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ABSTRACT 

Developing new non-traditional device models is gaining popularity as the 

silicon-based electrical device approaches its limitation when it scales down. Membrane 

systems, also called P systems, are a new class of biological computation model inspired 

by the way cells process chemical signals. Spiking Neural P systems (SNP systems), a 

certain kind of membrane systems, is inspired by the way the neurons in brain interact 

using electrical spikes. Compared to the traditional Boolean logic, SNP systems not only 

perform similar functions but also provide a more promising solution for reliable 

computation. 

Two basic neuron types, Low Pass (LP) neurons and High Pass (HP) neurons, are 

introduced. These two basic types of neurons are capable to build an arbitrary SNP 

neuron. This leads to the conclusion that these two basic neuron types are Turing 

complete since SNP systems has been proved Turing complete. These two basic types of 

neurons are further used as the elements to construct general-purpose arithmetic circuits, 

such as adder, subtractor and comparator. 

In this thesis, erroneous behaviors of neurons are discussed. Transmission error 

(spike loss) is proved to be equivalent to threshold error, which makes threshold error 

discussion more universal. To improve the reliability, a new structure called motif is 

proposed. Compared to Triple Modular Redundancy improvement, motif design presents 

its efficiency and effectiveness in both single neuron and arithmetic circuit analysis. 
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DRAM-based CMOS circuits are used to implement the two basic types of 

neurons. Functionality of basic type neurons is proved using the SPICE simulations. The 

motif improved adder and the comparator, as compared to conventional Boolean logic 

design, are much more reliable with lower leakage, and smaller silicon area. This leads to 

the conclusion that SNP system could provide a more promising solution for reliable 

computation than the conventional Boolean logic. 
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CHAPTER 1 

INTRODUCTION 

As the silicon-based electrical devices scale down, it is more and more difficult to 

overcome the obstacles caused by the constraints of technology and manufacturing. In 

order to develop devices with higher performance, many new nontraditional device 

models are proposed. Membrane computing is one of the most popular research areas. 

 

1.1 P SYSTEMS AND SNP SYSTEMS 

Membrane system, also known as P system, is a computational model in the field 

of computer science that performs calculations using a biologically-inspired process. P 

system is defined as a distributed parallel computation model. Such a system is 

constructed by the objects in its membranes, specified evolution rules for objects, and the 

given input-output prescriptions. In P system, any object, alone or together with other 

objects, could perform many operations. They can evolve, be transformed into other 

objects, cross a membrane and dissolve the membrane where it is placed. The evolution 

rules are hierarchized by priority, the rule with the highest priority among the applicable 

rules is always the one actually applied. If there is only one object evolved, then the 

system is non-cooperative; if there are rules specifying the evolution of several objects at 

the same time, then the system is cooperative. Besides the previous cases, there is an 

intermediate case. This kind of cases involves certain objects (called catalysts) which do 

http://en.wikipedia.org/wiki/Model_(abstract)
http://en.wikipedia.org/wiki/Computer_science
http://en.wikipedia.org/wiki/Calculation
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not evolve alone, but appear together with other objects in evolution rules and they are 

not modified by the use of the rules [1].  

Membrane systems are sorted in three types: cell-like membrane system, 

tissue-like membrane system, neural-like membrane system. These three types are 

abstracted from corresponding biological systems. This thesis mainly studies SNP system 

(Spiking Neural P system), a certain kind of neural-like membrane system, which has a 

similar network structure like neural system. 

As a branch of membrane computing, SNP systems define a set of rigorous rules 

that abstract the spiking behavior of biological neurons, place them in a directed graph, 

and process the input information. Compared to the complexity of membrane system, 

SNP system is much simpler and still follows the definition of membrane system: SNP 

system has only one object; the information passed from one neuron to another is in the 

form of electrical impulses, i.e., spikes, which are accumulated at the target neuron; the 

neuron which has only one membrane can hold an arbitrary number of spikes; each 

neuron operates the spikes in it under specified condition which are sorted in two types 

— firing and forgetting. The detailed mathematical definition of SNP system will be 

given in chapter two. 

Firing rules: These rules allow a neuron to send a spike along its axon. This spike 

passes to all neurons connected by a synapse of the spiking neuron. Whether to fire or not 

is determined by checking if the total number of spikes collected in the neuron fulfills a 
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firing rule equation. After firing, the neuron will consume some or all the spikes it has 

received in the previous step. As inspired from a biological neuron, when a neuron sends 

out spikes, it becomes inactive for a specified period of time, i.e., the refractory period, 

during which the neuron does not accept new inputs and cannot fire. When the neuron is 

firing, there is also a delay associated between the input and output spikes. In general, a 

set of firing rules, with different firing thresholds, can be defined for a SNP neuron. 

Forgetting rules: Unlike the firing rules, the forgetting rules remove spikes from 

the neuron without firing any spikes. Forgetting rule and firing rule can’t be applied at the 

same time [2].  

Figure 1 illustrates an example that abstracts a digital SNP neuron from a 

biological neuron: ‘a’ means a spike; ‘’ means no output spike. In this example, after the 

firing or the forgetting operation, all the spikes involved in the operation will be 

consumed and the neuron is going to be reset to the initial mode. 

A biological neuron 

A SNP neuron 

a   

a
2
  a 

Figure 1. Example digital SNP neuron has a firing rule and a 

forgetting rule in it. It will fire a spike for every two input 

spikes and will not fire if there is only one input spike. 
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1.2 SPIKING NEURONS 

As SNP system is abstracted from biological neurons, understanding how neurons 

operate will be very helpful in studying SNP system. A brief biological background of 

neurons is presented in this section. 

The nervous system is unique in the vast complexity of thought processes and 

controls the actions it can perform. The central nervous system contains more than 100 

billion neurons. Figure 2 shows a typical neuron of a type found in the brain motor cortex. 

Incoming signals enter this neuron through synapses. The synapse is the junction point 

from one neuron to the next. A special feature of most synapses is that the signal 

normally passes only in the forward direction, from the axon of a preceding neuron to 

dendrites on cell membranes of subsequent neurons. Conversely, the output signal travels 

along a single axon leaving the neuron. This axon has many separate branches to other 

parts of the nervous system or peripheral body. 

 

Figure 2. A neuron has dendrites, cell body and axon. A 

neuron can have many dendrites and axon endings but 

only one axon and one cell body [3]. 

nucleus dendrites 

axon 

cell body 

axon ending 
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The resting membrane potential of brain neurons when not transmitting nerve 

signals is about -70 millivolts. Nerve signals are transmitted by action potentials, which 

are rapid changes in the membrane potential that spread rapidly along the nerve fiber 

membrane. If any event causes enough initial rise in the membrane potential from -70 

millivolts toward the zero level, the rising voltage itself causes many voltage-gated 

sodium channels to open. This allows rapid inflow of sodium ions, which causes a further 

rise in the membrane potential, thus opening more voltage-gated sodium channels and 

allowing more streaming of sodium ions to the interior of the fiber. This process is a 

positive-feedback cycle and once the feedback is strong enough it continues until all the 

voltage-gated sodium channels have become activated (opened). Then, within another 

fraction of a millisecond, the rising membrane potential causes the closure of the sodium 

channels and the opening of potassium channels and the action potential soon terminates. 

Then, rapid diffusion of potassium ions to the exterior re-establishes the normal negative 

resting membrane potential. The above process is shown in figure 3 and figure 4. 
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A new action potential cannot occur in an excitable fiber as long as the membrane 

is still depolarized from the preceding action potential. The reason is that shortly after the 

action potential is initiated, the sodium channels become inactivated and no amount of 

excitatory signal applied to these channels at this point will open the inactivation gates. 

The only condition that will allow them to reopen is for the membrane potential to return 

to or near the original resting membrane potential level. Then, within another small 

Figure 4. Neuron activation testing [5] 
 

Figure 3. Neuron activation is controlled by the sodium 

channels and potassium channels [4] 
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fraction of a second, the inactivation gates of the channels open and a new action 

potential can be initiated. The period during which a second action potential cannot be 

elicited, even with a strong stimulus, is called the absolute refractory period [6].  

 

1.3 RELIABLE SNP SYSTEMS 

The reliability of CMOS circuits has become one of the top concerns of future IC 

design, especially impacted by process variations and device unreliability. However, 

compared with biological neurons, silicon transistors and circuits are still quite reliable. 

At the 12nm node, the failure rate of a SRAM cell is expected to be less than 0.03% [7], 

on the other hand, for a spiking neuron, the coherence between the stimulus and the 

output signals is only ~70% [8][9]. Even with such a high failure rate, the brain is still 

robust enough to perform neural function and computation correctly, which raise a 

question on how the neural system overcomes this reliability challenge. 

Many works have been inspired by this question. One of the well-known 

examples is neural networks, which focuses on how to adaptively tune the synapse, i.e., 

the interconnection between neurons, to achieve the robustness and the learning 

capability [10] [11]. However, this approach only reflects Pavlov’s conditioned reflex 

experiment which mainly focuses on the synapse function of the receiver. Besides the 

biological constraints of this approach, the difficulty in hardware implementation also 

limits the applications, even with the help of emerging memory devices [12][13][14].  
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Instead of the synapse, SNP systems pay more attention to the neuron, which is 

the core component in neural computation. SNP system has been proved to be Turing 

complete [15], and capable of solving numerical NP-complete problems in polynomial 

time [16]. Indeed, as a computing device, the spiking neuron endows substantially larger 

computation power and better reliability over the conventional Boolean logic [17][18].  

 

1.4 SPECIFIC CONTRIBUTIONS OF THIS THESIS 

 
Figure 5. The SNP-based design has a significant advantage in circuit reliability over Boolean logic 

 

This thesis attempts to transfer the theoretical SNP model into the practical circuit 

design, with the emphasis on circuit reliability management from unreliable devices. 

Figure 5 presents a 1-bit full adder as an example, applying different reliability 

improvement (chapter 3 and 4). NAND-based adder consists of 36 transistors, Triple 
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Modular Redundancy (TMR) improved NAND-based adder has more than 108 transisters, 

whereas the SNP-based adder has 83 transistors. Assuming the probabilities of a 1-bit 

error happening in a neuron and in a NAND gate are the same, the SNP-based design is 

clearly superior in circuit-level reliability. At the 95% success rate of the adder function, 

the SNP-based design tolerates 17.2% error rate per neuron, as compared to 0.57% in the 

single module implementation or 4.4% error rate per NAND gate in the case of TMR.  

With this benefit, this work represents the first step toward reliable logic circuits 

design that is inspired by spiking neurons. The contents of this thesis include: 

Basic neurons: Two types of spiking neurons are proved to be basic neurons 

which can build up a neuron with arbitrary rules in it. (Chapter 2) 

SNP-based arithmetic circuits: Some basic arithmetic operations, addition and 

comparison, are synthesized for design evaluation. (Chapter 3) 

Design of SNP motifs for reliability: Error model are proposed after discussing 

erroneous neurons. To deal with the error in a single neuron, appropriate redundancy is 

necessary. Compared to simply adding more copies of neurons (e.g., TMR), the proposed 

motif design (i.e., clusters of neurons) is able to utilize the unique operation of spiking 

neurons and to achieve high reliability. (Chapter 4) 

CMOS implementation of neurons: Using DRAM-type circuits, the design 

realizes the function of neuron, without any Boolean logic. Design simplicity offers lower 

leakage and smaller area. The sacrifice of reliability at the neuron level is well recovered 
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at the circuit level, through the SNP network with the help of motif design. The design is 

evaluated at 45nm in the presence of statistical variations. (Chapter 5)   
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CHAPTER 2 

PRINCIPLES OF SNP SYSTEMS 

2.1 INTRODUCTION TO SNP SYSTEMS 

Spiking neural P systems are inspired by membrane systems and based on the 

neurophysiological behavior of neurons [2]. In SNP systems, the processing elements are 

neurons, which are connected by a directed graph—the synapse graph. The SNP systems 

work only with spikes and all the spikes it deals with are identical. This section explains the 

basic rules of SNP neurons in a mathematical way. 

For a Spiking Neural P system of degree    , in the form  

                      

Where: 

1. O={a} is a singleton alphabet and a represents a spike. 

2.          are neurons of the form 

                 

    Where: 

a.     ,    is the initial number of spikes contained in the cell; 

b.    is a finite set of rules of the following two forms: 

(1)          , where E is a regular expression over O,     and 

   ,; 

(2)    λ , for    ,          for any rule           from   . 



12 

3.     belongs to                     with           for      ; 

4.              represents the output neuron. 

The rules of type (1) are firing rules, the contents of the neuron are described by 

the regular expression E, r spikes are consumed, the neuron is fired, and it produces a 

spike which will be sent to other neurons after t times units. 

Neurons have two important actions which can happen in one step: getting fired 

and spiking. 

A neuron gets fired when applying a rule          , and this is true only if the 

neuron contains n spikes such that         and    . This means that the regular 

expression E “covers” exactly the contents of the neuron.  

For the spiking, the use of a rule           in a step q means firing in step q 

and spiking in step q + t. That is, if     , then the spike is produced immediately, in the 

same step when the rule is used. If    , the spike will leave the neuron in the next step, 

and so on. 

The rules of type (2) are forgetting rules: s spikes are simply removed from the 

neuron when applying     . Like in the case of spiking rules, the left side of a 

forgetting rule must “cover” the contents of the neuron, i.e.      is applied only if 

the neuron contains exactly s spikes. [2] 
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2.2 BASIC TYPE OF NEURONS 

From the previous sections, we have known the basic information of SNP systems. 

Since there’s no restriction on the expression E, the combination of different rules in a 

neuron is infinite, which would complicate the fabrication of neuron circuits design. 

Inspired by the fact that any Boolean function could be implemented by NAND 

gates, a hypothesis is proposed that there are some basic neurons which could implement a 

neuron with arbitrary rules in it. 

Since neurons have two actions—getting fired and spiking, we are going to begin 

with finding neurons that could implement these two actions separately. 

The first thing is to identify the number of input spikes. The number of input spikes 

could be expressed in binary notation. Inspired by the 1-bit full-adder in Boolean logic, 

two kinds of neurons called odd type and even type are presented in figure 6. The odd 

type performs the function of sum of Boolean 1-bit full-adder while the even type 

performs the function of carryout of 1-bit full-adder.  

 

 

Figure 6. Odd-even type neurons can build up 1-bit adder. Odd type performs the sum function and the 

even type performs the carryout function 

 

Odd type Even type 
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With one odd type neuron and one even type neuron, a 1-bit spikes converter 

which convert the number of input spikes into binary expression can be built (shown in 

figure 7): O corresponds to Sout in 1-bit full-adder and E corresponds to Cout. The number 

of input spikes will be expressed in binary code EO. 

a → a
a2→ λ
a3 → a

a →λ
a2 → a
a3 → a

O

E

         O

         E

symbol

 

Figure 7. 1-bit spikes adder design and its symbol 

 

This design can be expanded to sum up more input pulses. Figure 8 shows a 

design which can sum up 12 inputs and express the number of input spikes in a 4-bit 

binary code         .These designs are named as converters since they can convert the 

number of input spikes into binary expression. 
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E     O O     E E     O O     E

O     E O     E O     E O     E O     E O     E

E     O O     E

O     E O     E O     E

O     E

O     E

a0a1

a2

a3

 
Figure 8. Multi-bit adder is the expansion of the 1-bit adder. This one can sum up at most 12 input 

spikes and convert it into binary code           

 

However, the odd type neuron has two thresholds, which will be a problem in the 

future hardware design and implementation. In order to avoid this problem, some new 

basic type neurons that have only one threshold are needed. Moreover, the new basic 

neurons should also be capable of constructing the odd-even type to sum up input spikes. 

Since the neurons have only one threshold, the number of inputs of the new basic 

type needs not to be set, the new basic neurons could have arbitrary number of inputs. 

And this is very reasonable because neurons in brain always have many inputs. 
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Firstly, the even type neuron fulfills the requirement of one threshold. We rename 

it High Pass neuron with threshold 2 (in short: HP neuron). Following the one threshold 

requirement, the complementary design of HP neuron is named as Low Pass neuron with 

threshold 2 (in short: LP neuron). HP and LP neurons are shown in figure 9. For 

simplicity, HP and LP neurons will be represented by their shapes shown in figure 9 

without rules written in it for rest of this thesis. 

 

HP neuron LP neuron

a →λ

a≥2→ a

a → a

a≥2→ λ

 
Figure 9. HP neuron and LP neuron are the basic neurons. HP neuron will fire a spike out if it receives 

more than two spikes and otherwise will forget input spikes. LP neuron works in the opposite way.  

 

Figure 10 presents the odd-even type neuron constructed by HP and LP neurons. 

Verification on the function of designed odd neurons is as follows: 

1. If there’s only one spike at the inputs, this spike will be passed to the final 

output. 

2. If there are two spikes at the inputs, there will be two kinds of cases: (a) input 

1 and input 2 have spikes or (b) input 3 and input 1 or input 2 have spikes. For 

case a, neuron B will give out nothing and neuron A will see nothing from the 

inputs, thus gives out nothing. For case b, both neuron B and C will send a 

spike to neuron A and neuron A will give out nothing at the output.  
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3. If there are three spikes at the inputs, neuron B will give out nothing and 

neuron C will pass the input spike to neuron A, and neuron A will receive only 

one spike at the inputs and thus fire a spike out. 

From the above analysis, the design is proved to be valid.  

 

 

 

A one input LP neuron could work as another important unit—the delay unit. This 

delay unit with one clock delay is designed to synchronize the circuits. Neuron C in the 

LP neuron based odd-type neuron design is an example of delay unit. 

From the above, we can conclude that the converter, which can sum up arbitrary 

number of input spikes and expressed them in binary code, could be constructed by LP 

and HP neurons. 

Figure 10. Odd-even neuron can be implemented by HP and LP 

neurons. (a) odd type, (b) even type 

 

B C

A

Odd type neuron implemented by 
LP neurons

Even type neuron implemented by 
LP and HP neurons

in1 in2 in3

(a) (b) 

A 

B C 

in1 in2 in3 
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For the rule part, some LP and HP neurons will be used to build up a judgment 

circuit which decides whether to fire or not based on the number of input spikes 

expressed in binary code generated by converter. 

A special kind of rules called “do-nothing” should be considered. Unlike the 

firing and forgetting rules, this kind of rules makes the neurons do nothing, i.e., the input 

spikes will be remembered in the neuron with no spike output. This kind of rules even 

won’t be written in the neurons as they are not real rules.  

Suppose a binary number              is transferred from the converter. For a 

firing rule     , a set of HP and LP neurons are supposed to check the equation   

            , if the equation was true, a spike should be sent to final output. 

Similarly, for a forgetting rule     , another set of HP and LP neurons are 

supposed to check the equation               , if the equation was true, a spike 

should be generated to make sure no firing rules would be activated. A detailed example 

will be given later. 

For the do-nothing rule   , if the equation                was true, a spike 

will be generated and copied to n inputs to participate the next step calculation. 

 

2.3 AN EXAMPLE OF BUILDING A COMPLEX NEURON 

Figure 11 presents a neuron which will be implemented by HP and LP neurons. 

The neuron has both firing and forgetting rules in it, along with a do-nothing rule a
2
.  
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Figure 12 presents the converter design and its symbol which will be used in later. 

The converter generates a binary number       ,    is most significant digit and    is 

the least significant digit. 

 

Figure 12. Converter design and symbol 

 

E     O O     E

O     E

E     O

a0a1

a2

converter

a0a1

a2

(a) (b)(a) (b) 

O E O E 

O E 

O E 

a0 a1 a2 

a0 a1 a2 

converter 

 
a → a
a3 →λ
a4 → a
a5 →λ
a6 → a

Figure 11. A representative neuron will be implemented by 

HP and LP neurons. This neuron has firing rules, forgetting 

rules and a special rule a
2
 in it. 
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Figure 13 illustrates the ruler design. This neuron has 5 rules in it: 1)    ; 

2)     ; 3)     ; 4)     ; 5)     . Since neurons would only be activated by 

spikes, some rules might be activated unexpectedly, i.e. rule 1 will be activated when 

applying rule 4. Thus rule 1 should be deactivated by rule 2 and rule 4; rule 3 should be 

deactivated by rule 4 and rule 5 and the do-nothing rule    should be deactivated by rule 

2 and rule 5. 

 

 

Figure 14. Final implementation of the proposed representative neuron 

a2

a0

a1

out

feedback

converter rulerconverter ruler 

a0 

a1 

a2 

out 

feedback 

Figure 13. Ruler design and its symbol 

 

 a0a1a2

outfeedback

ruler

outfeedback

a0a1a2

(a) (b)

a0 a1 a2 

a0 a1 a2 

feedback 

feedback 

out 

out 

ruler 

(a) (b) 
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Figure 14 presents the final design of the target neuron, which leads to the 

conclusion that an arbitrary neuron could be implemented only with HP and LP neurons.  

Since SNP systems have already been proved to be Turing complete [2] [15], the 

same conclusions could be expanded to the HP and LP neurons. 
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CHAPTER 3 

DESIGN OF SNP-BASED ARITHMETIC CIRCUIT 

The spiking neuron model has been proved having much more computational 

capacities in Boolean function processing than other traditional neuron models, such as 

threshold gates and sigma-pi units [17]. There have been several attempts in the synthesis 

of arithmetic operations with SNP neurons [19][20]. This chapter proposes designs of 

several arithmetic functions using only the LP and HP neurons. 

 

3.1 PREREQUISITE OF SNP CIRCUIT DESIGN 

In order to perform arithmetic operation, it is necessary to determine the numbers 

to be computed in the system. A lot of works have been done on applying SNP systems in 

Boolean domain, dealing with binary codes [19]. However, the binary encoding method 

might not be suitable for SNP systems since it was designed appropriately for CMOS 

logic circuits. Instead of binary codes, the unary codes seem to be more appropriate for 

SNP systems. In most researches on SNP systems, the encoding mechanism is designed 

to be either the time interval between two spikes, or the number of continuous spikes. 

This mechanism accords with the fact that the time when neurons receive and fire out 

pulses is of great importance in encoding information in human brain [20].  

Figure 15 illustrates these two representation methods, which could be easily 

converted into each other using the circuit shown in figure 16[21].  
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In [20], the time interval represented data was computed after being transferred 

into continuous spikes and the result represented in continuous spikes was converted into 

the time interval. Since all the data being calculated was represented in continuous spikes, 

this method will be used in this thesis for simplicity.  

Figure 16. Two circuits that transform data between different representation methods: (a) 

Convert data represented in time interval into continuous spikes, (b) Convert data 

represented in continuous spikes into time interval [21]. 

 

(a) 

 

(b) 

Figure 15. Six expressed in two methods. (a) Six expressed in time 

interval (b) Six expressed in continuous spikes 
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Since the SNP model operates quite differently from the Boolean gates, the 

network of SNP systems that performs a certain arithmetic function will not be the same 

as the one of Boolean logic. Thus the SNP network design plays an essential role at the 

preliminary stage of SNP design for arithmetic functions. 

 

3.2 ADDER DESIGN 

Adder is the core component of arithmetic logic units. Indeed, in today’s digital 

computer, most of the arithmetic functions, such as multiplication, subtraction, and 

division, are constructed from a binary adder with other smaller circuits (e.g., the inverter 

or the shifter). 

One-bit full adder in Boolean logic has two outputs, one for carryout and one for 

the sum. Although our data representation is different from the binary method, the SNP 

based adder still needs to have these two outputs.  

 

 

Figure 17. SNP-based adder design 
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Figure 17 presents the design of a SNP based adder: In1 and In2 are the primary 

input data; neuron 1 and neuron 2 are input neurons; neuron 3 is the output neuron; 

neuron4 is not only a delay neuron which synchronizes the calculation but also a 

feedback path that sends carryout back to the primary input neurons. 

 This design has a restriction that in1 or in2 should be one at most. This 

restriction is caused by the scale of the feedback path. If a stronger computing capability 

is needed, a larger and more complex feedback neuron circuit should be designed. Two 

assumptions are applied here and later in this thesis: input data are synchronized; all 

single neurons have the same signal delay from the input to the output. 

Figure 18 shows the timing diagram of this adder design. The delay from the 

primary input to the final output equals 2 which is the number of operation levels in the 

SNP network. 

 

 
Figure 18. Timing diagram of adder 
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3.3 SUBTRACTOR DESIGN 

Subtraction is another fundamental arithmetic function. Unlike Boolean logic 

subtractor, the SNP based subtractor is quite simple. Actually, a single LP neuron can 

perform the subtraction. 

 

Figure 19. SNP based subtractor design 

 
Figure 20. Timing diagram of subtractor 
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full adder in Boolean logic while the SNP subtractor is much simpler than Boolean logic 

subtractor. This is because of the different rules applied to SNP systems and Boolean 

logic. What’s more, the disparate number representation method also leads the SNP 

neuron circuit design to a new way. 

 

3.4 COMPARATOR DESIGN 

Another representative arithmetic circuit is the comparator which is widely used 

in many areas, especially in image processing applications. The comparator calculates the 

absolute difference between two numbers and compares the value with a given threshold.  

 

 

 

Figure 21. SNP based comparator design 

In1 

d4 

In2 

part1 

part2 part3 

out 

d5 
d2 

d3 

d1 



28 

Compared to conventional Boolean logic comparator, figure 21 presents a new 

design that is fully based on LP and HP neurons. It will output one spike if the difference 

between its two input spike sequences is greater than or equal to 3.  

This SNP design contains three parts: 

 Part1: Subtraction. This part evaluates the absolute value of the subtraction 

between two inputs. The function of this part is： 

               

 Part2: Comparison. This part compares the subtraction value with a threshold 

3. The function of this part is : 

                    

The threshold value is determined by the number of levels in the comparison 

network. Thus, if another threshold value is needed, the chain of LP neurons 

in P2 should be proportionally adjusted. The number of LP neurons in the 

chain is            , so if the threshold is one, this part could be removed. 

 Part3: Conversion. This part converts the input spike sequence into one spike 

if there’s a spike sequence at the input. The function of this part is: 
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Figure 22. Timing diagram of SNP based comparator 

 

Unlike the design of the previous SNP adder, in the design of a SNP comparator, 

the maximum length of input spike trains is actually not limited. This is because the 

function of a SNP comparator is decreasing the length of the input spike sequence while 

the adder is combining and increasing the length of the input spike sequence. As a result, 

the comparator design needs no feedback path in the network while the adder design 

does. 
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CHAPTER 4 

RELIABLABLE DESIGN OF SNP SYSTEM 

In this chapter, erroneous neuron is analyzed and error models are proposed; a 

motif design for neurons to improve reliability is applied in three arithmetic circuit 

designed in chapter 3.  

 

4.1 ERROR MODEL DISCUSSION 

In order to increase reliability, the SNP error types should be analyzed and SNP 

error models should be built. 

The definition of SNP systems is clearly expressed in Chapter2. The firing rule is: 

         , where E is a regular expression over O,     and    ; 

We can draw a conclusion that SNP neurons could only fire one spike at one time, 

which means SNP neurons will only receive no more than one spike at each input each 

time. Then the assumption that the most possible error on the arriving spike is missing 

seems reasonable. This spike missing problem could probably be caused by one spike 

arriving at the target neuron after the neuron evaluates its inputs or the synapse fails to 

work. 

This assumption fits the biological background very well: After firing a spike, the 

excitability of a neuron would reduce to zero for a certain period and this hyperpolarized 

neuron could not be inspired during this period which is called absolute refractory period. 
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This means that the neurons could not generate two spikes in serial in a certain period 

which corresponds to one clock in SNP systems. 

Since we assume the error rate would not be very high, the probability of two or 

more input spikes missing at the same time would be very small, which allows us to 

ignore this situation in this thesis. 

 

 

Figure 23(a) shows a LP neuron with threshold n, for n input spikes case, the 

neuron will fire a spike; for n+1 input spikes case and n+2 input spikes case, the neuron 

will forget all the input spikes.  

Figure 23(b) shows the same LP neuron with one input spike missing, n input 

spikes case and n+1 input spikes case become n-1 input spikes case and n input spikes 

Figure 23. Error discussion on LP neurons with threshold n: 

(a) LP neuron with threshold n having n-1,n,n+1 spikes input 

(b) Same neuron having one input spike missing 

(c) A neuron with threshold increased by one 
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case which would inspire the neuron to fire a spike; n+2 input spikes case becomes n+1 

input spikes case while still triggering the forgetting rule. 

Figure 23(c) shows a LP neuron with threshold n+1, for n input spikes case and 

n+1 input spikes case, the neuron will fire a spike; for n+2 input spikes case, the neuron 

will forget all the input spikes.  

From the above, we can conclude that for LP neurons, one spike missing is 

equivalent to the threshold increasing by one. 

There is one conflict which needs to be clarified. When the number of input 

spikes is one, for the threshold increasing erroneous neuron, it will fire, but for the 

spike-missing erroneous neuron, the neuron can’t receive the spike and thus would not 

fire. In this case, the threshold-shift error doesn’t match the spike-missing error. This 

conclusion is incorrect. Let’s recall from the reason of one spike missing. This error 

happens because one spike did not reach the target neuron before the neuron evaluates the 

input spikes. However, a neuron starts evaluating its input pulses after it receives its first 

spike which means spike-missing error would not occur to LP neurons if there was only 

one spike at the input.  

As a result, the threshold-shift error is equivalent to the spike-missing error for LP 

neurons. 
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Figure 24(a) shows a HP neuron with threshold n, for n-1 input spikes case, the 

neuron will forget the input spikes; for n input spikes case and n+1 input spikes case, the 

neuron will fire a spike.  

Figure 24(b) shows the same HP neuron with one input spike missing, n-1 input 

spikes case and n input spikes case become n-2 input spikes case and n -1 input spikes 

case which would trigger the forgetting rule; n+1 input spikes case becomes n input 

spikes case while still inspiring the neuron to fire a spike. 

Figure 24(c) shows a HP neuron with threshold n+1, for n-1 input spikes case and 

n input spikes case, the neuron will forget its input spikes; for n+1 input spikes case, the 

neuron will fire a spike.  

If n=1, the threshold increasing error still equals the one spike missing error. 

Figure 24. Error discussion on HP neurons with threshold n: 

(a) HP neuron with threshold n having n-1,n,n+1 spikes input 

(b) Same neuron with one input spike missing 

(c) A neuron with threshold increased by one 
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From the above, we can conclude that the one spike missing error is equivalent to 

the threshold increasing by one error for both LP and HP neurons. Since the 

threshold-shift error is simpler on analyzing and modeling, it is an appropriate model to 

analyze the reliability in this thesis. 

For simplicity, the original basic SNP neurons are named as alpha version, the 

threshold-shift erroneous SNP neurons is beta version. Figure 25 presents the alpha 

version and beta version of LP and HP neurons with threshold one, which will be used in 

this thesis. 

a → λ

a≥2→ a

a → a

a≥2→ λ

a → λ

a2  → λ

a≥2 → a

a → a

a2 → a

a≥2 → λ

alpha version of LP neuron alpha version of HP neuron

beta version of LP neuron beta version of HP neuron

 

Figure 25. Alpha and beta version of LP and HP neurons. Alpha version represents the designed 

neurons, beta version represents the erroneous neurons. 

 

 

4.2 ERROR TOLERATED IMPROVEMENT OF A SINGLE NEURON 

In order to enhance the error tolerance of a SNP circuit design, our approach starts 

from increasing the reliability of a single LP or HP neuron. For this purpose, a traditional 
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solution is to combine more identical units with a majority vote unit. In this way, the 

function of the unit will be correct only if the majority of these multiple copies work 

correctly. Besides, the majority vote unit should also be correct. Figure 26 presents an 

example of TMR (Triple Modular Redundancy) design for a LP neuron. Three copies of 

the LP neuron work in parallel and the HP neuron serves as the majority vote unit in this 

case.  

In1 In2

O1 O2 O3

Out

1 2 3

 

Figure 26. TMR improved LP neuron 

 

Table 1 presents the outputs of all neurons in this circuit corresponding to all 

kinds of possible inputs of the circuit, 1 represents a spike at the input, and 0 represents 

nothing.  
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Table 1. Signal analysis in TMR improved LP neuron 

In1 In2 O1 O2 O3 Out 

0 0 0 0 0 0 

0 1 1 1 1 1 

1 0 1 1 1 1 

1 1 0 0 0 0 

If one of the LP neurons (suppose neuron 3) changes from alpha version to beta 

version: 

Table 2. Signal analysis in erroneous TMR improved LP neuron (1 erroneous LP ) 

In1 In2 O1 O2 O3 Out 

0 0 0 0 0 0 

0 1 1 1 1 1 

1 0 1 1 1 1 

1 1 0 0 1 0 

If the HP neuron changes from alpha version to beta version: 

Table 3. Signal analysis in erroneous TMR improved LP neuron(1 erroneous HP ) 

In1 In2 O1 O2 O3 Out 

0 0 0 0 0 0 

0 1 1 1 1 1 

1 0 1 1 1 1 

1 1 0 0 0 0 

If two of the LP neurons (suppose neuron 2 and 3) change from alpha version to 

beta version: 
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Table 4. Signal analysis in erroneous TMR improved LP neuron (2 erroneous LP) 

In1 In2 O1 O2 O3 Out 

0 0 0 0 0 0 

0 1 1 1 1 1 

1 0 1 1 1 1 

1 1 0 1 1 1 

Table 1, 2 and 3 have the same functions while table 4 has a different function on 

case In1=In2=1. Thus, this design could tolerate at most one beta version error, no matter 

error happens to LP neuron or HP neuron. 

Suppose the error rates    of the neurons in a design are identical, and the errors 

among the neurons are uncorrelated. (This assumption will be used later in this thesis.) 

The reliability of this TMR circuit is:       
           

  

Although the TMR solution is widely used in many designs, it does have its 

defects. The cost of TMR is very high while the improvement of reliability is relatively 

low. In a word, the efficiency of its reliability improvement is low. 

Compared to TMR, a better solution which is more efficient in reliability 

improvement is needed. This solution should be able to make use of the unique properties 

of the spiking neuron, as well as the error model.  

This new design starts from analysis on the threshold-shift error model. When a 

basic neuron falls into beta version, the threshold of the neuron changes from two to three. 

Errors only happen to the two input spikes case. If the neuron has one input spike or three 
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input spikes, the output will still be correct. Same conclusion could be made from Table 4. 

Thus avoiding two input spikes cases is a good choice on reliability improvement. 

In1 In2

O1 O2 O3

Out

 

Figure 27. Motif improved LP neuron 

 

Figure 27 presents a circuit called LP motif, which is designed to tolerate the 

threshold-shift error.  

Table 5 presents the outputs of all neurons in this circuit corresponding to all 

kinds of possible inputs of the circuit.  

Table 5. Signal analysis in Motif improved LP neuron 

In1 In2 O1 O2 O3 Out 

0 0 0 0 0 0 

0 1 0 0 1 1 

1 0 1 0 0 1 

1 1 1 1 1 0 
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If the output LP neuron changes from alpha version to beta version: 

Table 6. Signal analysis in erroneous Motif improved LP neuron (erroneous output LP ) 

In1 In2 O1 O2 O3 Out 

0 0 0 0 0 0 

0 1 0 0 1 1 

1 0 1 0 0 1 

1 1 1 1 1 0 

 

If the HP neuron changes from alpha version to beta version: 

Table 7. Signal analysis in erroneous Motif improved LP neuron (erroneous input HP ) 

In1 In2 O1 O2 O3 Out 

0 0 0 0 0 0 

0 1 0 0 1 1 

1 0 1 0 0 1 

1 1 1 1 0 0 

If both the output LP neuron and the HP neuron change from alpha version to beta 

version: 
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Table 8. Signal analysis in erroneous Motif improved LP neuron (erroneous input HP 

and output LP) 

In1 In2 O1 O2 O3 Out 

0 0 0 0 0 0 

0 1 0 0 1 1 

1 0 1 0 0 1 

1 1 1 0 1 1 

 

From section 4.1, we know that one input LP neurons would not have 

threshold-shift error. Thus we can conclude that this motif design would fail only if both 

the HP neuron and output LP neuron failed. Therefore the reliability of this circuit 

is:     
 
. This design uses the same number of neurons as the TMR design but in a 

different network.  

 
Figure 28. The reliability of a LP neuron is significantly improved by using the proposed motif, with a 

similar area cost of TMR 
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Figure 28 illustrates the success rate of the motif compared to the TMR design. At 

the 95% success rate, the error rate TMR could tolerate is 9.76% while that the motif 

could tolerate is 22.4%, which is much more effective than TMR.  

In order to further enhance the reliability, TMR design usually adds TMR to each 

unit in the original design while the motif only needs to insert more HP neurons in 

parallel with the one in figure 27. Figure 29 illustrates a 2
nd

 order improved LP motif with 

two HP neurons to improve the reliability, the LP motif with only one HP neuron in 

figure 27 is 1
st
 order improved LP motif. 

In1 In2

Out

 

Figure 29. 2nd order motif improved LP neuron 
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Figure 30. The reliability can be further improved by adding more HP neurons 

 

With an increasing number of orders of the motif improvement, the asymptotic 

behavior of the motif improvement is presented in Figure 30. This solution provides the 

flexibility to meet various reliability demands, at the cost of more neurons. 

There is another benefit of the motif—delay: the motif design only has two levels 

in the design no matter how many HP neurons are inserted while the number of levels in 

TMR increases linearly when adding more TMRs.  

 

4.3 MOTIF APPLIED ON ARITHMETIC CIRCUIT DESIGN 

The motif design has been proved effective for one single neuron. However, just 

improving the reliability of a single neuron is not enough. The capability to improve 

reliability in complex circuit design is more important. 
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4.3.1 MOTIF APPLIED ON ADDER 
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Figure 31. Motif improved adder 

 

 The motif improved 1-bit full SNP adder is presented in Figure 31. Since In1, 

In2 and feedback are sent into both neuron 1 and neuron 2 (in figure 17), these two 

neurons could share one set of motif.  
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Figure 32. Timing diagram of motif improved adder 

 

Figure 32 illustrates the timing diagram of the motif improved adder. The delay 

from the primary input to the final output represents the number of operation levels in the 

SNP network. There are three levels in this design, compared to two levels in the original 

design. Some neurons, such as the LP neurons in the first level, are introduced only as a 

buffer, in order to synchronize the operation across various branches. 

The success rate of the original design is:              
 ；the success rate 

of the motif improved circuit is:     
    

       
 , which is shown in figure 33. 

At 95% system success rate, the original design could only tolerate 2.6% error while the 

motif improved design could tolerate 17.2%. Figure 34 illustrates the reliability 

comparison among adder motifs with different orders. 
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Figure 33. The reliability of the adder design is significantly improved by using the proposed motif. 

 

 
Figure 34. The reliability can be further improved by applying higher order motif structure. 

 

4.3.2 MOTIF APPLIED ON COMPARATOR 

Applying motif on comparator is more complex than on adder as it has three 

function unit and more critical neurons. 
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In1 In2

Out
 

Figure 35. Motif improved comparator 

 

 Figure 35 presents motif improved comparator. In the original design, there are 

four critical neurons, which means an error that happens to any of these neurons leads to 

the failure of the whole circuit. 

The success rate of the original design is:       
 ；the success rate of the 

comparator motif is:      
       

       
     

        , which are depicted 

in figure 36. 
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Figure 36. The reliability of the motif improved comparator design is significantly better than that of 

the original comparator design. 

 

4.3.3 MOTIF RELIABILITY ENHANCEMENT ANALYSIS 

 
Figure 37. Reliability of comparator vs reliability of adder 
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Figure 38. The reliability of the SNP design is effectively improved with smaller area than the Boolean 

design 

Figure 37 evaluates the reliability of these two SNP designs, with an assumption 

that all LP and HP neurons have the same rate of the 1-bit error. Thus, this study 

examines the capability of error tolerance in the SNP network. As shown in Figure 37, the 

comparator has a lower reliability than the adder, due to its complexity. Since the 

reliability of the network can be improved by increasing the orders of motif, Figure 38 

checks the hardware cost in reliability protection. It presents the error tolerance at 95% 

success rate of an adder in both CMOS-based SNP and Boolean designs. In the SNP 

design, the tolerance of a single neuron error is rapidly enhanced by moderately adding 

the motifs. Overall, the results reveal that the SNP network is more robust than the 

Boolean network, with a lower area cost.   
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CHAPTER 5 

CMOS IMPLEMENTATION 

5.1 DRAM-TYPE NEURON DESIGN 

In the domain of designing neuromorphic silicon neuron circuits, a lot of analog 

and digital implementations of spiking neurons are proposed to simulate the realistic and 

complicated neural biological behavior [22]. However, paying too much attention to the 

detailed function of dendrite and axon may distract us from the importance of simplified 

neuron model which would benefit in power and density. This thesis focuses on designing 

simplified circuit of neurons while still maintaining the primary properties.  

 

5.1.1 BASIC NEURON IMPLEMENTATION 

The circuit implementation starts from the design of the LP and HP neurons as 

they are the fundamental units. MOESFETs are used to build up basic neurons and 45nm 

PTM are used in all the simulations. 

As shown in figure 39, the design is constructed by three parts: 

Integration: this DRAM structured part integrates all the input spikes in a 

capacitor. The voltage on the capacitor represents the number of input spikes. The 

number of the pass-gates corresponds to the input number of neuron. If more inputs are 

needed, the number of the pass-gates should be increased.  
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Evaluation: this part copies voltage at node n1 to voltage at node n2 which is 

realized by charge sharing between a large cap and a small cap. 

Fire: this part compares the voltage at node n2 with the threshold voltage of an 

inverter and determines whether to fire or not. The second inverter is a buffer which also 

shapes the output pulse. 

 

5.1.2 SIMULATION RESULT 

Figure 40 presents the SPICE simulation results of a 2-input HP neuron. C1, C2, 

C3 and C4 are four clocks; In1 and In2 are two input signals; n1, n2, n3 represent the 

Figure 39. CMOS-based neuron design, using DRAM-type structures 
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corresponding nodes; Out is the final output which is also the input of the next neuron. 

This simulation proves the simulated HP neuron functionally correct: it fires out a pulse 

when there are two input pulses; it forgets the input when only one pulse arrives at the 

neuron.  

 

The circuit operates in the following order: first of all, C3 comes to high and the 

fire stage applied fire/forget rules based on the voltage it reads from n2, meanwhile, In1 

and In2 arrive at the integration stage and the capacitor accumulates electrical quantity. 

Then C2 comes and passes the voltage at n1 to n2; C4 discharges n3 until next C3 arrives. 

Finally, C1 resets n1 and ends the period. 

Figure 40. The simulation of 2-input HP neuron 
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Figure 41. Timing diagram of adder and comparator in simulation 

 

By applying the neuron circuits in SNP networks, various functions could be 

achieved. Figure 41 presents the timing diagram simulation of the adder and comparator 

proposed in the previous chapter. 
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5.2 CIRCUIT PERFORMANCE 

The proposed CMOS design is simple, implying smaller area and lower power 

consumption. Even though the simplicity of neuron design costs reliability, we can still 

manage the system reliability via properly designed SNP networks. 45nm SPICE 

simulation with threshold voltage (Vth) variations is applied in the following simulations. 

 

 

Figure 42. Reliability of a single neuron for various Vth 

 

Figure 42 illustrates the reliability of a single neuron for various Vth variances 

(Vth). Because of the different circuit structure, LP and HP neurons have two different 

curves of Vth tolerance. 
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Figure 43. Tolerance of Vth variation for motif adder and motif comparator 

 

Figure 43 presents the tolerance of Vth for adder motif and comparator motif. The 

Vth for adder and comparator is even larger than the one of single LP and HP neurons, 

implying that appropriate SNP network will guarantee the system reliability. 

Table 9. Comparison between Boolean and SNP on energy and leakage 

Function Design type Switching Energy (fJ) Leakage Power (μ W) 

Adder Boolean 5.76 2.15 

SNP 83.8 0.55 

Comparator Boolean 83.73 38.52 

SNP 151.8 0.91 

Table 9 compares the power consumption between SNP circuits and the Boolean 

design based on NAND gates. For a simple design like adder, the SNP design costs more 

switching energy than the Boolean logic design because it operates more complex. But 
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for a complicated design like the comparator, the switching energy costs on Boolean 

design and SNP design are compatible. This might partially be due to the fact that the scale 

of a SNP design does not increase as fast as the function complexity. 

In both design cases, the leakage power of SNP circuit is much smaller than that of 

Boolean circuits which profits from the reset operation at each cycle. All over all, the 

design of SNP proposes a tradeoff between active and leakage power. 
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CHAPTER 6 

CONCLUSION AND FUTURE WORK 

This thesis presents a first step toward designing integrated circuit with SNP 

systems. The proposed LP (Low Pass) and HP (High Pass) neurons are proved capable of 

implementing arbitrary SNP neurons and Turing complete, which make them basic 

building neurons in circuit designs. Representative arithmetic functions are constructed 

by the circuit implemented by LP and HP neurons. 

One spike missing error is proved to be equivalent to threshold increasing by one 

error. For simplicity, the threshold error model is analyzed through the thesis. The 

reliability discussion starts from improving the reliability of a single neuron. The motif 

structure is proposed and proved to be much more efficient than the traditional TMR 

improvement. The motif structure is also applied on the arithmetic circuits and presents 

its efficiency in reliable design.  

The neuron model is implemented into DRAM-type CMOS circuits. The 45nm 

SPICE simulation results illustrate that the SNP network is able to reach high success rate 

while tolerating an excessive amount of unreliability at the device level. Besides, SNP 

based circuits have much smaller leakage than the Boolean logic circuit while 

maintaining compatible power consumption over the Boolean logic circuits. 
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Overall, SNP system presents its design potential for IC designs. Future work is 

needed in designing basic SNP functional unit, automatic generation of SNP neuron 

circuits, synthesis on SNP networks and design optimization of SNP neuron circuits. 
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