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ABSTRACT  
   

Stable isotopes were measured in the groundwaters of the Salt River Valley basin 

in central Arizona to explore the utility of stable isotopes for sourcing recharge waters 

and engineering better well designs.  Delta values for the sampled groundwaters range 

from -7.6‰ to -10‰ in δ18O and -60‰ to -91‰ in δD and display displacements off the 

global meteoric water line indicative of surficial evaporation during river transport into 

the area. Groundwater in the basin is all derived from top-down river recharge; there is no 

evidence of ancient playa waters even in the playa deposits. The Salt and Verde Rivers 

are the dominant source of groundwater for the East Salt River valley- the Agua Fria 

River also contributes significantly to the West Salt River Valley.  Groundwater isotopic 

compositions are generally more depleted in 18O and D with depth, indicating past 

recharge in cooler climates, and vary within subsurface aquifer layers as sampled during 

well drilling. When isotopic data were evaluated together with geologic and chemical 

analyses and compared with data from the final well production water it was often 

possible to identify: 1) which horizons are the primary producers of groundwater flow 

and how that might change with time, 2) the chemical exchange of cations and anions via 

water-rock interaction during top-down mixing of recharge water with older waters, 3) 

how much well production might be lost if arsenic-contributing horizons were sealed off, 

and 4) the extent to which replacement wells tap different subsurface water sources. In 

addition to identifying sources of recharge, stable isotopes offer a new and powerful 

approach for engineering better and more productive water wells.  
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Chapter 1 

INTRODUCTION 

This study originated from an aspiration to design and construct improved water 

production wells using information gained from stable isotopic analysis.  Because of the 

high cost of groundwater pumping facilities, it is imperative to design wells for optimum 

water quality and quantity. In order to understand the stable isotopic data from specific 

wells, it is necessary to research the origin of the groundwaters in the study area, the Salt 

River Valley (SRV) in Central Arizona.  Previous studies analyzed only one area of the 

Valley; more research was needed to confirm this work, expand it, and compare it to the 

overall regional setting.  The opportunity to obtain new information was enhanced by 

access to new groundwater samples, as well as chemical and well construction data from 

wells owned and operated by the Salt River Project (SRP).  In addition, SRP drilled seven 

new wells during the time of this project, allowing the opportunity to obtain a unique set 

of depth specific samples that are available only during well drilling.  

This investigation is designed to identify the origin and evolution of the SRV 

groundwaters and to establish the identity of the various sources of recharge.  It compares 

the results of previous research to new data obtained from sampling SRP wells.  These 

data evaluate the impact of anthropogenic modifications to the natural, pre-development 

water system.  The results are used to evaluate the efficacy of using stable isotopes to 

distinguish regions of production in a completed well.  This, in turn, can identify possible 

sources of pollution and the potential for successful modification without loss of well 

production.   Furthermore, chemical data are used in concert with the stable isotope 
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results to identify mixing relationships and water-rock exchanges due to diagenetic 

processes.   

This isotopic investigation fuses hydrology, geology, geochemistry, and engineering to 

improve present and enhance future groundwater well designs.  This research is 

increasingly important in the arid setting of central Arizona because groundwater is a 

major source of water to the region. 



   3 

 

Chapter 2 

BACKGROUND 

Phoenix, Arizona does not appear to be a typical desert city because lush greenbelts, 

emerald green golf courses, and agricultural fields dot the landscape.  Plentiful water is 

an anomaly in an arid climate, but to Phoenix residents, it is an expectation.  Starting over 

a hundred years ago, the rivers that once swept through the desert were harnessed behind 

dams and diverted into canals to control and carefully manage the precious resource.  

Despite these engineering feats, the water scarcity persists.  In Phoenix, an average of 

fewer than 8.3 inches of rain falls to the ground annually (NCDC 2006).  Yet, the 

population of Phoenix metropolitan area swells; between 2000 and 2007 the Phoenix 

population grew an astonishing 24.2%, second only to Las Vegas (Woolsey 2007).  In 

2002, the watersheds of the Salt and Verde Rivers, the major water supply to Phoenix, 

experienced the 2nd driest year of the 110 year recorded history.  In the same year, as a 

result of a prolonged drought combined storage in the Salt and Verde reservoirs dropped 

to a 50 year low of only 25.5% capacity (Hubble 2010).  In times of such severe drought, 

large volumes of groundwater from alluvial aquifers are pumped to supplement the 

surface water supply. With a persistently low annual rainfall and more people needing 

water, Phoenix-area cities depend on these engineered structures and methods to capture 

water and deliver it to the tap.  This is why it is essential to understand the origins, 

interaction, and evolution of this precious commodity.   

There are obvious signs the first settlers of central Arizona understood the tenuous 

nature of their water resource.  The Hohokam Indians used hand-dug canals to divert 
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water from the Salt River for agriculture between 1 AD and 1450 (Andrews and 

Bostwick 2000). Some of these canals can still be seen today.   Anglo settlers adopted the 

irrigation concept in the middle 1800’s.  Many settlers moved to Phoenix to take 

advantage of the year-round growing season and well-drained soils.  Yet, variability in 

the flood/drought cycles of the Salt River made predicting water availability difficult for 

farmers.  In 1906, the Bureau of Reclamation began construction on Theodore Roosevelt 

Dam, the first of several eventual diversions on the Salt River.  Roosevelt Dam would 

soon, provide a dependable supply large enough to be regularly diverted into a set of 

canals for agricultural irrigation.  By 1928 dams controlled all of the rivers flowing 

through the SRV.  Today, the surface water systems that enter the valley are completely 

controlled and delivered; each drop of water accounted.   

Groundwater pumping began in the valley in the late 1800’s.  With fluctuating 

surface water availability, groundwater became an invaluable water resource.  Left 

unchecked, Phoenix groundwater was mined at a rate faster than it was recharged.  Cones 

of depression and earth fissures developed as water levels plummeted.  In 1980, the state 

legislature passed the Groundwater Management Act, establishing Active Management 

Areas (AMA) to monitor and regulate over-pumping in areas of concern.  Yet even in 

times of drought, groundwater is still a heavily relied upon resource.  

These anthropogenic modifications changed more than simply making water delivery 

more convenient.  They changed the natural groundwater recharge from localized river 

channels to irrigation recharge ubiquitous throughout the heavily farmed valley.  Water 

once concentrated in channelized river flow now spread into thin pools atop agriculture 
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fields, creating more surface area to evaporate before seeping into the ground.  Before the 

development of the reservoir/canal system, nearly all of the water was recharged from 

losing stream reaches of the major river systems (Freethey and Anderson 1986).  Now, 

nearly 85% of the groundwater recharge in the valley is delivered through “incidental” 

recharge (Freihoefer et al. 2009).  This water has been spread out and seeped into the 

ground via such mechanisms as flood irrigation, artificial recharge, golf course irrigation, 

and retention basins.  The water quality from these types of recharge is affected by 

remnants of fertilizers, pesticides, and metals from storm water.  Much interest is directed 

at detecting the pathways for these contaminants in order to protect the groundwater 

supply. 

The importance of these water resources will only grow for the future population of 

the Phoenix metropolitan area.  For this reason, this study focuses on understanding the 

SRV groundwater using stable isotopes of oxygen and hydrogen.   
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Chapter 3 

PHYSIOGRAPHIC SETTING 

The SRV basin encompasses the greater Phoenix metropolitan area in central Arizona 

(Figure 1).  The SRV is located in the Basin and Range Province where crustal extension 

nearly 15 million years ago resulted in high-angle block faulting and subsiding basins 

filled with sediment from adjacent mountain ranges.  A north to south divide of semi-

impermeable mountain ranges splits the SRV basin.  The two sub-basins are the East Salt 

River Valley (East Valley) and West Salt River Valley (West Valley). 

The East Valley covers approximately 1,500 mi2 (3,885 km2) and is flanked by 

Tertiary and Precambrian crystalline mountain ranges (Figure 2): the McDowell 

Mountains to the north, the Usery and Superstition Mountains to the east, and South 

Mountain and the Santan Mountains to the south.  The lowest elevation in the East Valley 

is 1,100 ft (335 m) at the southwestern valley floor and the highest elevation occurs in the 

Superstition Mountains approaching 5,000 ft (1524 m).  The East Valley is essentially 

divided from the West Valley by the Phoenix Mountains, Camelback Mountain, Papago 

Buttes, and Tempe Butte.  A complete hydrogeologic description of the East Valley is 

given by Laney and Hahn (1986).   

The West Valley basin spreads roughly 1,500 mi2 (3,885 km2) and surface elevations 

range from 800 ft (244 m) in the southwest valley floor to 4,500 ft (1,372m) in the Sierra 

Estrella.  The basin boundaries consist of granitic, volcanic, and metamorphic mountain 

ranges (Figure 2).  The Buckeye Hills, South Mountain, and the Sierra Estrella ranges 

form the southern margin.  The White Tank Mountains form the western boundary and 
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the Hieroglyphic Mountains are the northern boundaries of the West Valley sub-basin.  A 

comprehensive review of the hydrogeology of the West Valley is available in Brown and 

Poole (1989).   

River Systems  

The main drainages through the study area include the Gila, Salt, Verde, and Agua 

Fria river systems. The rivers are important to the livelihood and economy of Central 

Arizona.  For this reason these rivers have been dammed and diverted for irrigation use 

and flood control since the early 20th century.   

The Verde River originates in central Arizona along the Transition Zone.  The Verde 

River flows south and drains approximately 6,254 mi2 (16,198 km2) of watershed, 

including Humphrey’s Peak at 12,633 ft (3,851 m).  Because of the location along the 

Mogollon Rim, many perennial creeks supply water to the main-stem Verde River.  In 

1936 the river was dammed at Bartlett Dam forming Bartlett Lake, and then again in 

1946 at Horseshoe Dam and Reservoir.  The flow of the river is controlled by the Salt 

River Project (SRP) from these locations.  The Verde River joins the Salt River northeast 

of Phoenix.   

The Salt River watershed drains approximately 6,249 mi2 (16,185 km2) of east-central 

Arizona.  The Salt River begins at the confluence of the White and Black rivers.  These 

rivers drain the White Mountains where elevations exceed 11,000 ft (3,353 m).  The Salt 

River is fed by a series of perennial streams and flows east to west before reaching a 

series of four reservoirs and dams operated by SRP.  Construction of the first and largest 

dam, Roosevelt, began in 1906.     Below the confluence of the Salt and Verde Rivers, 
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water is diverted by Granite Reef Dam into a system of irrigation canals (Figure 1).  The 

typically dry river channel runs northeast to southwest through the Phoenix metropolitan 

area and joins the Gila River southwest of Phoenix.  

The Gila River is the longest river system in Arizona.  The Gila originates in the 

Mogollon and Mimbres Mountains in New Mexico where elevations exceed 10,000 ft 

(3,048 m).  However, the highest elevation in the Gila drainage in Arizona is only 3,500 

ft (1,067 m).  The river travels approximately 150 mi (241 km) through the Basin and 

Range province, and receives no drainage from the Mogollon Rim unlike the other main 

river drainages.  The Gila River is also dammed into reservoirs and an engineered 

irrigation system.  The San Carlos Reservoir is the first impoundment.  At Florence, 

Arizona the river is diverted into a series of irrigation canals.  Currently, the Gila River 

channel through the study area is normally dry until below the confluence with the Salt 

River southwest of Phoenix. 

The Agua Fria River begins in the Bradshaw Mountains and drains south into Lake 

Pleasant.  The highest elevation in the Agua Fria watershed is ~8,000 ft (2,438 m) at 

Union Peak.  The Agua Fria has a few intermittently flowing tributaries.  In 1927, the 

Agua Fria River was dammed (Waddell Dam) to form Lake Pleasant.  Most of the water 

from Lake Pleasant is diverted and combined with Colorado River water by the Central 

Arizona Project (CAP) canal.  Water in the CAP canal flows southeast and delivers water 

to the Phoenix metropolitan area through the SRP system beginning at Granite Reef Dam 

(Figure 1). The normally dry Agua Fria River channel runs south through the West 

Valley to its confluence with the Gila River.   
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Due to these impoundments of naturally flowing river systems, the sources and 

quality of water recharged to the SRV has changed.  The surface water flow in these 

systems is highly controlled and regulated by dams, reservoirs, and canal systems.  It is 

possible that remnant groundwater exists that was recharged prior to the construction of 

impoundments.  As explained below, waters unaffected by evaporation and quickly 

infiltrated into the ground will have an isotopic signature different from that of waters 

that have been concentrated in reservoirs and canals, and then swept out onto the desert 

landscape for controlled irrigation. It may be possible to detect any pre-development 

surface water inputs to the SRV using stable isotope analyses. 

Basin Composition 

Five hydrogeologic units comprise the East Valley and West Valley sub-basins 

(Figure 3).  The hydrogeologic bedrock unit, the red unit, and the lower, middle, and 

upper alluvial units are characteristic of the Basin and Range alluvial basins identified in 

previous studies by Anderson et al. (1992), Robertson (1991), and Oppenheimer (1980).  

The unit divisions in this study are defined by hydraulic properties, and are described in 

further detail in the Arizona Department of Water Resources (ADWR) SRV model 

identified by Corkhill et al. (1993), Corell and Corkhill (1994), and updated by Freihoefer 

et al. (2009).  Figure 3 is a cross section along line A to A’ in Figure 2 that represents the 

stratigraphic sequences of the two SRV sub-basins.  

The Tertiary and Precambrian mountain ranges mentioned previously that form the 

bottom boundaries of the SRV basin, and are defined as the hydrogeologic bedrock unit.  

These ranges are composed of crystalline rocks (schist, gneiss, metavolcanics, quartzite, 
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and granite) as well as Tertiary to Quaternary extrusive sequences of rhyolitic to basaltic 

volcanic flows.   Collectively, these rock types form a nearly impermeable boundary to 

groundwater flow.  In the center of the basins, the top of the bedrock is found over 10,000 

ft (3,048 m) below ground surface (Oppenheimer 1980; Figure 3).   

The red unit occurs in the East Valley.  It is above the hydrogeologic bedrock unit, 

and is formed of Tertiary sedimentary sequences.  Radiometric dating indicates the red 

unit was formed between 17.5 million years to 22 million years ago, prior to high-angle 

block faulting and basin subsidence (Brown and Pool 1989).   The unit is well cemented, 

but in areas is also highly fractured.  As a result the red unit is not a reliable source of 

water, except in localized areas where it is heavily fractured.  Although lithologically the 

red unit and bedrock unit are very different, their hydraulic characteristics are similar in 

that they do not readily permit groundwater flow.  In this study, these two units are 

grouped for classification purposes under the category of hydrogeologic bedrock unit. 

The lower alluvial unit (LAU Figure 3) or lower unit is a fine-grained basin fill 

deposit above the hydrogeologic bedrock unit.  Radiometric dating indicates the lower 

unit may be as old as 16.6 million years (Brown and Pool 1989).  The lower unit formed 

during active subsidence of a closed basin.  This history is indicated by the increasing 

thickness and decreasing particle size going upward in the stratigraphic section.  Near the 

basin margins, the lower unit reaches a thickness of approximately 100 ft (30 m) and 

consists of conglomerate and gravel.  Near the center of the basins, the lower unit is 

several thousand feet thick, and particle sizes grade into gypsiferous and anhydritic 

mudstone.  Previous studies interpret the lower unit as alluvial fan deposits at the basin 
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margins grading into fluvial, playa, and evaporite deposits at the center of the basins 

(Laney and Hahn 1986).  In the West Valley, an evaporite deposit, the Luke Salt Body 

formed concurrently with the lower unit. The SRV model of the lower unit stops at 3,000 

ft (914 m) below ground surface due to lack of deeper drilling data.  However, studies 

indicate that the depth of the lower unit can exceed 11,000 ft (3,353 m) in the center of 

the West Valley basin (Brown and Pool 1989). 

The middle alluvial unit (MAU Figure 3), or the middle unit, is above the lower unit.  

Like the lower unit, the middle unit is thickest at the center of the basins.  This occurs in 

Gilbert for the East Valley and near Luke Air Force Base in the West Valley.  The middle 

unit consists of clay, mudstone, and interbedded sands and gravels.  Near the basin 

margins, the middle unit thins and consists of mainly sand and gravel, making it nearly 

indistinguishable from the lower unit.  In some areas on the basin margins, the middle 

unit pinches out and the upper unit directly lies atop the lower unit.  Also like the lower 

unit, this unit formed during a period of basin subsidence in a closed system.  It is 

important to note that the middle unit is the main source of groundwater in present day 

water wells. 

The upper alluvial unit (UAU Figure 3) or upper unit overlies the middle unit and is 

composed mainly of alluvial deposits of gravel, sand, and silt.  The upper unit maintains a 

consistent thickness of nearly 200 to 300 ft (61-91 m) thick in the East Valley and 300-

400 ft (91-122 m) thick in the West Valley.  The consistent thickness and grain size 

suggest that the upper unit was deposited in the final stages of basin development and 

represents the channel, terrace, floodplain, and fan deposits of the ancestral Salt and Gila 
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Rivers approximately 3.3 million years ago (Laney and Hahn 1986).  The upper unit 

connects the East Valley and West Valley sub-basins between Papago Buttes and Tempe 

Butte and between Tempe Butte and South Mountain.  This unit historically was the 

largest groundwater producer, but due to over-pumping of the SRV for agriculture, the 

horizon is currently dewatered in many areas.   

In summary, there are three distinct alluvial fill deposits in the center of the SRV sub-

basins.  Isotope data in this study are therefore categorized according to the three units 

defined by ADWR models.  However, it is important to note that these units tend to lose 

their identity near basement highs.  When adjacent to bedrock, all three units are coarse 

grained and almost certainly have enhanced permeability.   

The sequence in Figure 3 illustrates the transition from closed basin stream and playa 

deposits (lower unit and middle unit) to the fluvial deposits from the Salt, Gila, and Agua 

Fria Rivers.  The recharge sources of the groundwaters evolved in turn, from closed basin 

playa recharge to river water derived from distant, higher elevation terrains.  Based on 

this history it is possible that remnant closed basin and possibly playa water are still 

found in the lower two units.  It is further possible that the relative amounts of the source 

fluids once present in the East Valley and the West Valley could be distinctly different 

from one another, recording this historic isolation.  Stable isotopes provide an approach 

for identifying and interpreting these important differences. 
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Chapter 4 

PREVIOUS WORK 

SRV Basin Hydrology 

In 1977 the Bureau of Reclamation published a report on the hydrogeology of the 

central Arizona basins for the siting study of the CAP canal.  The United States 

Geological Survey (USGS) soon followed with a Regional Aquifer Systems-Analysis 

program beginning in 1979 led by T.W. Anderson.  In 1986 Laney and Hahn published 

the first East Valley based hydrogeology report and in 1989 Brown and Pool followed up 

the counterpart for the West Valley.  In 1993 ADWR used these reports as the foundation 

for the first regional flow model of the SRV. In 2009 ADWR performed a model update.  

While all of these reports typically settle on the alluvial basin consisting of three different 

alluvial units, there are some discrepancies among the boundaries of each unit.  The 

USGS unit divisions are based on geologic differences whereas the ADWR divisions are 

categorized based on hydraulic properties.  In most places the Bureau of Reclamation and 

ADWR reports are in agreement.  For the purposes of this study, all alluvial unit 

boundaries are based upon the depths defined by the current updates to the ADWR SRV 

model by Freihoefer et al. 2009. 

Because of the importance of water to the Phoenix metropolitan area, numerous 

modeling studies have attempted to quantify the inflows and outflows of groundwater in 

the SRV.  The advent of agriculture and irrigation changed the historical groundwater 

flows and discharge through numerous water production wells and the redistribution of 

surface water flow.   
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Freethey and Anderson (1986) generated a model of pre-development hydrological 

conditions in the alluvial basins of Southern Arizona.  They based the model on wells 

existing prior to modern development (early 1900’s) and assumed a system in 

equilibrium (inflows = outflows) where no change in storage occurred.  Modern 

groundwater models operated by the ADWR are based on a system of disequilibrium 

where discharge from pumping greatly exceeds recharge. Not only did this change the 

amount of groundwater in storage, but it also modified the overall regional aquifer flow 

system.   

Geochemical and Isotopic Studies 

Robertson (1991) published the first water quality analyses of the Basin and Range 

aquifers.  This study evaluated the overall water quality of 72 separate basins to 

determine the sources of dissolved species in the groundwater.  This report serves as the 

basis for geochemical modeling of the southwest alluvial basins.   

Brand (1995) investigated the isotopic evolution of the Salt, Verde, and Gila River 

systems as they drained from high elevation headwaters into the man-made reservoirs of 

central Arizona.  Brand’s research demonstrated that evaporation plays a significant role 

in the evolution of surface water.  As each river flows from high elevation to the hot, arid 

conditions of the Sonora Desert, the stable isotopes evolved from that of snow toward 

isotopic signatures indicative of evaporation.  This study also analyzed reservoir 

stratification and showed that man-made reservoirs enhance the evaporative signature of 

stable isotopes.   
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Groundwater contamination from livestock and agricultural industries provoked two 

studies by the USGS in the West Valley. Gellenbeck (1994) used isotopic compositions 

of oxygen, hydrogen, nitrogen, sulfur, boron, lithium, and strontium to define a 

relationship between isotopic composition and sources of nitrate.  The oxygen and 

hydrogen data suggested that these isotopes reflected a geographic grouping due to 

differences in former Agua Fria/Salt River sources of recharge.  The follow-up USGS 

study by Edmonds and Gellenbeck in 2002 studied the West Valley to evaluate the 

effects of water use, land use, and hydrogeologic factors on groundwater quality.  The 

wells sampled were separated into five categories based on both the depth of perforations 

of the well and historic land use.  The study concluded that evaporative enrichment of 

heavy isotopes in wells perforated in the shallower units correlated with irrigation 

seepage, while deeper units tended to have an isotopic signature similar to that of 

unevaporated river water.   

McLean (2007) investigated flood flows of the Salt and Verde Rivers during a dam 

release in 2005, and the impact of the flow on the chemical and isotopic composition of 

Tempe Town Lake, an artificial lake created in the Salt River bed.  McLean’s isotopic 

analysis of the Salt and Verde Rivers demonstrated a striking isotopic difference between 

the two rivers systems below the dam and reservoir reaches. 

The Arizona Department of Environmental Quality (ADEQ) open file report series 

established ambient water quality conditions in several basin and watershed locations 

throughout Arizona.  Data from Towne (2008) demonstrates the isotopic evolution of the 
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Agua Fria River as it flows from its headwaters in the Bradshaw Mountains into Lake 

Pleasant. 

Further studies on Arizona rivers include a comprehensive geochemical study of the 

San Pedro River (Baillie 2005) and of the Verde River headwaters (Zlatos 2008).  Knauth 

and Greenbie (1997) originally investigated the origin of the headwaters of the Verde 

River and developed a primer explaining how to use stable isotopes in surface water 

investigations.  Other basins have been investigated with respect to geochemical and 

isotopic compositions by ADEQ.  A comprehensive geochemical and isotopic analysis of 

the San Pedro Basin was developed by Adkins (2008).   

Surface water isotopic data from Brand (1995), McLean (2007), and Towne (2008) 

are given in Figure 4.  The figure is a cross plot of the δD and δ18O variations for modern 

surface waters in the SRV basins.  The δD and δ18O represent the relative enrichment or 

depletion (expressed in per mil ‰) compared to the Standard Mean Ocean Water 

(SMOW) standard.  The Global Meteoric Water Line (GMWL) is a statistical fit to 

isotopic data for precipitation from samples all over the world.  Data from Arizona that 

plot on this line are for surface waters derived from rain or snow unaffected by 

evaporation.  Data that plot to the right of this line represent surface waters that 

underwent 18O and deuterium (D) enrichment due to evaporation.  Thus, the data shown 

on the GMWL are for upstream rivers before they run out into the Sonora Desert or into 

the reservoirs.  Those data plotting to the right of the GMWL have undergone 

evaporation while flowing in the SRV basins.  Therefore, isotopic composition data for 
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the groundwater samples can be compared with the surface water data to evaluate the 

extent of river recharge, and can be used for the engineering applications of this study.   
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Chapter 5 

METHODOLOGY 

Sampling Strategy 

Data were compiled from previous studies by Brand (1995), Gellenbeck (1994), 

Edmonds and Gellenbeck (2002), McLean (2007), and Towne (2008) as well as a search 

of the USGS National Water Information System (NWIS) online database.  These data 

were used to constrain inputs to the groundwater recharge and as a guide for determining 

further sampling sites. 

In considering available isotope data for the Salt River Basin, there was not enough 

information for East Valley groundwaters to reach conclusions regarding the origin of the 

groundwaters.  Additionally, production wells from Basin and Range aquifers tend to be 

screened over several tens if not hundreds of feet and therefore across aquifer boundaries.  

In order to better constrain isotopic variations with depth, zonal samples, as described 

below, were utilized to fill in the missing information and evaluate the origin and 

evolution of SRV groundwaters at various depths. 

 Water quality can be sampled during well installation or during post-well 

construction testing.    During installation of a well it is possible to isolate a specific 

depth interval for analysis; the water sample comes only from that specific zone.  Once 

the well is cased and screened, it undergoes testing to the extent possible to determine the 

specific mix of source waters and effects of the cumulative proportions of the various 

zones sampled.  Using these as guidelines, four basic options for well sampling were 

implemented in this study.  These types include:  zonal sampling, step tests, constant 
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rate/spinner log, and routine composite.  In order to ensure an accurate representation of 

fresh formation water, attempts were made to purge the well bore by pumping three times 

its volume prior to sampling. However, due to operation limitations, less purge time was 

allowed for routine composite samples.  Sample locations for 22 different wells in the 

SRV are shown in Figure 5.  The sample sites, all located within the irrigation service 

territory of SRP, were chosen based on active drilling projects, depth of screen interval, 

and lateral distribution to obtain the most representative profiles of the two sub-basins.  

In addition to isotopic sampling, a chemical analysis of the groundwater was also 

obtained in most cases.  Samples for isotope analysis were collect in 125 ml plastic 

bottles with tight fitting lids.  Below is a synopsis of the different types of sampling 

suites.    

During the reverse rotary drilling process of a new production water well, a pilot hole 

is drilled to total depth.  After geophysical logging is completed, the geologist identifies 

areas of higher porosity to test for water quality.  These areas are then discreetly sampled 

utilizing a process that simulates a mini well (Figure 6).  Beginning with the deepest 

zones a bentonite seal is installed followed by gravel and then a top bentonite seal.  A 40 

ft (12 m) section of perforated drill pipe acts as the well casing.  A small, 20 gallon per 

minute (gpm; 76 L/min) pump is installed and the zone is purged by pumping for 

approximately 12 hours before the water quality sample is taken. Normal water quality 

constituents tested for include metals (aluminum, iron, arsenic, lead, etc.), inorganics 

(nitrate), solvents, total dissolved solids, and pH.    After the samples are obtained, the 

driller pulls the equipment up to the next desired zone and backfills the previous zone.  
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This highlights the importance of zonal sampling because it is the one opportunity for 

discrete sampling of 40 ft (12 m) intervals.  A typical new well in the valley is drilled to 

1200 ft (366 m), with 6-10 zonal samples.   

After the well has been designed and constructed, the geologist performs a series of 

water quantity tests.  The first consists of monitoring the effects of varying pumping rates 

by increasing the capacity at consecutive time intervals or “steps”.  Sometimes, a water 

quality sample is taken at each step to monitor changes in water quality with increasing 

discharge (flow rates). 

After a step test analysis has suggested an optimum pumping rate, the geologist 

performs a constant rate test.  Usually this is a minimum of 24 hours and aims to monitor 

the longer term effect of the pumping rate.  Many times during this test the geologist will 

request a spinner log and depth specific sampling.   Utilizing an access pipe installed 

beside the test pump, a spinner log is performed to identify areas that are the largest 

contributors to the flow during well pumping.  After the flow horizons are identified, a 

bailer is lowered down to a particular flow zone to collect a water sample.  Chemical 

analysis of this water aims to determine the relative contributions of that particular zone 

to the overall composite water chemistry of the well. 

After a new well is put in to service, the well is routinely monitored by SRP for water 

quality.  This is normally performed annually but can also be performed quarterly based 

on pumping needs and routine maintenance.  These samples are a composite of the 

overall contributions made from the entire screen interval.  Attempts are made to purge 

three times the volume of the well bore, but due to electricity costs and water 
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demand/conservation purposes, the sample is sometimes taken without confirmation of a 

full purge.   

For the purpose of this isotope study, it is important to note that this manner of well 

construction yields a set of water samples from specific depth intervals before final well 

construction.  Following completion of the well, water is produced from the screened 

intervals that receive water from multiple depths.  Water from the producing well is thus 

a composite of many depth intervals.  As will be shown, comparison of the zonal samples 

acquired during initial testing with these composite samples derived from the final well 

can convey extremely useful information regarding the amounts of water ultimately 

produced from specific depth intervals as well as insights into the source of the aquifer 

waters. 

Laboratory Analysis 

Isotopic analysis was performed by the University of Arizona Stable Isotope 

Laboratory.  Both isotopic analysis for oxygen and hydrogen where performed on a 

Finnigan Delta S gas-source Isotope Ratio Mass Spectrometer (IRMS).  Hydrogen 

analysis involved reduction of water over Cr metal at 750°C (Gehre et al. 1996). Oxygen 

isotope analysis was performed by CO2 equilibration at 15°C (Craig 1957).  Isotopic data 

are reported in per mil (‰) notation standardized against Vienna Standard Mean Ocean 

Water (VSMOW).   The analytical precision (1-σ) reported by University of Arizona 

Stable Isotope Laboratory was 0.9‰ or better for δD and 0.08‰ or better for δ18O as 

determined by repeated internal standards.   In this study error is reported more 

conservatively at 2‰ for δD and 0.2‰ for δ18O based on historical precision between 
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interlaboratory comparisons because several blind duplicates had to be re-analyzed to 

achieve the lab’s normally high precision.  Variations in the groundwater samples were 

large enough to reach conclusions using the bigger error estimates.  Data for each sample 

are presented in Appendix A 

When available, standard chemical analyses including pH, total dissolved solids, 

metals (As, Fe) inorganic constituents (Nitrate), cations (Na+, Ca+2, Mg+2, K+) and anions 

(HCO3
-, SO4

-2) were conducted by the environmental lab at SRP.  Available chemistry 

data are presented for each sample in Appendix B.   
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Chapter 6 

RESULTS AND DISCUSSION 

Data for 102 samples from 22 wells are shown in Figure 7 together with the regional 

river water data.  The well data display a variation of 3.3‰ in δ18O and 31‰ in δD.  

Most of the data plot in a similar range as river water that has undergone evaporation.  

They generally fall along the evaporation trajectory (m=4.3) defined by Brand (1995), but 

some are distinctly different from the river measurements.  These latter data plot to the 

right of the meteoric water line and at more negative δD compositions than the majority 

of the groundwater samples.   

Origin of SRV Groundwater 

Previous geologic studies as well as the ADWR SRV model reveal the existence of 

large evaporite deposits near the center of both sub-basins in the middle unit and lower 

unit basin fill.  Water samples taken from wells in the valley can yield sulfate values near 

the secondary EPA defined maximum contaminant level of 250 mg/L.  From the 

chemical analysis, it is possible to draw the conclusion that water recharged during playa 

deposition still exists in the basin today.  If so, it should also have an isotopic 

composition different from that of river water because strong enrichments in 18O and D in 

playa recharged groundwater should be present if evaporation exceeds inflow.   

Isotopic evaporation trajectories are a function of humidity (Gonfiantini 1986).  The 

SRV playas existed in hydrologically closed basins of low elevation prior to the cooler 

Pleistocene climate therefore source waters derived in this setting would have had δ-

values on the GMWL at points higher than the current surface water recharge from 
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distant, high elevation mountain ranges.  Therefore, it is possible to infer a starting point 

on the GMWL several per mil enriched in 18O and D as shown in Figure 8.  Assuming a 

relative humidity between 0-50% (the current summertime humidity of Phoenix is 

between 12-33%) evaporation trajectories with slopes between 3.9 and 4.3 can be 

predicted.  Using Gonfiantini’s humidity and evaporation slope relationships, the inferred 

playa groundwater values are projected to lie within the orange polygon shown in Figure 

8.  As shown in the figure, no SRV groundwater data are located within the hypothesized 

playa polygon; suggesting no playa water is present in the SRV groundwater. 

The absence of remnant playa water in the SRV strata may indicate the volume of 

water carried from high elevation recharge over the last 3.3 million years simply flushed 

out any ancient playa waters.  High sulfate groundwater exists because the river 

recharged water dissolves gypsum and anhydrite found in the basin fill.  This is a 

chemical reaction, not an indication of the water’s origin.  This highlights the 

effectiveness of using stable isotopes for identifying the origin of waters.  Stable isotopes 

are able to measure the water molecules themselves, instead of measuring the chemistry 

of one species dissolved in another.  Although the chemistry and geology indicate a 

record of playa deposition, the absence of an isotopic evaporation signal indicates that the 

native water recharged during the time of playa has likely been flushed out.   

Another possible explanation of the absence for playa-derived groundwater could be 

the limited drill depths.  In general, most wells are finished in the middle unit because 

lower yield from the lower unit reduces the economic value of deeper drilling targets.  

The deepest well sampled was SRP well 05.0E-11.1Nat 1900 ft (579 m).  However, the 
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deepest parts of these sedimentary basins exceed 11,000 ft (3353 m; Brown and Pool 

1989).  Since sedimentary brines are denser than fresh groundwater, playa groundwater 

may have settled to the deepest parts of these basins where it may reside yet.  Deeper 

drilling may still reveal remnant playa waters if groundwaters are found to have more 

positive δ18O-values as shown in Figure 8.  

Pre-development versus Modern Recharge in the West Valley 

There may be several processes, geographic distributions, or depth variations that 

explain the wide range of isotopes in the SRV groundwater.  While not the primary target 

for their study, Edmonds and Gellenbeck (2002) found data in the West Valley suggested 

δ−values vary based on land use and screen interval.  The sample locations for selected 

wells from their study and from the West Valley sampling locations from the current 

study are shown in Figure 9. The data fell into two domains (Figure 10).  First, deeper, 

confined wells and wells with no history of agricultural land use produced water with 

isotopic compositions close to the GMWL with a wide range of values (labeled “Pre-

development Recharge”).  Second, wells drilled to the water table and wells with 

perforations above confining beds and within irrigation districts, returned δ−values off 

the meteoric water line and enriched in the heavier isotopes (labeled “Modern 

Recharge”).  It should be noted that in general, the deeper well locations were distributed 

throughout the West Valley east of the Agua Fria River, and the wells that indicated 

irrigation recharge are located entirely within the southwest part of the West Valley 

between the White Tank Mountains and the Buckeye Hills along the Gila River (Figure 

9). 
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If the conclusions from Edmonds and Gellenbeck (2002) are correct for all West 

Valley samples, then the new West Valley data in this study should plot in the domains 

defined by the USGS data (Figure 10), and variations outside of the data set would 

require a different explanation.  The wells sampled by Edmonds and Gellenbeck (2002) 

were screened over several units, therefore samples from this study targeted specific 40 ft 

(12 m) zones to constrain the depth variability. Figure 11 defines the δD versus δ18O 

relationships of SRP wells by alluvial unit in reference to the domains defined by the data 

from Edmonds and Gellenbeck (2002).  The upper unit wells from the current study (red 

triangles) have the shallowest screen interval and receive the most recent recharge.  As 

expected, these data correlate well with the modern recharge domain of the USGS study 

(Figure 11).  In fact, one data point (a in Figure 11) expands the evaporation field, 

suggesting some areas in the West Valley experience greater degrees of evaporation than 

defined by the USGS.  This data point occurs in well 00.4W-03.3N at the shallowest 

depth sampled (251 ft (77 m) below ground surface).   This well is located east of the 

USGS wells near the confluence of the Agua Fria and Salt Rivers (Figure 9).  The land 

historically received flood irrigation from both groundwater and surface water for 

agricultural production, which may be the reason for the enhanced evaporation signal in 

the isotopic compositions.   

Three of the lower unit samples (blue circles) plot within the pre-development 

boundaries, as expected.  However, two of the samples are located on the fringe of the 

evaporation area (b in Figure 11).  These two outlier lower unit samples are from the 

same well, 12.1E-08.9N (Figure 9).  This well is located near the East Valley/West 
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Valley boundary close to the Grand Canal. Depth to bedrock in this area is relatively 

shallow, and previous studies indicate the location of this well is on the up-thrown edge 

of a normal fault (Brown and Pool 1989).  Drill cuttings indicate the alluvial units are 

extremely fined grained and difficult to distinguish.  Since the lower unit is relatively 

shallow in this area at 466 ft (142 m), the isotope samples from the lower unit likely 

record modern, irrigation recharge.   

The middle unit samples are present in both data domains.  Several middle unit 

samples indicate meteoric pre-development origin with the exception of data from two 

wells.  Well 05.1E-16.2N (Figure 9) is located in Peoria, AZ close to the New River 

channel.  The majority of evaporation occurs in the shallower middle unit samples (group 

c in Figure 11), which is expected due to agricultural recharge percolating quickly 

through the permeable upper unit.  Well 12.1E-08.9N, the outlier in the lower unit 

analysis, also has an isotopic composition similar to those of the middle unit (d in Figure 

11) suggesting isotopic homogeneity along the basin edge.   

Five samples contained screen intervals that include two or more units.  Well 07.5E-

15.2N (Figure 9) is perforated in both the upper unit and middle unit.  This sample plots 

among the most enriched in heavy isotopes and displays a strong evaporation signature (e 

in Figure 11).  Wells 05.0E-11.1N, 07.6E-15.2N, and the composite of 12.1E-08.9N are 

screened in both the middle unit and the lower units.  12.1E-08.9N (f in Figure 11) and 

5.0E-11.1N (g in Figure 11) δ−values are located between the pre-development and 

modern groups, and are likely a result of mixing between the two groups.  Recharge 

infiltrates vertically through the upper and middle units and eventually reaches the pre-
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development horizon where the waters mix.  Groundwater in the mixing zone would form 

composition between the two end members in the zone where the data from these two 

wells is located.  Well 07.6E-15.2N (h in Figure 11) plots further down the meteoric 

water line with the pre-development group, suggesting that the water pumped from this 

well is older river water.   One well, 14.8E-00.7N is screened throughout all three alluvial 

units.  The isotopic composition of this well (i in Figure 11) is located in the evaporated 

domain suggesting that the contributing volume of groundwater is coming from one or 

both of the upper and middle alluvial units.   

The results of this study indicate that stable isotopes can be used to define a boundary 

of modern recharge versus pre-development recharge water or river water.  Wells that are 

closer to basin fringes are likely to display isotopic homogeneity while wells at the 

centers of basins are likely to display larger variations in isotopic composition between 

horizons.   

Deep Groundwater Sources 

The variation in the isotopic composition of deep, pre-development water along the 

GMWL may be indicative of the contributing river system at the time of recharge.  

Isotopic compositions consistent with modern river water values of the Agua Fria River 

and Salt Rivers demonstrate a difference likely based on source area elevation (Figure 4).  

This difference, known as the altitude effect, should also distinguish pre-development 

surface water between these two river sources.   Figure 12 displays the deep, pre-

development groundwater isotopic compositions categorized according to their proximity 

to the modern day Gila, Salt, and northern (Agua Fria and New) river channels. The 
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groundwater samples closest to the Salt River (red in Figure 12) are lower on the 

meteoric water line.  These values shift to more positive δ-values as the well locations 

progress westward (i.e. in the direction downstream along the river channel), and with 

distance from the modern channel.  This is expected as the modern δ-values of the Salt 

River reflect similar high elevation source waters and evolve toward more positive δ-

values downstream (Brand 1995).   

The isotopic data for pre-development groundwater nearest the northern rivers (blue 

in Figure 12) also begin with 18O and D depleted composition in the northwestern parts of 

the valley.  However, the trend of increasing δ-values downstream is not apparent.  The 

three most negative δ-values are from wells in northwest valley, where the rivers enter 

the SRV.  These are also the deepest samples (“deepest wells” in Figure 12).   In top-

down recharge, the deeper wells sample older waters.  As discussed in a subsequent 

section the data suggest this is indicative of a cooler climate. This highlights the 

importance of considering depth variability of groundwater in isotope analysis. 

Samples nearest the modern Gila River (green in Figure 12) demonstrate wide 

isotopic variation overlapping data from wells near the both Salt and the northern rivers.  

Water from the Gila River wells also exhibits a complex range in isotopic composition 

based on distance from the river, depth, and progression of the channel from east to west.  

This is likely due to mixing from the confluence of both the Salt and Agua Fria Rivers in 

the southwest study area before exiting the SRV.  With further zonal analysis and 

analysis of wells close to each river system, it should be possible to construct contour 
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maps of isotopes based on depth, geographic distance from a river channel, and distance 

from river source that could identify recharge sources from pre-development times.   

It should be noted that while Edmonds and Gellenbeck (2002) concluded that the 

enrichment in heavy isotopes is due to irrigation seepage (i.e. evaporation), there is 

another implication of labeling deeper water as “pre-development” groundwater.  Since 

the damming of the major rivers, most recharge in the area comes through “incidental” 

recharge (recharge from flood irrigation, artificial lakes, domestic water, etc).  These are 

anthropogenic modifications to the natural recharge system.  These modifications cause 

isotope enrichments through a combination of two processes.  Surface water diverted by 

dams and canals enters the East Valley (Figure 1), and evaporates as it travels across the 

desert; the isotopes become progressively evapoconcentrated as the water reaches the 

West Valley.  Another explanation relates to infiltration rates in valley soil.  If infiltration 

exceeded evaporation, the isotopic composition of the water would be closer to the 

meteoric water line.  If evaporation exceeded infiltration, heavily evapoconcentrated 

isotopic signatures would dominate the isotopic signal of groundwaters.  Increased urban 

development through construction of parking lots, roadways, etc. increases impervious 

surfaces therefore causing evaporation to exceed infiltration.  This could enhance the 

evaporative isotopic signal and could be a factor in the modern isotopic composition of 

shallow groundwaters. 

East Valley and West Valley Comparison 

The current ADWR hydrologic model discussed previously advocates the genesis of 

two closed, subsiding basins with little or no hydraulic connectivity until the last 3.3 
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million years when surface drainages connected the two basins (Figure 3).  As concluded 

from the isotopic data, river recharge drainage has purged any pre-river groundwater 

signal from the basins.  The basins are connected through a relatively thin overlying layer 

of fluvial deposits (Figure 3).  The East Valley basin is closer to the source areas of the 

Verde, Salt, and Gila Rivers, while the Agua Fria only drained to the West Valley.  

Groundwater underflow enters the West Valley from more arid areas at lower elevations 

than the East Valley groundwater underflow.   Differences in these two sub-basins may 

be present based on the elevation differences among the watersheds and drainages that 

feed the basins.  Water from the West Valley may also have isotopic compositions that 

reflect evapoconcentration due to the increased distance surface water travels across the 

desert in lined canals.   

Figure 13 is a map of the East Valley sampling locations from this study, as well as 

available well data locations obtained from the USGS NWIS database.  Data for these 

wells, together with those from the West Valley, are shown in Figure 14.  The graph 

illustrates that the isotopic compositions for both basins are similar for the majority of 

groundwaters, and follow the general Salt and Verde evaporation trend as defined by data 

from Brand (1995) and McLean (2007;Figure 7).  However, the West Valley wells have 

an enriched D and 18O component that may reflect an evaporated contribution to these 

samples.   The East Valley appears to have samples with much lower δ-values that plot 

well off the meteoric water line.  In general, the data supports the idea that the West 

Valley is dominated by a lower elevation river source (Agua Fria) than the East Valley; 
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and that the evaporation of water as it is transported across desert landscape to the West 

Valley contributes to the enrichment of heavy isotopes in the modern groundwater.  

In order to analyze these differences more closely, Figures 15-17 display the isotopic 

samples grouped by the alluvial unit screened.  Only those samples that are screened in 

one alluvial unit are included, with the exception of the East Valley upper unit.  No zonal 

samples were obtained from the East Valley upper unit.  Therefore, three samples 

screened in both the East Valley upper and middle units were included for consideration.  

Due to the much higher hydraulic conductivity values of the upper unit (Corkhill et al. 

1993), the assumption was made that the upper unit would be the primary water producer 

where both units are screened. 

Figure 15 depicts the lower unit East Valley and West Valley isotopic compositions.  

There is no significant difference between the data sets; both lower unit data sets show 

largely unevaporated meteoric source waters.  This indicates pre-development waters as 

described in the previous section.  

Unlike the lower unit, the middle unit data show larger variations and a contrast 

between the East and West Valleys (Figure 16).  In general, the East Valley middle unit 

appears to be slightly more depleted in D than the West Valley middle unit groundwater.  

Both basins demonstrate some evaporation in the middle unit, although it appears the 

original sources for these waters were at different elevations due to the 18O and D 

enriched nature of the West Valley data.  This is evidence for the lower elevation 

recharge from the Agua Fria and possibly for groundwater inflow from the arid 

Hassayampa Plain dominating the middle unit in the West Valley.  Several samples from 
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the East Valley define a unique position in the cross plot, being remarkably depleted in 

deuterium relative to the other East Valley data.  These important samples will be 

discussed separately in the subsequent section.   

Data from the upper unit samples from both basins are displayed in Figure 17.  The 

East Valley upper unit data are from wells screened over both the upper and middle units.  

These samples display an isotopic composition consistent with evaporated Salt and Verde 

River water.  The upper unit West Valley samples are more depleted in the heavy 

isotopes than the middle unit West Valley samples in Figure 16; this likely demonstrates 

the effect of damming and diversion of the Agua Fria River. The Agua Fria is dammed at 

Lake Pleasant; its water is combined with Colorado River water and diverted to the CAP 

Canal, which delivers water to the SRP canal system (i.e. Salt and Verde River water) at 

Granite Reef Dam in the East Valley.  The isotopic shift observed in the upper unit West 

Valley groundwater demonstrates that the majority of source water is now the evaporated 

Salt and Verde river water delivered through canals, rather than the lower elevation 

recharge present before the Agua Fria was dammed.  This again demonstrates the power 

of isotopes to identify significant anthropogenic effects due to engineered river systems.   

Pleistocene Origin of Bedrock Groundwaters 

The most strikingly different groundwater data are for well 22.9E-10.8N in the East 

Valley (Figure 18).  These samples represent the lowest δD values for any of the 

measured SRV groundwaters (Figure 7) and are located in the fractures of the bedrock 

unit of well 22.9E-10.8N.  Due to its unique source rock, as well as its distinct isotopic 
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signature, it can be inferred that the origin of this groundwater is different from that of 

the alluvial units throughout the rest of the SRV.  

In this top-down recharge setting, groundwater located in deep fractures under the 

alluvial units is likely much older in age due to it having been trapped in the fractures.  

Most wells are not drilled to bedrock because too little water is produced.  Furthermore 

the alluvial units above the bedrock are more permeable and therefore focus groundwater 

flow over the bedrock instead of down into the fractures.  These waters are depleted in 

both D and 18O relative to the other groundwater samples in the SRV.  A possible 

explanation for these data is that they represent water that was originally on the GMWL 

and evaporated producing the observed δ-values.  If so, the isotopic composition of the 

original water would have to have been much lower on the GMWL because the values 

are much lower in D than any of the modern evapoconcentrated river waters (Figure 7).   

In this scenario, an evaporation trajectory with a slope of 4.3 would give an original 

source water isotopic value of -14.6‰, -107‰.  Extremely low values such as these are 

similar to current snowmelt at the highest elevations on the Verde watershed (Brand 

1995).  This position of the GMWL suggests that the climate when this water recharged 

was cooler than it is today.  The bedrock fracture groundwater may thus be indicative of 

Pleistocene Salt River water that descended into the fractures after undergoing significant 

evapoconcentration along its desert flow path.  Although cooler and possibly more humid 

during the Pleistocene, the SRV was nevertheless a desert climate conducive to 

evaporation and thus enrichment of the heavy isotopes, so this is a reasonable possible 

explanation for these unusual fracture-fill waters.  
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Well 22.9E-10.8N lies within the band of fractured bedrock and close to known 

thermal wells (Stone, 1980).  Isotopic exchange can occur between water and 

carbonate/silicate at elevated, hydrothermal temperatures.  The effect is pronounced in 

geyser systems, but ground waters heated to higher temperatures could begin to yield 

observable changes in δ18O.  Silicates (δ18O> +5 ‰) and carbonates (δ18O>+20‰) are 

strongly enriched in 18O relative to meteoric waters, so δ18O of water can rise to higher 

values during hydrothermal exchange.  Since little hydrogen is in rocks, the δD of the 

water remains constant.  Waters originally on the GMWL thus evolve to more positive 

δ18O values during this interaction but δD does not change.  This manifests as a 

horizontal line deviating to the right off the GMWL.  Deviations ranging from 1.0‰ to 

6.5 ‰ are observed in geyser fields (Craig 1967).  If hydrothermal exchange were the 

reason for the shift off the meteoric water line for the bedrock fracture-fill water here, the 

original source water would have had an isotopic composition near -12.6‰, -85‰.  This 

is isotopically similar to current surface water in the SRV before it enters the reservoir 

system (Brand 1995).  Elevated well bore temperatures and high silica and sulfate 

concentrations in the bedrock chemistry analysis (Appendix B) may thus support a 

hydrothermal alteration explanation for these data.  However, the telltale signature of 

groundwater that has undergone hydrothermal alteration is a data array for several or 

more samples with constant δD but variable δ18O.  Here delta values for the 4 samples 

from the bedrock fractures fall on a well-defined linear array together with those from the 

overlying alluvial aquifer units that has large δD variation but little variation in δ18O 

(Figure 18).   
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The lowest δD end member water sample in the bedrock fractures may thus be a 

single water sample that evolved to high δ18O via hydrothermal exchange and then mixed 

with the other and overlying waters. In the absence of the telltale “horizontal” data array 

in any of the other fracture-fill waters in this unit, it is more likely that the fracture-fill 

end member value was achieved via the evaporation scenario rather than via 

hydrothermal alteration.  The association of this unusual water with known hydrothermal 

activity is noteworthy, but the magnitude of 18O enrichment off the GMWL (1.5 ‰) is 

achieved only in high-temperature geyser fields.  Such large enrichments are observed 

repeatedly in Arizona surface waters, so the evaporation origin for this low δD end-

member must be considered the simplest explanation.  As the search for hydrothermal 

resources in Arizona continues, further isotopic analyses of groundwaters in this area 

might yield interesting surprises.  

Mixing Array 

The data in Figure 18 are so linear over such a large range of δ-values that mixing 

between waters with δ18O, δD compositions of -8.7‰ to -10.9‰, and -63‰ to-91‰, 

respectively, seems certain.  Because top-down recharge is common in the SRV, the high 

δD end member would be expected to be nearest to the surface, and the low δD would be 

expected to be the deepest groundwater, that has yet to be flushed.   Coming down the 

mixing trend, the data should progress from the shallowest unit (middle alluvial unit 

here), then lower alluvial unit, and then the bedrock fracture water.  Remarkably, the 

upper end member is actually also from the bedrock fractures and the sequence descends 
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next to lower alluvial unit samples to middle, and then back to bedrock fractures! The 

sequence is not at all what the simplistic, top-down recharge would yield.    

An explanation for this remarkable result relates to the likely nature of recharge in 

this particular geologic setting.  As shown in the geologic cross section (Figure 19), the 

well is adjacent to a basement high.  The basal unit is a section of coarse alluvial fan 

material extending to the near surface along the surface of the basement high.  The 

middle unit also grades into coarser grained material along the edges of the basin and 

becomes indistinguishable from the lower unit.  However, in this setting a few miles 

away from the basement outcrop, the middle unit is fine grained, consisting of up to 95% 

fine silt and clay.  The upper unit, consistent with most areas of the valley, is a cobbly 

coarse grained fluvial deposit.   The fine grained nature of the middle unit inhibits the 

downward infiltration of groundwater through the less permeable silty clay.  Areas closer 

to the bedrock high, along the edges of the basin receive recharge into the coarser grained 

sediments where it preferentially flows along the basal alluvial fan deposit, and 

eventually end up circumventing the middle unit.  However, over time some water does 

pass through the middle unit, diluting the original recharge with modern recharge.  The 

isotope data can now be fully understood in terms of this geologic setting that is unusual 

for most of the SRV groundwaters.   

In this explanation, the original deep, low δD water trapped in bedrock fractures once 

filled the basin at least up to the middle alluvial unit.  Recharge to the groundwater 

evolved to modern day values, and essentially flushed out the signal in the lower unit due 

to higher permeability and preferential route from the surface.  However, since the 
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middle unit is less permeable, it is taking a longer time to flush the middle unit of its 

original isotopic signature.  The result is an intermediate mix between ancient recharge 

located in the bedrock fractures and recent recharge from the surface that falls along a 

linear mixing array (Figure 18).  This also explains the position of the bedrock sample 

with the most positive δD (sample 1208).  Through a series of interconnected fractures, 

some recent water has been able to seep down through secondary porosity.  This sample 

is isotopically and chemically most similar to the other lower unit samples, indicating a 

similar origin, but with a quicker route to the deep subsurface.  

This is the only clear mixing trend observed in this study.  The stable isotopes have 

indicated the end-members and the relative proportions of the various mixtures can be 

readily determined simply from the position of the data in the linear array.  For example, 

a sample lying exactly half way between the two end-members would be a 50/50 mix of 

the two.  A sample lying 25% of the way down from the upper to the lower would 

indicate 75% of the mixture is composed of the upper end member.  Thus, in Figure 18, 

sample 506 is 37% lower unit (upper end member) and 63% bedrock (lower end 

member). The other intermediate mixtures may be similarly calculated.  In a mixing 

trend, the chemical constituents of the various mixtures will also vary according to the 

mixing proportions providing they are not lost to, or leached out of, the aquifer minerals. 

Cross plots of chemistry versus isotopes can therefore powerfully assess water-rock 

interactions in mixed samples as explored below.  
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Water-Rock Interaction 

Plots of δ−values versus chemistry can be useful in analyzing water-rock interaction.  

It is known from the previous isotopic analysis that the isotopic data from well 22.9E-

10.8N define a line.  This line is interpreted as a mixing line with the lower alluvial unit 

as the end member enriched in deuterium and bedrock as the end member depleted in 

deuterium (Figure 18).  If chemical constituents are mixing in the same proportions as 

isotopes, the chemical data should also fall on a mixing line.   

Figure 20 is a δD vs. sulfate cross plot of zonal data from 22.9E-10.8N.  The data fall 

on a line with the high sulfate waters from the bedrock and low sulfate waters from the 

lower unit as end members.  The middle unit samples are located on this line between the 

two end members, indicating the middle unit sulfate composition is a mix between the 

sulfate compositions of the lower and bedrock units.  

This is not the case with all chemical constituents from this well.  Figure 21 is a plot 

of δD vs. calcium for the same well.  The bedrock fracture groundwaters have high 

calcium values, while the modern recharge of the lower unit have the lowest calcium 

values.  Drawing a line defined by the end member values will identify intermediate 

values of a conservative mix between these two compositions.  However, three of the 

intermediate middle unit data points lie below this inferred mixing line, indicating lower 

than anticipated calcium values for the middle unit groundwaters.  This deviation from 

the mixing line indicates that approximately 20-40 mg/L of calcium has been lost, likely 

consumed into the alluvial formation.  This could perhaps be the result of calcite 

precipitation.   
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Figure 22 illustrates a similar water-rock interaction for magnesium.  From the δD vs. 

magnesium mixing array, it is evident that three of the middle unit samples lie below the 

mixing line and have therefore lost approximately 15-20 mg/L of magnesium to the 

formation.  Formation of high magnesium calcite and possibly dolomite could consume 

calcium and magnesium in these water-rock reactions.   

The δD vs. arsenic diagram (Figure 23) illustrates a different scenario.  In this case, 

the middle unit data lie above the mixing array defined by the bedrock and lower unit δD 

values, indicating higher than expected arsenic concentration in the groundwater.  Water-

rock reactions have mobilized 20-35 µg/L of arsenic in the groundwater.  It is common to 

see groundwaters yielding high arsenic values in the SRV.  Arsenic mobility is tied to 

several different factors including redox potential, dissolved oxygen content, and iron 

concentration in the groundwater (Robertson 1991).  

 It is possible that ion exchange reactions within the middle unit clays are playing a 

dominant role in controlling the water chemistry.  It is possible that these ion exchange 

reactions absorb calcium and magnesium into the rock formation and exchange with 

arsenic, which is then mobilized to the groundwater.  Supporting evidence of this is in 

Robertson (1991).  This study found that ion-exchange reactions dominate basin 

chemistry and are responsible for magnesium enrichment in the subsurface clays.  Clays 

often found in the formations of the East Valley are dominantly montmorillite, which are 

high in calcium and magnesium (Robertson 1991).   

It is clear that when the water molecules themselves display a robust mixing trend, 

isotopic cross plots against chemistry can be powerful tools used to evaluate diagenetic 
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water- rock reactions.  Stable isotopes make this quantitative analysis possible; it would 

be near impossible to do this from the chemistry alone.  

Utility and Limitations of Zonal Groundwater Isotope Analysis  

Zonal sampling during well installation yields a set of water samples from specific 

depth intervals before final well construction.  This type of sampling returns discrete 

chemical and isotopic analysis for a 40 ft (12 m) depth interval.  In this study, zonal 

analysis has successfully provided the opportunity to expand previous hypotheses as well 

as indicate the ability to assess mixing relationships and water- rock interaction. 

Furthermore, zonal sampling highlights distinctive water quality variations with varying 

stratigraphy within a well, and constitutes vital data when considering the final well 

design.  Following completion of the well, groundwater is produced from the screened 

intervals that receive water from multiple depths.  Water from the producing well is thus 

a composite of many zonal depth intervals.  It is often difficult to identify which horizon 

is contributing the greatest groundwater flow based on water chemistry alone due to the 

water-rock interactions discussed in the previous section.  Commonly, mechanical 

methods to determine relative flow contribution to a well are used during a constant rate 

test.  One of these methods, a spinner log, has limitations as it requires testing over the 

entire screen interval.  Often, a pump is set below the top of the screen, or the pumping 

water level of a well is drawn-down past the top of the screen.  Both of these problematic 

cases restrict access to the uppermost screened area and can therefore result in an 

incomplete spinner analysis. In a well screened over multiple zones (or hundreds of feet), 

it is possible that a comparison of stable isotopes analyzed both during zonal sampling 
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and composite sampling may help to identify the zone of greatest contribution.  The 

locations of wells for which zonal samples were taken are indicated in Figures 9 and 13. 

Well construction diagrams for these wells are available in Appendix C. 

 Arsenic Mitigation 

SRP well 22.9E-10.8N is located in Scottsdale, AZ on the western edge of the East 

Valley (Figure 13).  The well was drilled in 2004 to a total depth of 2010 ft (613 m) and 

ended in fractured bedrock.  Figure 24 shows the δD vs. δ18O plot for this well. The well 

yielded 14 zonal depth samples, the most of any of the studied wells, and the only well to 

generate bedrock zonal samples.  No upper unit samples were taken. Four samples were 

taken from the middle unit (circles) as well as four samples from the lower unit 

(triangles).  The six deepest samples were generated from the bedrock unit (squares).  

The well construction of 22.9E-10.8N includes three screened intervals: from 400-540 ft , 

640-760 ft, and 840-1180 ft (122-165 m, 195-2332 m, and 256-360 m respectively).   

As discussed previously, the zonal sample data define a mixing line between the 

lower alluvial and bedrock units.  The composite sample of the well once completed 

should fall on this line in a position relative to the percent of contributions for the zonal 

sample depths included in the final screened interval. Figure 25 is a δD vs. δ18O cross 

plot of the zonal samples included in the screen interval and also the composite sample 

(white diamond) taken after well construction. In a simple mixing scenario between two 

points, a composite data point will lie somewhere on the line reflecting a contribution 

from each end member data point.  The position of the composite sample is directly 

proportional to the distance between those two points, analogous to the “lever rule” in 
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petrology.  For example, a composite located halfway between two end members reflects 

a 50/50 mix between those end members. The closer to the end member, the greater the 

portion that end member contributes.  So, an 80% contribution of one end member to a 

mixture will cause the mixture to plot 20% of the way to the other end member. Analysis 

with multiple data contributing to the composite, as shown in Figure 25, becomes more 

complex.  

Determining flow contribution is especially important in this well due to the elevated 

arsenic concentration of the composite sample.  The composite arsenic concentration and 

the middle unit samples (grouped in Figure 25) are high in arsenic.  Because of the 

similarities of elevated arsenic composition in these samples, it has been assumed that the 

greatest flow contribution is from the middle unit, and that any modifications to the unit 

to inhibit arsenic production could also result in loss of significant well production.  

Exploration into this problem via spinner log has been inhibited because the pump is 

below the top of the perforations and pumping water levels drop below the top of the 

screen.  It is possible that isotopes may help to identify the greatest loss in production that 

could occur by sealing off the middle unit screen interval to mitigate natural arsenic 

contamination.  The composite in Figure 25 is a mix between two end members.  The 

enriched δD end member is one sample located at 1025 ft (312 m).  The depleted δD end 

member is the sum of the remaining seven samples that plot isotopically more negative 

than the composite.  It would be difficult to determine the proportion of the individual 

seven low δD samples to the composite without more information.  In order to determine 

the maximum amount that the high arsenic samples contribute to the well, a hypothetical 
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case is calculated where these middle unit, high arsenic samples are the only end 

member.  In this extreme case, which would maximize the contribution of arsenic to the 

composite, 63% of the composite flow is being contributed by the 1025 sample and 37% 

of the flow is contributed from the middle unit samples.  This is to say if the entire 

middle unit were to be sealed off from the well, no more than 37% of production from the 

well would be lost.  This is the maximum value of contribution, because the other lower 

δD samples surely contribute to the mixture.  This is likely because the lower alluvial 

samples at 707 and 926, which lie below the composite, are coarser grained, more 

permeable units.  This suggests it is possible to mitigate the arsenic problem by sealing 

off the middle unit.  This may not result in a significant loss of production, but could 

increase the overall water quality of this well.   

This highly practical result illustrates the significance of isotopes as a tool to determine 

better well designs, and evaluate well modification challenges.  With stable isotopes, it is 

possible to assess the probability of successful well modification in order to increase 

composite water quality without sacrificing water quantity. 

Identifying Relative Aquifer Contributions and Projecting Aquifer Depletions 

SRP well 25.9E-03.9N is located in Tempe, AZ along the Tempe Canal near the Salt 

River Channel (Figure 13).  The well was drilled in 2007 to a depth of 1562 ft (476 m).  

Eleven zonal samples were generated from the well.  Figure 26 is the δD vs. δ18O graph 

depicting the zonal isotopic data.  Seven of these samples were obtained from the middle 

unit (circles) and four from the lower unit (triangles).  The results indicate there are three 

different horizons of groundwater.  The shallowest sample at 290 ft (88 m) is enriched in 
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18O and plots significantly off of the meteoric water line.  This depth likely receives a 

significant amount of recharge through flood irrigation.  The historic land use has been 

predominantly agriculture, and therefore retains an evaporated isotopic signature.  The 

next 9 samples ranging from depths between 380-1360 ft (116-415 m) plot near or on the 

meteoric water line within -9.7‰ to -10.3‰ and -70‰ to -73‰.  These samples are 

indicative of modern, meteoric recharge and would be expected from the proximity of the 

Salt River channel to the well.  The deepest sample at 1470 ft (448 m) is the sample most 

isotopically depleted in the 18O and D, but plots off the meteoric water line at -10.2‰, -

79‰.  The more depleted in the heavy isotopes yet somewhat evaporated isotopic 

composition suggests that this water is remnant of a cooler era and has been derived from 

evaporation of an older, possibly Pleistocene source, much like the bedrock samples from 

well 22.9E-10.8N.   

The composite isotopic sample was taken roughly two months after the zonal 

sampling, and is shown along with the included zonal samples in the screen interval in 

Figure 27.  The final well design included most of the upper sample zones as the screen 

was completed from 270 ft (82 m) to 1153 ft (351 m).  The composite isotope sample 

resulted in a value nearly identical to the zonal sample at 290 ft (88 m).  A line can be 

drawn through the data from point 290 and through the composite to the remaining 

meteoric cluster.  Several hypothetical mixing scenarios can then be calculated using this 

line as a mixing array.  Assuming each individual sample within the cluster of samples 

contributes to the composite in equal amounts, the meteoric group would contribute only 

13% of the mix, and the sample 290 would contribute 87%.  If any one sample within the 
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cluster of meteoric samples contributes all of the end member contribution, percentages 

range from 10% (if sample 470 contributes all) to 14% (if 950 contributes all).  Each of 

these scenarios demonstrates that the composite composition is dominated by the horizon 

around sample 290.  In this application, isotopes clearly provide an assessment of where 

the main contributing unit is located. 

The sample at 290 ft is located in a shallow, unconfined unit.  Over-pumping 

groundwater at a rate faster than can be naturally recharged to these units leads to 

dewatering.  If the composite of this well drifts with time down the mixing line toward 

the cluster of meteoric samples, it would suggest that the horizon at 290 is contributing 

less water, possibly as a result of dewatering the unit.  Monitoring this well for changes in 

the composite isotopic composition may potentially reveal an isotopic application to 

project the rate of depletion from a contributing unit, and could potentially influence the 

designed pumping rate to be modified for a more sustainable discharge rate. 

Isotopic Measurements Varying Flow Rate Contributions 

SRP well 31.1E-02.1S is located near the center of the East Valley basin in the 

southeast valley (Figure 13).  The well was drilled in 2007 to a total depth of 1059 ft (323 

m).  All 6 zonal samples are located in the middle unit.  Figure 28 is the δD vs. δ18O 

graph depicting zonal isotopic data.  Four of the samples plot close to the meteoric water 

line, including the shallowest sample. However, the next two shallowest samples 510 and 

620 are enriched in 18O.  This suggests evaporation and possibly a different source of 

recharge from the shallowest sample.  This could perhaps be the result of a change of 

land use in the area from agriculture to domestic use.   
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Three composite samples were taken at three different flow rates, 800, 1200, and 

2000 gpm (3082, 4543, 7570 L/m) to determine if the isotopic composition of the 

composite is dependent upon discharge flow rate (Figure 29).  Discharge samples at 800 

gpm (3082 L/m) and 2000 gpm (7570 L/m) were taken during a step rate test, while the 

discharge rate of 1200 gpm (4542 L/m) reflected the final constant rate test.  The 

composite isotope results (Figure 29) demonstrate variability and suggest that at a lower 

pumping rate, more evapoconcentrated water is being captured.  At higher pumping rates, 

more meteoric water is captured.  All pumping rates suggest the interval at 510 ft (155 m) 

plays a significant role in flow contribution.   

Limitations of Isotopic Analysis to Well Evaluations 

SRP well 00.4W-03.3N is located in the southwest valley near the confluence of the 

Gila and Agua Fria rivers in the West Valley (Figure 9).  The well was drilled in 2008 to 

a total depth of 995 ft (303 m).  The well yielded 9 zonal depth samples at 8 different 

depths (1 duplicate).  Figure 30 is a δD vs. δ18O plot of the zonal samples.   Seven of 

these samples were located in the upper unit (x) with depths between 144 -326 ft (44-99 

m) below ground surface.  Most of the upper unit samples cluster in a domain between -

8.5‰ and -8.8‰ in δ18O and -65‰ to -68‰ in δD.  One outlier at 251 ft (77 m) appears 

more evaporated and is farther off of the meteoric water line than the other upper unit 

samples.  Two of the samples from the middle unit (circles) at depths of 371 ft (113 m) 

and 416 ft (127 m) below ground surface are closer to the meteoric water line and are 

more 18O depleted than the upper unit samples. These sample values range from -9.5‰ to 

-9.9‰ in δ18O and -70‰ to -72‰ in δD.  Sampling did not occur in the lower unit.  The 



   48 

 

composite sample was taken roughly one month later after casing was installed with a 

screen interval of 365-435 ft (111-133 m).   

Figure 31 illustrates the composite sample (diamond) with the zonal sampling data 

included in the screen interval.  The composite is not clearly located on a line between 

the two remaining zonal samples.  There are two possible explanations.  The composite 

sample data point lies above the middle unit samples, but within error of δD from sample 

371.  This near identical relationship suggests that the sample 416 contributes almost 

nothing to the composite.  The isotopic composite value could signify additional water 

contribution after construction.  The upper unit samples were isotopically more enriched 

in the heavy isotopes than the middle unit samples and could be mixing with the middle 

unit samples.  If so, it could indicate that the bentonite seal above the perforations is 

partially ineffective and allows upper unit groundwater to circumvent or seep through the 

seal. With future, regular, composite analysis this possibility could be monitored and 

evaluated. 

The error bars on sample 371 and the composite overlap and may indicate 

overwhelming contributions from sample 371 to the composite.  All these data are so 

isotopically similar that interpretation is very difficult.  In cases where variations of δ-

values are small for different zones, isotopes are of little utility. 

SRP well 05.1E-16.2N is located near the end of the Arizona Canal in Peoria, AZ 

(Figure 9).  This well was drilled in 2008 to a total depth of 1739 ft (530 m).  The well 

generated 12 zonal depth samples at 11 different depths (1 duplicate).  Figure 32 is the 

δD vs. δ18O plot of zonal samples from well 05.1E-16.2N.  Sampling did not occur from 
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the upper unit.  Nine of the samples were generated from the middle unit (circles).  The 

four shallowest samples suggest minimal evaporation (with one exception) and are 

enriched in the heavy isotopes to the right of the GMWL.   These 18O values range from -

8.1‰ to -8.4‰ and δD values of -63‰ to -65‰.  The deeper middle unit samples are 

enriched in the heavy isotopes but lie near the meteoric water line ranging between δ18O 

values of -8.3‰ to -8.5‰ and δD values -61‰ to 62‰.  There is one middle unit sample 

at 517 ft (158 m), which plots close to meteoric water line but is more depleted in the 

heavy isotopes than the samples immediately above or below it stratigraphically. This 

could be the result of a slug of older flood water from the nearby New River.  The lower 

unit samples (triangles) at depths 1435, 1550, and 1705 ft (437, 472, and 520 m 

respectively) are more depleted in 18O and D and close to the GMWL.  The two deepest 

samples are the most depleted in the heavy isotopes.  

The composite sample was taken from a casing design with two sections of screen.  

One section is screened from 560-920 ft (171-280 m), the other from 1020-1250 ft (311-

381 m).  The composite isotopic water quality (diamond) and zonal samples included in 

the screen interval are shown in Figure 33.  The composite likely receives nearly all its 

contributions from the samples that are near identical and within error, which are samples 

920, 1078, and 1245.   

Here again, the composite sample is indistinguishable in isotopic composition from 

an end member of a zonal sample array signifying dominant water contribution from 

those end members.  Precise evaluation is not possible from samples displaying limited 

isotopic variations. 
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SRP well 12.1E-08.9N is the closest West Valley well to the East Valley divide 

(Figure 9).  The well is located in Phoenix, AZ and was drilled to a total depth of 709 ft 

(216 m) in 2007.  The well yielded 6 zonal samples.  Four of these samples are located in 

the middle unit (circles), while two are located in the lower unit (triangles).  No samples 

were obtained from the upper unit.  The δD vs. δ18O results are shown in Figure 34.  The 

δ18O values vary between -8.5‰ and -9.0‰.  The δD values range between -63‰ to -

67‰.  The lower unit samples are slightly more depleted in D, but within error of the 

middle unit sample values.  Regardless of the depth sampled, the samples cluster in one 

general area, suggesting a homogeneous mix of source waters.  As discussed previously, 

this is likely due to basin edge geology and the relatively shallow depth to basement and 

subsequent thinning of alluvial layers.   

The composite (diamond) of this well is shown in Figure 35 and illustrates an isotopic 

composition more enriched in 18O than the zonal samples but within the error of sample 

280 ft (85 m).   The composite sample does not lie within or between the zonal data, and 

therefore suggests the well is not a mix of the zonal samples.  The composite is likely 

identical to the sample 280, and in fact the error bars overlap.  It is improbable that the 

composite is a result of mixing with an unidentified horizon because most of the saturated 

depth of the well was sampled during zonal testing. 

This investigation of zonal sampling comparisons with composite samples is useful in 

evaluating the relative flow contributions from a given stratigraphic horizon as well as 

establishing a baseline of composite isotopes to monitor for the future.  By instituting 

routine annual isotopic analysis, the composite isotopic composition may reveal changing 
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conditions of the aquifer including dewatering, over pumping, changing flow 

contribution, effectiveness of bentonite seals, and changing sources of recharge.  These 

can suggest the need for a change in the way wells are operated in order to maintain 

production from desired units. 

One common trend that became apparent in this investigation is that isotopic data 

returned progressively more negative δ-values with increased depth.  As previously 

discussed, this can be explained through ‘pre-development recharge”, but also may be 

indicative of cooler source climates such as the bedrock data in 22.9E-10.8N.  The study 

also demonstrates the need for more precise isotopic measurements in order to more 

certainly identify the greatest flow contribution. Multiple analyses of isotopic samples 

can shrink the error bars and more clearly define mixing arrays.  For future studies 

additional zonal sampling at shallower depths may identify composite end members.   

Old versus New Wells 

Wells deteriorate with age, and over the history of the SRV several wells have needed 

to be replaced.  As a general rule, WWII era and older wells were drilled to shallower 

depths with a cable tool drilling method.  Advanced drilling techniques and further 

exploration has made it possible to drill deeper down, into the middle and lower alluvial 

units.  In general, when a well is replaced, the water quality increases as waters from 

deeper, pre-development eras are tapped. In the design and construction of new wells, it 

is helpful in determining if the water is indeed significantly different between the old and 

new replacement wells. This is important when considering pathways for surface 

pollutants such as nitrate from agriculture or heavy metals from urban storm drainage.   
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At times this is difficult to determine based solely on water quality.   As already shown, 

stable isotopes have provided helpful analysis in determining the differences between 

SRV recharge sources and variations with well depth.  Therefore, it is possible that stable 

isotopes may also confirm the success of tapping a different groundwater source.  Figures 

36-39 illustrate the δD versus δ18O graph of four separate replacement well pairs.  Well 

constructions are available in Appendix C. 

Figure 36 compares the isotopic composition of a pair of northwest valley wells. The 

older well, 07.5E-15.2N had a screen interval of 320-685 ft (98-201 m)  while  the 

replacement well 07.6E-15.2N is screened in two areas from 655-975 ft (200-297 m) and 

1125-1560 ft (343-475 m).  The results indicate that even though there is a small section 

of overlapping screen, the older replacement well is indeed tapping a different horizon of 

the aquifer than the older well.   

Figure 37 compares the isotopic results of the replacement well 25.9E-03.9N, which 

was a zonally tested well in the previous section, with the older well 26.0E-03.9N, which 

was screened over 80-362ft (25-110 m).  Again, the results show that even though there 

is some screen overlap between the old and new wells, the source of groundwater 

contributing to these screen intervals is significantly different.    

Figure 38 illustrates the isotopic differences between an old well 33.0E-03.0S, which 

has a screen interval of 174-434 ft (53-132 m) and the replacement well 32.9-02.1S with 

a screen interval of 560-820 ft (171-250 m).  The results of this data comparison indicate 

that the waters between the two are slightly different, but that despite the separation of 
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screen intervals and no overlap, there may not be a major difference between the sources 

of recharge for that area. 

The final comparison of wells 23.0E-10.8N and 22.9E-10.8N (Figure 39) demonstrate 

that both wells have similar isotopic composition.  This is expected as the screen designs 

of both wells overlap for the majority of the casing construction.  This illustrates that both 

wells tap the same aquifer and any water quality problems from the old well will likely be 

seen in the new well without modifications.   

This result indicates that stable isotopes can be used to confirm the effectiveness of 

replacement wells.  If the isotopic data for the old and the new wells do not overlap, it 

suggests that the wells have tapped different groundwater horizons.  In the wells that do 

have overlapping isotopic data, the implication is that the source of water is the same.  

This is important when dealing with replacement wells for water quality.  Overlapping 

wells from the same source could obviously experience the same water quality problems.  

It is also possible that with time and continue monitoring, communication between the 

old and the new could be discovered by tracking any convergence of the composite δ-

values. 
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Chapter 7 

CONCLUSION 

This investigation yielded interpretations regarding the origin and the anthropogenic 

evolution of groundwater in the SRV.  There is no indication of remnant playa water in 

the SRV groundwaters.  The sources of groundwater recharge to the SRV are river 

systems.  The anthropogenic alteration of these river systems shows up in the isotopic 

record as more evapoconcentrated waters produced during irrigation.   

This study also confirmed, expanded, and compared the existing research of the local 

West Salt River Valley isotopic variations to the East Salt River Valley groundwaters.  

The East and the West Valley sub-basin isotopic composition originally differ due to the 

difference in elevation of source areas, but now are strikingly similar because of the 

engineering diversion of the lower elevation source surface water to the East Valley. 

Stable isotopes in conjunction with geophysical, geologic, and chemical data are 

powerful tools to explain complex hydrology problems. Isotopes successfully uncover 

mixing arrays, which, in conjunction with geophysical and geological data, can decipher 

anomalous groundwater flow paths.  Furthermore, isotopes can be used distinctively with 

chemical data to indicate and quantify water-rock interactions in the subsurface.  

Zonal isotopic sampling is a powerful tool that can be used for multiple investigations 

such as contaminant mitigation, determining mixing ratios and stratigraphic flow 

contributions, monitoring depletion of groundwater resources over time, and assessing 

contribution variations with changing flow rates, and verification of replacement well 

design.   The utility of isotopes is certainly apparent in identifying sources of 
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groundwater recharge and can therefore be implemented for industrial applications such 

as well design, well modification, contamination remediation, and sustainable pump 

designs.   

This study is only the beginning of the practical use of isotopes. By obtaining unique 

depth specific zonal sampling and comparing these data to the final composite well 

samples, this investigation has created a baseline against which to monitor these wells in 

the future.  The comparison of the initial and future data will identify changes in the 

groundwater contribution for these wells, and provide a database of the evolution of the 

aquifer. 

Isotopic investigation is not without limitations.  Although the utility of isotopes are 

apparent in datasets with a wide range of δ-values, they are of little significance for data 

containing small variations.  With increased precision, even small variations in data sets 

may be decipherable and used in these noteworthy engineering and operational 

applications. 
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Figure 6.  Example of a zonal sampling design. Units are in feet below ground surface 

(bgs). 
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ISOTOPIC RESULTS OF SAMPLED WELLS 
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APPENDIX B  

AVAILABLE CHEMICAL DATA FROM SAMPLED WELLS 
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WELL CONSTRUCTION DIAGRAMS 
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