
Code Generation Techniques

For Emerging Capability Architectures

by

Jacob Abraham

A Thesis Presented in Partial Fulfillment
of the Requirements for the Degree

Master of Science

Approved October 2022 by the
Graduate Supervisory Committee:

Michel Kinsy, Chair
Kevin Rudd
Andy Glew

ARIZONA STATE UNIVERSITY

December 2022

©2022 Jacob Abraham

All Rights Reserved

ABSTRACT

Memory safety and security issues continue to plague modern systems and are

rapidly becoming a top priority. Capability architectures are a proposed solution

that solve the problem at a fundamental hardware level, with several commercially

viable options under active development. These new and evolving designs place higher

demand upon the software tools needed to develop software to ensure correct execution.

Capabilities introduce ideas that challenge typical architecture assumptions about the

representation of data and its location in memory. This calls for a new core system

software ecosystem.

A fundamental component of any software ecosystem is a compiler. Without a

compiler, large critical components of the ecosystem must be written in assembly

language; a tedious and possibly error-prone task. A compiler for a capability

architecture that emphasizes memory security must above all else ensure functional

and correct code generation, raw performance and power efficiency are no longer

the chief concerns. Compilers for these architectures have been developed, but as

capability architectures mature in complexity new compilation support is required. A

set of techniques that help solve the compilation challenges for a capability architecture

are presented in this work. These capability-aware compiler ideas are presented in

their generalized forms to enable their adoption in other architectures and future

extensions.

Some of the ideas presented come out of work on a compiler for a new capability

architecture, Zeno. The Zeno compiler utilizes the extensible RISC-V instruction set

and adds a set of global memory extensions, xBGAS (Extended Base Global Address

Space), which is used to provide memory security. The Zeno compiler is described

in detail as an implementation of the generalized capability-aware compiler. Static

i

analysis is used to evaluate the generated assembly code produced by the compiler.

The generated code is sufficient to enable further testing of the Zeno architecture and

drive its development.

ii

ACKNOWLEDGMENTS

I would first like to acknowledge my thesis advisor, Dr. Michel Kinsy, for all his

support through my degree. He helped make this thesis possible. Thank you to both

Dr. Kevin Rudd and Mr. Andy Glew for their support. They both serve as members

of my committee and have helped me develop professionally. Thank you to Alan Ehret

and Mihailo Isakov who have worked along side me for many hours as all three of us

worked on our respective theses. Their guidance has been invaluable to this work.

A quick thanks to Dr. Seth Abraham, for helping me with editing and letting me

bounce ideas of of him. A final thank you to my friends and family, who saw very

little of me as I completed this work. Thank you for putting up with my long winded

rants about compiler design and computer architecture. You all kept me sane.

iii

TABLE OF CONTENTS

Page

LIST OF TABLES . vi

LIST OF FIGURES . vii

LIST OF CODE SNIPPETS . viii

CHAPTER

1 INTRODUCTION . 1

1.1 Problem Statement . 1

1.2 Aims and Objectives . 4

1.3 Summary of Work . 5

2 CAPABILITY ARCHITECTURES . 6

2.1 Capabilities . 6

2.2 A Generic Capability Architecture . 8

2.2.1 Atomic Capability . 9

2.2.2 Non Atomic Capability . 9

2.3 Fat Pointers . 11

2.4 CHERI . 13

2.5 MPX . 14

2.6 Zeno . 15

3 COMPILER DESIGN . 17

3.1 Compiler Pipeline . 17

3.2 LLVM . 19

4 COMPILATION TECHNIQUES . 22

4.1 Instruction Set . 23

4.2 Pseudo Instruction Set . 27

iv

CHAPTER Page

4.3 Capability Mapping . 30

4.4 Usability. 36

4.5 Pointer Semantics . 39

5 COMPILING FOR ZENO . 43

5.1 Zeno ISA . 43

5.2 DAG Mapping . 47

5.3 Machine Instruction Passes . 51

5.4 Builtins and Intrinsics . 51

5.5 Evaluation . 55

5.5.1 Static Tests . 58

5.5.2 File Size . 64

5.5.3 Optimization Opportunities . 69

6 CONCLUSION . 72

6.1 Summary of Work . 72

6.2 Key Takeaways . 73

6.3 Future Work . 73

REFERENCES . 75

v

LIST OF TABLES

Table Page

1. Zeno Instructions on RISC-V. 45

2. Zeno Machine Instruction Passes . 52

3. Intrinsics for NS Management . 54

4. Intrinsics for __builtin_riscv_zeno_load with 8 and 16 Bit Values 54

5. Intrinsics for __builtin_riscv_zeno_load with 32, 64, and 128 Bit Values . . 55

6. Intrinsics for __builtin_riscv_zeno_store with 8 and 16 Bit Values 56

7. Intrinsics for __builtin_riscv_zeno_store with 32, 64, and 128 Bit Values . . 57

vi

LIST OF FIGURES

Figure Page

1. High Level View of Capabilities on the Stack . 7

2. Compiler Pipeline . 17

3. Registers for Alpha and Beta . 26

4. Beta Instructions. 28

5. DAG Mapping Operations . 29

6. Possibilities for Capability Preservation . 32

7. Storing to an Array . 37

8. Two Operand Case . 41

9. Registers for Zeno . 44

10. SelectionDAG Pipeline for Zeno . 49

11. Optimization Example of ELD . 50

12. Overheads Produced by Zeno Compiler . 66

13. Distribution of Zeno Instructions . 68

vii

LIST OF CODE SNIPPETS

Code Snippet Page

1. clang/lib/CodeGen/TargetInfo.cpp:11165 LLVM 13.0.0 24

2. llvm/lib/CodeGen/SwitchLoweringUtils.cpp:285 LLVM 13.0.0 24

3. llvm/lib/CodeGen/SwitchLoweringUtils.cpp:391 LLVM 13.0.0 24

4. Example C Code . 27

5. Example Alpha Code . 27

6. Example Beta Code . 27

7. Function to Align a Pointer . 41

8. Revised Code Snippet 7 for Capabilities . 41

9. Pattern for Generating Load Instruction Definitions in TableGen 46

10. Possible Permutations for Adding Three Registers . 59

11. Storing a Value to a 2D Array with Fixed Offsets . 60

12. Result of Compiling Code Snippet 11 with -O3 . 60

13. Optimal Version of Code Snippet 12 . 60

14. Storing a Value to a 2D Array with Variable Offsets . 61

15. Result of Compiling Code Snippet 14 with -O3 . 61

16. Optimal Version of Code Snippet 15 . 61

17. Storing a Value at a Variable Offset . 62

18. Result of Compiling Code Snippet 17 with -O3 . 62

19. Optimal Version of Code Snippet 18 . 62

20. Using a Struct Containing Two Pointers . 63

21. Result of Compiling Code Snippet 20 with -O3 . 63

22. Using a Struct Containing One Pointer and One Integer 63

23. Result of Compiling Code Snippet 22 with -O3 . 63

viii

Code Snippet Page

24. Optimal Version of Code Snippet 23 . 63

25. Calling an Unknown Function with a Casted Pointer . 65

26. Result of Compiling Code Snippet 25 with -O3 . 65

27. Result of Compiling Code Snippet 25 with -O0 . 65

ix

Chapter 1

INTRODUCTION

1.1 Problem Statement

Buffer overflows are a common memory vulnerability that have been a well-

documented issue for over 50 years [27, 3]. Yet Out-of-bounds Write [10] and Out-of-

bounds Read [8] are still number 1 and 3 respectively on the top 25 CWE software

vulnerabilities [1]. Other top tier vulnerabilities include Use After Free (number 7)

[9] and Improper Restriction of Operations within the Bounds of a Memory Buffer

(number 17) [7]. Despite decades of research, the frequency of memory vulnerability

CVEs demonstrates that a practical and effective solution has not reached wide

adoption.

Another example is the failure of software to check the necessary permissions to

access a piece of data. A ubiquitous example is the difference between kernel and user

memory of an OS; a user program may not arbitrary access kernel memory, it must

use the given interface (system calls and drivers). This type of memory protection is

done at a large granularity, such as with memory pages. There is low interest in the

software community to actually implement some of these mitigations. The C standard

attempted and failed to implement Annex K [25], a proposal to add bounds checking

to the C language. The performance trade-offs of a software based approach were just

not acceptable.

The computer architecture community has developed a number of hardware-based

solutions in an attempt to address continuing memory safety challenges [37, 40, 13,

1

41, 31, 28, 14]. A hardware-based solution supports both strong security and low

overhead. With hardware enforced security, all software executing on the system

can be protected. Hardware support lowers overhead by performing memory checks

faster than is possible in software by using dedicated circuitry off of the critical path.

In some cases, platform support for memory safety means programmers can catch

memory bugs earlier, as illegal memory operations may not compile [13]. Programmers

must still be aware of memory vulnerabilities, as the system may still crash if invalid

conditions occur at runtime. A hardware solution guarantees no data will be leaked

or lost, regardless of the programmer.

Capability pointers solve many of the described problems by associating memory

addresses with metadata that describe the access permissions of the memory refer-

ence. Capability Hardware Enhanced RISC Instructions (CHERI) is a well described

architecture that implements and uses capabilities. CHERI provides a set of architec-

ture primitives (ISA) for several architectures (currently MIPS, RISC-V, and ARM),

along with the associated software stack (OS, standard libraries, compiler). CHERI

capabilities were originally 256 bits and have since been compressed to fit in a 128

bit register. The 128-bit capability is an atomic unit, it cannot be split apart. The

CHERI compiler and some language semantics require large rewrites to be able to

handle this [6, 36, 12].

CHERI is not suitable for some use cases. For example, in the HPC space it is

common to have distributed memory nodes. A compute node will have access to local

memory and access to global shared memory connected across a network. CHERI

capabilities utilize 64 bit address bits [37, 40]. A 5-level paging scheme utilizes 57 of

those address bits to address 128 PB [17]. This is not sufficient for exascale computing.

Another limit concerns the act of allocation and revocation. Processes can share

2

memory with other processes by allocating a capability to the data. Processes can then

unshare that memory by revoking the capability. In the CHERI model capabilities

store all information needed about their memory in an atomic unit. Revoking a

CHERI capability requires sweeping the entire memory space for any references to

the capability [41]. This is impractical at scale.

Another hardware solution is Zeno, a security-focused global shared memory

architecture [15]. Zeno implements capability pointers as Namespaces. Namespaces

enable secure memory accesses which support sharing, access control, and memory

isolation. The Zeno architecture implements an extended addressing model to enable

shared global memory [32]. Zeno extends this addressing scheme to use and manipulate

Namespaces.

Zeno [15, 2] can be described more generally as a capability architecture with a

layer of indirection for the metadata. The capability is separable, one part of the

capability is the base memory address and the other part is an identifier for metadata

stored in a separate structure. Revocation of a capability avoids sweeping the memory

by invalidating only the local record of the metadata. Indirection for the metadata

also allows a system designer to practically increase the amount of metadata stored

without increasing the size of the capability.

Separable capabilities consisting of mutable memory addresses and immutable

metadata references are not operated on together. The mutable memory address can be

computed as a normal memory address. The immutable metadata reference is passed

through the processor unchanged. These separable pieces remain semantically tied

together to allow for valid memory accesses. This introduces source code compilation

challenges. Baseline code generation challenges include instruction selection and

register allocation; an optimizing compiler faces even more such challenges.

3

Capability architectures share a common theme, they are a challenge to compile

code for [6, 36, 12]. It is a balancing act between generating correct, optimized code

while supporting a large ecosystem of legacy software. This work describes a set of

compiler techniques to compile code for a capability architecture similar to Zeno,

using separable capabilities with indirect metadata. We describe these techniques

generically, this allows them to be applied to other systems with similar characteristics.

Separable capabilities provide unique challenges above the normal capability

compiler issues. As there is no hardware primitives or datapath for the full width

of the capability, operations must be lowered to the correct datapath. The spit

capability components are not independent, memory accesses require that they be

semantically paired. Semantically paired operations have no explicit binary encoding

or hardware enforcement, but failure to follow these rules results in memory access

failures. Therefore, operations need to be represented as the full width operations for

as long as possible before being lowered to the correct code.

1.2 Aims and Objectives

The primary goal of this work is to support software on architectures with separable

capabilities. The unique nature of these architectures requires new ways of compiling

code. A compiler for a split capability architecture should handle the complexities of

the architecture transparently to the programmer. Such a compiler is described and

implemented in this work. Given a programmer who has written a piece of software

with no bad assumptions about the architecture(s) this code may run on, the compiler

should produce correct code in all cases. In the event of poorly written code that if

4

compiled for a split capability architecture will potentially behave unexpectedly, the

compiler should warn the programmer this is unsafe.

In this work we do not cover how capabilities are created, or at what scope they

are used. The assumption is that some other software/hardware entity manages the

creation and destruction of capabilities. The prime objective of the compiler is to

maintain capabilities. The compiler passes along all the information needed to access

memory and treats the mechanisms of memory allocation and access as a black box.

1.3 Summary of Work

This work will provide a more in depth summary of several capability architectures.

First described is a generic capability architecture, abstracting away architectural

and micro-architectural concerns. A survey of capability architectures follows, which

characterizes them in terms of the described generic architecture. This is used to

describe the generic compiler work.

Next described is a series of compiler techniques and transformations that compile

code for a generic split capability architecture. We describe a hypothetical generic

instruction set and its representation in the compiler framework. We enumerate some

of the complications that arise with some of the higher level software semantics and

source level primitives.

Lastly, an implementation of a subset of the compiler techniques is shown for a

specific capability architecture, Zeno. We describe the set of compiler changes required

to implement the Zeno compiler in LLVM [19], an extensible compiler framework.

Provided is an evaluation of the code produced by the Zeno compiler.

5

Chapter 2

CAPABILITY ARCHITECTURES

A capability architecture is a computer architecture design that implements

capabilities. On a non-capability architecture, memory is accessed and referred

to purely by the memory address. A capability combines a memory address with

metadata that describes the memory access. A capability architecture replaces bare

memory addresses in the system with capabilities.

2.1 Capabilities

Figure 1 demonstrates the utility of a capability. In a classic stack smash attack

[27, 22], an attacker will attempt to write past the end of a buffer to overwrite values

on the stack. Variables are set above the return address of a function in a function

frame. Attackers can rewrite the return address to an arbitrary value by writing

past the end of a buffer. This allows the attacker to jump to any piece of executable

code, gaining full control of a system or reading/writing forbidden data. Consider

a capability to the same buffer defining a set of constraints for the buffer, such as

the bounds. An attacker attempting to write past the end of the buffer using the

capability will generate a hardware fault, protecting the system. This relies upon the

hardware restricting or even removing non-capability memory operations. A hardware

capability defense is independent of what the programmer writes and is guaranteed

by the physical architecture, making a more secure system.

Consider another similar attack. This time, instead of just using the return address

6

Figure 1. High Level View of Capabilities on the Stack

to jump to any piece of code, the attacker writes their executable code into the buffer

using the capability. The attacker then finds an alternative way to overwrite the

return address, the exact details of which is outside the scope of this example. An

attack is still possible; to prevent this the capability is given access permissions. The

access permissions state that the memory is not executable. The hardware enforces

the access permissions. This allows for flexible permissions. One part of the stack

can be marked non-executable to prevent attacks. Other parts can be marked as

executable to allow for JIT code or self-modifying code, which some legacy systems

may require.

This type of specific, fine grained permissions is not possible with current paging

systems. Virtual memory, implemented with pages, has a number of permissions that

can be set to protect the memory page [17]. However this can only be done at a page

granularity, a capability has an arbitrary range to which it applies. This provides

flexibility to system designers and engineers while still providing security.

The exact format of capabilities is implementation dependant, with various de-

sign trade-offs. Capabilities can be implemented on top of existing architectures,

or as entirely new architecture descriptions. We discuss a generalization of two

7

different approaches to capabilities, followed by a discussion of multiple concrete

implementations.

2.2 A Generic Capability Architecture

Consider a generic computer architecture. The architecture defines a set of

operations that work on values stored in registers and another set of operations

that provide memory access, a RISC-like load/store architecture. The architecture

defines a single general purpose base register file. The exact implementation details

of the architecture are unimportant. This description only focuses on the ISA level

description, this is the typical view from compilers and other software point.

We will define capabilities on the generic architecture. An important component

of the capability is a tag bit [40]. The tag bit is set by the hardware and enforces the

immutability of the capability. This bit is not accessible by software. Tag bits prevent

users from arbitrarily creating and/or modifying capabilities.

We describe two types of capabilities this system could be augmented with. We

differentiate between the two as being atomic and non atomic. Atomic in this context

refers the unified nature of a capabilities. Atomic capabilities are a single unit, they

cannot be separated. Non atomic capabilities can be split and exist separately in the

system. A valid memory access requires them to be brought together, but they are

considered separate pieces.

8

2.2.1 Atomic Capability

On atomic capability architectures, capabilities are a single unit. They must be

moved throughout the system as a single unit. Capabilities cannot be changed by

normal instructions, only special capability instructions can operate on them.

Single unit capabilities cannot be split apart; they must be stored in memory

and registers together. This can be implemented without modifying an existing

architecture, as many virtual addressing schemes do not utilize all of address bits. The

unused bits can be co-opted for use as a limited form of capabilities. An architecture

designed for single unit capabilities may define a separate capability register file, with

some advantages. Separate capability registers can be properly sized for capabilities

independently from integer registers. This also separates integer data and memory

addresses, which may have further security advantages.

Separate capability registers requires duplicating instructions. For example, an

add instruction. The architecture must define two versions, one for bare integers and

one for capabilities. This is required for pointer arithmetic operations.

2.2.2 Non Atomic Capability

On non atomic architectures, the base general purpose registers and their associated

instructions can remain unchanged. A separate set of register is implemented that will

store the metadata. The exact method of implementing this is entirely implementation

dependant. The full capability is effectively a super register consisting of a base general

purpose register and a metadata register. This is similar to x86 general purpose

registers that are extended for wider bit widths [17]. This allows the instruction

9

set to encode registers as a single value. Another approach is have entirely separate

metadata registers. These registers are encoded in instructions explicitly. This is

similar to x86 segment registers [17]. Either way, memory addresses and metadata

are stored separately. Bringing the memory address and the metadata data together

creates a valid capability.

No new operations need to be defined for the metadata registers. Immutable

metadata is either created or passed between registers. Instructions that modify

metadata are undesirable and break security guarantees. Existing instructions can

operate on the base memory addresses normally. The resulting memory address may

no longer create a valid capability. Attempting to access memory with it is handled

by the hardware in an implementation dependant way.

This provides an opportunity for a number of optimizations. Consider an array

of memory addresses that all point to the same region of memory, such as array

of function pointers. A single piece of metadata can be stored for the entire array,

allowing an application developer to compress the storage of capabilities in memory.

There are two subsets of the non atomic capability considered. Metadata stored

directly in the metadata register is the obvious approach. A more careful design may

use the metadata register as a reference to metadata stored elsewhere in the system.

Adding this layer of indirection allows system designers to store more information in

the metadata. Indirection also allows metadata to be reused. Capabilities now consist

of two references, one to memory and one to metadata. Metadata indirection allows

the metadata to be arbitrarily sized, subject to other constraints outside the scope of

this paper, without having to modify the full size of the capability.

This opens up possibilities to scale capabilities across systems. In the HPC space

it is common to have distributed memory nodes A compute node will have local

10

memory it can access, as well as global shared memory connected across a network.

Capabilities pointers being applied to this system need the following attributes in

addition to the typical pieces of metadata

• Notion of ownership, which node owns the capability

• Notion of sharing, which nodes is this memory shared with

• Provisioning, how do we tell the capability and other nodes about this capability.

Consider revocation, where the owner of a capability has previously shared it with

other nodes in the system. After allowing those nodes access, the owner wishes

to revoke the capability and disallow access. Revoking the capability requires only

invalidating the local copies of the metadata. Any node using the existing capability

may still have a local copy, but any memory access made will be rejected due to the

invalidated metadata.

2.3 Fat Pointers

Memory tagging [30] is the procedure of using the upper bits of an address to store

tags about the data. On x86-64 systems using 4 level paging, virtual addresses only

use 48 bits of the full 64 bits possible. With 5 level paging, this is increased to 57

bits [17]. Both systems have a handful of bits that are defined to be the same as the

most significant bit of the address, this is a requirement set by the processor. An OS

can set these upper bits to a tagged metadata value, and then before doing a page

table walk reset them to their proper value [30]. The tagged metadata can be used

for multiple purposes, but in the context of a memory-safe architecture the primary

use is to make security guarantees. For example, the tag could contain a reference

11

count that would prevent a use after free vulnerability. Tagged pointers allow an OS

to support a limited form of capabilities inside of existing registers.

Tagged pointers are a technique that is entirely software independent and works

with existing hardware. Existing software can utilize tagged pointers without changes

or recompilation, as the capability pointer fits within a normal 64-bit pointer. New

hardware does not need to be developed, as the capability pointers fit within the

existing registers. All the heavy lifting is done by the custom OS which supports

memory tagging. The OS supplies memory allocation functions which set the memory

tag bits and translates the memory address to the proper virtual address before

passing the address to the MMU. The disadvantages of this technique are the limited

set of addresses that are possible and that the tag bits are unprotected. 5 level

paging can address 128 PB of memory [17], but this cannot meet the modern exascale

requirements of HPC systems. Furthermore, 5 level paging only leaves 7 bits to tag

memory with. It is possible to leverage some of the low order bits. An architecture

may require memory to be aligned to a certain width. For example a 64 bit integer that

is required to be 64 bit aligned has an memory address with 2 free low order bits. Tags

can be formed from both the extra bits left over from virtual addressing and aligned

memory. The small handful of bits available severally limits the amount information

that a tag can hold; and without hardware enforcement tags are unprotected. Tagged

pointers have previously been implemented on 64 bit pointers in existing registers [5].

Memory tagging can be implemented transparently and with no changes to the

hardware, requiring only a custom OS. This is advantageous as the cost of software is

significantly lower than for hardware.

Fat pointers are a logical extension of memory tagging. The handful of bits left

over from virtual addressing is not enough to encode more complicated metadata. Fat

12

pointers make addresses larger to accommodate more metadata. We can consider

memory tagging to be a limited subset of fat pointers. Because a fat pointer can be

defined architecturally to be much bigger than a normal memory address, more access

control and permissions are possible.

Memory tagging and fat pointers can be classified as an atomic capability, they

are not separable. The entire capability is stored in a single register and used as a

single unit throughout the system. This type of capability has been implemented in

software on top of existing architecture. Architectures have also been custom designed

for this.

2.4 CHERI

CHERI [37, 39, 35, 41] is a prolific implementation of a capability architecture

using fat pointers. CHERI introduces a capability co-processor on top of a base ISA.

The co-processor has capability registers, which store a 128-bit compressed capability.

These capabilities contain both the address and the metadata in a single atomic unit,

with special capability instructions to utilize them. This replaces typical memory

access instructions in the base ISA. CHERI treats its capabilities as atomic units,

changing the size of a pointer. This requires the mentioned hardware changes, as

well as a new OS and compiler. With these CHERI specific tools, a generic piece of

software can be run with capabilities.

In recent years, CHERI has emerged as a strong candidate for a realistic capability

architecture. CHERI has a stable architecture on top of RISC-V, previously MIPS,

with a relatively mature software stack to accompany it. Currently in prototype

production for evaluation purposes is Morello, an ARM based processor enabled with

13

CHERI extensions [34, 16]. This is a commercially viable capability architecture

product. Morello is proving to be both a secure and stable system that is drawing

attention across the industry.

As mentioned, CHERI falls into the atomic capability architecture category. The

CHERI co-processor defines a full set of capability operations on a completely separate

set of capability registers. This provides certain advantages, as arbitrary software may

run on a CHERI system without capabilities, and utilize capabilities for certain parts.

This can significantly lower the barrier to entry for systems wishing to introduce

hardware based security.

2.5 MPX

Memory Protection Extensions (MPX) was a set of architecture extensions to the

x86 architecture to provide capabilities [26]. MPX required substantial changes across

the software stack. At its core, MPX introduced instructions and registers to perform

bounds checking on a pointer. These bounds were stored in a bounds table, which

had to be managed by the operating system. The actual bounds checking instructions

have to be added by a MPX aware compiler, which also links in a MPX runtime

library.

MPX is an example of a capability architecture gone wrong. It focused almost

solely on bounds checking and the actual implementation left much to be desired.

The changes required for an OS to be able to support MPX and the large impact

on compiler optimization opportunities was a deal breaker. MPX code generated

by the compiler frequently needed many optimizations disabled to be stable. This

by itself was not a feature of MPX, but rather a factor of short development. MPX

14

could also not support certain C idioms and introduced potential race conditions

in multi-threaded code. The biggest issue ultimately came down to performance,

MPX destroys most performance characteristics. There are many more instructions

to execute, introducing huge bottlenecks into the out of order pipeline. MPX also

trashes the cache, lowering memory performance. Besides the performance issues,

MPX in many cases did not even succeed in doing proper bounds checking [4, 26].

All of these reasons led Intel to remove support for MPX in later processors. The

most important lesson from MPX is that a capability architecture needs two things.

For one, it must be performant. The computer architecture and software development

communities are not tolerant of security at the expense of performance. Secondly, the

large number of software changes required severely damaged MPX.

2.6 Zeno

Zeno [15] is a capability architecture that supports an extended addressing model

to create data-center scale global shared memory. Memory beyond the local base

64-bit address space is accessed with extended 128-bit addresses. The xBGAS RISC-V

ISA extension defines the encoding of load and store instructions to the extended

address space [32]. Zeno utilizes these additional ISA extensions to provide a memory

abstraction known as a Namespace.

Namespaces can be attributed to the non atomic capability model. The base

memory address is stored in a general purpose register, while a Namespace Identifier

(NSID) is stored in an extended register. These two together make up a memory

reference into a Namespace. The Namespace consists of metadata stored in memory

15

that describes the memory region. This provides a single point of storage for a region

of memory, with many NSIDs then pointing to the Namespace.

The Namespace is treated as immutable, once it is created it is not changed. A

reference to it can be revoked to provide scalable memory security. This immutability

means software cannot modify the NSID. The NSID must maintain its association

with the memory address to ensure correctness. The immutability is enforced by

the hardware. The association is enforced by software. Software has a great deal of

flexibility on how to handle Namespace storage and management, while still enforcing

security.

We classify Zeno as a non-atomic capability architecture. Capabilities can be split

apart and remain valid.

16

Chapter 3

COMPILER DESIGN

We describe common features in modern compilers. We use LLVM [19] as a

concrete example to simplify later discussions of compiler techniques.

3.1 Compiler Pipeline

At a high level, a compiler transforms human readable source code into machine

readable code through one or more transformations. These transformations are called

passes, they apply some action to an input and emit something as an output. An

overview of the compiler pipeline is in Figure 2. The compiler can be logically broken

down into three sections, with some exceptions. The most important concept is the

Intermediate Representation (IR).

The IR is the common language all components of the compiler speak. Between

the front end and the middle end is a conversion to the IR; between the middle end

and the back end is a conversion from the IR. A common IR allows the compiler to be

Figure 2. Compiler Pipeline

17

easily retargetable. A compiler is able to reuse much of the middle end for multiple

source languages and target architectures by doing most of the optimization work in

the IR.

The front end of the compiler is responsible for converting the source language to

a machine readable format. This parsing results in an abstract syntax tree (AST), a

formal representation of the source. The AST contains all the information to do front

end checks, such as semantic analysis and type analysis. This information is used to

inform correct IR generation.

The IR generated by the front end is fed to the middle end. The bulk of the work

done by compiler occurs in the middle end, with heavy analysis and optimization

passes. Common optimizations can be done independently of the target architecture

and improved with architecture dependant information. Many optimization passes

operate on the IR in SSA form [29, 11]. An important component of this is the

usage of virtual registers. Virtual registers are analogous to a variable in a high level

program, except they are representative of a physical register on an architecture.

The role of the backend is to emit the IR as machine code. This involves register

allocation, the act of changing virtual registers into physical registers. This also

includes target architecture specific optimizations that either only apply to machine

code, or can only be done at this stage. The act of converting IR to machine code

is instruction selection and the order of these instructions is determined through

instruction scheduling.

Another component of note is the linker and associated runtime libraries. The

linker takes many pieces of compiled code and combines them into a larger archive

of code, or into a format capable of being executed on a given OS. This involves

a number of relocations. When the compiler is compiling code, it often does not

18

know the address of other components in this system, such as function calls or global

variables. These are encoded in the machine code object format as relocations, which

are just a way of telling the linker that it needs to fill on the correct address here before

the code is executable. Relocations can also be references to library code supplied by

the compiler (runtime library), included as apart of the language standard (standard

library), or included by the user.

All of these pieces can be found in a compiler for any system, in one form or

another.

3.2 LLVM

LLVM [19] is a compiler framework built for extensibility. Originally built as a

research project, it has become an industry standard for building compilers. LLVM IR

is a core component of the framework, it is a retargetable intermediate representation

for LLVM. This allows any language that has a front end that emits LLVM IR to

be run on the target. A developer supporting a new architecture defines a set of

instructions, a set of rules on how to express the IR using these instructions, and a set

of rules for how to encode these instructions. This constitutes a complete compiler for

the new architecture. Passes can be added at all levels of the compiler to provide new

optimizations or enable new code generation. Multi-Level Intermediate Representation

(MLIR) [20], is a new component of LLVM that improves the extensibility of LLVM.

We do not focus on it in this work.

LLVM is primarily written in C++, but many of the key components of the

backend are written in TableGen. TableGen is a domain specific language (DSL)

built specifically for LLVM to describe back ends. Developers write an architecture

19

definition declaratively and TableGen generates the boilerplate C++. One of the most

significant generated components is the instruction selector. TableGen generates a

table that contains a simple set of operations. The instruction selector can then use the

operations encoded in the table to perform complex instruction selection. In the event

that TableGen cannot express the instruction pattern, a fallback path allows developers

to hand code the C++ required to select the instruction. Another advantage of the

TableGen definitions is that they allow the encoding of instructions to be almost

entirely defined from just the TableGen. Therefore an assembler, disassembler, and

associated tools can be automatically generated for a target.

Below is a brief discussion of the front and middle end; followed by a more in-depth

discussion of the backend. This is by no means a complete description of the full

LLVM framework, but it provides a frame of reference for the rest of the compiler

discussion in this work.

The front end consists of a parser and a series of passes. The parser converts the

source language to an AST containing all the semantic information. A series of Sema

passes perform semantic analysis on the AST. LLVM defines the typing system of a

language as a part of Sema. Finally, the AST is converted to LLVM IR in a process

known as CodeGen.

The middle end contains many optimization passes that operate on the LLVM IR.

These passes are all IR to IR passes, and are generally enabled/disabled based on

command line flags. For x86 with the optimization flag −O3 passes, over a hundred

optimization passes are run in LLVM 13.0.0.

We will explain components of the back end in greater depth, as this is highly

relevant to further capability compiler discussions. In the back end, the LLVM IR for

a function is converted to multiple SelectionDAGs. Each SelectionDAG is a DAG rep-

20

resentation of basic block, a sequence of instructions with a single entry and exit point.

Instructions are represented as Independent SelectionDAG (ISD) Nodes, which can

be generic target agnostic nodes or nodes for specific architectures. The construction

process and optimization of the SelectionDAG is largely architecture independent. The

conversion processes from IR to SelectionDAG can generate operations not defined for

the target architecture. Operations supported on the target architecture are legal, op-

erations not supported at illegal. The SelectionDAG legalizer converts illegal nodes to

legal ones. The DAG is iteratively combined, optimized, and legalized. This produces

a set of optimized nodes valid for the target architecture. The legalized DAG is then

selected to a DAG of Machine Instructions (MachineInstr). Machine Instructions are

an internal LLVM representation of the final instructions to be emitted. The DAG of

Machine Instructions is scheduled to provide a linear ordering of the code. A series of

optimization passes, both target independent and dependant, transforms the Machine

Instructions. The register allocator runs during this process, converting the virtual

registers to physical ones. Finally, the optimized Machine Instructions are emitted

as Machine Code Instructions (MCInst), a representation closer to the final binary

encoding. LLVM performs a series of passes on these instructions that result in the

final assembly being emitted from the compiler.

21

Chapter 4

COMPILATION TECHNIQUES

We discuss generic capability architecture compilation challenges in LLVM [19]

and how they can be solved in LLVM. These ideas are not specific to any one compiler.

LLVM is an industry strength compile framework commonly used in both industry and

academia due to its high degree of extensibility and sharing common optimizations

between architectures and languages. For this reason, much of the work will be

explained in the context of LLVM’s constructs and framework.

The proposed capability architecture with separable memory addresses and meta-

data introduces significant compiler challenges. Compilers commonly make two

assumptions about pointers, which do not hold for this kind of architecture. One

assumption is that a pointer is the same size as the largest native integer type on

the platform. Consider x86-64, with 64 bit registers. The largest possible integer

stored in these registers is 64 bits and the largest possible memory address is 64 bits.

A capability architecture with separate integer register and capability registers has

different size constraints. A memory address is the width of the capability register,

which may be larger than the base integer register. This assumption caused the CHERI

compiler to rewrite and fix large parts of the core LLVM framework [12]. The other

assumption is that pointers can be directly represented on the target architecture,

which is to say that a pointer is stored in a single register. Architectures like CHERI

still have capabilities stored in a single register. In our proposed separable model,

capabilities are split between multiple registers with asymmetric operations on the

22

registers. With both of these assumptions broken, existing compiler techniques relying

on them will produce incorrect code for this architecture.

We will demonstrate a few key examples from the source of LLVM, which showcase

these assumptions. One of these such places is for the generation of target specific

info in the code generation portion of clang, LLVM’s front end for the C family of

languages. In the target specific section for RISC-V, setting the bit width of registers

and other architectural features is done with the call to getPointerWidth. This

assumes that a pointer is the largest integer. This code is shown in context in Code

Snippet 1.

Another poor assumption is made in the code generation portion of LLVM itself.

This time involving an optimization for switch statements. LLVM uses the pointer

type to determine if an operation is legal (Code Snippet 2) and also to compute a

potential bit width for a bit mask (Code Snippet 3). Both of these assumptions break

when capability pointers are not the size of a integer.

Patching these poor assumptions is a critical part of developing a compiler for a

capability architecture. The rest of this chapter will describe a generic instruction set

for separable capability architecture, followed by a description of the techniques used

to generate code.

4.1 Instruction Set

We describe a generic, RISC-like architecture with the symbolic name Alpha.

We assume that this is a mature architecture with a fully functioning compiler,

implemented in LLVM. We describe a generic capability architecture with the symbolic

name Beta. Beta is an extension to Alpha. We keep Alpha and Beta generalized; no

23

1 case llvm:: Triple :: riscv32:
2 case llvm:: Triple :: riscv64: {
3 StringRef ABIStr = getTarget ().getABI ();
4 unsigned XLen = getTarget ().getPointerWidth (0);
5 unsigned ABIFLen = 0;
6 if (ABIStr.endswith("f"))
7 ABIFLen = 32;
8 else if (ABIStr.endswith("d"))
9 ABIFLen = 64;

10 return SetCGInfo(new RISCVTargetCodeGenInfo(Types , XLen , ABIFLen));
11 }

Code Snippet 1. clang/lib/CodeGen/TargetInfo.cpp:11165 LLVM 13.0.0

1 EVT PTy = TLI ->getPointerTy (*DL);
2 if (!TLI ->isOperationLegal(ISD::SHL , PTy))
3 return;

Code Snippet 2. llvm/lib/CodeGen/SwitchLoweringUtils.cpp:285 LLVM 13.0.0

1 const int BitWidth = TLI ->getPointerTy (*DL).getSizeInBits ();
2 assert(TLI ->rangeFitsInWord(Low , High , *DL) && "Case range must fit in

bit mask!");

Code Snippet 3. llvm/lib/CodeGen/SwitchLoweringUtils.cpp:391 LLVM 13.0.0

specific bit widths are described and the actual microarchitectural mechanisms are out

of scope for this work. We provide an ISA-level description of both Alpha and Beta.

Alpha defines a set of common arithmetic operations, a set of common bitwise

operations, a set of common control flow instructions, and a set of common memory

operations. These operations perform work on a set of registers of K-bits. For notation

purposes, Alpha instructions will be written as INST and Alpha registers will be

written as A#. The destination register is written first for most instructions. For

example, multiplying register 2 and 3 into register 4 is written as MUL A4, A2, A3.

A copy instruction from register 5 to register 7 is written as COPY A7, A5. A load

instruction to register 1 with the memory address in register 10 is written as LOAD

24

A1, A10. A store instruction from register 1 with the memory address in register 10

is written as STORE A1, A10.

Beta is now implemented on top of Alpha. Beta redefines the registers to be of N

bits, with 2 sub registers. The first sub-register corresponds to Alpha’s K-bit register.

The second sub-register can be a reference to a piece of metadata, with a width of

N-K bits. For notation purposes, we write the full N-bit register as B# and refer to the

sub-registers by zero-based indexing as B#(#). For example, to refer to A17 of Alpha

we write B17(0) and to refer to the second sub register as B17(1). It is equivalent

to refer to either the A register or the zero index B register, they are aliases of each

other. Alpha instructions do not take the full register as operands, the only valid

operands are ones of the form B#(0). There are three exceptions to this, for COPY,

LOAD, and STORE. For COPY, any combination of register operands is valid. Copying a

sub-register to a full register is similar to a vector insert and copying a full register to

a sub-register is similar to a vector extract. For LOAD and STORE, the second operand

must be the full B register. The source/destination register can be the full B register

or one of the sub-registers. The registers are summarized in Figure 3.

The A/B(0) registers are used for normal computation. When forming a full

capability, the A/B(0) registers are used for memory addresses and the B(1) registers

are used for metadata references. The full B register containing the full capability

is not accessible by software. Specifying it as an operand for a copy instruction is a

shorthand for assembly programmers.

For both Alpha and Beta, we define a simple example calling convention.

• Register 0 is the return address

• Register 1 is the stack pointer

25

 B(0)
 B(1)

A

B

0 K N
Figure 3. Registers for Alpha and Beta

• Register 3 through 9 are saved registers that any callee must save

• Registers 10-... are temporary registers are not guaranteed to be saved by the

callee

• Arguments are passed in registers 10 through 20

• Register 10 is the return value

When a load or store occurs, the hardware will use the full B register as a capability.

B(0) holds the memory address and B(1) holds the metadata reference. If the memory

operation is invalid, the hardware will trap.

As an example, we hand write some C code in assembly code for both Alpha and

Beta. Code Snippet 4 shows a single offset used to get a pointer from a double pointer.

That new pointer is used to load more memory from the same offset, which is then

added to the pointer to create a return value. The Alpha code in Code Snippet 5 is

quite simple, we calculate an address and use it to load the new pointer. We now need

to save this new pointer to later add it with an offset, but the pointer needs to also

be used to calculate the next address. The Alpha code looks very similar to what a

compiler for a RISC-like architecture such as MIPS or RISC-V might produce. Code

Snippet 6 is a bit more complex. The same core operations are done, but because we

need to return complete capabilities that are preserved after pointer arithmetic, there

are two additional copy instructions. The copy instructions are explicitly required

26

1 int64_t* foo(int64_t ** x, int64_t off) {
2 return x[off] + x[off][off];
3 }

Code Snippet 4. Example C Code

1 foo:
2 ;; calculate x[off]
3 SHL A11 , 3
4 ADD A10 , A10 , A11
5 LOAD A12 , (A10)
6 ;; calculate x[off][off]
7 ADD A13 , A12 , A11
8
9 LOAD A13 , (A13)

10 ;; compute sum
11 ADD A10 , A12 , A13
12
13 RETURN

Code Snippet 5. Example Alpha Code

1 foo:
2 ;; calculate x[off]
3 SHL B11 (0), 3
4 ADD B10 (0), B10(0), B11 (0)
5 LOAD B12 , (B10)
6 ;; calculate x[off][off]
7 ADD B13 (0), B12(0), B11 (0)
8 COPY B13(1), B12 (1)
9 LOAD B13(0), (B13)

10 ;; compute sum
11 ADD B10 (0), B12(0), B13 (0)
12 COPY B10(1), B12 (1)
13 RETURN

Code Snippet 6. Example Beta Code

because the computation on the memory address does not implicitly imply a metadata

copy.

4.2 Pseudo Instruction Set

We have described the ISA of a generic capability architecture. The instructions

can be directly encoded into the compiler. Passes can select the IR to the instructions.

This is the normal path of compilation.

A simple technique to streamline compilation is defining pseudo-instructions.

Pseudo instructions allow a compiler to select higher level instructions. These map to

a set of real instructions for the hardware. This is particularly useful in a RISC-like

architecture, where instructions do simple operations. For example, on a RISC-like

architecture accessing a global variable in position independent code is a multi-step

27

Alpha OP B#(0) B#(0) B#(0) LOAD B# B#(0)

LOAD B# B#(1)

LOAD B# B#

STORE B# B#(0)

STORE B# B#(1)

STORE B# B#

COPY B#(0) B#(0)

COPY B#(0) B#(1)

COPY B#(1) B#(0)

COPY B#(1) B#(1)

(a) Real

Alpha OP B#(0) B#(0) B#

Alpha OP B#(0) B# B#(0)

Alpha OP B#(0) B# B#

Alpha OP B# B#(0) B#(0)

Alpha OP B# B#(0) B#

Alpha OP B# B# B#(0)

Alpha OP B# B# B#

PseudoLOAD B# B#(0)

PseudoLOAD B# B#(1)

PseudoLOAD B# B#

PseudoSTORE B# B#(0)

PseudoSTORE B# B#(1)

PseudoSTORE B# B#

COPY B#(0) B#

COPY B# B#(0)

COPY B#(1) B#

COPY B# B#(1)

COPY B# B#

(b) Pseudo

Figure 4. Beta Instructions

operation. First the PC is loaded into a register and an offset is used to compute

the address of the global variable. The a memory operation can be executed using

the computed address. An instruction selection pass in the compiler will have a hard

time correctly generating these instructions. Instead, the instruction selector can

generate a single pseudo instruction. The pseudo instruction then passes through the

optimization pipeline like normal before being expanded at the last possible second,

right before the final assembly is emitted. This simplifies the instruction selector. It

also simplifies many of the optimization passes, as they only need to maintain the

integrity of one pseudo instruction instead of many real instructions.

The compiler for the Beta architecture implements a wide selection selection of

pseudo instructions. Loads and stores on the Beta architecture use a N bit capability.

Since there do not exist any real N bit registers or real instructions that can use N bit

addresses, we introduce pseudo registers and pseudo instructions. The full registers in

Beta are declared to be pseudo registers. Any instruction can take a pseudo register as

an operand in place of a real physical register operand. This makes the instruction a

pseudo instruction, which is expanded to a real instruction later. B#(0) and B#(1) are

28

N bit input

GET_PTR

t#

K bit output

N bit input

GET_MREF

t#

N-K bit output

N bit input

SPLIT_PTR_MREF

t#

K bit output N-K bit output

N bit input K bit input

SET_PTR

t#

N bit output

N bit input N-K bit input

SET_MREF

t#

N bit output

K bit input N-K bit input

COMBINE_PTR_MREF

t#

N bit output

Figure 5. DAG Mapping Operations

real registers and B# is a pseudo register. The pseudo register B# can be the argument

or result of any instruction. For LOAD and STORE we define explicit pseudo instructions,

PseudoLOAD and PseudoSTORE. This is summarized in Figure 4a and Figure 4b, which

enumerate all real and pseudo instructions, respectively. Since we are just talking

about Beta instructions, we use the Beta register names. Alpha instructions can use

Beta registers, as A and B(0) are aliases of each other.

Introducing pseudo instructions allows other parts of the compiler to be simpler.

Instructions are not expressed with the full complexity of the ISA and are later

converted to real instructions. To better express high level intent, we can include

extra arguments as hints to PseudoLOAD and PseudoSTORE. This disables the register

allocator for a particular instruction. The extra instructions to ensure correctness

can be automatically included and the remaining registers can be assigned using the

register allocator. This provides greater flexibility in selecting instructions.

29

4.3 Capability Mapping

To describe the mapping of pointers to a capability architecture, the following

stage of the compiler is described. LLVM IR is transformed to target specific machine

code in the following steps.

1. Build an initial DAG from IR

2. Optimize and legalize the DAG

3. Select machine instructions from the DAG

4. Schedule the machine instructions from the DAG

5. Optimize the machine instructions

6. Register Allocation

7. Optimize the machine instructions

8. Emit the final machine code

The mapping will focus specifically on the DAG. A DAG is a directed, acyclic

graph and is used to represent a piece of control and data flow through a basic block

in a compiler. A basic block is a piece of code with a single entry point and a single

exit point. In LLVM, one very important property of the DAG is that it may contain

both target independent nodes, target dependant nodes, and machine instruction

nodes. Initially it contains mostly target independent nodes. Through legalization and

optimization those target independent nodes may get mapped to target dependant

nodes, or even machine instructions. Target dependent nodes can also be mapped to

machine instructions. The selection phase (step 3) is where target independent nodes

and target dependent nodes must be mapped to machine instructions, as past this

stage all nodes must be machine instructions so they can be scheduled.

30

In a generic compiler framework such as LLVM, the DAG is initially created via

a target independent pass. The DAG is constructed with many potentially illegal

nodes. It is the role of the legalizer to define what operations are valid for the target

architecture and what operations need to be converted into a series of one or more

nodes that are supported. Since the legalizer for Beta is built on top of Alpha, we

assume most of the work to be done for us. The Beta legalizer just needs to define

what is different from Alpha. We define the size of an integer for Beta to be K bits

and the size of a pointer to be N bits. For memory operations, the memory address

operand MUST be a full N bits as this is the valid capability. The value operand,

either the destination value or the source value, can be of either N bits or of K bits as

both are valid instructions for Beta. Any remaining N bit wide instructions are NOT

valid on Beta, as Beta defines no new instructions to operate on N width. Beta only

uses the K bit operations from Alpha. To legalize instructions for Beta, we map these

instructions to their K and N-K bit equivalents to create valid instructions. We call

this DAG mapping.

To map and make valid instructions, we define a set of six operations to manipulate

the DAG.

• GET_PTR

• GET_MREF

• SET_PTR

• SET_MREF

• SPLIT_PTR_MREF

• COMBINE_PTR_MREF

GET_PTR and GET_MREF take a N bit operand and extract out a K bit and N-K

31

...

...

t0

N bit output

N bit input

OPERATOR

t1

N bit output

N bit input

...

t2

...

(a) The original
DAG

...

...

t0

N bit output

N bit input

GET_PTR

t3

K bit output

N bit input

GET_MREF

t4

N-K bit output

K bit input

OPERATOR

t1

K bit output

K bit input N-K bit input

COMBINE_PTR_MREF

t5

N bit output

N bit input

...

t2

...

(b) Wrapped in full
capability preservation

...

...

t0

N bit output

N bit input

GET_PTR

t3

K bit output

N bit input K bit input

SET_PTR

t7

N bit output

K bit input

OPERATOR

t1

K bit output

N bit input

...

t2

...

(c) Wrapped in minimal
capability preservation

...

...

t0

N bit output

N bit input

SPLIT_PTR_MREF

t6

K bit output N-K bit output

K bit input

OPERATOR

t1

K bit output

K bit input N-K bit input

COMBINE_PTR_MREF

t5

N bit output

N bit input

...

t2

...

(d) Wrapped in alternative
capability preservation

Figure 6. Possibilities for Capability Preservation

bit result, respectively. SET_PTR and SET_MREF take a N bit operand and a

K bit and N-K bit result, respectively, and insert the second operand into the first.

SPLIT_PTR_MREF takes a N bit operand and produces a K bit result and a N-K

bit result. COMBINE_PTR_MREF takes a K bit operand and a N-K bit operand

and combines them into a N bit result. This operations are summarized graphically

in Figure 5.

We define a number of heuristics to apply the operators to legalize the DAG Many

are simple substitutions, for example a truncation from N bits to K bits. This is not

a valid sequence of instructions, as it is not valid to truncate a capability pointer. For

the theoretical Beta architecture, it is valid to extract just the memory address and

32

operate on it. So a truncation can be modeled as a GET_PTR. As another example, an

N bit constant is not valid to write in a source program. But because it is used as an

operand to a N bit instruction, the initial DAG creation processes will generate N bit

constants. These are trivial to handle as we can just rewrite them as either K bit or

N-K bit constants, depending on the context.

We will now consider five cases where we apply our heuristics.

1. No operands and one N bit result value

2. One N bit operand and no result value

3. One N bit operand and one N bit result value

4. Two N bit operands and one N bit result value, and the operation is a ’decision’

5. All other cases

For these cases, we apply them to almost all instructions, except for a handful of

special cases. These include instructions like loads and stores, constants (we handle

them specially, see above), inline assembly (we do not want to change what the

programmer has written), function calling code, and instructions that have already

been selected. The first case and last case can both be handled trivially. To handle

the first case it is correct to just rewrite it as a K bit or N-K bit operation. Since

any of other transformations will take these as operands, it is safe to just rewrite the

result type. The last case is also trivial to solve, we ignore it. When counting the

number of operands, we do not include constants as an operand.

Solving the second and third cases is similar, as the second case is half of the

solution to the third case. The solution to this is simple but perhaps foreign, it does

however make intuitive sense in the pointer arithmetic case. Say we are running a

loop through a simple array, and we have a capability pointer to the first element. We

want to add a value to the memory address to go to the next pointer and just pass

33

along the metadata reference value. We can generalize this for all operations, and call

these types of transformations ’capability preservation’. We show an example DAG of

this in Figure 6a.

Many possible combinations of the DAG operators create valid capabilities. We

present three ideas for wrapping operations. The general idea is the same, extract out

the pointer, transform it in some way, then re-wrap it. The verbose full wrapping,

shown in Figure 6b, extracts the pointer and metadata reference in separate steps,

operates on the pointer, and combines them again into N bits. We also present a

combined approach of this in Figure 6d, which combines the extract steps into one

node. Finally, we present a minimal approach in Figure 6c that just extracts out

then pointer and then reinserts it into the original N bits. Other combinations of

these operations is possible; these are the most representative of all the available

functionality.

We primarily implement Figure 6b as it provides the simplest DAG representation

that is easiest to optimize. Figure 6d is similar, but it contains fewer total DAG

nodes. Although fewer in number, the DAG operators producing multiple outputs

require more complex implementation effort and maintenance. Figure 6c also has fewer

nodes and initially results in less register to register copies. A competent optimizer

will recognize these extra register copies and coalesce them, nullifying the perceived

advantage. As the full wrapping is easier to implement, this pattern is less used.

Other potentially more optimal patterns can be created using these operations. The

described operators are designed to be as general and flexible as possible while still

being intuitive to use.

Any of the presented approaches produces valid capability code and is able to

34

handle both cases; one operand/one result and one operand/no result. For the no

result case, trimming away the combining capability part produces a correct result.

Handling the remaining case is slightly different. This case revolves around what

is essentially an if statement, if the comparison of 2 capabilities is true the result is

the first capability, if the comparison is false the result is the second capability. We

can actually handle this with two streams of execution. We duplicate the instruction

to be wrapped, one handles the K bit memory address and the other handles the N-K

bit metadata reference. Then we combine the results of the two streams of execution

as result of the now transformed node.

To optimize these operations, we can feed the code as-is into standard compilation

optimizations. As the number of wrapped operations grows, many of these wrappings

end up being done on the same data. Wrapping and unwrapping individual nodes

produces a large number of extra copies. So additional passes take sequential wrappings

and merge them together.

We will walk through storing a four byte integer to a pointer at a given offset,

which is essentially an array. Figure 7a shows the DAG prior to mapping. It is

important to note that almost all bit sizes are initially set to N, as it is not valid to

mix bit sizes in a DAG in the LLVM framework. t1 and t5 are both 32 bit outputs,

as they are known inputs. t5 is valid 32 bit input for t6, but t1 is not a valid input

for t3. We fix this by rewriting the t3 to have a 32 bit input, giving Figure 7b. N bit

constants like t2 can automatically be lowered and since it is going to t3, which we

already know needs a 32 bit input. Lowering t2 to 32 bits produces Figure 7c, note

that several other bit sizes change as a result in t3 and t4. This is the exemplar case

for DAG mapping, so we apply the DAG operators and get Figure 7d. This leaves the

DAG with one inconsistency, a 32 bit output from t3 going to t4. To make a valid

35

node, t4 needs both its inputs to have the same size. Figure 7e shows inserting t10, a

CONVERT node. If K is greater than 32, this would be a sign extension. If K is less

than 32, this would be a truncation. If K is actually 32, then this would not need to

be inserted at all.

This is a fairly simple example. Yet many steps are required to create a valid DAG

that can be selected to instructions. This can impact optimization passes that require

specific orderings of instructions.

4.4 Usability

The compiler should have no sharp edges. This requires good system design to

make it user friendly. The compiler should also be predictable and do what is expected.

Take a C compiler for a capability architecture. Most developers writing C code

already understand the semantics of C, it is not in the best interest of the compiler to

change these semantics drastically. This creates two problems. First, the developer

now has a steeper learning curve to learn a new set of programming semantics. Second,

now there is something that looks like C, is written like C, but does not have C

semantics. This can be incredibly confusing and is likely to cause a developer to

misunderstand the semantics they are writing. This means that whatever semantics

are changed must be related to things that are transparent to the programmer, such

as the semantics of a metadata reference (this is discussed in the next section). We

note that this particular topic has been previously studied [36].

An important part of this is making sure the compiler generates human friendly

assembly code while still being optimized. This principle guided the development of the

above presented ideas. The less drastic and confusing changes made to the outputed

36

ADDRESS

t0

N bit output

N bit input N bit input

ADD

t4

N bit output

OFFSET

t1

32 bit output

N bit input N bit input

SHIFT

t3

N bit output

2

t2

N bit output

N bit input 32 bit input

STORE

t6

VALUE

t5

32 bit output

(a) Step 0

ADDRESS

t0

N bit output

N bit input N bit input

ADD

t4

N bit output

OFFSET

t1

32 bit output

32 bit input N bit input

SHIFT

t3

N bit output

2

t2

N bit output

N bit input 32 bit input

STORE

t6

VALUE

t5

32 bit output

(b) Step 1

ADDRESS

t0

N bit output

N bit input 32 bit input

ADD

t4

N bit output

OFFSET

t1

32 bit output

32 bit input 32 bit input

SHIFT

t3

32 bit output

2

t2

32 bit output

N bit input 32 bit input

STORE

t6

VALUE

t5

32 bit output

(c) Step 2

ADDRESS

t0

N bit output

N bit input

GET_PTR

t7

K bit output

N bit input

GET_MREF

t8

N-K bit output

OFFSET

t1

32 bit output

32 bit input 32 bit input

SHIFT

t3

32 bit output

2

t2

32 bit output

K bit input 32 bit input

ADD

t4

K bit output

K bit input N-K bit input

COMBINE_PTR_MREF

t9

N bit output

VALUE

t5

32 bit output

N bit input 32 bit input

STORE

t6

(d) Step 3

ADDRESS

t0

N bit output

N bit input

GET_PTR

t7

K bit output

N bit input

GET_MREF

t8

N-K bit output

OFFSET

t1

32 bit output

32 bit input 32 bit input

SHIFT

t3

32 bit output

2

t2

32 bit output

32 bit input

CONVERT

t10

K bit output

K bit input K bit input

ADD

t4

K bit output

K bit input N-K bit input

COMBINE_PTR_MREF

t9

N bit output

VALUE

t5

32 bit output

N bit input 32 bit input

STORE

t6

(e) Step 4

Figure 7. Storing to an Array

37

assembly, the easier for a developer to debug that code. This is heavily dependant

upon how much optimization is done to the code. A developer should still be able to

disable optimizations and reason about the generated code in comparison to the source.

An intrepid developer should be able to analyze the optimized generated code and

investigate why the compiler chose this sequence of code to be optimal. This creates an

environment where developers actively want to work on a platform. Providing a rich

development environment that is developer friendly encourages adoption. Developers

need less encouragement to a adopt a new system if it is familiar. This takes on almost

a sales-like approach, but a stubborn programmer needs persuading.

Part of this usability can actually be baked into the language. An architecture

like Beta with transparent registers does not need to expose this directly to a source

language. That is what assembly is for. But if it is exposed to the source in a clean

and usable way, it lowers the barrier to entry to advanced use cases. Inline assembly

allows for direct access to the instruction set, but can be messy and painful to use.

This is the motivating case for builtins. Compiler builtins, also called intrinsics, are

functions that can be called from source code that map to a very specific set of

assembly. For every DAG operation defined, the equivalent builtin function can be

exposed to the source language. This essentially allows a developer to write DAG

mapping themselves, either where they don’t trust the compiler to do it right or they

are writing some pattern not natively supported by the compiler. An example of this

is show in the next section in Code Snippet 8.

38

4.5 Pointer Semantics

Just as important to the discussion of actually compiling code is the semantics of

writing such code. For example, the value of 0 is commonly used as a null pointer,

describing an invalid address. There are also a specific set of operations in a high

language like C that can be done on pointers. Note that this is regardless of hardware

limitations. On a non-capability architecture, there is no semantic difference given to

a pointer verses a raw integer. Of course it is entirely possible to do these operations

from a high level language by converting the type from a pointer to an integer. Then

any integer operation is valid. This is called type punning.

Temporarily ignoring type punning, there is only one common pointer arithmetic

operations where both operands are pointers, subtraction Note this is not a discussion

of a pointer minus an integer, but a pointer plus or minus another pointer. A pointer

difference can be used to know the size of an array given a start and end pointer. But

the result is not a valid pointer, it is an integer. The compiler can safely ignore the

immutable metadata reference in this case. Either the compiler can insert some other

value as the resulting immutable metadata reference or it can pick one of the two

operands to preserve. Regardless, the hardware will fault if the result is attempted to

be used as a capability.

Considering type punning, the casting of a capability to an integer is a tantamount

to extracting the memory address to a general purpose register. This allows a high

level language to arbitrarily modify the memory address. To be usable as a memory

address, it must be casted back to a capability. This is a loss of information, and the

compiler must copy the metadata reference to the result to form a valid capability.

But if multiple capabilities are casted to integers and used to compute a single result,

39

it is unclear which metadata reference should be copied to the result. A logical choice

is to just use the first one. Our generic heuristic takes a different approach.

We update our mapping heuristics with these semantics. As an example, consider

the pointer difference case (pointer2− pointer1). The simple thing, especially in the

case where there is no result, is to just operate on the K bit part. Given a typical

three-address instruction, with two operands and one result with both operands as

valid full length N bit operands, e.g. not constants. This is show in Figure 8a. This is

wrapped trivially in GET_PTR for the inputs. For any such operation where there are no

outputs, the problem is solved, as no new N bit result is created. Metadata references

are not visible to the programmer, and so it does not make sense to make this a usable

operation. This also falls in line with the C standard [18]. This is represented this in

our mapping with a symbolic POISON value, seen in Figure 8b. This creates a valid

pointer and an invalid metadata reference. The POISON representation generates no

additional code, it is a compile concept only. This signifies that we no longer care

about the value of the metadata reference, from the point of view of the compiler it is

invalid. Its real value is dependant upon register allocation and other optimizations

that occur later. This follows the C standard for the pointer difference case and we

generalize it to any such operation on two pointers. In any such case, the operation

will create an invalid metadata reference.

Note that similar work has been presented on these pointer semantics. The CHERI

architecture has similar problems within their compiler [36]. However much of their

work focused on defining how to fix those problems in software. One of the most

obvious examples is the casting of a long to a intptr_t, in which an invalid capability

is created [23]. A compiler warning is emitted for these cases, but it is not specified

40

...

...

t0

N bit output

N bit input N bit input

OPERATOR

t2

N bit output

...

...

t1

N bit output

N bit input

...

t3

...

(a) Original

...

...

t0

N bit output

N bit input

GET_PTR

t4

K bit output

...

...

t1

N bit output

N bit input

GET_PTR

t5

K bit output

K bit input K bit input

OPERATOR

t2

K bit output

K bit input N-K bit input

COMBINE_PTR_MREF

t5

N bit output

N bit input

...

t3

...

POISON

(b) Poison inserted

Figure 8. Two Operand Case

1 void* align(void* p, unsigned n) {
2 unsigned b = (1 << n) - 1;
3
4 intptr_t p_ = (intptr_t)p;
5 p_ = (p_ + b) & ~b;
6 p = (void*)p_;
7
8 return p;
9 }

Code Snippet 7. Function to Align a
Pointer

1 void* align(void* p, unsigned n) {
2 unsigned b = (1 << n) - 1;
3 mref_t m = get_mref(p);
4 intptr_t p_ = (intptr_t)p;
5 p_ = (p_ + b) & ~b;
6 p = (void*)p_;
7 p = set_mref(p, m);
8 return p;
9 }

Code Snippet 8. Revised Code Snippet 7
for Capabilities

41

what can compiler do in these cases in terms of optimization. From a separable

capability pointer point of view, if a user casts a long to a intptr_t, a warning

should be emitted as this is potentially a mistake on the part of the user. However,

given the code as-is, the compiler can take the approach frequently used with undefined

behavior. The user is expressing the intent, whether on purpose or not, that they

want a memory address. So the compiler can produce the correct code to create a

memory address, but since there is no metadata reference to associate it is free to

remove the code that might have maintained the integrity of the capability. This

would be a correct compiler optimization.

This heuristic breaks under certain common code patterns. Consider the code in

Code Snippet 7, this function will align a pointer to a certain number of bits. Calling

this function with nbits = 12 returns a 4KiB aligned pointer. This is a valid operation,

particularly used in high performance code, to ensure proper alignment that matches

hardware requirements. But under the outlined poison semantics, information may be

lost by the compiler. The casting of the pointer between an integer and a capability is

likely to produce incorrect code. Using the builtins previously discussed it is possible

to rewrite this code to be fully correct even in the face of compiler optimizations, as

show in Code Snippet 8.

42

Chapter 5

COMPILING FOR ZENO

A subset of the previously described techniques have been used to build a compiler

for the Zeno architecture. The techniques were developed first for the Zeno compiler,

then expanded and generalized for a generic architecture, and then reapplied to

the Zeno compiler. RISC-V/Zeno introduces many of the same complexities as the

Alpha/Beta system that the theoretical techniques are for. It is important to note

that only a subset of theoretical ideas are implemented in Zeno. The DAG mapping

approach is designed to be incredibly flexible, but the Zeno compiler only needs a

few heuristics to be workable. The pseudo approach is nearly identically used in the

Zeno compiler to do instruction selection and to implement many higher level machine

instructions in LLVM.

5.1 Zeno ISA

The Zeno architecture builds on top of the 64 bit RISC-V specification [38, 33]. The

standard RISC-V I instruction set, as well as the M and A extensions are implemented.

On top of this is added a subset of the xBGAS extended global addressing extension

[21]. Zeno uses the RISC-V 64 bit general purpose registers as its memory addressing

registers and the mirrored xBGAS 64 bit extended registers as its metadata reference

register. Zeno Namespaces, an abstraction for a region of memory, serve as the the

capabilities for this architecture. Namespace Identifiers (NSIDs) are the concretization

of a metadata reference. These registers are summarized in Figure 9. Note that the

43

 RISC-V GPR xBGAS Extended Register

 Zeno Pseudo Extended Register

0 64 128

Figure 9. Registers for Zeno

Pseudo Extended Register is not a real register on Zeno, this is a compiler construct

used to generate valid Zeno assembly code.

All RISC-V I, M, and A instructions are implemented. On top of this are a

few xBGAS instructions. We will enumerate the additions to the base RISC-V ISA

from the software view, not the microarchitectural view. Table 1 lists the added

instructions. All instructions listed also have an explicit pseudo version. The explicit

pseudo version of instruction XYZ is PseudoXYZ. Some of the pseudo versions have an

additional immediate argument. This is used to aid the register allocation process.

Those instructions marked as explicit pseudo instructions are not real instructions,

they are intrinsically pseudo instructions and may have an additional explicit Pseudo

form.

Zeno machine instructions are encoded in LLVM using TableGen. (See Zeno

instruction encoding in Table 1). There are three classes of instructions: loads, stores,

and address management. The loads are the Beta LOAD instruction, the stores are the

Beta STORE, and the address management are the Beta COPY. The different variations

of loads and stores correspond to the RISC-V base loads and stores, ELW relates to

LW. These are all fundamentally the same in how they use the pointers, they each

take a pointer operand as rs1. rs1 specifies both the general purpose register and

the extended register. In their explicit pseudo form, the loads and stores take an

extra immediate argument. This encodes an optional register selection. If left as

44

Table 1. Zeno Instructions on RISC-V

Instruction
Beta
Equivalent

Destination
Register(s)

Source
Register(s) Pseudo?

Extra Pseudo
Argument?

ELD LOAD GPR rd GPR rs1
EXT rs1 No Yes

ELP LOAD GPR rd
EXT rd

GPR rs1
EXT rs1 Yes Yes

ELW LOAD GPR rd GPR rs1
EXT rs1 No Yes

ELH LOAD GPR rd GPR rs1
EXT rs1 No Yes

ELHU LOAD GPR rd GPR rs1
EXT rs1 No Yes

ELB LOAD GPR rd GPR rs1
EXT rs1 No Yes

ELBU LOAD GPR rd GPR rs1
EXT rs1 No Yes

ELE LOAD EXT rd GPR rs1
EXT rs1 No Yes

ESD STORE
GPR rs1
EXT rs1
GPR rs2

No Yes

ESP STORE

GPR rs1
EXT rs1
GPR rs2
EXT rs2

Yes Yes

ESW STORE
GPR rs1
EXT rs1
GPR rs2

No Yes

ESH STORE
GPR rs1
EXT rs1
GPR rs2

No Yes

ESB STORE
GPR rs1
EXT rs1
GPR rs2

No Yes

ESE STORE
GPR rs1
EXT rs1
EXT rs2

No Yes

EADDI COPY GPR rd EXT rs1 No No
EADDIE COPY EXT rd GPR rs1 No No
EADDIX COPY EXT rd EXT rs1 No No

45

−1, the register allocator will select the most appropriate physical register. If set

to a number in the range 0− 31, these instructions are preset to the corresponding

physical register before the register allocator runs. This allow the implementation to

choose physical registers explicitly in early stages of the compiler pipeline, before it is

normally possible to select a physical register. Code Snippet 9 demonstrates how all of

these options can be encoded in a single pattern. This pattern can be instantiated to

generate many different instruction definitions, and automatically generate associated

tools such as an assembler and dissembler.

1 multiclass RV64LoadExtended <
2 bits <3> funct3 ,
3 string opcodestr ,
4 string schedSize ,
5 string loadRegClass = "GPR",
6 bit hasConstraint = 0> {
7 let hasSideEffects = 0,
8 mayLoad = 1,
9 mayStore = 0 in {

10 def ""#NAME
11 : RVInstI <
12 funct3 ,
13 OPC_ELOAD ,
14 (outs !cast <RegisterClass >(""#loadRegClass):$rd),
15 (ins GPR:$rs1, simm12:$imm12),
16 opcodestr ,
17 "$rd , ${imm12 }(${rs1})"
18 >,
19 Sched <[!cast <SchedWrite >("WriteLD"#schedSize), ReadMemBase]>;
20 let hasPostISelHook = 1,
21 isAsmParserOnly = 0,
22 isCodeGenOnly = 0,
23 isPseudo = 1 in {
24 def Pseudo#NAME
25 : Pseudo <
26 (outs !cast <RegisterClass >(""#loadRegClass):$rd),
27 (ins PXER:$rs1, simm12:$imm12 , simm12:$regID),
28 [],
29 opcodestr#"_p",
30 "$rd , ${imm12 }(${rs1}), $regID"> {
31 let Constraints =
32 !if(hasConstraint , "@earlyclobber $rd", "");
33 }
34 }
35 }
36 def
37 : InstAlias <
38 opcodestr#" $rd , (${rs1})",
39 (!cast <RVInstI >(""#NAME)
40 !cast <RegisterClass >(""#loadRegClass):$rd,

46

41 GPR:$rs1,
42 0
43),
44 0>;
45 }
46 defm ELD : RV64LoadExtended <0b011, "eld", "D">;
47 defm ELP : RV64LoadExtended <0b011, "eld", "D", "PXER", 1>;
48 defm ELW : RV64LoadExtended <0b010, "elw", "W">;
49 defm ELH : RV64LoadExtended <0b001, "elh", "H">;
50 defm ELHU : RV64LoadExtended <0b101, "elhu", "H">;
51 defm ELB : RV64LoadExtended <0b000, "elb", "B">;
52 defm ELBU : RV64LoadExtended <0b100, "elbu", "B">;
53 defm ELE : RV64LoadExtended <0b111, "ele", "D", "ER64">;

Code Snippet 9. Pattern for Generating Load Instruction Definitions in TableGen

There are two special instructions, ELP and ESP. These are true pseudo instructions

and they have an explicit pseudo form as well with the register selection argument.

These are explicit 128 bit memory operations that correspond to a general purpose

register 64 bit load/store and an extended register 64 bit load/store. The ‘pointer’

memory operations simplify the instruction selection and optimization process by

using the pseudo 128 bit registers.

An important component of the Zeno compiler is the overloading of operations.

Any RISC-V instruction that normally takes a general purpose register can also take

a pseudo extended register. This makes the instruction into a pseudo instruction. At

the final stage of the machine instruction phase of the compiler, any instruction using

pseudo registers is lowered to the appropriate general purpose register and a register

copy for the extended register is inserted.

5.2 DAG Mapping

The Zeno compiler implements nearly all of the DAG mapping operators, only

SPLIT_PTR_MREF is not implemented. Since a Zeno metadata reference is a NSID,

47

in the implementation MREF is renamed to NSID. This gives the following five DAG

mapping operations.

• ZENO_GET_PTR

• ZENO_SET_PTR

• ZENO_GET_NSID

• ZENO_SET_NSID

• ZENO_COMBINE_PTR_NSID

The common full capability wrapping is applied in all cases, with the exception

of implementing the builtins. This only requires ZENO_GET_PTR, ZENO_GET_NSID,

and ZENO_COMBINE_PTR_NSID. ZENO_GET_NSID and ZENO_SET_NSID are both used to

implement builtins. Although it is implemented, ZENO_SET_PTR is actually unused.

Since Zeno memory addresses are 64 bits and NSIDs are 64 bits, we define the DAG

operator bit width N to be 128 and K to be 64. The rest of the heuristics and

ideas of DAG mapping remain largely unchanged. We do note that the heuristic for

handling an operator with a capability result and more than one capability operand

is only partially implemented. This was implemented simply to handle a branching

statement that compares pointers. Other multi-operand pointer arithmetic operations

are supported, but not explicitly handled as previously described with poison values.

Figure 10 provides an overview of the entire SelectionDAG pipeline. For context,

all of the blue sections are existing components of SelectionDAG. There exists large

elements of this that are not shown. The green sections are the added parts of the

pipeline for DAG mapping. Note that a green section inside of a blue means that an

existing component was augmented with DAG mapping, rather than constructed from

scratch. The purple and red sections are a logically grouping of the DAG mapping

actions performed.

48

Figure 10. SelectionDAG Pipeline for Zeno

Note that the majority of DAG mapping does not modify the existing optimization

phase or instruction selection and scheduling. The DAG mapping is added as pre/post

processing. In essence, making the DAG legal and valid for Zeno in terms that the

existing LLVM pipeline can understand. This was an intentional design choice in line

with the core ideas of DAG mapping. The less that the existing LLVM compiler is

modified, the more portable and reusable the DAG mapping is. This allows the Zeno

compiler to easily add the DAG mapping on top of existing components and reuse all

of the optimization goodness that already is built in to the LLVM compiler.

In this context, DAG mapping is essentially a way to legalize types for a capability

architecture. The additional machine instructions that are emitted are purely register

to register copies. This is highly advantageous, as passes already exist to optimize

register to register copies. Dead code elimination passes and register coalescing passes

can run largely unmodified. Assisted by Zeno specific optimization passes, many of

these copies can be eliminated.

One key component of the RISC-V instruction set is the ability to encode constant

49

ADDRESS

t0

128 bit output

128 bit input

GET_PTR

t6

64 bit output

128 bit input

GET_NSID

t7

64 bit output

IMM

t1

64 bit output

64 bit input 64 bit input

ADDI

t2

64 bit output

0

t3

64 bit output

128 bit input 64 bit input

ELD

t4

64 bit output

64 bit input 64 bit input

COMBINE_PTR_MREF

t8

128 bit output

64 bit input

LOADED Value

t5

(a) ADDI + ELD with DAG Operators

ADDRESS

t0

128 bit output

128 bit input 64 bit input

ELD

t4

64 bit output

IMM

t1

64 bit output

64 bit input

LOADED Value

t5

(b) Optimized ELD

Figure 11. Optimization Example of ELD

offsets directly in a memory operation. For example, ld rd, imm(rs1) will access the

memory at address GPR[rs1] + imm. There exist optimization passes in the compiler

to fold a constant immediate into memory accesses like this for RISC-V. However,

DAG mapping for Zeno breaks this optimization pass. Consider the following DAG

in Figure 11a. The additional DAG operators are required to make a valid DAG,

but the optimization pass for folding constants will be confused by the additional

passes. This example is the reason only full capability preservation is implemented in

the Zeno compiler, cases like this are easy patterns to spot and then optimize. After

applying the matching pattern to this DAG, the desired DAG with folded constants

is produced Figure 11b.

50

5.3 Machine Instruction Passes

There are a number of specialized passes for Zeno that operate on Machine

Instructions, see Table 2. These passes can be classified as optimization passes,

legalization passes, and code generation passes. Optimization passes for the most part

are restricted to dead code removal, specifically dead register copies. A dead register

copy is where a value is copied to a destination register, and then the value in the

destination register is never used again. Many of these copies get generated by the

DAG mapping, so these passes are critical. The legalization passes perform all kinds

of fix-ups on instructions, at all stages of the machine instruction passes. For example,

a pass runs shortly after machine instruction selection and fixes invalid instructions

that are generated. Code generation passes convert pseudo instructions, including

real instructions with pseudo operands, to real instructions.

One of the most important parts of this is propagating metadata references.

Any pseudo operands remaining are assumed to be real capabilities that need to

be preserved. Therefore part of the conversion to real operands is the insertion of

register copies to preserve the NSID. This typically occurs under pointer arithmetic,

where the destination operand is a capability and the first operand is also a capability.

The correct transformation is to lower the pseudo capability registers to real integer

registers and insert an associated copy instruction for the real extended registers.

5.4 Builtins and Intrinsics

Implemented in the compiler are two Namespace management builtins and two

explicit load/store builtins that are overloaded. These builtins are implemented in

51

Table 2. Zeno Machine Instruction Passes

Pass File Classification

Resolve Physical
Registers To
Pseudo Registers
For ELP/ESP

RISCVZenoDAGFixup.cpp Legalization

Remove Useless
Register Copy
With SRC=DST

RISCVZenoDeadCode.cpp Optimization

Remove Adjacent
Duplicate Extended
Register Copy

RISCVZenoDeadCode.cpp Optimization

Remove Copies
Of Registers
That Are
Never Used

RISCVZenoEliminateExtraCopies.cpp Optimization

Remove Empty
Full Capability
Preservation
Mapping

RISCVZenoEliminateExtraCopies.cpp Optimization

Remove
Double Copies RISCVZenoEliminateExtraCopies.cpp Optimization

Expand Explicit
Pseudo Instructions
To Real Instructions

RISCVZenoExpandPseudo.cpp Code Generation

Special Expansion
Of The Stack Frame
NSID

RISCVZenoPreEmitFixup.cpp Code Generation

Expand Real
Instructions with
Pseudo Operands
to Real Instructions

RISCVZenoPreEmitFixup.cpp Code Generation

Clean Up
Remaining
DAG Operators

RISCVZenoPreEmitFixup.cpp Legalization
Code Generation

Select Explicit
Physical Registers RISCVZenoSelectExtReg.cpp Legalization

52

the C and C++ front end of LLVM, and map directly to LLVM IR intrinsics. The IR

intrinsic are language agnostic.

The two Namespace management builtins, Table 3, allow a programmer to directly

manipulate the NSID stored in the extended register file. Using these two builtins,

it is possible for programmers to build capabilities entirely from C/C++ without

resorting to inline assembly. This is a huge quality of life improvement for developers

writing trusted firmware or an OS for Zeno.

The two explicit load/store builtins are heavily overloaded, see Table 4, Table

5, Table 6, and Table 7. The builtin name is the same and the correct LLVM IR

intrinsic is inferred from the type of the arguments. There are also two versions of each

builtin. The first version just takes a pointer (and a value, in the case of the stores)

and executes the corresponding instruction(s). This is identical to if the programmer

had just use the pointer in a normal way in a C/C++ program. The second version

takes the same arguments as the first, plus an additional parameter to be used as

the NSID. This allows a programmer to use an arbitrary NSID for a memory access,

without modifying the pointer explicitly. This provides additional flexibility to the

programmer.

These builtins break the transparency of the compiler. Previously a programmer

was entirely agnostic of Zeno, these builtins are explicit Zeno operations. This

breaking of transparency provides a way for programmers to have more control over

the code generated. This additional control essentially comes for free, the builtins

serve no detriment to the compiler. If a programmer didn’t know these builtins existed

and never used them, they could still write and compile correct programs. If the

programmer does use the builtins, we are making the assumption that they know

what they are doing. Any bugs they might introduce by using the builtins improperly

53

Table 3. Intrinsics for NS Management

C/C++ Builtin
prefixed by
__builtin_riscv_zeno_

Argument
Type(s) Return Type

LLVM
Intrinsic
prefixed by
llvm.riscv.zeno. Instruction

set_nsid void*
unsigned long void* set.nsid EADDIE

get_nsid void* unsigned long get.nsid EADDI

Table 4. Intrinsics for __builtin_riscv_zeno_load with 8 and 16 Bit Values

Argument Type(s) Return Type LLVM Intrinsic Instruction

char* char llvm.riscv.zeno.load.u8 ELBUunsigned char* unsigned char
char*
unsigned long char llvm.riscv.zeno.load.u8.nsid EADDIE

ELBUunsigned char*
unsigned long unsigned char

signed char* signed char llvm.riscv.zeno.load.s8 ELB
signed char*
unsigned long signed char llvm.riscv.zeno.load.s8.nsid EADDIE

ELB
unsigned short* unsigned short llvm.riscv.zeno.load.u16 ELHU
unsigned short*
unsigned long unsigned short llvm.riscv.zeno.load.u16.nsid EADDIE

ELHU
short* short llvm.riscv.zeno.load.s16 ELHsigned short* signed short
short*
unsigned long short llvm.riscv.zeno.load.s16.nsid EADDIE

ELHsigned short*
unsigned long signed short

is introduced by the programmer, so it is on them to fix it. The builtins also do not

break any security guarantees made by the Zeno architecture. The hardware enforces

that only trusted firmware can create Namespaces and software that uses builtins

attempting to do so will trap.

54

Table 5. Intrinsics for __builtin_riscv_zeno_load with 32, 64, and 128 Bit Values

Argument Type(s) Return Type LLVM Intrinsic Instruction

int* int
llvm.riscv.zeno.load.32 ELWsigned int* signed int

unsigned int* unsigned int
int*
unsigned long int

llvm.riscv.zeno.load.32.nsid EADDIE
ELWsigned int*

unsigned long signed int

unsigned int*
unsigned long unsigned int

long* long
llvm.riscv.zeno.load.64 ELDsigned long* signed long

unsigned long* unsigned long
long*
unsigned long long

llvm.riscv.zeno.load.64.nsid EADDIE
ELDsigned long*

unsigned long signed long

unsigned long*
unsigned long unsigned long

void** void* llvm.riscv.zeno.load.128 ELD
ELE

void**
unsigned long void* llvm.riscv.zeno.load.128.nsid

EADDIE
ELD
ELE

5.5 Evaluation

The Zeno compiler is evaluated in a number of ways to ensure both correctness

and to get an understanding of the performance impacts. The full impacts will not be

fully realized until the Zeno platform reaches more stability and more benchmarks

can be validated on it. It is possible to get a theoretical idea of some of the potential

performance pitfalls, and an insight into future optimizations to solve them before

they ever become an issue.

55

Table 6. Intrinsics for __builtin_riscv_zeno_store with 8 and 16 Bit Values

Argument Type(s) LLVM Intrinsic Instruction

char*
char llvm.riscv.zeno.store.8 ESBsigned char*
signed char
unsigned char*
unsigned char
char*
unsigned long
char llvm.riscv.zeno.store.8.nsid EADDIE

ESBsigned char*
unsigned long
signed char
unsigned char*
unsigned long
unsigned char
short*
short llvm.riscv.zeno.store.16 ESHsigned short*
signed short
unsigned short*
unsigned short
short*
unsigned long
short llvm.riscv.zeno.store.16.nsid EADDIE

ESHsigned short*
unsigned long
signed short
unsigned short*
unsigned long
unsigned short

56

Table 7. Intrinsics for __builtin_riscv_zeno_store with 32, 64, and 128 Bit Values

Argument Type(s) LLVM Intrinsic Instruction

int*
int llvm.riscv.zeno.store.32 ESWsigned int*
signed int
unsigned int*
unsigned int
int*
unsigned long
int llvm.riscv.zeno.store.32.nsid EADDIE

ESWsigned int*
unsigned long
signed int
unsigned int*
unsigned long
unsigned int
long*
long llvm.riscv.zeno.store.64 ESDsigned long*
signed long
unsigned long*
unsigned long
long*
unsigned long
long llvm.riscv.zeno.store.64.nsid EADDIE

ESDsigned long*
unsigned long
signed long
unsigned long*
unsigned long
unsigned long
void**
void* llvm.riscv.zeno.store.128 ESD

ESE
void**
unsigned long
void*

llvm.riscv.zeno.store.128.nsid
EADDIE
ESD
ESE

57

5.5.1 Static Tests

Zeno has a suite of static tests to validate the code generation. These are a set of

small, exemplar programs that are intentionally written to produce certain effects. It

is specifically written to stress the DAG mapping and associated passes. The suite

is written in C, rather than the normal LLVM tests for a backend which are written

in LLVM IR[24]. This is because many of the bugs that occur are due to incorrect

LLVM assumptions when converting C to LLVM IR, and frankly because C is much

easier to read and reason about than LLVM IR.

The static tests are constructed in the following sequence.

1. Construct minimal C sample to produce desired effect

2. Hand assembly a solution

3. Run the compiler and compare results

4. Make small, “insignificant” tweaks

5. Repeat steps 2 through 4 for various interesting combinations of compiler flags.

This constructs the actual tests, a test harness can then automatically run the tests

during development and ensure that no test gets broken. Note, an “insignificant”

tweak is just little spacing and ordering changes that do not effect the overral result.

For example, consider adding a0, a1, and a2, storing the result in a0. Code Snippet

10 shows the different perfectly valid permutations of instructions, which are all

equivalent and just depend on the scheduling and register selection. This have no

effect on the actual test case.

The test suite currently contains 198 individual tests and many more exist but

have yet to be defined. All but one test pass and we will deep dive on it. Additionally,

58

1 ;; Possibility 1
2 add a0, a1, a0
3 add a0, a0, a2
4 ;; Possibility 2
5 add a0, a1, a0
6 add a0, a2, a0
7 ;; Possibility 3
8 add a0, a2, a0
9 add a0, a0, a1

10 ;; and so on...

Code Snippet 10. Possible Permutations for Adding Three Registers

rather than showing all the test cases that work we will select a handful to analyze of

the ones that are functionally correct, but have a few noteworthy characteristic or

future optimization opportunities.

Code Snippet 11 is a test case that stores a value to a 2D array (a double pointer).

This should be a simple case; load the pointer at an offset of 30, use the loaded pointer

to store a value at an offset of 60. The Zeno compiled version, Code Snippet 12,

correctly performs the memory accesses but a closer examination shows an inefficiency.

Lines 4 and 5 make a copy of the loaded pointer before storing a value to it. This

is correct code, but we do not need the extra copies as line 6 will not overwrite the

pointer. Furthermore even if the pointer gets partially overwritten we no longer care,

as the pointer is not used for the rest of the function. A better version would look

like Code Snippet 13, which eliminates the register copy. This test case demonstrates

that an improved register coalescing optimization is needed prior to physical register

allocation.

Note that the opportunity for optimization in Code Snippet 11 is likely from the

result of DAG mapping. Code Snippet 14 is a similar code sample, but instead of

fixed array offsets known at compile time, the offsets are parameters to the function;

they are unknown at compile time. Therefore the compiler cannot fold them into

59

1 void func(int** p, int v) {
2 p[30][60] = v;
3 }

Code Snippet 11. Storing a Value to a 2D Array with Fixed Offsets

1 func:
2 eld a2, 480(a0)
3 ele e12 , 488(a0)
4 mv a0, a2
5 moveee e10 , e12
6 esw a1, 240(a0)
7 ret

Code Snippet 12. Result of Compiling
Code Snippet 11 with -O3

1 func:
2 eld a2, 480(a0)
3 ele e12 , 488(a0)
4
5
6 esw a1, 240(a2)
7 ret

Code Snippet 13. Optimal Version of
Code Snippet 12

the memory operations, so the compiler must generate the instructions to do pointer

arithmetic. Note the register copies resulting from DAG mapping on lines 3 and 5, and

then again on lines 9 and 11 in Code Snippet 15. In both cases, there is essentially a

duplicate copy. This is caused not by DAG mapping, but by an overlap between DAG

mapping and pseudo lowering. The pseudo instructions are meant to be compilation

targets for the DAG mapping as an intermediate step and they are lowered to the

proper instruction(s). The code shown is not being properly lowered, and so these

duplicate copies are the result of later passes in the compiler making a last ditch

effort to remove all pseudo instructions. So they are functioning correct, as no pseudo

operations should be emitted. But the pseudo instructions should have already been

lowered.

This is only half the problem, as all four lines are not needed. Code Snippet

16 shows what the code should ultimately be compiled to. The root cause here is

again useless register copies, they make the code functionally correct but a good

optimizer should remove them. This example can also be solved by an improved

register coalescing pass.

60

1 void func(int** p, int offset1 , int offset2 , int v) {
2 p[offset1][offset2] = v;
3 }

Code Snippet 14. Storing a Value to a 2D Array with Variable Offsets

1 func:
2 slli a1, a1 , 4
3 moveee e11 , e10
4 add a1, a0, a1
5 mv a0, a1
6 eld a1, 0(a0)
7 ele e11 , 8(a0)
8 slli a0, a2 , 2
9 moveee e10 , e11

10 add a0, a1, a0
11 moveee e10 , e11
12 esw a3, 0(a0)
13 ret

Code Snippet 15. Result of Compiling
Code Snippet 14 with -O3

1 func:
2 slli a1, a1 , 4
3
4 add a0, a0, a1
5
6 eld a1, 0(a0)
7 ele e11 , 8(a0)
8 slli a2, a2 , 2
9

10 add a1, a1, a2
11
12 esw a3, 0(a0)
13 ret

Code Snippet 16. Optimal Version of
Code Snippet 15

Code Snippet 17 is a simpler case of Code Snippet 14 as it is just a single pointer

that a value is being stored to. In Code Snippet 18 pseudo instructions are again not

removed early enough in the pipeline. The compiler takes the conservative approach

and leaves in the pseudo operations and are lowered crudely to real instructions later,

albeit correctly. Furthermore, these instructions are again not needed as this example

could be optimally compiled with an improved register coalescer as Code Snippet 19.

What we find is that the majority of simple pointer arithmetic cases like this have this

inefficiency. The code is functionally correct and will run properly on hardware, but

the optimizations are too late and not aggressive enough to achieve the best possible

result.

Code Snippet 20 and Code Snippet 22 showcase one of the more perplexing

optimization opportunities. They are both functions that take a pointer to a struct

61

1 void func(unsigned char* p, int offset , unsigned char v) {
2 p[offset] = v;
3 }

Code Snippet 17. Storing a Value at a Variable Offset

1 func:
2 moveee e11 , e10
3 add a1, a0, a1
4 mv a0, a1
5 esb a2, 0(a0)
6 ret

Code Snippet 18. Result of Compiling
Code Snippet 17 with -O3

1 func:
2
3 add a0, a0, a1
4
5 esb a2, 0(a0)
6 ret

Code Snippet 19. Optimal Version of
Code Snippet 18

containing two elements and the function returns the sum of the two elements. If

an element of the struct is a pointer, the pointer is dereferenced and that is the

value that is summed. Code Snippet 20 is argulablty the more complex case as it

uses a struct that has two pointers, but the compiler produces the correct assembly

(Code Snippet 21). This is not the case with Code Snippet 22, where the compiler

produces Code Snippet 23. This is the same extra register copy as Code Snippet

11 and could theoretically be solved the same way to produce the desired output in

Code Snippet 24. But what this test case shows is that there may be something else

at work that is not fully understood yet. The more complex test case successfully

passes through the existing optimization passes and gets the correct result. This is a

very important puzzle, because it actually holds the answer to solve the optimization

problem. This will eventually be solved by comparing what is different in the code

generation pipeline between the working test case and the broken test case and then

using that information to improve the code generation.

Code Snippet 25 is only currently failing test case for functionality. It involves

62

1 struct s { int* x; int* y; };
2 int func(struct s* s) {
3 return *s->x + *s->y;
4 }

Code Snippet 20. Using a Struct Containing Two Pointers

1 func:
2 eld a1, 0(a0)
3 ele e11 , 8(a0)
4 eld a2, 16(a0)
5 ele e12 , 24(a0)
6 elw a0, 0(a1)
7 elw a1, 0(a2)
8 addw a0, a1 , a0
9 ret

Code Snippet 21. Result of Compiling Code Snippet 20 with -O3

1 struct s { int x; int* y; };
2 int func(struct s* s) {
3 return s->x + *s->y;
4 }

Code Snippet 22. Using a Struct Containing One Pointer and One Integer

1 func:
2 mv a1, a0
3 moveee e11 , e10
4 eld a2, 16(a1)
5 ele e12 , 24(a1)
6 elw a0, 0(a0)
7 elw a1, 0(a2)
8 addw a0, a1 , a0
9 ret

Code Snippet 23. Result of Compiling
Code Snippet 22 with -O3

1 func:
2
3
4 eld a1, 16(a0)
5 ele e11 , 24(a0)
6 elw a0, 0(a0)
7 elw a1, 0(a1)
8 addw a0, a1 , a0
9 ret

Code Snippet 24. Optimal Version of
Code Snippet 23

63

a function passing a pointer to a function that takes an integer. From the point of

view of the compiler, since it doesn’t know the contents of the function being called,

the argument is an integer. But the programmer knows that the integer argument is

actually going to be used as a memory address. This is a minimal example of real

world code that does similar operations such as this, such as inside of the Linux kernel.

So this is an important test case to get right; and the compiler does get it correct in

Code Snippet 27, the one caveat being that this is unoptimized code. Even though the

argument is an integer, the compiler stills sets up the argument with the NSID for the

pointer because that is the cautious and functional thing to do. When optimizations

are applied in Code Snippet 26, the test case breaks. Now instead of the NSID being

copied properly, those instructions are entirely optimized away.

This unfortunately is a case of the optimization passes being too aggressive. In all

of the previous test cases examined, we concluded a more aggressive optimizer was

needed, but in this last case the optimizer is too aggressive. Unfortunately, the less

aggressive approach is the one that has to be taken. Because even though the breaking

test case is an edge case and represents a small portion of all software, the compiler

must always produce functionally correct code no matter the input. Optimization is a

bonus, not a requirement.

5.5.2 File Size

We compiled newlib, a bare metal C standard library implementation, using both

a normal LLVM build for RISC-V IMA and the Zeno compiler. Newlib was compiled

with −Os, meaning we optimized for size compared to just purely speed. This will

64

1 void unknown(long ptr , long v);
2 void func(long v, long* ptr) {
3 unknown ((long)ptr , v);
4 }

Code Snippet 25. Calling an Unknown
Function with a Casted Pointer

1 func:
2 mv a2, a0
3 mv a0, a1
4 mv a1, a2
5 tail unknown

Code Snippet 26. Result of Compiling
Code Snippet 25 with -O3

1 func:
2 addi sp, sp , -64
3 esd ra, 48(sp)
4 ese e1, 56(sp)
5 esd s0, 32(sp)
6 ese e8, 40(sp)
7 addi s0, sp , 64
8 moveee e8, e2
9 esd a0, -40(s0)

10 esd a1, -64(s0)
11 ese e11 , -56(s0)
12 eld a0, -64(s0)
13 ele e10 , -56(s0)
14 eld a1, -40(s0)
15 call unknown
16 eld s0, 32(sp)
17 ele e8, 40(sp)
18 eld ra, 48(sp)
19 ele e1, 56(sp)
20 addi sp, sp , 64
21 ret

Code Snippet 27. Result of Compiling
Code Snippet 25 with -O0

limit the effect of inlining and other similar optimizations, but will give us the best

estimate for the size overhead of the Zeno compiler.

Overall, there is an average 29.6% size overhead from the Zeno compiler. Figure

12 shows the overhead for individual static libraries inside of newlib. For each static

library, the total of the two bars represents the size overhead over the base case LLVM.

We break the overhead down and categorize them separately. The first category is the

overhead produced by additional Zeno instructions. In this case, we classify ELE, ESE,

EADDI, EADDIX, and EADDIE as the Zeno instructions. The other loads and stores are

also Zeno instructions, but they are swapped out one for one with the base RISC-V

instructions so we do not consider this to be overhead. The second category is the

overhead that is not directly due to a Zeno instruction, these are normal RISC-V

instructions.

65

libc.a libgloss.a libm.a libnosys.a libsemihost.a libsim.a
0%

10%

20%

30%

40%

50%

27.7

20.7

11.5

18.9 19.4 21.7

26.5

6.7

-1.2

6.3

12.9
7.7

Zeno Instruction Overhead Base Instruction Overhead

Figure 12. Overheads Produced by Zeno Compiler

The second category, instruction overhead of RISC-V instructions, is the overhead

of the missed optimization opportunities caused by adding the Zeno instructions. We

hypothesize that because of the extra operations that are needed to preserve pointers,

some optimizations opportunities are missed which causes the additional overhead.

The overhead caused by just the additional Zeno instructions is an average 19.8%

extra lines of code and the overhead caused by missed optimization opportunities is

9.8%.

We note that the best way to decrease the total overhead is to decrease the amount

of missed optimization opportunities, but to do this we must decrease the additional

Zeno instructions. The two categories are directly tied together, to optimized one is to

optimize the other. We also note that the first category, the Zeno instruction overhead,

can actually be further split into necessary and unnecessary Zeno instructions. As

demonstrated in the static test cases, there are many useless Zeno instructions that

get inserted. They do not impact the correctness of the code and have no effect on

output of the program, therefore we can remove them. However we do not have a way

to further subdivide the category, as if we could determine in the general case which

Zeno instructions are necessary and which are not then we would just remove the

instruction.

The key takeaway from this is that the required Zeno instruction overhead does

66

cause a slight degradation in other optimizations, causing additional overhead. The

best way to get better code is to allow the compiler to run more aggressive optimizations,

which currently Zeno instructions are blocking. Two solutions exist, improve the

optimizations themselves to handle extra Zeno instructions and remove useless Zeno

instructions.

Note that in all cases but one, adding Zeno instructions incurs an overhead of

missed optimization opportunities. But in the case of libm.a, it seems to provide

more optimization opportunities. This does not make sense in the context of normal,

working software. The math library does not primarily operate on pointers, it does

computation on values. But the very nature of DAG operators is that the heuristics

to apply them are very broad and frequently get applied even if there is no pointer.

This normally should not hinder the functionality of the code, as its just ends up

being extra pointless register copies. The DAG operators get applied as a result of

optimization that inserted potentially illegal operations. Some illegal operations get

handled by DAG mapping, while others get handled by the existing compiler. The

method of legalization is to replace their result values with an undef. An undef

is a compiler construct, all it means is that the value is unknown. This does not

directly translate to a single real operation, rather to the lack of any operation. undef

frequently gets removed under many optimizations, causing important pieces of code

to be ‘optimized’ away. We hypothesize this is what is occurring in libm.a. In short,

a compiler bug.

This sort of compiler bug cropped up several times during the development of

the compiler. One particularly nasty example was introducing 128 bit values as valid

RISC-V values. Because of the poor assumption that a pointer was the largest integer

size on the target, the compiler was lowering a struct containing two 64 bit integers

67

libc.a libgloss.a libm.a libnosys.a libsemihost.a libsim.a

5%

0%

10%

15%

20%

1.
5

0
.2 0
.3 0
.6

0
.1

0
.2

8.
1

6
.7

5.
0

0
.0

4.
3

6
.9

0
.8

0
.0 0
.2 0
.6

0
.1

0
.2

4.
7 7.

1

4.
0

0
.0

4.
1

7.
28.

4

5.
0

18
.4

14
.0

8.
1

4.
7

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

11
.6

6
.7

1.
9

16
.5

9.
9

7.
0

1.
1

0
.0

0
.0 1.

2

0
.9

0
.3

ELE Pointer ELE Fill ESE Pointer ESE Spill GPR=GPR GPR=EXT EXT=EXT EXT=GPR

Figure 13. Distribution of Zeno Instructions

to a single 128 bit ‘integer’. This ‘integer’ was then used as a struct indexed by bit

shifts (this is a common optimization with valid bit widths, for example converting a

struct containing two 32 bit integers to a single 64 bit integer). However, the shift

instruction for RISC-V is not defined at 64 bits, so the compiler could ‘safely’ replace

the result of the instruction with undef. This particular bug has been patched, but

based on the data we hypothesize it is likely that more of these such bugs exist.

We also examine the distribution of Zeno instructions for each static library in

Figure 12. Note that the five previously described Zeno instruction categories have

now been made into ten. By distinguishing between whether an operation is a spill/fill

or a pointer load/store to an arbitrary memory location for ELE and ESE allows us to

reason about the distribution of where these instructions are being used the most. To

the list of Zeno instructions is added MV, a GPR to GPR copy, since these are often

paired with EXT to EXT (EADDIX) copies.

In our survey of newlib, the compiler did not generate any EXT to GPR (EADDI)

copies. This makes intuitive sense, as once a NSID is moved to the extended register

file it need not be moved back to the general purpose registers. It will either be

copied to another extended register or stored in a memory location directly, we do

not perform computation on NSIDs.

Separating out the spills and fills actually shows how much effect they have on total

68

overhead. The loads and stores of extended registers to arbitrary memory locations is

so small as to be almost zero. This demonstrates that there are few double or triple

pointers in the sample, we confirm this by investigating the original source code.

For libc.a, libgloss.a, libsemihost.a, and libsim.a the distribution of spills,

fills, GPR to GPR copies, and EXT to EXT copies is well balanced. We would expect

more register copies than spills and fills, since register copies are cheaper, and we do

see this pattern. For libnosys.a the overhead is dominated by register to register

copies, notably not between register files but just shuffling values within the register

file. This is expected in small functions that are optimized, as there is little need

to save values to the stack when they can be copied to saved registers according to

the ABI. libm.a is again an outlier, with most of the code being dominated by GPR

to GPR copies. This is easier to explain and is likely not the result of a compiler

bug, as the math library primarily does not work with pointers and is mostly doing

computation heavy tasks.

We also note that on an Out-of-Order core, register renaming would enable many

of the register copies to be NOPs. So although we see a large size overhead caused by

the register copies, it is unlikely we would see a large runtime effect. This is purely

hypothetical and is not verified.

5.5.3 Optimization Opportunities

These graphs, combined with the static tests actually guide us to several ways

the Zeno compiler can be improved in the future. The first is to reduce the number

of Zeno instructions needed. The static tests demonstrate that the Zeno compiler

produces a handful of useless register copies as a result of DAG mapping, we can add

69

additional optimization passes to solve this. But a key insight from the graphs is that

if we reduce the number of added Zeno instructions, we are no longer as limiting of

optimization opportunities. This gives us an improved binary almost for free, as by

optimizing one thing we are really optimizing two things at once.

There is also a more radical optimization opportunity. Since extended registers

follow the same ABI as the general purpose registers, there are a handful of extended

registers that if a callee function modifies, it must save and restore the previous

state in this register. And since register copies are cheaper and take less instruction

space, we could use some of the extended registers to replace our spills and fills. This

would be most effective in a leaf function that requires more registers and is doing

many spills/fills to the stack to do its computation. From a pure performance and

optimization point of view this would be a huge win, particularly on an Out-of-Order

core with register renaming. However, there are certain security implications. The

extended registers are explicitly there to perform memory addressing, the compiler

would essentially be abusing them to gain performance. This does not immediately

break any security guarantees of Zeno, but from a security point of view it might be

advantageous to not allow this. Currently the Zeno architecture supports copying to

and from the extended register file. The Zeno compiler provides this transparently

to the user. But a malicious user is perfectly free to write assembly code (or use

__builtin_riscv_zeno_get_nsid) to arbitrarily read any NSID from the extended

register file. We note that the current Zeno architecture does not perform this

optimization at all, this is apparent by the lack of compiler generated EXT to GPR

(EADDI) register copies. In the future, the Zeno architecture may remove the ability to

copy from the extended registers back to the general purpose registers from software

(or make it a privileged operation). This would enforce better security as NSIDs are

70

no longer visible to an attacker seeking to learn information about the system. So we

state this optimization is possible, but likely has undesirable security impacts.

71

Chapter 6

CONCLUSION

6.1 Summary of Work

In this thesis we described a small subset capability architectures, and generalized

them into two distinct types. Capability architectures with a single, unbreakable

capability have been well researched and have mature compiler toolchains developed for

them. Capability architectures with a separable capability that can only pass through

the data path as separate pieces are a still relatively unexplored area. Emerging

capability architectures are using this implementing, but require new software tools

and compiler techniques to develop for them and run software.

We then introduced a common language for discussing compilers to more succinctly

describe the following compilation techniques. To describe our compilation techniques,

a hypothetical generic capability architecture was detailed. We presented two ap-

proaches, DAG mapping and pseudo instructions, which complement each other to

compile code with separable capabilities transparently. A further discussion was raised

regarding the semantics of a capability architecture. Lastly, we described several ways

to improve the usability and developer quality of life for our compilation techniques.

To demonstrate the validity of the techniques, we implemented a subset of them in

a compiler for the Zeno architecture. This compiler utilized extensive DAG mapping

and pseudo instructions to build a Zeno compiler on top of the RISC-V backend in

LLVM. We evaluated the compiler statically through rigours test cases and an analysis

of the distribution of instructions in a given binary.

72

6.2 Key Takeaways

The primary takeaway is that DAG mapping is viable technique to produce correct

code for separable capability architectures. Although certain inefficiencies do exist, it

produces correct code that preserves capabilities. We also showed that many of the

inefficiencies introduced can be easily optimized away. This is an important part of

this work, when is it okay to optimize a given section of code and when is it not.

Another important takeaway is not directly related to DAG mapping, but rather to

software engineering as a whole. Certain assumptions can be dangerous or introduce

unforeseen issues later on. Bad assumptions cause software developers to not check

the bounds of their array, leading to buffer overflow attacks that make capability

architectures a requirement. Furthermore, much of this work payed the price of having

to fix poor compiler assumptions. Many pieces of software and the compiler itself

assume that a pointer is 64 bits, but as capability architectures become more prevalent

this is not going to be true much longer. The software community did not learn their

lesson on the 32 bit pointer to 64 bit pointer transition, hopefully on the next change

the poor assumptions are solved.

6.3 Future Work

There is quite a bit of future engineering work for the Zeno compiler. As discussed,

there are many obvious opportunities for optimization that will vastly improve the

Zeno compiler. The examples presented in this work are just the tip of the iceberg. In

future work, it may also be interesting to investigate what other assumptions are made

by compilers and programming languages that may be broken in the coming years.

73

Hardware development is making a huge resurgence; as new and different hardware is

developed it may break assumptions that have hidden for years.

Research on capability architectures is ongoing, but much of the work is focused

on the hardware. We believe future research should consider the software and tooling

impacts capabilities will have.

74

REFERENCES

[1] 2021 CWE Top 25 Most Dangerous Software Weaknesses. 2021. url: https:
//cwe.mitre.org/top25/archive/2021/2021%5C_cwe%5C_top25.html.

[2] Jacob Abraham, Alan Ehret, and Michel Kinsy. “A Compiler for Transparent
Namespace-Based Access Control for the Zeno Architecture”. In: 2022 IEEE
International Symposium on Secure and Private Execution Environment Design
(SEED). 2022, pp. 169–178. doi: 10.1109/SEED55351.2022.00022.

[3] James P Anderson. Computer Security Technology Planning Study Volume I and
II ESD-TR-73-51. Tech. rep. Hanscom Field, Bedford, MA: Electronic Systems
Division, Air Force Systems Command, Oct. 1972.

[4] Claudio Canella et al. “A Systematic Evaluation of Transient Execution Attacks
and Defenses”. In: CoRR abs/1811.05441 (2018). arXiv: 1811.05441. url: http:
//arxiv.org/abs/1811.05441.

[5] Nicholas P. Carter, Stephen W. Keckler, and William J. Dally. “Hardware
Support for Fast Capability-Based Addressing”. In: SIGPLAN Not. 29.11 (Nov.
1994), pp. 319–327. doi: 10.1145/195470.195579. url: https://doi.org/10.1145/
195470.195579.

[6] Ctsrd-Cheri. CTSRD-Cheri/LLVM-project: Fork of LLVM adding Cheri Support.
url: https://github.com/CTSRD-CHERI/llvm-project.

[7] CWE-119: Improper Restriction of Operations within the Bounds of a Memory
Buffer. July 2006. url: https://cwe.mitre.org/data/definitions/119.html.

[8] CWE-125: Out-of-bounds Read. July 2006. url: https://cwe.mitre.org/data/
definitions/125.html.

[9] CWE-416: Use After Free. July 2006. url: https ://cwe .mitre .org/data/
definitions/416.html.

[10] CWE-787: Out-of-bounds Write. Oct. 2009. url: https://cwe.mitre.org/data/
definitions/787.html.

[11] Ron Cytron et al. “Efficiently Computing Static Single Assignment Form and
the Control Dependence Graph”. In: ACM Trans. Program. Lang. Syst. 13.4
(Oct. 1991), pp. 451–490. doi: 10.1145/115372.115320. url: https://doi.org/10.
1145/115372.115320.

75

https://cwe.mitre.org/top25/archive/2021/2021%5C_cwe%5C_top25.html
https://cwe.mitre.org/top25/archive/2021/2021%5C_cwe%5C_top25.html
https://doi.org/10.1109/SEED55351.2022.00022
https://arxiv.org/abs/1811.05441
http://arxiv.org/abs/1811.05441
http://arxiv.org/abs/1811.05441
https://doi.org/10.1145/195470.195579
https://doi.org/10.1145/195470.195579
https://doi.org/10.1145/195470.195579
https://github.com/CTSRD-CHERI/llvm-project
https://cwe.mitre.org/data/definitions/119.html
https://cwe.mitre.org/data/definitions/125.html
https://cwe.mitre.org/data/definitions/125.html
https://cwe.mitre.org/data/definitions/416.html
https://cwe.mitre.org/data/definitions/416.html
https://cwe.mitre.org/data/definitions/787.html
https://cwe.mitre.org/data/definitions/787.html
https://doi.org/10.1145/115372.115320
https://doi.org/10.1145/115372.115320
https://doi.org/10.1145/115372.115320

[12] Davidchisnall et al. Is it time to start upstreaming the Cheri support to LLVM?
Feb. 2022. url: https://discourse.llvm.org/t/is-it-time-to-start-upstreaming-
the-cheri-support-to-llvm/60032.

[13] Brooks Davis et al. “CheriABI: Enforcing Valid Pointer Provenance and Min-
imizing Pointer Privilege in the POSIX C Run-Time Environment”. In: Pro-
ceedings of the Twenty-Fourth International Conference on Architectural Sup-
port for Programming Languages and Operating Systems. ASPLOS ’19. Provi-
dence, RI, USA: Association for Computing Machinery, 2019, pp. 379–393. doi:
10.1145/3297858.3304042.

[14] Joe Devietti et al. “Hardbound: Architectural Support for Spatial Safety of the
C Programming Language”. In: Proceedings of the 13th International Conference
on Architectural Support for Programming Languages and Operating Systems.
ASPLOS XIII. Seattle, WA, USA: Association for Computing Machinery, 2008,
pp. 103–114. doi: 10.1145/1346281.1346295.

[15] Alan Ehret et al. Zeno: A Scalable Capability-Based Secure Architecture. 2022.
doi: 10.48550/ARXIV.2208.09800.

[16] Richard Grisenthwaite. Morello research program hits major milestone with
hardware now available for testing. Jan. 2022. url: https://www.arm.com/
company/news/2022/01/morello-research-program-hits-major-milestone-with-
hardware-now-available-for-testing.

[17] Intel 64 and IA-32 Architectures Software Developer Manual. Intel. 2022.

[18] ISO. ISO/IEC 9899:2018 Information technology — Programming languages —
C. Fourth. June 2018, p. 520. url: https://www.iso.org/standard/74528.html.

[19] Chris Lattner and Vikram Adve. “LLVM: A Compilation Framework for Lifelong
Program Analysis and Transformation”. In: San Jose, CA, USA, Mar. 2004,
pp. 75–88.

[20] Chris Lattner et al. “MLIR: Scaling Compiler Infrastructure for Domain Specific
Computation”. In: 2021 IEEE/ACM International Symposium on Code Genera-
tion and Optimization (CGO). 2021, pp. 2–14. doi: 10.1109/CGO51591.2021.
9370308.

[21] John Leidel et al. RISC-V Extended Addressing Architecture Extension Specifi-
cation Codenamed: xBGAS. Version 0.0.6. Oct. 2019. url: https://github.com/
tactcomplabs/xbgas-archspec.

76

https://discourse.llvm.org/t/is-it-time-to-start-upstreaming-the-cheri-support-to-llvm/60032
https://discourse.llvm.org/t/is-it-time-to-start-upstreaming-the-cheri-support-to-llvm/60032
https://doi.org/10.1145/3297858.3304042
https://doi.org/10.1145/1346281.1346295
https://doi.org/10.48550/ARXIV.2208.09800
https://www.arm.com/company/news/2022/01/morello-research-program-hits-major-milestone-with-hardware-now-available-for-testing
https://www.arm.com/company/news/2022/01/morello-research-program-hits-major-milestone-with-hardware-now-available-for-testing
https://www.arm.com/company/news/2022/01/morello-research-program-hits-major-milestone-with-hardware-now-available-for-testing
https://www.iso.org/standard/74528.html
https://doi.org/10.1109/CGO51591.2021.9370308
https://doi.org/10.1109/CGO51591.2021.9370308
https://github.com/tactcomplabs/xbgas-archspec
https://github.com/tactcomplabs/xbgas-archspec

[22] Kyung-Suk Lhee and Steve J. Chapin. “Buffer overflow and format string overflow
vulnerabilities”. In: Software: Practice and Experience 33.5 (2003), pp. 423–460.
doi: 10.1002/spe.515.

[23] Linux Kernel Source. url: https://github.com/torvalds/linux.

[24] LLVM Documentation. LLVM Project. 2022. url: https://llvm.org/docs/index.
html.

[25] Carlos O’Donell and Martin Sebor. Updated Field Experience With Annex K -
Bounds Checking Interfaces. Sept. 2015. url: https://www.open-std.org/jtc1/
sc22/wg14/www/docs/n1969.htm.

[26] Oleksii Oleksenko et al. “Intel MPX Explained”. In: Proceedings of the ACM
on Measurement and Analysis of Computing Systems 2.2 (June 2018), pp. 1–30.
doi: 10.1145/3224423. url: https://doi.org/10.1145/3224423.

[27] Aleph One. “Smashing the Stack for Fun and Profit”. In: Phrack 7.49 (Nov.
1996). url: http://phrack.org/issues/49/14.html.

[28] C. W. Otterstad. “A brief evaluation of Intel®MPX”. In: 2015 Annual IEEE
Systems Conference (SysCon) Proceedings. 2015, pp. 1–7. doi: 10.1109/SYSCON.
2015.7116720.

[29] B. K. Rosen, M. N. Wegman, and F. K. Zadeck. “Global Value Numbers and
Redundant Computations”. In: Proceedings of the 15th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages. POPL ’88. San Diego,
California, USA: Association for Computing Machinery, 1988, pp. 12–27. doi:
10.1145/73560.73562. url: https://doi.org/10.1145/73560.73562.

[30] Kostya Serebryany et al. Memory Tagging and how it improves C/C++ memory
safety. 2018. doi: 10.48550/ARXIV.1802.09517. url: https://arxiv.org/abs/
1802.09517.

[31] R. Sharifi and A. Venkat. “CHEx86: Context-Sensitive Enforcement of Memory
Safety via Microcode-Enabled Capabilities”. In: 2020 ACM/IEEE 47th Annual
International Symposium on Computer Architecture (ISCA). 2020, pp. 762–775.
doi: 10.1109/ISCA45697.2020.00068.

[32] Xi Wang et al. “xBGAS: A Global Address Space Extension on RISC-V for High
Performance Computing”. In: 2021 IEEE International Parallel and Distributed
Processing Symposium (IPDPS). 2021, pp. 454–463. doi: 10.1109/IPDPS49936.
2021.00054.

77

https://doi.org/10.1002/spe.515
https://github.com/torvalds/linux
https://llvm.org/docs/index.html
https://llvm.org/docs/index.html
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n1969.htm
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n1969.htm
https://doi.org/10.1145/3224423
https://doi.org/10.1145/3224423
http://phrack.org/issues/49/14.html
https://doi.org/10.1109/SYSCON.2015.7116720
https://doi.org/10.1109/SYSCON.2015.7116720
https://doi.org/10.1145/73560.73562
https://doi.org/10.1145/73560.73562
https://doi.org/10.48550/ARXIV.1802.09517
https://arxiv.org/abs/1802.09517
https://arxiv.org/abs/1802.09517
https://doi.org/10.1109/ISCA45697.2020.00068
https://doi.org/10.1109/IPDPS49936.2021.00054
https://doi.org/10.1109/IPDPS49936.2021.00054

[33] Andrew Waterman and Krste ASANOVI C. “The RISC-V Instruction Set
Manual, volume II: Privileged Architecture”. In: CS Division, EECE Department,
University of California, Berkeley (May 2017) (2017).

[34] Robert Watson, Ken Hamer-Hodges, and Geoffrey Stagg. Arm releases experi-
mental CHERI-enabled Morello board as part of £187M UKRI Digital Security
by Design programme. Jan. 2022. url: https://www.lightbluetouchpaper.org/
2022/01/20/arm-releases-experimental-cheri-enabled-morello-board-as-part-
of-187m-ukri-digital-security-by-design-programme/.

[35] Robert N. M. Watson et al. Capability hardware enhanced RISC instructions:
CHERI instruction-set architecture. Tech. rep. University of Cambridge, Com-
puter Laboratory, 2015.

[36] Robert N. M. Watson et al. CHERI C/C++ Programming Guide. Tech. rep.
UCAM-CL-TR-947. University of Cambridge, Computer Laboratory, June 2020.
doi: 10.48456/tr-947. url: https://www.cl.cam.ac.uk/techreports/UCAM-CL-
TR-947.pdf.

[37] Robert N.M. Watson et al. “CHERI: A Hybrid Capability-System Architecture
for Scalable Software Compartmentalization”. In: 2015 IEEE Symposium on
Security and Privacy. 2015, pp. 20–37. doi: 10.1109/SP.2015.9.

[38] Andrew Watterman and Krste Asanovic. The RISC-V Instruction Set Manual-
Volume I: User-Level ISA. Tech. rep. Version 2.2. RISC-V Foundation, May
2017.

[39] Jonathan Woodruff et al. “Cheri concentrate: Practical compressed capabilities”.
In: IEEE Transactions on Computers 68.10 (2019), pp. 1455–1469.

[40] Jonathan Woodruff et al. “The CHERI capability model: Revisiting RISC in an
age of risk”. In: 2014 ACM/IEEE 41st International Symposium on Computer
Architecture (ISCA). IEEE. 2014, pp. 457–468.

[41] Hongyan Xia et al. “CHERIvoke: Characterising Pointer Revocation using
CHERI Capabilities for Temporal Memory Safety”. In: Proceedings of the
52nd Annual IEEE/ACM International Symposium on Microarchitecture. 2019,
pp. 545–557.

78

https://www.lightbluetouchpaper.org/2022/01/20/arm-releases-experimental-cheri-enabled-morello-board-as-part-of-187m-ukri-digital-security-by-design-programme/
https://www.lightbluetouchpaper.org/2022/01/20/arm-releases-experimental-cheri-enabled-morello-board-as-part-of-187m-ukri-digital-security-by-design-programme/
https://www.lightbluetouchpaper.org/2022/01/20/arm-releases-experimental-cheri-enabled-morello-board-as-part-of-187m-ukri-digital-security-by-design-programme/
https://doi.org/10.48456/tr-947
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-947.pdf
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-947.pdf
https://doi.org/10.1109/SP.2015.9

	Table of Contents
	List of Tables
	List of Figures
	List of Code Snippets
	List of Code Snippets
	Chapter
	1 Introduction
	1.1 Problem Statement
	1.2 Aims and Objectives
	1.3 Summary of Work

	2 Capability Architectures
	2.1 Capabilities
	2.2 A Generic Capability Architecture
	2.2.1 Atomic Capability
	2.2.2 Non Atomic Capability

	2.3 Fat Pointers
	2.4 CHERI
	2.5 MPX
	2.6 Zeno

	3 Compiler Design
	3.1 Compiler Pipeline
	3.2 LLVM

	4 Compilation Techniques
	4.1 Instruction Set
	4.2 Pseudo Instruction Set
	4.3 Capability Mapping
	4.4 Usability
	4.5 Pointer Semantics

	5 Compiling for Zeno
	5.1 Zeno ISA
	5.2 DAG Mapping
	5.3 Machine Instruction Passes
	5.4 Builtins and Intrinsics
	5.5 Evaluation
	5.5.1 Static Tests
	5.5.2 File Size
	5.5.3 Optimization Opportunities

	6 Conclusion
	6.1 Summary of Work
	6.2 Key Takeaways
	6.3 Future Work

	References

