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ABSTRACT

This thesis is concerned with experimental designs for studies a controllable independent

variable X, a continuous response variable Y and a binary response variable Z. It is known

that judiciously selected design allows experimenters to collect informative data for making

precise and valid statistical inferences with minimum cost. However, for the complex set-

ting that this thesis consider, designs that yield a high expected estimation precision may

still possess a high probability of having non-estimable parameters, especially when the

sample size is small. Such an observation has been reported in some previous works on the

separation issue for, e.g., the logistic regression. Therefore, when selecting a study design,

it is important to consider both the expected variances of the parameter estimates, and the

probability for having non-estimable parameters.

A comparison of two approaches for constructing designs for the previously mentioned

setting with a mixed responses model is presented in this work. The two design approaches

are the locally A-optimal design approach, and a penalized A-optimal design approach

that involves the optimization of A-optimality criterion plus the penalty term to reduce the

chance of including designs points that have a high probability to make some parameters

non-estimable.
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Chapter 1

INTRODUCTION

Over the previous decade there has been an enormous progress in the development of mixed

responses models for applications having multiple response of mixed variable types. This

paper concentrates on generalized linear mixed responses model that allows to jointly mod-

eling the continuous and binary responses, with a focus on studying optimal designs for it.

In studying optimal designs for mixed binary and continuous responses model, our

main focus is on the model proposed by Deng and Jin (2015), but for clarity, we consider

cases with one controllable continuous independent variable X . As described by Deng

and Jin (2015), their model is satisfactorily devised for the prediction of the response and

informative in many cases. Our goal is to provide insightful information on designs that

give the ’best’ set of X .

For the complex setting that we consider, designs that yield a high expected estima-

tion precision may still possess a high probability of having non-estimable parameters,

especially when the sample size is small. Such an observation has been reported in some

previous works on the separation issue for, e.g., the logistic regression. Therefore, when

selecting a study design, we need to consider both the expected variances of the parameter

estimates, and the probability for having non-estimable parameters.

In this work, we compare two approaches for constructing designs for the previously

mentioned setting with a mixed responses model. The two design approaches are the lo-

cally A-optimal design approach, and a penalized A-optimal design approach that involves

the optimization of A-optimality criterion plus the penalty term to reduce the chance of in-

cluding designs points that have a high probability to make some parameters non-estimable.

In the next chapter, we describe the model that we consider and some relevant model
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estimation. The third chapter provides a description of a design issue for mixed responses

models and the optimality criteria for evaluating the quality of designs under the mixed

responses model. In chapter four, a simulation study for comparing the performance of

different designs is conducted. In chapter five, we adapt a design method that has recently

been proposed for finding designs for generalized linear models and study its performance

on finding high-quality designs for our mixed responses model.
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Chapter 2

MODEL DESCRIPTION

2.1 Model

We consider a scientific procedure that involves a controllable independent variable X ,

a continuous response variable Y , and a binary response variable Z. For the ith experimental

unit with (X ,Y,Z)= (xi,yi,zi); i= 1, ...,N, the joint probability function for f (yi,zi) follows

f (yi,zi;θ) = [πi]
zi[1−πi]

1−zi[(
1

σ
√

2π
)exp(− 1

2σ2 (yi−β01−β11xi)
2)]zi

[(
1

σ
√

2π
)exp(− 1

2σ2 (yi−β02−β12xi)
2)]1−zi (2.1)

where θ = (α0,α1,β01,β11,β02,β12,σ
2)T is a parameter vector, and πi = Pr(zi = 1) is

defined as below.

Pr(zi = 1) = πi =
exp(α0 +α1xi)

1+ exp(α0 +α1xi)

with mean E(zi) = πi and variance Var(zi) = πi(1−πi). It can also be seen that, given the

value of zi, the continuous response yi has the following conditional distribution.

(yi;zi)∼ N([β01 +β11xi]zi +[β02 +β12xi][1− zi],σ)

The corresponding log-likelihood function l(θ) of θ is

l(θ ;yi,zi) = logL(θ ;yi,zi) =
N

∑
i=1

zi log(πi)+(1− zi) log(1−πi)− log(σ
√

2π)

+ zi[−
1

2σ2 (yi−β01−β11xi)
2]+ (1− zi)[−

1
2σ2 (yi−β02−β12xi)

2] (2.2)

For computing the maximum likelihood estimates (ML estimates) of θ , the following

results are needed for α0 and α1.

3



• ∂ l
∂α0

= ∂ l
∂πi

∂πi
∂α0

where

∂ l
∂πi

=
N

∑
i=1

[
zi

πi
+

zi−1
1−πi

] =
N

∑
i=1

[
zi−πi

πi(1−πi)
];

∂πi

∂α0
=

exp(α0 +α1xi)

[1+ exp(α0 +α1xi)]2
= πi(1−πi).

• ∂ l
∂α1

= ∂ l
∂πi

∂πi
∂α1

where

∂πi

∂α1
=

xiexp(α0 +α1xi)

[1+ exp(α0 +α1xi)]2
= xiπi(1−πi).

The Gradient of l(θ), which is the vector of the first derivatives of l(θ) with respect to θ ,

is

N

∑
i=1



∂ l
∂α0

∂ l
∂α1

∂ l
∂β01

∂ l
∂β11

∂ l
∂β02

∂ l
∂β12

∂ l
∂σ2



=
N

∑
i=1



zi−πi

xi(zi−πi)

zi
σ2 (yi−β01−β11xi)

zixi
σ2 (yi−β01−β11xi)

(1−zi)
σ2 (yi−β02−β12xi)

(1−zi)xi
σ2 (yi−β02−β12xi)

1
σ2 +

zi
2σ4 (yi−β01−β11xi)

2 + (1−zi)
2σ4 (yi−β02−β12xi)

2



(2.3)
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2.2 Information Matrix

The Fisher Information matrix of parameter vector θ is the symmetrical 7-by-7 matrix

presented below.

I(θ) = −E[H(θ)] = −E[
∂ 2l
∂θ 2 ] =



A B 0 0 0 0 0

C D 0 0 0 0 0

0 0 E F 0 0 G

0 0 H I 0 0 J

0 0 0 0 K L M

0 0 0 0 N O P

0 0 Q R S T U



(2.4)

where the Hessian matrix H(θ) is a matrix of second derivatives of l(θ) with respect

to θ , and since E(yi) = [β01+β11xi]zi+[β02+β12xi][1− zi], then the elements of the infor-

mation matrix I(θ) is in Table 2.1.

As to be discussed later, the Fisher information matrix in (2.4) is also used to formulate

optimality criteria for comparing the statistical efficiencies of competing designs, and to

derive optimal designs for the model.
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Table 2.1: Elements of the Information Matrix
Letter Value Letter Value

A ∑
N
i=1[πi(1−πi)] B=C ∑

N
i=1[xiπi(1−πi)]

D ∑
N
i=1[x

2
i πi(1−πi)] E ∑

N
i=1

πi
σ2

F=H ∑
N
i=1

xiπi
σ2 G ∑

N
i=1

πi(E(yi)−β01−β11xi)
2σ4

I ∑
N
i=1

x2
i πi
σ2 J ∑

N
i=1

xiπi(E(yi)−β01−β11xi)
2σ4

K ∑
N
i=1

1−πi
σ2 L ∑

N
i=1

xi(1−πi)
σ2

M=S ∑
N
i=1

(1−πi)(E(yi)−β02−β12xi)
σ4 N ∑

N
i=1

xi(1−πi)
σ2

O ∑
N
i=1

x2
i (1−πi)

σ2 P=T ∑
N
i=1

xi(1−πi)(E(yi)−β02−β12xi)
σ4

Q ∑
N
i=1

πi(E(yi)−β01−β11xi)
σ4 R ∑

N
i=1

xiπi(E(yi)−β01−β11xi)
σ4

U ∑
N
i=1

1
σ4 +

πi(E(yi)−β01−β11xi)
2

σ5 +

(1−πi)(E(yi)−β02−β12xi)
2

σ5

2.3 Standard Errors

The asymptotic variance-covariance matrix of θ̂ can be estimated by replacing θ with

θ̂ in the inverse of the expected information matrix:

cov(θ̂) = I(θ̂)−1 = (−E[H(θ̂)])−1

The above equation also gives the standard errors, since they are the square roots of

the diagonal terms in the variance-covariance matrix. However, with an imprudently cho-

sen design, some model parameters can become non-estimable or (near) non-estimable.

This can result in very unstable ML estimates that have very large standard errors when a

computer software package is used to find the ML estimates.

The previously described issue is linked to the so-called separation or near-separation

issue in logistic regression. When this happens the estimation of one or more model param-

eters will fail to converge to unique parameter estimates. It occurs frequently with small

sample sizes (N 6 32), or when there is a large number of factors. Such a phenomenon

6



appears when a hyperplane passing through the design space can completely or quasi-

completely separate the design points having a response value of Z = 0 from the design

points with a response value of Z = 1 (Albert and Anderson, 1984). Quasi-complete sepa-

ration occurs when there are both Z = 0 and Z = 1 response on the separating hyperplane.

For instance, the data in Table 2.2 give an example of the (near-separation) issue over a

given design space X = [−6,2] for single independent variable X . In Figure 2.1, the y-axis

represents the values of the response Y , the x-axis represents the values of the variable X ,

the red-point ′+′ denotes (xi,yi) with zi = 1, and the green-point ′+′ denotes (xi,yi) with

zi = 0.

Table 2.2: Response Data with Quasi Separation

x -6 -6 -6 -6 -6 -6 -6 -6 2 2 2 2 2 2 2 2

z 0 0 0 0 1 0 0 0 1 1 1 1 1 1 1 1

Figure 2.1: A Plot in the Separated Response Data Presented in Table2.2

As previously mentioned, separation forces parameters of the logistic function πi to

be (near) non-estimable and leads to huge standard errors due to an ill-conditioned Hes-

sian matrix. Such a (nearly) non-invertible Hessian might be caused by the selection of a

bad experimental design, multicollinearity or by including more explanatory variables than

observations. In this work we focus on studying the selection of a good design to help

avoiding this issue.

7



To further illustrate the effect of the separation issue on our model (2.1), we present

part of the profile likelihood functions of α0 and α1 in Figure 2.2 given the data provided

in Table 2.2. The profile likelihood functions are rather flat, making the corresponding ML

estimates unstable, and they have very large (∞) standard errors.

The profile log-likelihood functions in Figure 2.2 indicate that a precise estimate of

intercept and slope of model (2.1) might not be available, especially with this small sample

size of N = 16. Clearly, this data set does not provide strong statistical information for

α0 and α1. Also, the separation issue makes it difficult, if not impossible, to estimate the

model for making valid inference. Here we would like to seek an experimental design that

helps to reduce the chance for such phenomenon to occur.

Specifically, in Figure 2.2, the vertical gray dash-line corresponds to the true value of

the intended parameter α0 = 1 and α1 = 0.5 , while the vertical red dash-line gives the ML

estimate α̂0 = 1.8653041 and α̂1 = 0.6350151 . The maximum log-likelihood function for

these estimated parameters is (−96.13022).

In such a case, unfortunately, there is no computational trick can give a stable estima-

tion. Most textbooks advice to re-specify the model, to collect additional data, or perhaps

to consider a sophisticated Bayesian approach when a prior distribution can be assumed;

see also Kang et al. (2018).

Figure 2.2: A Profile Log-likelihood of (α0,α1),Respectively

8



2.4 An R Package for Model Estimation

Across many methods for estimating unknown parameters, denoted as θ , of a statistical

model from data, Maximum Likelihood Estimation is both easy to compute and agrees with

the initial intuition in simple examples. That is, MLE is the value of unknown parameter for

which the data has the highest probability (Casella and Berger, 2002). This is accomplished

by first specifying the joint density function of the observations as in Equation (2.1).

The MLE of the parameter vector θ , denoted as θ̂MLE , can be obtained by numerically

solving some nonlinear equations involving the Gradient vector. A numerical method is

needed because there is no closed form solution for θ̂MLE for the model we consider. Hence

statistical software package maxLik in R employed for solving the log-likelihood equa-

tions. The default maximisation method of maxLik is ”NR,” which is Newton-Raphson

method. It includes two arguments; the first one is logLik which is a function that calcu-

lates the log-likelihood values as a function of the parameters; the other one is start which

is the initial value of each parameter. As a matter of fact, Newton-type methods would

be numerically more efficient in terms of number of iterations, because under appropriate

conditions these approaches have a quadratic rate of convergence. However, in some appli-

cations they may require more time due to the evaluation of the Hessian and for complex

models, numerical derivatives might be unreliable. In this way numerical derivatives might

either slow down the estimation or even impede the convergence. Therefore, providing an-

alytical derivatives for both the Gradient vector of l(θ ;yi,zi) and Hessian matrix are useful

otherwise, one may want to switch to a more robust estimation method that is not based

on Gradients, such as the Nelder-Mead algorithm. When implementing maxLik, we pro-

vide analytical derivatives, as those provided in Sec. 2.1., to facilitate the search of ML

estimates.
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Chapter 3

EXPERIMENTAL DESIGN

Optimal designs are desirable because the use of any other design typically will require

a larger N to attain the same estimation precision as the optimal design. This results in an

increase of the cost and perhaps the chance of error. In many cases, an efficient way to

conduct the experiment for obtaining a precise statistical inference remains rather ambigu-

ous, and the experimenters may need to settle for inefficient designs that cause pointless

expenses.

Optimal design theory spread out in its advanced structure by Kiefer (1959). Follow-

ing Kiefer’s work, researchers often utilize a specific statistical criterion for constructing

experimental designs to fulfill the experimenter’s needs. Optimal experimental design for

our mixed responses model is a critical component of the research presented in this work.

The purpose of this chapter is to present an overview of optimal design theory, and to

provide relevant background knowledge for our study (in the next chapter) of the perfor-

mance of some experimental designs for mixed responses model in (2.1). The essential

ideas of optimal design theory for standard linear models are covered in Section 3.1, with

commonly used criterion functions for experimental design summarized in Section 3.2.

3.1 Optimal Design Theory

An experimental design with m≥ 1 support points and the weight wi, that specifies the

proportion of experimental runs of the support point xi, is often written as

ξ =

x1 x2 ... xm

w1 w2 ... wm


10



There are two approaches towards experimental design optimization: exact designs and

approximate designs. An exact design of experiment has a fixed sample size N and looks

for minimizing some statistically meaningful function of the information matrix MN , such

as tr(M−1
N ) for the A-optimal design. In this case, Nwi is required to be an integer, and the

obtained optimal design can directly be used in experiments of sample size N. Approximate

designs move away from the constraint on having a fixed N with an integer Nwi. They allow

any real value for wi ≥ 0 with ∑
m
i=1 wi = 1.

In this work, exact designs are mainly considered to avoid the need to transfer ap-

proximate designs to exact designs by, e.g., the rounding method. Another advantage of

optimal exact designs is the possibility to impose additional restrictions on the design re-

gion {X ∈X : X ∈ RNp}. With a given model and the parameter vector of interest, a

function ψ of the information matrix M(ξ ) is selected for evaluating competing designs to

obtain an optimal one. The function ψ is called the optimality criterion. Some commonly

used criteria are introduced in the next section.

3.2 Optimality Criterion

This section will cover some commonly used optimality criteria that are functional of

the information matrix M(ξ ). One common aim in optimizing such optimality criteria is to

minimize the variance of the model parameter estimates.

Table 3.1: Parameter-based Optimality Criteria

Criterion ψ ,Functional

A: min∑
p
i=1 λ

−1
i tr(M−1(ξ ))

D: min∏
p
i=1 λ

−1
i |M−1(ξ )|

Let λ1, ...,λp is the eigenvalues of the information matrix. The A-optimality criterion

11



seeks to minimize the trace of the inverse of the Fisher information matrix, which result in

minimizing the average variance of the estimates of the model parameters. It also is very

common to obtain the D-optimal design which maximizes the determinant of the informa-

tion matrix. Recall that the determinant of a matrix M(ξ ) is equal to the product of all its

eigenvalues, and the trace of a matrix is the sum of its eigenvalues. The two optimality cri-

teria, presented as the smaller-the-better criteria, are summarized in Table 3.1. We note that

minimizing |M−1(ξ )| also minimizes the generalized variance of the parameter estimates

and thus gives more precise parameter estimates.

The A-optimality criterion was used by Kim (2019) to find Locally A-optimal approx-

imate designs of model (2.1) with three different design spaces. Since the information

matrices and optimal designs depend on the unknown model parameters with generalized

linear mixed responses model , and one way to deal with this is to identify locally optimal

designs based on the best guess of the parameters. Locally optimal designs, in fact, are

important if good initial parameters are available from previous experiments, but can also

function as a benchmark for designs chosen to satisfy experimental constraints. The per-

formance of the three Locally A-optimal Designs is discussed in Simulation Study 1 in

Chapter 4.

For mixed model (2.1), it ought to be noticed that no experimental design is optimal in

all aspects and minimizing (or maximizing) one particular criterion often negatively affects

the experimental design of other criteria. That being said, a compound optimality criterion

has discovered effective use in practice as it results in experimental designs that have many

of the properties that one usually searches for. A compound design optimizes a weighted

sum of two or more design criteria , and might have the form of:

ψ(ξ ) = κ ψ1(ξ ) − (1−κ) ψ2(ξ )

where ψ1 and ψ2 are two different functional of information matrix of a candidate

12



design ξ , and κ is a blending coefficient that defines the weight of a candidate design’s ψ1

relative to ψ2.

After having discussed the presence of separation in model (2.1), an optimal design-

related approach that has been proposed to reduce separation probabilities is needed. In

fact, augmentation has been proposed to resolve separation, which annexes additional tri-

als (runs) to an initial experimental design after encountering separation or quasi-separation

in the logistic regression model. Such approach presented in Park et al. (2020) uses maxi-

mum prediction variance (MPV) augmentation to eliminate separation. Augmenting design

runs near the MPV region tends to produce overlapped response data. Be that as it may,

the MPV-augmented designs produce much bigger A-optimal designs of equal size, which

indicates that there is a trade-off between A-optimality and robustness to the separation

happening. Motivated by these observations, the A{MP}-criterion is considered in this pa-

per as a compound criterion attempting to improve the separation robustness of the obtained

designs.

Hence let us consider the following compound criterion that includes (a) the A-optimality

criterion, and (b) a penalty term that captures the average distance of the candidate design’s

support points from the region of maximum prediction variance (MPV).

ψA{MP} = κ

[
tr(M−1(ξ ∗))

tr(M−1(ξ ))

]
− (1−κ)

[
∑

N
i=1 |xT

i α|/N
maxX |XT α|

]
; where κ ∈ (0,1). (3.1)

Since tr(M−1(ξ ∗)) is the minimum trace value of the information matrix obtainable

across all candidate designs in X , then
(

tr(M−1(ξ ∗))
tr(M−1(ξ ))

)
∈ (0,1).

The second term in Equation (3.1) is the normalized linear predictor penalty term,

where α = (α0,α1)
T . The numerator ∑

N
i=1 |xT

i α|/N is the direct measure of the average

value of the linear predictor for all design points in candidate design ξ , a total measure of

the distance of design points from the MPV region. A larger value of ∑
N
i=1 |xT

i α|/N indi-
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cates that the support points of the candidate design tend to make Pr(Z = 0) closer to 0 or

1. We thus would like to penalize the design points that are farther from the MPV region.

Increasing the weight of the penalty term will therefore draw design points more closely to

the MPV region of the design space. The denominator maxX |XT α| denotes the maximum

value of the linear predictor in X .

Eventually, in order to minimize the first term and penalize it with the second term, we

need to minimize ψA{MP} . The design achieving this goal will be denoted as ξ ∗A{MP}
and is

the A{MP}-optimal exact design. That is,

ξ
∗
A{MP}

= argmin
ξ

{ψA{MP}} (3.2)

The user-defined inputs for this criterion are:

• The number of observations in the experiment, N.

• The vector of logistic coefficients, α = (α0,α1)
T .

• The blending coefficient that defines the weight of a candidate design’s A-optimality

relative to the average linear predictor magnitude penalty, κ ∈ (0,1).

We note that our AMP-criterion is a modification of the DMP-criterion of Part et al.

(2020). The DMP-criterion was proposed for the logistic regression with the D-optimality

criterion. We will study the performance of the A{MP}-optimal exact designs of model (2.1)

in Simulation Study 2 in Chapter 5.
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Chapter 4

SIMULATION STUDY 1

4.1 Locally A-Optimal Designs

Since the information matrix in (2.9) is a function of unknown parameters, a locally

optimal design ξ ∗ that minimizes some real function ψ of M(ξ ,θ ,σ) for given values of

the unknown model parameters is considered in this project. The function ψ may be the

popularly used D-criterion, ψ0 = |M|−1/m, or A-criterion, ψ1 = tr(M−1)/m, where m is the

number of rows or columns of the information matrix M(ξ ,θ ,σ).

Based on the result of Kim (2019), an optimal design ξ ∗ of our setting will minimizes

ψ1 = tr(M−1) under the A-optimality criterion. She also proved that A-optimal design can

vary with values of α0,α1, and σ2. With some computational and theoretical results, Kim

(2019) provided some A-optimal designs for having a precise estimate of θ , excluding σ2,

as presented in Table A.1.

4.2 Data Simulation

The aim of this simulation study is to explore the performance of the three locally

A-optimal Designs on the estimation of model parameters across different sample size.

We will evaluate if the simulated data would allow us to successfully obtain stable ML

estimates for θ , the corresponding standard errors, and study the average standard error of

the parameter estimates of the design.

By giving the information in Table A.1, the selection of the range of covariate x j is as

x j =
c j−α0

α1
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.

For each range of X , we consider three options for selecting value of xi. The first

option includes only the two boundary points of the range of X with equal weights for

these two support points. The second option includes the boundary points and the center

point and we again assign equal weights on the three support points. The third option is

the corresponding A-optimal design as listed in Table A.1. For each of these designs, we

then generate the binary response zi and the continuous response yi from the distribution

specified in Chapter 2.

Moreover, the simulation for each design option will be conducted with sample size

N = 16,30,50, and 100. The integer number of sample points n j with each x j is calculated

by rounding Nw j; where j = 1, ..,m;m is the selected number of distinct x-value. Hence for

each design space we have three different simulated data sets. For convenience, we list the

support points and the corresponding weights of the three design options for each design

range in Table 4.1 to Table 4.3. Also, in this simulation study, the assumed true value for θ

is as follows

θ = (α0 = 1,α1 = 0.5,β 1
0 = 1,β 1

1 =−1,β 2
0 =−1,β 2

0 = 0.5,σ2 = 1)T .

Table 4.1: Simulation Study for Design Space [-4,0]

Design Options xm Weights (wm)

1 {−4,0} {0.5,0.5}

2 {−4,−2,0} {0.333,0.333,0.333}

3 {−4,0} {0.195,0.805}

.
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Table 4.2: Simulation Study for Design Space [-6,2]

Design Options xm Weights (wm)

1 {−6,2} {0.5,0.5}

2 {−6,−2,2} {0.333,0.333,0.333}

3 {−6,−3.6,0,2} {0.090,0.082,0.633,0.195}

Table 4.3: Simulation Study for Design Space [-12,8]

Design Options xm Weights (wm)

1 {−12,8} {0.5,0.5}

2 {−12,−2,8} {0.333,0.333,0.333}

3 {−12,−4,0.4,8} {0.025,0.180,0.772,0.023}

4.3 Design Comparison

According to the simulation result, the maxLik function gives θ̂MLE across all the sam-

ple sizes and design spaces. However, Figure 4.1, which depicts the number of times when

all the SEs are finite, suggests that some of these ML estimates are not stable. Figure 4.1

indicates that the design option 3 has better performance for all of the design spaces. The

design option 1 has the worst performance.

What can be conclude is that it might be hard to successfully estimate all the model

parameters θ if only the boundary points are included in the design. It seems that having,

additional points in the design increases the success rate in obtaining stable θ̂MLE . We also

observe that, adequate information might be available from a given data set with n > 30 as

an increase sample size seems to improve the parameter estimation.

Figure 4.2 presents the trace of Var(θ̂MLE) for the three design spaces across different

sample sizes. Based on the result of Figure 4.2, boundary points help to obtain the lowest

summation of Var(θ̂MLE) when design space is [−4,0]. For both design space [−6,2] and

[−12,8], lowest summation of Var(θ̂MLE) is with the design option 3 . Note that low
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summation of Var(θ̂MLE) with deign option 1 when design space is [−6,2] is meaningful,

since deign option 1 has the lowest performance in estimating SE’s. Eventually, enough

sample size and adding design points assume a major part in selecting a design.

Figure 4.1: Comparison Result for Getting SE’s of Three Design Space

Figure 4.2: The Trace of var(θ̂MLE) for Three Design Spaces
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Chapter 5

SIMULATION STUDY 2

5.1 Data Simulation

Based on A{MP}-criterion proposed in Equation (3.1), an optimal design ξ ∗A{MP}
of our

setting will minimizes ψA{MP} . The aim of this simulation study is to obtain the design

that has the minimum A{MP}-criteria on the estimation of model parameter across different

sample sizes N ∈ {16,30,50,100}; which allows us to evaluate the performance of ψA{MP} ,

of successfully getting stable ML estimates for θ .

Now according to Equation 3.1, two inputs should be specified. These are the A-optimal

exact design and the maximum absolute value of the linear predictor in X . With the

package pracma in the statistical software R, we use the R function fmincon to obtain

A-optimal exact designs. We also have the following.

• For design space [-4,0], maxX |XT α|= 1 at x = {−4,0}.

• For design space [-6,2], maxX |XT α|= 2 at x = {−6,2}.

• For design space [-12,8], maxX |XT α|= 5 at x = {−12,8}.

5.2 Designs Results

For each design space, we uses the fmincon function to find an A-optimal design. The

the obtained A-optimal design will be used in Equation (3.1) to find an A{MP}-optimal

design for given κ . The fmincon function in R is again used for finding the latter design.

Figure 5.1 presents the sum of the variances of parameter estimates, including σ̂2, of the

A- and A{MP}-optimal designs for the three design spaces across different sample sizes.
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The blue solid line corresponds to the A{MP}-optimal design and the red dash line denotes

the A-optimal design provided by the fmincon function. Our observations are summarized

below.

• For design space [−4,0] with κ = 0.8, the A{MP}-optimal design has slightly lower

sum of variances of parameter estimates than the A-optimal design. The reduction in

the total variance is mainly due to a reduction in var(σ̂2); see also Figure 5.2. The

probability of separation is reduced by 1.5% from the A-optimal design. Figure 5.3

presents our obtained A{MP}-optimal designs for each N.

• For design space [−6,2] with κ = 0.9, the A{MP}-optimal design has a lower sum of

variances of parameter estimates than the A-optimal design, especially when N ≤ 30,

and the probability of separation for both designs are similar. Figure 5.4 has the

A{MP}-optimal designs for each N.

• For design space [−12,8] with κ = 0.9, the A{MP}-optimal design has a better perfor-

mance than A-optimal design and the probability of separation is reduced by 2.25%.

Figure 5.5 has the A{MP}-optimal designs for each N.

We also display the sum of the variances of parameter estimates with excluding var(σ̂2)

in Figure 5.2 for the three design spaces across different sample sizes.

5.3 Conclusion and Future Work

In this work, we propose the A{MP}-optimality criterion for constructing designs for

model (2.1) that have separation issues. For small-sample experiments with multiple fac-

tors, separation becomes a concern because it prevents the experimenter from making rea-

sonable inferences. The results in the previous section showed that A{MP}-optimal designs

retain high A- values design while minimizing the probability of separation.
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The development of these plans has the following restrictions. First, as is the case with

every optimal design constructed for generalized linear models, A{MP}-designs also suffer

from the design-dependence problem. We showed that this issue may be mitigated by using

compound criteria method for constructing robust designs. The advantage of the compound

criteria method is that only initial parameters are required as inputs from the experimenter,

which is more feasible in practice than specifying prior distributions, as required by the

Bayesian method. Bayesian optimal designs, however, have the advantage of yielding more

efficient designs because values of a criterion are calculated over the entire space of param-

eter values and take into consideration the amount of uncertainty in the initial parameter

specifications. Using Bayesian methods for constructing robust A{MP}- designs would be

an direct extension of this work. Second, the choice of κ was explored sparingly in this

project and ought to be examined officially in future work. A generalized methodology for

optimization of the blending coefficient for any design situation implementing the logistic

regression would be an important expansion to this project.

Figure 5.1: Comparison Result Between A-optimal Design and A{MP}-optimal Design
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Figure 5.2: Comparison Result Between A-optimal Design and A{MP}-optimal Design,
Excluding σ2

Figure 5.3: The A{MP}-design Points of Design Space [−4,0]
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Figure 5.4: The A{MP}-design Points of Design Space [−6,2]
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Figure 5.5: The A{MP}-design Points of Design Space [−12,8]
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APPENDIX A

A LOCALLY A-OPTIMAL APPROXIMATE DESIGNS BY KIM (2019)
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Table A.1: Kim’s A-optimal Designs
Type of Designs Induced Induced Weights (wm)

Design Space Support Points (cm)
A-op1 [-1,1] (-1,1) (0.195,0.805)
A-op2 [-2,2] (-2,-0.788,1.006,2) (0.090,0.082,0.633,0.195)
A-op3 [-5,5] (-5,-0.961,1,216,5) (0.025,0.180,0.772,0.023)
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