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ABSTRACT

An efficient thermal solver is available in the Cellular Monte Carlo (CMC) that

allows modeling self-heating in the electrical simulations, which treats phonons as

flux and solves the energy balance equation to quantify thermal effects. Using this

solver, thermal simulations were performed on GaN-HEMTs in order to test effect of

gate architectures on the DC and RF performance of the device. A Π- gate geometry

is found to suppress 19.75% more hot electrons corresponding to a DC power of

2.493 W/mm for Vgs = -0.6V (max transconductance) with respect to the initial

T-gate. For the DC performance, the output current, Ids is nearly same for each device

configuration over the entire bias range. For the RF performance, the current gain was

evaluated over a frequency range 20 GHz to 120 GHz in each device for both thermal

(including self-heating) and isothermal (without self-heating). The evaluated cut off

frequency is around 7% lower for the thermal case than the isothermal case. The

work was extended to the study of ultra-wide bandgap material (Diamond), where

isotope effect causes major deterioration in thermal conductivity. Simulations were

performed for 0.001% (ultra pure), 0.1% and 1.07% isotope concentration (13C) of

diamond, showing good agreement with the experimental values. Further investigation

was performed on the effect of isotope on the dynamics of individual phonon branches,

thermal conductivity and the mean free path, to identify the dominant phonon branch.

Acoustic phonons are found to be the principal contributors to thermal conductivity

across all isotope concentrations with transverse acoustic (TA2) branch is the dominant

branch with a contribution of 40% at room temperature and 37% at 500K. Mean

free path computations show the lower bound of device dimensions in order to obtain

maximum thermal conductivity. At 300K, the lowest mean free path (which is

attributed to Longitudinal Optical phonon) reduces from 24nm to 8 nm for isotope

concentration of 0.001% and 1.07% respectively. Furthermore, PETSc (Portable,
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Extensible Toolkit for Scientific Computation) developed by Argonne National Lab,

was included in the existing CMC device simulator as a Poisson solver to further

extend the capability of the simulator.
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Chapter 1

INTRODUCTION

Heat management and the associated dissipation techniques are crucial components

of device engineering as trapped heat can affect not only the performance but also the

reliability of the device [9]. As the semiconductor industry moves into more complex

and dense circuits, the need for thermal management will become more pronounced.

For electrical modeling, Monte Carlo (MC) methods have been widely used [10].

MC methods can provide an accurate solution of the Boltzmann Transport Equation

(BTE) compared to techniques based on lower order moments of BTE, like the

drift-diffusion and hydrodynamic methods. These techniques are applicable for near-

equilibrium conditions, while the MC method can provide full stochastic solution at

the expense of simulation time or hardware requirements.

Omission of self-heating models can lead to inaccurate prediction of electrical

characteristics. The inclusion of a thermal solver into MC algorithms has been

performed in only a few studies [11, 12]. In these studies, both the interactions

between electron and optical phonons as well as optical-acoustic phonons are modeled

using a relaxation time approximation (RTA) [13]. In this study, the electron-phonon

interaction is directly computed from the scattering rates and the phonon-phonon

interactions are modeled using RTA. Furthermore, this study both the temperature-

dependent scattering rates and the temperature dependent thermal conductivity are

taken into account. Additionally, the thermal solver is considered self-consistently

coupled, as the scattering rates get updated according to the local temperature

obtained in each iteration inside the forcing function.

For the thermal modeling of GaN HEMT, this study uses a flux-based approach,
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where phonons are modeled as flux. In this approach, energy balance equation (EBE)

of phonon is solved with the help of Kirchhoff transformation similar as performed by

Pilgrim et al. [14]. While Pilgrim et al. considers optical phonons as dispersionless,

this study takes full phonon dispersion into account. The flux-based thermal solver is

then used to obtain detailed acoustic and optical temperature maps of the HEMT. The

CMC allows to compute energy distribution function of the electrons precisely, which

can lead to study of hot electron suppression for the device geometries of interest.

In the thermal conductivity analysis of bulk diamond, phonons are modeled as

particles, where the code is capable of modeling non-equilibrium phonon distributions.

A precomputed scattering table is used during runtime to analyze the different states

of scattering. Based on the local phonon distribution, a rejection algorithm is then

employed to compute the scattering rates. In this approach, both Umklapp and Normal

process [15] are treated equally. The particle-based thermal solver is used to determine

the effect of isotope concentration in deterioration of the thermal conductivity of

diamond. To investigate further, different thermal properties like mean free path,

phonon modewise thermal conductivity were also obtained.

Chapter 2 provides a detailed overview of the Boltzmann Transport Equation

along with its incorporation into cellular Monte Carlo (CMC) framework. In chapter

3, PETSc is presented as an external multi-purpose Poisson solver to be used in

CMC. Chapter 4 discusses the effect of gate geometries in GaN HEMT through the

solution of energy balance equation and coupling it to electron dynamics. Chapter

5 presents the thermal conductivity analysis of diamond performed through CMC.

Finally, chapter 6 provides a summary and discusses future work planned.
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Chapter 2

MODELING OF CARRIER TRANSPORT

2.1 Introduction

As the feature sizes reduces to sub-nanometer regime, device modeling and simula-

tion has become an integral part of semiconductor research & development for several

key reasons: 1) understanding the newer physical phenomenons introduced by shorter

dimensions, 2) optimization of device performance through trial-and-error in fabrica-

tion is nearly impossible due to time and cost and 3) showing insights about devices

yet to be manufactured along with physically immeasurable attributes [1, 16]. For

these reasons, arduous efforts have been taken to capture the physics of semiconductor

devices along with minimizing the computation time. In any modern device simulator,

the charge transport and scattering is coupled with the field equations solver along

with proper boundary conditions.

Figure 2.1: Generic diagram of a device simulation code [1].

Figure 2.1 shows the generic components of a device simulation tool [1] with two

3



self-consistently coupled components: the transport equation solver which models the

charge dynamics and field solver which drives the flow of charge.

Initial efforts for modeling transport mostly involved the drift-diffusion (DD)

equation:

Jn = nqµnE + qDn∇n (2.1)

where Jn, n,q,µn, E, Dn represent current density, charge, mobility, electric field and

diffusion coefficient, respectively. The values of transport parameter µn and Dn were

experimentally measured and it worked until the device dimensions started shrinking.

For modern devices, these parameters not only depend on material and field, but also

on the structure of the device and the microscopic physics [17]. Furthermore, quantum

mechanical treatment of the scattering mechanisms is also necessary. Hence, most

of the device simulation tools revolves around the solution of Boltzmann Transport

Equation (BTE) [18], where the particle distribution function f(r,k, t) completely

defines the state of the system.

In this study two types of simulation models have been used: 1) modeling phonons

as flux and 2) treating them as particles.

2.2 Boltzmann Transport Equation

The particle distribution function, f(r,k, t), represents the probability of finding

electron at a specific time t, position r and momentum k. As the Fermi-Dirac

distribution is a function of only the energy of particles not momentum, the distribution

function becomes symmetric in momentum space (k-space) [19]. The change in

distribution function due to scattering can be represented as:

∂f(r,k, t)

∂t
=

∂f

∂t

∣∣∣∣
coll

(2.2)

4



If the left hand side of the equation above is expanded, it becomes:

∂f

∂t
= −∇r ·

[
dr

dt
f

]
−∇k ·

[
dk

dt
f

]
+

∂f

∂t

∣∣∣∣
coll

(2.3)

The momentum space flux is called ”force term” which can be modified as−∇r·
[
dr
dt
f
]
=

−1
ℏF · ∇kf , where F = ℏdk

dt
= q(E+ v×B), where E, B and v stands for the electric

field, magnetic flux and velocity of the particles, respectively. The real-space flux

results from any change in concentration of the particles or temperature gradients,

which leads to a diffusion process. The collision integral represents the change in

distribution function due to collision or scattering events. This term is computed

quantum mechanically accounting for the nature of the semi-classical approach. This

term can be computed from the difference in in-scattering (particles moving inside

the cell after scattering) and out-scattering (particle moving outside the cell after

scattering) such as:(
∂f

∂t

)
coll

=
∑
k′

{S (k′,k) f (k′) [1− f(k)]− S (k,k′) f(k) [1− f (k′)]}

The analytical solution of BTE becomes much difficult due to presence of both f(k)

and f(k′) at the same time, which makes it a complex integro-differential equation of

the distribution function and requires a series of approximation to solve it [1].

The modified form of BTE stands as:

∂f

∂t
= −1

ℏ
F · ∇kf − v · ∇rf +

∂f

∂t

∣∣∣∣
coll

(2.4)

There are certain conditions need to be met for this equation [19]:

1) The distribution should evolve on the order of relaxation time of the

carriers (mean free time between collisions), so the time variation of the distribution

function should be really slow.

2) The force term should be small enough so that wave functions from

different bands of the carrier don’t mix and it can still be treated semiclassically.
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3) The dimensions of the particles should tend to zero but the mean free

path should be finite, this is known as Boltzmann-Grad limit [20]. For this reason,

only binary collisions are considered, while collisions involving more particles are

ignored.

2.3 Applicability of BTE for Phonons

Phonon is a discrete unit of vibrational energy in solids, that accounts for heat and

sound transport in crystals. Phonon in any materials vibrate with random frequency

and velocity at room temperature, but at elevated temperature they can oscillate

at specific frequency together. For computing finite thermal conductivity 3 particle

scattering process needs to be accounted for [3] in the collision term. As the BTE

derived above is applicable only to binary collisions, modifications need to be done

to make it applicable for phonons. Peierls et. al. [21] introduced a statistical heat

transport equation that accounts for non-binary collisions for particles, which is called

phonon BTE or Peierls-BTE (PBTE). Two additional assumtions are necessary for

PBTE: 1) the states of phonons are quantized, and 2) all information about the system

must be contained in terms of the occupation number of the particles. The phonon

BTE can be represented as:

∂f

∂t
+

∂r(ql)

∂t
· ∇rf =

∣∣∣∣∣∂f∂t
∣∣∣∣∣
Ccoll

(2.5)

where ql denotes the wavevector of the lth phonon mode. If the indexes of the modes

are omitted for clarity, the collision integral can be expressed as:∣∣∣∣∂f∂t
∣∣∣∣
coll

=
M∑

m=1

∑
q1,...,qm⊂BZ1

Γd

(
q,q1, . . . ,qm, f

)
− Γr

(
q,q1, . . . ,qm, f

)
(2.6)

where M is the total number of phonon states, BZ1 is the first Brillouin Zone [22],

Γd(q, . . .) and Γr(q, . . .) are the decrease and increase of the phonon population in

state q, respectively.
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Similar to the original BTE, for obtaining a close-form solution of this equation

severe approximations are needed either on the collision integral (relaxation time

approximation [23]) or on the distribution function (near equilibrium approximation

[24]), or on both. Therefore, both deterministic and stochastic algorithms have been

implemented [25–29] to obtain numerical expressions of the distribution function. In

deterministic approaches, only lower order moments of distribution functions are used

along with different approximations.

2.4 Drift-Diffusion (DD) Model

The drift-diffusion model was introduced by Van Roosbroeck in 1950 [30] and

has been one of the popular methods for device simulation in the last century. As

the solution of BTE is complicated, particularly when coupled with field solvers for

the simulation of a device, traditional device simulations involved around solving the

drift-diffusion (DD) equations. In drift-diffusion model, the driving forces ( E field

and gradient of carrier density) are considered local, which means the current at any

point is only a function of field and concentration gradient of that point [1].

2.4.1 Derivation of DD equations from BTE

For any continuous random variable r, if the probability distribution function is

g(r), then nth moment can be found as [31] :

⟨Rn⟩ =
∫ ∞

−∞
rng(r)dr

Instead of g(r), carrier distribution function can be used along with a nth order function

of wavevector, k, ϕ(kn). The zeroth moment of the carrier distribution function can

be obtained as:

nϕ =

∫
ϕ
(
k0
)
f(r,k, t)dk
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The carrier density,n, can be found by dividing the distribution function by the unit

volume of reciprocal space, Ω, such as:

n =
1

Ω

∫
ϕ
(
k0
)
f(r,k, t)dk

Similarly, the zeroth moment of BTE can be obtained by multiplying Equation 2.4

by ϕ(k)/Ω and integrating over momentum space such as [1]:

1

Ω

∂

∂t

∑
k

ϕ(k)f = − 1

Ω
∇r ·

∑
k

ϕ(k)vf +
F

Ωℏ
∑
k

f∇kϕ(k) +
1

Ω

∑
k

ϕ(k)
∂f

∂t

∣∣∣∣∣
coll

(2.7)

Setting ϕ(k0)=1, the zeroth moment can be obtained as:

∂n

∂t
= ∇r · Fϕ,0 + Sn, (2.8)

where Fϕ,0 is the carrier flux and Sn is the change in distribution function due to

scattering events. The value of the flux can be obtained from: Fϕ,0 = −Jn

q
, where Jn

is the current density and q is the charge of the carrier.

Similarly, for the 1st order of moments, one has to set ϕ(k1)=u(k), where u(k)

is a function of carrier velocity. After some manipulation the end result of the first

moment can be found as:

∂Jn

∂t
=

2q

m∗∇r ·Wn +
nq2E

m∗ − Sm (2.9)

where m∗ is the effective mass of the carrier, E is the electric field, Wn is the energy of

the carrier and Sm is the change in momentum due to scattering events. For parabolic

band structure, E = ℏ2k2
i /2m

∗ and Wn = 1/Ω
∑

k E(k)f .

For obtaining DD equations, Equation 2.8 and Equation 2.9 should be combined

with the Poisson’s equation. In DD model, the total energy of the carrier comes from

the thermal energy as:

W =
3

2
nkBTC
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where kB is the Bolzmann’s constant and TC is the temperatur of the carrier. W has a

equal contribution from x,y and z, and so Wn=W/3. Replacing this into Equation 2.9,

results in:

∂Jn

∂t
=

2

3

1

m∗∇rW +
nq2

m∗ E− Sm (2.10)

The term, Sm can be obtained by a relaxation time approximation: Sm = Jn

τm
, where

τm is the relaxation time. Replacing this into Equation 2.10:

Jn =
τmnq

2

m∗ E+
2

3

τm
m∗∇rW =

τmnq
2

m∗ E+
τm
m∗kBTC∇n+

τm
m∗kBn∇TC (2.11)

where µn is the mobility of electrons, Dn is the diffusion coefficient and DT is the

thermal diffusivity. The values of these quantities are: µn = (qτm) / (m
∗), Dn =

µnkBTc/q and DT = µnkBn/q. Replacing these terms into Equation 2.11, the final

equation for the DD model for electrons can be obtained as:

Jn = qµnnE+ qDn∇rn+ qDT∇TC

Finally, similar equations can be obtained for holes and the final set of equations of

DD model can be shown as:

Current equations:
Jn = qµnnE+ qDn∇rn+ qDT∇TC ,

Jn = qµppE− qDp∇rp− qDT∇TC .

Continuity equations:

∂n

∂t
=

1

q
∇ · Jn + Sn,

∂p

∂t
= −1

q
∇ · Jp + Sp.

Poisson equation: ∇ · ε∇V = −
(
p− n+N+

p −N−
A

)

The continuity equation actually represents the conservation of the charge carri-

ers. Any numerical technique should involve the following criterions for solving DD

equations:

1) The amount of the total charge inside the device should be conserved.
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2) density of carriers should be always positive.

3) The solution should be monotonous and shouldn’t introduce any unwanted

oscillations.

Scharfetter and Gummel introduced the numerical solution of DD equations [32],

where they introduced a robust 1D discretization technique of DD equation. Later,

Bank et. al. introduced a finite volume Scharfetter-Gummel method for higher-

dimensional problems [33, 34]. This method is still one of the common techniques

for semiconductor device simulation. On the other hand, different techniques have

been adopted to solve DD equations with finite element method as well, such as

: exponential fitting [35, 36], mixed finite element methods [37] and stabilization

techniques [38, 39].

Along with the scaling of semiconductor devices into submicron regime, the

assumptions on which the DD model stands don’t hold true anymore. The high

electric field over a small length of the device initiates nonlocal and hot-carrier effects,

at the same time these effects become determinant factors for device performance.

Different extensions have been adopted to make the DD model more applicable

for smaller devices, such as: addition of a balance equation for average energy of

carriers [40] and introduction of a term in current equation which is proportional to

temperature gradient [23]. Although various extensions of the DD models have been

performed, such as: addition of an balance equation for addressing average energy of

carriers [40] and addition of a new term in current equation which is proportional to

temperature gradient [23]. But still the limitations make DD model inadequate for

modern device simulations.
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2.5 Hydrodynamic Model

The hydrodynamic (HD) model is derived from the first 3 (0th, 1st and 2nd) moments

of the distribution function in BTE. The necessity of a model other than DD for

device simulation was first felt while analyzing the current drive capability of scaled

n-MOSFET around 1970 [1]. Under the DD model, it was believed that the velocity

of the carriers injected from the source to the channel would saturate and stay at

that value for any E-field higher than the onset value for saturation. Some theoretical

works like [41], reported velocity overshoot in Si raising questions about the validity

of the DD model. Later experimental works confirmed observing velocity overshoot in

Si as well [42, 43].

Apart from the fact that Hydrodynamic (HD) model takes macroscopic physical

effects into account than DD model, the process of modeling physical parameters is

another crucial advantage for HD models. In HD model, information about different

parameters like mobility and energy relaxation time, are extracted from the tempera-

ture of the carrier. On the other hand, in DD model, the carrier temperature is set

to be equal to the lattice and so these parameters need to be included in a different

manner. Physical processes like impact ionization depend on distribution function

of the particles rather the E-field, that’s why to explain these, a local energy model

models is better suited than a local E-field model. For these reasons mentioned above,

efforts for formalizing HD model were initiated.

As HD model is not the primary method used for this study, the author intends

to discuss only a brief overview of the HD model, rather than going through the

step-by-step derivation from the BTE. To take advantage of the symmetric nature

of the distribution function, Stratton et.al. [40] divided the distribution function

into even and odd parts and thus creating two coupled equations for BTE. Later, a
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quantity ϕ(k) is defined, which can have values 1,k, . . . ., etc., and the total averaged

value of ϕ(k) can be obtained from:

nϕ(r, t) =
1
V

∑
k ϕ(k)f(r,k, t)

where nϕ can be represented as current density or carrier density. To incorporate the

change in nϕ due to generation-recombination process, another term, S(r,k, t), can

be represented as:

Sϕ(r, t) =
1
V

∑
k ϕ(k)s(r,k, t)

After some manipulation, the balance equation for nϕ can be written as follows:

∂nϕ

∂t
= −∇ · Fϕ +Gϕ −Rϕ + Sϕ (2.12)

where Fϕ is the flux associated with nϕ, Gϕ and Rϕ are the generation and re-

combination terms for collision events, respectively. The HD model is comprised of

3 essential balance equations: 1) Carrier-density balance equation, 2) momentum

balance equation and 3) energy balance equation.

Carrier-density balance equation: If ϕ(k)=1, i.e, the zeoth order moment in

k, then nϕ in Equation 2.5 represents the electron density, n. Furthermore, the flux

Fϕ can be replaced by −1
e
Jn(r, t). If only redistribution of carriers among states is

considered due to scattering and electric-field rather than generation or recombination,

the Gϕ and Rϕ can be neglected and the carrier-density balance equation can be

represented as:

∂n

∂t
=

1

e
∇ · Jn + Sn (2.13)

which is also known as the continuity equation for the electrons, simply denoting the

conservation of electrons in the entire system.

Momentum balance equation: Following similar approach and introducing a

moment of order 1 in k ϕ(k) = kz, the balance equation can be formulated as follows:

∂Jn

∂t
=

2q

m∗∇r ·Wn +
nq2E

m∗ − Sm (2.14)
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where Wn is a component of the kinetic energy tensor. Sm is the momentum relaxation

term, which can be obtained from the relaxation time approximation (RTA) as

: Sm = Jn

τm
, where τm is the characteristic relaxation time. Under the following

approximations, HD model can be simplified into DD model:

1) Drift energy of carrier is much smaller than thermal energy.

1) There is no temperature gradient in the system.

1) To obtain extended DD model (where the mobility and the diffusion coeffi-

cients are field dependent), these quantities should depend on local field only.

Energy balance equation: Again taking a moment of second order in k ϕ(k) =

Ek, the energy balance equation is derived as:

∂W

∂t
= −∇r · FW + E · Jn +

∂W

∂t

∣∣∣∣
coll

(2.15)

where W is the energy density and FW is the energy flux. The collision term can be

approximated using RTA such as:

∂W

∂t

∣∣∣∣
coll

=
W −W0

τW

where W0 is the equilibrium energy density and τW is the relaxation time needed for

W to approach towards equilibrium. A similar set of equations can be obtained for

holes. HD models are usually faster than Monte Carlo (MC) methods particularly

in 2D simulations. However, in MC the parameters like effective mass and carrier

mobility are the output of the simulation, whereas in HD model they are modeled as

input [2] in balance equations.

HD model has been widely used in different illustrations [44–46]. An interesting

and effective extension of electron energy balance equation is energy balance equation

for phonons, which can represent the heat transfer in solid quite efficiently when

coupled with electron Monte Carlo, as it will be discussed extensively in Chapter 4.
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2.6 Necessity of a stochastic approach such as the Monte Carlo method

As the device dimensions continue to shrink, a continuous nature of the current

can no longer capture the underlying physics anymore. Rather, a granular nature

representing the charge particles that leads to the charge density in the active region

of the device should be accounted for [1] as it models carrier dynamics more accurately.

Obviously, simulations tools like DD or HD can’t explain the operation of a single

electron as in the single electron transistors [47]. For the case of solid and gas,

Molecular Dynamics has been an effective tool, where the individual motion of the

particles are tracked using Newton’s laws of motion [48]. But for semiconductors,

scattering events dominate the transport by altering the energy and momentum of

the carriers, which needs to be modeled accurately for an acceptable result.

Furthermore, the DD and HD model are based on the lower order moments of the

BTE, while the MC approach can provide a solution of the BTE (i.e. considering

all the moments) that is exact in statistical terms. In addition, MC methods need

fewer assumptions and can provide the transport parameters as output, while they are

needed as closure relations in DD or HD models. The modern MC method was first

used by Metropolis and Ulam [49] while they were working on neutron diffusion in the

core of a nuclear weapon. Since then, it has been widely used for different applications,

including semiconductor device simulations, where equilibrium conditions can’t be

met due to high E-fields [50].
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2.7 Ensemble Monte Carlo (EMC) method for semiconductors

Usually, in particle-based Monte Carlo simulations, individual particles are tracked

in real and momentum space and they go through scattering processes to achieve

steady-state condition. In ensemble Monte Carlo (EMC), a synchronous ensemble

of particles is used. These particles are called super-particle, since they represent a

definite number of real particles.

The basic principle of the EMC method evolves around the generation of a random

walks through random number generating algorithms, in order to simulate the collision

events of the carriers. At the end of free motion of the particle, which is commonly

known as free flight, the particles encounter random collisions with lattice vibrations

(i.e. phonons), impurities, isotopes etc. The stochastic MC method chooses the type

and value of the scattering, finds the new energy and momentum of the particles,

updates the position of the particle in phase space and repeats the same procedure

for the subsequent free flight. Motion of the particles are sampled after a specific time

step, in order to obtain different physical parameters of the material [1].

Figure 2.2 represents the process flow of a general ensemble Monte Carlo device

simulator, consisting of key stages such as: initialization of the system, free flight

and tracking of the particles, modeling of the scattering events, solving the field

equations and collecting and processing the output data. During the initialization, the

carriers are initialized with a Maxwellian velocity distribution according to the initial

temperature defined in the simulation [2]. Moreover, they are initially distributed

according to the defined distribution to ensure charge neutrality, such that even with

the presence of surface charge or doping levels, the overall charge is zero. With the

progression of the simulation, the charge density is calculated from the position of the

carriers.
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Figure 2.2: Flowchart representing different steps of a generic ensemble Monte Carlo

device simulator [2].

Taking the charge density as input, the Poisson solver returns the electrostatic

potential used to compute the electric field in each grid point of the simulation domain.

Grid size determinant for the accuracy of the simulation. Two time-steps that are

crucial for determining the accuracy and length of the simulation: Poisson and free

flight time-step. The Poisson time-step, is the time interval between two successive

Poisson solver calls. The value of this time-step is chosen smaller than 2/ωp, where ωp

represents the plasma frequency such as [51]:

ωp =

√
ne2

ϵrϵ0meff

(2.16)

where n, e, ϵr and meff are the highest concentration of electron in simulation domain,

electron charge, the dielectric constant and the effective mass of electron, respectively.
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The positions of the particles are updated according to the E-field following a ray

tracing algorithm.

At the end of each free flight time-step, a random number is generated for each

carrier in the simulation domain in order to check if the carrier will go through a

scattering event. There are two conditions that need to be met while choosing the

duration of the free flight time-step: 1) should be smaller than the inverse of the

highest scattering rate and 2) the free-flight time-step should be smaller than the

Poisson time-step.

The stochastic Monte Carlo technique is employed to model the scattering as

Markovian process, where the wavevector of the particle changes instantaneously. The

scattering rates are pre-computed based on characteristics of the materials.

The usual scattering mechanisms considered in this Monte Carlo study are: 1)

deformation potential scattering, 2) piezoelectric polar optical scattering and 3) impact

ionization. The following discussions provide a brief discussion about these 3 scattering

mechanisms.

Deformation potential scattering: Deformation potential scattering refers

to the scattering due to non-polar interactions between electron and phonon. If an

electron with a wave vector
−→
k interacts with a phonon with wave vector −→q , the final

wave vector will be
−→
k′ =

−→
k ±−→q , where + and − indicate the absorption and emission

of phonon, respectively. Hence, the deformation potential scattering rate from a point

−→
k in band ν to a region Ωk⃗′ , centered around another point

−→
k′ in band ν ′ can be

derived as [10]:

P def
νν′,η

(
k⃗,Ωk⃗′

)
=

π

ρωηq⃗

∣∣∣∆(η)
(
ν ′, k⃗, q⃗, ν

)∣∣∣2 ∣∣∣I (ν, ν ′, k⃗,
−→
k′
)∣∣∣2Dν′

(
ϵ′,Ωk⃗′

)(
Nηq⃗ +

1

2
∓ 1

2

)
(2.17)

where, ∆(η)
(
ν ′, k⃗, q⃗, ν

)
is for the deformation potential [10], I

(
ν, ν ′, k⃗,

−→
k′
)
represents

the overlap integral [10]and Dν′
(
ϵ′,Ωk⃗′

)
is the density of states [10]. In this study,
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Rigid-pseudo ion model [52] is usually used to calculate the deformation potential,

where only full band structure and dispersion relation are necessary.

Piezoelectric Scattering: In polar materials, if the lattice is distorted due to

phenomena like thermal fluctuations, the local charge neutrality can be altered. This

can produce electric polarization along with the motion of electron in a macroscopic

E-field [53]. If the disturbance of the motion of electron arises from an acoustic mode,

it is called piezoelectric scattering. On the other hand, interactions with optical mode

is called polar optical scattering (see below). The piezoelectric scattering rate can be

represented as [53]:

P piezo
νν′

(
k⃗,Ωk⃗′

)
=

2π

ℏ
K2

av

e2kBT

q2ϵ∗

∣∣∣I (ν, ν ′, k⃗,
−→
k′
)∣∣∣2Dν′

(
ϵ′,Ωk⃗′

)
(2.18)

where I
(
ν, ν ′, k⃗,

−→
k′
)
and Dν′

(
ϵ′,Ωk⃗′

)
have similar meaning as in Equation 2.17, and

K2
av is a coupling constant which can be represented as:

K2
av =

⟨e2l ⟩
ϵ∗cl

+
⟨e2t ⟩
ϵ∗ct

where e and c are piezoelectric and elastic constants, respectively and the super-

scripts are for longitudinal and transverse waves. Finally ⟨.⟩ represents the spherical

average [54].

Polar optical scattering: The interaction between electron and optical phonons

is modeled following the approach as described by Lee et. al. [55], where uniaxial model

and dielectric continuum model of Loudon [56] is used to derive the Fröhlich Hamil-

tonian and the scattering rates. The quantized form of the interaction Hamiltonian

can be represented as follows:

H =
∑
−→q

−eΦ(−→q )ei
−→q ·r
(
a−→q + a†−−→q

)
,

where Φ(−→q ) is the Fourier transform of the electrostatic potential, Φ(r), a−→q and a†−−→q

are the annihilation and creation operator. The probability of electrons transitioning
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from state
−→
k to

−→
k′ per unit time can be calculated following Fermi’s golden rule as:

W
(−→
k ,
−→
k′
)
=

2π

ℏ

∣∣∣M−→
k −

−→
k′

∣∣∣2 δ (E−→
k′
− E−→

k
± ℏω−→

k −
−→
k′

)
where E−→

k
represents the energy of electron, M−→

k −
−→
k′

is the transition matrix built from

the Hamiltonian, ℏω−→
k −

−→
k′

is the energy needed for the transition and ± represents

the emission and absorption of the phonon, respectively. Finally, the scattering rate

W (
−→
k ) can be found as:

W (
−→
k ) =

∑
−→
k′

W
(−→
k ,
−→
k′
)
.

Impact Ionization: Impact ionization rate is modeled based on two power-

laws [57] such as:

ΓIMP (E) =
2∑
i

θ (E − E0i) ai [E − E0i]
ri (2.19)

where E0i ≥ Egap is the threshold energy, θ is the step function, while the prefactor ai

and exponent ri both are fitting parameters. Impact ionization happens at energies

over E0i and the energy of the ionized carrier is reduced by the amount of the band-gap.

2.8 Cellular Monte Carlo (CMC)

An improved and faster extension of the EMC approach was introduced by Saraniti

et. al. [58], which mainly differs in the selection process of the final state of the carrier

after scattering. In the traditional EMC, the following algorithms are executed during

runtime: 1) after scattering, all final states inside first Brillouin Zone (BZ1) conserving

energy and momentum are identified, 2) the scattering rate is computed for each final

state and 3) the final state is chosen by a stochastic selection process. Scatterings

in semiconductors are really common and all the runtime computations makes the

traditional EMC computationally very expensive.

On the other hand, the CMC algorithm pre-computes all scattering rates from each

initial state to every possible final states inside BZ1 for each scattering mechanism and
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Figure 2.3: Algorithmic differences between EMC and CMC.

material. These scattering rates are stored in a large look-up table that is stored into

RAM at the initialization stage of the simulation. Although the size of the table may

be large depending upon the number of scattering mechanisms considered, the current

availability of large memory makes the approach more than realistic. As a result, the

CMC code is significantly more efficient for complex device simulation compared to

EMC. Figure 2.3 illustrates the key algorithmic differences between EMC and CMC.

2.8.1 Structure of transition table (look-up table) in CMC

Figure 2.4 shows a schematic diagram of the structure of a typical transition table

as it is used in CMC. Here, all the initial states are stacked up in a vertical array and

each of them is connected to a horizontal array (ordered list), which represents the

final states along with their corresponding scattering rate. After a scattering event,

the final state or momentum is chosen directly from the horizontal array through a

stochastic selection process. In order to keep the transition table within reasonable
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Figure 2.4: Structure of a transition table in CMC [3]

size, the whole BZ1 is divided into an inhomogeneous grid.

The scattering rate can also be represented in terms of probability of transition

from an initial state q to a cell or region Ωq′ around the point q′ as:

R (q,Ωq′) =

∫
Ωq′

dq′R (q, q′) ;

if the cell is small enough, the expression becomes:

R (q,Ωq′) ≃ R (q, q′)D (E (q′) ,Ωq′)

where D (E (q′) ,Ωq′) is the density of states at energy E(q′) in Ωq′ .

2.8.2 Rejection Algorithm

Rejection is one of the core algorithmic techniques implemented in CMC, which

addresses among other, the need for multiple scattering tables at different tempera-

ture in an electrothermal simulation. During the initialization of an electrothermal

simulation, the whole device is set at 300K and prior to that, the scattering table is

also computed for different mechanisms for T = 300K. As the simulation progresses,
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Figure 2.5: Schematic of the rejection algorithm, where g(x) is the proposed pdf and

f(x) is the desired pdf, and g(x) > f(x) at any value of x. [3]

electrons gain high kinetic energy because of the externally applied bias. Through

electron-phonon scattering events, electrons start loosing energy to the crystal and in

some part of the device the temperature reaches values well above the initial 300K.

So if any part of the device reaches a higher temperature, we would need a series of

scattering tables for collision events occuring in that region.

The primary reason behind switching to CMC, was the pre-tabulation of the

scattering rates, which the speeds the simulations. Computing several tables for

different temperatures prior to simulation and loading them is not realistic, as the

range of the temperature can be wide depending on the simulation. For example,

even if a table is computed at 50K intervals and performing some interpolation,

a temperature range of 300K will require 6 scattering tables for a single material.

The rejection algorithm as described in [59], can address the issue with significant

accuracy and with a small price in terms of performance. Figure 2.5 illustrates the
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principle of rejection algorithm, where the probability distribution function (pdf) is

unknown initially. In this algorithm, two pdfs: desired distribution (f(x)) and proposed

distribution (g(x)) are defined, such as, for any value of x, the g(x) is equal or greater

than f(x). The rejection probability can be computed as Pr =
f(a)
g(a)

, which will range

from 0 to 1. At the end, a random number between 0 to 1 is generated. If R > Pr,

the event is rejected and accepted otherwise.

2.8.3 Application of Rejection in CMC

The rejection technique can be easily applied to the CMC scattering process, where

g(x) will be representing the scattering rate at a pre-defined maximum temperature,

while f(x) will be scattering rate at the local temperature in different parts of the

device. As scattering rates are directly proportional to temperature, the scattering

rate corresponding to maximum temperature will be higher than local scattering rates

for any values of energy, which satisfies the g(x) ≥ f(x) condition of the rejection

algorithm. Figure 2.6 shows an implementation of the rejection algorithm in CMC.

Before the start of the simulation, the CMC code pre-tabulates the rate at 800K,

which is the maximum temperature set for the simulation and represents g(x).

In a space of possible final state q′, the proposal distribution g(q′), target dis-

tribution f(q′) and a constant c for initial state qini are defined. The purpose of

defining c is to ensure that cg(q′) > f(q′). The proposal pdf is calculated through the

normalization to the maximum scattering rates Rmax(q
ini,q′) such as:

g (q′) =
Rmax (q

ini, q′)∑
q Rmax (qini, q)

Similarly, the target distribution can be obtained as:

f (q′) =
Rloc (q

ini, q′)∑
q Rloc (qini, q)
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Figure 2.6: Phonon scattering rate for GaN obtained from CMC [2].

where Rloc (q
ini, q) represents the rate of transition from qini to q′ from local values

of parameters. The constant c can be written as follows:

c =

∑
q Rmax (q

ini, q)∑
q Rloc (qini, q)

.

From these computations, the rejection probability is expressed as follows:

Prej (q
′) =

f (q′)

c g (q′)
=

Rloc (q
′)

Rmax (q′)
.

In every scattering rates, there will be many common terms between Rloc(q
′) and

Rmax(q
′), which will cancel out. For example, for the case of deformation potential

scattering rate in Equation 2.17, the rejection probability will be :

P def
rej =

Γdef
loc (k,Ωk′)

Γdef
max (k,Ωk′)

=

(
nloc + 1

2
∓ 1

2

)(
nmax +

1
2
∓ 1

2

)
where nloc and nmax represent the number of phonons at local and maximum tempera-

ture with wavevector q. Similarly, for piezoelectric scattering given in Equation 2.18,the
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Figure 2.7: Different scattering rates obtained for wurtzite GaN by using the

rejection algorithm.

probability is:

P piezo
rej =

Γpiezo
loc (k,Ωk′)

Γpiezo
max (k,Ωk′)

=
Tloc

Tmax

where Tloc and Tmax are the local and maximum temperature, respectively. Figure 2.7

shows the scattering rates for wurtzite GaN obtained by using the rejection algorithm

implemented in CMC. Similar to scattering rates, the rejection can be applied to

occupation number of phonons. The expected occupation number of phonon can be

computed from the Bose-Einstein distribution such as:

n (Eph, T ) =

(
exp

(
Eph

kBT
− 1

)−1
)

from where the expectancy can be obtained for the highest temperature, Pmax and the

local temperature, Ploc can be obtained. Again, with the help of a random number,R,

generated between 0 and 1, the scattering is accepted if RPmax ≤ Ploc and rejected

otherwise.
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2.9 Conclusion

In this chapter, the theoretical background of carrier transport in semiconductor

devices has been discussed. The BTE supports the proper formalism to describe

the carrier transport through a seven-dimensional distribution function that evolves

in real and momentum space. Models based on lower order moments of the BTE

can be faster, at least in 2D, but accuracy and robustness can be compromised for

macroscopic device simulations.

On the contrary, Monte Carlo methods can provide a statistical and exact solution

of the BTE considering all the moments. In these methods, scattering events are

modeled as stochastic processes. Traditional EMC calculates the scattering rates

during runtime, making it computationally very expensive. As an extension of EMC,

the CMC mehtod pretabulates the scattering rates along with the final states in a large

lookup table making it computationally faster than EMC. Two special components

of the CMC: the transition table and rejection algorithm were discussed briefly. The

theoretical aspects behind different scattering mechanisms considered in this study

were also discussed.
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Chapter 3

PORTABLE, EXTENSIBLE TOOLKIT FOR SCIENTIFIC COMPUTATION

(PETSC) AS A POISSON SOLVER

3.1 Introduction

Generally, any particle based simulator is a combination of self-consistent solution

of Boltzmann’s transport equation (BTE) and Poisson’s equation. In EMC or CMC,

BTE is solved following a stochastic process by tracking the particles in both position

and momentum space. After a specific time interval, the charge densities obtained

from BTE are used as an input to the Poisson solver. Later, the electrostatic potential

in each grid cell is computed by the Poisson solver and the carriers are accelerated

accordingly. There are primarily two discretization techniques available for solving the

Poisson equation numerically: finite-element and finite-difference [60]. Choice between

these two primarily depends on the procedure involved in solving the BTE. Drift

diffusion methods consider only lowest moments of BTE and finite-element methods

are used in solving Poisson’s equation along with it [61]. In hydrodynamic models or

Monte Carlo methods, where higher order moments of BTE is used, finite difference

method is the ultimate choice. If an iterative solver is used as a Poisson solver, the

solver must use the previous solution as an initial guess. In order to track the carriers

in an accurate way, the electrostatic potential needs to be updated typically in the

order of every femtoseconds [62]. If the simulated geometry is complex enough, the

computer time taken by the Poisson solver in Monte Carlo method can be similar or

even higher than the time taken by solving of BTE [63]. Similar scenario arises for

the case of cellular automaton method. For these reasons, inclusion of a robust and
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efficient Poisson solver is an integral part of any device simulation for both accuracy

and speed of the simulation. In this chapter, PETSc, a robust computational toolkit

from Argonne National Lab, has been incorporated into the CMC as a Poisson solver.

The chapter is organized as follows: section 3.2 discusses available Poisson solvers

in CMC, while in section 3.3, the procedure to incorporate finite-difference to solve

Poisson’s equation is explained. On the next two sections the formation of Laplacian

matrix and the forcing functions are discussed. Section 3.6 introduces PETSc along

with its different components like the preconditioner and the Krylov subspace solver.

Section 3.7 describes how PETSc is included in PETSc using the available routines in

the CMC. On the last section, the results obtained using PETSc are compared with

results from existing multi-grid solver in CMC, along with a performance comparison.

3.2 Available Poisson solvers in CMC

Currently in CMC, two types of mesh relaxation methods are available: multi-

grid and successive over relaxation (SOR). The extension of 2D geometries to 3D is

straightforward, that’s why the discussion is limited here to solving Poisson’s equation

in two dimensions which can be expressed as:

∇2ϕ = f(x, y), (3.1)

where ∇2 is the Laplacian operator, ϕ is the electrostatic potential and f(x, y) is the

source term or the forcing function. The above elliptic differential equation can be

converted to an algebraic matrix equation using finite difference algorithm as:

Au = f (3.2)

where the matrix A represents the Laplace operator, u is a vector representing the

solution and f is the forcing function of the system. If vi is the approximation of u
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after the ith iteration, then the residual ri can be defined as:

ri = f− Avi

and the residual equation is expressed as:

Aei = ri (3.3)

where ei is the algebraic error in the form of ei = u− vi.

The successive overrelaxation (SOR) method assumes the iterative nature of the

solution in such a way that v
(i+1)
k = vi

k + ωrk
i, where ω is a relaxation factor that

ranges between 0 and 2 for SOR. The value of this factor completely depends on

the geometry. For realistic devices, as the number of grid point grows along with

inhomogeneous grids, the performance of SOR becomes unacceptable.

Multi-grid method uses coarser length scales compared to the original grid size to

reduce the relative error of the solution, to be more specific solving Equation 3.3 on a

grid: Ωn−1, in lieu of original grid, Ωn. The updated solution can be found from the

correction of the previous solution such as:

vi+1 = vi − ei

If the error ei is expanded into Fourier series, it can be shown that its long wavelength

components is only reduced slightly in fine grid as their spatial extent falls beyond

the range of the relaxation operator. The coarser grid translates them into relatively

shorter wavelength to be treatable by the relaxation operator. This reasoning provides

the prime advantage to the multi-grid solver from the context of convergence, compared

to single-grid techniques like SOR. Two-grid solver, which is the simplest multi-grid

possible, is described in Figure 3.1.
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Start

Pre-smoothing: Smoothing of vi on Ω1 with relaxation techniques

Restriction: Computing residual and transferring it to coarser grid, Ω0

Solving Equation 3.3 in Ω0

Prolongation: Interpolation of ei into Ω1 and calculate vi+1

Post-smoothing: Smoothing vi+1 with relaxation technique

Stop

Figure 3.1: Process flow of a simple multi-grid solver.

The two-grid process can be extended to increasingly coarser grid case until the

coarsest grid Ω0 is reached. At that level, Equation 3.3 can be easily solved as it has

only a few number of grid points and the whole process is repeated again till the

desired convergence is achieved.

3.3 Finite Difference Scheme

Figure 3.2 shows the Finite difference gridding scheme adopted in CMC. For a

specific cell c, the 4 neighbors (northern, eastern, western and southern) are represented
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Figure 3.2: Finite difference grid used by Monte Carlo.

as n, e, w, s, respectively. The other points marked with a ′ sign (n′, e′, w′, s′) are

used for interpolation purpose. The dimensions of cell c are shown as δx and δy. The

quantities, δn, δs, δw and δe represent the distances from the center of the cell c to

its northern, southern, western and eastern neighbors, respectively. For performing

interpolations from cell-to-cell, the distances labeled as δxw, δxe, δyn and δys are being

used, which represent the distances between the boundary of the cell c to the center of

the neighboring cells. During the initialization, the nearest neighbors of each cell are

computed and stored in linked lists. The boundary conditions of the geometry should

be modeled in such a way that computations can be done for all grid points in the

same manner. Figure 3.3 presents the process of setting coefficients for cells with fixed

potentials in the boundary of the geometry (gray). For the left cell, the potential is

fixed following the Dirichlet boundary condition and so the pointer to the northern

neighbor is pointed to itself. The cell on the right has a null perpendicular field as

it has a free surface on top, as a result it follows Neumann’s boundary condition.
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In this particular case, the southern cell is mapped as the northern cell. In this

way a homogeneous boundary condition is implemented throughout the whole device

geometry. The distances introduced in Figure 3.2 for the boundary cells can be

Figure 3.3: Implementation of Dirichlet and Neumann’s boundary conditions

computed as:

δn =

 |yn − yc| yn ̸= yc

1 otherwise
, δe =

 |xe − xc| xe ̸= xc

1 otherwise
,

δw =

 |xc − xw| xw ̸= xc

1 otherwise
, δs =

 |yc − ys| ys ̸= yc

1 otherwise
.

3.4 Laplacian Set-up

The Laplace operator in the 2D Poisson relation stated in eq. (3.1) can be approxi-

mated by the difference relation:

∇2ϕc ∼ anϕn + aeϕe + awϕw + asϕs + acϕc +O (δxδy)
m (3.4)

32



where the last term on the right is an error term which depends on the size of the cells.

In an uniform grid the value of m is 3, while for non-uniform grids m < 3 [64]. The

Laplacian matrix coefficients can be computed from the second order Taylor expansion

of ϕ such as:

an =


0(

2
δn(δn+δs)

)
(

2
δn(δn+δs)

)(
1 + δyn

δy/2

)(
ϵn/δyn

(ϵn/δyn)+[ϵc/(δy/2)]

)

ae =


0(

2
δe(δe+δw)

)
(

2
δe(δe+δw)

)(
1 + δxe

δx/2

)(
ϵe/δxe

(ϵe/δxe)+[ϵc/(δx/2)]

)

aw =


0(

2
δw(δe+δw)

)
(

2
δw(δe+δw)

)(
1 + δxw

δx/2

)(
ϵw/δxw

(ϵw/δxw)+[ϵc/(δx/2)]

)

as =


0(

2
δs(δn+δs)

)
(

2
δs(δn+δs)

)(
1 + δys

δy/2

)(
ϵs/δys

(ϵs/δys)+[ϵc/(δy/2)]

)

ac =


1

−
(

2
δn+δs

+ 2
δw+δe

)
−
(

2
δn+δs

+ 2
δw+δe

)
+ pn + pe + pw + ps

where the first option in each case represents the Dirichlet boundary condition for

fixed potential. The second option is for homo-junction devices and the third option

is for devices with different materials, where the dielectric constant is varied in a piece

wise constant manner with space [65]. The values of pn, pe, pw and ps for the central
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cell can be found as:

pn =
2

δn (δn + δs)

[(
1 +

δyn
δy/2

)(
ϵc/ (δy/2)

(ϵn/δyn) + [ϵc/ (δy/2)]

)
−
(

δyn
δy/2

)]
pe =

2

δe (δe + δw)

[(
1 +

δxe
δx/2

)(
ϵc/ (δx/2)

(ϵe/δxe) + [ϵc/ (δx/2)]

)
−
(

δxe
δx/2

)]
pw =

2

δw (δe + δw)

[(
1 +

δxw
δx/2

)(
ϵc/ (δx/2)

(ϵw/δxw) + [ϵc/ (δx/2)]

)
−
(

δxw
δx/2

)]
ps =

2

δs (δn + δs)

[(
1 +

δys
δy/2

)(
ϵc/ (δy/2)

(ϵs/δys) + [ϵc/ (δy/2)]

)
−
(

δys
δy/2

)]
It is noteworthy that these Laplacian coefficients are only computed once at the

beginning of the simulation as they are only function of the geometry of the device

and the dielectric constant. Both the multigrid solver and PETSc allows to store the

matrix in memory and access it during runtime for reducing computational expenses.

3.5 Forcing Function set-up

The forcing function of the Poisson equation should account for both boundary

condition and the surface charge (sc) defined on boundary of each cell (points n′, e′,

w′, s′ in Figure 3.2). The updated forcing function can be defined as :

f ′
c = k′

c + k′′
c ρc (3.5)

where ρc is the density of carriers and the constants k′ and k′′ can be computed from

k′′
c =


0 (a)

− q
ϵ0ϵc

(b)

k′
c =


ϕc (a)

gnqn + geqe + gwqw + gsqs (b)
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where (a) represents the values to be used on the grid points with Dirichlet boundary

condition. The other coefficients gn,ge,gw and gs are function of the grid geometry as:

gn =

 0 (a)

− 2
δn(δn+δs)

(b)
, ge =

 0 (a)

− 2
δe(δe+δw)

(b)

gw =

 0 (a)

− 2
δw(δe+δw)

(b)
, gs =

 0 (a)

− 2
δs(δn+δs)

(b)

gc =


0 (a)

−
(

2
δeδw

+ 2
δsδn

)
(b)

=


0 (a)

− (qn + qe + qw + qs) (b)

where (a) and (b) conveys similar meaning as the earlier equation of k′
c and k′′

c . The

quantities, qn,qe,qw and qs are the interpolated effective charge at the cell boundary

which can be computed as:

qn = − q

ϵ0
sn

(
1 + [δyn/ (δy/2)]

(ϵn/δyn) / [ϵc/ (δy/2)]

)
,

qe = −
q

ϵ0
se

(
1 + [δxe/ (δx/2)]

(ϵe/δxe) / [ϵc/ (δx/2)]

)
,

qw = − q

ϵ0
sw

(
1 + [δxw/ (δx/2)]

(ϵw/δxw) / [ϵc/ (δx/2)]

)
,

qs = −
q

ϵ0
ss

(
1 + [δys/ (δy/2)]

(ϵs/δys) / [ϵc/ (δy/2)]

)
.

Similar to the formation of the Laplacian operator, the forcing function is also computed

only once at the very beginning as all of its elements are dependent on the initial state

of the system.

3.6 The PETSc software tool

The Portable, Extensible Toolkit for Scientific Computation (PETSc) [66] is a

popular and large suite of scalable (parallel) data structures and routines like nonliear

equation solvers, Ordinary Differential Equation (ODE) integrators and optimization
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algorithms for C, C++, Fortan and Python based codes [66]. Developed by the Argonne

National Lab, PETSc provides an absolute interface for the parallel management of

PDE discretization, while maintaining parallel routines for matrix and vector assembly.

Figure 3.4: Different components of PETSc

For obtaining the solution of any linear equation like Equation 3.2, where A ∈ Rn×n

and x, b ∈ Rn, PETSc uses the object KSP. This object can be used for solving all

types of linear system solvers either it is parallel/sequential and direct/iterative.

For a three dimensional Partial Differential Equation (PDE), where the number of

unknowns is N, a direct method would require:

work ≥ CNα≥2 (3.6)

memory ≥ CNβ≥4/3 (3.7)

which implies that the amount of work needed in direct method is at least the squared

of number of unknowns. As the number of unknowns in any modern numerical codes
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are really higher, most of the algorithms involve using iterative solvers. Similarly,

PETSc uses the Krylov subspace method along with a preconditioner to obtain an

iterative solution of the linear system.

3.6.1 Preconditioner in PETSc

In linear algebra, preconditioning usually refers to “the art of transforming a

problem that appears intractable into another whose solution can be approximated

rapidly” [67]. In most of the cases, the preconditioner is a matrix that converts

Equation 3.2 in such a way that an iterative solver can converge faster. Generally,

preconditioners are used for large and sparse matrix, resulting in most of the cases from

the numerical discretization of PDEs [68]. For obtaining an excellent preconditioner

three conditions should be fullfilled:

1)The preconditioned matrix should be close to the identity matrix making

it somewhat easier to solve and ensuring an accelerated convergence.

2) The preconditioner should be computationaly inexpensive.

3) The application of the preconditioner to a vector should be inexpensive

as well.

Equation 3.2 is multiplied by M−1, where M is a nonsingular matrix,

M−1Ax = M−1b (3.8)

if the resultant matrix M−1A is better conditioned than A for a Krylov subspace

method (KSP) [69], then M−1 is the preconditioner and this system can be called as

left preconditioned system. Similarly M−1 can be applied to the right like:

AM−1y = b, x = M−1y (3.9)

which is called right preconditioned system. These two different approach can provide

different advantages: the right preconditioning keeps the residual of the updated
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Method PCType

Options

Database

Name

Jacobi PCJACOBI jacobi

SOR PCSOR sor

Cholesky PCCHOLESKY cholesky

Incomplete LU PCILU ilu

Algebraic multi-grid PCGAMG gamg

Linear Solver PCKSP ksp

No preconditioning PCNONE none

Table 3.1: Partial list of Preconditioners available in PETSc.

preconditioned system same as the original one, while in case of left preconditioning

the residual changes. For this reason, right preconditioning can be useful in residual

minimization algorithms like GMRES [68]. For the right preconditioned system, com-

putation of an additional variable, y, is a major disadvantage. A split preconditioning

can be performed to use advantages of left and right preconditioning such as:

M−1 = M−1
2 M−1

1 (3.10)

M−1
1 AM−1

2 y = M−1
1 b, x = M−1

2 y (3.11)

PETSc has a really large collection of preconditioners that can be used for numerical

methods. A partial list of preconditioners available in PETSc are shown in Table 3.1.

In this work, incomplete lower upper factorization (ILU) has been adopted as a

preconditioning approach. The ILU method in representing a nonsingular matrix A in

such way that:

A = LU (3.12)
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where L and U are two approximate triangular matrices and they are computed

in a cost-effective way. A Gaussian elimination procedure is adopted to compute

L and U, which are much less sparse than A. Further approximations of L and U,

represented as L̃ and Ũ are defined by discarding some of the fill-in entries. The

resulting preconditioner becomes:

M−1 = L̃−1Ũ−1 (3.13)

At the very beginning of the ILU algorithm, a set S of position (i, j) is defined,

where 1 ≤ i and j ≤ n, where n is the number of unknowns in the system. At the

same time, either L̃ (if i > j) or Ũ (if j > i) has a nonzero entry. This set is called

nonzero pattern for this algorithm, which is described as follows:

Data: Matrix A, the nonzero pattern S

Result: Matrix A containing L̃ and Ũ

for each (i, j) /∈ S do
aij = 0

end

for i = 2, . . . , n do

for k = 1, . . . , i− 1 and (i, k) ∈ S do

aik ← aik/akk

for j = k + 1, . . . , n and (i, j) ∈ S do
aij ← aij − aikakj

end

end

end

Algorithm 1: Algorithm used in ILU factorization

The algorithm above follows the Gauss elimination method. Further improvement

techniques have been adopted to reduce its computational cost like KIJ/IJK/IKJ
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elimination [70, 71].

3.6.2 Krylov Subspace method for iterative solver

The purpose of an iterative method [69] is to get closer to the original solution in

each iteration. The fundamental equation representing classical iterative methods can

be described as:

xk+1 = xk + αkr
k (3.14)

where αk is a relaxation parameter and rk is the residual after kth iteration. The

residual can be represented as:

rk = b− Axk (3.15)

Similar to xk+1, the expression for xk can be obtained after performing some manipu-

lation:

xk = xk−1 + αk−1r
k−1

b− Axk = b− Axk−1 − Aαk−1r
k−1

if the value of rk = b− Axk is replaced into the equation of xk+1 :

xk+1 = xk + αk(b− Axk)

= xk + αk(r
k−1 − Aαk−1r

k−1)

= xk + αkr
k−1 − αkαk−1Ar

k−1

If the recursion is continued for k times it is evident that, the solution xk will vary

in such a way that xk ∈ span {r0, Ar0, A2r0, . . . , Ak−1r0}. This subspace spanned by

vectors is called Krylov subspace. The solver tries to find an optimal solution where

the A-norm, ∥x− xk∥A is minimal.
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3.7 Inclusion in Cellular Monte Carlo

The process flow describing the inclusion of PETSc into the cellular Monte Carlo

(CMC) is shown on Figure 3.5. Initially, the values generated for the Laplace operator

and the forcing function as described in section 3.4 and section 3.5, are passed to the

PETSc solver function. Later, the initialization of PETSc, along with the formation

of the Laplacian matrix and preallocation take place. The matrix components depend

only on the device geometry, hence it is formed only once. On the next step, the

vector representing the forcing function is formed along with its values obtained in

section 3.5. The KSP solver is introduced and set up along with all of its attributes.

After obtaining the solution, the values are inserted into the solution vector, x and

returned to the function where the original PETSc function was called. During the

last iteration of the Poisson solver, the solver and the vectors and the matrix are

destroyed to deallocate memory.

3.7.1 PETSc Routines used

The inclusion of PETSc in CMC is performed using several routines included in

PETSc. In this section all the necessary routines used for performing the addition of

PETSc as a Poisson solver in the CMC are discussed. At the very beginning of the

code, PETSC header file petscksp.h is added. This particular header file provides the

interface functions necessary for the Krylov subspace accelerators.

PetscInitialize: PetscInitialize is used to initialize the PETSc database along

with message passing interface (MPI). If MPI Init() wasn’t called prior to this, it calls

MPI Init() and so this routine is usually called at the very first line in most of the

PETSc programs. In this study, it is used in the following way:

PetscInitialize(&argc, &argv, (char*)0, help);
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Start

Getting the coefficients of matrix and elements of vector

Initialization of PETSc

First Poisson call?

Creation and Prealocation of the Matrix A

Setting the values of the matrix and finishing the assembly

Creating the vector, b and filling it with elements of the forcing function

Forming the Krylov Solver and setting the tolerances

Inserting the values of the solution to x and passing it

Destroying everything to free up memory

Stop

No

Yes

Figure 3.5: Flow Chart representing PETSc as a Poisson solver in CMC.
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Creating and filling the matrix: The matrix is created and preallocated by

calling the following routines:

MatCreate(PETSC COMM WORLD, &A);

MatSetSizes(A, PETSC DECIDE, PETSC DECIDE, m*n*p, m*n*p);

MatSetFromOptions(A);

MatSeqAIJSetPreallocation(A, 7, NULL);

MatSetUp(A);

MatGetOwnershipRange(A, &Istart, &Iend);

MatCreate creates the matrix through the MPI COMM WORLD communicator,

which contains all the processes available in PETSc to be used. MatSetSizes is used to

set the local and global sizes of the matrix and performs a check in order to determine

compability with the vectors. MatSetFromOptions is used to select the type of matrix

from the available options database of PETSc, for example a parallel MPI matrix

can be created through the options if there are more than one processor available

for the simulation. If no options are selected, the default matrix type is MATAIJ

where MatCreateSeqAIJ() routine is used. MatSeqAIJSetPreallocation performs the

preallocation of the storage used by the matrix by setting the number of nonzero

entities per row, as there can be seven neighbors at maximum for the 3D case, it is

set to 7 in this study. It has been seen that the performance can be enhanced up to

50 times by setting the preallocation while assembling the matrix [66]. MatSetUp is

used to setup internal data structures that can be used for later purposes. If there is

a suitable choice of preallocation, this specific function is not needed. If the matrix

owns values by row, MatGetOwnershipRange provides the range of the matrix rows.

Here, Istart and Iend represent the global index of first row and global index of the

last row, respectively.

MatSetValues(A, 1, &Ii, 1, &J, &(gdp -> socf), ADD VALUES);
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MatSetValues is used to add a block of values into the matrix, here gdp -> socf

represents the south coefficients in Figure 3.2. By default in PETSc, the values are

stored in a row-oriented manner. As the values can be ached, this command must be

followed by MatAssemblyBegin().

MatAssemblyBegin(A,MAT FINAL ASSEMBLY);

MatAssemblyEnd(A,MAT FINAL ASSEMBLY);

There are two types of options of these two assembly: MAT FLUSH ASSEMBLY

and MAT FINAL ASSEMBLY. MAT FLUSH ASSEMBLY is used when there is a

necessity to switch between ADD VALUES and INSERT VALUES in the earlier

MatSetValues() command, whereas MAT FINAL ASSEMBLY is used to for the last

final assembly before actually using the matrix.

Vector Creation and assembly: The creation and insertion of the values for

the vectors are done through following routines:

VecCreate(PETSC COMM WORLD, &b);

VecSetSizes(b, PETSC DECIDE, m*n*p);

VecSetFromOptions(b);

VecDuplicate(b, &x);

VecCreate will create an empty vector object through the communicator for the vector

object, where the local and global sizes of the vector are set by VecSetSizes. Here,

m,n and p represent the grid sizes for x,y and z coordinates, respectively. Different

options available in PETSc for the vector can be used by VecSetFromOptions. As

the dimensions and other properties of the solution vector should be the same as the

forcing function b, a new vector x is created as the same type of b with VecDuplicate

command.

VecSetValue(b, Ii, gdp->fccf, INSERT VALUES);

Similar to MatSetValues, VecSetValue inserts values into specific locations of the
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vector. Here the forcing function components computed in section 3.5, are inserted

into the vector b.

VecAssemblyBegin(b);

VecAssemblyEnd(b);

VecAssemblyBegin starts the assembly of the vector that ensures the storage of ele-

ments in correct MPI process and VecAssemblyEnd finalizes the assembly process.

VecAssemblyBegin(b);

VecAssemblyEnd(b);

On the next stage, the KSP solver is introduced along with the different options and

properties of the solver, the routines used are shown below:

KSPCreate(PETSC COMM WORLD, &ksp);

KSPSetOperators(ksp, A, A);

KSPSetTolerances(ksp, PETSC DEFAULT, 1.e-50, PETSC DEFAULT,

PETSC DEFAULT);

KSPSetFromOptions(ksp);

KSPSolve(ksp, b, x);

KSPCreate creates the context of KSP, which is the primary object of PETSc that is

used to manage all Krylov methods and the linear solvers. Even in the case of the use

of a direct solver, the KSP object is actually used with KSPPREONLY, which means

only the preconditioner is used as the linear solver. KSPSetOperators does the setup

of the matrix associated with the linear system and the second one is to build the

preconditioner associated with the solver. In this study, the preconditioner is built

from the matrix A itself. The relative, absolute, divergence tolerances and maximum

iteration associated with the KSP convergence tester are set by the KSPSetTolerances.

The relative tolerance (rtol) refers to the relative decrease in the residual norm, while

the absolute tolerance (atol) is for the absolute size of the residual norm. The di-
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vergence tolerance (dtol) implies to the amount of increase in residual norm before

the conclusion about the divergence of the method. In the solver the convergence is

occurred when

∥rk∥2 < max ( rtol ∗ ∥b∥2, atol )

where rk = b− Axk. The solver concludes divergence if

∥rk∥2 > dtol ∗ ∥b∥2

The PETSC DEFAULT values of these 4 parameters are: rtol = 10−5, atol = 10−50,

rtol = 105 and maxits = 104.

KSPSetFromOptions is used here to set the options available in PETSc database.

KSPSolve actually computes the solution of the linear solver and returns the solution

vector x.

KSPDestroy(&ksp);

VecDestroy(&x);

VecDestroy(&b);

At the end of the each iteration of the Poisson solver, the solver and the vectors are

destroyed by KSPDestroy and VecDestroy routines to free up the memory. A similar

operation is performed on the Laplacian matrix on the last iteration of the Poisson

call, as the matrix is formed only once for the entire simulation.

3.8 Validation through 2D and 3D Simulations

In order to validate the inclusion of PETSc as a Poisson solver in the CMC code, a

2D GaN HEMT and a 3D MESFET using PETSc as a Poisson solver and the results

are compared with the established multi-grid solver available in the CMC.
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Figure 3.6: 2D GaN HEMT used for the validation.

2D GaN HEMT Results:

Figure 3.6 shows the device schematic of the simple 2D HEMT considered for

the validation, while Figure 3.7 and Figure 3.8 show the potential plots obtained

from the multi-grid and PETSc solver, respectively. It is evident from the plots that

the potential distribution computed by both of the solvers are almost identical. To

investigate the similarity between the results obtained by both of the solvers, profile

along the channel for average x-electric field, average potential and e-total scattering

has been compared in Figure 3.10, Figure 3.9 and Figure 3.11, respectively. All these

results validates the accuracy of PETSc as a Poisson solver compared with multi-grid.

Finally, the drain current for different bias points are compared these two solvers and

it is evident from the plot that the currents are almost identical.
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Figure 3.7: 2D potential plot obtained using the multi-grid solver at VDS = 10V .

Figure 3.8: 2D potential plot obtained using the PETSc solver at VDS = 10V .
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Figure 3.9: x-electric field along the channel obtained by PETSc and multi-grid solver.

Figure 3.10: Potential along the channel obtained by PETSc and multi-grid solver.
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Figure 3.11: e-total scattering along the channel obtained by PETSc and multi-grid

solver.

Figure 3.12: Drain current for the 2D HEMT for different bias points.
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Figure 3.13: Potential plot obtained for the 3D MESFET using the multi-grid.

Figure 3.14: Potential plot obtained for the 3D MESFET using the PETSc.
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Figure 3.15: Drain current for the 3D MESFET obtained for different bias points

using PETSc and multi-grid.

3D MESFET Results:

Figure 3.13 and Figure 3.14 show the 3D representation of the position averaged

potential of a 3D MESFET obtained through multi-grid and PETSc solver. Similar

to the case of 2D results, PETSc provides an excellent agreement with the multi-grid

solver for the 3D average potential. The current shown on Figure 3.15 also shows

great similarity between these two approaches. All these results convey the eligibility

of PETSc to be used as a Poisson solver in CMC.

Performance Comparison for 2D simulation:

CMC has capability of determining time spent in different parts of the code while

running any simulation, where the free flight time and Poisson solver consume higher

time compared to other processes. Figure 3.16 and Figure 3.17 show time spent by

CMC, while using multi-grid and PETSc solvers, respectively.
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Figure 3.16: Time spent by CMC per iteration while using multi-grid in 2D GaN

HEMT simulation.

Figure 3.17: Time spent by CMC per iteration while using PETSc in 2D GaN HEMT

simulation.
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It is evident from the figures that, the current version of PETSc takes longer than

multi-grid. On the contrary, the current sequential PETSc solver can be modified

to parallelized PETSc , which should be much easier to implement compared to

paralleling multi-grid and give a performance gain.

3.9 Conclusion

In this chapter, a popular computational tool, PETSc, has been incorporated as a

Poisson solver into the CMC. PETSc solves the linear PDE with an Incomplete LU

method as a preconditioner and Krylov subspace method as an iterative solver. The

inclusion of PETSc in the CMC code is validated through 2D and 3D simulations

with accuracy similar to the well established multi-grid method. Although the speed

of PETSc is slower than multi-grid, parallelization of the PETSc solver can make it

significantly faster when used with a high number of processors.
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Chapter 4

ASSESSMENT OF GATE GEOMETRY IN HEMTS THROUGH CELLULAR

MONTE CARLO SIMULATIONS

4.1 Introduction

As Silicon-based power electronic devices show many limitations such as high

leakage current in high temperature, wide bandgap (WBG) semiconductors, such

as SiC, GaN and Ga2O3 along with their superior performances, are becoming the

ultimate choice. The bandgap of these materials ranges from two to four times of

silicon [72], which leads to properties like higher blocking voltage, better reliability

and efficiency along with superior thermal performance [73]. High bandgap allows

WBG-based devices to limit the free charge carrier and leakage current at high

temperatures [72]. Additionally, GaN has a higher saturation velocity than Si, which

results in higher saturation on-current. This also leads to higher switching speed along

with shorter recovery time. Figure 4.1 compares some key parameters related to high

temperature, high voltage and high switching operations [4]. From the figure, it is

obvious that GaN provides advantages over Si in many aspects.

The growth techniques of group-III nitrides primarily are MOCVD (metal-organic

chemical vapor deposition) and MBE (molecular beam epitaxy) [4]. In MOCVD,

Ga is supplied from a metal organic compound such as trimethylgallium and it is

transported by a gas like hydrogen. For this reason, the vapor pressure of the gas

determines the concentration of the compound. In this technique, nitrogen is produced

from ammonia. In the MBE process, nitrogen gas is passed through a plasma discharge

to produce nitrogen atoms and molecules. Due to its superior thermal conductivity,
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Figure 4.1: Comparison of different key parameters at room temperature between Si

and wide band gap materials [4].

SiC is one of the popular substrate for GaN HEMTs [74], whereas Si and sapphire are

also used for cost effectiveness [75, 76]. Usually, a nucleation layer of AlN, which is

needed to provide electrical isolation, is added between device and SiC/Si substrate.

Furthermore, a thin interlayer of AlN is added between AlGaN and GaN to reduce

sheet resistance, and hence increasing mobility of the device [77]. The inclusion of

the AlN interlayer actually reduce the alloy scattering and increases the amount of

sheet charge at the interface due to higher conduction band discontinuity. Finally, the

addition of a highly doped GaN cap layer leads to reduction in source to gate access

resistance, which ultimately increases gain and efficiency [78].

4.1.1 Polarization in GaN

Figure 4.2 illustrates the hexagonal closed packed (hcp) crystal structure of Wurtzite

GaN, where a and c represent the sides and height of the hexagon, with u being the

distance between Ga and N neighbors. This structure is orginally formed by two
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Figure 4.2: Hexagonal Closed Packed (HCP) crystal structure of Wurtzite GaN.

interpenetrating hcps, one for Ga and another for N. As N has a higher electronegativity

than Ga, there is a net spontaneous polarization, PSP inside the material along the

c-axis [79]. The value for PSP in GaN is reported to be -0.0029 C/m2 [80].

Furthermore, the interface of AlGaN/GaN can also create a piezoelectric polariza-

tion, PPE due to the strain produced by lattice mismatch between the two materials.

The value of PPE can be obtained through the Ambacher formalism [81], such as:

PPE = 2
a1 − a

a

(
e31 − e33

c13
c33

)
,

where a1 represents the lattice constant for the strained layer, e31 and e33 are the

piezoelectric coefficients, c13 and c33 are the elastic constants. The values of these

parameters are a function of the mole fraction x, of AlGaN, and can be determined

by interpolation. Finally, the total amount of polarization charge can be determined

from the sum of spontaneous and piezoelectric polarization.
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4.2 Formation of two-dimensional electron gas

In conventional HEMTs, the two-dimensional electron gas (2DEG) is formed by

the modulation-doped heterostructures, but for the case of AlGaN/GaN, intentional

doping is not required due to the bandstructure of these two materials [82]. A detailed

illustration of the formation of a 2DEG at AlGaN/GaN interface, along with an

expression for the sheet charge density is stated in [83]. As a result of difference

in electronegativities, a positive polarization charge is induced at the AlGaN/GaN

interface, while negative polarization charge is found at the top of AlGaN layer [83].

This charge leads to the formation of an E-field inside AlGaN layer, where the interface

and AlGaN surface can be treated as two planes with infinite amount of charge as the

epilayer is really thin.

As a result of the E-field, the energy band and fermi level will tilt to the direction

of the interface. Due to the presence of the field, electrons will cause accumulation

near cathode, leaving space charges behind. This bends the energy band and the

Fermi level will be flat again. This phenomena is illustrated in Figure 4.3.

Figure 4.3: E-field formation and band bending in a freestanding AlGaN layer.

The formation of 2DEG is shown in Figure 4.4. Due to the band gap, the Fermi

58



level of GaN is lower than the AlGaN. For this reason, as soon as the contact is formed,

the accumulated electrons will travel into GaN, which eventually formes the 2DEG.

This migration process is continued untill the Fermi levels of the two materials are

aligned.

Figure 4.4: Band diagram of a heterojunction formed between AlGaN/GaN, where

electrons will flow from AlGaN to GaN forming 2 dimensional electron gas (DEG) in

the GaN side.

4.3 Reliability concerns in HEMT and scope of this work

Different physical mechanism can cause device degredation in GaN HEMTs leading

to shorter lifetime than expected [84]. Some processes involved in device degredation

are: 1) the degradation due to hot electrons, which occurs in ON-state and reducs the

drain current because of accumulation of charges near gate-drain access region [85, 86],

2) the deterioration in Schottky contact of gate, which increases gate leakage current

because of localized shunt paths near the gate edge [87, 88], 3) the delamination and

cracking of the passivation layer due to high temperature or high power operations,

which can cause further leakage or charge trapping [89], 4) the generation of defects

within AlGaN/GaN heterostructure leading to time-dependent processes [90] and
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5)breakdown mechanisms like source to drain breakdown, vertical breakdown because

of compensation issues in the buffer and impact ionizations because of electron-hole

pairs near gate [84].

Self-heating also causes major detoriation in the performance and reliability in

high electron mobility transistors [91–95]. GaN HEMTs are susceptible to phenomena

like current collapse [96], threshold voltage shift [97], surface oxidation [98] and

creation of traps due dehydrogenation of Ga vacancies [99] which is responsible for

further RF performance degradation [100].

Hot electrons are highly energetic electrons with a significantly higher effective

temperature than the lattice are principal contributors to device degradation, and are

caused by the presence of a strong electric field [9]. Trap states are created because of

the injection of hot electrons in the AlGaN layer, the SiN passivation layer or the GaN

buffer layer, which causes degradation in performance and reliability [101–103]. An

innovative Π-gate HEMT concept was modeled using a Cellular Monte Carlo (CMC)

in [104], where the standard T-gate stem was divided into two separate stems, leading

to both symmetric and asymmetric gate contacts. Use of an asymmetric Π-gate

configuration can reduce hot electron generation up to 40% under DC operation.

It was demonstrated [104] that such a reduction in hot electrons was achieved

while maintaining similar device performances as that of conventional T -gate. Self-

heating effects were not included in that original study, but were incorporated in

subsequent CMC device studies [105] by incorporating the temperature dependence

of thermal conductivity and the effect of convective boundary conditions at material

interfaces. These studies led to investigation of the effect of lateral scaling ( scaling

of Gate-Source and Drain-Source spacing) in T-gate AlGaN/GaN HEMT and its

performance in terms of transit frequency, ON-resistance and DC output characteristics,

which were compared with the experimental results reported in [106, 107]. Hot spot
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characterization and acoustic and optical temperature maps were obtained in these

studies through the modeling of electron-phonon interaction. These studies considered

T-gate contacts only for thermal characterization. However, a comprehensive and

conclusive study of Π-gate performance under self heating and comparison with T-gate

under worst case scenarios is yet to be done.

Sehra et. al. have investigated Π-gate in a series of papers [108–112] using the

Silvaco’s TCAD ATLAS tool. It is worth mentioning that the T –gate geometry has

been compared with Π-gate (both symmetric and asymmetric) and effects of the Π-gate

pillar height is investigated along with a recessed version of it [108]. It was concluded

that the symmetric Π-gate has 10% and 5% lower fT and fmax, respectively with respect

to a T–gate of same height (for asymmetric: 1.1% lower and 3% higher, respectively),

but by increasing the stem height by nearly three times, an increase by 6.5 % and 5%

respectively in fT and fmax with similar DC performance. The recessed gate shows

25% and 13% improvement in fT and fmax, respectively. Furthermore, electrothermal

simulations reveal that Π-gate is about 5% cooler than the corresponding T –gate

along the channel. In [109], Π-gate and T–gate were compared on linearity and

intermodulation distortion (IMD) metrics showing superiority of Π-gate over T–gate

by 10% and 30% respectively. Also, decrease in stem height reduces IMD at the cost of

reduction in linearity. In [110], The symmetric and asymmetric recessed Π-gate were

shown to have 64.5% and 77.5% higher intrinsic gain and improved noise figure (NF)

metric over the T–gate, respectively. In [112] efficacy of Π-gate has been investigated

taking advantage of thin AlGaN barrier as compared to a similar experimental T

–gate showing enhanced Π-gate performance with respect to breakdown voltage and

pulsed power applications.

The author would like to express the necessity of the study: at one hand, the

commercial device simulators such as Silvaco’s ATLAS tool models carrier transport
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using drift-diffusion or hydrodynamic model which are obtained from the first and

second moments of Boltzmann Transport Equation (BTE) and required an externally

supplied closure relation to be solved. On the other hand, to simulate the device self-

heating effects the Joule heating model is used with charge transport equation, which

dictates heat generation rate as W = J · EW/m3 for a current density J and electric

field E. It is however shown in [1], that the Joule heating model is valid for low electric

field ≤ 106 V/m where the carrier – acoustic phonon temperature is nearly same and

acoustic phonon are the prime carriers of heat. Under these circumstances, the phonon

energy balance equation reduces to the Joule heating model, where the carrier mobility

is approximated using at field within the relaxation time approximation. In this work,

for device self-heating, we use the local temperature-dependent electron – phonon

energy exchange rate and phonon – phonon energy exchange rate as forcing functions

in the energy balance equation separately for acoustic and optical phonons yielding

device acoustic and optical temperature maps separately, which gives enhanced insight

into hot spot characterization and its spread. Finally, Cellular Monte Carlo algorithm

solves the complete non-linear full band BTE yielding electron energy distribution

function (EDF) as the solution which could be used for analyzing the hot electron

effects [104], this can’t be done using drift-diffusion or hydrodynamic model of carrier

transport.

We feel that, an investigation is needed to test the efficacy of Π-gate vs T-gate

under worst possible scenario for hot electron suppression taking self-heating into

account to investigate its effect on device performance. The Π-gate does not alter the

peak electric field [104] and with gate – drain length scaling the peak electric field

increases. So we choose experimental T –gate reported by Altuntas et. al. in [6]

which is scaled version of T–gate reported by Fitch et. al. [107] to be compared

with corresponding Π-gate. The device layouts chosen for present study are shown in
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Figure 4.5 and Figure 4.6. Further, since the electric field along the channel increases

with decrease in stem height, we also consider a shorter version of the Π-gate device

with 60 nm stem height. In summary, we compare the T –gate and Π-gate geometries

with stem height 120 nm and 60 nm, respectively. The symmetric version of Π-gate

has LG1 = LG2 =75nm (Figure 4.6) whereas the two asymmetric version are: (1) LG1

= 50 nm and LG2 = 25nm (2) LG1 = 25 nm and LG2 = 50nm. The Π-gate has a

spacer length d = 50 nm separating the two gate stems, therefore we simulate T –gates

with an added 50 nm in the source–drain region in order to equate device width for

comparison.

Figure 4.5: Device layout of a T-gate GaN/AlGaN HEMT with a stem length of 120

nm [5].
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Figure 4.6: Device layout of a Π-gate HEMT, formed by splitting the stem of the

T-gate into two stems [5].

4.4 Simulation Setup

The device geometry is represented with a nonuniform tensor product grid. The

modeling of the charge carrier dynamics is performed within the CMC framework, in

which the trajectories of electrons are tracked in the first Brillouin Zone (BZ1) [22] and

scattering events due to piezoelectric (acoustic) phonons, ionized impurities, deforma-

tion potential, polar optical phonons and impact ionization are considered. To model

the strain effects caused by GaN-on-Si technology, a density of threading dislocations,

TDD = 5× 109cm−2 [113] is taken into account. The charge distribution is modeled

as homogeneous along the depth or z-direction of the device, so the corresponding

component of the electric field is effectively zero. Therefore, the computational cost

is minimized by modeling only the charge transport in 3-D momentum space, while

the electrostatics is solved in 2-D on the xy-axes of Figure 4.5, with an arbitrary

depth used for normalization. Some of the material parameters used for this study

are tabulated in Table 4.1.

64



Schottky Barrier Height 0.86 eV [114]

Polarization sheet charge density
0.1055 C/m2

[81]

Surface Charge density in AlN/AlGaN

interface

-0.0826 C/m2

[81]

Surface Charge density in AlGaN/GaN

cap interface

-0.0229 C/m2

[81]

Surface Charge density in GaN cap/SiN

interface

0.04 C/m2

[81]

Longitudinal elastic constant
265 GPa

[115]

Transverse elastic constant
44.2 GPa

[115]

Optical phonon energy 0.091 eV

Table 4.1: Table with different material parameters used for this study.

4.4.1 Energy Balance Equation

The electrons in the channel loose energy to highly energetic optical phonons

and to some extent to acoustic phonons. The optical phonons decay into acoustic

phonons due to anharmonicity of the crystal at timescales higher than electron-phonon

scattering rate. Optical phonon decay into acoustic phonons having a higher group

velocity and contribute more to the thermal conductivity before being absorbed at

the heat sink [12].

The process of heat generation and propagation can be accurately represented

with a particle-flux electro-thermal simulator by solving the Energy Balance Equation
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(EBE) for phonons [116] in each cell of the real space grid of the device, while for

electrons traditional MC algorithm is applied. The phonon EBE is derived directly

from the phonon Boltzmann Transport Equation [21]. Furthermore, the EBE can be

solved for each individual phonon mode or for a group of modes, e.g., for the acoustic

and optical phonon modes resulting in both an acoustic and a optical temperature

map. The EBE for each phonon mode, or group of phonons, µ is expressed as

δWµ

δt
= −∇ · Fµ +

δWµ

δt

∣∣∣∣∣
e−p

+
δWµ

δt

∣∣∣∣∣
p−p

(4.1)

where Wµ(r, t) = (1/Ω)
∑

k(Eµ(k)fµ(r,k, t) is the ensemble energy density within the

volume Ω of the reciprocal space, Fµ(r, t) = (1/Ω)
∑

k ν(k)(Eµ(k)fµ(r,k, t) is the

energy flux, and two partial derivatives on the right-hand side represents contribu-

tions to Wµ due to electron-phonon (e− p) and phonon-phonon (p− p) interactions,

respectivley.

If steady-state conditions are considered, the left-hand side of Equation 4.1 is null

and the total heat generation rate, Pµ can be found from the sum of the electron-phonon

and phonon-phonon interaction terms

∇ · (κµ(r, T )∇T ) = −

(
δWµ

δt

∣∣∣∣∣
e−p

+
δWµ

δt

∣∣∣∣∣
p−p

)
= −Pµ (4.2)

where κµ is the thermal conductivity of phonon mode µ and the energy flux has been

approximated by using Fourier’s law: Fµ(r) = −κµ(r, T )∇T .

An efficient elliptical partial differential equation (PDE) solver is included in

most device simulators for solving Poisson’s equation. Manipulation of Equation 4.2

into the form of an elliptical PDE therefore leads to an easier implementation. In

the finite difference framework, the thermal conductivity κµ,C , which is originally

dependent on both position and temperature, is considered to be constant within the

cell and to vary from one cell to another. To take the temperature dependence of the
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thermal conductivity into account, the Kirchhoff transformation [117] can be used

to manipulate Equation 4.2 into an elliptical Poisson-like PDE. Using the Kirchhoff

transformation a new variable Θ, can be defined as the “apparent” temperature

as [117]

Θµ,C(T ) = Tref +
1

κµ,C(Tref)

∫ T

Tref

κµ,C(τ)∂τ, (4.3)

where κµ,C(Tref) is the independently known thermal conductivity in a particular

cell C at a reference temperature Tref . In this work, a power law of the form

κµ(T ) = κref(T/Tref)
α is adopted to model the temperature-dependent thermal

conductivity, where α is a fitting parameter [118].

The EBE can then be expressed as a elliptical PDE for the apparent temperature

Θ

∇2Θµ,C = − Pµ(r)

κµ,C(Tref )
(4.4)

The linearity of Equation 4.4 is subject to the conditions that the temperature and its

derivative are continuous in the normal direction of the material boundaries [119]. As

a consequence, hetero-structures are subject to the condition that the value of α in

the temperature dependence must be the same in every material.

The forcing function, Pµ(r) in Equation 4.4, can be replaced with the RHS of

Equation 4.2 in Equation 4.4, where the electron-phonon (e−p) interaction is computed

from the actual energy exchanged during acoustic or optical phonon scattering, rather

than being approximated with the Relaxation Time Approximation (RTA) [18] as

done in earlier studies [12]. The phonon-phonon (p − p) interaction is modeled by

using an RTA as

∂Wµ

∂t

∣∣
p−p

= Ci

(
Ti − Tj

τi−j

)
, (4.5)

where Ci is the heat capacity of ith phonon mode, Ti,j is the temperature of two phonon
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modes and τi−j is the decay time from ith to jth mode. In this work, Equation 4.5

represents the expression of the anharmonic decay of optical phonons into acoustic

ones. In this approach, simultaneous solutions of two sets of Equation 4.4 are carried

out, one for the acoustic phonon mode group and another for the optical phonon mode

group.

Different mechanisms involving electron scattering are discussed in Chapter 2. The

electron scattering rates in each cell are updated using rejection algorithm according

to the new temperature and then a new heat generation is calculated. This process is

continued until heat generation rate is stabilized and convergence is achieved for the

temperature maps in an iterative loop.
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4.5 Simulation Results

Figure 4.7: Kinetic energy (green (T -gate) and blue (Π(50,25)-gate) solid lines) and

electron scattering rate (dashed red (T -gate) and black (Π(50,25)) lines) along the

channel at bias point VDS = 10 V, VGS = 2 V. Both gates have a stem length of 60

nm.

Figure 4.7 shows the kinetic energy and scattering plots of electrons along the

channel for one T -gate and one Π-gate device. The average electron energy under the

gate for T -gate is 0.24eV, which reduces to 0.21eV for Π-gate, whereas it remains at

0.047eV outside the gate region for both devices. These high energetic electrons are

emitting optical phonons and eventually lose energy at the end of the gate region. The

temperature maps for the acoustic and optical modes, respectively, obtained at the bias

point VDS=10 V, VGS=2 V are shown in Figure 4.8 and Figure 4.9 for a T-gate of gate
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length LG = 75 nm and stem height 60 nm and a Π-gate having gate lengths LG1 = 50

& LG2 = 25 nm and stem height of 60 nm, respectively. For these bias conditions both

high current and electric field are present, while the DC power remains at a moderate

level. The peak temperature is on the drain side of gate due to increased electron-

optical phonon scattering rates as shown in Figure 4.7. The maximum acoustic and

optical mode temperature within the entire device are extracted, and are shown in

Table 4.2 for each device layout. For the acoustic phonon mode, the peak temperature

is around 370 K in all devices but the optical temperatures are significantly different

in the T -gate and Π-gate devices. The peak optical temperature for T -gate devices

is around 550 K , while for the Π-gate it is around 10 K lower. It has been found

that the difference of the optical temperatures between the T-gate and Π-gate comes

from the extra 50 nm length between the two stems of the Π-gate, which allows for

increased relaxation of optical phonons. Therefore, for comparative purposes we show

simulations results of a modified version of the T -gate layout fabricated by Altuntas

et. al., where the source-to-gate access region length has been increased by 50 nm

(T ∗
120). It is seen that T ∗

120 has the lowest optical temperature of 534K, whereas the

asymmetric Π
(50,25)
120 has value of 539K. Also, for a reduced stem height Π

(50,25)
60 shows

an increase of optical temperature to 543K, while reducing the acoustic temperature

to 366K as compared to 371K for a stem height of 120nm. This behavior is due to

an increase in electric field along the channel favoring electron-optical phonon energy

exchange over acoustic phonons. This trend of acoustic/optical temperature variation

with stem height is same across all devices.
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(a) Acoustic mode

(b) Optical Mode

Figure 4.8: Temperature Map of acoustic (a) and optical (b) mode for a T-gate

HEMT with 60 nm stem length.
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(a) Acoustic mode

(b) Optical Mode

Figure 4.9: Temperature Map of acoustic (a) and optical (b) mode for a Π-gate

HEMT with gate lengths of 50 & 25 nm and a 60 nm stem length.
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Gate Architectures

Peak acoustic

temperature

(K)

Peak optical tem-

perature

(K)

T-gate (Stem length 120 nm) 373 549

T-gate (Stem length 60 nm) 368 556

T-gate (Stem length 120 nm, with an

extra 50 nm on LSG)
367 534

T-gate (Stem length 60 nm, with an

extra 50 nm on LSG)
365 541

Π-gate (Gate lengths 25,50 nm & Stem

length 120 nm)
369 539

Π-gate (Gate lengths 25,50 nm & Stem

length 60 nm)
367 547

Π-gate (Gate lengths 37.5, 37.5 nm &

Stem length 120 nm)
369 539

Π-gate (Gate lengths 37.5, 37.5 nm &

Stem length 60 nm)
366 546

Π-gate (Gate lengths 50, 25 nm & Stem

length 120 nm)
371 539

Π-gate (Gate lengths 50, 25 nm & Stem

length 60 nm)
366 543

Table 4.2: Table with the peak temperatures for acoustic and optical phonon modes

for different devices.
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Figure 4.10: DC output characteristics (a) of different T and Π-gates at VGS = 2 V,

where the subscripts indicate the height of the stem and the superscripts indicate the

lengths of the gate. Transfer characteristics (b) shown on linear and semi-logarithmic

scale (inset) for a simulated T -gate and a Π-gate with a 120 nm stem length for

VD = 6 V. The experimental values refer to the T -gate fabricated by Altuntas et. al.

[6]
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Figure 4.10 shows the DC output characteristics of each of the ten devices we

studied (four T-gate and six Π-gate structures), with the gate bias held constant

at VG = 2 V. It is evident that they show similar I − V characteristics and the

simulated current is slightly higher compared to the experimental data observed by

Altuntas et. al. [6]. The reason behind the overestimation of current is due to a lower

threshold voltage due to absence of the substrate in the present simulation, resulting

in a higher charge density in the channel at the same gate voltage when compared to

the experimental structure. For T ∗
120 a reduction of 7% is seen in the drain saturation

current due to an increase in the source access resistance causing a reduction of

the effective VGS. Figure 4.10 also shows the transfer characteristics along with the

transconductance Gm of both T -gate and Π-gate devices with a stem length of 120

nm, which shows that both IDS & Gm closely follow the experimental measurement

of Altuntas et. al. [6]. The experimental measurement shows the threshold voltage

of the device as -2.3 V, while our simulated threshold voltage is around -2.1 V, with

the slight difference again arising from the absence of the substrate.

Using the DC electrical and thermal results as a starting point, small-signal AC

simulations were performed of all 10 layouts. The current gain as a function of the

frequency is shown in Figure 4.11 as obtained by Fourier decomposition (FD) [120].

In CMC, any field effect transistor (FET) is represented as a two-port network. The

Y-parameters are then extracted by applying two perturbations separately to gate

and drain, respectively. The sinusoidal perturbations applied on top of DC operating

point VDS = 10 V and VGS = 2 V.

From these RF simulations, it is seen that the current gain is consistently reduced

in a more realistic electrothermal (self-heating is included) simulation as compared

to an isothermal (self-heating is not included) 300K simulation due to an increase

in total scattering. As a consequence, the cutoff frequency is around 20GHz lower
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Figure 4.11: Current gain vs frequency for a T-gate of stem length 120nm and gate

length 75 nm and for a Π-gate HEMT with 25 & 50 nm gate lengths and a stem

length of 120 nm .The symbol * represents the T gate with extra 50nm added on LSG.

than the isothermal case for all of the devices considered in this study. Figure 4.12

represents the cutoff frequencies extracted from the simulations of different devices.

These results can be explained with the definition of the cutoff frequency,

fT =
gm/(2π)

[Cgs + Cgd] · [1 + (Rs +Rd)/Rsd] + Cgd · gm · (Rs +Rd)
(4.6)

where gm, Cgs, Cgd, Rs, Rd and Rsd are transconductance, gate-to-source and gate-to-

drain capacitance, source and drain parasitic resistance and source to drain resistance,

respectively [121]. If the parasitic resistances Rs and Rd are considered negligible,

then (1) can be expressed as:

fT =
gm

(2π) · [Cgs + Cgd]
(4.7)
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Figure 4.12: Cutoff frequencies for different T -gate and Π-gate layouts, the symbol *

represents the modified devices with an extra 50 nm on LSG .

Therefore, with an increase in gm and decrease in transit time under the gate, the

cutoff frequency fT can be improved. The Π-gate devices have lower carrier velocity

(87.8 Km/s) than the T -gate devices (89.6 Km/s) and so have higher (5.3%) transit

time under the gate. From Figure 4.12 it is evident that T -gate device with same stem

length shows better cutoff frequency than the Π-gate device. Devices with 60nm stem

height have lower cutoff frequency than their 120nm counterparts due to increased

capacitance (Cgs and Cgd). The Π-gate with gate lengths of 50 & 25nm and a stem

length of 60nm shows the lowest cutoff frequency of 98 GHz for the electrothermal

case, while the T -gate with a stem length of 120nm shows the highest cutoff of 138

GHz for the isothermal case. The electrothermal cutoff frequency for the T -gate with a
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stem length of 120nm is around 128.97 GHz, where the experimental cutoff frequency

is 116 GHz. Therefore, with the introduction of electrothermal solver, the simulated

RF performance becomes significantly closer to the experimentally measured value.

The slight over estimation of the cutoff frequency is due to the increased Gm as shown

in Figure 4.10 resulting from the absence of substrate. All devices show a significant

decrease of about 7% in cuttoff frequency from isothermal to electrothermal simulation,

with the highest one being 7.95%.

Figure 4.13: Electron energy distribution function for VGS = -0.645V and VDS = 6V

& 8V.

As it has already been shown, the asymmetric Π gate geometry with LG1 > LG2

is most effective over other Π-gate configurations in hot electron suppression, hence

we choose the asymmetric Π gate layout to evaluate hot electron mitigation [104]. In
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GaN, the hot electrons responsible for trap generation are with energy greater than

5.5 eV [104]. The DC power (Pdc) increases with VDS, so we compare the Energy

Distribution Function (EDF) for T-gate and Π–gate for energies exceeding 5.5 eV as

shown on Figure 4.13. The Π –gate shows 19.75% and 18.07% decrease over T–gate

for VDS = 6 V and 8 V, respectively corresponding to a DC power of 2.5 W/mm and

3.6 W/mm, respectively. Although the DC power extracted by the device depends on

the DC load line imposed by external circuit, we have chosen VGS corresponding to

device maximum transconductance and varied VDS from 6V – 10V.

4.6 Conclusion

In this chapter, we compared of various T and Π-gate HEMT architectures through

electrothermal simulation using CMC the device simulator. Reduced stem height

geometries were considered to facilitate hot electron generation so as to assess Π-gate’s

effectiveness in their suppression. Similarly, an extra T –gate configuration with added

50nm (T ∗
120) in source –gate was chosen to make the source-drain distance similar

for both T and Π-gate. The DC characteristics of all gate configuration were found

to be similar, except that for a drain current decrease of 7% in the T ∗
120- due to the

increase in source access resistance and reduced effective VGS. In RF simulations, the

transit cut-off frequency shows 7% drop for the electrothermal case as compared to

the isothermal case. T–gate device with 120 nm stem height shows highest cut-off

frequency of 137.8 GHz/128.97 GHz for isothermal/electrothermal scenarios. The

asymmetric Π-gate shows hot electron suppression up to 19.75% corresponding to

a DC power of 2.5 W/mm . The temperature maps show that the Π-gate devices

have nearly the same acoustic temperature but lower optical temperature than the

corresponding T –gate structures. The peak optical temperature for Π-gate increases

with decreasing stem height due to increased electric field along the channel facilitating
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electron – optical phonon scattering. Though the T ∗
120 gate shows the lowest optical

temperature of 534K and cutoff frequency of 129 GHz, its apparent advantage as a

power transistor is reduced due to lower transconductance (due to reduced effective

VGS) and its inability to suppress hot electrons.
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Chapter 5

DETERMINATION OF THERMAL PROPERTIES OF DIAMOND USING

CELLULAR MONTE CARLO DEVICE SIMULATOR

5.1 Introduction

Carbon is the 6th most commonly found material in the entire universe [122]. Due

to its position in periodic table, it has the unique capability of forming tetrahedral,

hexagonal and linear bonds. The valence electrons present in carbon can form hybrid

orbitals, which leads to this unique bond formation [123]. sp3, sp2 and sp hybridization

lead to tetrahedral, hexagonal and linear bonds, respectively. For sp3 hybridization,

four of each valence electrons forms σ-bond with four neighboring atoms. In sp2,

three electrons form a σ-bond but the fourth one forms a π-bond. In sp hybridization,

two electrons form σ-bond and other two form π-bond. These differently bonded

structures show different physical and chemical properties, and this phenomena is

called as allotropism. Diamond and graphite are two most common allotropes of

carbon. While in diamond the hybridization is sp3 and the structure is tetrahedral, on

the contrary graphite is sp2 hybridized and so it has a trigonal planar structure [124].

Due to their crystal structure, diamond has high thermal conductivity and negligible

electric conductivity, while graphite shows high electrical conductance but lower

thermal conductance.

As an ultra wide-bandgap (UWBG) material, diamond has been a material of

interest due to its unique properties. Some notable properties of diamond include high

electron and hole mobility of about 2000 cm2/Vs, breakdown field of 107 V/cm, Debye

temperature of around 1900K and thermal conductivity around 25 W/cm·K [125]. A
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comparison of different properties of diamond with other commonly used semiconduc-

tors is shown in Table 5.1. It is obvious that diamond posess a significant advantage

for thermal applications over its counterparts.

Properties/Materials Diamond Si 4H-SiC GaN

Bandgap (eV) 5.47 1.12 3.26 3.5

Electron Mobility (cm2/Vs) at 300 K 1, 900− 2, 300 1,500 900 1,250

Hole Mobility (cm2/Vs) at 300 K 1, 500− 2, 300 600 100 200

Dielectric Constant 5.7 11.9 9.7 9.5

Thermal Conductivity W/cm ·K) 25 1.48 4.9 1.3

Electron Saturation Velocity (107 cm/s) 2.7 1 2.7 2.7

Breakdown Field (105 V/cm) 100 3 30 30

Debye Temperature (K) 1,860 645 1,200 608

Hardness (kg/mm2) 10,000 1,000 4,000

Johnson’s FoM 81,000 1 278 215

Baliga’s FoM 25,100 1 125 187

Bipolar Power Switching Product 1, 426, 711 1 748 560

Table 5.1: Comparison of material parameters of diamond with other popular

semiconductors [126]

Natural diamond and sysnthetic diamond occur in face centered cubic structure,

with a lattice constant of 3.56 Å. Diamond technology is becoming more mature due

to continued research over the last 60 years. The growth mechanisms of synthethic

diamond primarily involve two techniques: High-Pressue High-Temperature (HPHT)

method [127] and Chemical Vapor Deposition method [128]. In HPHT, graphite is

converted to diamond either directly or with the help of any catalyst, taking advantage
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of high thermal stability of diamond. There are couple of CVD techniques available

for diamond growth, such as: plasma-jet CVD [129], microwave plasma CVD [130]

and hot filament CVD [131]. In these methods, a diamond seed is placed in a highly

heated carbon rich gas. Due to ionization of the gas, pure carbon molecules from the

gas are attached to the seed forming the synthetic diamond.

A strong isotope effect is observed on the materials that have a lower atomic mass,

along with the compounds with higher ratio of mass difference between isotopes to the

atomic mass [132]. Diamond formed with light carbon atoms, has mass difference of

8.3% (while it is 3.5% for Si) between its two isotopes found in nature (98.9% 12C and

1.1% 13C). Furthermore, strong interatomic bond, low anharmonicity of interatomic

potential and unsually weak Umklapp three-phonon process at room temperature

contribute more to pronounced isotope effect in diamond [133]. Due to higher atomic

density and bond energy density, a larger amount of energy is needed for defect

formation or elemental substitution in diamond, which makes it only susceptible to

easily dissoluble elements like hydrogen, nitrogen and boron [134].

Figure of merit (FOM) is commonly used to quantify material’s eligibility to be

used in high frequency, high power and high temperature operations [135]. Chaudhary

et. al. [136] reviewed the values of figure of merit like Baliga’s FOM [137] and

Huang’s FOM [138] in details, from where it is obvious that diamond has high values

of FOM compared to its counterparts. To take the advantage of its high thermal

conductivity, diamond is being used for different thermal applications in semiconductor

devices. Particularly for AlGaN/GaN High Electron Mobility Transistors (HEMT),

where self-heating leads to a decrease in electron mobility along with reduced power

added efficiency (PAE), a device level heat spreader induced near the hot spot can play

a major role minimizing the temperature of the channel [139, 140]. In [141], it was

shown that use of diamond instead of SiC as a substrate, can lead to 40-45% decrease in
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operating junction temperature. At the same time, GaN HEMT on diamond provided

3.6 times higher RF power than GaN HEMT-on-SiC within same active area [142, 143].

Lu et. al. presented a detailed review on the integration of Diamond as heat spreader

in HEMT for techniques like GaN epitaxial on-diamond, transfer of substrate with

diamond, capped diamond on top and dual side heat spreader [144]. Diamond Schottky

barrier diode (SBD) are being studied extensively, where a maximum breakdown field

of 9.5 MV/cm [145], high operation current greater than 20A [146], high blocking

voltage above 10KV [147] and a low on-resistance have been obtained [148]. Diamond

SBD showed a leakage current of less than 10−7A/cm2, which is 2-4 orders of magnitude

lower than SiC SBD due to larger barrier height [149]. Ongoing research works related

to transistors based on diamond are [150]: Hydrogen terminated accumulation FETs

(H-FETs), Oxygen terminated inversion channel FETs (I-FETs), metal-semiconductor

FETs (MESFETs) and junction FETs (JFETs). Prior efforts to show the bipolar mode

of operation using diamond failed due to high resistivity of n-type base layer along with

low diffusion length of minority carriers (holes) [151], but due to significant progress

in n-type doping technology there has been successful fabrication of BJTs [152].

Deep depletion metal-oxide-semiconductor FET (D3MOSFET) has been fabricated

recently and a critical electric field of 5.4MV cm−1 has been achieved at a drain-source

bias of -175V [150]. A two-dimensional hole gas (2DHG) can be formed near the

hydrogen-terminated surface to obtain close to zero activation energy hole channel, a

vertical p-channel MOSFET based on 2DHG is fabricated here [153] where a on/off

ratio close to 108 has been demonstrated.

In a nutshell, the theoretical interpretation of calculation of isotope effect on

thermal conductivity mostly revolves around Debye model, Callaway model [154] ,

numerical solution of Boltzmann transport equation (BTE) and kinetic collective model

[155, 156]. Normal (N) scattering doesn’t contribute to the thermal resistance directly
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and it was ignored in the Debye’s model. An excellent integration of N scattering into

the Debye’s model using Callaway formula [154] was done by Novikov et. al. [157],

where thermal conductivity was computed over a wide range of temperature range

along with the effect of isotope and grain size on it. Asen-Palmer et. al. also modified

the Debye-Callaway model to incorporate the effect of both longitudinal and transverse

phonons [158], which was later used by Morelli et. al. to show estimate the isotope

effect on diamond, germanium and silicon where Gruneisen constants and sample

diameter were used as fitting parameters [159]. Han et. al. used a two-step model for

explaining contribution of N scattering on thermal conductivity of dielectric materials

[160] and diamond [161]. Firstly, the low frequency phonons are transferred to a

high frequency region because of N processes and on the next step they go through

resistive processes. Effect of isotope scattering on thermal conductivity of diamond

was also analyzed by Sparavigna et. al. through an iterative solution of phonon

Boltzmann transport equation (BTE) without any approximation about relaxation

time [162], where three-phonon normal and umklapp process are treated rigorously as

an effect of real lattice dynamics. In [163], a detailed derivation for phonon-phonon

scattering rate has been given using anharmonic continuum theory, where it is also

shown that inclusion of drift term for normal process into the Callaway’s model leads

to a significant contribution to the thermal conductivity above 150K. A first-principle

based approach to solve BTE to compute thermal conductivity of diamond has been

used by Ward et. al. [133], where density-functional perturbation theory [164] has

been used to calculate the harmonic and anharmonic interatomic force constants which

are used as input to BTE. Recently, Inyushkin et. al. measured thermal conductivity

of polycrystalline diamond along with natural and isotopically enriched form, also

using a detailed Callaway’s theory considering scatterings due to external boundaries,

point defects, dislocations, dopants and grain boundary validated his experimental
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results [165].

While all of these theoretical analysis provide background for assessing the quanti-

tative effect of isotope solely on thermal conductivity in diamond, the authors feel the

scarcity of study that sheds light on isotope effect on different macroscopic properties

of phonon like mean free path, relaxation time etc. that eventually lead to thermal

conductivity. For micro-scale devices, if the characteristic device length is much larger

than MFP, then heat transport is entirely diffusive and the effective thermal conduc-

tivity is similar to the bulk thermal conductivity [166]. If the characteristic length

is less MFP of phonon, the heat transport becomes nondiffusive due to boundary

scattering. For instance in diamond nanowires, [167] shows that the the effective ther-

mal conductivity reduces half of its bulk value when the diameter is 670nm. For this

reason, this study involves effort to define maximum achievable thermal conductivity

in terms of mean free path in semiconductor devices. Moreover, to the best of authors

knowledge, there is no study discussing the specific contribution from different phonon

modes and their change along with isotope composition. Mode-wise contribution is

particularly important for band structure engineering. Qian [168] et. al. summarized

the effort on band structure engineering of phonons that ultimately lead to a increase

in thermal conductivity of BAs to 1200 Wm−1K−1 [169] from 200 Wm−1K−1 [170]

at room temperature. It was possible because of some first principles calculations

[171, 172] that investigate details of phonon-phonon interactions in BAs. In this study,

for similar reason, specific contribution from different modes of phonon are studied

so that further investigation can be conducted to increase thermal conductivity of

diamond.

A particle-based Ensemble Monte Carlo (EMC) method [10] can provide a space-

time solution of BTE, where trajectories of simulated particles are tracked in momen-

tum and real space. A Monte Carlo algorithm is used to determine the scattering
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process and the final states after scattering along with probability are computed during

the run time. As an extension of EMC, Cellular Monte Carlo (CMC) method [58]

stores the final states along with probabilities in a large lookup table which makes it

computationally faster than EMC. A Cellular Monte Carlo (CMC) simulator, which

solves BTE including three phonon interactions was presented in [173], which was

validated using thermal conductivity of Silicon as a function of isotopic composition,

temperature and film thickness. In this study, the same tool have been used for the

case of diamond.

5.2 Simulation Setup

Under semi-classical approach, charge transport can be accurately depicted by a

seven-dimensional distribution function f(r,q, t), where r and q are the position and

wavevector of the carrier at a specific time t. Original Boltzmann Transport Equation

(BTE) assumed binary collisions only, while Peierls et. al. [21] implemented a method

for heat transport by particles, where non binary collisions are included. It is called

as Peierls-BTE (PBTE) or phonon BTE, which can be represented as:

∂f

∂t
+

∂r(ql)

∂t
· ∇rf =

∣∣∣∣∣∂f∂t
∣∣∣∣∣
Ccol

(5.1)

where ql denotes the wavevector for lth mode of phonon. If we ignore the index of

modes for clarity, the collision integral can be expressed as:∣∣∣∣∂f∂t
∣∣∣∣
Col

=
M∑

m=1

∑
q1,...,qm⊂BZ1

Γd

(
q,q1, . . . ,qm, f

)
−

Γr

(
q,q1, . . . ,qm, f

) (5.2)

where M is the total phonon states, Γd(q, . . .) and Γr(q, . . .) are the decrease and

increase in phonon population respectively in state q. It is impossible to obtain a

closed-form solution of the above equation without approximations on collision integral
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or distribution function. In this study, the stochastic particle-based CMC presented

in [173] is used for obtaining a solution of BTE.

In this study, 2 types of phonons scattering are considered: 1) Anharmonic Scat-

tering and 2) Isotope Scattering. At room temperature, other anharmonic effects

except three-phonon scattering are negligible [174], for this reason this study only

considers three-phonon scattering and is ultimately referred to as anharmic scattering.

Anharmonic scattering of phonons can be classified into two categories: 1) Recom-

bination, where two phonons are combined into a third phonon conserving energy

and momentum and 2) Decay, where a single phonon leads to the creation two new

phonons. The decay rate at which phonon with wavevector q generates two phonons

with wavevectors q′ and q′′ can be expressed as

Γd(q,q
′′,q′′) = n(n′ + 1)(n′′ + 1)A(q,q′′,q′′) (5.3)

where n, n′ and n′′ represents the number of phonons with wavevector q, q′′ and q′′

respectively and A is a factor representing the strength of three-phonon process, which

depends on the elastic properties but not on the phonon population. Similarly, if two

phonons with wave vector q′ and q′′ recombines into a phonon having wavevector of

q, the recombination rate will be

Γr(q,q
′′,q′′) = (n+ 1)n′n′′A(q,q′′,q′′) (5.4)

The recombination and decay rates become equal during thermal equilibrium, where

the phonon population in each state can be described with Bose-Einstein distribution

as [174]

n0(q, T ) =

(
exp

(
ℏω
kBT

)
− 1

)−1

(5.5)

where T represents the absolute temperature, ℏ stands for the reduced Plank constant,

kB is the Boltzmann constant anad ω represents the frequency of phonon. From
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[175, 176], factor A can be computed as

A(q,q′′,q′′) =
2ℏ
M3

C2(q,q′′,q′′)

ωω′ω′′ δ(ω − ω′ − ω′′) (5.6)

where M is for the average atomic mass and C2(q,q′′,q′′) represents the Fourier

component of anharmonic coupling. It is possible to obtain an expression for this

term applicable for acoustic phonons using [176] as

C2(q,q′′,q′′) = (
4γ2

3Nc

)(
M2

v2
)(ωω′ω′′)2δ(q− q′ − q′′) (5.7)

where γ is the Grüneisen constant, Nc is the numner of unit cells in the lattice and v

is the sound velocity.

Isotopes are atoms of the same element having same number of protons but different

atomic mass due to different number of neutrons. Although isotopes doesn’t alter

crystal or electrical structure, the difference in mass can disturb the periodicity of the

crystal to cause large phonon scattering. The increase in phonon scattering ultimately

leads to a significant reduction in thermal conductivity tensor. Isotopic enrichment

can lead to increase in thermal conductivity in semiconductors like 30% in germanium,

60% for Silicon and 50% for diamond [159], so this isotope scattering events should

not be overlooked.

The matrix element necessary for isotope scattering can be found from [174, 177]

as

Ξiso(q,q
′) =

ℏ
4ρNc

√
(ω, ω′)(e0 · e∗1)Mq,q′a(−q)a(q′), (5.8)

where ρ is the density of material, Nc is the number of elementary cells, e0 and e∗1 are

the polarization vectors of q and q′, Mq,q′ can be defined as

Mq,q′ =
∑
j

(M −Mj)exp[i(q− q′) · rj] (5.9)

where M is the average mass, rj and Mj are the position and mass of the jth atom

respectively. Fermi’s Golden rule can be used to replace creation and annihilation
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operators with matrix representations and thus obtaining the scattering rate as

Γiso(q,q
′) =

πKiso

2Na

ωω′(e0 · e∗1)2δ(ω − ω′)n(n′ + 1) (5.10)

where Kiso is a mass weighting factor defined as

Kiso =
∑
i

fi

(
Mi − M̄

M̄

)2

, (5.11)

where i represents the index of isotope species and fi stands for the fraction of the

solid made with that species.

In this study, using CMC, exactly same approach as discussed in [173] has been

used to form the lookup table or scattering table, which contains all the final states

after different scattering mechanisms along with probabilities. For dispersion relation,

14 parameter valence shell model is used and phonon modes are segmented by a

non-uniform grid. For reducing the size of the lookup table, similar rejection algorithm

as [173] is used, where the maximum scattering rate is compared to the actual value

based on local conditions.

Different tensors of thermal conductivity are computed using [176] as:

λk,j =
∑

q⊂BZ1

vkvjτ(q)
(ℏω)2

kBT 2
n(q, T )(n(q, T ) + 1) (5.12)

where k and j are spatial directions, v, τ and ω are the velocity, average time between

scattering events and frequency of phonon.

5.3 Simulation Results

In our simulations we have modeled bulk diamond without any defect/dislocations

and only isotope of carbon 13C which substitutes the native 12C atoms at their re-

spective lattice sites. We consider three different samples with isotope concentration

of 0.001% (ultrapure), 0.1% and 1.07% (natural) respectively. The simulation tem-

perature range is chosen between 40K to 500K. Below 40K, the dominant scattering
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mechanism would be the device boundary (surface scattering) and beyond 500K the

higher order coupling between phonon modes (four-phonon process) would dominate

[178]. From power transistor/diode perspective the temperature region between 300K

– 500K is of interest.

Firstly, we plot the steady state phonon energy distribution function (EDF) as

shown in Figure 5.1 is obtained through solution of full band nonlinear Peierls-

Boltzmann transport equation in Equation 5.1. The total phonon concentration at

a given position in real-space of the bulk diamond is obtained by integrating the

EDF with respect to phonon energy plotted on the x-axis of Figure 5.1. The phonon

concentration shows an increase of 80 times for 0.1% 13C and ∼ 300 times for 1.07%

13C with respect to 0.001% 13C which is 1.8 × 1018m−3 at 80K. The steady state

phonon concentration so obtained above is independent of isotope concentration.

Secondly, we discuss the scattering rate regimes across temperatures and isotope

concentrations. Figure 5.2 shows the total anharmonic scattering (inelastic) rates

and the isotope scattering rates (elastic) plots for all the three isotope concentrations

for 80K, 300K and 500K temperatures respectively. Clearly, the anharmonic rate is

independent of isotope concentration at all temperatures. In the low temperature

regime (80K) it is approximately ∼ 9.2 × 109sec−1 on the average. It is observed

that, for ultrapure diamond, the anharmonic rate dominates the isotope rate (∼

7.4 × 107sec−1) but when isotope concentration increases to 0.1% then the isotope

rate (∼ 7.42× 109sec−1) becomes comparable to the anharmonic rate. For the natural

diamond (1.07%), the isotope rate (∼ 7.9× 1010sec−1) dominates the anharmonic rate.

At room temperature, the anharmonic rate increases to ∼ 1.3× 1010sec−1, whereas

the isotope rate for the three samples (in the order of increasing concentration) are

∼ 7.5 × 107sec−1, 7.5 × 109sec−1 and 7.9 × 1010sec−1. Thus, only for the natural

diamond we see that the isotope rate dominates the anharmonic rate (∼ 6 times).
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Figure 5.1: Energy distribution Function for acoustic phonon modes computed for 3

different temperatures for each isotope composition.

At 500K, the anharmonic rate approximately doubles its room temperature value to

∼ 2.3× 1010sec−1, however the isotope rate shows a very small increment (in the order

of increasing concentration) are ∼ 7.9× 107sec−1, 7.9× 109sec−1 and 8.5× 1010sec−1.

Hence, for 500K the anharmonic rate is the dominant scattering mechanism for

ultrapure and 0.1% sample but for natural diamond the isotope rate dominates with

nearly 4 times higher scattering rate.

Thirdly, Figure 5.3 shows the total thermal conductivity of bulk diamond for three

13C concentration 0.001%, 0.1% and 1.07% respectively as a function of temperature

obtained through CMC simulations. It is seen that the simulated values of thermal
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Figure 5.2: Anharmonic and Isotope scattering rate for 3 different temperature for

each isotope concentration.

conductivity is in good agreement with the experimental values. The thermal conduc-

tivity for all three different isotope concentrations is maximized at a temperature of

80K. For 0.001% concentration, the maximum value is 231, 469 W/mK which drops by

74.2% to 59,681 W/mK for 0.1% concentration and drops by 94.2% to 13,410 W/mK

for the natural diamond with 1.07% 13C concentration. However, the deterioration

in thermal conductivity at room temperature and 500K is much less. The thermal

conductivity at room temperature for ultrapure diamond is 3890 W/mK which drops

by 8.8% and 38.4% respectively for 0.1% and 1.07% isotope concentrations. At 500K

the thermal conductivity of ultrapure sample is 2000 W/mK which drops by 6.8% and
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Figure 5.3: Thermal Conductivity of diamond with different isotope composition. Ref

1 refers to [7] and Ref 2 & Ref 3 indicates [8].

44.5% for 0.1% and 1.07% concentrations. To explain these observations, we compute

overall mean free path (contributed from all the phonon branches and across all states

in 1st Brillouin Zone) in Figure 5.4. At 80K, the overall mean free path for the 0.001%

C13 is 45.1 µm which drops by 35.5% to 29.6 µm and 85.2% to 6.7 µm for 0.1% and

1.07% respectively.

To gain further insights we obtain the determinants of thermal properties for each

phonon branch. As we know, diamond is a material with cubic crystal structure having,
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Figure 5.4: Average mfp for different concentration

basis atoms s = 2 in the unit cell, which gives 3s-3 = 3 optical branch and 3 acoustic

phonon branches. The acoustic phonons along [100] directions have pure polarization

and accordingly they are identified as Transverse acoustic (TA) and Longitudinal

acoustic (LA) as shown in Figure 5.5. For optical phonons we adopt the convention

that the branch with highest energy at the Γ will be called as Longitudinal optical

(LO) phonon and the two degenerate low energy optical phonon will be termed as

Transverse acoustic (as their plane of vibration being perpendicular to the direction

of propagation of energy). Figure 5.6, Figure 5.7 and Figure 5.8 show the breakup of

thermal conductivity attributed to each phonon branch at 300K and 500K respectively

for all three diamond samples. As is expected, the contribution of optical phonons at

room temperature is 1% whereas at 500K it is 5%. For the ultrapure diamond,
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Figure 5.5: Phonon dispersion relation of diamond.

the TA2 branch contributes a maximum of 41% at room temperature which decreases

to 37% at 500K whereas the LA branch’s contribution is 26% and 35% at 300K and

500K respectively. The contribution of TA1 branch decreases from 32% to 23% as

temperature increases from 300K to 500K. For the 0.1% and 1.07% isotope sample we

see a similar trend of TA2 being the dominant contributor and TA1 contribution is

the 2nd highest and LA is the 3rd highest contributor. The percentage contribution

of the above acoustic branches are nearly same across all isotope concentrations and

show a nearly same increase/decrease percentage as the temperature increases from

300K to 500K.
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(a) Modewise thermal conductivity of 0.0001% isotope

(b) Percentage contribution at

300K

(c) Percentage contribution at

500K

Figure 5.6: Modewise thermal conductivity and percentage contribution at 300K and

500K for 0.001% isotope concentration.
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(a) Modewise thermal conductivity of 0.1% isotope

(b) Percentage contribution at

300K

(c) Percentage contribution at

500K

Figure 5.7: Modewise thermal conductivity and percentage contribution at 300K and

500K for 0.1% isotope concentration.
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(a) Modewise thermal conductivity of 1.07% isotope

(b) Percentage contribution at

300K

(c) Percentage contribution at

500K

Figure 5.8: Modewise thermal conductivity and percentage contribution at 300K and

500K for 1.07% isotope concentration.

As mentioned above that the acoustic branches are the principal contributors to

thermal conductivity, we plot the EDF attributed to these branches for all isotope

concentrations by solving the Peierls-Boltzmann equation of Equation 5.1 as shown in

Figure 5.9 for temperatures 300K and 500K respectively. Also, Figure 5.10, Figure 5.11

and Figure 5.12 show the mean free path attributed to these branches at 300K and

500K respectively. We first discuss the plots at 300K temperature, for the ultrapure

diamond, the steady state phonon concentration for the two transverse phonons TA1

and TA2 are nearly same ∼ 6.5× 1018m−3 and 5.5× 1018m−3 respectively whereas

for the LA phonon it is about ∼ 4 times lower at 1.5× 1018m−3. The average mean

free path for TA1, TA2 and LA are 3.5µm, 3.6µm and 4µm respectively. The steady
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state phonon concentration are independent of isotope concentrations. The average

mean free path for TA1, TA2 and LA phonon for 0.1% isotope concentration are

3.5µm, 3.5µm and 3.7µm respectively, these values decrease to 2.8µm, 2.7µm and

3.1µm respectively for the natural diamond (1.07%). We observe that, for a given

phonon branch the average mean free path remain nearly same for all three isotope

concentrations hence their contribution to total thermal conductivity does not change

with isotope concentration. Further, the 4 times lower phonon concentration for the LA

branch with respect to the transverse branch explains its relatively lower contribution

to the overall thermal conductivity compared to its transverse counterparts. Also, the

TA1 and TA2 branches have nearly same phonon concentration and average mean

free path, but the 7 – 8 % higher contribution of TA2 branch with respect to TA1

branch can be attributed to higher average group velocity of TA2 with respect to TA1

branch.
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Figure 5.9: Particle density for different isotopic composition at (a) 300K and (b)

500K.
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Figure 5.10: MFP for 0.001% isotope

Figure 5.11: MFP for 0.1% isotope
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Figure 5.12: MFP for 1.07% isotope

Now, we discuss the thermal properties of the three acoustic branches at 500K.

The phonon concentration for TA1, TA2 and LA phonons are ∼ 2.1 × 1019m−3,

1.7×1019m−3 and 6.2×1018m−3 respectively. Whereas, the average mean free path for

the ultrapure diamond for the above three phonons are 0.72µm, 0.74µm and 0.87µm

respectively. For the 0.1% sample the values of average mean free path are 0.70µm,

0.73µm and 0.85µm respectively. Finally, for the natural diamond the average mean

free path for the three modes are 0.62µm, 0.63µm and 0.71µm respectively. We see

that the decrease in mean free path with increase in isotope concentration (from

ultrapure to natural) is around 100nm. The phonon concentration for the LA phonon

is ∼ 3 times lower than the transverse branches whereas it was 4 times lower than the

transverse branches at 300K. But, compared to the phonon concentration at 300K

we see an increase by 4 times at 500K, this explains its increase in contribution from

∼ 26% at 300K to ∼ 35% at 500K. We again see that, the phonon concentration and

103



mean free path for both the transverse branch are nearly same at 500K, the TA2

branch’s 7 – 8% higher contribution to the total thermal conductivity is attributed to

its higher average group velocity.

Although optical phonon’s contribution to the total thermal conductivity for bulk

diamond is insignificant but we give the values of their average mean free path for

ultra pure diamond for the Transverse optical TO1, TO2 and Longitudinal optical

LO branch for 300K (500K) as follows: 36.7 nm (49.7nm), 32.5nm (43.8nm) and

24.2nm (32.3nm). For 0.1% these values are 29.4nm(37.6nm), 26.2nm(33.3nm) and 20.1

nm(25.5nm). Similarly, for the natural diamond it is 10.9nm(12.5nm), 9.8nm(11.1nm)

and 8nm(9nm) respectively. The extremely low mean free path for the optical phonons

are responsible for their low thermal conductivity.

5.4 Conclusion

Bulk diamond simulations were performed for three isotope concentrations namely

0.001%, 0.1% and 1.07% for determination of thermal properties. We investigate

the thermal properties attributed to each phonon branch in order to understand the

deterioration in thermal conductivity due to increase in isotope concentrations. The

isotope scattering dominates the anharmonic rate for room temperature and above

and is the principal determinant of the thermal conductivity. The increase in isotope

concentration from 0.001% to 0.1% does not causes as much deterioration as we

observe for an increase from 0.1 to 1.07% concentration, and it is the dominant isotope

effect which is responsible for it.
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Chapter 6

SUMMARY & FUTURE WORK

6.1 Summary

Thermal management of continuously shrinking semiconductor devices has been

a major challenge of device development. Modeling heat transport can be viewed

as a vital tool for the device design. The exact solution of BTE can lead to proper

representation of transport inside the device, but integro-differential nature of the

equation leads to significant challenge to solve it. Some methods consider only the

lower order moments of the BTE, but they are applicable for near-equilibrium scenarios.

As the simulation conditions deviate from equilibrium in modern devices almost all the

times, MC methods take care of this issue by providing a solution in exact statistical

terms. As an extension of the traditional EMC method, the CMC pretabulates all the

scattering rates along with the final states, which significantly reduces the simulation

time. CMC also allows the use of rejection algorithm for the adaptation to local

runtime condition.

The solution of Poisson’s equation is an integral part of any device simulation

tool. In this work, the multi-purpose library PETSc has been employed as a Poisson

solver into CMC. PETSc provide a variety of options for preconditioner and solvers

to solve any linear PDE. For this particular study, Incomplete LU method is chosen

as preconditioner and KSP method is adopted as solver. Under this circumstance,

results are obtained for 2D and 3D geometries and compared with existing multigrid

method available in CMC. The results found from PETSc closely follows the multigrid

method.
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EBE is derived using the first two moments of the BTE for phonons and can

effectively be used for modeling heat transport when it is properly coupled with the

electron dynamics. For solving EBE, CMC adopts the Kirchoff transformation, which

effectively converts EBE into an elliptical PDE and later solved with the Poisson solver.

This study uses this existing thermal solver to compare the effects of different gate

architectures and the performance of GaN HEMT. Acoustic and optical temperature

profiles of each studied device geometries have been obtained. Later, DC and RF

performances were studied along with proper validation with experimental results.

Furthermore, hot electron minimization was obtained through the simulated energy

distribution function.

Thermal properties of diamond have been evaluated through CMC. Diamond is

being effectively used for the solution of thermal management problem due to its

high thermal conductivity. The effects of isotope on the deterioration of thermal

conductivity of diamond have been studied. Thermal properties of each phonon

mode have been obtained to identify the dominant mode contributing to the thermal

conductivity. At room temperature anharmonic scattering is dominant over isotope

scattering, but at elevated temperature isotope scattering becomes significantly higher

than anharmonic scattering.

6.2 Future Work

The planned future work related to this study can be summerized as follows:

1) Implementation of a parallel PETSc solver to make the existing solver faster.

2) Inclusion of substrate and associated thermal interface in the study of GaN

HEMT to evaluate the effect on the temperature maps. Currently the drain current

is overestimated along with the cutoff frequency due to the absence of the substrate.

With an inclusion of substrate the mismatch should be taken care of.
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3) Effect of n-type and p-type impurity in thermal conductivity of diamond.

4) Similar to diamond, thermal conductivity analysis of cubic boron nitride.
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