise, an effective anti­aliasing

filter is needed to avoid high frequency components mixingwith the frequency range of interest.

Sampling the input signal above Nyquist rate, also known as oversampling, improves SNR

and avoids the need for an impractical high order anti­aliasing filter. The anti­aliasing filter, as

well as the desired dynamic range need to be taken into account in order to select an effective

sampling rate.

The Texas Instruments ADS8598S ADC chip was chosen for this application. It features

an eight­input 18­bit SAR ADC featuring a diverse set of settings. The most notable settings

used in the system, are an input range of±5V, an on­chip third­order Butterworth anti­aliasing

low­pass filter [19] with a 3­dB cutoff frequency at 10.6kHz and an averaging digital filter.

For every analog to digital conversion, a total of eight samples are averaged when using an

8x oversampling mode. The averaging of multiple samples enables thermal noise (or white

noise) reduction due to thermal noise having an average value of zero [5]. The system is set

to perform digital conversions at 25k Samples per second (Sps). With the 8x oversampling

enabled, the ADCs effectively sample the analog inputs at 200kSps. The ADC features are

depicted in Fig. 8.

Moving average filters, are one of the simplest digital filters due to its low hardware cost.

The averaging is performed efficiently since it only requires an accumulator while the division

by a base 2 number is performed by a simple bit shift. Therefore, improving SNR and dynamic

range with a minimal amount of hardware. In this case, downsampling also takes place since

14

Figure 8. Simplified ADS8598S ADC diagram for a single input featuring 1MΩ input resistor
followed by a programmable amplifier used for both ±5V and ±10V compatibility.

the output data rate is reduced by the oversampling factor. This keeps the sample rate low and

consequently computation and processing resources consumption reasonable.

2.3 System on Chip FPGA

SoC FPGA devices integrate both a processor system with a FPGA into a single device and

package [20]. The incorporation of an FPGA and an ARMCPU, provides a flexible embedded

system platform for a wide range of applications. The FPGA is ideal handling real­time or time

critical tasks with the power of reconfigurable hardware, while the ARM CPU shines where

software flexibility is needed.

An off­the­shelf System on Module (SOM), a PCB module featuring a Cyclone V SoC

FPGA, was used as the embedded platform for the DAQ. The MitySOM­5CSx SOM features

the SoC FPGA as well as all its supporting electronics in a compact PCB as depicted in Fig.

9. The MitySOM connects into a carrier board using the previously mentioned MXM 3.0

connector. Therefore, the same connector is used for the major hardware components of the

DAQ system.

The CPU in the SoC device, is referred to as Hard Processor System (HPS). In this applica­

tion is used as a computer running a Linux OS environment which can be accessed seamlessly

over the network. As shown in Fig. 10, the HPS enables several peripherals including an Ether­

15

Figure 9. MitySOM­5CSx featuring a Cyclone V SoC FPGA mounted on a MXM 3.0 connec­
tor. Both RAM and power handling are seen on the right.

net Media Access Controller (EMAC), Secure Digital (SD) card controller, as well as I2C lanes

for several sensors on the detector. The EMAC establishes network communication, while the

SD card controller interfaces with an SD card which is used as the HPS disk. Furthermore,

a UART interface is enabled for debugging purposes. Lastly, the HPS also features a DDR3

memory controller with 800MT/s transfer speed for the 1GB of available RAM.

Figure 10. Cyclone V SoC HPS enabled peripherals. EMAC enables network capabilities,
SD/MMC enables disk communication.

Themain goal of the Cyclone V SoC chip is to transfer a ProIO data streamwhich describes

the output of the detector over the network into a server. The FPGA device performs time crit­

ical tasks, which include driving ADC operations and readout, performing data stream Varint

encoding, as well as writing data into a reserved memory space in the HPS. On the other hand,

16

a software application running in the HPS reads the Varint encoded data from the reserved

memory and builds ProIO events.

Due to the limited computational resources available in the embedded HPS, Varint encod­

ing is offloaded into the FPGA where hardware resources are extensive. From Fig. 4, the

encoding is mainly bit manipulation which can be performed more efficiently with a hardware

solution. By offloading the HPS of the Varint encoding load into the FPGA, the HPS resources

are better allocated towards ProIO event building while keeping reasonable CPU utilization.

Details regarding the FPGA design and the interfacing between the HPS and FPGA will be

explored in detail in Chapter 3.

2.4 Data Aggregation Server

The HPS software application is directly running in the Linux environment as a service.

The data acquisition process is enabled as soon as a connection is established with the server

through TCP/IP protocols. The HPS outputs a data stream in ProIO format via a WebSocket

[21] to an aggregation software application which can be either run on the cloud or privately.

Users are able to interface with the aggregating software via a WebServer graphical user

interface (GUI) running on the server. The Web GUI can be accessed via a local client PC and

provides live data display as seen in Fig. 11. The ProIO stream is constantly received but not

necessarily stored on disk. ProIO can also be used as a serialization layer for inter­process com­

munication, meaning that data can be displayed but not recorded if desired. Furthermore, the

Web GUI also provides control to the user for when to start and end recordings. Additionally,

it also enables users to modify display characteristics and filter live data.

17

Figure 11. Web GUI live data display [22]. Enables an intuitive interface to the detector data
stream. Features data storage control, display from a live stream, and display of past stored
runs. Several plotting controls are offered.

2.5 Summary

The detector data acquisition was presented with special emphasis on the benefits of a

streaming readout system and how the drawbacks are alleviated. The hardware components

which sample detector ion currents were introduced. The operational amplifier used for the

TIAs, the LTC6242, features low noise, low input bias, and sufficient gain bandwidth product.

The SARADC selected, the ADS8598S, features an anti­aliasing filter and an 8x oversampling

mode of operation. Using both components, the 10kHz bandwidth input signals are effectively

amplified and sampled while maximizing dynamic range. The Cyclone V SoC FPGA was

introduced as the link between the hardware and software infrastructure where its inputs are

18

digitized detector values while the output is a ProIO data stream to be sent over the network to

an aggregation server where the data stream can be displayed and stored.

19

Chapter 3

FPGA SYSTEM DESIGN

A Field Programable Gate Array (FPGA) is an integrated circuit that is designed to be

reconfigurable. Via an array of Configurable Logic Blocks (CLB), the device can be used

to implement a multitude of logic functions. The CLBs connect through an extensive and

sophisticated interconnect which is also reconfigurable. Modern FPGAs feature a set of Digital

Signal Processing (DSP) slices as well as Block RAM (BRAM) slices to further increase their

versatility. FPGA devices also have their own set of configurable I/O circuitry and analog

Phase Locked Loops (PLLs) [23]. In short, FPGAs combine the power of hardware design

with the reconfigurability of software

In order to implement a design using an FPGA, a similar workflow to an application specific

integrated circuit (ASIC) is followed. Synthesis and automatic place and route (APR) are

usually performed with vendor software tooling, where the design and FPGA configuration

are both described with Hardware Description Languages (HDLs). SystemVerilog, one of the

most popular HDL languages, was used to implement a digital design on the FPGA device.

In this work the implementation is referred to as FPGA design. The main specifications of

the FPGA design are, concurrent interfacing with each ADC chip in the ADC array, performing

Variable Integer Encoding (Varint) on every sample, and writing the encoded samples to a

reserved RAM section. Additionally, the operations corresponding to one single sample should

be performed in less than 40us. This maximum time specification is related to the desired

25kfps on the detector output where one Sample refers to all the digitized values of the ADC

array corresponding the analog to digital conversion of all the detector outputs.

20

The design development was performed using Intel Quartus Prime tools and implemented

in a Cyclone V SE FPGA. The terms soft and hard are used to describe hardware on the rest

of this Chapter. In this context soft refers to reconfigurable hardware, while hard refers to non­

reconfigurable hardware on the chip. The Cyclone V SE FPGA family features a 32­bit dual­

core ARM Cortex­A9 processor embedded in the same package as the FPGA. The processor

is referred to as HPS which stands for Hard Processor System. While running a Linux OS, the

HPS software application provides an intuitive event structure to the data stream by building

ProIO events which are sent to a data aggregation server over the network. Details on the ProIO

data stream format are provided in Section 2.1.1.

Figure 12. Top level FPGA design block diagram depicting a FIFO structure. Blue arrows rep­
resent Ready/Valid interfaces. Yellow arrow represents an Avalon Memory Mapped interface
used to write the data stream directly to RAM. Control PIOs manage data acquisition and HPS
data reading operations from RAM.

The FPGAdesign presented in this work is depicted in Fig. 12, and clearly follows a First In

First Out (FIFO) structure. The main motivation for the simplicity of the system is making the

design scalable, meaning that adapting the FPGA fabric to be compatible with a higher number

of data readout channels should be supported by the architecture. A SystemVerilog package is

leveraged to enable design flexibility. System wide parameters defined in the package, provide

a simple mechanism to adapt the design procedurally at build time [24]. Furthermore, procedu­

21

rally generated RTL implies more maintainable, reliable, and readable RTL code [25]. In the

following section, both the interfaces used between FPGA design blocks as well as the inter­

faces communicating with external elements to the FPGA will be briefly introduced followed

by details regarding each FPGA block.

3.1 Block Interfacing

The FPGA design blocks conveyed in Fig. 12, all interact among themselves via

Ready/Valid handshakes. The interface is depicted with blue arrows. Even though this is not a

standardized handshake, it is a simple yet versatile protocol to manage data flow in a pipeline

[26]. The states of this communication protocol are detailed in Table 1.

Table 1. Ready/Valid state signal description

Ready Valid Description

0 0 Idle
0 1 Waiting for receiver to be ready
1 0 Waiting for transmitter data to be valid
1 1 Data transfer is performed

3.1.1 Peripheral Interfacing

The ADC interfacing block communicates with the external ADC array via a serial in­

terface similar to a Serial Peripheral Interface (SPI). More details about the interface will be

discussed in Section 3.3. The Sample Writer interfaces with the HPS via the FPGA2SDRAM

port through an Avalon Memory Mapped (AMM) [27] interface. The port provides a direct

interface to RAM, and therefore to the HPS memory space. Due to the relatively vast amount

22

of memory available (1GB) in RAM, the port is attractive for data transfers. The HPS features

hard Advanced eXtensible Interface (AXI) [28] buses for communication among its blocks.

Moreover, AMM was chosen as the interface of the FPGA2SDRAM port since the soft IP pro­

vided through Intel Quartus Prime tools feature AMM interfaces. Therefore, it makes most

sense to keep bus protocols consistent in soft hardware.

3.2 Platform Designer SoC System

Figure 13. SoC System diagram from the Platform Designer GUI depicting the system compo­
nents and their connections. Two PIOs are used for control.

In order to interface with the HPS instance from an FPGA design perspective, the Platform

Designer Quartus sub tool was used. Platform Designer is a system integration tool, which

encapsulates and automatically generates the interconnect among Quartus IP blocks [29]. Fur­

thermore, the HPS configuration, including interfaces, memory timing settings, buses, clocks

23

and resets, are all set in Platform Designer. For the rest of the Chapter, this encapsulation will

be referred to as the SoC System.

From Fig. 13, it can be observed that the major elements of the SoC System are the HPS,

two Parallel Input/Output IP blocks (PIO), as well as a PLL. The PLL generates a clock (SCLK)

used for the ADC array data readout and the ADC Interface. Both PIOs are used for FPGA/HPS

communication, where each PIO corresponds to a communication direction between the de­

vices, FPGA­to­HPS and HPS­to­FPGA. Lastly, the export column from Fig. 13 represents

input and output ports available to the FPGA design to interface with the SoC System. All

the logic composing the connections among the IP blocks is procedurally generated by the

Platform Designer sub tool.

Table 2. FPGA and HPS interfacing signals

PIO Signal Description

HPS2FPGA adc_powerup_en Powers up ADC chips from standby
HPS2FPGA data_aq_en Enables data acquisition periodically at 25kSps
FPGA2HPS read_ram_block Interrupt signal for HPS to perform RAM read
FPGA2HPS ram_block_num Convey which block to read from RAM

The HPS2FPGA control is composed of two enable signals. The FPGA2HPS signals are

related to the data transmission to the HPS. Details about the signals are conveyed in Table 2.

More information on FPGA­to­HPS data transmission will be provided in Section 3.7.

3.3 ADC Interface

The chosen ADS8598S SAR ADC features three different interfaces to perform data read­

out and eight­input channels, the part is discussed in Section 2.2.2. The ADC array is composed

of multiple ADC chips, which all require their own corresponding interface to the FPGA. Since

24

support for a high number of detector readout channels is desired, FPGA I/O must be used

thoughtfully. The serial readout ADC interface is used, since it requires the least I/O by using

only six PCB traces. The serial ADC interface signals are described in Table 3.

Table 3. ADC interface signal description

Signal Description

convst Start conversion at rising edge
csn Active low chip select enables data readout

adc_busy ADC in busy status while conversion ongoing
adc_sdata ADC output serial data
adc_reset Active high ADC chip reset
SCLK Serial clock for data readout

Creating independent interfaces from the FPGA to each ADC would be impractical as well

as non­scalable. Therefore, the output control signals are shared among every ADC in the ADC

array. The inputs correspond to the output serial data and a busy status signal. Every data signal

needs a direct connection to the block, in contrast, the busy status signals are OR reduced and

the result fed into the block. By sharing control, the ADC interfacing is done concurrently on

the ADC array.

Figure 14. ADC Serial interface waveforms. Conversion begins on rising edge of convst and
readout takes place when csn is deasserted. Readout needs to take place while adc_busy is
asserted.

As depicted in Fig. 14, the convst signal rising edge starts the conversion on the ADC

array. Once the ADC array is in a busy state, csn is deasserted in order to start the data readout

25

procedure. This is possible since the ADC is capable of readout during a busy state with the

drawback that all data must be readout before the conversion is completed. Channel 0 is output

first followed by the rest of the channels in ascending order, while the bits of the channels are

output in descending order. Each ADC has eight input channels with 18­bit resolution; readout

consumes 144 SCLK cycles.

The SCLK frequency is set to 10Mhz, therefore the readout procedure takes approximately

14.5us to complete. By sampling at 25KSps, all the pipeline operations associated to a single

data sample need to be performed in less than 40us. Due to the serial interface as well as the

slow clock, the readout operation is the most time­consuming operation in the pipeline.

Figure 15. ADC Interface block diagram. Uses one Serial Input Parallel Output shift register
per each ADC in the array to parallelize data into a 144­bit bus. Control logic is omitted.

To deserialize the serial data a Serial Input Parallel Output (SIPO) 144­bit shift register is

used per ADC chip in the system as depicted in Fig. 15. Once the data for one sample is readout,

transfers via Ready/Valid handshakes to the following stage in the pipeline begin. Per each

26

transfer, the data corresponding to an ADC is transmitted. The output order is deterministic

and ascending, starting with ADC[0]. There are two techniques that are possible to transmit

the data. The more elegant approach involves creating a parallel input data port on the shift

register chains to be able to write all the shift register bits in the same clock cycle. The channel

values can be transferred to the output, by cascading the register chains through their parallel

output ports since the data output order is known.

The cascading approach was implemented, however it proved to be suboptimal due to con­

suming ∼25% more adaptive logic modules (ALM) compared to a less elegant large 144­bit

ADC_N:1 multiplexer (mux) solution for output selection. ADC_N refers to the number of

ADCs in the system. ALMs are Intel’s implementation referring to a CLB. FPGAs are opti­

mized from the physical design perspective to map shift registers efficiently [30]. Writing to

the shift registers both serially and in parallel, requires the instantiation of a mux to select the

write mode for every register in the chain. This action renders the mapping optimization unus­

able. Consequently, a large mux is used to select the output data. To account for the potentially

deep logic paths, the output mux is registered.

The ADC interface is the most resource intensive block in this FPGA design. This is due

to the long shift registers used to store channel data as well as the output selection multiplexer.

Effectively, concurrency is being traded for resource utilization. The latter is preferred since

the ADC Interface is the most time­consuming block in the FPGA pipeline.

3.4 Clock Domain Crosser

The remaining portion of the FPGA design runs at a clock frequency of 50Mhz which is

referred to as FCLK. Since the ADC interface block is clocked by the slow 10Mhz SCLK, it

is imperative that Clock Domain Crossing (CDC) techniques are needed. Clock crossing is

27

a critical aspect in FPGA and ASIC designs. In synchronous systems, signals must always

meet their timing requirements in order to avoid metastability. Metastability is defined as an

undefined logic state where the output is unpredictable. Improper clock domain crossing can

cause metastability and therefore data loss, data incoherency, and even device failure [31].

The pipeline was designed to support independent clock sources for both FCLK and SCLK,

meaning support for an asynchronous relationship between the clocks.

To perform CDC from a slow to a fast clock a 1 deep, 2 register FIFO synchronizer block is

implemented. This CDC block was adapted from the work in [32] which discusses several dif­

ferent CDC techniques for different scenarios. Since the FPGA design throughput is constant

and well known, the pipeline has been designed accordingly. Therefore, any irregular stalls in

the pipeline are not of a concern making the 1 deep CDC FIFO sufficient.

Figure 16. CDC FIFO block diagram, implemented with a 2­deep register file. Addresses are
represented with a single bit and address increments are performed by XOR toggles. Yellow
sequential elements are driven by the write clk (wclk) while blue elements are driven by the
read clock (rclk).

The most interesting characteristic of the CDC block comes from the fact that the register

bank has two registers. Therefore, both read and write address pointers can then be represented

with a single bit. While performing reading and writing operations, the new pointers are calcu­

28

lated with simple bit toggles as depicted in Fig. 16. A synchronizer is needed per each pointer

to generate the empty and full status signals. Once the pointers are synchronized to the clock

domain where they are needed, the pointers are compared.

3.5 Integrator

A further requirement of the FPGA design is calculating the sum of all channel values in

the ADC array. The Integrator block performs an accumulation which is analogous to the total

proton beam fluence detected by the sensor at any given Sample. The result also describes

the total output current from all detector channels. The input data corresponds to the channel

values from one ADC transfer. A channel value is added to the total summation each cycle.

Once all channel values are accumulated, the result can be transmitted to the next stage.

3.6 Varint Encoder

The Varint Encoder block also has a 144­bit input data bus for the data corresponding to

one ADC chip. The encoding of the data stream is performed in this block where a channel

value is encoded each cycle. By applying Varint encoding, the channel values are represented

in the least number of bytes possible without modifying explicitly the data bits. As seen in

both Fig. 4 and in Algorithm 1, encoding a value is mainly bit manipulation. Therefore, the

encoding is performed with a combinatorial solution.

In the software context, the Sample data is a repeated packed field in the Protobuf mes­

sage, meaning that data is required to be stored consecutively in memory space. This action

is referred to as packing. The memory used to pack data inside the Varint Encoder block is

29

Algorithm 1 Varint encoding pseudocode
Input:value
Output:varint,len

1: repeat
2: varintByte = lower 7 value bits
3: value >>= 7 ▷ get rid of lower 7 bits
4: if value is not 0 then ▷ more bytes pending
5: varintByte |= 128 ▷ set MSB continuation flag
6: end if
7: varint[len] = varintByte
8: len++
9: until value is 0

a FPGA Block RAM (BRAM) with 256­bit wide entries. The block unit performs both the

Varint encoding with a combinatorial solution, as well as packing the resulting Varints.

3.6.1 Combinatorial Varint Encoding

To implement the combinatorial encoding, the input A is first sliced into 7­bit groups which

correspond to the 7 data bits of a Varint byte as shown in Fig. 17. To create the continuation flag

bits, every 7­bit slice is OR reduced to check if any bit is set. The slice is said to be populated,

if that is the case. Once the populated bytes are determined, the Varint continuation flags are

generated by checking if any of the more significant bytes are populated. The Varint length is

generated by a priority multiplexer where the select signal is driven by the populated byte nets

(pop[*]).

30

Figure 17. Combinatorial Varint encoding. Byte population is determined by pop[*] nets.
Varint continuation flag bits correspond to flag[*] nets. Varint bytes composed of data and
flag are concatenated towards the output.

3.6.2 Varint Memory Packing

While encoding a Varint is straight forward, it is more challenging to pack all the Varints

related to a Sample into a 256­bit wide BRAM. The BRAM can be thought as the storage

element of a FIFO containing packed Varints. The packing procedure is described in Algorithm

2, where the for loop iteration represents one clock cycle in the hardware implementation. It

is implemented with three groups of logic, storage, occupancy, and concatenation as shown in

Fig. 17.

Two sequential elements are used for storage. The BRAM with a read latency of 1 clock

cycle and a 272­bit D­FF used as a temporary storage element. A concatenation of the previous

Varints with a new Varint is performed to pack the data, the result is fed to the D­FF. Once the

length of the concatenation is bigger or equal to the BRAM entry, the lower 256 bits are written

into the BRAM and any remaining bytes are stored on the lower bytes of the D­FF. The process

repeats as input data enters the block.

31

Algorithm 2 Varint packing pseudocode
Input: Eight 18 bit channel vals

1: for val in channel vals do
2: varint, len = VARINTENC(val)
3: p_occ = occ+len
4: wrEntry = p_occ >=MEM_WIDTH
5: if wrEntry then ▷ Update entry occupancy
6: nxt_occ = p_occ ­ MEM_WIDTH
7: else
8: nxt_occ = p_occ
9: end if
10: p_pkdVarints = (varint<<occ*8) | pkdVarints ▷ Concatenate varint
11: if wrEntry then ▷ Store in BRAM or DFF
12: bramWrData = p_pkdVarints[MEM_WIDTH­1:0]
13: nxt_pkdVarints = p_pkdVarints[MSBs:MEM_WIDTH]
14: else
15: nxt_pkdVarints = p_pkdVarints
16: end if
17: end for

The occupancy tracks the length of the packed Varints (in bytes) being stored in the D­FF.

Occupancy is tracked by adding the length of each value encoded. The adder inputs are the

previous occupancy value and the new encoded value length. There are two possible scenarios

when updating the occupancy. If the addition result is bigger than the BRAM entry width,

the BRAM entry byte width is subtracted from the addition and the resulting value registered,

otherwise the addition is registered bypassing the subtraction.

A left shifter is used to perform part of the concatenation. It shifts the new Varint left by

occupancy∗8. The shifter output leaves a group of zeros in the LSBs which are to be populated

by the previously packed data. The concatenation is performed with a bitwise OR between the

shifter output and packed data.

As seen on Fig. 18 the block has an output payload interface. The payload refers to the

number of bytes that are stored inside the BRAM. A payload transfer enables the pop interface

and disables the push interface until all the data stored in the BRAM is read and the FIFO

32

Figure 18. Varint encoder block diagram. A value is encoded and packed each clock cycle.
Packing implemented by concatenating a newVarint with previously packed Varints. A BRAM
entry is written when the length of the packed data is bigger than the entry.

becomes empty. While the block is on the described data readout state, the offloading status

signal is asserted.

3.7 Sample Writer

The Sample Writer block serves as the link between FPGA and HPS. The FPGA2SDRAM

port enables direct RAMmemory writes independently from the HPS, making it the best option

to transfer the data stream. The FPGA2SDRAM port is set to use an Avalon Memory Mapped

Slave interface with a 256­bit bus. The Sample Writer generates the AMM Slave interface sig­

nals which drive the FPGA2SDRAM port. Furthermore, the block also drives the FPGA2HPS

PIO to convey when and where in the reserved RAM section data is available.

33

3.7.1 Data Sample Description

Details about how a data Sample is arranged in memory need to be understood first before

explaining the implementation of the Sample Writer block. A Sample is composed of one

meta data entry and one entry per every ADC. This does not mean that there is an entry that

corresponds to a specific ADC, but rather it is the total memory allocated to the whole group

of packed Varints in a Sample. The memory allocation is depicted in Fig. 19.

Figure 19. Sample memory allocation in a 256­bit bus. The first entry contains metadata,
followed by ADC_N entries allocated for packed repeated Varints describing channel values.

A total of four 32­bit words compose the meta data entry. The meta data words associated

with each Sample are the sum computed in the Integrator block, the packed Varints payload,

the sample number since acquisition was enabled, and a parity byte checksum. The checksum

is used to detect any bit errors that might have been introduced in the transmission of the data

from the FPGA into the SDRAM [33]. Moreover, the payload refers to the amount of valid

bytes stored in the data memory section of a Sample.

34

3.7.2 Buffering Scheme

A reserved RAM section serves as a buffer where the FPGA writes Samples, while the

HPS reads Samples with the application software. The HPS is suboptimal when processing

real­time events since it runs a Linux OS. To address the issue a group of samples are read at a

time or with a single function call. The group of samples is defined as a Sample Block which

is composed of a total of 64 adjacent Samples. A Sample Block is the minimum amount of

data that the HPS reads at a time. Furthermore, the Sample Buffer is composed of a group of

Sample Blocks as depicted in Fig. 20.

The FPGA conveys to the HPS when a Sample Block is available in RAM via an inter­

rupt signal. The FPGA2HPS PIO described in Table. 2, is used to output the signal interrupt

which triggers a Sample block read operation in the HPS and conveys the Sample block num­

ber to be read. Both the Samples, as well as the Sample blocks, are written in ascending order.

Effectively, all the Sample Blocks are a circular buffer for data. An effective number of Sam­

ple Blocks is dependent on the number detector readout channels. For 336 channels, it was

observed that 64 blocks were sufficient.

Figure 20. The Sample Buffer is a reserved memory space in RAM composed of several adja­
cent Sample Blocks where each Sample Block is composed of 64 Samples. A Sample Block
is the minimum amount of data that the HPS can read at a time.

35

3.7.3 Sample Writing Procedure

The writing procedure starts once both the Integrator and Varint Encoder finish their tasks.

Both the sum and the payload are transferred to the SampleWriter first. After both the sum and

payload are received, Varint encoded data transfers from the Varint Encoder into the block take

place. Per each data transfer there is a corresponding write operation from the Sample Writer

to RAM. While the data traverses from the input to the AMM data output, the checksum is

computed. Themetadata is written after writing all the encoded data, ending the Samplewriting

procedure.

In order to generate the AMM interface write address, two counters are used. One counter

defines the base of a Sample, while the other points to a specific Sample entry. Correspondingly,

a coarse pointer and a fine pointer. Both pointers are added, as well as the RAM base address

(which points to the Sample Buffer reserved memory) to generate the write address.

3.8 Summary

The FPGA design was presented while providing details on how each block contributes to

the overall system. The pipeline was designed with scalability in mind and can be adapted to

interface with a different number of ADCs. The interfacing to each ADC is done concurrently

both to keep I/O usage reasonable and to keep readout time consumption manageable. Varint

encoding is performed on each Sample in order to accelerate ProIO event building performed

by the HPS software application.

36

Chapter 4

DISCUSSION AND RESULTS

In previous chapters, the data acquisition system of the instrument was presented. Each

element of the system was explored, TIAs, ADCs, and an SoC FPGA. In depth details were

provided on the FPGA design, since its a key element acting as a mediator between software

and hardware. In this Chapter system scalability is discussed and experimental data collected

at Mayo Clinic Arizona is presented.

4.1 FEM Specifications

Amplification and sampling of the detector outputs was encapsulated on the Front­End

Module. Therefore, the PCB module determines system capabilities and properties such as

dynamic range and noise. As shown in Fig. 6, several sampling properties have been calculated

and measured. The test setup consisted on connecting the FEM to a detector with no ionizing

source (no beam). The equivalent circuit of the setup resembles a floating input. Data was

collected and analyzed resulting in∼100dB dynamic range sampling at 25kSps, further results

are shown in Table 4.

Table 4. FEM Specifications

Channels Gain Input Range SNR ENOB Power

56 1V/uA ±5uA 100dB 16.6bits 48mW/chn

The main concern, is the power utilization of 48mWper channel or 2.68W per FEM. Power

consumption was obtained with worst case scenario calculations and not with a direct measure­

37

ment in order to keep power distribution robust and conservative. Also note that power han­

dling on board is composed of Low­Dropout (LDO) regulators to avoid high currents related

to switching regulators, which could add noise to the analog circuitry. Therefore, low power

efficiency LDOs were preferred. Thoughtful design of the power distribution tree is needed

for a DAQ system with over a couple of hundred readout channels.

4.2 FPGA Design Scaling

FPGA design scaling is of importance, since it represents a possible system bottleneck.

FPGA limitations are be explored in this section. Resource utilization is analyzed in terms of

Adaptive Logic Modules (ALMs), which is Intel’s implementation of a Configurable Logic

Block for the Cyclone V family. This discussion is limited to a hardware design with no real

emphasis on the DAQ system software due to being out of the scope of this thesis.

In order to determine how resource utilization scales with an increasing number of FEM

modules, the FPGA design was built 19 times, each with one additional FEM module or addi­

tional 56 readout channels. The building process was done with balanced synthesis and fitter

tool efforts on the Cyclone V SE 5CSEBA4U23I7 part, same part featured on the MitySOM.

There were no pin location assignments for the project builds since there is no physical system

setup related to all the FPGA builds. Due to pin location assignments not explicitly declared,

the fitter tool assigns I/O at its discretion. The I/O correspond to signals needed for communi­

cation with the ADC array. The design supports up to 19 FEMs or 1064 channels, I/O being

the limiting factor. It is possible to circumvent this limitation by borrowing pins from the un­

used HPS peripherals to the FPGA (via Quartus Prime) in order to extend I/O capabilities, but

this solution is yet to be explored. The interface used to output the ProIO data stream, 1Gbit

ethernet, can be expected to show saturation with the data rate needed for 1k readout chan­

38

(a) Design resource utilization

(b) FCLK domain units resource utilization

Figure 21. FPGA design resource utilization is shown in 21a. The ADC interface block clearly
becomes dominant on design resources as FEMs are added to the system. Units in the fast
clock domain shown in 21b do not increase noticeably as the design scales.

nels. Therefore, both I/O and output data throughput are design bottlenecks set by the same

limitation.

Data from the FPGA design builds was gathered, and resource utilization was collected

for both the design as well as the main unit blocks. Both the Clock Domain Crosser and the

Integrator are not included since their resource utilization is fairly low compared to the rest. It

39

is observed that the system scales linearly mainly due to the contribution of the ADC interface

block as shown in Fig. 21a. The remaining blocks all scale gracefully, no significant amount of

resources are utilized as channels are added to the system as depicted in Fig. 21b. The 50Mhz

clock speed and the low 25kSps rate, inhibits the need for parallelism on the fast clock domain.

The ADC interface is clocked at a slow 10Mhz where 144 cycles are needed for ADC data

readout, therefore parallelism is strongly desired. The unit high resource utilization is justified

in this case. From Fig. 21a it is observed that for every FEM added to the system, or for

every 56 channels added, additional 390 ALMs are utilized or around 7 ALMs per individual

channel.

Figure 22. Max frequency clock speeds on FPGA design. Fast clock domain averages 110Mhz,
while the slow clock domain decreases as channels are increased in the system.

Maximum clock frequency (Fmax) is also of interest since a higher speed could be used to

increase operations in the pipeline. From Fig. 22 it is observed that there is no clear pattern on

FCLK as channels are added. It is concluded that there is no relationship since no considerable

hardware is being added into the fast clock domain as the system grows. The average Fmax

on FCLK is approximately 110Mhz. Furthermore, SCLK Fmax clearly decreases as channels

40

are added. The clock drives the ADC Interface, which uses a 144bit ADC_N:1 output mux for

output selection as discussed in Section 3.3. Deep logic paths associated with the output mux

are the speed limitation of SCLK. The speed limitation is not a concern due to the ADS8598

ADC chip serial output readout being limited to a maximum clock frequency of 20Mhz.

4.3 Detector Experimental Measurements

Preliminary experimental data was taken with a 96­channel detector prototype measuring

a proton beam source at Mayo Clinic Arizona. The prototype featured a planar area of 85cm2.

Desired detector characteristics like spatial resolution, temporal resolution, and linearity are

explored briefly. The main goal from this test was to collect preliminary data for the design of

a larger 336­channel detector iteration featuring an area of 1145cm2.

(a) Detector setup (b) Beam reconstruction

Figure 23. Experimental setup at Mayo Clinic proton beam facility shown in 23a. Seven
different locations were irradiated with different energies, 10 proton spots per location. Recon­
struction artifacts are visible along the three directions of the planar readout strips as shown in
23b.

41

The detector experimental setup is depicted on Fig. 23a where the green target depicts the

beam isocenter. The detector was irradiated with 10 proton spots per location at seven different

locations, each with a different beam energy. Beam reconstruction was performed as depicted

in 23b. A fluence measurement is obtained, per the ion detector currents. Reconstruction

artifacts visible in the reconstructed image, are a result of resolving a high degree of spatial

degeneracy of the beam intensity shape using three projections. Three is the minimal number

of planar projections needed to perform beam reconstruction. The artifacts are related to the

120 degree of angular separation between the three output strip sets where each corresponds to

a beam projection shown in Fig. 2a.

Temporal resolution of the DAQ system enables single spot and spot structure visualization.

A beam spot refers to a continuous proton delivery. In order to depict temporal resolution and

how it relates to the proton beam, all the channels are added to obtain the detector’s total output.

Fig. 24 shows three plots with different time scales decreasing from top to bottom. A group of

consecutive proton beam spots is shown on the top plot, while the middle plot depicts a single

proton spot and its structure. Furthermore, the bottom plot shows the proton spot in detail. Due

to the detector temporal resolution sub millisecond characteristic are seamlessly captured.

Linearity is a strongly desired detector feature. A total of 100 proton spots for 10 different

levels of beam output delivery were administered to determine the detector response to dosage.

Monitor Units (MU) is the usual output measure in clinical accelerators. The total output cur­

rent of the detector corresponding to each spot was recorded. As shown in Fig. 25, the detector

features excellent linear performance. The average total output current is plotted per dosage

level with its corresponding error bars depicting two standard deviations from the average.

42

Figure 24. Temporal Resolution depicted by plotting consecutive beam spots in different time
scales. Spot structure is visualized seamlessly, sub­millisecond characteristics can be mea­
sured.

4.4 Summary

Data acquisition system limitations and preliminary experimental results were shown.

Specifications for the Front­End Modules were presented achieving high dynamic range, with

43

Figure 25. Detector Linearity was determined by delivering a total of 100 spots, at 10 different
output dosages. Starting at 0.003 MU/spot and incrementing 0.003 MU/spot each step. Each
point represents the average sum of all detector readout strips, with error bars of 2 standard
deviations. Excellent linearity was concluded.

an input range of ±5uA. The main concern when scaling the system is high­power consump­

tion of 2.68W per FEM under worst case scenarios. From the FPGA perspective, the design

is limited by I/O availability rather than resources. The ADC interface in the FPGA design

consumes the most resources as the system scales. The maximum amount of readout channels

supported by the hardware is 1064. Temporal and spatial resolution of the system were shown

in a clinical experimental setting at the Mayo Clinic Arizona proton beam. Moreover, detector

linearity was verified.

44

Chapter 5

CONCLUSION

This work successfully developed a flexible and scalable data acquisition platform for a

parallel plate ionization chamber instrument used for proton beam fluence measurement. The

DAQ is part of a comprehensive high performance quality assurance system composed by the

detector, the DAQ, and software infrastructure. Quality assurance aims to ensure safe and

accurate delivery of proton radiation dose to patients.

The approach taken was to leverage modern hardware and software tools to enable data

acquisition flexibility. Additionally, the main components of the DAQ system, the front­end

modules as well as theMitySOM featuring a Cyclone V SoC FPGA, were used with modularity

being one of their advantages. Modularity makes adapting the DAQ system to a new detector

configuration seamless as the components can be easily reused.

The FPGA architecture was designed with simplicity in mind in order to enable scalability.

As the system scales, the dominant design block in terms of FPGA resources, is the ADC

Interface block. Since ADC readout is the most time­consuming procedure in the FPGA, it is

best to perform the operation concurrently among all ADCs. Effectively, concurrency is being

traded for FPGA resource utilization. As far as the remaining blocks in the FPGA design,

they all scale gracefully with increasing channels. Data from FPGA builds shows that the

FPGA design can scale up to 1064 data readout channels until running into I/O limitations.

The interface used to output the ProIO data stream, 1 Gbit ethernet, would also start to saturate

considering the data rate needed for 1064 detector readout channels.

The software tools that enabled flexibility were ProIO, and inherently Protocol Buffers.

ProIO was used to enable a software event structure to Protocol Buffers providing an intuitive

45

API for inter process communication as well as efficient disk storage of detector data. The

Varint encoding of the data stream is performed on the FPGA where hardware resources are

extensive. HPS CPU utilization is better allocated for ProIO event building.

With the data acquisition system, preliminary detector data was obtained and presented.

The 96­channel detector prototype featured 85cm2 of active area. Beam reconstruction was

briefly showcased. Furthermore, with the 25kfps from the DAQ system, temporal resolution

demonstrated to resolve proton spot time structures seamlessly. Additionally, detector linearity

was verified. The detectable currents are on the 100pA to 5uA range, showcasing high dynamic

range.

This work has shown that by leveraging available off­the­shelf hardware and software,

flexible data acquisition systems can be designed. Furthermore, the approach taken could be a

reference for multi­channel data acquisition systems where the measured signal bandwidth is

similar.

5.1 Future Work

One Cyclone V SoC FPGA can scale to a 1064 channel setup as mentioned in Section

4.2. In order to bypass this limitation to design a several thousand channel data acquisition

system, it would be possible to utilize several Cyclone V SoC FPGAs and leverage Precision

Time Protocol (PTP) under the IEEE 1588­2008 standard in order to synchronize the devices

[34]. PTP enables devices connected to a network to synchronize to a grandmaster clock with

accuracy in the sub­microsecond range, which is sufficient for the desired temporal resolution.

An example of the approach is presented in [35]. The Cyclone VHPS supports PTP and drivers

are found on current Linux releases. With this setup, each Cyclone V would output a ProIO

data stream to the aggregation server.

46

REFERENCES

[1] F. M. Khan and J. P. Gibbons, Khan’s the physics of radiation therapy. Lippincott
Williams & Wilkins, 2014.

[2] J. Daintith, A dictionary of chemistry. OUP Oxford, 2008.

[3] P. A. Penczek, “Chapter one ­ fundamentals of three­dimensional reconstruction from
projections,” in Cryo­EM, Part B: 3­D Reconstruction, ser. Methods in Enzymology,
G. J. Jensen, Ed., vol. 482, Academic Press, 2010, pp. 1–33. DOI: https://doi.org/10.
1016/S0076­6879(10)82001­4. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0076687910820014.

[4] D. Blyth, N. Mullins, E. Galyaev, and J. Holmes, “Nonnegative gaussian process tomog­
raphy for generalized segmented planar detectors,” Journal of Instrumentation, vol. 15,
no. 06, P06021–P06021, Jun. 2020. DOI: 10.1088/1748­0221/15/06/p06021. [Online].
Available: https://doi.org/10.1088/1748­0221/15/06/p06021.

[5] M. J. Pelgrom, Analog­to­Digital Conversion, 4th. Springer­Verlag New York, 2013.

[6] D. Blyth, J. Alcaraz, S. Binet, and S. V. Chekanov, “Proio: An event­based i/o stream
format for protobuf messages,” Computer Physics Communications, vol. 241, pp. 98–
112, 2019.

[7] Unix International, Dwarf debugging information format, version 3, 2005. [Online].
Available: http://dwarfstd.org/doc/Dwarf3.pdf (visited on 09/26/2021).

[8] WebAssembly Community Group. “Values,” [Online]. Available: https://webassembly.
github.io/spec/core/binary/values.html#integers (visited on 09/26/2021).

[9] Google Inc. “Encoding,” [Online]. Available: https://developers.google.com/protocol­
buffers/docs/encoding (visited on 09/26/2021).

[10] R. Pidikiti, B. C. Patel, M. R. Maynard, J. P. Dugas, J. Syh, N. Sahoo, H. T. Wu, and
L. R. Rosen, “Commissioning of the world’s first compact pencil­beam scanning proton
therapy system,” Journal of applied clinical medical physics, vol. 19, no. 1, pp. 94–
105, 2018.

[11] J. Shen, E. Tryggestad, J. E. Younkin, S. R. Keole, K. M. Furutani, Y. Kang, M. G.
Herman, and M. Bues, “Using experimentally determined proton spot scanning timing
parameters to accurately model beam delivery time,” Medical physics, vol. 44, no. 10,
pp. 5081–5088, 2017.

47

https://doi.org/https://doi.org/10.1016/S0076-6879(10)82001-4
https://doi.org/https://doi.org/10.1016/S0076-6879(10)82001-4
https://www.sciencedirect.com/science/article/pii/S0076687910820014
https://www.sciencedirect.com/science/article/pii/S0076687910820014
https://doi.org/10.1088/1748-0221/15/06/p06021
https://doi.org/10.1088/1748-0221/15/06/p06021
http://dwarfstd.org/doc/Dwarf3.pdf
https://webassembly.github.io/spec/core/binary/values.html#integers
https://webassembly.github.io/spec/core/binary/values.html#integers
https://developers.google.com/protocol-buffers/docs/encoding
https://developers.google.com/protocol-buffers/docs/encoding

[12] Google. “Protocol Buffers,” [Online]. Available: https://developers.google.com/protoc
ol­buffers (visited on 09/29/2021).

[13] J. Feng and J. Li, “Google protocol buffers research and application in online game,”
in IEEE Conference Anthology, 2013, pp. 1–4. DOI: 10.1109/ANTHOLOGY.2013.
6784954.

[14] S. Popić, D. Pezer, B. Mrazovac, and N. Teslić, “Performance evaluation of using proto­
col buffers in the internet of things communication,” in 2016 International Conference
on Smart Systems and Technologies (SST), 2016, pp. 261–265. DOI: 10 .1109 /SST .
2016.7765670.

[15] Nvidia. “Mobile PCI Express Module Electromechanical Specification.” (2012), [On­
line]. Available: https : / / www . module ­ store . de / media / pdf / d9 / a4 / 43 / MXM _
Specification_v31_r10.pdf (visited on 10/01/2021).

[16] J. Grame, Photodiode Amplifiers: Op Amp Solutions, 1st. McGraw­Hill Education,
1995, pp. 87–90.

[17] N. AlHinai, “Chapter 1 ­ introduction to biomedical signal processing and artificial intel­
ligence,” in Biomedical Signal Processing and Artificial Intelligence in Healthcare,
ser. Developments in Biomedical Engineering and Bioelectronics, W. Zgallai, Ed., Aca­
demic Press, 2020, pp. 7–9. DOI: https : / / doi . org / 10 . 1016 / B978 ­ 0 ­ 12 ­ 818946 ­
7.00001­9. [Online]. Available: https: / /www.sciencedirect .com/science/article/pii /
B9780128189467000019.

[18] Texas Instruments. “1 mhz, single­supply, photodiode amplifier reference design.”
(2014), [Online]. Available: https://www.ti.com/lit/ug/tidu535/tidu535.pdf (visited on
09/25/2021).

[19] S. Butterworth et al., “On the theory of filter amplifiers,” Wireless Engineer, vol. 7,
no. 6, pp. 536–541, 1930.

[20] Intel Corp. “Intel FPGAs & SoC FPGAs,” [Online]. Available: https://www.intel.com/
content/www/us/en/products/details/fpga.html (visited on 09/26/2021).

[21] I. Fette and A. Melnikov, The websocket protocol, 2011.

[22] Radiation Detection and Imaging (RDI), LLC. “RDI Live,” [Online]. Available: https:
//github.com/rditech/rdi­live (visited on 09/27/2021).

[23] N. H. Weste and D. Harris, CMOS VLSI design a circuits and systems perspective,
4th. Pearson, 2010, pp. 628–629.

48

https://developers.google.com/protocol-buffers
https://developers.google.com/protocol-buffers
https://doi.org/10.1109/ANTHOLOGY.2013.6784954
https://doi.org/10.1109/ANTHOLOGY.2013.6784954
https://doi.org/10.1109/SST.2016.7765670
https://doi.org/10.1109/SST.2016.7765670
https://www.module-store.de/media/pdf/d9/a4/43/MXM_Specification_v31_r10.pdf
https://www.module-store.de/media/pdf/d9/a4/43/MXM_Specification_v31_r10.pdf
https://doi.org/https://doi.org/10.1016/B978-0-12-818946-7.00001-9
https://doi.org/https://doi.org/10.1016/B978-0-12-818946-7.00001-9
https://www.sciencedirect.com/science/article/pii/B9780128189467000019
https://www.sciencedirect.com/science/article/pii/B9780128189467000019
https://www.ti.com/lit/ug/tidu535/tidu535.pdf
https://www.intel.com/content/www/us/en/products/details/fpga.html
https://www.intel.com/content/www/us/en/products/details/fpga.html
https://github.com/rditech/rdi-live
https://github.com/rditech/rdi-live

[24] S. Sutherland, RTL Modeling with SystemVerilog for Simulation and Synthesis Us­
ing SystemVerilog for ASIC and FPGA Design. Sutherland HDL, Incorporated, 2017,
pp. 101–112.

[25] O. Shacham, S. Galal, S. Sankaranarayanan, M. Wachs, J. Brunhaver, A. Vassiliev, M.
Horowitz, A. Danowitz, W. Qadeer, and S. Richardson, “Avoiding game over: Bringing
design to the next level,” inDACDesign Automation Conference 2012, 2012, pp. 623–
629. DOI: 10.1145/2228360.2228472.

[26] Zipcores Electronic Systems Engineering S.L. “Using the valid­ready pipeline proto­
col.” (2013), [Online]. Available: http : / /www.zipcores . com/datasheets / app_note_
zc001.pdf (visited on 09/26/2021).

[27] Intel,Avalon Interface Specifications, Intel, 2021, pp. 12–36. [Online]. Available: https:
//www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/manual/mnl_
avalon_spec.pdf (visited on 09/28/2021).

[28] ARM, AMBA AXI and ACE Protocol Specification, ARM, 2021. [Online]. Available:
https://developer.arm.com/documentation/ihi0022/hc?_ga=2.145967412.1021591712.
1586156324­1048184626.1580228297 (visited on 10/05/2021).

[29] Intel Corp., Intel quartus prime pro edition user guide: Platform designer, Intel Cor­
poration, 2021. [Online]. Available: https : / / www . intel . com / content / dam / www /
programmable /us / en /pdfs / literature /ug /ug­ qpp­ platform­ designer .pdf (visited on
09/26/2021).

[30] Altera, Recommended hdl coding styles, Computer Software, Altera, 2013. [Online].
Available: https : / /www. intel . com/content / dam/www/programmable / us / en / pdfs /
literature/hb/qts/qts_qii51007.pdf (visited on 09/26/2021).

[31] R. Ginosar, “Metastability and synchronizers: A tutorial,” IEEE Design Test of Com­
puters, vol. 28, no. 5, pp. 23–35, 2011. DOI: 10.1109/MDT.2011.113.

[32] C. E. Cummings, “Clock domain crossing (cdc) design & verification techniques using
systemverilog,” SNUG­2008, Boston, 2008.

[33] G. R. Allen, L. Edmonds, C. W. Tseng, G. Swift, and C. Carmichael, “Single­event
upset (seu) results of embedded error detect and correct enabled block random access
memory (block ram) within the xilinx xqr5vfx130,” IEEE Transactions on Nuclear
Science, vol. 57, no. 6, pp. 3426–3431, 2010. DOI: 10.1109/TNS.2010.2085447.

[34] J. C. Eidson,M. Fischer, and J.White, “IEEE­1588™Standard for a precision clock syn­
chronization protocol for networkedmeasurement and control systems,” inProceedings

49

https://doi.org/10.1145/2228360.2228472
http://www.zipcores.com/datasheets/app_note_zc001.pdf
http://www.zipcores.com/datasheets/app_note_zc001.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/manual/mnl_avalon_spec.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/manual/mnl_avalon_spec.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/manual/mnl_avalon_spec.pdf
https://developer.arm.com/documentation/ihi0022/hc?_ga=2.145967412.1021591712.1586156324-1048184626.1580228297
https://developer.arm.com/documentation/ihi0022/hc?_ga=2.145967412.1021591712.1586156324-1048184626.1580228297
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/ug/ug-qpp-platform-designer.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/ug/ug-qpp-platform-designer.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/qts/qts_qii51007.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/qts/qts_qii51007.pdf
https://doi.org/10.1109/MDT.2011.113
https://doi.org/10.1109/TNS.2010.2085447

of the 34th Annual Precise Time and Time Interval Systems and ApplicationsMeeting,
2002, pp. 243–254.

[35] W. Hennig, V. Thomas, S. Hoover, and O. Delaune, “Network time synchronization of
the readout electronics for a new radioactive gas detection system,” IEEE Transactions
on Nuclear Science, vol. 66, no. 7, pp. 1182–1189, 2019. DOI: 10 .1109 /TNS.2018 .
2885488.

50

https://doi.org/10.1109/TNS.2018.2885488
https://doi.org/10.1109/TNS.2018.2885488

	Title Page
	Table of Contents
	List of Tables
	List of Figures
	Chapter
	1 Introduction
	2 Data acquisition system
	3 FPGA system design
	4 Discussion and Results
	5 Conclusion

	References

