
 

 

Evaluation of a Biofeedback Intervention in College Students Diagnosed with Autism 

Spectrum Disorders  

by 

Garret Westlake 

 

 

 

 

 

A Dissertation Presented in Partial Fulfillment  

of the Requirements for the Degree  

Doctor of Philosophy  

 

 

 

 

 

 

 

 

 

 

Approved August 2013 by the 

Graduate Supervisory Committee:  

 

Kathleen McCoy, Chair 

Jane Brown 

Linda Caterino 

Samuel Digangi 

 

 

 

 

 

 

 

 

 

ARIZONA STATE UNIVERSITY  

December 2013  



 

i 

ABSTRACT  

   

This study used exploratory data analysis (EDA) to examine the use of a 

biofeedback intervention in the treatment of anxiety for college students diagnosed with 

an Autism Spectrum Disorder (ASD) (n=10) and in a typical college population (n=37). 

The use of EDA allowed for trends to emerge from the data and provided a foundation 

for future research in the areas of biofeedback and accommodations for college students 

with ASD. Comparing the first five weeks of the study with the second five weeks of the 

10 week study, both groups showed improvement in their control of heart rate variability, 

a physiological marker for anxiety used in biofeedback. The ASD group showed greater 

gains, more consistent gains, and less variability in raw scores than the typical group. 

EDA also revealed a pattern between participant attrition and a participant's biofeedback 

progress. Implications are discussed. 
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Chapter 1 

INTRODUCTION TO THE STUDY 

Background 

 The most recent estimates from the Centers for Disease Control and Prevention 

[CDC] (2013) are that 1 in 50 children in the United States are diagnosed with an Autism 

Spectrum Disorder (ASD). Children and young adults with ASD are the sixth largest 

disability group in k-12 education (Chiang, Cheung, Hickson, Xiang, & Tsai, 2012). 

Unfortunately, and reinforced by this most recent CDC report, the literature continues to 

largely focus on children with ASD – ignoring that children with ASD grow into young 

adults with unique needs. For example, 43% of young adults with ASD enroll in colleges 

or universities post-high school; however, due to a lack of literature and research-based 

best practice, institutions of higher education are unprepared to accommodate the rising 

number and unique needs of students with ASD, resulting in poor quality of life, low 

graduation rates, and diminished employment outcomes (Camarena & Sarigiani, 2009; 

Chiang et al., 2012; Glennon, 2001; VanBergeijk, Klin, & Volkmar, 2008).  

Compounding the challenges facing unprepared colleges and universities are that 

students with ASD are at an increased risk for co-morbid conditions such as anxiety, and 

due to poor insight and awareness, often refuse or do not seek help and assistance 

(Adreon & Durocher, 2007, Glennon, 2001; Hughes, 2009; VanBergeijk et al., 2008). 

McCoy (2012) found that mental health issues such as anxiety and depression are on the 

rise and impact 40-45% of children and adolescents with ASD. Traditional talk therapy 

approaches are often ineffective or insufficient due to the inherent social deficits present 

in individuals with ASD (Ramsay, Brodkin, Cohen, Listerud, Rostain, & Ekman, 2005). 
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In response to these challenges, colleges and universities must be proactive in identifying 

new and innovative solutions for students with ASD that are affordable, sustainable, and 

effective. 

Disability professionals working in college and university Disability Resource 

Centers (DRC) are the frontline service providers to students with ASD, and as a result, 

have unique insight into the needs of this population. This study investigates the 

introduction of a biofeedback software program by a public university DRC in response 

to the needs of students with ASD.  

Biofeedback is a promising tool, and implemented by the DRC in this study, 

because biofeedback uses physiological markers such as heart rate variability (HRV) to 

inform users and professionals about levels of well-being such as anxiety. Because 

biofeedback is a new technology, particularly for use in college students with ASD, the 

analysis of data in this study is of critical importance in shaping future work in this field.  

Published research typically relies on traditional techniques such as confirmatory 

data analysis (CDA) in the reporting of study results. In well documented fields of study, 

with large volumes of pre-existing literature, the development and testing of specific 

hypotheses is justified, because new hypotheses are based on established trends and 

patterns that emerged from previous research. The challenge facing research in new fields 

of study, such as interventions in college students with ASD, is that without historical 

data and models any hypothesis generated by a researcher is ungrounded and likely to 

miss critical aspects of the novel population or approach being studied (Behrens, 1997; 

Cohen, 1994). Exploratory Data Analysis (EDA) is a powerful solution for the study of 

novel disciplines, because EDA applies highly visual computational tools - patterns, 
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trends, and discoveries emerge and can lead to the development of models or well 

reasoned hypotheses for future research.  

This study documents the use of an EDA based approach to data analysis by 

identifying patterns and trends in program data related to the impact of biofeedback on 

the anxiety level of individuals with autism. Information learned from this study will 

contribute to the literature related to the utility of EDA as well as a beginning point for 

identification of patterns or trends in data related to biofeedback and autism in young 

adults.  

Conceptual Underpinnings 

Although data on graduation and retention rates for students with ASD is 

unavailable, students with disabilities in postsecondary education typically experience a 

53% completion rate compared to 64% for students without disabilities (U.S. Department 

of Education, 1999). Investigation is sorely needed into the experiences and outcomes of 

students with ASD in postsecondary education, particularly as they are the largest and 

fastest growing special education population in America (Chiang et al., 2012; 

VanBergeijk et al., 2008).      

 Multiple factors are responsible for the sudden rise in transition to postsecondary 

education for young adults with ASD. VanBergeijk et al., (2008) cites the surge of ASD 

diagnoses in the 1990’s leading to a wave of young adults with ASD who are now 

reaching college age. This wave of young adults with ASD benefited from strategies and 

early interventions that make them more academically qualified for postsecondary 

education than at any time in the past (Dillon, 2007; VanBergeijk et al., 2008). Camarena 

and Sarigiani (2009) offer evidence that parents may be influencing the rise in college 
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attendance by encouraging and expecting young adults with ASD to transition to higher 

education post high school.  

The United States Department of Education is also a factor in rising rates of 

college attendance for individuals with ASD.  The Department of Education recently 

unveiled a five-year plan to offer transition programs at 27 colleges and universities for 

students with ASD and co-morbid intellectual disabilities (Nevill & White, 2011). 

 This new initiative by the Department of Education, in conjunction with already 

increasing rates and access to interventions, dramatically increases the pressure on 

institutions of higher education. Investigation must continue to uncover and explore best 

practices to assure the success of this growing population on college and university 

campuses.  

 The literature demonstrates that few colleges and universities are prepared to 

serve this growing population (Farrell, 2004; Glennon, 2001; Smith, 2007; VanBergeijk 

et al., 2008; Wolf, Brown, & Bork, 2009; Zager & Alpern, 2010). Additionally, a lack of 

literature exists regarding supports for college students with ASD, and this absence has 

serious consequences. Glennon (2001) and VanBergeijk et al. (2008) report that anxiety 

levels in college students with ASD rise to dangerous levels in response to the social and 

environmental demands of the college experience. Glennon (2001) argues that failure to 

address the mental health needs of college students with ASD puts them, “at increased 

risk for depression and perhaps increased risk of suicide” (p. 1366). Anxiety is one the 

chief contributing factors to the poor mental health of college students with ASD 

(Glennon, 2001; VanBergeijk et al., 2008; Wolf, 2009).  

An emerging strategy for managing anxiety across populations is the use of 
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biofeedback, a system that monitors an individual’s physical response to stress such as 

heart rate, heart rate variability (HRV), and other biometric data.  Thompson, Thompson, 

and Reid (2010) report that HRV, one measure of biofeedback, is a strong marker for 

anxiety. HRV is easy to measure, and non-invasive, making the technique an ideal 

instrument for studies of anxiety. Biofeedback technology has evolved to not only be an 

effective intervention for anxiety, but cost effective, easy to use, and widely available. 

Colleges and universities are recognizing the opportunity that biofeedback offers as a 

campus resource and are adopting it in greater numbers (Ratanasiripong, Sverduk, 

Hayashino, Prince, 2010).  

Summary 

 The past decade brought an increase in awareness and diagnosis of ASD in 

children, and has created a current surge in the number of young adults with ASD who 

are facing a critical transition to postsecondary settings. Almost half of all high school 

students with ASD are considering and attending colleges and universities; however, little 

literature exists on how to accommodate or meet the needs of these students in higher 

education. The transition to college life can tax the poor coping skills of students with 

ASD and exacerbate existing co-morbid conditions such as anxiety. The resulting impact 

on college students with ASD is increased anxiety, risk of academic failure, poor quality 

of life, and even self harm. 

 Disability service providers in higher education are forced to address these 

concerns and are adopting new strategies and techniques. Biofeedback is one technique 

with a history of successfully treating anxiety in adults with and without ASD. This study 

javascript:__doLinkPostBack('','ss%7E%7EAR%20%22Ratanasiripong%2C%20Paul%22%7C%7Csl%7E%7Erl','');
javascript:__doLinkPostBack('','ss%7E%7EAR%20%22Ratanasiripong%2C%20Paul%22%7C%7Csl%7E%7Erl','');
javascript:__doLinkPostBack('','ss%7E%7EAR%20%22Hayashino%2C%20Diane%22%7C%7Csl%7E%7Erl','');
javascript:__doLinkPostBack('','ss%7E%7EAR%20%22Hayashino%2C%20Diane%22%7C%7Csl%7E%7Erl','');
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reports on the findings of one university DRC office that implemented a biofeedback 

program for their college students with ASD. 

A  CDA approach to the data in this study would be inappropriate given the 

current lack of research on college students with ASD using biofeedback. Therefore, this 

study takes an EDA approach in order to provide the greatest benefit to the field, and 

contribute to a foundational level of understanding on the use of biofeedback in college 

students with ASD. This study’s use of an EDA based analysis of the data provides 

disability service professionals, the field of ASD, the field of biofeedback, and the field 

of EDA with insight into the use of biofeedback in college students with ASD, and 

contributes to future academic research on the use of biofeedback and EDA as tools for 

intervention and evaluation. 
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Chapter 2 

LITERATURE REVIEW 

 This study explores a biofeedback intervention in college students with ASD 

through the use of EDA. An interdisciplinary approach is utilized in the review of 

literature for this study. The five main areas addressed in this review of literature are: the 

accommodation experience of college students with ASD, the role of anxiety in quality of 

life, co-morbidity of anxiety and ASD, the emergence and effectiveness of biofeedback 

as an intervention for anxiety, and the use of EDA as a computational tool for program 

evaluation and as a catalyst for future research. Each of the five areas covered in this 

literature review provide insight into the current challenges facing college students with 

ASD. Collectively, these areas provide hope that new techniques and approaches may 

offer therapeutic interventions that benefit an emerging and underserved population, and 

that the appropriate use of analytical tools such as EDA offer incredible value to 

researchers in the identification of trends and the discovery of often overlooked aspects 

of data through more conventional CDA approaches.  

Accommodations in Postsecondary Education 

Colleges and universities that accept federal funding, like financial aid, are 

required to accommodate students with disabilities under section 504 of the 

Rehabilitation Act and the Americans with Disabilities Act (ADA) of 1990 – now the 

ADA Amendments Act (ADAAA) (Simon, 2011). Despite laws mandating access to 

higher education, students with disabilities, particularly those with ASD, are not offered 

the level of accommodation necessary for success (Hughes, 2009; VanBergeijk, 2008; 

Zager & Alpem, 2010). The future for students with ASD in higher education will remain 
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grim as long as services and accommodations fail to meet the minimum level of access as 

prescribed by federal law. Literature documents high anxiety, stress, and a poor quality of 

life for students with ASD in higher education who struggle without appropriate 

accommodations (Camarena & Sarigiani, 2009; Chiang et al., 2012; Glennon, 2001; Klin, 

& Volkmar, 2008; VanBergeijk, 2008; Wolf et al., 2009). Given the increasing numbers 

of young adults diagnosed with ASD, and the demand for postsecondary education in this 

population, evaluation and review of accommodations and services must occur to 

improve quality of life outcomes in this population (Dillon, 2007; Hughes, 2009; Smith, 

2007).  

Unlike students with learning disabilities who have been accommodated for 

decades, a lack of information and experience accommodating students with ASD exists 

in higher education and poses great risks for student success (Dillon, 2007; Hughes, 

2009; Wenzel & Rowley, 2010; Wolf et al., 2009; Zager & Alpern, 2010). While the 

ADAAA and Section 504 provide for reasonable accommodations, the needs of students 

with ASD are different from the typical student with a learning disability and therefore 

these challenges must be explored to make progress. Future research must focus on the 

treatment of anxiety in college students with ASD in order to provide learning 

environments that are accessible, safe, and conducive to learning for this currently 

underserved population.    

Anxiety and Quality of Life 

The impact of anxiety on quality of life (QOL) for college students with ASD is a 

critical issue facing higher education. The Diagnostic and Statistical Manual of Mental 

Disorders, 4th Edition, Text Revision (DSM-IV-TR) lists nine types anxiety disorders 
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(American Psychiatric Association, 2000). According to a 2006 study by the American 

College Health Association 13% of college students suffer from anxiety in a 12 month 

period (American College Health Association, 2007). The presence of anxiety is 

concerning because it has an impact on aspects of daily living that makeup an 

individual’s QOL (Mogotsi, Kaminer, & Stein, 2000). Poor life satisfaction, general well-

being, social function, and perceived living conditions are all negatively impacted by the 

presence of anxiety (Mendlowicz & Stein, 2000; Mogotsi et al., 2000). The negative 

impact of anxiety disorders on QOL necessitates an effective intervention to reduce 

anxiety, which in turn will improve QOL. 

Impact of anxiety on QOL for college students with disabilities. The transition 

to college and time spent pursuing a degree can be stressful for all students, but for 

students with disabilities this period can bring an increase in anxiety greater than for the 

typical student (Davis III, Nida, Zlomke, & Nebel-Schwalm, 2008; Edwards, Patrick, & 

Topolski, 2003; Pancer, Hunsberger, Pratt, & Alisat, 2000). Reasons for this increase 

include poor coping skills for handling the transition from high school to college, 

adapting to greater independence as an adult, and the vastly different demands of college, 

academic and social, compared to high school (Pancer et al., 2000).  For students with 

ASD, these factors often translate into greater anxiety and poorer QOL than other student 

populations because students with ASD display poor social and communication skills 

which in the highly social and communication rich environment of a college campus can 

be isolating and increase anxiety (Glennon, 2001; VanBergeijk et al., 2008).  

Edwards et al. (2003) examined the impact of anxiety reporting that, “Forty-six 

percent of adolescents with disabilities in this study reported missing out on activities 
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they wanted to do fairly or very often versus 16% of those without disabilities” (p.238). 

This finding is supported by Davis III et al. (2008), who argued that, “for a proportion of 

students with learning disabilities accommodations may work, but academic success may 

be supplanted by other psychological variables” (p. 233). The trend in the literature 

suggests that stress and anxiety in college students with disabilities negatively impacts 

QOL due to lack of engagement in activities, environmental stressors, and preexisting 

mental health conditions.  

Anxiety in College Students with ASD 

The literature on anxiety in college students with ASD presents a disturbing 

picture compared with other disability subgroups such as those with learning disabilities. 

VanBergeijk et al. (2008) report that children diagnosed with an ASD in the 1990s are 

now facing transition to college or postsecondary settings (p. 1359). Few college faculty 

and staff are prepared to support this population of students (Wolf et al., 2009). The 

influx of students with ASD transitioning to college means that  the unique needs of  

these students are not likely to be addressed, thus creating even greater potential for 

anxiety. Also of concern is that individuals with ASD are at greater risk for anxiety than 

the general population (Ghaziuddin, Ghaziuddin, & Greden, 2002; Kim, Szatmari, 

Bryson, Streiner, & Wilson, 2000; MacNeil, Lopes, & Minnes, 2009).  

 Anxiety in children or adolescents is a significant predicator for anxiety in adults 

(Pine, Cohen, Gurley, Brook, & Ma, 1998). Kim et al. (2000) studied a population with 

ASD and found that, “children with anxiety and mood problems were more aggressive, 

limited their parents’ social activities and had poorer relationships with teachers, peers 
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and family members” (p. 127). The high incidence of children with ASD who struggle 

with anxiety will mature into young adults and adults with anxiety.  

The negative influence of anxiety on QOL is clearly present in college and 

university setting for individuals with ASD. VanBergeijk et al. (2008) have described 

contributing factors influencing anxiety in college and university students 

During the first semester the student’s skills will be taxed. The novelty of the new 

environment will elevate the student’s anxiety. This will be further exacerbated by 

the negotiations of a complex social environment in the dorms. The lack of 

familiar routine and structure will compound the student’s anxiety (p. 1366). 

Given the limited expertise among faculty and staff, increasing numbers of 

students with ASD entering college, and the high rates of anxiety continuing in this 

population an emphasis on effective, practical, and affordable interventions to improve 

outcomes must be developed. 

 Glennon (2001) argues that colleges must develop strategies so that the 

experience of students with ASD is free of fear, anxiety, and stress in order to achieve 

positive outcomes (p. 189). In order to achieve these outcomes, Glennon (2001) believes 

that new research on neurological functioning, academic interventions, and support 

strategies should be continually evaluated to limit fear, anxiety and stress in the 

experience of college students with ASD (p. 189). VanBergeijk et al. (2008) agrees, and 

sees a need for greater awareness of the issue facing this population.  In addition, 

VanBergeijk et al. (2008) recommend that the mental health professionals serving this 

population be aware of co-morbid conditions, because, “without such proactive supports 

these students are at increased risk for depression and perhaps increased risk of suicide” 
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(VanBergeijk et al., 2008, p. 1366). The pre-existing anxiety of students with ASD due to 

the high pressure to transition to new settings and social environment present in 

institutions of higher education places such students at ever greater risk. The very real 

danger of self harm associated with anxiety and poor QOL in college students with ASD 

has identified this population as one for which development, implementation and 

evaluation of strategic interventions is immediate.  

ASD and cognitive behavioral therapy. Why individuals with ASD are at 

greater risk for developing mood disorders, such as anxiety, is not fully understood; 

however, standard treatments for mood disorders such as cognitive behavioral therapy 

(CBT) are growing in popularity (Attwood, 2003; Ghaziuddin, et al., 2002; Hare, 1997; 

Howlin, 2002; Kim, et al., 2000). CBT is a form of therapy that helps clients identify 

their reactions and responses to stimuli and retrain and reorient how they think, feel, and 

act in the moment (Attwood, 2003; Hare, 1997; Howlin, 2002). Attwood (2003) argued 

that with modifications CBT could be effective with individuals with ASD, but 

acknowledged that research in this area was limited and based largely on individual case-

studies and that further research was needed. 

 Hare (1997) and Cardaciotto & Herbert (2004) both offer supporting evidence, via 

case-study examples, that CBT can be used in the treatment of anxiety in individuals with 

ASD. Although these findings offer some evidence that CBT may be a beneficial 

treatment for anxiety in individuals with ASD, CBT often requires ongoing therapy 

sessions with a licensed professional that can be time consuming and expensive. 

Observations from Hare (1997) were that the specific aspects of CBT that were 
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successful in working with this client were unknown, but that the use of visual feedback 

such as written instructions and information may have positively influenced the outcome. 

 Traditional talk therapy models such as CBT, dialectic behavior therapy, and 

humanistic therapies often rely on multiple visits with a highly trained and licensed 

mental health provider. Additionally, Ramsay et al. (2005) acknowledged that individuals 

with ASD may have a hard time establishing rapport with therapists because of the social 

challenges experienced by people with ASD. For college students making the difficult 

transition to a new environment, schedule, and campus lifestyle CBT and other talk 

therapies may prove too expensive, inaccessible on campus, or be to socially demanding 

to be successful. New approaches that provide real-time visual feedback, such as 

computer-based biofeedback software, offer a plausible alternative to traditional talk 

therapy.   

Biofeedback as a Tool to Control Anxiety 

One recent innovation in the treatment of anxiety disorders, and their significant 

impact on QOL, is biofeedback. Biofeedback based interventions are becoming 

increasingly popular in the treatment of anxiety and other mental health conditions 

(Coben, Linden, & Myers, 2009; Hammond, 2005; Reiner, 2008). Hammond (2005) 

argues that biofeedback has the ability to modify brain patterns that can reduce anxiety 

and depression. Biofeedback is non-invasive, in contrast to pharmaceuticals, shock 

therapy, and transcranial magnetic stimulation (Hammond, 2005, p. 135-136). 

Biofeedback is well suited for interventions to address anxiety because the autonomic 

nervous systems (ANS) is heavily engaged in the production of anxiety (Appelhans & 

Luecken, 2006, p. 229). Anxiety is identifiable by a physiological response, shortness of 
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breath for example, which makes using a physiological based intervention, such as 

biofeedback, a logical solution.  The same systems that produce the physical feelings of 

anxiety can be retrained through biofeedback to reduce the body’s physiological response 

to stress (McCraty, Atkinson, Tomasino, & Bradley, 2009; McCraty, Barrios-Choplin, 

Rozman, Atkinson, & Watkins, 1998).  

Because the field of biofeedback originated using more complex and expensive 

equipment the majority of literature on biofeedback relies on these techniques; however, 

recent research in the field relies on less expensive and more robust technology (Coben et 

al., 2009; Hammond, 2005; Reiner, 2008). Advances in technology mean that newer 

biofeedback systems are less invasive and only require finger or earlobe contacts to 

record physiological data such as HRV. In contrast, older biofeedback methods such as 

electroencephalogram (EEG) and neurofeedback systems require multiple connection 

points, medical oversight, and record brainwave data in addition to physiological data 

such as HRV (Coben et al., 2009).  

The chief benefit of biofeedback, early versions or recent advances, is the 

presentation of data, such as HRV, in an easy to interpret computer-based format. 

McCraty et al. (2009) discovered that the visual patterns of activation recorded by 

biofeedback were representative of emotional states such as anxiousness. A pattern 

identified by Friedman and Thayer (1997) was a strong connection between low HRV 

and the prevalence of anxiety disorders in adults (p. 141). This finding is significant 

because in addition to HRV being a predictor of future anxiety disorders, the HRV data 

available in real-time serves as marker to identify emotional states and track an 

individual’s response to intervention (Appelhans & Luecken, 2006).  
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Literature supports the use of HRV as a measure for anxiety and biofeedback as a 

technique for treatment of anxiety (Coben et al., 2009; Hammond, 2005; Reiner, 2008). 

In a study by Reiner (2008), a biofeedback intervention outperformed other established 

strategies for stress reduction, “73.3% (N = 11/15) reported finding the device more 

helpful and relaxing than unassisted breathing exercises, 77.8% (N = 7/9) more helpful 

than meditation, and 75% (N = 3/4) more helpful than yoga” (p. 58).  

Another study examined the impact of HRV and a biofeedback intervention on 

test anxiety in high school students. Bradley, McCraty, Atkinson, Tomasino, Daugherty, 

and Arguelles (2010) found that high school students who received the biofeedback 

intervention displayed a pattern of improvement in HRV measures and were therefore 

better able to manage their emotions under stressful circumstances such as tests (p. 261). 

McCraty at al. (1998) argue that biofeedback interventions play an important role 

because they are fast acting, easy to implement, and low cost. The result of the 

intervention is that “individuals who learned to "reprogram" their conditioned emotional 

responses experienced significantly lower stress levels, less negative and more positive 

emotions” (McCraty et al., 1998, p. 167).  

Biofeedback in individuals with ASD. Thompson, Thompson, and Reid (2010) 

studied the effect of neurofeedback and biofeedback training with 150 clients diagnosed 

with Asperger’s Syndrome (AS) and 9 clients with ASD who were treated in a clinical 

setting from 1993–2008 (p. 65). Data from Thomson et al. (2010) demonstrates that 

individuals with ASD receiving a biofeedback intervention “responded more 

appropriately to social cues, were less ego-centric, and displayed reduced anxiety” (p. 

79). Participants were connected to an EEG device for measurement of neurofeedback by 
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the researcher, and provided with outputs from Focus Technology or Thought 

Technology equipment that presented the participant with biofeedback data such as their 

HRV and skin temperature (Thompson et al., 2010). The participants were taught 

diaphragmatic breathing as an intervention to reduce anxiety, and “when adult clients 

observed how their physiology changed with stress and then how they could control these 

changes with breathing and muscle relaxation, they typically became enthusiastic about 

incorporating this BFB into their program” (Thomson et al., 2010, p. 70). This outcome 

of the Thomson et al. study offers promise that biofeedback training can influence levels 

of anxiety and is easily accepted by participants. 

Scolnick (2010), investigated the effectiveness of an EEG intervention with 

adolescents diagnosed with AS; however, due to a high dropout rate, no statistically 

significant findings were available. Those still considered adolescents often dominate the 

college population. Continued research is needed in adolescents and the college 

population with AS in order to accumulate enough data for analysis of biofeedback 

interventions in this population. This study contributes to the literature of those working 

with this critical population. 

     Pineda et al. (2008) examined neurofeedback as an intervention tool for 

attention in children with ASD. Pineda et al. (2008) found that “neurofeedback training 

has behavioral and electrophysiological consequences for children with ASD” and that, 

“positive changes in attention, impulsivity, and other assessments of behavior assessed by 

parents also change” (p. 578). The opportunity for positive behavior changes as a result 

of biofeedback interventions deserves additional research attention. Biofeedback is a 

promising intervention in addressing anxiety, and could have other positive effects. 
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Literature points to the effectiveness of biofeedback for multiple aspects of behavior, but 

further researcher is needed on behavior changes in specific populations such as 

individuals with ASD.    

Exploratory Data Analysis 

 A common theme in literature related to ASD is that not enough is known. As a 

relatively new diagnosis that has experienced rapid growth in awareness and diagnosis, 

ASD research on higher education, accommodations, mental health, or the impact of 

CBT or biofeedback is all limited in volume and depth. Tukey’s (1977) advocacy for 

EDA offers a valuable perspective by focusing on the big picture of what data offers, and 

using graphic tools to identify trends that can guide future research. In fields as new as 

ASD, the benefit of EDA is that data analysis is not dependent on the formation of strict 

hypotheses, but instead focuses on what exists in the data and establishes a foundation 

that can guide specific research in the future. 

Behrens (1997) offered a summary of five characteristics that define an EDA 

approach: 

(a) an emphasis on the substantive understanding of data that address the broad 

question of “what is going on here?" (b) an emphasis on graphic representations 

of data; (c) a focus on tentative model building and hypothesis generation in an 

iterative process of model specification, residual analysis, and model 

respecification; (d) use of robust measures, reexpression, and subset analysis; and 

(e) positions of skepticism, flexibility, and ecumenism regarding which methods 

to apply. (p. 131-132). 
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In the context of research on biofeedback in college students with ASD, EDA offers an 

opportunity to explore the first impressions of this new research area and attempt to 

answer the question of what is going on. 

Early EDA advocates such as Hartwig and Dearing (1979) and Tukey (1977) 

offered strong support for visual representations in addition to descriptive statistics in 

order to appreciate the full scope of data. Tools such as box-and-whisker, scatter plots, 

stem-and-leaf, and box plots are still encouraged by more modern EDA advocates such as 

Behrens (1997) and Cohen (1994). In a particularly critical rebuke of traditional CDA 

traditions, Cohen (1994) argued that, “even before we, as psychologists, seek to 

generalize from our data, we must seek to understand and improve them” (p. 1001). 

Behrens (1997) offered a similar, though softer, offering in expressing that EDA, “allows 

researchers to build rich mental models of the phenomenon being examined” and, “found 

EDA useful when there is little explicit theoretical background to guide prediction and 

the first stages of model building” (p. 154). 

 EDA provides a framework for the analysis of early stage data where preexisting 

research and models are only forming. With so little known about the causes, treatments, 

and rise in diagnosis of ASD, traditional hypothesis testing would be premature. 

However, ASD biofeedback research is better served through EDA, because EDA will 

establish foundations upon which to build meaningful models.  

College students with ASD have an immediate and critical need for 

accommodations and interventions that can counteract the incredibly debilitating and 

dangerous effects of anxiety and comorbid mental health conditions. Limited literature 

exists on interventions like CBT and newer technology based interventions like HRV 
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based biofeedback. This research study is able to apply the strengths of an EDA approach 

to the evaluation of a new technique, biofeedback, in an emerging and underserved 

population. The literature clearly articulates a need for college students with ASD, 

promising new interventions, and a tool to evaluate these interventions that offers the 

most robust and balanced approach to understanding new data. 

The literature identifies increased rates of anxiety in individuals with ASD, and 

documents the threat to QOL and college success for individuals with poor coping skills 

and high anxiety. Traditional talk therapy models, such as CBT, have limitations in a 

college environment and new technology is offering alternatives. The literature supports 

the use of biofeedback as an emerging technology for treating anxiety in individuals with 

ASD, but no literature addresses the use of biofeedback in a college population with 

ASD. More research is needed on the effectiveness of biofeedback as an intervention for 

anxiety in college students with ASD. Because the use of biofeedback in college students 

with ASD represents a new field of study, a tool to identify possible trends and generate 

hypotheses is required and EDA is an exceptional framework for this type of data 

analysis. This study uses EDA to identify trends and evaluate data from a 10-week 

biofeedback intervention in college students with and without ASD. Implications for 

future research, the development of hypotheses in the field of ASD and biofeedback, and 

the use of EDA as a powerful research tool are examined. 
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Chapter 3 

RESEARCH DESIGN AND METHODOLOGY 

Introduction 

The literature on the accommodation experience of college students with ASD, 

the role of anxiety on quality of life, co-morbidity of anxiety and ASD, the emergence 

and effectiveness of biofeedback as an intervention for anxiety, and the use of EDA as a 

computational tool for program evaluation offer a solid foundation for the research 

methods included in this chapter. Understanding the critical needs of students with ASD 

who transition to college, and will likely experience the negative effects of anxiety, shape 

the interventions such as the biofeedback intervention described below.   

Perspective 

 During the 2011/2012 academic year, the Disability Resource Center (DRC) on 

the Arizona State University (ASU) Polytechnic campus purchased a biofeedback 

software program, EmWave Desktop®. DRC staff selected biofeedback specifically to 

assist students with ASD, because it was affordable, provided hard physiological data in 

real-time, allowed for solitary and independent use by students, and represented a fun 

technology-based approach to providing student support. The Director of University 

Counseling Services and a faculty member in the psychology department both 

recommended EmWave Desktop® as a platform for conducting biofeedback. The 

purchase and use of the EmWave software by the DRC was to support students with ASD 

and was not intended for formal academic research. An image of the EmWave 

biofeedback device is found in Appendix A.  
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 The psychology faculty member, who recommended EmWave software to the 

DRC, invited the DRC Director to his introductory psychology courses to present on 

biofeedback. After class lectures on biofeedback from the DRC Director, the students 

from two sections of introductory psychology were encouraged to use the biofeedback 

software in the DRC as a compliment to their coursework.   

 The DRC introduced a hardcopy data sheet, included as Appendix B, to document 

the use of EmWave by students with ASD and the introductory psychology students. 

During participant use of the biofeedback software, data was available in real-time and an 

onscreen summary was available at the conclusion of each session. From the summary 

screen, participants recorded session time and HRV scores on the hardcopy student data 

sheet immediately following each session. The data sheets were stored in the DRC and 

entered into a single electronic file on the DRCs university server. The data was collected 

across 10-weeks in a target population, students with ASD, as well as typical peers 

without ASD.  

 The DRC did not analyze any biofeedback data prior to participation in this 

research study. The unanalyzed biofeedback data represented an archival data set with 

important implications for the use of biofeedback in college students with and without 

ASD. The ASU DRC and the Institutional Review Board (IRB) of ASU approved the use 

of this data for analyses. This research study used an exploratory data analysis (EDA) 

approach in the evaluation and analysis of DRC biofeedback data. 

Context 

 A review of the literature identified college students with ASD as an emerging 

and underserved population in higher education; however, the literature did not 
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adequately address interventions for high rates of anxiety in college students with ASD. 

Literature did support the use of biofeedback as an intervention for anxiety, but the 

literature did not evaluate the use of biofeedback in college students with ASD. Disability 

professionals in higher education are in immediate need of new tools, like biofeedback, to 

serve students with ASD.  

Data Analysis  

 This study used EDA approach to analyze the DRC biofeedback program. EDA is 

a valuable approach to program evaluation and reveals trends and hypothesis that 

conventional methods overlook (Behrens, 1997; Cohen, 1994; Sinacore, Chang, & 

Falconer, 1992). Sinacore et al. (1992) used EDA in the evaluation of two groups 

receiving treatment for rheumatoid arthritis. EDA revealed nuances in the data that 

conventional hypothesis testing had missed, that one group lagged the other until 18 

months of treatment at which point the groups shared common outcomes (Sinacore et al., 

1992). The findings of Sinacore et al. are consistent with other literature on EDA that 

identifies EDA as a tool for establishing a foundation for specific hypothesis testing and 

provides the researcher with greater holistic understanding of the data (Behrens, 1997; 

Cohen, 1994; Sinacore, Chang, & Falconer, 1992; Tukey, 1977). A lack of prior research 

on the populations and interventions presented in Sinacore et al. meant that hypothesis 

testing was not as valuable as EDA because not enough was known about the data set to 

justify the testing of hypotheses.  

 The DRC data set was similar to Sinacore et al. (1992) in that no prior research 

existed on biofeedback in college students with ASD; therefore, the creation and testing 

of hypotheses was not as valuable as a thorough examination of the data for the 
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identification of hypotheses to guide future research (Behrens, 1997; Cohen 1994). 

Rather than design a pre and post-test to evaluate the use of biofeedback in college 

students with ASD in a traditional CDA approach, using EDA offered a valuable 

summary of the data and relevant trends and provided meaningful direction for future 

interventions and research designs.  

 The descriptive statistics used in EDA will provide a valuable summary of the 

DRC biofeedback program and can assist with justification for the continuation or 

adaptation of the program. The use of simple graphics, such as histograms and box plots, 

will offer the DRC a practical, immediate, and functional evaluation of their program. 

Additionally, the hypotheses generated by the EDA approach will contribute to future 

research and practice in the use of biofeedback in the emerging and at risk population of 

college students with ASD.  

Participants 

 In January 2012, students with ASD and students in two introductory psychology 

courses were invited to use biofeedback software in the DRC. Disability Access 

Consultants (DAC) serve as advisors to students with ASD at the university. DACs 

identified their most anxious students with ASD and recommended that they use the 

biofeedback software for 10 consecutive weeks.  Students in two sections of Introduction 

to Psychology (PGS 101) were invited to use the software by the DRC Director following 

class presentations on biofeedback.  

 The DRC collected biofeedback data from 47 (N=47) participants. Of the 47 total 

participants, 37 were typical students recruited from PGS 101 (n=37) and 10 students 

with ASD (n=10) were recruited by their DACs. More males participated than females 
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with 38 male participants and 9 female participants. Specific demographic information 

such as race and age were not available with this data set; however, all participants were 

currently enrolled undergraduate students at the time of data collection. 

Instruments 

 HRV data was collected using the EmWave® Desktop heart-monitoring computer 

software system. The DRC selected EmWave® Desktop based on recommendations from 

both the Director of University Counseling Services and a psychology faculty member 

who were familiar with the product.  EmWave® Desktop has been used in other 

biofeedback studies such as Beckham, Greene, and Meltzer-Brody (2013) and Henriques, 

Keffer, Abrahamson, and Horst (2011). HRV data is collected by EmWave® Desktop via 

a USB sensor worn by the participant and displays real-time HRV information in an on-

screen graphical format. The display allows participants to view their progress in real-

time. Participants are able to independently begin and end biofeedback sessions and 

complete HRV data is available after every session. Additional information on 

EmWave® Desktop is available through the EmWave website 

(http://www.heartmathstore.com/item/6020/emwave-desktop-stress-relief).  

Procedure 

The procedure for data collection was standardized by the DRC. Every 

biofeedback session occurred in a private room located in the DRC office suite on 

campus. Individual biofeedback sessions occurred during regular business hours of 8am-

5pm Monday through Friday. For the first session, DRC staff assisted participants in 

loading the software and connecting the USB sensor. EmWave is designed to be used 

independently. Strengths of the EmWave software include provision of a standard 

http://www.heartmathstore.com/item/6020/emwave-desktop-stress-relief
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tutorial, on-screen directions for use, and automatic calibration of the USB sensor before 

every new session. After the initial session, all future sessions were completed 

individually by participants independently. Participants using the EmWave software were 

encouraged by DRC staff to complete a 10-minute session once a week for 10 weeks with 

no less than 72 hours between sessions. After the initial session with DRC staff assisting 

participants with loading and starting the software, participants independently completed 

future sessions in the DRC. Participants recorded the date, length, and HRV scores of 

every session on a data sheet stored in the DRC.  

Summary 

The biofeedback program at Arizona State University’s Polytechnic campus 

offered an opportunity to evaluate a biofeedback intervention in college students with 

ASD alongside typical peers. Using EDA to evaluate the program allows for the greatest 

contribution from the collected data despite a small sample size and lack of previous 

research in this area.  
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Chapter 4 

RESULTS AND DISCUSSION 

The purpose of this study was to evaluate the use of biofeedback in 36 university 

students without ASD and 10 university students with ASD who engaged in a 10 week 

biofeedback intervention. Biofeedback has been used as an intervention for individuals 

suffering from anxiety, and increasingly as an intervention for individuals with ASD 

(Friedman & Thayer, 1997; Hammond, 2005; Linden, & Myers, 2009; Reiner, 2008). 

Until this study, no literature existed on the use of biofeedback in a college ASD 

population or compared a typical college biofeedback user to a college biofeedback user 

diagnosed with ASD. Due to the novelty of the intervention in this study, EDA was 

selected for the analysis of research data in order to build a foundation of knowledge in 

this field (Behrens, 1997; Cohen, 1994; Tukey, 1977). The results and subsequent 

discussion of the findings represent a significant contribution to two emerging fields of 

study - ASD and biofeedback.  

 EDA approaches data analysis with the goal of understanding basic trends, tenets, 

 and themes of data through a highly visual approach. The results reported in this 

chapter adhere to the EDA philosophy and represent information identified by the 

researcher through the process of data entry of physical participant data sheets, as well as 

the use of descriptive statistics and graphing techniques applied to the data once inputted 

into a spreadsheet. EDA cannot, and does not, imply statistical significance for findings; 

however, the results are intended to guide ideas about research and influence the 

development of models and future research design.  

Results and Discussion 
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Given the freedom that EDA allows and encourages in data analysis, three broad 

themes were developed to guide this research process. The three themes explored the 

following: data trends between the two research groups, data trends within each group, 

and trends across the research study as a whole. In exploring these concepts with EDA, 

additional trends emerged and were explored. The research data was segmented into the 

first five weeks and second five weeks and trends between and within the two research 

groups were explored using this framework. The goal of this study was to provide a 

foundation for future research on the use of biofeedback in college populations, 

specifically as an intervention for college students with ASD who are at greater risk for 

anxiety.  

Between Group Trends 

Presented with individual HRV coherence scores for participants from the ASD 

group (n=10) and the Typical group (n=36), comparisons between groups and within 

groups HRV scores offer initial insight into possible trends of biofeedback as an 

intervention. Table 1 summarizes the mean scores, time that users spent in an optimal 

HRV coherence state, for the 10 week duration of the study. A higher mean score 

indicates a lower HRV and greater control over anxiety.  
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Table 1 

 

Mean HRV Coherence Score of Participants 

 

Week   ASD Typical 

1 

 

47.80 45.86 

2 

 

48.20 39.41 

3 

 

39.33 52.40 

4 

 

48.13 45.10 

5 

 

43.12 48.14 

6 

 

47.57 47.25 

7 

 

58.42 45.77 

8 

 

50.83 43.14 

9 

 

54.50 47.00 

10   38.16 51.70 

  

Data in Table 1 offers multiple first impressions. First, the ASD group mean in 

Week 1 is higher than that of the Typical group in Week 1. This higher mean remains in 

effect through the second week of the study. Second, the range of mean scores for both 

groups appears to show little variance over the course of the 10 weeks with a minimum 

score of 38.16 and a maximum score of 58.42. The narrow range of scores are line with 

Scolnick (2010) who identified minimal changes in an ASD group using biofeedback. 

The minimum and maximum scores were both generated by the ASD group. Table 1 

shows that during the final week of the study, Week 10, the ASD mean was lower than 

the Typical mean in contrast with Week 1. The ASD score in Week 10 is lower than the 

group’s Week 1 score, which is the opposite of the Typical group whose Week 10 score 

is higher than Week 1. 
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 Existing research documents an increased risk for anxiety in individuals with 

ASD (Ghaziuddin et al., 2002; Kim et al., 2000; MacNeil, 2009). In this study, 

participants with ASD were referred for participation by their DAC, staff members who 

were instructed to make the referral based on the perceived need for an intervention to 

address anxiety. The first discovery of this study was that during the first biofeedback 

session in week 1, the mean HRV score for the ASD group was 47.80 compared to 45.86 

for the Typical group. Earlier research predicts that the ASD group would display greater 

anxiety in week 1, indicated by a lower HRV score, than their typical peers; however, the 

opposite was true.  

One reason for this finding may be that students in the introductory psychology 

course who volunteered for the study were suffering from anxiety and seeking assistance 

by participating. This interpretation would lead to an elevated initial reading for the 

typical population and may indicate they are not representative of the typical college 

student. Similarly, because students with ASD chose to participate after being referred by 

their DAC, those who participated may have been particularly well adjusted, as 

evidenced by their engagement with the disability office, or have already developed 

coping skills to allow them to persist in college. Due to the limited amount of additional 

data on participants in this study, to determine the exact factors behind this finding is not 

possible, but future research should explore the anxiety levels of college students with 

ASD enrolled with DRC offices compared to those students who do not register with 

disability services. 

Additional findings based on data Table 1 were that the week 10 score of 38.16 

was lower for the ASD group than their week 1 score of 47.80. Because a lower score 
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indicates less regulation of HRV, and greater anxiety, the decrease in score would not be 

expected based on previous research finding lower anxiety after biofeedback 

interventions (Coben et al., 2009; Hammond, 2005; Reiner, 2008). The Typical group 

week 10 score of 51.70 is higher than their week 1 score of 45.86, but only by 

approximately 6 points. Because EDA does not approach data with the intent of finding 

statistically significant findings, the comparisons of week 1 and week 10 between the 

groups in Table 1 were designed to explore possible trends based on earlier research. The 

observed small changes between the groups were not particularly compelling in this 

format.  

Figure 1 provides a visual perspective on the weekly mean HRV scores of the two 

groups over the 10 week study period. Some of the trends identified from the raw data in 

Table 1 are also evident in Figure 1. Examples include the higher initial mean for the 

ASD group in Week 1, the higher mean for the typical group vs. the ASD group in Week 

10, and the fairly narrow range of mean scores over the 10 week study period. The higher 

mean of the ASD group is in contrast with Glennon (2001) and VanBergeijk et al. (2008) 

who both documented higher levels of anxiety in an ASD population compared to typical 

peers. In this study, the higher mean of the ASD group suggests a lower rate of anxiety 

than typical peers.   
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Figure 1. Mean HRV Score by Week of Study. 

Figure 2 connects the individual weekly means for the two groups and provides 

greater visual clarity on trends that may exist. Using different graphical tools to explore 

data can expose trends in the data (Tukey, 1977). The line plot in Figure 2 exposes the 

elevated HRV scores for the ASD group in consecutive weeks 7, 8, and 9. These are the 

only weeks for which the ASD group had optimal HRV scores for the majority of their 

session time. In Figure 2, weeks 7-9 clearly show some of the highest mean scores for the 

ASD group, and the scores remain above the Typical group for this three week period. 

The addition of a trend line in Figure 2 also reinforces the narrow range of scores 

between the two groups with the exception of weeks 7-9 as already noted. Weeks 7-9 in 

the ASD group suggest a pattern of improvement similar to McCraty et al. (1998) and 

Thompson et al. (2010) who found improvements over time in groups using HRV 

biofeedback interventions.  
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Figure 2. Mean HRV Scores by Week of Study. 

Within Group 10 Week Trends 

Because mean HRV scores are based on percentage of time spent in an optimal 

HRV state, the corresponding time spent in a suboptimal HRV state can also be observed. 

The method of presentation in Table 1, Figure 1, and Figure 2 do not allow a clear picture 

of the possible changes taking place within each group over the course of the 10 weeks. 

Figure 3 adds the suboptimal HRV mean scores in addition to the optimal mean scores 

for the ASD group.  
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Figure 3. Mean HRV Percentages for ASD Group by Week of Study. 

  The introduction of suboptimal means in Figure 3 generates a useful contrast in 

the exploration of the ASD group’s week by week means. The bar chart in Figure 3, 

which shows only the ASD scores, provides confirmation for the finding in Figure 2, but 

also identifies weeks 1 and 2 and weeks 3 and 10 as having similar visual characteristics. 

Figure 3 easily identifies that weeks 7-9 were the only weeks where ASD participants 

spent the majority of their biofeedback session in a state of optimal HRV. This means 

that for the ASD group, 30% of their sessions were spent with the majority of time in a 

state of optimal HRV and 70% of sessions in a majority suboptimal HRV state. In the 

ASD group the three optimal sessions all occurred consecutively. A final observation 

from Figure 3 is that some weeks appear to match throughout the study. Week1 and week 

2 share a resemblance as do week 3 and week 10. McCraty et al. (1998) found that HRV 

interventions caused individuals to “reprogram” their responses to stimuli and the 
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consistent patterns of weeks in this study may represent a reprogramming of participant 

responses as a result of biofeedback training (p. 167).  

 Figure 4 applies the same technique used in Figure 3, but looks only at the 

Typical group instead of the ASD group. The only weeks in Figure 4 with a majority of 

time spent in an optimal HRV state are week 3 and week 10. Unlike figure 3 where the 

ASD group had three consecutive weeks of optimal performance, the Typical group 

displays only two occurrences separated by seven weeks. Only 20% of the Typical group 

sessions spent the majority of time in an optimal HRV state compared to 30% for the 

ASD group. Appelhans and Lueken (2006) found that HRV was a predictor of future 

anxiety as well as a real-time marker of anxiety. Based on Appelhans and Lueken (2006) 

and Friedman and Thayer (1997), the high levels of suboptimal HRV scores for both 

groups in this study may indicate the presence of high levels of anxiety in both groups 

that are largely unchanged as a result of the intervention.      
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Figure 4. Mean HRV Percentages for Typical Group by Week of Study. 

Observations from Figure 2, Figure 3, and Figure 4 suggest that individuals with 

ASD may be more likely to present consistent HRV patterns compared to a typical 

population; the ASD population had a greater number of weeks with majority optimal 

HRV scores - three weeks as compared to two weeks in the Typical group, and that the 

ASD group’s high scores fell in consecutive weeks in three of the final four weeks of the 

study compared to the Typical group with high scores in week 3 and week 10. Although 

not statistically significant, the consecutive high scores for the ASD group may be 

evidence that the intervention had taken hold and participants in the ASD group were 

developing better control of their HRV and anxiety. 

Multiple approaches are required in EDA to account for the appropriate level of 

exploration in establishing a foundation for future research. Although earlier discussion 

on between group trends focused on weekly means for the two groups in Table 1, the 
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mean values discount the large amount of individual data points in each group. The box 

plots in Figures 5 and 6 allow a visual display of the complete data for both groups. The 

comparison of ASD group data in Figure 5 with the Typical group data in Figure 6 yields 

several interesting discoveries. 

 Although weekly means for the ASD and Typical group are useful in examining 

some trends, the use of means does not provide a complete picture of all the individual 

data points and unique participant experiences in this study. To address this, Figure 5 

uses a box plot for representing the weekly scores of individual participants in the ASD 

group. A common EDA tool, the box plot in Figure 5 easily captures the full range of 

scores for each week in addition to the median, upper quartile, and lower quartile. An 

immediate difference between Figure 2 and Figure 5 is the range of scores. Table 1, 

Figure 1, and Figure 2 presented participants’ weekly scores as a single weekly mean. As 

a result, the range of scores was relatively small when compared with the full range of 

scores accessible via the box plot in Figure 5. The identification of different data trends 

through the use of multiple graphical tools is consistent with the use of EDA in Sincacore 

et al. (1992) and Cohen (1994). 

   Figure 5 also sheds light on weeks 7-9 for the ASD group during which the 

participants’ spent the majority of their session in the optimal state. The box plot reveals 

a change in the minimum values for the final weeks of the study relative to the early 

weeks of the study. The box representing the median and quartiles also changes 

dramatically in the final weeks of the study for the ASD group with shrinking quartiles 

and consistently elevated medians relative to earlier weeks. Even week 10, which was 

suboptimal, shows an elevated median value above earlier weeks. The use of the boxplot 
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in Figure 5 is based on findings of Tukey (1977) and Hartwig and Dearing (1979) who 

both argued for the use of descriptive statistic techniques, such as the box plot, in the 

identification of trends in data.  

 

Figure 5. Box Plot of ASD Participant Data by Study Weeks. 

 Figure 6 uses the same technique as Figure 5, but explores the full data of the 

Typical group during the study. Similar to Figure 5, the data range in Figure 6 is striking 

with whiskers in both directions creating a range every week that encompasses almost the 

entire available data range of 0-100. Compared to the ASD group, the box plots for the 

Typical group appear to show more even distributions on a weekly basis than the ASD 

group. Whereas Figure 5 showed a trend in rising median values over the final weeks of 

the study for the ASD group, Figure 6 does not appear to show any consistent or 

available trend in median values. Inconsistency in response to HRV is documented by 

previous research, such as Thomson et al. (2010) who identified improvements in HRV 
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over time and Scolnick (2010) who found little change in HRV over time in a separate 

intervention. Like Thomson et al. (2010) this study examined an ASD population and 

similar to Scolnick (2010) small sample sizes may be responsible for inconsistency in the 

data trends. 

 

Figure 6. Box Plot of Typical Participant Data by Study Weeks. 

Box plot data for the ASD group shows a tighter range of scores than the Typical 

group, whose scores almost consistently encompass the entire 0-100 range every week. 

One reason for this difference between the groups could be the larger sample size (n=36) 

in the Typical group compared to the ASD group (n=10). The greater number of 

participants in the Typical group may be responsible for the increase in outliers.  

In Figure 5, starting in week 7 the ASD group range narrows compared to earlier 

weeks and may show greater control over HRV or reflect a smaller sample size due to 

attrition as the study progressed. Sample size could also be a factor in the normal 

distributions of the weekly box plot data in Figure 6 compared to Figure 5. Weeks 7-10 in 
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the ASD group again stand out in Figure 5. This time the median values of 51, 54.5, 48, 

and 39 for weeks 7-10 are some of the highest median values in the study and appear to 

show an upward trend in the ASD group data at the end of the intervention. 

Overall, between group comparisons using multiple visual platforms identified 

five possible trends. First, the ASD group showed improved HRV scores in the final four 

weeks of the intervention. A second trend was that a smaller range of scores was present 

in the ASD group than the Typical group. A third trend was the identification of a more 

normal distribution of scores in the typical group than ASD group. The fourth trend 

identified that the ASD group had a greater number of weeks, three, with an optimal 

HRV score compared to two weeks in the Typical group. Finally, a narrow band of scores 

in Figure 1 and Figure 2 highlight that although individual differences were present in 

participants, the overall differences between the groups was minimal. Figure 2 shows that 

mean scores for both groups fall between 30 and 60 with little overall fluctuation. 

Between Group 5 Week Trends 

One of the first instincts in evaluating the study data was to compare the week 1 

value with the week 10 value for both groups. A traditional pre-test and post-test design 

might have even  used these specific data points to determine statistical significance. 

Because the intervention in this study was designed to generate a change in the 

participants over time, the data analysis should also investigate trends in the data over 

time. In looking at the variability of the data on a week by week basis for both groups, 

assigning critical importance to a single week in isolation would be premature. EDA 

allows trends to emerge, and the data was examined for changes over time that did not 

rely solely on specific weeks to make determinations about change. Ultimately, the 
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framework that emerged was to divide the data into the first five weeks, weeks 1-5, and 

the second five weeks, weeks 6-10. Using this new construct allowed for some analysis 

of the change over time without being dependent on specific weeks. 

This EDA approach is consistent with Sinacore et al. (1992) who identified that 

hypothesis testing could obscure trends that EDA was successfully able to identify. The 

flexibility of EDA in this study is supported by Tukey (1977) and Sinacore et al. (1992), 

and allowed for the first five vs. second five weeks design to emerge from the data 

 Table 2 provides valuable information to guide the analysis of the data for 

changes over time while respecting that individual weeks have a high degree of 

variability. Rather than using week 1 and week 10 the data is divided into weeks 1-5 and 

weeks 6-10. This approach is similar to that of Sinacore et al. (1992) and their 

identification of an 18 week tipping point in data trends. The mean scores for the first 

five vs. second five weeks, along with a total mean for the 5 week periods is included in 

Table 2.  

Table 2 

        
Mean Participant HRV Scores Weeks 1-5 and 6-10 

   
Week 

 

ASD Typical   Week 

 

ASD Typical 

1 

 

47.80 45.86 

 

6 

 

47.57 47.25 

2 

 

48.20 39.41 

 

7 

 

58.42 45.77 

3 

 

39.33 52.40 

 

8 

 

50.83 43.14 

4 

 

48.13 45.10 

 

9 

 

54.50 47.00 

5   43.12 48.14   10   38.16 51.70 

  Mean   45.32 46.18       Mean        49.9 46.97 

 

 The 10 week study provided a natural break at the five week point to divide the 

data into two new data sets. Tukey (1977), Cohen (1994), and Behrens (1977) all 
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promote EDA as a tool that allows for the data to provide researchers with flexibility in 

the pursuit of trends and patterns. For this study, the EDA approach allowed for the five 

week vs. five week model to emerge. As with Table 1, information is available from the 

raw data itself. The ASD group saw an increase in their mean HRV score from the first 

five weeks to the second five weeks as did the Typical group. The ASD group’s initial 

mean score for the first five weeks was lower than the Typical group, but this is reversed 

at the end of the second five weeks with the ASD group posting a higher second five 

week mean score than the Typical group. The study data viewed in first five vs. second 

five week increments aligns more closely with the positive change in HRV found in 

Thomson et al. (2010), Reiner (2008), Corben et al. (2009) and McCraty et al. (1998). 

 Figure 7 is graphical representation of the first and second five week means by 

group. Each group clearly makes gains in the second five weeks compared to the first, 

although they are small. Figure 7 does not offer too much more compared to Table 2 

because the amount of individual data has been compressed even more than in earlier 
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charts. 

 

Figure 7. Five Week HRV Score Means by Group.  

 Table 2 introduced the means from the first and second five week periods. Several 

trends became apparent in analyzing this data. Both groups showed gains in HRV mean 

scores. The ASD group improved from 45.32 to 49.9 and the Typical group improved 

from 46.18 to 46.97. The ASD group gain of 4.58 is clearly larger than the .49 gain by 

the Typical group; however, both of these gains remain small. Figure 7 does not provide 

too much more information than Table 2. Figure 8 provides additional details using box 

and whiskers.  

 Figure 8 provides box plots for the two study groups as compared to each other in 

the first five weeks and second five weeks. Again, the influence of EDA is evident in the 

use of box plots to graphically represent the data as well as the categorizing of the data 

into the first vs. second five weeks. Behrens (1997) offered five strengths of EDA, one of 

which was the, “use of robust measures, reexpression, and subset analysis” an example of 
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which is on display in Figure 8 (p.132). The Typical group shows an even distribution in 

the first five weeks with a large range. In contrast, the ASD group shows an uneven 

distribution with a narrower range. In the second five weeks the Typical group no longer 

has a normal distribution, but maintains a large range of scores. The ASD group does 

have a normal distribution on the second five weeks and an even narrower range of 

scores. Another piece of information in Figure 8 is that the median score in the ASD 

group increases from the first five weeks to the second, while the median score falls in 

the Typical group. 

 

Figure 8. Box Plots for ASD and Typical Groups by First Five Weeks and Second Five 

Weeks. 

In Figure 8, the Typical group has a much larger range with a minimum of 6.5 in 

the first five weeks and 0 in the second five weeks. The maximum values for the two 

periods were 100 and 96.8 respectively. The range for the ASD group was smaller in both 
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the first five weeks and the second five weeks than the Typical group, but particularly 

small in the second five weeks compared to the Typical group with a minimum value of 

28.6 and a maximum value of 85.5. Again, the range for these groups may be because of 

the sample sizes at work, but could also be influenced by a greater control of HRV by 

members of the ASD group.  

      The other interesting five week vs. five week trend that Figure 8 identifies is the 

change in median value for the two groups. The median value climbs in the ASD group 

from 40.3 in the first five weeks to 49.6 in the second five weeks. This finding contrasts 

with the decline in the median values for the Typical group, which dropped from 44.9 to 

39.4. The power of EDA is that multiple perspectives are presented. In this case, the use 

of different graphical representations and descriptive statistics identified the trend of the 

ASD group seeing greater improvement than the Typical group when comparing the first 

five weeks to the second five weeks. 

Trends in Participant Attrition 

A data trend that was explored through EDA was the pattern of participant 

attrition. This trend emerged from working with the entire data set and did not evolve 

from a specific group or between group comparison. As data was entered for this study 

and processed for analysis, the role of participant attrition on the results became a clear 

factor. Because the sample sizes began as relatively small, the ASD group starting with 

10 participants and ending with only 6 meant that the data was subject to sizeable 

changes. Using EDA led to a deeper trend within the data that only emerged after 

deleting participants from data sheet after their last week of attendance. This process 
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suggested that a relationship might exist between a participant’s last biofeedback session 

and their decision to quit the study. 

Several graphical tools were used to evaluate the trend of attrition on this study. 

Figure 9 offers a visual of how the percentage of participants declined by group over the 

10 week study. The Typical group lost participants in the second week while the ASD 

group lost their first participant in the third week. Both groups display a consistent 

decline in participation with the Typical group leveling off around the 75% participation 

rate before a steep decline in the final week. The ASD group ended the study with 60% of 

the initial participants engaged and the Typical group concluded week 10 with 66% of 

participants still engaged in the study. This study shared similarities with Scolnick 

(2010), such as small sample sizes and participant attrition; however, this study uses 

EDA to examine the specifics of participant attrition that was absent in Scolnick (2010).  

     

Figure 9. Participant Attrition by Week. 
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 A unique aspect of biofeedback in this study is that the participants completed 

their sessions independently and without intervention from staff or other sources. In 

working with the attrition data there was an opportunity to graph the relationship between 

the week of attrition and the final HRV coherence score in the week prior to attrition. 

Figure 10 is a scatter plot of participants’ suboptimal HRV scores from the week before a 

participant left the study. In figure 10, a higher y-axis value indicates poor HRV and is 

plotted against the week they withdrew on the x-axis. Behrens (1997) included an 

explanation for EDA of which one of the primary goals was to understand, “what is going 

on here” in the context of a data set (p. 131). This study shared that approach in asking 

the question of what was going on in relation to participant attrition, and used Figure 10 

to help answer that question. 

 Figure 10 offers some interesting trends. First, a cluster of participants leaves the 

study in the first three weeks. Of those leaving the study in the early weeks, the HRV 

scores appear to cluster both low and high with no scores occurring between 31 and 71 

despite a mean score for this period around 50. The only participants to leave during 

weeks 4-8 all had scores below 60 with four participants below 20 and one outlier at 57. 

The final week of the study saw three participants leave with a range of scores from 90 to 

19. If Scolnick (2010) had used an EDA approach or reported on the attrition trends of 

participants future research would be able to design more effective interventions or test 

specific hypotheses.  
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Figure 10. Scatter plot of Participant Attrition by Suboptimal HRV Score and Week. 

 As would be expected, participants exited the study over the course of the 10 

weeks. Figure 10 is a scatter plot that charts the week a participant exited the study with 

their last suboptimal HRV score provided to the participant by the biofeedback software. 

In week 2, for example, a typical student received a score of 81% in the suboptimal range 

and 19% in the optimal range for HRV from the software. Unlike a psychologist 

providing cognitive behavioral therapy, the biofeedback software used in this study does 

not provide any intervention to a participant who performs poorly. Someone who 

received a poor score might be expected to choose not to return because he or she felt the 

program was not working.  

 In studying Figure 10, participants left the study between weeks 1-3 and not in 

any great numbers for the remainder of the study until the final week. For those who had 

low scores such as 0, 8, 8, 17, and 19 they may have made the opposite conclusion than 
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their high scoring peers. Receiving a positive score, 0% suboptimal and 100% optimal 

HRV coherence, might influence a participant not to continue because the program no 

longer serves the purpose of relieving anxiety. Figure 10 identifies a critical area for 

biofeedback research and that is personal intervention or observation of participant 

progress to provide motivation and collect data on the impact of scores on participants. 

Limitations 

 This study has limitations that restrict the scope of the findings. The data set used 

in this study represents a rare collection of college student biofeedback data. Although 

the data set is valuable due to relative rarity, the sample sizes of the two groups are small 

and even smaller after participant attrition. Lack of additional information about 

participants in this study is also a limitation. Not knowing the participants’ GPA, SAT 

scores, or year in college makes determining what additional factors that may be 

influencing the data challenge. Are some of the ASD participants, for example, also 

engaged in therapy for their anxiety?  Perhaps CBT?  Are they honors students? Without 

additional information about participants, the implications are limited. 

 Timing is also a limitation of this study. The academic year for students provides 

multiple opportunities for high stress environments and events. This study did not control 

for students who may have had tests on days when biofeedback data was collected. The 

large variability in HRV scores of participants as observed in box plot representations 

may be an indication that individual life events may be influencing the data. Although 

future research could not control the impact of life events additional data could be 

collected from participants to use in conjunction with HRV scores.    
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 The role of the researcher in conjunction with EDA is also a contributing 

limitation in this study. The researcher spent copious time conducting data entry and 

preparing the statistics. The data entry process along with knowledge of past biofeedback 

research, literature on ASD, and the personal experiences of the researcher in this field 

are all influences on the patterns, trends, and discoveries that emerged through EDA. 

Because EDA does not test against predetermined hypotheses, a researcher’s own 

experience, expertise, and bias has influenced interpretation of the results. Researcher 

bias as a limitation is accepted in the use of EDA, and can be seen as strength in the 

ability of content experts to identify trends in their field of study.        

Future Research 

 This study examined a biofeedback intervention in college students with and 

without ASD. Prior to this research, no literature existed on the use of biofeedback as an 

intervention in college students with ASD. At a minimum, future research should 

continue to build on the existing literature that clearly demonstrated biofeedback to be a 

successful intervention in individuals with ASD and should address the specific needs of 

the college ASD population. Because college students with ASD are an emerging 

population and spread across the country, future research should deliver interventions at 

multiple institutions in order to generate substantial sample sizes. 

 A key trend of this research was that results for the ASD group occurred in the 

final weeks of the 10 week intervention. In designing future research, weeks 7-10 

appeared a critical transition time for the students with ASD in adapting to the 

biofeedback program. Based on these findings, future research should focus on at least 10 

week interventions if not longer.  
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 Future research should also explore the combination of CBT and biofeedback in 

individuals with ASD. As the results of this study revealed, biofeedback can be a useful 

tool because users can work independently; however, this study identified immediate past 

session performance as a possible reason for attrition. Monitoring of participant progress 

and intervening after high or low scores could improve study dropout rates that would 

maintain larger sample sizes and improve future study data. Most importantly, future 

research could use biofeedback in conjunction with other measures of anxiety. A simple 

self-report form for participant stress levels could have been used to correlate HRV 

scores and may offer valuable research information.  

 The identification of limitations in this study such as the background of students 

enrolled and the environmental and personal stressors students may be experiencing are 

important markers for future research. More information is needed about college students 

with ASD in order to refine interventions. A challenge facing most researchers is that the 

populations of greatest concern are the hardest to reach. Those students who enrolled in 

this study chose to participate after an invitation via class lecture of personal 

conversation. For those students who are isolated as a result of their anxiety, researchers 

should develop specific strategies for engaging these students in interventions and 

evaluating the success of those interventions 

 This study also serves as a reminder that complicated statistical packages that can 

test for significance may overlook key trends and discoveries in data sets that are better 

served through EDA than traditional CDA approaches. Future research will be needed 

which incorporates lessons from early stage research, such as this study, and tests specific 

hypotheses that have been vetted through thorough EDA.   
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 Despite the critical juncture facing young adults with ASD who are transitioning 

to college and need assistance with anxiety, other student populations are also in need of 

assistance. The population of returning veterans on college campuses is also rising. This 

population too appears to have issues with anxiety that can also limit their ability to be 

successful in college. The need to develop sustainable, affordable, and appropriate 

interventions for college students struggling with anxiety is an immediate need in higher 

education. This study demonstrates that biofeedback may be one approach that can be 

used in meeting the anxiety epidemic facing too many students, but research must 

continue to refine interventions that can create access and opportunity for everyone at the 

postsecondary level. 
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Chapter 5 

SUMMARY AND CONCLUSIONS 

EDA provided a capable framework for the analysis of data in this study. Using 

the three themes: trends between groups, trends within groups, and trends across groups, 

discoveries and recommendations for future research were suggested. Between the two 

groups, the ASD group trended toward improvement in the second five weeks compared 

to the Typical group, and showed a smaller range of scores than the Typical group. 

Within each group, the Typical group showed inconsistent HRV scores and no pattern of 

progress. The ASD group had three consecutive weeks of improved HRV scores and four 

consecutive weeks of raised median values in the second half of the study. In working 

with the entire data set, trends emerged related to the attrition and last score received by 

participants. All of these trends unearthed through EDA techniques will shape future 

research that will combine additional participant information and measures of anxiety 

along with greater supervision and professional collaboration to hopefully further the 

field of biofeedback research in individuals with ASD at the college level. 

 The energy surrounding ASD and the development of new technologies such as 

biofeedback offers hope that current students with ASD may have solutions sooner than 

previous generations of students with disabilities. Research has already laid a foundation 

for biofeedback as an effective tool in the treatment of anxiety. Because the presence of 

anxiety in the ASD population is so pervasive and harmful, research has tried in earnest 

to unlock solutions through traditional CBT and now through biofeedback. Researchers 

are making progress, and their contributions allow research such as this study to venture 

into new domains based on the growing body of work in biofeedback and ASD. 
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 Disability service providers are the first ones to experience the wave of new 

students with ASD entering higher education. Therefore, new interventions for students 

with ASD will likely continue to emerge from disability service professionals. This study 

used EDA to explore the results of one university’s DRC office intervention designed to 

address anxiety in a college ASD population. The use of EDA in this study provides a 

foundation for future research on the use of biofeedback in college students with ASD. 

Despite small sample sizes and limited details on the participants in this study, the data 

allowed for initial trends to emerge and the development of new research questions that 

will guide future practice. 

 Based on the results of this study future research should build on two key trends 

identified in this study.  

 First, future research should combine supervision of biofeedback progress and 

allow for intervention, or at a minimum, the collection of data related to attrition 

of participants.  

 Second, the findings related to attrition are a direct result of using EDA and 

demonstrate the powerful results that descriptive statistics and visual displays can 

provide when allowed to emerge from data.  

 Questions that arose in the course of this study are opportunities for future 

research to build on the findings and discoveries of this study. Key questions from this 

study include: 

 Is biofeedback an effective stand alone intervention for anxiety in college students 

with ASD? 
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 How does biofeedback impact anxiety in college students with ASD who do not 

use support services such as counseling or DRC services? 

 Can biofeedback be used by other at-risk or emerging college populations that 

suffer from anxiety? 

 The experience of college students with ASD requires additional research. The 

use of biofeedback as a treatment for anxiety in college students with ASD, and other 

college populations such as veterans, also requires attention. EDA was used effectively to 

unearth key trends and discoveries in this study, and should be used with greater 

frequency by researchers across disciplines.   
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APPENDIX A 

  

MANUFACTURER FLYER FOR EmWave® DESKTOP BIOFEEDBACK STYSTEM 
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EmWave Desktop Promotional Materials. A product summary provided on the manufacturer’s website. 

Retrieved from http://www.heartmathstore.com/item/6020/emwave-desktop-stress-relief. 

 

http://www.heartmathstore.com/item/6020/emwave-desktop-stress-relief
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APPENDIX B 

 

SAMPLE FORM FOR DRC BIOFEEDBACK COLLECTION 
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EmWave Biofeedback 

 

First Name 

Last Name 

ID# 

Class (e.g. PGS 

101) 

Instructor 

 

Sessions Date HRV Red 

Score 

HRV Blue 

Score 

HRV 

Green 

Score 

Length of session (e.g. 

10:00 minutes) 

1      

2      

3      

4      

5      

6      

7      

8      

9      

10      

 

Return this form to the DRC front desk after each session. 

 

 

 

 

 


