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ABSTRACT

This work aims to address the design optimization of bio-inspired locomotive devices

in collective swimming by developing a computational methodology which combines

surrogate-based optimization with high fidelity fluid-structure interactions (FSI)

simulations of thunniform swimmers. Three main phases highlight the contribution

and novelty of the current work. The first phase includes the development and

bench-marking of a constrained surrogate-based optimization algorithm which is

appropriate to the current design problem. Additionally, new FSI techniques, such

as a volume-conservation scheme, has been developed to enhance the accuracy and

speed of the simulations. The second phase involves an investigation of the optimized

hydrodynamics of a solitary accelerating self-propelled thunniform swimmer during

start-up. The third phase extends the analysis to include the optimized hydrodynamics

of accelerating swimmers in phalanx schools. Future work includes extending the

analysis to the optimized hydrodynamics of steady-state and accelerating swimmers

in a diamond-shaped school.

The results of the first phase indicate that the proposed optimization algorithm

maintains a competitive performance when compared to other gradient-based and

gradient-free methods, in dealing with expensive simulations-based black-box opti-

mization problems with constraints. In addition, the proposed optimization algorithm

is capable of insuring strictly feasible candidates during the optimization procedure,

which is a desirable property in applied engineering problems where design variables

must remain feasible for simulations or experiments not to fail. The results of the

second phase indicate that the optimized kinematic gait of a solitary accelerating

swimmer generates the reverse Karman vortex street associated with high propulsive

efficiency. Moreover, the efficiency of sub-optimum modes, in solitary swimming, is
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found to increase with both the tail amplitude and the effective flapping length of

the swimmer, and a new scaling law is proposed to capture these trends. Results of

the third phase indicate that the optimal midline kinematics in accelerating phalanx

schools resemble those of accelerating solitary swimmers. The optimal separation

distance in a phalanx school is shown to be around 2L (where L is the swimmer’s

total length). Furthermore, separation distance is shown to have a stronger effect,

ceteris paribus, on the propulsion efficiency of a school when compared to phase

synchronization.
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Chapter 1

INTRODUCTION

Biomimetic propulsion has triggered the interests of researchers for several decades,

since it not only relates to the processes of evolution and natural selection in aquatic

species, but also provides an inspiration for engineering and design of agile underwater

devices (Triantafyllou, Triantafyllou, and Yue 2000; Fish and Lauder 2006; Coyle

et al. 2018). In this aspect, identification of optimum, in some pre-defined sense,

modes of locomotion is especially intriguing, since it gives a clear pathline towards

design of bio-inspired vehicles that aim to provide a corresponding optimality (Paley

and Wereley 2021). While parametric studies of aquatic biolocomotion can give some

important insights towards understanding of swimming hydrodynamics (Bergmann,

Iollo, and Mittal 2014; Zhu et al. 2002), in this work I am interested in developing

formal optimization techniques that can automatically select and refine the candidates

for optimality, given certain design criteria (Nocedal and Wright 2006). Specifically,

the goal of this work is to develop efficient and accurate numerical framework for

optimization of bio-inspired propulsion that utilizes fully-resolved computational fluid

dynamics (CFD) simulations. This computational framework can then be used to

investigate the optimized hydrodynamics of bio-inspired solitary and group underwater

swimming devices.

There have been several studies devoted to optimization of aquatic swimmers

in the previous literature (Kern and Koumoutsakos 2006; Gazzola, Van Rees, and

Koumoutsakos 2012; Van Rees, Gazzola, and Koumoutsakos 2013; Eloy 2013; Tokić

and Yue 2012; Maertens, Gao, and Triantafyllou 2017). All of them, with the
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exception of Maertens, Gao, and Triantafyllou 2017, used the so-called evolutionary

algorithms (EA), which rely on a nature-inspired method to select and “evolve”

potentially favorable solution candidates towards optimality (Back 1996). Individuals,

or solution candidates, in a population evolve using a variety of biologically inspired

processes such as mutation, crossover and recombination (Hansen and Ostermeier

2001). However, most evolutionary, or genetic, algorithms demand a large number

of function evaluations to arrive at a reasonable solution. For example, the EA used

in Kern and Koumoutsakos 2006 required roughly 500 function evaluations to reach

an optimum, and the same algorithm reached 8000 evaluations in Gazzola, Van Rees,

and Koumoutsakos 2012. To cope with such substantial computational demands, the

recent trend in bio-inspired aquatic optimization was to reduce the fidelity of the

simulation method, with studies such as Eloy 2013; Tokić and Yue 2012 departing

from CFD and employing simple hydrodynamic models based on a potential flow

solution and empirical estimates (Michael J Lighthill 1960; Michael James Lighthill

1971; Webb 1975) to provide evaluation of hydrodynamic forces.

While reduced-order models based on potential theories and empirical correlations

are valuable for providing basic scaling laws and dominant trends in biolocomo-

tion (Saadat et al. 2017), their applicability to a quantitative evaluation of hydro-

dynamic parameters, especially during the optimization procedure, is questionable

for several reasons: 1) They typically underestimate the total work and overestimate

the speed, thrust, useful work and efficiency (Schultz and Webb 2002; Triantafyllou,

Triantafyllou, and Grosenbaugh 1993); 2) They can not reliably predict the drag

of an undulating swimmer (Barrett et al. 1999; Schultz and Webb 2002; Fish and

Lauder 2006); 3) Due to a lack of experimental data on sub-optimum swimming,

it is unclear to which extent they are applicable to the modes of locomotion, other
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than the optimal; 4) They are largely based on steady-state swimming theories and

data (Michael J Lighthill 1960; Schultz and Webb 2002; Gazzola, Argentina, and

Mahadevan 2014), and might not be extendable to other hydrodynamic regimes, such

as, e.g., acceleration (Akanyeti et al. 2017; Wise, Schwalbe, and Tytell 2018). For the

above-mentioned reasons, I am interested in developing an optimization framework

based on high-fidelity fully-resolved simulations (FRS), in order to put forward a

robust and reliable methodology, which could be used through a variety of hydrody-

namic regimes, and not just for a steady swimming, and could provide a predictive

capability for the purposes of comparison, refinement and further development of

reduced-order models. Furthermore, I am interested in applying the developed com-

putational framework to uncover interesting trends in the optimal hydrodynamic

behaviour of bio-inspired solitary and group swimmers. To this end, I divide this work

into three main phases, discussed in Chapters 1, 2 and 3, respectively, which combine

to address the current topics of interest. Details on the future work, which include

investigations of optimal swimming in diamond-shaped fish schools, are discussed in

Chapter 4. Finally, conclusions of the presented work are summarized in Chapter 5.

1.1 Phase 1

Phase 1 is primarily concerned with identifying an appropriate optimization

algorithm to be used in the developed computational framework. To do so, however,

one must first narrow down the search to a class of global optimization algorithms

suitable to the current design problem. Global optimization accounts for the majority

of problems in practical and engineering optimization. In terms of global optimization,

gradient-based approaches can have faster convergence rates when compared to
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gradient-free approaches. However, they are more likely to remain trapped at a

local minimum. Additionally, a wide variety of gradient-based algorithms become

inefficient when dealing with many real-world applications in the fields of science,

medicine, and engineering design. The inefficiency arises when computing the objective

function derivative becomes expensive or sometimes even infeasible. Derivative-free

approaches such as evolutionary algorithms (EAs) or genetic algorithms (GAs) offer a

lucrative alternative considering their ability in not requiring any assumption on the

objective function landscape or its derivatives. As previously discussed, however, a

high number of function evaluations required by such algorithms can be prohibitive.

Attempts at alleviating the mentioned concerns gave rise to the field of a surrogate-

based optimization (SBO) (Sobester, Forrester, and Keane 2008). This branch of

optimization techniques makes use of a surrogate model built with the help of true

function evaluations, when finding local or global optima. Function calls to the

surrogate model are much cheaper than the true function, thereby cutting down the

computational cost of optimization. Indeed, the presented benchmark study shows

that SBO algorithms are particularly desirable when the optimization function is an

expensive “black-box”. I propose a new constrained variant of a SBO algorithm and

present a second benchmark study to highlight it’s relevance to the current design

problem.

1.2 Phase 2

Phase 2 is focused on developing the physical and numerical modeling behind

the CFD simulations and, subsequently, coupling those simulations to the SBO

algorithm. The complete framework is then applied to optimize the kinematic gait of
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an accelerating solitary swimmer during start-up. Phase 2 includes new developments

that significantly improve efficiency of fluid-structure interaction (FSI) algorithms

on body-fitted grids in incompressible flow. In particular, I introduce a new volume

conservation approach for a geometry reconstruction of the undulating fish body

with a widely used kinematic deformation model (Michael J Lighthill 1960; Barrett

et al. 1999), which avoids, otherwise necessary for stability purposes, implicit iterations

between the velocity and pressure solvers (Xu and Y. T. Peet 2017; Xu and Y. Peet

2021), and speeds up the calculations by three to five times. Another important aspect

of the work highlighted in Phase 2 is establishing a grid convergence of the optimization

procedure with a polynomial refinement of the CFD solution, and investigating a

sensitivity of the optimization results to a numerical resolution of the FSI simulations,

an important issue, which, to the authors’ knowledge, seems to have been overlooked in

the previous optimization studies (Kern and Koumoutsakos 2006; Gazzola, Van Rees,

and Koumoutsakos 2012; Van Rees, Gazzola, and Koumoutsakos 2013; Maertens, Gao,

and Triantafyllou 2017), at least in the context of bio-inspired propulsion. Additionally,

I present a physical analysis of the optimum and sub-optimum modes of locomotion

obtained with a high polynomial order of N = 9, and propose a new scaling law for

the propulsive efficiency versus the kinematic gait parameters, applicable to both

optimum and sub-optimum propulsion.

1.3 Phase 3

Phase 3 extends the modelling and analysis of optimized solitary swimming to

optimized swimming in infinite phalanx-shaped schools. Phalanx schools have been

investigated through different methods which include self-propelled rigid foils (Raspa,
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Godoy-Diana, and Thiria 2013), self-propelled flexible foils (Godoy-Diana et al. 2019),

numerical simulations of undulating swimmers (Hemelrijk et al. 2015; Gazzola et

al. 2011), and fish tank experiments (Ashraf et al. 2016; Intesaaf Ashraf et al. 2017).

Recent investigations suggest that the phalanx group swimming efficiency is sensitive

to the separation distance between swimmers in the school (Hemelrijk et al. 2015;

G. Li et al. 2019; Oza, Ristroph, and Shelley 2019), with varying conclusions reached

in regards to the most beneficial swimming regime with respect to separation distance.

For example, Hemelrijk et al. 2015 investigation of phalanx schools of mullet-shaped

fish in steady flow revealed that the propulsive efficiency of the group is higher than a

solitary swimmer as long as the separation distance within the school remains greater

than or equal to one fish length. When the separation distance is smaller than one fish

length, the authors noted that the group’s swimming efficiency decreases below that

of a steady solitary swimmer (Hemelrijk et al. 2015). Conversely, G. Li et al. 2019

notes that phalanx formations of red nose tetra fish have a high average cost of

transport when the separation distance is close to one fish length. Instead, from their

simulations, a separation distance of roughly half a fish length could provide a 2%

improvement in the group’s average cost of transport when compared to a solitary

swimmer, assuming steady flow (G. Li et al. 2019). Another study, using an inviscid

model, showed that tightly packed phalanx schools of rigid airfoils, with roughly half

a chord length of separation distance, show a 5% improvement in the group steady

swimming speed, when compared to a single airfoil (Oza, Ristroph, and Shelley 2019).

This improvement is accompanied, however, by a 4% increase in the average cost of

transport over that of a single airfoil. The observed speed-up and a higher cost of

transport both decrease as the separation distance between the airfoils is increased

until the system eventually approaches the single airfoil limit (Oza, Ristroph, and
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Shelley 2019). The preferred separation distance in a school can depend on a range

of different factors such as the swimming speed and/or Reynolds number (Intesaaf

Ashraf et al. 2017), and the phase difference between swimmers (L. Li et al. 2020). It

remains to be the case, however, that the group propulsive efficiency of fish schools in

general, and for phalanx schools in particular, is directly related to the separation

distance of swimmers within it.

Phase synchronization was likewise found to be important for phalanx schools,

where, e.g., red nose tetra fish showed a preference towards either inphase or an

antiphase swimming over all other synchronization modes (Ashraf et al. 2016). Several

computational studies of a swimming fish pair demonstrated an increased stability

of an antiphase swimming pattern (G. Li et al. 2019; Gazzola et al. 2011), while the

trajectories diverged during an inphase swimming (Gazzola et al. 2011).

A different, but nevertheless important, schooling parameter to consider is the

swimmers’ gait (Maertens, Gao, and Triantafyllou 2017). Previous investigations of

phalanx schools using undulating flexible fish-shape bodies rely on a fixed kinematic

gait based on empirical data (Hemelrijk et al. 2015; G. Li et al. 2019; L. Li et al. 2020),

which is often obtained by observing the midline envelope of real fish in steady swim-

ming (Videler and Hess 1984; Ashraf et al. 2016). However, an optimized kinematic

adjustment could result in improved swimming performance through schooling mecha-

nisms such as wake capturing (Verma, Novati, and Koumoutsakos 2018). In fact, for

swimmers to only maintain their relative position in a school, kinematic adjustment

is required (G. Li et al. 2019). Additionally, kinematic gaits based on steady state

swimming may not necessarily apply to unsteady swimming. Indeed, accelerating

swimmers have distinctively different hydrodynamic and kinematic behaviour than

steady swimmers. For example, a large survey of over 50 species of real fish revealed
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that accelerating fish consistently swim with a higher tail amplitude when compared

to steady swimming (Akanyeti et al. 2017). Similar studies report that eels and

bluegill sunfish increase both their tail amplitude and undulation frequency during

acceleration when compared to steady swimming (Tytell 2004; Wise, Schwalbe, and

Tytell 2018). Additionally, investigations of the force field on the body of a robotic

tuna-shaped swimmer revealed that during acceleration thunniform swimmers (such as

tuna) generate a significant portion of forward thrust using their main body and may,

consequently, adopt a more anguilliform-like body motion (Thandiackal et al. 2021).

While linear acceleration may have been investigated for single swimmers, little is

known about the collective behaviour of accelerating phalanx schools and the associ-

ated changes in kinematic motion. Accelerating collective motions play an important

role in many biological functions of fish schools, such as an escape from predator, and

also for the design of efficient maneuvers for autonomous underwater vehicles.

I investigate optimal propulsive performance in infinite accelerating phalanx schools

in light of critical parameters such as separation distance, gait kinematics and phase

synchronization. This is achieved by using the developed computational methodology

to allow for a coupled fish array hydrodynamics to be fully optimized in terms of

their midline kinematics, phase difference and undulation frequency. Three phalanx

schools, with varying separation distances, are presented to highlight changes in

optimal behaviour depending on the compactness of a school. The phalanx setups are

also compared to an optimized solitary swimmer to highlight the differences between

the school and single fish performance.
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Chapter 2

IDENTIFYING AN OPTIMIZATION ALGORITHM

Identifying the correct algorithm is of paramount importance to maintaining an

efficient and accurate optimization-based design study. I begin by introducing the

general formulation of the optimization problem considered which can be expressed as

follows,

minimize f(x)

subject to x ∈ Rn

(2.1)

where f : Rn → R is the function, x is a vector of design parameters and x ∈ S ∩ C.

The set S ⊆ Rn contains the n-dimensional search space, which would define a

rectangle in R2 or a rectangular cuboid in R3:

l(i) ≤ xi ≤ u(i), 1 ≤ i ≤ n (2.2)

where l(i) and u(i) represent lower and upper bounds, respectively, on a design

parameter in the ith dimension. The set C ⊆ Rn is the region defined by the set of

m ≥ 0 constraints:

gk(x) ≤ 0, k = 1, ..., q,

hk(x) = 0, k = q + 1, ...,m

(2.3)

where gk(x) and hk(x) are referred to as the inequality and equality constraint sets,

respectively, on the design parameter vector, x. The intersection of the sets S and C

defines the feasible domain, D = S ∩ C.

Identifying an appropriate algorithm was performed by, first, choosing a suitable

class of optimization algorithms and, second, designing a specialized algorithm suited
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to the computational demands as well as the physical constraints involved in the

numerical simulations of underwater swimming devices. Therefor, this chapter is

broken into two general sections, where the first section is focused on the wide range of

available optimization methods and the second is focused on the specifics of the final

optimization algorithm incorporated into the current computational methodology.

2.1 Choosing a Suitable Class of Optimization Algorithms

The following definitions will be of use in the discussion of relevant categories of

optimization algorithms. The best solution to an optimization problem, x∗, is referred

to as a global minimizer, namely:

Definition 2.1.1 (global minimizer). x∗ is a global minimizer if f(x∗) ≤ f(x) for all

x ∈ D

A different solution could be found that is a minimizer only in the local vicinity

of the objective function landscape. Although still a solution, a local solution may

not necessarily be a global minimizer. This type of solution is referred to as a local

minimizer, namely:

Definition 2.1.2 (local minimizer). x∗ is a local minimizer if there exists a neighbor-

hood N ⊆ D, such as x∗ ∈ N and f(x∗) ≤ f(x) for all x ∈ N

Using the above definitions, optimization algorithms can be categories into two

broad categories: gradient-free and gradient-based algorithms. As the name might

imply, gradient-free algorithms seek to find an optimal solution without relying on

the gradient of an objective function. This capability can be especially helpful when

no gradient information is readily available or when a user is interested in identifying
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a global minimizer. Gradient-based algorithms, on the other hand, rely on gradient

information to identify an optimum, which means the solution is often a local optima.

Consequently, this class of methods is especially popular when only a local minimizer

is sufficient. The next two sections discuss gradient-based and gradient-free algorithms,

respectively.

2.1.1 Gradient-based Algorithms

Gradient-based algorithms are a class of algorithms which relies on gradient

information of the objective function to guide the search direction towards an optimum.

Several gradient-based methods have been developed and implementations are widely

available through python (SciPy), C++ (NLPOT), MATLAB (fmincon) and Dakota

(COLIN & CONMIN) packages. Since MATLAB’s fmincon (Toolbox et al. 1993) and

Dakota’s COLIN & CONMIN (Adams et al. 2020) packages include a wide variety

of gradient-based methods, the discussion is limited to gradient-based algorithms

commonly found in those packages. The general form of a gradient-based solver is:

1. Begin iteration k with computing a search direction pk which defines the search

for a lower objective function in the D search space.

2. Compute an appropriate step length αk to be explored in direction pk

3. Set xk+1 = xk + pkαk and k = k + 1

4. Evaluate f(xk) and return to 1 if necessary

When information on the gradient is available, first and second order optimality

conditions can be invoked to identify a local minimizer. More so, they are used in

constructing meaningful estimates of αk and pk. Theorems of the first and second
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order optimally conditions are given below, and the reader can refer to any standard

optimization textbook, such as Nocedal and Wright 2006 for complete proofs.

Theorem 2.1.1 (First-Order Necessary Condition). For a local minimizer x∗, if f(x) is

C1 differentiable, then ∇f(x∗) = 0

Since this condition arises out of a first-order taylor series expansion of f(x) around

minizer x∗, it is referred to as the First-Order Necessary Condition. Similarly one

can derive the the Second-Order Necessary Condition by a second order taylor series

expansion:

Theorem 2.1.2 (Second-Order Necessary Condition). For a local minimizer x∗, if

∇2f(x) is C0 continuous in the neighborhood N of x∗, then ∇f(x∗) = 0 and ∇2f(x∗)

is positive semidefinite.

Matrix M is said to be positive semidefinite if xTMx ≥ 0 and positive definite

if xTMx > 0 for all non-zero x. The Second-Order Sufficient Condition infers the

existence of a local minizmer by incorporating elements of the First-Order Necessary

Condition and Second-Order Necessary Condition, namely:

Theorem 2.1.3 (Second-Order Sufficient Condition). If ∇2f(x∗) is positive semidefinite,

∇2f(x) is C0 continuous in the neighborhood N of x∗ and ∇f(x∗) = 0, then x∗ is a

local minizer.

The above theorems apply to any unconstrained optimization problem without

loss of generality. Parallel theorems exist for constrained problems, which recast the

objective function into a Lagrange function with the constraints being penalized by

the Lagrange multiplier λi for each i constraint. The following five remarks are made

to highlight the importance of optimally conditions in constrained optimization:
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Remark 1. An equality constraint, hk(xA) is considered active for a solution candidate

xA if hk(xA) = 0. While the inequality constraint, gk(xA) is considered active for a

solution candidate xA if gk(xA) ≥ 0

Remark 2. If the gradient of the set of active constraints is linearly independent for a

solution candidate xA, then the linear independence constraint qualification (LICQ)

holds at xA.

Remark 3. If x∗ is a local minimzer to the constrained optimization problem and

f(x), g(x), h(x) are C1 differentiable and LICQ holds at x∗, there exits a Lagrange

multiplier λ∗i vector which satisfies the first-order necessary condition. The set (x∗,

λ∗i ) is considered a solution to the Karush-Kuhn-Tucker (KKT) equations

Remark 4. The second-order necessary condition postulates that if the set (x∗, λ∗i ) is

a solution to the KKT equations, then the Hessian of the Lagrange function, with

respect to (x), is positive semidefinite.

Remark 5. The second-order sufficient condition postulates that if the set (x∗, λ∗i )

is a solution to the KKT equations, and the Hessian of the Lagrange function, with

respect to (x), is positive definite, then x∗ is a local minizer .

The KKT equations form the basis on which constrained nonlinear optimization

problems are solved. After casting the optimization problem and relevant constraints

into the Lagrangian form, several search methods could be used to predict αk and pk.

More information on the LICQ conditions and the KKT equations can be found in

Nocedal and Wright 2006.
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2.1.1.1 Modified Method of Feasible Directions

The Modified Method of Feasible Directions (MMFD) is an extension of the

older conjugate gradient method to allow it to handle constrained optimization. The

conjugate gradient method relies on a simple property, namely conjugacy, to generate

a set of conjugate search directions which drive the optimization sequence. If we

consider the unconstrained linear optimization problem

minimize f(x) =
1

2
xTAx− bTx (2.4)

where A is a n× n symmetric positive definite matrix and the residual rk of an xk is

defined as:

rk = Axk + b (2.5)

We generate the a set of conjugate gradient search directions {p0,p1, ...,pl} by the

following recursive formula:

pk = −rk + βkpk−1, (2.6)

where

βk =
rTkApk−1

pTk−1Apk−1

. (2.7)

We initialize p0 to the steepest descent direction, the direction where the gradient

points to the minimum. The step length αk is defined is given by

αk =
−rTkpk
pTkApk

. (2.8)

In this linear system, the conjugate gradient method converges to the solution x∗ in

n or less steps (the reader is refered to Nocedal and Wright 2006 for the full proof).

While the MMFD methods follows similar steps for unconstrainted optimization, the

algorithm will tweak the objective function in the presence of constraints. In other
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words, MMFD finds a feasible search direction which aims to minimize the objective

function and the constraints, respectively, by imposing the following requirements:

∇f(xk) · Sk ≤ 0 (2.9)

∇ci(xk) · Sk ≤ 0 i = 1, ..., z (2.10)

where Sk is the search vector at iteration k, ∇f(xk) is the analytical gradient of the

objective function, ∇ci(xk) is the analytical gradient of the ith active constraint and

z is the total number of active constraints. A similar implementation of the presented

MMFD technique is found in the Dakota MMFD solver.

2.1.1.2 Interior Point Method

The interior point method uses a logarithmic barrier function to transforms the

original optimization problem, Eq. 2.1, into the following:

minimize f(x)− µ
q∑
i=1

ln(si)

subject to h(x) = 0

g(x) + s = 0

(2.11)

where µ > 0 is the barrier parameter, si is the positive slack variables of the ith

inequality constraint. One can note that all the inequalities have been replaced by

the slack variables, si, which are now part of the KKT solution. This creates a

sequence of equality constrained problems which are significantly easier to solve than

inequality constrained problem. A line search using a conjugate gradient method or

Newtons method can be used to identify the next iterate. This method has the added

benefit of rejecting infeasible candidates by incorporating a trust region method in
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the optimization process. Depending on the nature of the objective function, this

could be an added benefit if the infeasible constraints could not be tolerated while it

would unnecessarily increase function evaluations otherwise. An implementation of

the interior point method is found in MATLAB’s fmincon.

2.1.1.3 Sequential Quadratic Programming and Active Set

The Sequential Quadratic Programmming (SQP) and Active Set (AS) methods of

MATLAB’s fmincon fall under the same umbrella of nonlinear optimization algorithms.

Consider an equality constrained problem where the constraint set C, from Eq. 2.3,

contains only hk(x). Using a newton step to solve the KKT equations of the general

nonlinear problem, we arrive at the following system of n (size of x) + m (size of

equality constraints):∇2
xxLk −ATk

Ak 0


pk
pλ

 =

−∇fk + ATk λk

−hk

 (2.12)

where Ak is the Jacobian matrix of constraints hk(x) and pλ and pk are the steps used

in the Newton iterations for the variables x and Lagrangian multiplier λk. Since the

constraints are penalized by the always positive Lagrange multipler, it only suffices

for the SQP approach to solve any constraint (be it equality or inequality) by casting

it into an equality constraint. AS on the other hand takes the entire set to be the

active set of constraints (equality and inequality), which is likely to be the reason

for its MATLAB designation, and solves the inequality constrained problem (IQP).

AS assigns λk = 0 to constraints outside the active set. Since the IQP is much more

expensive to solve, this method does not scale well with the number of variables.

However this AS method can insure strict feasibility of the solution candidates.
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2.1.1.4 Limitations of Gradient-based Algorithms

Gradient-based methods remain to be formidable tools in the domain of linear

and nonlinear constrained optimization, with especially lucrative aspects for design

optimization. For example, the conjugate gradient search step has a fast convergence

speed, promising a solution of the linear system Ax = b, where A is n× n symmetric

matrix, in at most n steps. Moreover, certain algorithms such as the interior point

methods are capable of insuring strictly feasible solution candidates during the design

optimization process. Nevertheless, several drawbacks arise when the optimization

function is a “black-box”. Gradient-based methods invariably rely on the gradients

of both the objective function and the constraint function when dealing with linear

problems. The extension to nonlinear problems involves an additional requirement,

stipulated by the KKT equations, of obtaining the Hessian of the Lagrangian function

of the optimization problem. While numerical approximations could be provided

(hereby increasing the function evaluation count and introducing numerical errors),

the methods are still only “locally” accurate. Indeed, the “hill-climber” methods, as

they are called, are often prone to converging to local minimzers. While remedies were

introduced to make local gradient methods more “global” (György and Kocsis 2011),

the attention often shifts away to gradient-free methods when considering “black-box”

design optimization. As will be shown, these class of methods are specifically designed

to suit the needs of simulation-based optimization studies, where no stipulations on

the objective functions are required.
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2.1.2 Gradient-free Algorithms

As previously stated, the main appeal of gradient-free algorithms lies in their

ability to identify a solution when no a priori information is available. Instead of

an analytical description of the objective function, this class of methods relies on a

measure of fitness, used to asses the competitiveness of a solution candidate, as the

optimization goal. For example, the fitness of a candidate may be evaluated through

an expensive numerical simulation. In such cases, the numerical simulation acts as

a “black-box” function which receives a certain input and produces a corresponding

output. Gradient-free algorithms typically share a few common features (Stork, Eiben,

and Bartz-Beielstein 2020). For example, gradient-free algorithms can take inspiration

from natural evolutionary processes such as mutation and recombination as candidates

evolve towards an optimum. Additionally, candidate search can involve stochastic

processes such as sampling from a probability distribution. Perhaps the most common

feature is the inclusion of control parameters. Since gradient-free algorithms are meant

to apply to a wide range of optimization problems, control parameters can be used to

“tweak” the algorithms accordingly. I limit the discussion of gradient-free algorithms

to evolutionary and surrogate-based methods, as these two approaches are the most

relevant to the study of design optimization through computer simulations (Booker

et al. 1999; Kern and Koumoutsakos 2006). The reader is referred to Stork, Eiben,

and Bartz-Beielstein 2020 for a detailed discussion on other gradient-free algorithms.
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2.1.2.1 Evolutionary Algorithms

Evolutionary algorithms (EAs), sometimes referred to as genetic algorithms (GAs),

are a branch of bio-inspired gradient-free optimization algorithms which mimic natural

processes such as crossover, mutation and reproduction of individuals within a popu-

lation. Individuals are ranked based on their fitness and the best parents are chosen

to breed (crossover) and then mutate according to a fixed probability (Michalewicz,

Hinterding, and Michalewicz 1997). The children are then entered into the population

and the individuals are ranked based on fitness again, and the least fit solutions are

discarded as the population “evolves”. Taking µk as individuals within a population

at iteration k, τk as parents chosen from a population at iteration k, λk as offsprings

at iteration k, a generic EA can be described as shown in Table 1.

Table 1: A Generic Evolutionary Algorithm

EA pseudocode

1. Initialize population of µk individuals.
2. Evaluate fitness of µk individuals.
for k = 0, 1, . . . , do:
3. Choose best individuals as parents for next generation τk.
4. Apply variation operator to generate λk offspring from τk parents.
5. Evaluate fitness of λk.
6. Select λk to replace previous individuals to create generation µk+1.
7. If convergence is achieved, break and report best individual(s).
end

Variation operators, such as mutation, crossover and selection, can vary between

implementations of EAs and GAs.
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2.1.2.2 Surrogate Based Optimization

A surrogate based optimization (SBO) algorithm is a non-gradient based global

search method which seeks to identify an optima by building surrogate approximation

of the objective function, thereby requiring no derivative information or approximation.

An initial surrogate of the objective function is created by sampling objective function

values according to a space filling strategy. An infill criteria is then used to assess

fitness of inexpensive surrogate function evaluations to determine one or more points

to be evaluated using the true objective function. Those points are used to refine the

surrogate and the process is repeated till an optima is identified. SBO encompasses a

wide range of design choices during each phase: the initial construction plan of the

surrogate, the infill criteria which can incorporate any derivatrive-free or derivative-

based optimzier and the surrogate construction technique. For this reason it is referred

to as a “meta-modeling” approach (Stork, Eiben, and Bartz-Beielstein 2020). Let Mk

and sk(x) be defined as the set of candidates used for “true” function evaluations and

the surrogate model, respectively, at iteration k. Further, define the maximum number

of allowable iterations, kmax. A generic surrogate-based optimization algorithm can

then be described as shown in Table 2.

2.1.3 Gradient-free Versus Gradient-based Study

Despite the fact that a choice of an optimization algorithm is an important decision

in engineering practice, there are remarkably few documented studies that compare

different (gradient-based and gradient-free) optimization algorithms with respect to an

analytical or a black-box function. Rios and Sahinidis 2013 performed a comparison
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Table 2: A Generic Surrogate-Based Optimization Algorithm

SBO pseudocode

1. Construct an initial candidate set, T , preferably using a space filling strategy
(Tenne 2015; Morris and Mitchell 1995) and set M0 = T

2. Evaluate the fitness of all initial candidates, f(T ).
3. Construct the initial surrogate model, s0(x), using T and f(T ).
for k = 0, 1, . . . , kmax do:
4. Generate a candidate set, Xk, according to an infill criteria (Sobester, Forrester,
and Keane 2008).

5. Evaluate sk(Xk).
6. Identify next promising point, xk, by applying the infill criteria.
7. Evaluate f(xk).
8. Identify the current best point, x∗k. If convergence is achieved, break and re-
port best individual(s).

9. Set Mk+1 = Mk ∪ xk. Re-fit sk+1 with Mk+1.
end

of gradient-free solvers including SBO and EAs, on a large set of test problems with

available solutions. Their work however was limited to gradient-free solvers with

bound constraints. They did not show a comparison of gradient-based approaches

to gradient-free (SBO and EAs) solvers, nor did the authors consider changes in

optimization performance related to more complex nonlinear constraints on design

variables. Other authors considered different variants of the problem such as evaluating

a computationally cheap objective function with computationally expensive black-box

constraints with gradient-free solvers (Müller and Woodbury 2017) or gradient-free

optimization in tuberculosis treatment (Cicchese et al. 2017) and sensor placement

(Szalay and Nagy 2014). I aim to fill this gap by analyzing the performance of 5

gradient-based and 9 gradient-free algorithms with respect to two test problems: 1)

unconstrained and constrained optimization of the analytical Rosenbrock function.

Details of the 5 gradient-based and 9 gradient-free algorithms are can be found in
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Table 3. More information on the specific implementation of each algorithm can be

found in the “Comments” column of Table 3, with the exception of the GA, SBL, SBG,

and EGO algorithms which are natively supported through the MATLAB (Toolbox

et al. 1993) and DAKOTA (Adams et al. 2020) software packages.

Table 3: Optimization Algorithms included in the gradient-free versus gradient-based
benchmark

Software Package Solver Comments

Gradient-based

MATLAB Interior Point (IP) FMINCON
MATLAB Sequential Quadratic

Programming (SQP)
FMINCON

MATLAB Active Set (AS) FMINCON
DAKOTA Conjugate Gradient

(FRCG)
CONMIN

DAKOTA Method of Feasible
Directions (MFD)

CONMIN

Derivative-free

MATLAB Genetic Algorithm (GA)
MATLAB Covariance Matrix

Adaptation Evolution
Strategy (CMAE-ES)

Hansen 2016

DAKOTA Evolutionary Algorithm
(EA)

COLINY Hart et al. 2010

DAKOTA Single Objective Genetic
Algorithm (SOGA)

JEGA

DAKOTA Multiple Objective
Genetic Algorithm

(MOGA)

JEGA

DAKOTA Surrogate based local
optimizer (SBL)

DAKOTA Surrogate based global
optimizer (SBG)

DAKOTA Efficient global
optimization (EGO)

Details on the optimization problem, computational set-up and results are discussed

in the following chapters, respectively.

22



2.1.3.1 Optimization Benchmark Function

The Rosenbrock function was selected as the canonical analytical objective function

of the optimization problem (De Jong 1975). The Rosenbrock function is a non-convex

function known for containing a global minimum within a wide basin. The two-

dimensional form of the function is described as follows:

f(x1, x2) = (a− x1)2 + b(x2 − x2
1)2 (2.13)

with global minimum located at (x1, x2) = (a, a2), where f(x1, x2) = 0. The parameters

were chosen to be a = 0.35 and b = 100. Two sets of constraints were considered.

1. Bound constraints, i.e. S ∩ C = S (referred to as unconstrained):

− 0.2 ≤ xi ≤ 0.5, 1 ≤ i ≤ 2 (2.14)

2. A constraint set, C, closely related to the natural constraints encountered in

the black-box optimization study involving a solitary swimmer:

g1(x) = x2 + 2.5x2
1 − 0.5 ≤ 0

g2(x) = −x2 − x1 + 0.4 ≤ 0

(2.15)

The specific combination of the function parameters and the constraint set insures

that the global minimum resides within the constrained domain, as shown in Figure

2.1.3.1.

2.1.3.2 Computational Set-up

Numerical simulations were performed on 3.20GHz Intel processors on a Linux

environment. The MATLAB and Dakota solvers were run on MATLAB 2018b
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Figure 1: 2-D Rosenbrock over the constrained domain

and Dakota 6.8 respectively. All solvers were started from the feasible point of

(x1, x2)0 = (0.2, 0.3). The convergence criteria was set to 1× 10−4 on the absolute

error whenever possible, (an exception is SBG, because it can only be terminated by

specifying a maximum iteration count). The function evaluations count as well as the

absolute error, achieved after convergence, are reported in Table 4 and Table 3 5. A

margin of error (MOE) is calculated with 95% confidence for appropriate solvers as

follows:

SD =

√∑m
i=1(zi − µz)2

m− 1

MOE =
SD√
m
∗ 1.96

(2.16)

where zi is a random variable at iteration i, µz is the sample mean, m is the number of

realizations taken to be 1000, SD is the standard deviation andMOE is the margin of

error. The exceptions are the deterministic gradient-based solvers and the SBG solver.

The population size of all Dakota EAs/GAs were chosen to be 20, while the others

did not provide an option for population limit, within a generation. Similarly, the

crossover rate and mutation rate were set to be 50% for all the three Dakota GA/EA

solvers, while those rates were not specified for other algorithms. The SBO algorithms
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used 20 function evaluations to construct an initial surrogate of the function. SBG

and SBL used a derivative-free algorithm (COLINY_EA) when minimizing. The

Dakota SOGA & MOGA solvers were unable to provide solutions within tolerance

for many of the runs, which is reflected by a poor solution average. In that case, a

stricter convergence criteria had little effect on improving solution quality.

2.1.3.3 Results

Table 4: Benchmark Results for Unconstrained Optimization

Algorithm Function
Evaluation

Function
Evaluation

MOE

Absolute
Error

Absolute Error MOE

FMINCON-IP 22 N/A 3.92× 10−5 N/A
FMINCON-SQP 50 N/A 7.90× 10−5 N/A
FMINCON-AS 43 N/A 4.00× 10−5 N/A
CONMIN_FRCG 37 N/A 4.62× 10−7 N/A
MATLAB_GA 7302 541 7.91× 10−5 2.18× 10−6

CMA-ES 181 4 4.19× 10−5 1.78× 10−6

COLINY_EA 1031 10 1.07× 10−4 7.03× 10−6

SOGA 864 18 3.11× 10−3 2.62× 10−4

MOGA 4518 227 8.21× 10−4 7.65× 10−5

SBG 25 N/A 5.89× 10−5 N/A
SBL 204 1 1.72× 10−5 1.09× 10−6

EGO 23 0 2.72× 10−5 4.08× 10−6

The gradient decent solvers displayed superior performance by having not only low

function evaluations but also the shortest wall clock time, with around 1s on average

compared to an average of 2.5s and 15s for GAs/EAs and SBO respectively. Solver

performance across different packages (MATLAB’s fmincon and Dakota’s CONMIN)
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Table 5: Benchmark Results for Constrained Optimization

Algorithm Function
Evaluation

Function
Evaluation

MOE

Absolute
Error

Absolute Error MOE

FMINCON-IP 24 N/A 6.95× 10−5 N/A
FMINCON-SQP 26 N/A 3.59× 10−5 N/A
FMINCON-AS 22 N/A 2.12× 10−5 N/A
CONMIN_MFD 25 N/A 1.54× 10−6 N/A
MATLAB_GA 2772 42 4.80× 10−6 9.70× 10−7

CMA-ES 104 3 4.78× 10−5 1.88× 10−6

COLINY_EA 965 14 7.11× 10−5 4.85× 10−6

SOGA 1034 24 2.48× 10−3 3.96× 10−4

MOGA 2346 44 3.34× 10−3 6.62× 10−3

SBG 22 N/A 3.71× 10−5 N/A
SBL 203 1 2.00× 10−5 1.24× 10−6

EGO 23 0 2.13× 10−5 4.36× 10−6

did not show notable differences, albeit featuring different algorithms. The solvers

converged to a local optima which is the global optimum for this test problem.

While most GA algorithms converged at fewer iterations when the optimization

problem was altered from unconstrained to constrained, the Dakota SOGA and

MOGA solvers were an exception. This is likely due to the GAs dependence on the

variation operators relative to the objective function landscape, which remains an

active area of research in genetic programming (Laumanns, Zitzler, and Thiele 2001).

In terms of unconstrained optimization, the best performing GA/EA, CMA-ES, showed

faster convergence than the worst performing SBO algorithm, SBL, with an absolute

error that is double in magnitude. However, the CMA-ES algorithm performance is

unpredictable near boundaries and should not be used when a constrained optimization

problem’s minimzer is expected to be on or relatively close to a boundary (Hansen

2016). Additionally, the best performing SBO algorithm, EGO, required roughly 13%
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of the function evaluations needed for CMA-ES and roughly 0.3% of the function

evaluations needed for the worst performing GA algorithm, MATLAB’s GA. In terms

of constrained optimization, the best performing GA, CMA-ES, required only 50% of

iterations needed for the worst performing SBO, SBL, with an error that is double in

magnitude. However SBG required roughly 21% of the iterations needed by CMA-ES,

with a comparable absolute error.

For both constrained and unconstrained optimization problems, SBO algorithms

showed performance similar to gradient descent algorithms in terms of not only

function evaluations but also solution accuracy. Moreover the function evaluation

MOE reported is consistently lower in the case of SBO algorithms relative to GA

algorithms, suggesting that convergence “stochasticity” is much lower in SBO. The

absolute error MOE was roughly one order of magnitude lower than the absolute error

for the algorithms considered. This suggests that solution “stochasticity” has remained

relatively consistent between all derivative-free algorithms, with the exception of

MOGA applied to the unconstrained problem. Consequently, the results of this study

seem to suggest that the a suitable algorithm may be found within the family of

SBO algorithms. However, applied engineering problems often involve one or more

constraints which can not be violated. In other words, design variables, in certain

situations, must remain feasible for simulations or experiments not to fail. Therefor,

attention must be paid to an optimization algorithm’s ability to handle constraints.

A more detailed discussion on this topic can be found in the next section.
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2.2 The Proposed Constrained Optimization Algorithm

There exists a wide spectrum of algorithms under the umbrella of SBO with

varying performance depending on the choices made in developing the surrogate

optimization framework (Razavi, Tolson, and Burn 2012; Wang et al. 2014). The

choices can vary in many regards including the constraint handling technique (CHT)

used to deal with available constraints. Multiple previous studies indicate that the

CHT of an optimization algorithm can have a drastic effect on the quality and

accuracy of the resulting solution (Mezura-Montes and Coello 2011; Woldesenbet,

Yen, and Tessema 2009). More importantly, the CHT of the algorithm chosen

to solve the bio-inspired locomotion design problem must be able to adequately

handle constraints without generating any infeasible candidates. In other words,

the algorithm must guarantee strictly feasible candidates during the optimization

procedure so the numerical simulations of the thunniform swimmer(s) do not fail.

This section starts with a discussion of the available CHT techniques for use with an

SBO algorithm. Following that is a discussion on optimizing over highly constrained,

or “thin”, domains. Next, a new constrained SBO algorithm is proposed to handle

inexpensive constraint functions by ensuring strictly feasible candidates while keeping

the number of function evaluations low. The proposed algorithm is benchmarked

against several other algorithms with different CHTs to asses it’s accuracy and

efficiency.
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2.2.1 On Constraint Handling

A popular class of CHTs involves casting the constrained optimization problem

as a multi-objective optimization problem where the objectives minimize the fitness

function and constraint violations. One way to solve the multi-objective optimization

is to use a “filter” approach (Audet et al. 2000). The objective function and the

constraints form a Pareto front, where candidates that are non-dominated, those

which lay outside the Pareto front, are accepted through the filter and dominated

candidates, those which lay within the Pareto front, remain unfiltered. The filter

approach, along with other multi-objective optimization techniques (Müller and

Woodbury 2017; Regis 2014), relax constraint requirements during the optimization

procedure, and therefore may not be easily adapted to practical problems where the

constraints must be strictly enforced (Nazemian and Ghadimi 2021). The requirement

for strictly feasible candidates can arise, for example, in optimization problems where

constraint failures result in non physically realizable parameters in a CFD simulation

(Gebraad et al. 2017; Neufeld, Chung, and Behdinian 2011) or a physical experiment.

When infeasible candidates are strictly not allowed, it is not possible to use the

information contained within them to guide the optimization process, which might be

a beneficial strategy in other circumstances (Ray et al. 2009; Orvosh and Davis 1994).

One approach to avoid infeasible solutions is to cast the constrained optimization

problem into a single unconstrained objective with an added term which penalizes

constraint violations. An example is the interior point penalty method, which adds

a barrier function to the objective function that approaches infinity as the point

approaches the boundary of the feasible region (Dikin 1967; Karmarkar 1984). With

this method, however, it becomes problematic to find the optimum solutions that may
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be located on the boundary of the feasible region. A modification of the method that

avoids this problem is an “extreme barrier” treatment, where the objective function

is not modified in the feasible domain, but is set to infinity in the infeasible domain

(Audet and Dennis Jr 2006; Diouane, Gratton, and Vicente 2015). Convergence

and accuracy of these methods is highly dependent on the threshold of the penalty

parameter (Queipo et al. 2005). A high threshold can dominate the objective function

and deteriorate convergence speed, while a low threshold could produce infeasible

candidates.

Other CHTs have been developed around different infill strategies. For example, it

has been suggested that the Expected Improvement (EI) infill criteria, used in the

Efficient Global Optimization (EGO) algorithm by Jones, Schonlau, and Welch 1998,

be set to zero when any constraint is violated (Gardner et al. 2014; Sobester, Forrester,

and Keane 2008). When the infill strategy is solely guided by the EI criteria, there

will be no exploration of the infeasible regime. Another possible solution arises when

considering optimization problems where simulation failure can not be determined a

priori (Forrester, Sóbester, and Keane 2006). The suggested treatment, by Forrester,

Sóbester, and Keane 2006, is to impute a value that is proportional to the sum of the

surrogate response prediction and the prediction uncertainty where the simulation

fails. Although other CHTs, aimed at problems with expensive constraints, rely on

creating surrogate predictions of the constraint functions (Parr et al. 2012), they are

generally inadvisable when constraint functions are inexpensive (Sasena, Papalambros,

and Goovaerts 2001).

I propose a simple rejection based CHT for inexpensive constraints, capable

of insuring strictly feasible candidates, for the Metric Stochastic Response Surface

(MSRS) infill sampling criterion (Regis and Shoemaker 2007), which has been shown
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to converge to the global minimum under certain conditions. Ordinary Kriging (OK)

surface (Eldeiry and Garcia 2010) is employed as the surrogate model to exploit

with the constrained MSRS infill strategy, and the resulting SBO algorithm variant

is referred to as OK-CMSRS. Ordinary Kriging was chosen for its ability to allow

for a flexible and reliable prediction method (Sobester, Forrester, and Keane 2008;

Eldeiry and Garcia 2010). However, the response surface model need not always be

Ordinary Kriging and can, if desired, be substituted with a different approximation

model (Regis and Shoemaker 2007). Inexpensive constraints can at times create a

extremely small feasible region, referred to as a “thin” domain, which increases the

challenge of finding a suitable feasible solution. The next subsection provides a formal

definition of a “thin” feasible domain and discuses approaches to appropriately deal

with this challenge.

2.2.2 Optimizing over “Thin” Domains

In some cases the feasible domain may be restricted to a “thin” region. I formally

define a “thin” feasible domain if for any x ∈ D, we have:

P [x + dα ∈ D] ' 0 (2.17)

where P [E] is the probability of event E, d is an arbitrary direction and α > 0 is

an arbitrary scalar (Martinez and Sobral 2013). It follows that a singular equality

constraint is sufficient to generate a “thin” feasibility region. To allow for optimization

over a “thin” feasible region, I follow Kumar et al. 2020; Runarsson and Yao 2000;

Mezura-Montes and Coello 2011; Liu et al. 2016; Liang et al. 2006 and transform

each equality constraint into two inequality constraints using a small positive margin,
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ε > 0, as follows:

|hr(x)| − ε ≤ 0, r = q + 1, ...,m. (2.18)

Likewise, multiple inequality constraints could result in a “thin” feasible region that is

geometrically similar to that of an equality constraint. For example, consider the case

where set C is defined by:

g1(x) = x2
1 + x2

2 − 1 ≤ 0,

g2(x) = −x2
1 − x2

2 + 1 ≤ 0.

(2.19)

The intersection of these two inequality constraints defines an equality constraint,

h1(x) = x2
1 + x2

2 − 1 = 0, (2.20)

which can be treated in the same manner (equation 2.18). I assume that treatment

of equality and inequality constraints in this manner generates admissible points, for

which the objective function can be evaluated. If this is not the case, the margin of

error ε may be adjusted. To quantify the measure of “thinness” of a feasible domain, I

introduce the feasibility ratio, ρ, defined as

ρ =
m(D)

m(S)
, (2.21)

where m(X) refers to the measure of the set X. The feasibility ratio thus provides

an estimate of the size of the feasibility region relative to the search space. The

attention is now turned to a new constrained SBO algorithm capable of generating

strictly feasible candidates, even for some problems with a “thin” feasible domain or,

alternatively, a small ρ.
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2.2.3 Optimization Method Description

SBO algorithms rely on approximating solutions based on a surrogate model of the

objective function. First, an initial surrogate model of the objective function is created

using a data set of true function evaluations sampled with a space filling strategy.

Then, with each iteration an infill criterion, which attempts to balance global and local

exploration, is used to refine the surrogate with multiple surrogate function evaluations

and one true function evaluation. In this work, I choose a sampling technique and a

surrogate model from the DACE MATLAB toolbox (Lophaven, Nielsen, Søndergaard,

et al. 2002). I define an infill strategy according to the Metric Stochastic Response

Surface (MSRS) method proposed by Regis and Shoemaker 2007. Finally, I extend

the MSRS method to produce strictly feasible candidates at each iteration step. The

resulting variant algorithm is referred to as OK-CMSRS.

2.2.3.1 Metric Stochastic Response Surface (MSRS) Algorithm

Let Mk and sk(x) be defined as the set of candidates used for “true” function

evaluations and the surrogate model, respectively, at iteration k. I define maximum

number of iterations, kmax, and a tolerance, tol.

Step 1: Create an initial sampling set T ⊂ D, containing only feasible points, using

Latin Hypercube Sampling (LHS) (McKay, Beckman, and Conover 1979) and

a constraint handling technique as described in section 2.2.3.2. I require that

card(T ) ≥ n+ 1, where ‘card’ stands for cardinality, and n is the dimension of

the search space. Evaluate f(T ), where f(x) is the true objective function. Set

M0 = T .
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Step 2: Fit a Kriging model surrogate, s0(x), with a Gaussian correlation function and

0-th order regression polynomial using M0, commonly referred to as Ordinary

Kriging (OK), as follows:

s0(x) = µ̂+ ψTΨ−1(f(M0)− 1µ̂) (2.22)

where

µ̂ =
1TΨ−1f(M0)

1TΨ−11
. (2.23)

ψ is a correlation vector of the untried point, x, to the sampled data and,

therefore, has a length equal to card(M0). The correlation equation, ψ(i), is

given by:

ψ(i) = exp

(
−

n∑
p=1

|x(i)
p − xp|2

)
, (2.24)

where x(i) ∈ M0, i = 1, . . . , card(M0). Finally, Ψ is a square matrix of size

card(M0) × card(M0) , with each matrix element Ψij given by the correlation

between the vectors {x(i),x(j)} from the set M0, as in the equation 2.24. For

a full derivation of the Ordinary Kriging predictor, the reader is referred to

Forrester and Keane 2009; Jones 2001.

Set k = 0.

Step 3: While (k ≤ kmax)

a) Create a set of strictly feasible candidate points, Xk, according to the

proposed CHT (section 2.2.3.2) and evaluate sk(Xk).

b) Use the MSRS scoring method which assigns a weighted score to each point

in set Xk based on two criteria: 1) the distance of points in Xk to Mk,

and 2) the surrogate response values, sk(Xk). The weighted score insures

that the next candidate point has a low objective value that is far away
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from previously sampled points. The point with the best weighted score is

identified as the next evaluation point, xk.

c) Evaluate f(xk).

d) Identify the current best point x∗k. If tol is met: break.

e) Set Mk+1 = Mk ∪ xk. Re-fit sk+1 with Mk+1. Set k = k + 1.

Step 4: Return xbest = x∗k.

2.2.3.2 Constrained Candidate Sampling

In the MSRS method, the candidate points are split into two categories (Regis

and Shoemaker 2007):

1) Uniformly sampled global points: The first set, Uk, is generated by a random

sampling with a uniform distribution of points from the box-constrained domain

such that Uk ⊂ S. I set card(U) = 2000n, where n is the dimension of the

search space.

2) Normally sampled local points: The second set Nk is generated by adding

perturbations to x∗k drawn from a random normal distribution with zero mean

and a variance s2:

N j
k = x∗k +N (0, s2), j = 1, ..., card(Nk), (2.25)

where N j
k are components of Nk, N (0, s2) is the normal distribution with 0 mean

and s2 variance, s is chosen as

s = γ
[
mini∈[1,n] (u(i)− l(i))

]
, (2.26)

and γ is the “perturbation rate” that can assume one of the three values, 0.1,

0.01, or 0.001, assigned randomly, with equal probability (in other words, γ is a
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uniformly distributed discrete random variable over the set {0.1, 0.01, 0.001}).I

set card(N) = 2000n.

I define the possibly infeasible candidate set as X ′k = Uk ∪ Nk. It follows that

card(X ′k) = 4000n. I note that X ′k ⊂ S, however it may be that X ′k 6⊂ S ∩ C. I

then enforce all, equality and/or inequality, constraints through the following CHT

algorithm:

Step 1: Evaluate gr(X ′k) for r = 1, ..., q and hr(X ′k) for r = q + 1, ...,m.

Step 2: Define ‘penalty’ vector, J , for each candidate point:

Ji =

q∑
r=1

max(0, gr(xi)) +
m∑

r=q+1

max(0, |hr(xi)| − ε), i = 1, ..., card(X ′k),

(2.27)

where Ji are the components of the vector J .

Step 3: The feasible set, Xk, is simply defined as Xk = {X ′k : J = 0}. In other words,

the Xk entries are the candidates in X ′k with a zero penalty.

This method does not guarantee that the selected set Xk will always be of the

nominal card(X ′k) but it will surely contain only feasible points. If it happens that

Xk ⊂Mk, then the candidates are resampled.

To construct the initial LHS sampling set, T , the same 3-step process to generate

feasible candidates is followed. Originally, a possibly infeasible set T ′ is generated

using LHS sampling over the box domain S, consisting of Ceiling [(n+ 1)/ρ] candidate

points. Infeasible candidates are then rejected using the presented CHT algorithm. If

it happens that card(T ) < n+ 1, a new set of candidate points is generated to add to

T ′, until the condition on card(T ) is satisfied.
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2.2.4 On the Convergence of the Proposed Method

To prove convergence of the OK-CMSRS algorithm, we first need the following

lemma.

Lemma 2.2.1. Let Ek = {T,X ′1, ..., X ′k}. Then the two following conditions are satisfied:

[C10] For all k, elements of X ′k are conditionally independent given the random vectors

in Ek−1.

[C20] For any x ∈ S, j = 1, ..., card(X ′k) and δ > 0, there exists µj(x, δ) > 0 such that

P [X ′k,j ∈ S ∩B(x, δ)|σ(Ek−1)] ≥ µj(x, δ), (2.28)

where P [E] is the probability of event E, B(x, δ) is the open ball of radius δ and

center x, and σ(Ek−1) is the σ-algebra generated by the random vectors in Ek−1.

Proof. See Ref. Regis and Shoemaker 2007 for the proof (p. 500).

Note that the condition [C20] ensures that no region of S is left unexplored by the

MSRS infill criterion. I now extend this lemma to the constrained variant of MSRS,

i.e. CMSRS.

Lemma 2.2.2. Let Ek = {T,X ′1, ..., X ′k}, and Xk ⊆ X ′k ∀ k. Then the two following

conditions are satisfied:

[C1] For all k, elements of Xk are conditionally independent given the random vectors

in Ek−1.

[C2] Let D = S ∩ C. For any x ∈ D, i = 1, ..., card(Xk) and δ > 0, there exists

νi(x, δ) > 0 such that

P [Xk,i ∈ D ∩B(x, δ)|σ(Ek−1)] ≥ νi(x, δ). (2.29)
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Proof. To prove the condition [C1], I note that, by Lemma 1, for all k, elements of the

setX ′k are conditionally independent. SinceXk ⊆ X ′k, it follows that the elements ofXk

are conditionally independent as well, which proves the condition [C1]. Furthermore, by

Lemma 1, the condition [C20] holds. Consider i = 1, . . . , card(Xk). Since Xk,i ⊂ X ′k,

we can associate an index j(i) ∈ 1, . . . , card(X ′k), such that Xk,i = X ′k,j. Thus, we

have

P [Xk,i ∈ D ∩B(x, δ)|σ(Ek−1)]

= P [Xk,i ∈ S ∩ C ∩B(x, δ)|σ(Ek−1)]

= P [X ′k,j ∈ S ∩B(x, δ)|σ(Ek−1)] ≥ µj(x, δ) [C20]

= νi(x, δ),

(2.30)

which proves the condition [C2].

I note that in the case when the set C contains strict equality constraints, that is

D is a “thin” feasible region, condition [C2] may not be satisfied, since probability in

equation 2.29 may not be strictly positive:

P [Xk,i ∈ D ∩B(x, δ)|σ(Ek−1)] ≥ 0. (2.31)

However, this situation will not occur when the equality constraints are treated with a

small positive margin ε > 0, as specified in equation 2.18. Consequently, the conditions

[C1] and [C2] are satisfied for any feasible domain D considered in the current method.

Following that conditions [C1] and [C2] hold, the theorem of convergence for the

CMSRS method is given as:

Theorem 2.2.3. Let f be a continuous function defined on D ⊆ Rn, D = S ∩ C,

and suppose that x∗ is the unique global minimizer of f on D in the sense that

f(x∗) = infx∈D f(x) > −∞ and infx∈D,||x−x∗||≥η f(x) > f(x∗) for all η > 0. Define
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the sequence of random vectors {x∗k} := x∗k = xk if f(xk) < f(x∗k−1) while x∗k = x∗k−1

otherwise. Then x∗k → x∗ almost surely.

Proof. Theorem 2.2.3 is a special case of Theorem 1 in Ref. Regis and Shoemaker

2007 for a constrained domain D. Since the conditions [C1] and [C2] are satisfied for

the constrained domain D, the proof in Regis and Shoemaker 2007, page 500, can be

applied to the current case without any modifications. Consequently, the reader is

referred to Regis and Shoemaker 2007 for the proof.

2.2.5 Constrained Handling Technique Study

I compare the OK-CMSRS algorithm with several other algorithms which include:

1) The EGO algorithm with zero EI for infeasible candidates, referred to as EGO-Z, 2)

an SBO algorithm with an OK model, a MSRS infill strategy and a data imputation

treatment (Parr et al. 2012), referred to as OK-IMSRS, 3) an SBO algorithm with

an OK model, a MSRS infill strategy, and a simple constant penalty of 1× 106

outside the feasible domain, referred to as OK-PMSRS and, finally, 4) an evolutionary

algorithm, CMA-ES, which treats infeasible solutions by resampling (Hansen 2016).

The five considered algorithms are summarized in Table 6. The algorithms are

benchmarked on the following six analytical test problems: 1) the Rosenbrock function

(De Jong 1975), 2) the Shifted Rotated Rastrigin’s Function (Suganthan et al. 2005),

3) Weight Minimization of a Speed Reducer (RC15) (Kumar et al. 2020), 4) the

Tension/Compression Spring Design (RC17) (Kumar et al. 2020), 5) 10-Bar Truss

Design (RC 27) (Kumar et al. 2020) and 6) Test Problem 3 in Chapter 4 of Floudas

and Pardalos 1990. Algorithm performance metrics include a function evaluation

count and a solution error to assess efficiency and accuracy of each optimization solver.
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Table 6: Optimization Algorithms

Software Language Algorithm Comments

MATLAB EGO-Z EGO-DACE (Lophaven, Nielsen, Søndergaard, et al. 2002)
MATLAB OK-IMSRS MSRS-MATSuMoTo (Mueller 2014)
MATLAB OK-PMSRS MSRS=MATSuMoTo (Mueller 2014)
MATLAB CMA-ES Hansen (Hansen 2016)
MATLAB OK-CMSRS See Section 2.2.3

2.2.5.1 Optimization Benchmark Functions

All test problems employed in the CHT study are summarized in Table 7. Below I

provide a more detailed description of each test problem.

Table 7: Problem specifications for design problems 1 - 6. n is total number of
dimensions, g is the total number of inequality constraints, h is the total number of
equality constraints, f(x∗) is the function minimum and ρ is the estimated feasibility
ratio.

Problem n g h f(x∗) ρ

1. Rosenbrock 2 2 0 0 2.00× 10−1

2. Rastrigin 2 2 0 −33.0 2.40× 10−1

3. Speed reducer 7 11 0 2.99× 103 9.76× 10−4

4. Spring 3 4 0 1.27× 10−2 7.50× 10−3

5. Truss 10 3 0 5.24× 102 1.16× 10−1

6. p43 4 2 1 −4.51 8.80× 10−6

2.2.5.1.1 Test Problem 1

Test Problem 1 is the constrained Rosenbrock function introduced earlier (see

Section 2.1.3.1). A summary of the design parameters, together with the feasibility

ratio for this problem, can be found in Table 7.
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2.2.5.1.2 Test Problem 2

The second analytical function considered is the shifted rotated Rastrigin function

used as one of the benchmark functions for CEC2005 competition (Suganthan et

al. 2005). This variant of the Rastrigin function provides a non-linear, non-separable,

multi-modal challenging test function (Figure 3). The 2-D form used in this study is

given as follows:

f(x1, x2) =
2∑
i=1

(z2
i − 10 cos(2πzi))− 33, (2.32)

where z = (x− x∗)M, x = [x1, x2], x∗ = [x∗1, x
∗
2] is the shifted global optimum, with

f(x∗) = −33, M is a linear transformation matrix with condition number = 2. Set S

is given by:

− 2 ≤ x0 ≤ 10,

− 10 ≤ x1 ≤ 2.

(2.33)

The C constraint set in this case is:

g1(x) = x2 + 0.15x2
1 − 2 ≤ 0,

g2(x) = −x2 − x1 − 1 ≤ 0.

(2.34)

A summary of the design parameters, together with the feasibility ratio for this

problem, can be found in Table 7.

2.2.5.1.3 Test Problems 3-6

The third, fourth and fifth were chosen to be the speed reducer (RC15), spring

(RC17) and truss (RC27) problems, respectively, from the 2020 CEC constrained

optimization competition (Kumar et al. 2020). The RC15, RC17 and RC27 problems
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Figure 2: Rastrigin

Figure 3: The 2-D Rastrigin functions over the constrained domain. The triangle
represents the optimum solution.

with rigid constraint requirements are of practical relevance to mechanical engineering

design. The sixth problem is Test Problem 3 in Chapter 4 of Floudas and Pardalos

1990, referred to as “p43” in Table 7. The sixth problem has one equality constraint

and the feasible space is, therefore, restricted to a “thin” region. In a treatment of this

constraint, I set ε = 0.0001 in equation 2.18, commensurate with the optimization

competition (Liang et al. 2006). The dimensional space, number of constraints, the

objective function minimum value and the feasibility ratio for test problems 3-6 can

be found in Table 7.
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2.2.5.2 Results

Numerical simulations were performed on a desktop with a CPU featuring six

3.20GHz Intel processors on a Linux environment. The optimization algorithms were

run on MATLAB 2020a. The convergence criteria was based on an absolute error

tolerance, tol = |fk(xbest) − f(x∗)| ≤ 0.1|f(x∗)|, where fk(xbest) is the best found

solution at iteration k and f(x∗) is the a priori identified global function minimum.

An exception is Test Problem 1 where tol = |fk(xbest)− f(x∗)| ≤ 1× 10−3 since f(x∗)

in this case is 0. All algorithms were set to terminate at 1000 iterations, regardless

of tol. Each algorithm was run for N = 50 realizations and the average function

evaluation count as well as the absolute error of the average best function value are

reported in Table 8. Additionally, a margin of error (MOE) on the function evaluation

count is calculated with 95% confidence for all solvers using Equation 2.16.

The EGO-Z algorithm, with an EI-based CHT, typically demands much higher

function evaluations than OK-CMSRS. Moreover, the EGO-Z algorithm could not

generate any feasible candidates for Test Problem 6, likely due to the “thin” region of

feasibility. Algorithms with an OK surrogate function and a MSRS search technique

displayed varying performance based on the selected CHT. For example, the OK-

IMSRS required more than double the function evaluations for the Rosenbrock function

when compared to OK-CMSRS. The OK-PMSRS required more than 13 times the

amount of function evaluations for the same problem, which could be due to the

“cliff” effect associated with penalty functions Sobester, Forrester, and Keane 2008.

Five out of the six benchmarks showed that CMA-ES can be at times more efficient

at identifying a feasible solution within tolerance when compared to other SBO

algorithms, with the one exception being OK-CMSRS.
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Table 8: Optimization results for test problems 1 - 6. FE: Average Function Evaluation Count, FE MOE: Function
Evaluations Margin of Error, and BF: Average Best Function Value.

Algorithm EGO-Z OK-IMSRS OK-PMSRS CMA-ES OK-CMSRS
FE FE

MOE
BF FE FE

MOE
BF FE FE

MOE
BF FE FE

MOE
BF FE FE

MOE
BF

I. Rosenbrock 97 50 2.85×
10−4

69 13 4.88×
10−4

460 84 5.11×
10−4

60 6 4.40×
10−4

33 2 5.54×
10−4

II. Rastrigin 191 22 −30.9 290 43 −30.8 317 60 −30.8 130 51 −30.6 127 15 −30.9

III. Speed Reducer 20 1 3.07×
103

59 26 3.24×
103

59 26 3.22×
103

15 2 3.21×
103

14 2 3.21×
103

IV. Spring 943 63 2.22×
10−2

889 84 1.66×
10−2

968 45 1.97×
10−2

243 90 1.36×
10−2

105 45 1.28×
10−2

V. Truss 138 35 5.26×
102

695 109 5.93×
102

772 94 5.95×
102

256 42 5.69×
102

74 4 5.61×
102

VI. p431 NA NA NA 1000 0 -3.72 1000 0 -3.72 212 7 0 131 1 -4.06
1 EGO-Z could not generate any feasible candidates for this problem.
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Additionally, the CMA-ES is typically associated with a higher MOE, as seen in the

Spring design benchmark, when compared to the OK-CMSRS. When the constrained

region is “thin” (Test Problem 6), the CMA-ES may not find the global optima.

The OK-CMSRS maintained competitive performance by showing the least variation

in the best solution reported (lowest MOE) as well as the lowest average function

evaluations across all optimization benchmarks, including high dimensional (D = 10)

and highly constrained (g = 11) design problems, with error levels remaining within

tolerance. Results from the six analytical benchmarks show that the OK-CMSRS is

a promising tool capable of insuring strictly feasible candidates while maintaining

competitive convergence properties when dealing with expensive simulations-based

black-box optimization problems with inexpensive constraints. Consequently, the

OK-CMSRS algorithm is chosen to optimize the locomotion of bio-inspired robotic

swimmers for achieve efficient propulsion. The next chapter describes the details of

the physical and numerical framework used to predict the hydrodynamic behaviour of

bio-inspired thunniform swimmers.
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Chapter 3

MODELING AND ANALYSIS OF AN OPTIMAL SOLITARY BIO-INSPIRED

THUNNIFORM SWIMMER

This chapter introduces the physical and numerical modeling details of CFD

simulations of a solitary thunniform swimmer during start-up. An optimization

study is conducted to investigate the optimal kinematic gait of a solitary thunniform

swimmer as it accelerates from rest. Section 1 describes the physical model of a solitary

self-propelled undulatory swimmer, including the equations governing the swimmer’s

shape, deformation kinematics and the volume conservation scheme, as well as the

self-propulsion mechanism. In section 2, the Navier-Stokes equations governing the

fluid flow are formulated and discretized using a spectral element method on moving

body-fitted grids. In section 3, the simulation setup, including the computational

grid and the boundary conditions are introduced. In Section 5, a formulation of

the optimization problem, concerning a solitary accelerating thunniform swimmer, is

introduced. This chapter is concluded with a discussion of the results given in Section

4.

3.1 Model of Self-Propelled Undulatory Swimmer

3.1.1 Swimmer Shape

The computational model of a thunniform swimmer employed in the current

work considers its two-dimensional approximation in a streamwise-lateral plane. The
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geometrical features of the streamlined body of a thunniform swimmer in its static

configuration in this two-dimensional approximation have been described using real

fish morphology data (Du et al. 2015; Valdivia y Alvarado 2007),

ysr(x) = r1 sin(r2x) + r3 sin(r4x), (3.1)

where r1 = 0.055lb, r2 = 2π
1.25lb

, r3 = 0.08lb, r4 = 2
lb
, and lb is the length of the

swimmer’s body up to but not including the tail. I take equation (3.1) to be the curve

corresponding to the right boundary of the fish, ysr(x), and the left boundary is given

by the symmetry, such as ysl (x) = −ysr(x). The total dimensional length, L = lb + lt,

where lt is the length of the tail, is chosen to be L = 0.3 m to mimic the length of

a realistic soft robotic thunniform swimmer (Valdivia y Alvarado 2007). I model a

sharp tail by linearly extending the body of the swimmer across lt, which is chosen to

be lt = 0.05 m, yielding lb = 0.25 m. The static swimmer geometry can be seen in

Figure 4.

Figure 4: Static thunniform swimmer. ysr(x) and ysl (x) are the right and left boundaries
of the swimmer in its static configuration, respectively; ysm(x) = 0 is the static midline.

47



3.1.2 Swimmer Kinematics

The majority of robotic swimmers are designed to mimic the body and/or caudal

fin (BCF) movement of aquatic animals (Du et al. 2015). BCF movement characterizes

a range of swimming motions that are used by fast swimmers like tuna, sharks and

pikes, and hence provides superior propulsive techniques to be utilized by robots. The

form of the BCF flapping motion for a slender body undulating in a lateral direction

with respect to a direction of motion can be described by a traveling wave equation

(Michael J Lighthill 1960; Barrett et al. 1999) for the body midline deformation of

thunniform (tuna) swimmers:

ym(x, t) =

[
c1
x

L
+ c2

(x
L

)2
]

sin(kx− ωt), (3.2)

where y and x are the lateral and streamwise coordinates of the midline points,

respectively, t is the time variable, L is the fish length, c1 and c2 are the linear and

quadratic wave amplitudes, k is the wave number associated with the body motion, and

w is the wave frequency. Subsequent biological studies revealed that the thunniform

swimming mode of the BCF family can be characterized by the following body wave

number relation (Donley and Dickson 2000),

k =
2π

λL
,

where λ, the body wave length, was measured to be ∼ 1.1. I fix λ to be 1.1 and I note

that while the tail-beat frequency is observed to have a positive correlation with the

swimming speed (Bainbridge 1958; McMasters et al. 2008), I fix ω = 2π rad/s in this

study.

The midline of a swimmer, which is simply ysm(x) = 0 in its static configuration,

is discretized with the corresponding midline points with x-coordinates xm. During
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the motion described by Eq. (3.2), the x-coordinates of the midline discretization

points remain unchanged, while y-coordinates update according to Eq. (3.2). After

the midline of the swimmer is deformed, the next step is to deform the right and

left curves of the body. Two methods for the body deformation are considered: a

non-conservative, and a conservative method, that are described below.

3.1.2.1 Non-conservative Body Deformation

The simplest way to deform the body of the fish is to adjust the boundary curves,

yr(x, t) and yl(x, t), to maintain orthogonality of the body cross-sections with respect

to the midline while keeping the lateral distance between the corresponding points on

the fish surface and the midline constant (Bergmann, Iollo, and Mittal 2014).

Figure 5: Point A on the right boundary of a swimmer is shown in its static configu-
ration (top view), and at a later point in time when the swimmer is moving (bottom
view).

For example, consider a point, A, associated with a certain midline point with

the x-coordinate of xm, which lies on the boundary of a swimmer as depicted in its

static configuration in the top view of Figure 5. As the midline deforms, point A on

the boundary moves to maintain orthogonality of the connecting segment with the
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midline as shown in the bottom view of Figure 5. The geometrical location of the

point A, lying, for example, on the right boundary of the swimmer, {xAr (t), yAr (t)},

can be described at any instance in time by the following equations:

xAr (t) = xm − sin(θ(xm, t))y
s
r(xm), (3.3a)

yAr (t) = ym(xm, t) + cos(θ(xm, t))y
s
r(xm), (3.3b)

where the angle θ(xm, t) is such that

θ(xm, t) = arctan

(
d ym(x, t)

dx

∣∣
x=xm

)
. (3.4)

The corresponding surface velocity, vAr (t) = {vAx r(t), vAy r(t)}, for the point A on the

right boundary can be obtained by taking the time derivative of Eq. (3.3):

vAx r(t) =
d xAr
dt

= − d

dt
(sin(θ(xm, t)))y

s
r(xm), (3.5a)

vAy r(t) =
d yAr
dt

=
d

dt
(ysm(xm, t)) +

d

dt
(cos(θ(xm, t)))y

s
r(xm). (3.5b)

Similar expressions can be written for the left boundary.

It is easily seen that holding the width of each orthogonal segment distance constant

is not sufficient to maintain the volume conservation of the swimmer as the arc length

of the midline fluctuates during swimming. To further illustrate this point, I plot the

volume of the fish over one time period for the non-volume conserving deformation

scheme (Figure 6). It is not physiologically realizable for a neutrally-buoyant swimmer,

robotic or organic, to change volume during swimming, unless other buoyancy aids are

engaged, which would result in a change of the swimming altitude (Lindsey, Smith,

and Croll 2010; Alexander 2013). Additionally, a lack of body volume conservation

leads to a sudden change in the volume of the surrounding fluid in the enclosed domain,

which violates the incompressibility constraint and leads to numerical instabilities (Xu
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and Y. T. Peet 2017). This has been previously alleviated by using additional iterations

on the fluid pressure-velocity solve in the moving mesh framework (Xu and Y. T. Peet

2017; Xu and Y. Peet 2021), but this technique is expensive and is hardly suitable

within the optimization procedure, where every instance of the CFD solver needs to

be executed multiple times. For example, the results obtained with a non-conservative

scheme in Figure 6 required, on average, three to five fluid solver iterations per

time step (Xu and Y. T. Peet 2018). However, the number of iterations can be

significantly larger depending on the problem in hand. For example, 10 to 15 fluid

sub-iterations have been reported in (Xu and Y. T. Peet 2017) when computing the

fluid-structure interaction cylinder/cantilever beam benchmark of Turek and Hron

2006 with a similar non-conservative solid deformation update in a spectral-element

method. While the problem of volume conservation has been previously explored in

relation to free-surface flows and fluid-structure interaction with passive solid objects

(Franci and Cremonesi 2017; Khayyer et al. 2019), volume conservation of swimmers,

to our best knowledge, has not received similar attention in the literature related to

fish propulsion (Bergmann, Iollo, and Mittal 2014; Kern and Koumoutsakos 2006;

Iman Borazjani and Sotiropoulos 2008). An exception is a study of Shirgaonkar,

MacIver, and Patankar 2009, where they imposed divergence-free deformations on

an undulatory eel motion, albeit in their deformation scheme the body cross-sections

were moved strictly laterally, rather than orthogonal to the midline, in which case the

volume conservation is straightforward. An importance and a physiological relevance

of orthogonal body deformations was discussed in Bergmann, Iollo, and Mittal 2014.

Therefore, in this work, I develop a volume-conservation method for a fish undulatory

motion while keeping the fish body cross-sections orthogonal to the midline at all

times.
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3.1.2.2 Conservative Body Deformation

With the conservative approach, the body surface velocities obtained via Eq. (3.5),

which by themselves do not guarantee the volume conservation, are augmented by

a correction velocity vc(t) = vc(t) · n, with the magnitude constant over the body

surface, which acts in a surface-normal direction n (with n denoting the surface outer

unit normal). With the correction velocity, Eqs. (3.5) can be re-written as:

vAx r(t) = − d

dt
(sin(θm(xm, t)))y

s
r(xm) + vc(t) cos(θ(xm, t)), (3.6a)

vAy r(t) =
d

dt
(ysm(xm, t)) +

d

dt
(cos(θm(xm, t)))y

s
r(xm) + vc(t) sin(θ(xm, t)). (3.6b)

The correction velocity, vc(t), is found as the solution to the following optimization

problem:

minimize
dV (vc(t))

dt
(3.7)

subject to vc(t) ∈ R,

where V (vc(t)) is the volume of the swimmer that depends on the correction velocity

vc(t) (area in the current two-dimensional approximation). To solve the optimization

problem, I use the Newton-Raphson secant method at every time step iteration, with

the initial value of vc(t) = 0. At each time step, the Newton-Raphson secant procedure

converges in roughly 6–8 iterations to machine precision. I note that the iterations on

the system of Eqs. (3.6)–(3.7) are purely geometrical and are exceedingly cheaper in

comparison to the full fluid pressure-velocity iterations of the Navier-Stokes equations

that would have been performed without the volume-conservation scheme (Xu and

Y. T. Peet 2017; Xu and Y. Peet 2021). With the new developed correction procedure,

the volume of the swimmer is conserved, see Figure 6, and no additional fluid iterations

are required on the solver to yield a stable solution. This leads to at least three to
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five times of the computational speed-up in the current problem, and up to 10–15

potentially (Xu and Y. T. Peet 2017). The conservative approach will be used in all

the computations presented for a solitary swimmer.

Figure 6: Volume of a swimmer undergoing an undulatory body motion over one cycle
period with non-conservative and conservative deformation methods.

3.1.3 Self-propulsion

I model self-propulsion by considering the Newton’s second law of motion for the

undulating swimmer, while calculating the corresponding viscous and pressure forces

directly from the fully-resolved simulations of the fluid-body interactions. Newton’s

second law of motion for the self-propelling fish can be written as

m
dU(t)

dt
= F(t), (3.8)

where m is the mass of the fish, U(t) is its translational velocity, and F(t) is the sum

of the viscous and pressure forces acting on its body. The force vector F(t) consists of
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a streamwise, Fx(t), and lateral, Fy(t), components, defined as

Fx(t) =

∮
Γf

−(σ n) · i dΓ, (3.9)

Fy(t) =

∮
Γf

−(σ n) · j dΓ, (3.10)

where σ is the total Cauchy stress tensor, which includes viscous and pressure con-

tributions, Γf is the curvilinear boundary of the fish, and i, j are the unit vectors in

the streamwise and lateral directions, respectively. The streawise force Fx(t) consists

of the sum of the thrust and drag contributions, while the lateral force Fy(t) will

sometimes be referred to as the lift force, to conform to the standard definitions in

the airfoil literature (Anderson Jr 2010).

In the current formulation, I only consider the contribution of the streawise force,

Fx(t), i.e. thrust and drag, to the motion, and thereby the swimmer is confined to move

in the streamwise direction and does not travel in the lateral direction. I also neglect

propulsion effects due to moments. The same assumptions were made in (Borazjani

and Sotiropoulos 2010; Yu, Lu, and Huang 2021). The adopted motion mimics the

case of a swimmer which leverages surrounding fluid to maintain its straight heading

direction, and is beneficial for consideration of stability (Borazjani and Sotiropoulos

2010; Yu, Lu, and Huang 2021). Therefore, I assume

m
dU(t)

dt
= Fx(t), (3.11)

where U(t) is the fish forward velocity, and Fx(t) is the streamwise force defined in

Eq. (3.9).
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3.2 Numerical Method

3.2.1 Arbitrary Lagrangian-Eulerian formulation

In order to solve the moving fluid-structure interaction (FSI) problem, an arbi-

trary Lagrangian-Eulerian (ALE) formulation (Ho 1989; Deville et al. 2002) of the

incompressible Navier-Stokes equations is considered:

ρ

(
δu

δt
+ (u−w) · ∇u

)
+∇p = µ∆u, (3.12a)

∇ · u = 0, (3.12b)

where ρ, u = {ux, uy}, p, µ and w = {wx, wy} are the fluid density, velocity, pressure,

dynamic viscosity and the mesh velocity, respectively, while the derivative δ/δ t

represents the ALE derivative, please, refer to (Deville et al. 2002; Merrill and Peet

2019) for more details. Mesh velocity has to satisfy the kinematic boundary condition

w =


vΓm , on Γm,

0, on Γs,

(3.13)

where Γm is the moving boundary of the fluid domain, Γs is the stationary boundary,

and vΓm is the velocity of the moving boundary.

3.2.2 Spatial Discretization

The spectral element method (SEM) is used to solve Eqs. (3.12) by applying

a weighted residual technique that casts the governing equations into a weak, or

variational form (Maday and Patera 1989). The weak formulation of Eqs. (3.12)
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is given by: find u ∈ H1(Ω(t))2 and p ∈ L2(Ω(t)) such that ∀v ∈ H1
0(Ω(t))2 and

∀q ∈ L2(Ω(t)),

δ

δt

∫
Ω(t)

v · ρu dΩ +

∫
Ω(t)

v · ρ∇ · (uu− uw) dΩ =

∫
Ω(t)

(p∇ · v − µ∇v : ∇u) dΩ,

(3.14a)

−
∫

Ω(t)

q∇ · u dΩ = 0, (3.14b)

where ∇v : ∇u refers to a double-dot product between the two tensors, L2(Ω(t))

denotes the Hilbert space of square-integrable functions, H1(Ω(t))2 denotes the Sobolev

space of 2D vector functions which possess a square-integrable first derivative, while

H1
0(Ω(t))2 further constraints the functions to vanish on Dirichlet boundaries.

In a spectral element method, the computational domain Ω(t) is subdivided

into E non-overlapping rectilinear elements, or Ω(t) = ∪Ee=1{Ωe(t)}. Additionally,

each element Ωe(t) is mapped to the reference domain, Ω̂ = [−1, 1]2, such that

xe(δ) ∈ Ωe(t) → δ ∈ Ω̂. The trial functions (u, p) and the test functions (v, q) are

discretized on the reference domain using high-order polynomial expansions, which, in

2D, take the form

s(x, y) =
Nx∑
i=1

Ny∑
j=1

ŝijφi(x)φj(y). (3.15)

Here, φi and φj are the basis functions in the x and y coordinates with degree Nx

and Ny, respectively, and ŝij are the vector-valued basis coefficients. I specify the

Lagrange interpolating polynomials as basis functions, which satisfy the cardinality

property φi(ξk) = δik, φj(ξm) = δjm, with δik, δjm being the Kronecker delta functions,

and {ξk, ξm}, k = 1 . . . Nx, m = 1 . . . Ny, the interior collocation points. I set the

polynomial order Nx = Ny = N , with the discretization points as Gauss-Lobatto-

Legendre (GLL) points for the velocity, and Nx = Ny = N − 2, with the discretization
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points as Gauss-Lobatto (GL) points for the pressure, to arrive at the PN − PN−2

formulation known for its ability to suppress spurious pressure modes (Bernardi and

Maday 1988). The spectral element discretization ensures numerical stability and

minimizes dissipative and dispersive errors (Deville et al. 2002). For additional details,

including extension of Eq. (3.15) to curvilinear coordinates and handling a global

assembly across the elements, the reader is referred to Deville et al. 2002; Merrill and

Peet 2019; Fischer 1997.

3.2.3 Temporal Discretization

3.2.3.1 ALE Equations

Equations (3.14) are discretized in time using explicit Adams-Bashforth scheme

for nonlinear terms, and implicit backward-difference (BDF) scheme for viscous and

pressure terms, yielding the following discretization

1

δt

[(∫
Ω(tn)

v · ρu dΩ

)n
−
(∫

Ω(tn−1)

v · ρu dΩ

)n−1
]

+
n∑
j=1

aj

(∫
Ω(tn−j)

v · ρ∇ · (uu− uw) dΩ

)n−j
−
∫

Ω(tn)

(p∇ · vdΩ)n = −
(∫

Ω(tn)

µ∇v : ∇u

)
dΩ)n

(3.16)

where aj is the j-th coefficient of the nth-order Adams-Bashforth scheme (n = 3 is used

in the current setup), and δt denotes the time step. To ensure a divergence-free velocity

field, the standard pressure-velocity decoupling approach resulting from the operator

splitting is utilized (Deville et al. 2002; Quarteroni, Saleri, and Veneziani 2000). As

mentioned above, with a non-conservative solid deformation scheme, a nonlinear term

has to be discretized implicitly via an iterative approach, while iterations are not
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required when the volume of the moving solid body is conserved. The SEM ALE

algorithm was previously validated extensively on a variety of benchmark problems

involving moving and deforming grids in its explicit and implicit formulation (Merrill

and Peet 2019; Patel et al. 2019; Xu and Y. Peet 2021).

3.2.3.2 Mesh Velocity

To compute the mesh velocity, at the end of each time step tn, the fish kinematics

is first updated according to Eqs. (3.6). In solving for the correction velocity via

Eq. (3.7), a volume change is discretized as dV/dt ≈ (Vn − Vn−1)/δt.

In the current situation of only one swimmer, Γm = Γf , and the velocity of the

undulating fish surface, in accordance with Eq. (3.13), is set as the boundary condition

for the mesh velocity at the fluid-body interface as

vnΓm =


vnr onΓf : ys ≥ 0,

vnl onΓf : ys < 0,

(3.17)

where vnr ,v
n
l are velocities of the right and left boundaries of the swimmer, respectively,

computed at time step tn, and ys is a static configuration of the fish as in Figure 4. As

noted above, the other boundary conditions on the mesh velocity are set to zero at the

stationary surface Γs, which includes the inlet, the outlet, and the lateral boundaries

of the fluid domain.

To find the interior mesh velocity wn(x, y) while maintaining a smooth mesh

movement, a blending function, fblend(xs(x, y), ys(x, y)), is designed, based on a static

mesh configuration, to blend the mesh movement from the fish boundary Γf to the

rest of the domain. In order to do that, I first define the undamped interior mesh
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velocity, by extruding the fish surface velocity into the interior of the domain as

wn
Γ(x, y) =



0 for (x, y) : xs < 0,

vnr (x) for (x, y) : 0 ≤ xs ≤ 0.3, ys ≥ 0,

vnl (x) for (x, y) : 0 ≤ xs ≤ 0.3, ys < 0,

vnr (xt) for (x, y) : xs > 0.3,

(3.18)

where xt is the current axial position of the tail tip, and then smooth it with the help

of a blending function as

wn(x, y) = fblend (xs(x, y), ys(x, y)) wn
Γ(x, y). (3.19)

The blending function, fblend(xs, ys), takes the following form:

fblend(x
s, ys) =



−ys + 0.2, (xs, ys) ∈ X+

ys + 0.2, (xs, ys) ∈ X−

−(−ys+0.2)(xs−0.3)2

0.09
+ 1, (xs, ys) ∈ Y +

−(ys+0.2)(xs−0.3)2

0.09
+ 1, (xs, ys) ∈ Y −

1, (xs, ys) ∈ Z

0, otherwise,

(3.20)

where the regions X+, X−, Y +, Y −, Z are defined according to the following rules:

X+ = {ys ≤ 0.2, ys ≥ 0.1, xs ≥ 0, xs ≤ 0.3},

X− = {ys ≥ −0.2, ys ≥ −0.1, xs ≥ 0, xs ≤ 0.3},

Y + = {ys ≤ 0.2, ys ≥ 0.1, xs > 0.3, xs ≤ 0.6}, (3.21)

Y − = {ys ≥ −0.2, ys ≤ −0.1, xs > 0.3, xs ≤ 0.6},

Z = {ys ≥ ys(Γf ), |ys| < 0.1, xs > 0.3, xs < 0.6}.
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The blending function ensures that only the mesh in the vicinity of the undulating fish

deforms, while the rest of the mesh remains stationary. Once the mesh velocity wn is

calculated, the fluid domain geometry is updated implicitly as xn = xn−1 + wn δt.

3.2.3.3 Self Propulsion

The Newton’s second law of motion that is utilized for a fish self propulsion in

the current work, given by Eq. (3.11), is temporally discretized with the second-order

implicit Adams-Moulton scheme:

Un = Un−1 +
δt

2m
(F n

x + F n−1
x ), (3.22)

where F n
x = Fx(t

n) is the total propelling force acting on the fish in the x direction

at a time tn given by Eq. (3.9). Instead of physically moving the fish through the

domain, I model the swimmer’s propulsion by adjusting the fluid velocity at the inlet,

uninlet = {Un, 0}. To achieve an implicit update of the Eq. (3.22) that depends on

the force F n
x , which subsequently depends on the fluid velocity field, a fixed-point

iteration approach with Aitken relaxation is performed (Aitken 1927; Küttler and

Wall 2008). In the current application, the fixed-point method typically converges in

3–4 iterations to a set tolerance of 1× 10−4.

The need for an implicit update between the fluid-body interaction of the fish

motion stems from the previous FSI studies involving incompressible flow and solid

structures, which indicated that a simple sequentially partitioned coupling between

the fluid and the solid (which would be equivalent here to an explicit discretization

of Newton’s second law) can be unstable irrespective of the time step due to the

so-called “added-mass” effect (Causin, Gerbeau, and Nobile 2005; Förster, Wall, and

Ramm 2007). It was shown in Küttler and Wall 2008 that the use of an implicit
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predictor-corrector scheme based on fixed-point subiterations with Aitken relaxation

alleviates the added-mass effect and stabilizes a numerical solution to the FSI problem.

An adaption of this fixed-point iteration technique in a spectral-element method shows

high accuracy and fast convergence for classical FSI benchmarks (Xu and Y. T. Peet

2017; Xu and Y. Peet 2021), and I refer the reader to these studies for a complete

numerical description.

3.3 Simulation Setup

3.3.1 Physical Parameters

In the current simulations, the fluid and fish density are both taken to be 1× 103

kg/m3, which corresponds to a neutrally-buoyant swimmer. Dynamic viscosity of

the fluid, µ, is set to 1× 10−3 kg/(m · s). The mass of the fish m is specified as

0.8606 kg, which corresponds to the parameters of a soft robotic thunniform swimmer

prototype (Valdivia y Alvarado 2007).

3.3.2 Computational Grid

The computational domain is specified as a rectangle with dimensions 12L x 4L.

The fish leading edge is fixed a distance L away from the inlet and a distance 2L away

from the right and left lateral boundaries. Note that the leading edge (nose) of the

fish does not move in the current formulation, while the trailing edge (tip of the tail)

moves, see Eq. (3.2). A body fitted structured hexahederal mesh with Nel = 8887

total elements is constructed to discretize the domain, with the element refinement
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along the streamwise direction and the lateral direction close to the fish boundary

(See Figure 7a for an illustration of the spectral element mesh in the swimmer’s static

configuration). In the current study, I perform numerical simulations for two values

of the polynomial order N , N = 5 and N = 9, for the purposes of grid refinement,

and to establish a sensitivity of optimization results to the degree of polynomial

approximation in a high-order solver. The total gridpoint count based on the GLL

velocity points is 3.2 × 105 for N = 5 and 8.9 × 105 for N = 9. Figure 7b shows a

close-up of the numerical grid with the interior GLL points included for the polynomial

order N = 5. The inset demarcated by the red rectangle in Figure 7b further illustrates

the details of the grid for the two polynomial orders, N = 5 and N = 9, in Figure 8.

The static mesh shown in Figures 7, 8 undergoes a dynamic remeshing at every time

step to conform to the undulating fish geometry, according to the rules described in

Section 3.2.3.2.

3.3.3 Boundary Conditions

Fluid velocity at the fluid-body interface is set equal to the velocity of the moving

boundary. A velocity inlet, a pressure outlet, and symmetry boundary conditions

are prescribed at the inflow, outflow, and lateral boundaries, respectively. An inlet

velocity is obtained at each time step from the self propulsion calculation as described

in Section 3.2.3.3.
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3.3.4 Initial Conditions

A static configuration of the swimmer represented by Eq. (3.1) and depicted

in Figures 4, 7 does not actually correspond to any realizable fish position during

swimming. To begin the undulations, I first need to move the swimmer into its

starting, but deformed, position. The initial position of the swimmer midline is given

by Eq. (3.2) evaluated at t = 0, while the position of fish surface at t = 0 can be

reconstructed via Eqs. (3.3), (3.4) evaluated at t = 0. Once the fish is moved into its

starting position, the static mesh of Figure 7 is correspondingly deformed via applying

the blending function fint given by Eq. (3.20) to the mesh deformation δx instead of

the mesh velocity as in Eq. (3.19). The initial fluid velocity and the mesh velocity

at t = 0 are all set to zero. Once the domain geometry and the numerical mesh are

deformed, the simulations commence at t = 0 by applying a midline deformation curve

of Eq. (3.2) to the time t1 = δt and following all the algorithmic steps as described

above, while using the deformed start-up geometry as the initial configuration at

t = 0.

3.4 Optimization

3.4.1 Problem Formulation

The optimization problem is stated as

maximize f(z) (3.23)

subject to z ∈ Rn,

63



(a)

(b)

Figure 7: a) Spectral element mesh with refinement highlighted by black lines; only
element boundaries are shown; The region defined by the union of X+, X−, Y +, Y −
and Z is highlighted in blue; b) Numerical grid with GLL discretization points with
N=5. Red rectangle indicates an inset for zoom-in in Figure 8.

where f : Rn → R is the objective function, and z ∈ S ∩ C is a vector of design

parameters. The set S ⊆ Rn contains the n-dimensional search space:

l(i) ≤ zi ≤ u(i), 1 ≤ i ≤ n, (3.24)

64



(a) N = 5 (b) N = 9

Figure 8: An inset of the numerical grid corresponding to a red rectangle in Figure
7 with N -th order polynomial discretization (GLL points shown). a) N = 5 and b)
N = 9

where l(i) and u(i) represent the lower and the upper bounds, respectively, on a design

parameter in the ith dimension. The set C ⊆ Rn contains a set of m ≥ 0 constraints:

gr(z) ≤ 0, r = 1, ...,m,

where gr(z) is referred to as an inequality constraint on the design parameter vector,

z.

3.4.2 Design Parameters

The design parameters are taken to be the amplitude coefficients {c1, c2} of the

midline undulation function ym(x, t), see Eq. (3.2).
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3.4.3 Constraints

In order to allow for physically realizable swimming configurations, I limit the

midline movement, Eq. (3.2), by imposing the following constraint set, C, on the

design parameters {c1, c2},

C =


|c1 + c2| ≤ 0.1L,

| c
2
1

4c2
| ≤ 0.1L,

c2 ≤ 0.

(3.25)

The constraint set is derived from a physical intuition used in soft swimmer design

(Du et al. 2015; Valdivia y Alvarado 2007; Borazjani and Sotiropoulos 2010). The first

and second constraints ensure that the maximum tail and body motion amplitudes

do not exceed 0.1L. The design domain governed by the first two constraints is

symmetric about the origin {c1, c2} = {0, 0}, with the pairs {c1, c2} flipping sign

resulting in identical swimming motions that are left-to-right reflections of each other.

To avoid redundancy and to save 50% of the computational time, I introduce the third

constraint restricting the design domain to one half of the coordinate space.

3.4.4 Objective Function: Propulsive Efficiency

I define the objective function, f(z), as a propulsive swimming efficiency of an

undulatory swimmer. A propulsive efficiency can be defined as the ratio of a “useful”

energy gained over the total work done by the swimmer over a certain time period
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(Webb 1975; Tytell and Lauder 2004; Akanyeti et al. 2017), which can be stated as

η(c1, c2, t0) =
Wuseful

Wtotal

=∫ t0
0

(∮
Γf
−(σ n) · i dΓ

)
U(t)d t∫ t0

0

∮
Γf
−(σ n) · v(x, y, t) dΓd t

(3.26)

where t0 is an a priori specified variable indicating a time period, and v(x, y, t) is the

fish surface velocity due to undulation. I set t0 equal to 2T , where T = 2π/ω = 1 s is

the tail-beat period. By setting f(z) = η(c1, c2, t0) and fixing t0 I seek a kinematic

gait corresponding to a swimming mode capable of efficiently transferring undulation

work to propulsive energy over a brief time span, which is referred to as the start-up

propulsive efficiency. Since the objective function, Eq. (3.26), does not explicitly

depend on the design parameters, and instead its evaluation requires a solution of

the Navier-Stokes equation, this model is referred to as a “black-box” optimization

problem (See Chapter 2. I can define a maximum number of iterations, kmax, and a

tolerance bound, κopt, such that the iterations terminate if the computed tolerance

tol =
||fopt − fold-opt||

fold-opt
(3.27)

reaches the value

tol ≤ κopt, (3.28)

where fopt and fold-opt are the values of the objective function from the best and

the next best iterations. I specify the following termination parameters for the

optimization algorithm: kmax = 700,κopt = 1 × 10−4. The optimization problem is

solved with the constrained SBO algorithm introduced and bench-marked in Chapter

2.
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3.5 Results

Table 9: Results for the swimmer propulsive efficiency optimization with two SEM
polynomial orders.

Case Evaluations Efficiency (ηopt) Optimum {c1/L, c2/L} tol

N = 5 52 12.90% {0.2106,−0.1108} 5.9× 10−5

N = 9 57 12.04% {0.2104,−0.1106} 4.5× 10−5

(a) N = 5

(b) N = 9

Figure 9: Propulsive efficiency η versus the number of function evaluations for two
SEM polynomial orders: (a) N = 5 and (b) N = 9. The η value reported corresponds
to the best solution found over the considered number of iterations.
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3.5.1 Optimum Parameters

In this section, results of the optimization procedure as applied to an accelerated

self-propulsion of a thunniform swimmer that maximizes its propulsive efficiency are

presented for two polynomial orders, N = 5 and N = 9. Figure 9 documents the

evolution of the best identified value of the propulsive efficiency η as the function

evaluations progress, and Table 9 lists the final results of the optimization procedure,

including the total number of evaluations, the final value of the propulsive efficiency,

the optimum motion parameters {c1/L, c2/L}, and the actual error tolerance norm

tol from Eq. (3.27) at the end of optimization. In both cases the tolerance bound

κopt = 1× 10−4 is reached with less than 60 iterations. The N = 5 case results in a

slightly higher tolerance norm but a lower function evaluation count, and yields a

slightly higher value of an optimum propulsive efficiency ηopt ≈ 12.90% as compared

to N = 9 answer of ηopt ≈ 12.04%. While the efficiency values are slightly different,

both polynomial orders produce essentially identical solutions in terms of the optimum

mode of locomotion {c1/L, c2/L}, differing only in the fourth significant digit. The

computed optimum efficiency agrees well with the biological data for the propulsive

efficiency measured in the live fishes for the given tailbeat amplitude (Akanyeti et

al. 2017).

For comparison, I also perform a similar optimization study using a popular evolu-

tionary optimization approach (Kern and Koumoutsakos 2006; Tokić and Yue 2012;

Eloy 2013), utilizing COLINY-EA algorithm from the state-of-the-art DAKOTA opti-

mization framework (Adams et al. 2009), which, after kmax = 700 iterations reached a

tolerance tol =1.4× 10−3 and produced a mode with only 11.6% efficiency (Abouhus-

sein, Islam, and Peet 2021). This, again, confirms that the SBO optimization procedure
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might be a more efficient alternative to use with expensive function evaluations, at

least within the scope of the considered design problem.

3.5.2 Analysis of the Optimum Versus Sub-optimum Modes of Locomotion

In this section, I perform an analysis of the optimum as compared to sub-optimum

modes of locomotion, using N = 9 case as a reference.

3.5.2.1 Hydrodynamic Variables

Figure 10a shows a contour plot of the objective function, the propulsive efficiency

η, using Kriging interpolation between evaluated data points. Figure 10b documents

the final attainable swimming speed at the end of the considered period 2T , Umax =

U(t = 2T ). The quantities, whose ratio defines the propulsive efficiency in Eq. (3.26),

namely Wuseful and Wtotal, are plotted in Figures 10c and 10d. To draw a complete

picture, Figures 10e and 10f present the time-averaged streamwise and lateral forces,

F̄x, F̄y, acting on the swimmer, defined as

F̄x =
1

t0

∫ t0

0

Fx(t) d t, (3.29)

F̄y =
1

t0

∫ t0

0

Fy(t) d t, (3.30)

with the forces Fx(t), Fy(t) given by Eqs. (3.9), (3.10), respectively, and t0 = 2T .

At a glance, the contours of all the five hydrodynamic variables, apart from the

lift force, seem rather similar. Another interesting observation is that efficiency is

very low in the interior of the design domain, with the line c1 + c2 = 0 corresponding

to a near-zero efficiency. Indeed, as can be seen from Eq. (3.2), the line c1 + c2 = 0
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represents a zero tail amplitude motion, and thus corresponds to a zero theoretical

propulsive efficiency (Gazzola, Argentina, and Mahadevan 2014; Saadat et al. 2017;

Gibouin et al. 2018).

To better understand the relationships and the correlation properties between

different hydrodynamic variables associated with propulsive swimming, Figure 11

presents the correlation matrix of the six considered hydrodynamic variables, and

documents the respective Pearson correlation coefficient R. It can be seen that the

correlation between efficiency η and the useful (propulsive) work Wuseful (R = 0.98),

and, consequently, between efficiency η and the propulsive force F̄x (R = 0.97) are

the highest. It is interesting to note that, despite the fact that the total work Wtotal

enters the denominator of Eq. (3.26), the correlation between efficiency η and the

total work Wtotal is still positive (R = 0.71), mainly because the increased total work

leads to an increased useful work (correlation of R = 0.79) and an increased propulsive

force (R = 0.85). For the lateral force, I present the correlations with its absolute

value, since its sign (indicating whether the total lift acts to the right or to the left

with respect to the fish motion) does not matter in regard to efficiency. I note that

the correlation between η and |F̄y| is high (R = 0.98), mainly, because high lift is

associated with more energetic undulations, which also positively correlate with the

propulsive force and the useful work.

3.5.2.2 Relation of Efficiency to Kinematics

I further analyze the details of the optimum and sub-optimum swimming by
selecting three specific kinematic modes, named as the modes α, β and γ (Table 10),
and comparing their kinematic and hydrodynamic trends with the optimum mode.
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(a) η (b) Umax

(c) Wuseful (d) Wtotal

(e) F̄x (f) F̄y.

Figure 10: Hydrodynamic quantities: (a) η; (b) Umax; (c) Wuseful; (d) Wtotal; (e) F̄x;
(f) F̄y; evaluated for the entire design domain using Kriging interpolation between
the computed CFD data points with N = 9, shown as circles color-coded by the
corresponding values. The colored symbols in each figure represent the optimum
(square), α (triangle), β (diamond) and γ (star) modes selected for comparison in
Table 6. Red dotted line corresponds to c1 + c2 = 0.
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Figure 11: Correlation matrix of hydrodynamic quantities with the respective Pearson
correlation coefficient (R) in black inside the corresponding squares. Histograms of
each variable are found in the diagonal elements. Histograms are composed of 10
uniformly-distributed bins between the minimum and the maximum value for each
variable.

The kinematics of the four selected modes is shown in Figure 12, where the shape

of the swimmer’s midline is illustrated for each one-tenth of a period during one

undulation cycle T . It can be seen that the three more efficient modes, optimum, α

and β, all have comparably large tail amplitudes, while the least efficient mode, γ, out

of the four analyzed, has a very small tail amplitude motion. The first three modes,

however, apart from having similar tail amplitudes, exhibit other marked differences

in the body line kinematics, which, as will be seen below, effect their efficiency.

73



Table 10: Kinematic modes selected for comparison

Mode {c1/L, c2/L} η

opt {0.2104,−0.1106} 12.04%

α {0.0758,−0.1722} 7.99%

β {0.3534,−0.4461} 2.74%

γ {0.2046,−0.2372} 0.64%

(a) Optimum mode (b) Mode α

(c) Mode β (d) Mode γ

Figure 12: Swimmer midline deformation across one time cycle for four propulsive
modes: (a) Optimum; (b) α; (c) β; and (d) γ. Deformations of the midline in time
are encoded every one-tenth of the period in the different shades of blue from lightest
(t = 0) to darkest (t = T ).

Table 11 reports on the hydrodynamic quantities of the optimum and α, β, γ

modes with N = 9. In addition to the absolute quantities for each mode, Table
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11 also documents the relative quantities of the sub-optimum modes normalized

by the respective quantity of the optimum mode. In Table 11, A denotes the tail

amplitude of a corresponding kinematic mode, with the other hydrodynamic quantities

as defined previously. The results indicate that, indeed, a small tail amplitude ratio

(Aγ/Aopt ≈ 0.33) is associated with a reduced efficiency (ηγ/ηopt ≈ 0.05), consistent

with the findings in Triantafyllou, Triantafyllou, and Yue 2000. Regarding the relation

of efficiency to the amplitude, it was previously established that the thrust coefficient

scales with the amplitude squared, A2, for the flapping foil propulsion (Theodorsen

1935; Garrick 1937; Moored and Quinn 2019), and these arguments were extended to

derive the scaling laws for the fish locomotion (M. Lighthill 1969; Gazzola, Argentina,

and Mahadevan 2014; Saadat et al. 2017).

However, quadratic scaling with the tail amplitude can not explain the efficiency

of all the realizable modes. For example, if we look back at Table 11, we recognize

that the optimum, α and β modes all have a comparable tail amplitude, however,

their efficiency varies by as much as five times.

To illustrate this phenomenon, I consider the mode β, which has a tailbeat

amplitude of Aβ/Aopt ≈ 0.93, however only one fifth of efficiency of the optimum

mode (ηβ/ηopt ≈ 0.23). To understand where the efficiency losses might come from, I

look at the total work and the useful work ratios of the mode β provided in Table 11.

We see that the efficiency losses are not fully attributed to a larger amount of the

total work (Wtotalβr = 1.50), but are instead mostly effected by a lower propulsive

work (Wusefulβr = 0.34). The lower propulsive work in the sub-optimum β-swimmer

corresponds to a lower propulsive force (F̄xβr = 0.58) and a lower maximum speed

(Umaxβr = 0.62). This is consistent with the results of the correlation analysis in

Figure 11.
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3.5.2.3 New Scaling Law for Optimum and Sub-optimum Propulsion

As seen from the previous section, while scaling of the thrust with the tailbeat

square amplitude A2 might explain the optimum propulsion between the species, it is

not necessarily applicable to a sub-optimum motion, as the efficiency results might

be very different for the same tailbeat amplitude. To understand this phenomenon, I

look back at the shape of the midline deformation of the swimmer over the undulation

cycle presented in Figure 12. It can be seen that, between the optimum, α and β

modes, while the tail amplitudes are similar, there are marked differences in the

body line kinematics. I note, for example, an existence of a “fixed point” in the

midline deformation curves of sub-optimum modes, where the amplitude of motion is

zero. This fixed point essentially separates the motion of the tail from the motion

of the body. Since in thunniform swimming, most of the propulsion comes from the

tail (Donley and Dickson 2000; Lauder and Tytell 2005; Fish et al. 2021), I argue

that the existence of this fixed point essentially reduces the effective propulsive length

of the fish from its full length L to a “flapping length” Lf , defined as the distance

between the fixed point and the tip of the tail. Conferring with the equation of the

midline deformation, Eq. (3.2), I identify the axial coordinate where the deformation

is zero (fixed point) as

xf = −c1

c2

L, (3.31)

and therefore I can define the flapping length as

Lf = (1 +
c1

c2

)L. (3.32)

If the fixed point defined by Eq. (3.31) lies outside of the fish body (such as, in the

optimum mode), I constraint the flapping length to be equal to the fish length Lf = L.
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Following the scaling arguments presented by Gazzola, Argentina, and Mahadevan

2014, I define the mass of the fluid set in motion by the fish tail propulsion as ρL2
f

per unit depth, acceleration of the fluid as Aω2, and the local angle between the tail

and the direction of motion as A/Lf . Thus, I arrive at the thrust force scaling as

T ∼ ρω2LfA
2. Since drag is independent of the tail amplitude (Gazzola, Argentina,

and Mahadevan 2014; Gibouin et al. 2018), propulsion velocity U is proportional to

the net thrust, and the total work in the denominator of Eq. (3.26) roughly scales

with the hydrodynamic forces, I can conclude that the efficiency η should obey the

scaling η ∼ Cη LfA
2, where Cη is some dimensional constant of proportionality.

Indeed, using a standard propulsion law η ∼ LA2, I obtain a relative efficiency for

the mode α with respect to the optimum mode as ηα 1 = 0.94 instead of the observed

ηα = 0.66. However, scaling with η ∼ Lf A
2 results in ηα 2 = 0.56, which is much

closer to the observed efficiency. Likewise, for the mode β, we would have ηβ 1 = 0.86

from the original scaling law, and ηβ 2 = 0.18 with the modified scaling, which is much

closer to the actual ηβ = 0.23.

Plotting a correlation of efficiency with LA2 (unmodified propulsion law) in

Figure 13a shows that a correlation with LA2 is a reasonable rule of thumb (R = 0.91),

but it still has a lot of outliers, such as the modes α and β discussed here. However,

correlating efficiency with LfA2 in Figure 13b provides a perfect agreement with the

correlation coefficient of R = 0.99.

This result, first, shows that simple fluid mechanics scaling laws, with a slight

modification, are applicable to a wide range of realizable (prescribed) undulatory

motions of the aquatic swimmer in the viscous flow, optimum as well as sub-optimum.

And, second, it provides the guidance for the optimum design of the undulatory

motions of a swimmer: while maximizing the tailbeat amplitude under allowable
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constraints, it should also maximimze the propulsive area and avoid the fixed points

in the body deformation curve.

η Wuseful(mJ) Wtotal(mJ) Umax(m/s) F̄x(N) F̄y(N) A(m)

opt 12.04% 4.411 36.64 0.101 0.044 0.080 0.030

α 7.99% 3.132 39.20 0.085 0.037 −0.054 0.029

β 2.74% 1.506 54.99 0.063 0.026 −0.024 0.028

γ 0.64% 0.040 6.25 0.010 0.004 −0.004 0.010

(a)

ηr Wusefulr Wtotalr Umaxr F̄xr F̄yr Ar

α 0.66 0.71 1.07 0.84 0.84 −0.67 0.97

β 0.23 0.34 1.50 0.62 0.58 −0.30 0.93

γ 0.05 0.01 0.17 0.10 0.10 −0.05 0.33

(b)

Table 11: Hydrodynamic quantities of selected kinematic modes with N = 9: a)
Absolute quantities, and b) Relative quantities of the sub-optimum modes normalized
by the respective quantity of the optimum mode.

(a) Correlation versus LA2 (b) Correlation versus LfA2

Figure 13: Correlation of efficiency η versus a) LA2 and b) LfA2. Pearson correlation
coefficient (R) in shown in blue inside each plot.
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3.5.2.4 Vortex Wakes

I now analyze the vortex wakes produced by the four selected kinematic modes, to

understand the relationships between the swimming efficiency and vorticity dynamics.

The vortex wakes produced by the four modes are shown in Figure 14. I present two

snapshots, at t = T = 1 s and t = 2T = 2 s, respectively, to show the dynamics of the

pair of positive and negative vortices resulting from each stroke. For the optimum

mode, after 1 s, the first pair of primary positive (P-1-P) and negative (P-1-N) vortices

behind the optimum swimmer is advected at an angle, which is expected since the

swimmer generates its first stroke from an equilibrium position. After 2 s, the P-1-P

and P-1-N vortices are of comparable magnitude and they behave similarly to a

pair of point vortices, which propel each other in the negative streamwise direction,

thus propelling the fish in the positive streamwise direction. The second primary

vortex pair (P-2-P and P-2-N) begins to shed at t = 2 s in a fashion similar to the

reverse Karman street wake associated with high propulsive efficiency (Triantafyllou,

Triantafyllou, and Grosenbaugh 1993; Triantafyllou, Triantafyllou, and Yue 2000;

Van Buren, Floryan, and Smits 2018).

Out of the three additional modes considered, only mode α, second in rank with

respect to efficiency after the optimum mode, results in a similar reverse Karman

street. However, a smaller secondary negative vortex (S-1-N) is observed after the

first stroke of the α, β and γ swimmers. Effect of the S-1-N vortex varies between

the modes. For the α mode, S-1-N is first attached to P-1-P at 1 s but is observed

to be isolated at 2 s. However for the β mode, the secondary vortex effects are

more prominent, and in fact disrupt the wake by separating and redirecting of the

primary vortices (note, for example, two instances of P-1-N and P-2-P vortices at
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the end of the second cycle, which got split up and steered away from each other

during the undulation). Despite having a sufficient tail amplitude (Aβr = 0.93), mode

β fails to produce a reverse Karman street wake and consequently results in a low

propulsive efficiency. This might be associated with a lower effective flapping length,

as discussed above. Mode γ leaves the wake with minute vortices due to small tail

oscillations that lack a propulsive power. These small oscillations result in the lowest

propulsive efficiency between the four modes (ηγr = 0.05). Since the secondary vortex

formation is observed in all the considered modes except for the optimum one, I can

conclude that secondary vortices act to disrupt the formation of an efficient reverse

Karman vortex street and thus interfere negatively with the efficient propulsion. A

negative effect on propulsion can also be attributed to a formation of the head vortices,

especially noticeable in the two least efficient, β and γ, modes. While head vortices

do not interfere with the wake, they presumably effect the hydrodynamic forces and

the energy expenditure of the swimmer. Finally, it is worth noting that secondary tail

vortex formation is only observed during the first cycle for all the modes, and might

be associated with the onset of acceleration, while the shedding of the head vortices is

noticed for both the first and the second cycles.

3.5.2.5 Strouhal Numbers

It has been previously observed that the stable existence of a wake conducive

to an efficient propulsion is largely dependent on the non-dimensional oscillating

frequency of the swimmer, or the Strouhal number, St (Triantafyllou, Triantafyllou,

and Grosenbaugh 1993; Triantafyllou, Triantafyllou, and Yue 2000). If I consider the
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Figure 14: Vorticity (red – positive, blue – negative) in the wake of the fish for the
four modes with N = 9. Maximum and minimum values of vorticity are 100 s−1 and
–100 s−1, respectively. Top row is at t = T = 1 s and bottom row is at t = 2, T = 2 s
for each mode. Vortices are named with a ’A-B-C’ convention, where A is either a ’P’
primary or ’S’ secondary vortex, B is an indication that a vortex appears after either
the ’1’ first or the ’2’ second time cycle and ’C’ is either a ’P’ positive or ’N’ negative
vortex.

Strouhal number of each of the four modes, defined as:

St = fA/Umax (3.33)

where A is the tail amplitude and Umax is the velocity at the end of the 2T period, I

arrive at:

1. Stopt = 1 ∗ 0.03/0.10 = 0.30.

2. Stα = 1 ∗ 0.029/0.085 = 0.34.

3. Stβ = 1 ∗ 0.028/0.063 = 0.44.

4. Stγ = 1 ∗ 0.010/0.010 = 1.
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It is worth noting that the Strouhal numbers for the first three modes (optimum, α and

β), which all exhibit a high tail amplitude, fall well within the St range (0.25− 0.45)

associated with optimal propulsion in a wide range of experimental observations of

various fish (Triantafyllou, Triantafyllou, and Grosenbaugh 1993; Akanyeti et al. 2017),

despite having very different actual efficiencies within the three modes. It is only the

fourth, the least efficient γ mode, with very small tail amplitude, which yields a St

number clearly out of range for the optimal propulsion, due to a very low attained

velocity. It might be that the optimal Strouhal scaling is only applicable to the

undulation motions that follow the rules of the optimal propulsion (like the optimum

mode here), and the realistic fishes typically swim in the near-optimal regime.

3.5.3 Comparison Between N = 5 and N = 9 Cases

A lower polynomial order N = 5 case is compared here to N = 9 case to establish

grid convergence and to analyze the sensitivity of the optimization results to a

polynomial degree in a high-order method.

3.5.3.1 Hydrodynamic Quantities

The correlations of the hydrodynamic quantities between N = 5 and N = 9

cases are presented in Figure 15. To compute the correlations, I interpolate the data

obtained from the CFD evaluation points of N = 9 case to the evaluation points of

N = 5 case yielded by the optimization procedure.

I observe an excellent agreement between the hydrodynamic data of N = 5 and

N = 9 cases, with the correlation coefficient of R ≥ 0.99. Among all presented
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quantities, lift exhibits the most scatter, although it still yields a correlation coefficient

of R = 0.99. The scatter is primarily in the region close to zero, where the actual

value of the lift is so low, that it is most prone to numerical uncertainties.

Table 13 includes the hydrodynamic quantities for the optimum and the three

selected sub-optimum modes, see Table 10, for N = 5 case, which can be compared

with the corresponding values for N = 9 case presented in Table 11. A most notable

difference is a slight upward shift of the efficiency values computed for all the four

modes with N = 5, accompanied by (and perhaps attributed to) a slight downward

shift of the total work. The other quantities, including propulsive and lift forces,

useful work, and maximum velocity, do not show consistent deviations. The fact

that the viscous forces are predicted well by the lower polynomial order solution but

the total work deviates slightly might be an indication that it is the resolution of

the interaction between the viscous forces and the local deformations of the moving

surface, which defines the total work, that benefits the most from a higher-order

approximation. Note that, since the resulting shift in efficiency is monotonic, the

lower-order N = 5 approximation predicts the correct relative efficiency rankings

between the modes, illustrates a perfect correlation with the high-order N = 9 case for

all the hydrodynamic quantities considered, and identifies the same optimum mode,

as seen from Table 9.

Table 12: Hydrodynamic quantities of chosen low order modes

Mode ηr Wusefulr Wtotalr Umaxr Fxr Lfr

α 0.24 0.33 1.38 0.59 0.57 -0.11
β 0.06 0.01 0.17 0.11 0.10 0.00
γ 0.66 0.67 1.05 0.83 0.83 -0.62
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(a) (b)

(c) (d)

(e) (f)

Figure 15: Correlation between hydrodynamic quantities obtained with N = 9 (y-
axis) and N = 5 (x-axis) spectral element method. Pearson correlation coefficient is
highlighted in blue on each plot.

The deviance from the reported efficiency values is attributed to marginal deviations

in the propulsive work, Wuseful, which increases by ≈ 2% and total work, Wtotal, which
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decreases by ≈ 5%. However, the deviations are mode dependent (for example mode

α is shown to have a decrease of ≈ 3% in its propulsive work), and the largest of

which remains under ≈ 15%. The notable exception is the lift approximation of mode

α. Even though large deviations are noted in this particular case, lift has not been

observed to correlate with propulsive performance as the lift force, in the setup of this

experiment, is generated in a direction that is perpendicular to the swimming direction.

The persistence of the overall trends as well as the robustness of the optimum mode,

between the different fidelity levels, across the allowable range of kinematic modes

suggests that lower order approximations fail to capture small scale events which

ultimately do not effect the choice of efficient gait parameters.

η Wuseful(mJ) Wtotal(mJ) Umax(m/s) F̄x(N) F̄y(N)

opt 12.90% 4.492 34.81 0.102 0.044 0.082

α 8.49% 3.091 36.42 0.085 0.037 −0.055

β 3.04% 1.462 48.80 0.060 0.025 −0.010

γ 0.75% 0.044 5.90 0.011 0.005 −0.004

Table 13: Hydrodynamic quantities of selected kinematic modes with N = 5.

3.5.3.2 Vortex Wakes

Figure 16 shows the wakes produced by the optimum mode and the mode α at

t = 1 s and t = 2 s computed with N = 5 and N = 9 polynomial orders. For the

optimum mode, at t = 1 s, the wakes behind each swimmer appear nearly identical.

Towards the head, however, there are less small vortices resolved using a lower order

approximation. At t = 2 s, a similar pattern is observed where the smaller vortices

are missing at N = 5. The reverse von Karman street wake appears after the second
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stroke both for N = 5 and N = 9 cases, and the first pair of vortices are able to

propel each other due to closely matched circulation strengths in both cases. A better

capture of small vortices in a higher-order approximation case is in line with the

prediction of a higher total work of the optimum swimmer and, consequently, a lower

maximum efficiency by N = 9 solution. Since these small vortices do not interfere

with the wake, an almost identical kinematic gait mode is recovered as the optimum

with both polynomial resolutions.

Figure 16: Vorticity (red – positive, blue – negative) in the wake of the fish for the
optimum and α modes with N = 5 (left) and N = 9 (right). Maximum and minimum
values of vorticity are 100 s−1 and –100 s−1, respectively. The vortices follow the
naming convention of Figure 14.

The wake of the α mode similarly remains unchanged with one notable exception:

the negative secondary vortex (S-1-N) is less visible in N = 5 case at both time

instances. Before t = 1 s, the smaller negative vortex (S-1-N) generates and stays

attached to the primary positive vortex (P-1-P) as the swimmer moves from its static

position to an upward stroke position (not shown here). As the swimmer completes

its stroke, at t = 1 s, the secondary negative vortex (S-1-N) appears to have been
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stretched around the positive vortex (P-1-P) and is barely visible. At t = 2 s, the first

pair of vortices (P-1-N and P-1-P) float in the negative streamwise direction while the

second pair (P-2-N and P-2-P) initiate a reverse von Karman street wake, as in the

N = 9 case. Since the appearance of S-1-N vortex in α, β and γ modes was previously

associated with a lower efficiency, its under-resolution in N = 5 case might, again,

explain the increased efficiency trends with a lower polynomial order.

In the β mode, shown in Figure 17, while a weak S-1-N vortex can be seen at

t = 1 s with N = 5, the overall vorticity pattern is notably simpler as compared to

the N = 9 case, where a complicated pattern of vortex breakdown and merging was

observed. While the S-1-N vortex is primarily dissipated by 2 s, its original formation

still caused the primary vortex (P-1-P) to separate from the wake. Therefore, the

β mode was similarly unable to produce an efficient reverse von Karman wake with

N = 5. As before, a somewhat weaker S-1-N vortex and an under-resolution of a

vortex breakdown with a low polynomial order resulted in a slightly higher predicted

efficiency in N = 5 case. The same trend persists for the γ mode, where, while the

overall wake structure is similar between N = 5 and N = 9 cases, the N = 5 case

resolves significantly less details regarding the secondary vorticity both around the

head and the tail of the fish, resulting in a slightly higher predicted efficiency.
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Figure 17: Vorticity (red – positive, blue – negative) in the wake of the fish for the β
and γ modes with N = 5 (left) and N = 9 (right). Maximum and minimum values
of vorticity are 100 s−1 and –100 s−1, respectively. The vortices follow the naming
convention of Figure 14.
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Chapter 4

MODELING AND ANALYSIS OF OPTIMAL PHALANX SCHOOLS OF

BIO-INSPIRED THUNNIFORM SWIMMERS

This chapter extends the physical and numerical modeling details of a solitary

thunniform swimmer during start-up to accelerating schools of thunniform swimmers in

phalanx-shaped schools during start-up. Multiple optimization studies are conducted

to investigate the optimal kinematic gait, phase lag and separation distance within

phalanx schools as the swimmers accelerate from rest. Additionally, an optimization

study involving a solitary swimmer, with the same numerical set-up as with the

phalanx schools, is presented for comparison. Section 1 includes the modeling details

of different phalanx schools investigated. Section 2 describes how the optimization

cases are set up. The results are discussed in section 3.

4.1 Methods

4.1.1 Physical Model

The swimmer model are similar to those of a single thunniform swimmer discussed

in Section 3.1. However, for simulations of phalanx schools, a second swimmer,

swimming with a phase lag, is introduced with the following midline kinematics:

ym(x, t) =

[
c0 + c1

x

L
+ c2

(x
L

)2
]

sin(kx− ωt+ φ), (4.1)

where φ represents phase lag in radians. Self-propulsion is modeled by considering

Newton’s second law of motion for undulating swimmers, while calculating the corre-
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sponding viscous and pressure forces directly from the fully-resolved simulations of

the fluid-body interactions:

m
dU(t)

dt
= F ′x(t), (4.2)

where m is the mass of the fish, U(t) is the fish forward velocity and F ′x(t) is the

streamwise self-propelling force acting on the swimmers’ body. For a solitary swimmer,

the streamwise self-propelling force, Fxs(t), can be described as follows:

Fxs(t) =

∮
Γs

−(σ n) · i dΓ, (4.3)

where σ is the total Cauchy stress tensor, which includes viscous and pressure con-

tributions, Γs is the curvilinear boundary of the solitary swimmer, and i is the unit

vector in the streamwise direction. For a phalanx school, the average streamwise

self-propelling force, Fxp(t) is defined as follows:

Fxp(t) =
1

2

(∮
Γp1

−(σ n) · i dΓ +

∮
Γp2

−(σ n) · i dΓ

)
, (4.4)

where Γp1 is the curvilinear boundary of one phalanx swimmer with no phase lag (as

defined in Eq. 3.2) and Γp2 is the curvilinear boundary of a second phalanx swimmer

with phase lag (as defined in Eq. 4.1). F ′x(t) can then be formally defined as:

F ′x(t) =


Fxs(t), for a solitary swimmer

Fxp(t), otherwise
(4.5)

In other words, the self propulsion speed, U(t), is proportional to the average stream-

wise self-propelling force, Fxp(t), in a phalanx school. Only the contribution of the

streamwise force, F ′x(t), i.e. thrust and drag, is considered in regards to motion, and

thereby the swimmer(s) are confined to move in the streamwise direction and do not

travel in the lateral streamwise. Similar assumptions were made in previous studies

as they can be beneficial for stability (Borazjani and Sotiropoulos 2010; Yu, Lu, and

Huang 2021).
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4.1.2 Numerical Model

The numerical modeling in the current study follows the method previously

outlined in Section 3.2. Fluid-body interactions of the modeled swimmer are solved by

considering the Arbitrary Lagrangian-Eulerian (ALE) formulation of the incompressible

Navier Stokes (NS) Equation on a moving mesh (Ho 1989; Deville et al. 2002):

ρ

(
δu

δt
+ (u−w) · ∇u

)
+∇p = µ∆u, (4.6a)

∇ · u = 0, (4.6b)

where ρ, u = {ux, uy}, p, µ and w = {wx, wy} are the fluid density, velocity, pressure,

dynamic viscosity and the mesh velocity, respectively, while the derivative δ/δ t

represents the ALE derivative. A higher order spectral element method (Maday and

Patera 1989; Deville et al. 2002) is used to solve the NS equations and further details

on the temporal and spatial discretization are found in Section 3.2. Additionally, a

predictor-corrector scheme is used to solve an implicit backwards Euler discretization

of the self propulsion equation (Eq. 4.2):

Un = Un−1 +
δt

m
F ′xn , (4.7)

where δt is the time step and F ′xn = F ′x(t
n) is the total propelling force acting on the

swimmer(s) in the x direction at a time tn. The fluid and fish density are both taken

to be 1× 103 kg/m3, which corresponds to a neutrally-buoyant swimmer. Dynamic

viscosity of the fluid, µ, is set to 1× 10−3 kg/(m · s). The mass of a single swimmer

m is specified as 0.8606 kg, which corresponds to the parameters of a soft robotic

thunniform swimmer prototype (Valdivia y Alvarado 2007).

The computational domain is specified as a rectangle with dimensions 9.4L× 16L

for the solitary swimmer simulations and 9.4L×2SD for the phalanx school simulations
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with SD being the separation distance between swimmers in a phalanx school. For

solitary swimmer simulations, the fish leading edge is fixed a distance L away from the

inlet and a distance 8L away from the right and left lateral boundaries. For phalanx

school simulations, one swimmer is placed at 0.5SD away from the right boundary and

the second swimmer is placed at 0.5SD away from left boundary, while both swimmers

are fixed at a distance of L away from the inlet. I set the Gauss-Lobatto-Legendre

(GLL) integration order (Deville et al. 2002) as Nx = Ny = N = 6. Fluid velocity at

the fluid-body interface is set equal to the velocity of the moving boundary. A fluid

velocity is prescribed at the inlet where the inlet velocity at each time step is set to Un

(Eq. 4.7). A pressure outflow boundary is used at the outlet. Symmetry conditions

are used at the lateral boundaries for a solitary swimmer while periodic boundaries

are used at the lateral boundaries in the phalanx schools to simulate an infinite array

of swimmers. The initial conditions are similar to those discussed in Section 3.3.

4.2 Optimization Cases Set-up

The general optimization problem is stated as

maximize f(z) (4.8)

subject to z ∈ Rn,

where f : Rn → R is the objective function, and z ∈ S ∩ C is a vector of design

parameters. The set S ⊆ Rn contains the n-dimensional search space and the set

C ⊆ Rn contains a set of m ≥ 0 inequality constraints, as presented in Section 3.4.

For a solitary swimmer, the traveling wave amplitude coefficients, that is {c0, c1, c2},

along with undulation frequency f , make up the design parameters, zs = {c0, c1, c2, f}.
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The set, Ss in this case is given by:

− 0.0500L ≤ c0 ≤ 0.0500L,

− 0.1000L ≤ c1 ≤ 0.8333L,

− 0.7333L ≤ c2 ≤ 0L,

0 ≤ f ≤ 3.

(4.9)

In order to allow for only physically realizable modes as deduced from biological data,

the following constraint set, Cs, is imposed (Du et al. 2015; Valdivia y Alvarado 2007;

Borazjani and Sotiropoulos 2010):

g1(x) = c0 + c1 + c2 − 0.1L ≤ 0,

g2(x) = −c0 − c1 − c2 − 0.1L ≤ 0,

g3(x) = c0 −
c2

1

4c2

− 0.1L ≤ 0,

g4(x) = −c0 +
c2

1

4c2

− 0.1L ≤ 0.

(4.10)

The propulsive efficiency of a solitary swimmer, ηs, is taken to be the objective

function, fs(zs). The propulsive efficiency is defined as the ratio of a “useful” energy

gained over the total work done by the swimmer over a certain time period (Webb

1975; Tytell and Lauder 2004; Akanyeti et al. 2017), which can be stated as

ηs(c0, c1, c2, f) =
Wusefuls

Wtotals
=∫ 2T

0

(∮
Γfs
−(σ n) · i dΓ

)
U(t)d t∫ 2T

0

∮
Γfs
−(σ n) · v(x, y, t) dΓd t

(4.11)

where T = 1s and v(x, y, t) is the swimmer surface velocity due to undulation.

For phalanx schools, the design parameters include an extra dimension to account

for phase lag, zp = {c0, c1, c2, f, φ}. Note that all swimmers in a phalanx school have

the same amplitude coefficients and undulation frequency, which allows for definitions
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Table 14: Optimization Results

Case Evaluations Optimal Parameter Set Efficiency Tolerance

SD = 1L 51 {0.0001L, 0.2096L,−0.1107L, 3, 1.037π} 21.49% 4.8× 10−4

SD = 2L 42 {0.0L, 0.2105L,−0.1107L, 3, 0.9995π} 22.05% 9.9× 10−4

SD = 3L 39 {−0.0001L, 0.2104L,−0.1108L, 2.9998, 0.9613π} 21.83% 2.4× 10−4

solitary 34 {0.0L, 0.2105L,−0.1107L, 3, 0.9995π} 21.73% 4.0× 10−4

of averaged quantities within a school, such as Equation 4.4. Set Sp, in a school, is

given by:

− 0.0500L ≤ c0 ≤ 0.0500L,

− 0.1000L ≤ c1 ≤ 0.8333L,

− 0.7333L ≤ c2 ≤ 0L,

0 ≤ f ≤ 3,

0 ≤ φ ≤ 2π,

(4.12)

Set Cp in this case is equal to Cs (Eq. 4.10). The objective function, fp(zp) is taken

to be the average propulsive efficiency of a phalanx school:

ηp(c0, c1, c2, f, φ) =
Wusefulp

Wtotalp
=∫ 2T

0

(∮
Γp1
−(σ n) · i dΓ

)
U(t)d t+

∫ 2T

0

(∮
Γp2
−(σ n) · i dΓ

)
U(t)d t∫ 2T

0

∮
Γp1
−(σ n) · v(x, y, t) dΓd t+

∫ 2T

0

∮
Γp2
−(σ n) · v(x, y, t) dΓd t

(4.13)

A total of four optimization cases are considered to represent three phalanx schools

(z = zp, f(z) = fp(zp), S = Sp, C = Cp) and a solitary swimmer (z = zs, f(z) =

fs(zs), S = Ss, C = Cs). The phalanx school cases only differ in respect to SD, which

is varied between 1L, 2L and 3L, respectively. The optimization problem is solved

with the constrained SBO algorithm introduced and bench-marked in Chapter 2. 30

data points are chosen to construct the initial surrogate for all cases. Additionally,
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the maximum iterations kmax and the tolerance termination criteria, κopt are set to

1000 and 1× 10−3, respectively.

(a) solitary (b) SD = 1L

(c) SD = 2L (d) SD = 3L

Figure 18: Swimmer midline deformation across one period for four optimum propulsive
modes: (a) solitary (b) SD = 1L; (c) SD = 2L; and (d) SD = 3L. Deformations of the
midline in time are encoded every one-tenth of the period in the different shades of
blue from lightest (t = 0) to darkest (t = 1/3).

95



4.3 Results

4.3.1 Optimization Results

All optimization case results can be found in Table 14. All cases terminated

within tolerance with varying total evaluation counts with ranged from 34 to 51

evaluations, with the first 30 coming from the initial sampling scheme and 4-21

optimization iterations. The first three parameters related to midline deformations,

namely {c0, c1, c2}, are found to be closely similar to that of the optimum solitary

swimmer. In other words, all three fish pair cases report similar optimum kinematics

to that of a solitary swimmer (Figure 18). These kinematics show no noticeable head

motion along with growing body undulations to reach a tail amplitude of roughly

0.1L. The 0.1L is the maximum allowable tail amplitude according to the present

constraints (Eq. 4.10). Similarly the optimum undulation frequency remains close to

the upper bound of 3 Hz for the three schools. The optimum phase lag parameter,

φ, is shown to be close to π, which represents an antiphase lag between swimmers in

an infinite array of a phalanx fish school. The vorticity field created by the solitary

and SD = 1L optimum swimming modes is shown after 1T and 2T in Figure 19. The

wakes behind optimum swimmers are quite similar to the reverse von Karman street

typically associated with high propulsive swimming efficiency in real fish (Triantafyllou,

Triantafyllou, and Yue 2000), with no significant interactions noted between the wakes

of swimmers in the phalanx school.

The reported optimum efficiency is slightly different for each fish school, where

the highest reported efficiency, η∗2L = 22.05%, is found at a SD of 2L. The dense

school (SD = 1L) and the sparse school (SD = 3L) report lower optimum efficiencies

96



(a) solitary: 1T (b) solitary: 2T

(c) SD = 1L: 1T (d) SD = 1L: 2T

Figure 19: Vorticity (color bar shown in solitary: 1T subfigure) in the wake of the
swimmers for the optimum mode in solitary swimming (top row) and the SD = 1L
phalanx school (bottom row) after 1T (left) and 2T (right), respectively.

of η∗1L = 21.49% and η∗3L = 21.83%, respectively. In contrast to a solitary swimmer,

I observe that phalanx fish schools with SD = 2L (η
∗
2L−η

∗
s

η∗s
≈ 1.5%) and SD = 3L

(η
∗
3L−η

∗
s

η∗s
≈ 0.5%) are slightly more efficient, while the SD = 1L school (η

∗
1L−η

∗
s

η∗s
≈ −1.1%)

is slightly less efficient.

3-D stem plots of optimization cases is shown in Figure 20. 3-D space is used to

represent each data point according to it’s respective parameter value and is colored

by it’s respective propulsive efficiency value. Consequently, multiple stem plots are

presented for each case to account for all four and five dimensions for solitary and

school swimming, respectively. For the phalanx school cases, data points with the

highest efficiencies are located within one region of the 3-D space in each stem plot.

This optimal efficiency region is characterized by a small head motion (c0 ≈ 0), a

high frequency (f ≈ 3 Hz) and a phase lag, φ = π, commonly referred to as antiphase
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swimming. In other words, efficient swimmers in all three phalanx schools rarely

deviated from kinematics exhibited by their respective optimum mode.

I define the maximum attainable swimming speed at the end of the considered

period 2T as Umax = U(t = 2T ). Additionally, I define the time-averaged streamwise

F̄ ′x acting on the swimmer:

F̄ ′x =
1

t0

∫ t0

0

F ′x(t) d t (4.14)

with t0 = 2T . I formally define η, Wuseful and Wtotal as:

η =


ηs, solitary

ηp, school
, Wuseful =


Wusefuls , solitary

Wusefulp , school
, Wtotal =


Wtotals , solitary

Wtotalp , school
.

(4.15)

where ‘solitary’ and ‘school’ refer to quantities relevant to solitary and phalanx school

swimming, respectively. Table 15 includes hydrodynamic quantities such as Wuseful,

Wtotal, F̄ ′x and Umax for the four optimum swimming modes.
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(a) s: c0 − c1 − c2 (b) s: c1 − c2 − f

(c) SD = 1L: c0 − c1 − c2 (d) SD = 1L: c1 − c2 − f (e) SD = 1L: c1 − c2 − φ

(f) SD = 2L: c0 − c1 − c2 (g) SD = 2L: c1 − c2 − f (h) SD = 2L: c1 − c2 − φ

(i) SD = 3L: c0 − c1 − c2 (j) SD = 3L: c1 − c2 − f (k) SD = 3L: c1 − c2 − φ

Figure 20: 3-D stem plots of the four dimensions for a solitary swimmer (first row)
and five dimensions for phalanx schools with SD = 1L (second row), SD = 2L (third
row) and SD = 3L (fourth row).
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4.4 Discussion

4.4.1 Effects of Body Kinematics on the Propulsive Efficiency of a Solitary Swimmer

The optimum undulation of a solitary thunniform swimmer, shown in Figure 18,

differs slightly from the reported midline kinematics for solitary thunniform swimmers

in other studies (Shadwick et al. 1999; Di Santo et al. 2021). While in any case there

is no significant head motion, the case presented here shows growing body and tail

undulations, while thunniform swimmers are shown to maintain a relatively straight

body and only using their tail for propulsion (Di Santo et al. 2021; Li, Liu, and

Su 2017). This is because most previous studies (Shadwick et al. 1999; Di Santo

et al. 2021; Li, Liu, and Su 2017; Knower et al. 1999; Shadwick and Syme 2008) focus

on steady thunniform swimming, with unsteady swimming trends gaining traction

only recently. For example one previous study investigated the acceleration of a

solitary thunniform swimmer from rest (Thandiackal et al. 2021). Investigation of the

pressure forces around a solitary accelerating robotic tuna suggests that the posterior

main body generates a significant portion of forward thrust as adjacent fluid is pushed

backwards. This mechanism is similar to drag-based propulsion mechanisms found

in anguilliform swimming and hence the study suggests that solitary thunniform

swimmers may adopt an anguilliform-like motion as they accelerate from rest. Indeed,

current optimization results are in line with this trend, with the optimal point falling

in an optimum region in the c0− c1− c2 space which is characterized by large posterior

body and tail undulations (see Figure 18).
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Table 15: Hydrodynamic Quantities of Optimum Swimmers

Case Wuseful (mJ) Wtotal (mJ) F̄ ′x (N) Umax(m/s)

SD = 1L 184.11 856.67 0.28139 0.65205
SD = 2L 183.69 833.97 0.28108 0.65127
SD = 3L 181.78 832.64 0.27961 0.64779
solitary 181.19 833.68 0.27916 0.64899

4.4.2 Effects of Body Kinematics on the Propulsive Efficiency of Phalanx Schools

To understand the similarity in the optimum body kinematics between all three

phalanx schools and the solitary swimmer, the main energy saving mechanisms in

phalanx fish schools are discussed, namely: channeling and pulsating jet effects. When

swimmers in a phalanx school are within close lateral proximity to one another, an

area of augmented flow develops between them. This augmented flow arises as a

result of each swimmer generating a velocity field in its swimming direction due to

the no-slip condition. Since the augmented velocity field imparts momentum in the

swimming direction, swimmers need less thrust force to reach a specific swimming

speed (Daghooghi and Borazjani 2015). This is typically referred to as the channeling

effect (Weihs 1973) and can been observed in fish schools which range from phalanx

(Intesaaf Ashraf et al. 2017) to rectangular (Daghooghi and Borazjani 2015) and

diamond (Pan and Dong 2020) schools. When swimmers in a phalanx school swim

with an antiphase motion, counter rotating vortices are shed by the two neighbors in

each half period. These counter rotating vortices combine to form dipoles, producing

a pulsating jet behind the swimmers (Godoy-Diana et al. 2019). While in phase

swimmers can similarly benefit from the pulsating jet affect, antiphase swimmers

produce higher thrust by creating a more compact jet (Godoy-Diana et al. 2019).
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Therefore, it can be observed that swimming with a higher undulation frequency will

enhance both energy saving mechanisms, since higher undulation frequency will result

in faster flow around each swimmer (Thandiackal et al. 2021) as well as a higher

frequency pulsating jet in their wake. Similarly, high body and tail amplitudes result

in faster flow and larger vortices (See Section 3.5). It is then of no surprise that the

optimal midline kinematics in an accelerating phalanx school exhibit similar behaviour

to that of a solitary swimmer including a maximized tail displacement as well as an

undulation frequency.

(a) η∗ versus SD

(b) Wuseful versus SD (c) Wtotal versus SD

Figure 21: Optimum Efficiency, Wuseful and Wtotal as a function of separation distance
within an infinite phalanx school.
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4.4.3 Effects of Separation Distance on the Propulsive Efficiency of Phalanx Schools

Figure 21 shows plots of the optimal propulsive efficiency of each fish school

optimization case as a function of the separation distance within a school. Additionally,

the two work quantities, namely Wuseful and Wtotal, are included to investigate what is

driving the changes in efficiency across different separation distances. As previously

noted, the optimal efficiency of a phalanx school peaks at a separation distance of

2L with a value of 22.05%, which amounts to a small 1.5% increase over the solitary

swimmer optimum. This increase is largely driven by a higher useful work quantity
Wuseful2L−Wusefuls

Wusefuls
≈ 1.4%. The relative change in total work is Wtotal2L−Wtotals

Wtotals
≈ 0.03%,

which is an order of magnitude lower than the relative change in Wuseful. Since the

optimum mode uses an antiphase gait, the increased Wuseful could likely be attributed

to the presence of a pulsating jet behind the swimmers. The presence of a pulsating

jet behind the swimmers would increase their time-averaged streamwise force, F̄ ′x, (as

seen in Table 15) and consequently contribute to more work in the swimming direction

or Wuseful. Indeed, Wuseful is shown to increase with a decreasing separation distance

across the three schools which all employ the same midline and phase kinematics.

This trend suggests that the increase in Wuseful is directly related to thrust enhancing

mechanisms, such as the pulasting jet and channeling effects, in the phalanx school.

While the school with a SD = 1L results in the highest Wuseful, it’s propulsive

efficiency is the lowest, even when compared to a solitary swimmer. This happens

becauseWtotal similarly increases to reach the highest value between all phalanx schools

and the solitary swimmer. Since the direction of swimming and the separation distance

is fixed within each school, swimmers in a school would have to exert additional effort,

if needed, to maintain the same fixed distance during swimming. While this may not
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present a challenge at more sparse schools, such as SD = 2L and SD = 3L, this can

result in an increasedWtotal in dense schools (SD ≤ 1L). Indeed, the challenge of dense

phalanx schools has been investigated in previous studies. For example, Hemerijk

et al. observed a deteriorated steady group swimming efficiency, when compared to

solitary swimming, for simulated mullets in phalanx schools with SD < 1L (Hemelrijk

et al. 2015). The authors’ comment:“This is probably due to an increased resistance

(on average per fish) of the phalanx to oncoming flow due to close proximity of lateral

neighbours”. Gazolla et al. performed simulations, using a vortex particle method, of

multiple phalanx schools consisting of pairs of 2-D self-propelled anguilliform swimmers

(Gazzola et al. 2011). In these simulations, where swimmers were free to move in both

streamwise and lateral directions and only their displacement (undulation) was fixed,

the pairs in a phalanx school diverged after 8 periods. In 3-D, a bigger phalanx school

(consisting of 5 members) diverged at an earlier time of 6 periods. Both these studies

suggest that swimming in an infinite phalanx school requires active adjustment as well

as added effort to maintain a fixed separation distance, or at the least cohesion, within

a school. Inviscid models of rigid wings in steady flow similarly suggest that while

densely packed phalanx schools (SD = 0.66L) show an 5% increase in the swimming

speed over a solitary swimmer (similar qualitative trends can be observed for Umax

in Table 15), the associated cost of transport increases by 4% (Oza, Ristroph, and

Shelley 2019).

Finally the most sparse school (SD = 3L) displayed similar propulsive trends to

the solitary swimmer, where the η, Wuseful and Wtotal quantities remaining relatively

unchanged. This is unsurprising since all the hydrodynamic quantities are expected

to approach the solitary swimmer limit with increasing separation distance within a

school (Oza, Ristroph, and Shelley 2019). The presented optimization cases at different
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separation distances suggest the presence of three schooling regimes of accelerating

phalanx thunniform swimmers in the separation distance region characterized by

1L 6 SD 6 3L:

1. 1L 6 SD < 2L: highest thrust, highest Wuseful and highest Wtotal in a phalanx

school can be achieved compared to solitary swimming. However, propulsive

efficiency could suffer in a dense school.

2. SD ≈ 2L: improved thrust, improved Wuseful and relatively constant Wtotal

compared to solitary swimming. Highest gains in efficiency, when compared to a

solitary swimmer, as the school benefits from energy saving mechanisms without

providing additional work to maintain it’s position.

3. 2L < SD 6 3L: relatively constant thrust, Wuseful, Wtotal and η as compared to

solitary swimming as the school begins to approach the solitary swimmer limit.

4.4.4 Effects of Phase Synchronization on the Propulsive Efficiency of a Phalanx

School

To isolate the effects of phase synchronization, I compare the optimal point, in

each case, to two other points where all other kinematics {c0, c1, c2, f} are fixed to

optimum values and the phase is changed to 0 and 0.5π, respectively, as shown in

Figure 22. Between all three schools, antiphase motion (φ = φ∗ ≈ π) consistently

shows the best swimming efficiency, with the inphase motion (φ = 0) being second

best and the φ = 0.5π being the worst. This is in line with previous studies which

investigated phase synchronization behaviour in steady swimming of self-propelled

foils. For example, Raspa, Godoy-Diana and Thiria showed inphase motion (resulting
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(a) η∗ versus φ

(b) Wuseful versus φ (c) Wtotal versus φ

Figure 22: Optimum Efficiency, Wuseful and Wtotal as a function of phase lag and
separation distance within an infinite phalanx school.

in asymmetric flow) leads to higher transverse velocity fluctuation, when compared to

motion which results in symmetric flow (arising from antiphase swimming) (Raspa,

Godoy-Diana, and Thiria 2013). As a result, for a given momentum input, the

antiphase motion generated more thrust. A similar study with flexible foils showed

that while inphase motion was shown to benefit swimmers from the pulsating jet effect,

it results in a wake where the average propulsive jet is much more laterally spread,

when compared to the wake of an antiphase motion, and thus does not contribute

efficiently to propulsion (Godoy-Diana et al. 2019). This effect was also observed

for pairs of real fish in steady swimming (Ashraf et al. 2016) where the was a slight

preference for antiphase motion over inphase. Additionally, a preference of antiphase
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and inphase motion over an intermediate phase lag (such as φ = 0.5π) has been

previously shown in steady swimming simulations of tetra fish (G. Li et al. 2019).

In the SD = 2L and SD = 3L schools, the most efficient phase lag does not

necessarily result in high Wuseful, indeed it is the lowest for φ = φ∗, when compared to

other φ values. Instead the most efficient phase lag reduces the Wtotal for the school.

As previously discussed, inphase motion results in more adverse flow conditions by

introducing higher velocity fluctuations. Consequently, a more adverse flow field

would require higher work input to maintain cohesion within a phalanx school and

hence can contribute to an increased Wtotal. Alternatively, the most efficient phase

in the SD = 1L school results in the highest Wuseful. This is likely due to phase

synchronization effects playing a larger role in dense schools, when compared to sparse

schools, and can be further explored in a future study.

Finally, I observe that the relative ranking of efficiency based on separation distance

within a school does not change regardless of phase lag, with the most preferable

distance remaining SD = 2L. This suggests that the separation distance within a

phalanx school plays a larger role in the schooling efficiency than phase synchronization,

for the parameters explored in this study.
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Chapter 5

FUTURE WORK

Diamond-shaped schools generated much interest in fields such as bio-locomotion

and flow physics. Using a two-dimensional inviscid flow model, Weihs 1973 showed

that fish swimming diamond-shaped configurations can exploit the wake of upstream

swimmers to their advantage, thereby enhancing the hydrodynamic performance of

the entire school. Subsequent viscous numerical simulations showed that bio-inspired

swimmers can improve their efficiency, up to 20% when compared to solitary swimming,

when swimming in a diamond shaped formation (Hemelrijk et al. 2015). Although

multiple studies (Hemelrijk et al. 2015; G. Li et al. 2019) emphasize the importance

of free control available to the swimmers to be able to adjust their kinematic gain or

phase to exploit the background flow, generated by diamond formations, few studies

actually attempt to investigate the effects of free control. One such example is the

work of Verma, Novati, and Koumoutsakos 2018 where, through a reinforcement

learning policy, a single ‘small’ follower exploits the wake of a single leader. To fill

this gap, I am investigating the effects of free control of the kinematic gait and phase

synchronization of swimmers swimming in diamond-shaped schools. Optimization

experiments are currently being conducted to characterize and elucidate the optimized

hydrodynamics of diamond-shaped schools of swimmers swimming in both accelerating

and steady flows.
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Chapter 6

CONCLUSIONS

A computational framework for the design optimization of bio-inspired locomotive

devices has been developed. This framework combines the use of an efficient constrained

SBO algorithm and high fidelity spectral fluid simulations to investigate the optimal

swimming motion and synchronization behaviour in solitary and group swimming.

Three main phases describe the contribution and novelty of the current work.

The first phase starts with a careful investigation of different classes of optimization

algorithms. The purpose of the investigation was to compare the general performance

of 5 state-of-the-art gradient-based algorithms to 9 state-of-the-art gradient-free al-

gorithms on a constrained and an unconstrained optimization problem. The results

showed that the SBO family of the gradient-free algorithms were the most appropriate

when the design objective function is an expensive “black-box” function. Additionally,

a new constrained SBO algorithm, OK-CMSRS, was developed and bench-marked to

asses it’s appropriateness to the current design problem. The bench-mark included a

total of 5 constrained optimization algorithms tested on 6 analytical constrained prob-

lems. Results from the analytical benchmarks show that the OK-CMSRS algorithm

is a promising tool capable of insuring strictly feasible candidates while maintaining

competitive convergence properties when dealing with expensive simulations-based

“black-box” optimization problems with inexpensive constraints.

The second phase focuses on the development and coupling of FSI simulations of

a solitary self-propelled swimmer to the OK-CMSRS SBO algorithm. An iterative

implicit FSI scheme is shown to yield stable simulations of a swimmer swimming
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in place using its self-propulsion velocity. The stability of the simulations is further

enhanced by introducing a novel volume conserving scheme of the swimmer to maintain

a constant volume without having to change it’s midline deformations. This volume

conserving scheme enables faster and more accurate predictions of the flow field around

a self-propelled swimmer. By coupling the SBO algorithm to the FSI simulations,

interesting new insights around the optimal kinematic behaviour of an accelerating

solitary swimmer are discovered. For example, the optimal kinematic gait of a solitary

accelerating swimmer results in a reverse von Karman street wake, which is typically

associated with efficient propulsion in steady state fishlike swimming (Triantafyllou,

Triantafyllou, and Yue 2000). Moreover, a new propulsive efficiency scaling law, based

on the “effective” flapping length, is presented. The scaling law suggests that an

efficient bio-inspired swimmer seeks to avoid any points of zero undulation across it’s

midline to maximize its propulsive efficiency. While the predicted value of efficiency

may depend on numerical factors, such as the order of the approximation polynomials,

the relative efficiency ranking between different swimming modes does not change.

The third phase extends the modeling of a solitary swimmer to schools in a phalanx

formation. Critical parameters relevant to an infinite phalanx fish school, such as

midline kinematics, separation distance and phase synchronization, were investigated

in light of efficient propulsion in fish accelerating from rest. The optimal midline

kinematics of swimmers in an accelerating phalanx formation did not differ much

from those of an accelerating solitary swimmer. This is primarily due to the fact

that hydrodynamic schooling benefits present in phalanx schools, which arrise from

phenomena such as the “channeling effect” (Daghooghi and Borazjani 2015) and the

“pulsating jet” mechanism (Godoy-Diana et al. 2019), are enhanced by same optimal

midline kinematics of a solitary swimmer, such as a high undulation frequency and
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tail amplitude. Moreover, the optimal separation distance of 2L is shown to strike a

balance between the gained propulsive work and the total work input of swimmers

in a phalanx school. Finally, an analysis of the phase lag effects shows that the the

relative ranking of efficiency based on separation distance within a school does not

change regardless of phase lag. This trend suggests that the separation distance within

an accelerating infinite phalanx school has a more significant effect on its propulsive

efficiency when compared to the phase lag between the swimmers, assuming all else is

constant. In the future, I aim to extend the modeling and analysis to include optimal

accelerating and steady state propulsion in diamond-shaped schools.
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