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ABSTRACT

Learning from high dimensional biomedical data attracts lots of attention recently.

High dimensional biomedical data often suffer from the curse of dimensionality and have

imbalanced class distributions. Both of these features of biomedical data, high dimension-

ality and imbalanced class distributions, are challenging for traditional machine learning

methods and may affect the model performance. In this thesis, I focus on developing

learning methods for the high-dimensional imbalanced biomedical data. In the first part,

a sparse canonical correlation analysis (CCA) method is presented. The penalty terms is

used to control the sparsity of the projection matrices of CCA. The sparse CCA method

is then applied to find patterns among biomedical data sets and labels, or to find patterns

among different data sources. In the second part, I discuss several learning problems for

imbalanced biomedical data. Note that traditional learning systems are often biased when

the biomedical data are imbalanced. Therefore, traditional evaluations such as accuracy

may be inappropriate for such cases. I then discuss several alternative evaluation criteria

to evaluate the learning performance. For imbalanced binary classification problems, I use

the undersampling based classifiers ensemble (UEM) strategy to obtain accurate models

for both classes of samples. A small sphere and large margin (SSLM) approach is also

presented to detect rare abnormal samples from a large number of subjects. In addition,

I apply multiple feature selection and clustering methods to deal with high-dimensional

data and data with highly correlated features. Experiments on high-dimensional imbal-

anced biomedical data are presented which illustrate the effectiveness and efficiency of my

methods.

i



DEDICATION

This thesis is dedicated to my parents

for their love, encouragement

and endless support.

ii



ACKNOWLEDGEMENTS

I would like to thank many people who supported and helped me during my research and

graduate studies. The completion of this thesis is impossible without them.

My warmest thanks to my advisor, Dr. Jieping Ye, for his excellent guidance,

support and encouragement during my research and studies. I would also like to thank Dr.

Yalin Wang and Dr. Hasan Davulcu, for serving on my thesis committee. Thanks for their

valuable insight and guidance.

Thanks to Yashu Liu for his help in my research and helpful suggestions to my

thesis. Thanks also to Dr. Chao Zhang and Dr. Binbin Lin for their review of my thesis

and their valuable advice.

I am also thankful to other fellow members in the Center for Evolutionary

Medicine and Informatics (CEMI) of the Biodesign Institute at Arizona State University,

for their help, friendship and support: Dr. Zheng Wang, Dr. Jie Wang, Dr. Pinghua Gong,

Dr. Lei Yuan, Dr. Rita Chattopadhyay, Jiayu Zhou, Sen Yang, Shuo Xiang, Qian Sun, Zhi

Nie, Cheng Pan, Rashmi Dubey and Lei Zhang.

My sincere thanks go to Dr. Lenore Dai and Dai Dai, for their help and support

during my study at Arizona State University.

Finally, I would like to express my deepest gratitude to my beloved parents, for

their enduring love, support and encouragement throughout my life. This thesis is

dedicated to them.

iii



TABLE OF CONTENTS

Page

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

CHAPTER

1 Background and Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Background and Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Problems Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Methods and Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.5 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Sparse Canonical Correlation Analysis . . . . . . . . . . . . . . . . . . . . . . . 6

2.1 Linear Correlation and Canonical Correlation Analysis . . . . . . . . . . . 6

2.2 Sparse CCA Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Applications of sparse CCA to Biomedical Data . . . . . . . . . . . . . . . 10

Data Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Sparse CCA and Pattern Predetection . . . . . . . . . . . . . . . . . . . . . 13

Pattern Detection between Data Sets via sparse CCA Method . . . . . . . . 18

3 Learning from Imbalanced Data . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1 Introduction to Imbalanced Learning . . . . . . . . . . . . . . . . . . . . . 21

3.2 Appropriate Evaluation Criteria . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3 Sampling Methods and Classifiers Ensemble . . . . . . . . . . . . . . . . . 24

Random Undersampling Method . . . . . . . . . . . . . . . . . . . . . . . 24

Classifiers Ensemble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Undersampling-based Ensemble Framework . . . . . . . . . . . . . . . . . 27

3.4 Feature Selection Methods for Imbalanced Learning . . . . . . . . . . . . . 28

iv



CHAPTER Page
Introduction to Feature Selection . . . . . . . . . . . . . . . . . . . . . . . 28

Feature Selection Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Feature Selection Methods for the UEM Framework . . . . . . . . . . . . . 31

3.5 Novelty Detection Idea for Imbalanced Learning . . . . . . . . . . . . . . . 33

3.6 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Undersampling Method and Imbalanced Learning . . . . . . . . . . . . . . 36

UEM Framework and Imbalanced Learning . . . . . . . . . . . . . . . . . 37

UEM Framework with Feature Selection Methods . . . . . . . . . . . . . . 39

SSLM and Imbalanced Learning . . . . . . . . . . . . . . . . . . . . . . . 44

4 Clustering Methods in High-Dimensional Learning . . . . . . . . . . . . . . . . 47

4.1 K-means Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.2 Hierarchical Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.3 Clustering Methods in Features . . . . . . . . . . . . . . . . . . . . . . . . 51

4.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Comparison among Different Linkage Strategies . . . . . . . . . . . . . . . 52

Clustering Methods and High-Dimensional Learning . . . . . . . . . . . . 54

5 Conclusion and Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.1 Summary of Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.2 Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

APPENDIX

A Reduce Storage Time Confounder in the Metabolite Data . . . . . . . . . . . . . . 66

B Feature Evaluation and Removal in the Metabolites Data Set . . . . . . . . . . . . 70

v



LIST OF TABLES

Table Page

2.1 Depression data sets sample statistics and missing value imputation methods. . 11

2.2 The sparse CCA experiments between the Depression data sets and the class

labels (part I): the weights of top five selected labels for each data set are

recorded. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 The sparse CCA experiments between the Depression data sets and the class

labels (part II): the weights of top five selected labels for each data set are

recorded. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4 The Depression sample statistics for different subtypes of mood disorders. . . . 16

2.5 The classification performance of each pair of the Depression data sets and

class labels. The cell is colored according to the accuracy value. . . . . . . . . 17

2.6 The sample statistics of the META data and the MRI data in ADNI study. . . . 19

2.7 The sparse CCA experiment results on the META data and the MRI data in

ADNI study: (a) the META data; (b) the MRI data. . . . . . . . . . . . . . . . 19

3.1 The sample statistics of the Depression data set used in the MelanDpres-C target. 35

3.2 The melancholic depression classification performance on the Metabolite data,

the Protein data, and the Transcripts data; all features are included in this ex-

periment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3 The classification performance of melancholic depression based on the under-

sampling method. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.4 The metabolite features obtained by different feature selection methods using

the UFSEM framework based on the two Metabolite data sets. . . . . . . . . . 42

4.1 The statistics of clusters among different linkage strategies on the Depression

Metabolite data set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

vi



Table Page
B.1 The list of abnormal metabolites and their O-PLS test result. The texts in bold

face are considered to be kept; others are removed in the reduced Metabolite

data set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

vii



LIST OF FIGURES

Figure Page

2.1 A diagram of the sparse canonical correlation analysis method, with only one

pair of the canonical vectors. . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Depression data set, (a) Personal and medical history, (b) Cognition, (c) Elec-

trical brain-body function, (d) Brain structure, (e) Molecular profiles. . . . . . . 11

2.3 The classification performance of each pair of the Depression data sets and

class labels grouped by data set. . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1 The confusion matrix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 The framework of undersampling-based classifiers ensemble (UEM). . . . . . . 27

3.3 The framework of the combination of feature selection and undersampling-

based classifiers ensemble (UFSEM). . . . . . . . . . . . . . . . . . . . . . . 32

3.4 The melancholic depression classification performance based on the UEM frame-

work and different ensemble strategies. Average means the average strategy,

Majority refers to the majority voting strategy and Weighted stands for the

weighted voting strategy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.5 The melancholic depression classification performance based on the UFSEM

framework and multiple ensemble strategies and multiple feature selection meth-

ods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.6 The melancholic depression classification performance on the Transcript data;

Information Gain is used for feature selection and different number of features

are used. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.7 Visualization of sample distributions based on the top 2 PCs of Metabolite

Data; features are obtained using multiple feature selection methods. . . . . . . 43

viii



Figure Page
3.8 Comparison of the melancholic depression classification performance between

the SVDD method and the SSLM method on Metabolite data; different training

ratios of patients are used. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.9 Comparison of the melancholic depression classification performance between

the SSLM method and the UFSEM framework on Metabolite data; different

training ratios of patients are used. . . . . . . . . . . . . . . . . . . . . . . . . 46

4.1 Dendrograms of hierarchical clusters, based on different linkage strategies on

the Depression Metabolite data; each dendrogram is built base on top 30 levels

of the hierarchical tree and the distance criterion is the correlation. . . . . . . . 53

4.2 Comparison of the melancholic depression classification performance on clus-

tered Metabolite data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

A.1 The pairwise linear correlation coefficient between each metabolite and the

storage time at the Depression, use all valid samples and impute missing values

via KNN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

A.2 The p-values for testing the hypothesis of no correlation against the alternative

that there is a nonzero correlation for each pair of metabolite and the storage

time at the Depression, use log10 transformation, use all valid samples and

impute missing values via KNN. . . . . . . . . . . . . . . . . . . . . . . . . . 67

ix



Chapter 1

Background and Introduction

1.1 Background and Challenges

In recent decades, machine learning techniques have been extensively applied to solve

problems in computational biology and bioinformatics. For example, some learning

models have been developed to distinguish the patients from healthy controls based on

biomedical data. Also, there are several works on investigating the patterns, the

mechanisms and the interactions among biological molecules [1, 2, 3].

Recently, there have been many interests in the learning problems of biomedical

data. Given a raw biomedical data, it is generally difficult to automatically identity

interesting patterns contained in the data. Moreover, it will become much more difficult if

there are multiple data sets available, or multiple clinical subtypes need to be recognized.

For example, in the Depression research (see Chapter 2 for details), we have six data sets

on a set of samples, and we can also define more than ten clinical subtypes (labels) based

on the data. The aforementioned facts imply that the learning tasks can be formalized for a

variety of research targets. Therefore, it is excepted to determine a certain research target

before applying further machine learning methods to learn inherent relationships and

patterns from these biomedical data sets with multiple labels.

It is noteworthy that the biomedical data are often imbalanced, that is, the number

of patients is often much smaller than the number of available healthy controls. However,

a large number of traditional learning systems are designed under the assumption that the

data have balanced class distributions. Thus, these classical methods are often biased

when the biomedical data are imbalanced. For instance, in binary classification tasks,

standard accuracy-based classifiers will be dominated by the majority class of

observations [4]. Meanwhile, the characteristics of minority-class examples cannot be

well captured. In practice, it is expected that the obtained models should perform well on
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both of the majority set and the minority set. The principle reason behind this expectation

is that the minority set of samples in the biomedical data may be very significant. For

example, in the Depression research, we would like to find an accurate model for the

information of patients, while the patients just belong to the so-called minority set.

In addition, the biomedical data often suffer from the curse of dimensionality [5].

The curse of dimensionality refers to the scenario that the number of features p, is much

greater than the number of subjects n, i.e., p� n. In some cases, the data also contain

many redundant features. Such high-dimensional data sets often appear in biology, e.g.,

microarray data and protein data. Although there are many attempts to use traditional

machine learning methods to deal with the biomedical data, most of these methods are

built under the assumption that the data set has a relatively low dimensionality. However,

this assumption is not often valid in practice. To learn from a high-dimensional biomedical

data set, a desired learning model should satisfy the following three requirements:

• Overcome the curse of dimensionality;

• Perform well for the data with highly-correlated variables;1

• Be effective and efficient for a variety of high-dimensional applications.

To sum up, to learn from a biomedical data set, we need to determine an

appropriate research target. Moreover, the biomedical data often suffer from the

high-dimensionality and have imbalanced class distributions. Both of these characteristics

bring severe challenges for traditional machine learning methods, and may affect the

model performance.
1In contrast, Lasso, for example, cannot handle correlation-structure among the features [6].
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1.2 Problems Setup

In this thesis, I focus on developing learning methods for the high-dimensional

imbalanced biomedical data. There are essentially three objectives in this thesis:

• Select the potential patterns among the data and class labels for a given biomedical

data set with multiple class labels;

• Develop accurate classifiers that can effectively and efficiently identify patients

from healthy controls;

• Find significant biomarkers from the biomedical data set.

1.3 Related Work

In this section, we review several works related to the learning process for

high-dimensional imbalanced biomedical data.

There are several machine learning methods that can be used to learn the potential

patterns among multiple biomedical data sets and these labels, e.g., Canonical correlation

analysis (CCA). CCA is a widely used linear method to investigate the relationship

between two sets of multidimensional variables [7]. To deal with high-dimensional data,

sparsity has been introduced into the CCA formulation, e.g., the sparse CCA via linear

regression [8, 9, 10], the sparse CCA via iterative greedy algorithm [11, 12, 13, 14, 15, 16]

and the sparse CCA via Bayesian learning [17, 18, 19].

After determining the appropriate research targets (patterns), we focus on

addressing two challenges in learning from the biomedical data: the imbalanced class

distributions and the curse of dimensionality.

To deal with the imbalanced class distributions or, more specifically, deal with

imbalanced binary classification problems, an intuitive idea is to balance the training set.

3



Recently, many studies suggest sampling methods are effective. There are various

sampling methods that have been proposed, e.g., random undersampling and oversampling

[20, 21], informed undersampling [22], synthetic minority oversampling technique

(SMOTE) [23], sampling with data cleaning techniques [4, 24] and the cluster-based

oversampling (CBO) [25]. In addition to sampling strategies, the cost-sensitive framework

is proposed in the imbalanced learning by using multiple cost matrices that generate the

costs for misclassifying any abnormal subjects [26, 27]. There are also other effective

methods for the imbalanced learning such as Kernel-based methods [28] and active

learning methods [29].

Moreover, there are many strategies proposed to solve the high-dimensional data

problems, e.g., feature selection and feature extraction techniques [30, 31], clustering

methods [6], and sparse approaches [8]. Essentially, the aim of high-dimensional learning

is to reduce the dimensionality as well as to keep the distinguishable features.

1.4 Methods and Approaches

In this thesis, I focus on developing learning methods for high-dimensional imbalanced

biomedical data. I first consider a sparse canonical correlation analysis method that uses

the penalty terms to control the sparsity of the projection matrices. This method is then

applied to find patterns among data sets and outcomes, or to find patterns among different

data sources. To deal with the biomedical data with imbalanced class distributions, I

present several evaluation criteria to evaluate the learning performance. In order to build

accurate models for both classes of samples, I consider the undersampling method on the

training set. Meanwhile, to ensure the robustness of the learning models, a further

approach that combines the undersampling method and the ensemble strategy is discussed.

Moreover, a small sphere and large margin approach is also presented, which can be used

to detect rare abnormal samples from a large number of subjects. The rest parts of the

thesis introduce several feature selection methods and clustering methods. Both of these

4



methods are aiming to improve the learning performance of the high-dimensional

biomedical data. Feature selection methods can further produce significant features, and

the clustering methods can help us reduce the redundancy in the data.

1.5 Thesis Organization

The thesis is organized as follows. Chapter 2 introduces the sparse canonical correlation

analysis (CCA) method and its applications. In Chapter 3, I discuss some learning

problems of imbalanced data, including the choice of appropriate evaluation criteria, the

undersampling-based classifiers ensemble (UEM) method, feature selection methods to

the UEM framework, and the novelty detection ideas. I present the method of clustering

highly correlated variables in Chapter 4 and conclude the thesis in Chapter 5.
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Chapter 2

Sparse Canonical Correlation Analysis

Canonical correlation analysis (CCA), first proposed by H. Hotelling in 1936 [7], is a

classical method for measuring the linear relationship between two sets of

multidimensional variables. In this chapter, I first introduce the linear correlation

coefficient and CCA, and then introduce the sparse CCA method for high-dimensional

data. Finally I discuss some applications of sparse CCA to biomedical data.

2.1 Linear Correlation and Canonical Correlation Analysis

Given two vectors x and y, x,y ∈ Rn, the linear correlation coefficient (or called Pearson

product-moment correlation coefficient [32]), which measures the strength of linear

dependence between these two variables, is defined as the covariance of the two vectors

divided by the product of their standard deviations:

ρx,y =
cov(x,y)

σxσy
(2.1)

=
xT y

‖x‖2‖y‖2
, (2.2)

where both of the variables are standardized as mean zero, i.e., x = y = 0.

By extending to the situation of multidimensional variables, we use the canonical

correlation analysis to evaluate the relationship between multiple variables. It has been

observed that the correlation analysis is sensitive to the coordinates. Although the two

variables have a strong linear relationship, their correlation may not be well-expressed due

to the inappropriate choice of coordinates [33]. Thus we use the CCA method to find a set

of optimal basis vectors that maximize the correlation between the base-projections of the

variables.

Consider two data matrices X = [x1, . . . ,xn] ∈ Rp×n and Y = [y1, . . . ,yn] ∈ Rq×n,

where xi, and yi(1≤ i≤ n) correspond to two different views of the same sample source,

6



respectively. Assume that each row (feature) in X and Y is centered, i.e.,
n
∑

i=1
x ji = 0 for

any 1≤ j ≤ p and
n
∑

i=1
yki = 0 for an 1≤ k ≤ q. Let wx ∈ Rp and wy ∈ Rq be two

transformation vectors for each variable, and then wT
x X and wT

y Y denote the projections of

two variables in the new coordinate systems. CCA gives an optimal pair of wx and wy that

maximizes the correlation between the two projections, that is,

ρ = max
wx,wy

corr (wT
x X,wT

y Y) (2.3)

= max
wx,wy

wT
x XYT wy

‖wT
x X‖2‖wT

y Y‖2
. (2.4)

Note that wx and wy refer to the canonical vectors (or weights), and (wT
x X,wT

y Y) is

termed as the pair of canonical variables [34].

2.2 Sparse CCA Method

In recent years, CCA has been widely used in various applications, e.g., learning semantic

representations for web images [33]; obtaining multiple-assays measurements (gene

expression, DNA copy number, etc.) of samples taken from one single set of patients [11].

However, as pointed out in [11], traditional CCA method may not be suitable to the

high-dimensional situation, where the feature dimension (number of features) is much

larger than the number of observations.

To circumvent such problem, sparse method has been introduced to extend the

canonical correlation analysis. The main idea of sparse CCA is to maximize the

correlation coefficient between two projected variables, such that the projections are

achieved in the reduced subspaces of the original feature spaces, i.e., only a small set of

variables will be selected in each projection.

Various sparse CCA methods have been proposed recently, e.g., the sparse CCA

via linear regression [8, 9, 10], the sparse CCA via iterative greedy algorithm

[11, 12, 13, 14, 15, 16] and the sparse CCA via Bayesian learning [17, 18, 19].

7



In this thesis, I process the sparse CCA method with a penalty strategy (i.e., the

so-called penalized CCA proposed by Witten et al. (2009) [11, 15]). Consider two data

sets X and Y of n observations with dimension p and q respectively, that is, X ∈ Rn×p and

Y ∈ Rn×q. Each column of X and Y are centered and scaled to have mean zero and

standard deviation one. Denote wx ∈ Rp and wy ∈ Rq as two projection (transformation)

matrices for X and Y respectively. Then, the sparse CCA can be formulated as:

max
wx,wy

wT
x XT Ywy (2.5)

subject to wT
x XT Xwx ≤ 1,wT

y YT Ywy ≤ 1,

Px(wx)≤ cx,Py(wy)≤ cy,

where Px(·) and Py(·) are the convex penalty functions, and cx and cy are both evaluated

from bounded intervals w.r.t. the penalty functions. Note that the values of cx and cy

would yield feasible solutions for the penalized CCA, even when p,q� n. A brief

diagram of the sparse CCA method is shown in Fig. 2.1.

n

p

q

n

max corr

𝑋

𝑌

𝑤𝑥 ∈ ℝ
𝑝

𝑤𝑦 ∈ ℝ
𝑞 𝑌𝑤𝑦

𝑋𝑤𝑥

Figure 2.1: A diagram of the sparse canonical correlation analysis method, with only one
pair of the canonical vectors.
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Previous works indicated that, in high-dimensional situation, the assumption that

the covariance matrix of features is diagonal can guarantee satisfactory results [35, 36].

Thus, XT X and YT Y are replaced with the identity matrix I, and then the sparse CCA

criterion (2.5) can be simplified as:

max
wx,wy

wT
x XT Ywy (2.6)

subject to ‖wx‖2
2 ≤ 1,‖wy‖2

2 ≤ 1,

Px(wx)≤ cx,Py(wy)≤ cy.

In general, the penalty function Px (or Py) has multiple forms, e.g., lasso and fused

lasso. In this thesis, I focus on the lasso penalty, that is,

Px(wx) = ‖wx‖1 =
n

∑
i=1
|wxi|. (2.7)

Meanwhile, in order to constrain wx to be sparse, the range of cx that restricts the penalty

function Px should satisfy 1≤ cx ≤
√

p accordingly.

To solve the aforementioned problem, an iterative greedy algorithm was proposed

by Witten [11]. At each iteration, one of wx or wy is fixed and the criterion (2.6) will be

convex in wy or wx. When the penalty functions Px and Py are L1 (lasso) penalties, such

iterative algorithm has a low computational cost and the detailed steps are described in

Algorithm 1.

This penalized CCA method can be easily extended, for instance, to the multiple

factors (components) CCA, to the sparse CCA with nonnegative weights. Some existing

works also applied this work for analyzing multiple data sets, i.e., the sparse multiple

CCA method [11].
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Algorithm 1 The sparse CCA Algorithm

Input: X,Y,cx,cy

Output: wx,wy

1: Initialize wy to some initial values, e.g., ‖wy‖2 = 1.

2: while not convergence do
3: wx← argmaxwx wT

x XT Ywy subject to ‖wx‖2 ≤ 1,‖wx‖1 ≤ cx.
4: wy← argmaxwy wT

x XT Ywy subject to ‖wy‖2 ≤ 1,‖wy‖1 ≤ cy.
5: end while

Each update for wx, takes the form

wx←
S(XT Ywy,41)

‖S(XT Ywy,41)‖2
, (2.8)

where 41 = 0 is chosen so that wx ≤ cx, and 41 > 0 if wx = cx. S(·) is the soft-
thresholding operator, such that S(x,a) = sgn(x)(|x|−a)+; wy can also be obtained in
the similar way.

2.3 Applications of sparse CCA to Biomedical Data

Next, I introduce the data sets used in the experiments and then present two instances of

applications of sparse CCA: (1) detect patterns among data sets and labels, and (2) detect

patterns among different data sources.

Data Description

Depression is a common mental disorder that affects about 350 million people worldly

[37]. World Health Organization (WHO) characterizes the Major depressive disorder

(MDD) (also known as clinical depression, major depression, etc) as “episodes of sadness,

loss of interest or pleasure, feelings of guilt or low self-worth, disturbed sleep or appetite,

feelings of tiredness and poor concentration”.

It is believed that the integration of commonly studied indices of depression and

molecular patient profiling offer the chance of better understanding the biomarkers of
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Major Depression, and these biomarkers may be applied to develop and guide more

efficient drug development and testing programmes [38].

(a) (b) (c) (d) (e)

Figure 2.2: Depression data set, (a) Personal and medical history, (b) Cognition, (c) Elec-
trical brain-body function, (d) Brain structure, (e) Molecular profiles.

The Depression database contains five types of features (shown in Fig. 2.2), which

were selected to reflect an integrative profile of information about: a) Personal medical

history; b) Cognition; c) Electrical brain-body function (EBBF); d) Brain structure (sMRI,

fMRI) and e) Molecular profiles.

Assessment paradigms a, b, c, and e are undertaken in the current studies. There

are totally 275 samples collected from 249 individuals in the Depression data sets, and the

major molecular profiles include Metabolite, Microarray, Protein and Transcripts profiles.

In this thesis, some outliers are eliminated due to the inconsistent performance, the failure

of quality controls, the long storage period, etc. A summary of sample statistics is shown

in table 2.1.

Table 2.1: Depression data sets sample statistics and missing value imputation methods.

Data Number of Samples Dimensions Missing Ratio Imputation Methods

Cognitive 196 57 None N.A.
EBBF 196 288 0.0835 EM / KNN / SVD

Metabolite 199 270 0.0127 EM / KNN / SVD
Microarray 228 54675 None N.A.

Protein 206 41637 0.1965 halfMin / SVD
Transcripts 196 17502 None N.A.
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Table 2.1 indicates that the J&J-Depression data sets are involved in missing value

problems. I thus applied multiple missing data imputation methods for these data,

including:

• Expectation maximization (EM) algorithm [39]:

Suppose the data are Gaussian distribution. The (regularized) EM algorithm is an

iterative method based on ridge regression analysis that can estimate the mean

values and covariance matrices from observations and impute the missing values.

• Minimal / 2 (halfMin) algorithm [40]:

Assume that most of the missing values are too small to be detected. Thus, we

impute all the missing values by half of the minimum value in the corresponding

feature.

• K-nearest neighbors (KNN) algorithm [41, 42, 43]:

Impute the missing values with a weighted mean of the k nearest-neighbor columns.

• Singular value decomposition (SVD) algorithm [42]:

Employ low-rank SVD to approximate the whole data set, replace the missing parts

and repeat the whole processing until convergence.

In the Depression research, some most commonly confounding effects likes age

and gender, are already been considered. However, previous works pointed out that for the

Metabolite data, the concentrations of a large number of metabolites are strongly affected

by their storage time, since the plasma samples were stored at −20◦. In order to reduce

the storage time confounder, I applied two correction methods and the details are given in

Appendix A.
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Sparse CCA and Pattern Predetection

Classification is a typical machine learning task, which is aimed to categorize subjects into

a fixed set of categories. Suppose we are given a set of data with multiple class labels. It is

difficult, at first sight, to figure out what kind of data has prominent characteristics that can

improve classification performance. Therefore, we discuss whether sparse CCA is an

efficient tool to analyze inherent relations and patterns among the data sets and labels.

Detect Patterns among the Depression Data Sets

In the Depression research, one of the targets is to discriminate the depressive patients

from healthy control subjects (HCs). There are more refined categorises of Depression

(Dprs), e.g., Anxiety Depression (AnxDprs), Melancholic Depression (MelanDprs) and

Generalized Anxiety Disorder (GAD). Before further choosing the proper research

targets, I use sparse CCA to predetect the patterns among the Depression data sets.

To apply the sparse CCA method, I test each data set from Table 2.1 with a set of

labels. For example, we treat the Metabolite data and the set of labels as X and Y in

formula (2.6) respectively. The choice of cx is related to the sparsity of the Metabolite

data, i.e., the numbers of selected metabolites. At each time, we fix cx and tune cy and

track the changes of labels that have been enclosed in each test. The canonical vectors wx

and wy and the correlation coefficient between the projections of X and Y are recorded for

each setting. I tested all six data sets with eleven class labels in total, and the experimental

results are shown in Table 2.2 and Table 2.3.

Tables 2.2 & 2.3 summarize the results of the pattern predetection experiments for

the Depression data sets. Each subtable in Tables 2.2 & 2.3 is the sparse CCA experiment

results for a certain Depression data set and the class labels. The top part shows the

settings of two constraints cx and cy, the middle part is the correlation between the two

projections, and the bottom part records the canonical vector wy for the class labels. The
13



values in a canonical vector correspond to the weights for each feature, which measures

the significance of each variable. Recalling the projection process of wT
y Y, a feature with

a higher absolute weight means that this feature vector will contribute more to the

Table 2.2: The sparse CCA experiments between the Depression data sets and the class
labels (part I): the weights of top five selected labels for each data set are recorded.

(a) Cognitive

c x (Data) 0.50 0.50 0.50 0.50 0.50
c y (Label) 0.30 0.35 0.40 0.50 0.55

Correlation 0.3422 0.3360 0.3325 0.3240 0.3195

Dprs -0.177 -0.271 -0.472 -0.504
MelanDprs-C -1.000 -0.984 -0.958 -0.796 -0.732
nMelanDprs-C
MelanDprs-M -0.005
nMelanDprs-M

GADDprs -0.098 -0.379 -0.433
GAD

AnxDprs -0.011 -0.150
Anx

GAD(inDprs)
Anx(inDprs)

(b) EBBF

0.40 0.40 0.40 0.40 0.40
0.30 0.35 0.40 0.50 0.58

0.4026 0.4044 0.3970 0.4084 0.4112

-1.000 -0.984 -0.918 -0.881 -0.749
-0.191 -0.394

-0.397
-0.206 -0.337

-0.032

-0.177 -0.012 -0.380 -0.412

(c) Metabolite

c x (Data) 0.30 0.30 0.30 0.30 0.30
c y (Label) 0.30 0.35 0.38 0.45 0.55

Correlation 0.4778 0.4789 0.4762 0.4674 0.4537

Dprs -0.056 -0.160 -0.290
MelanDprs-C -1.000 -0.984 -0.971 -0.935 -0.848
nMelanDprs-C
MelanDprs-M -0.084
nMelanDprs-M

GADDprs -0.177 -0.234 -0.300 -0.366
GAD

AnxDprs -0.097 -0.236
Anx

GAD(inDprs)
Anx(inDprs)

(d) Microarray

0.05 0.05 0.05 0.05 0.05
0.30 0.35 0.45 0.55 0.58

0.5874 0.5793 0.5516 0.5511 0.5519

-0.177 -0.466 -0.595 -0.584
-0.871 -0.638 -0.602

-0.117 -0.228

-1.000 -0.984 -0.155 -0.473 -0.494
-0.002

Note. The criteria for the class labels are given as follows:

Name Positive Class Definition Negative Class Definition
Dprs depression patients healthy controls
MelanDprs-C depression patients with melancholic features defined by CORE scores healthy controls
nMelanDprs-C depression patients without melancholic features defined by CORE scores healthy controls
MelanDprs-M depression patients with melancholic features defined by MINI interview healthy controls
nMelanDprs-M depression patients without melancholic features defined by MINI interview healthy controls
GADDprs depression patients with GAD healthy controls
GAD GAD patients non-GAD samples
AnxDprs depression patients with anxiety healthy controls
Anx anxiety patients non-anxiety samples
GAD(inDprs) depression patients with GAD depression patients without GAD
Anx(inDprs) depression patients with anxiety depression patients without anxiety
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Table 2.3: The sparse CCA experiments between the Depression data sets and the class
labels (part II): the weights of top five selected labels for each data set are recorded.

(a) Protein

c x (Data) 0.05 0.05 0.05 0.05 0.05
c y (Label) 0.30 0.31 0.35 0.45 0.55

Correlation 0.5765 0.5747 0.5715 0.5634 0.5552

Dprs 0.029 0.098 0.234 0.339
MelanDprs-C 1.000 1.000 0.993 0.940 0.850
nMelanDprs-C
MelanDprs-M 0.082
nMelanDprs-M

GADDprs 0.070 0.234 0.313
GAD

AnxDprs 0.085 0.241
Anx

GAD(inDprs)
Anx(inDprs)

(b) Transcripts

0.08 0.08 0.08 0.08 0.08
0.30 0.35 0.40 0.50 0.59

0.5192 0.5212 0.5391 0.5310 0.5283

-1.000 -0.984 -0.386 -0.557 -0.560
-0.177 -0.922 -0.758 -0.608

-0.007

-0.004 -0.318

-0.018 -0.338 -0.464

projection. Furthermore, it also implies the feature is more important.

Take the Table 2.2c as an example. A projected Metabolite data have a correlation

around 0.47 with the projected labels set. Labels MelanDprs-C, GADDprs, Dprs,

AnxDprs and MelanDprs-M are selected sequentially. This implies that, for the

Metabolite data, label MelanDprs-C can be a better discriminant criterion compared with

other class labels. Other Depression data sources, i.e., Cognitive, Protein and Transcripts,

also express similar results (see Tables 2.2a & 2.3a & 2.3b). Among all eleven class

labels, the label Dprs and the label MelanDprs-C are the two most commonly selected

labels. Therefore, the usage of Dprs or MelanDprs-C as the classification criterion seems

to be a proper target in the Depression research.

Verification via Classifications

To verify the above assumption, I test each pair of data and class labels in the

classification tasks. In this thesis, I focus on two kinds of classifiers, the random forest

(RF) and the support vector machine (SVM).

The random forest is an ensemble learning method that consists of a collection of
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tree-structured classifiers [44], while the support vector machine aims to build a decision

boundary for the two classes. In this thesis, I employed SVM classifiers by the LIBSVM

package [45]. For all SVM classifiers, I choose the linear kernel and set the regularization

parameter as 1 in all cases. The classification experiments are executed based on the

10-fold cross validation. The cross validation strategy divides the entire data set into ten

parts; at each time, we choose one part as the testing set and the remaining nine parts as

the training set. The cross validation process is repeated 10 times, and the strategy ensures

that every sample is used in the testing set exactly once.

Before the discussion of the classification results, it is necessary to address two

problems in the Depression research: one is the high dimensionality, the other is the

imbalanced class distributions. As shown in Table 2.1, there are more than ten thousands

of features in the following three data sets: Microarray, Protein and Transcripts. The high

dimensionality will significantly affect the learning effectiveness and efficiency. Table 2.4

summarizes the sample statistics for different subtypes of mood disorders. It is clear that

most of the learning targets have imbalanced class distributions and these imbalanced

class distributions will bias the traditional classifier toward the majority class. To deal

with the imbalanced problem, I use an undersampling strategy to adjust the class

Table 2.4: The Depression sample statistics for different subtypes of mood disorders.

Positive Negative Ratio( Pos
Neg )

Dprs 128 128 1.00
MelanDprs-C 32 128 0.25
nMelanDprs-C 92 128 0.72
MelanDprs-M 67 128 0.52

nMelanDprs-M 57 128 0.45
GADDprs 48 128 0.38

GAD 48 208 0.23
AnxDprs 73 127 0.57

Anx 74 182 0.41
GAD(inDprs) 48 80 0.60
Anx(inDprs) 73 55 1.33
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distributions of a data set (see Section 3.3 for details). Some advanced methods are also

discussed in Chapter .

Table 2.5 summarizes the classification results of the experiments on each pair of

the Depression data sets and class labels [targets GAD(inDprs) and Anx(inDprs) are

ignored]. The table includes the accuracy values obtained from either the random forest

classifier or the SVM classifier. The table is then colored according to the accuracy values,

where a darker color means a higher accuracy. It is clear that in Table2.5, the Depression

data sets on the MelanDprs-C target achieve the better performance, that is, the depression

patients with the melancholic features defined by CORE scores are more likely to be

distinguished from the healthy controls. Similarly, more significant patterns are also

shown in the Dprs target. Thus, the classification results well verify the aforementioned

conclusion.

Table 2.5: The classification performance of each pair of the Depression data sets and class
labels. The cell is colored according to the accuracy value.
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MelanDprs-M

nMelanDprs-M
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AnxDprs

Anx

63.52% 63.44% 61.11% 65.84% 61.32% 56.30% 51.89% 52.99% 53.61%

55.56% 59.24% 54.98% 51.00% 52.71% 58.59% 59.58% 54.33% 54.40%

64.04% 76.47% 54.17% 61.28% 53.98% 54.03% 62.11% 58.51% 52.69%

61.61% 64.74% 50.20% 56.09% 62.00% 63.73% 58.87% 62.73% 53.32%

57.07% 64.87% 49.63% 50.38% 52.74% 57.19% 58.84% 51.33% 47.00%

62.63% 62.61% 57.60% 57.21% 53.10% 57.01% 51.53% 62.39% 55.77%

Next, I present the results in a different view as shown in Fig. 2.3, and the

performance results are grouped by different data sets. It can be observed from Fig. 2.3

that the first two columns in each group show higher accuracies than the other columns in

the same group. Namely, the Dprs and the MelanDprs-C targets perform well in

classification tasks.

The above classification results imply that the patterns detected by the sparse CCA
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Figure 2.3: The classification performance of each pair of the Depression data sets and
class labels grouped by data set.

method is meaningful. Therefore, the sparse CCA method is an effective tool to detect the

patterns among the data sets and class labels.

Pattern Detection between Data Sets via sparse CCA Method

The sparse CCA method has been widely applied to deal with other practical problems,

e.g., to find patterns among different data sources. When applying the sparse CCA on two

data matrices, the method will maximize the correlation between the projections of these

matrices. In other words, between the two data sets, a set of higher correlated variables

will be determined by the sparse CCA approach. Thus, the sparse CCA method is used to

help reveal the potential associations among the features from different data sources.

In this section, I test the above idea on the Alzheimer’s disease neuroimaging

initiative (ADNI) study. There are many data sources in the ADNI longitudinal study,

including blood tests, cerebrospinal fluid tests (CSF), magnetic resonance imaging (MRI),

positron emission tomography (PET) imaging, etc. The clinical / psychometric

assessments (called META) data are also collected. The following experiments are aimed

to explore the patterns between the META data and the MRI data. I use all samples
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available in these two data sets and a brief report of sample statistics is summarized in

Table 2.6.

Table 2.6: The sample statistics of the META data and the MRI data in ADNI study.

Number of samples Dimension

META 632 52
MRI 632 305

In order to obtain the most significant patterns between the two data sets, we tune

several pairs of penalty constraints. These penalty constraints will directly affect the

sparsity of the projection matrices, and further impact on the correlation between the two

projections. In practice, I restrict the sparse CCA method to select no more than 15

features from the META data, and no more than 30 features from the MRI data. Under

these conditions, I further choose the pair of parameters that yields a highest correlation

around 0.6544 between the projections. The selected features and their weights are shown

in Table 2.7.

Table 2.7: The sparse CCA experiment results on the META data and the MRI data in
ADNI study: (a) the META data; (b) the MRI data.

(a) META

META features Weights

ADAS_sub4 0.4196

MMSE -0.3882

CDR 0.3852

LDELTOTAL -0.3703

FAQ 0.3165

ADAS_sub1 0.3053

LIMMTOTAL -0.2734

ADAS_sub8 0.2264

CATVEGESC -0.1621

ADAS_sub7 0.1504

BNTTOTAL -0.1154

DIGITSCOR -0.0606

TRABSCOR 0.0410

CATANIMSC -0.0309

(b) MRI

MRI features Weights

Cortical Thickness Average of LeftEntorhinal -0.5150

Cortical Thickness Average of RightEntorhinal -0.5119

Volume (WM Parcellation) of LeftHippocampus -0.4686

Volume (WM Parcellation) of RightHippocampus -0.3532

Cortical Thickness Average of LeftMiddleTemporal -0.2501

Cortical Thickness Average of LeftInferiorTemporal -0.1808

Volume (Cortical Parcellation) of LeftEntorhinal -0.1397

Cortical Thickness Average of RightMiddleTemporal -0.0998

Volume (WM Parcellation) of RightAmygdala -0.0453

Cortical Thickness Average of LeftFusiform -0.0339

Volume (WM Parcellation) of LeftAmygdala -0.0213
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Table 2.7 illustrates that the META features including Alzheimer’s disease

assessment scale-cognitive subscale (ADAS or ADAS-cog) scores, mini-mental state

examination (MMSE), clinical dementia rating (CDR), and the MRI features including

entorhinal cortical (ERC) thickness and hippocampus volume are strongly correlated.

These results are consistent with prior research in this area.

For example, Velayudhan et al. [46] demonstrate that the ERC is a region that will

be affected early in AD, and the ERC thickness is related to both longitudinal MMSE and

ADAS-cog scores. Li et al. [47] demonstrate that the atrophy of the entorhinal cortex has

significant association with the ADAS-cog. Jonathan et al. [48] show that the MMSE

scores and CDR scores are correlated with hippocampal atrophy. Table 2.7 also include

LDELTOTAL and LIMMTOTAL, which refer to the tests of logical memory, and are

available in the neuropsychological battery tests. Kwangsik et al. [49] show that there are

strong associations between neuropsychological battery scores and lateral temporal

atrophy.

To sum up, the results shown in Table 2.7 are consistent with prior research

findings. Therefore, the sparse CCA method is potentially effective in identifying

interesting AD biomarkers.
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Chapter 3

Learning from Imbalanced Data

In this chapter, I discuss several issues of learning from the imbalanced biomedical data.

A large number of existing learning systems are designed under the assumption that the

data have balanced class distributions and low-dimensionality. However, most of

biomedical data do not satisfied this assumption in practice. In this chapter, I will study

the imbalanced learning problems, and discuss appropriate evaluation criteria. I also

introduce the sampling methods and ensemble strategies. To obtain significant biomakers

and improve the learning performance, I apply multiple feature selection methods.

Moreover, I introduce an effective classification solution based on one-class SVM.

3.1 Introduction to Imbalanced Learning

A large number of standard learning algorithms assume that the distributions of two

classes are balanced or the misclassification costs are equal (or similar) to each other [4].

The data imbalance brings many challenges to machine learning [50, 51, 52]. For instance,

• Improper evaluation criteria

Evaluation criteria play critical role in algorithm design and result evaluation.

Traditional performance measurements (e.g., accuracy and error rate) make the

systems pay more attention to the majority class and there is little chance to capture

the characteristics from the minority class.

• Absolute rarity and relative rarity

Absolute rarity means that the number of available samples from the minority class

is small, even if the whole training set is large. Relative rarity refers to the case of

the relative lack of data, which makes rare samples have a small probability to be

detected. Either kind of rarities makes it difficult to learn accurate models from the

minority class.
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• Inappropriate inductive bias

Many general biases applied in conventional learning algorithms are designed for a

better ability of generalization and avoiding overfitting, which affects the

performance of the learning models for the minority set.

• Noise

When the data set includes noises, it is often difficult to distinguish the noise from

the minority observations.

Therefore, for complex imbalanced data, standard machine learning systems may perform

poorly. The characteristics of data distributions must be properly captured in order to

achieve satisfactory performance.

Imbalance is a common phenomenon in the biomedical domain. We usually have

more examples that are normal, e.g., there are often more healthy control subjects

available than the patients in biomedical research. Moreover, as mentioned above,

biomedical data also suffer from the curse of dimensionality, as the number of features

often greater than the number of samples. In short, the imbalanced class distributions are

common in biomedical data. The limited number of samples and the high dimensionality

make imbalanced learning problems much more difficult.

3.2 Appropriate Evaluation Criteria

To choose the appropriate performance measure is a significate issue in imbalanced

learning problems. Since accuracy or error rate cannot well reflect the characteristics of

both classes, some alternative evaluation criteria need to be considered.

The confusion matrix, developed by Kohavi and Provost in 1998 [53], is a matrix

showing actual conditions and classification results. Given an instance and its

classification result, there are four possibilities [54]:
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• True Positive, if the instance is positive and the classification result is positive;

• False Negative, if the instance is positive and the classification result is negative;

• True Negative, if the instance is negative and the classification result is negative;

• False Positive, if the instance is negative and the classification result is positive.

Condition
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e

Positive Negative
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True Positive
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False Positive

(FP)

Negative
False Negative
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Figure 3.1: The confusion matrix.

Recall the aforementioned confusion matrix shown in Fig. 3.1. Terms npos and

nneg denote the number of positive and negative samples, respectively. The classification

accuracy measures how many instances are correctly classified, defined as

accuracy :=
T P+T N

T P+T N +FP+FN
=

T P+T N
npos +nneg

. (3.1)

In imbalanced data, without loss of generality, we assume that npos� nneg. Then it is

possible that we may obtain a high accuracy, even if the classifier assigns all samples as

negative. Thus, accuracy is not an appropriate criterion to evaluate the performance of the

learning model.

Besides accuracy, sensitivity and specificity are commonly used as the evaluation

criteria:

sensitivity :=
T P

T P+FN
; (3.2)

specificity :=
T N

T N +FP
. (3.3)
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The sensitivity (also called Recall rate) measures the proportion of real positive cases that

are correctly identified as such. The specificity measures the proportion of real negative

cases that are correctly identified as such. In other words, the sensitivity indicates the

quality of models that captures the positive set, while the specificity refers to the quality of

models that captures the negative cases. Thereby, these two performance criteria can

better evaluate the classification results for imbalanced data.

Other criteria have also been considered in imbalanced learning, e.g., Harmonic

mean (H-mean), geometric mean (G-mean), precision and F-measure [55, 56, 57]. These

criteria are defined as follows:

H−mean :=
2 · sensitivity · specificity
sensitivity+ specificity

, (3.4)

G−mean :=
√

sensitivity× specificity, (3.5)

precision :=
T P

T P+FP
, (3.6)

F−measure := (1+β
2) · precision · sensitivity

β 2 ·precision+ sensitivity
. (3.7)

Moreover, the receiver operating characteristic (ROC) graph [54] also commonly used to

evaluate classifiers.

3.3 Sampling Methods and Classifiers Ensemble

Random Undersampling Method

To learn a better model from an imbalanced data set, a simple and intuitive idea is to

balance the training set. To achieve data balance, we need the training set to contain

approximately equal numbers of observations from each category. Sampling method is

about selecting suitable samples from the entire observation set, and it is frequently used

to deal with data imbalance issue. In this thesis, I focus on the undersampling method.

Some existing studies suggested that the undersampling method is effective to deal

with imbalance [20, 21]. Random undersampling is the technique used to adjust the class
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distributions of a data set. Given an imbalanced data with npos� nneg, the undersampling

strategy randomly removes samples from the majority class, i.e., negative set, until the

number of examples kept in the majority class matches with the size of the minority set.

In some cases, sampling may cause negative impacts on learning, since

undersampling may discard some potentially useful training instances from the majority

class. For example, given an SVM classifier, the trained hyperplane between the positive

and negative set is significantly affected by the undersampling method. More specifically,

the information captured from the original majority class of samples become less, and

accordingly, the learned hyperplane may not well reflect the majority set. Thus, both of

accuracy and specificity may be low if we perform classification based on such obtained

model. However, on the contrary, since we get a balanced class distribution after random

undersampling, the classifier can better capture the characteristics of the minority class.

Therefore, the sensitivity may increase.

In learning from the imbalanced biomedical data, it is desired that a learning

model will produce a high accuracy, a satisfactory sensitivity and a desired specificity. For

example, in the Depression Metabolite data - Melancholic Depression research, we have

an imbalanced Metabolite data set with a ratio around 1 : 5 of the positive class (patients

with melancholic depression) and negative class (healthy controls). One of the research

targets is to build accurate classifiers that are able to well identify the melancholic

depressive patients from healthy controls. Traditional machine learning methods are

ineffective because the classifiers trained based on the imbalanced cases will be biased

toward the majority class, that is, the depressive patients may not be well identified.

Compared with undersampling, the random oversampling is a process of randomly

resampling from the minority class. Previous studies have shown oversampling is often

less effective than undersampling [20, 58]. There are also other sampling methods

proposed in the literature including e.g., the informed undersampling [22], the synthetic
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minority oversampling technique (SMOTE) [23], the sampling with data cleaning

techniques [4, 24] and the cluster-based oversampling (CBO) [25].

Classifiers Ensemble

As discussed above, the random undersampling tends to discard some potentially useful

samples from the majority class. To address this problem, I introduce ensemble methods

to solve imbalanced learning problems.

Ensemble methods refer to the process of combining multiple models to improve

predictive performance [59, 60, 61]. Many ensemble methods have been proposed, e.g.,

the bootstrap aggregating (bagging), the boosting, the Bayesian model averaging and

combination. In this thesis, I apply a bagging strategy for imbalanced-data learning.

The idea of classifiers ensemble is to build a prediction model by combining a set

of individual decisions from multiple classifiers [62, 63]. Such a combination is processed

based on the weighted voting or the unweighted voting (majority voting). The ensemble

predictions are often more accurate than the individual classifiers. Take the following as

an example:

Example 1. Given a sample, there are n (n is odd) base classifiers available, and each

classifier is independent with an error rate p. I then use majority voting to do ensemble

learning. The probability that the ensemble classifiers makes a wrong prediction is:

P(error) =
n

∑
i=d n

2 e

 n

i

 pi(1− p)n−i. (3.8)

Assume n = 31, we then arrive at the following results: if p = 0.5, P(error) = 0.5; if

p = 0.45, P(error) = 0.2868; if p = 0.4, P(error) = 0.1248; if p = 0.35,

P(error) = 0.0424; if p = 0.3, P(error) = 0.0095.

Example 1 indicates that if the individual error rate is p < 0.5, the error rate of

voting ensemble will decrease.
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Undersampling-based Ensemble Framework
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𝑃∗
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Figure 3.2: The framework of undersampling-based classifiers ensemble (UEM).

I apply the ensemble idea in imbalanced learning by incorporating the

undersampling method. Figure 3.2 shows the framework of the undersampling-based

classifiers ensemble (UEM) method. Given an imbalanced training data set Dtr and some

testing data Dte, there are three tasks in the UEM framework:

1. Training: apply undersampling on the entire training data set Dtr multiple times

and obtain the corresponding sub-training set D
(1)
tr , · · · ,D (n)

tr (n refers to the total

times of undersampling). For a single subset D
(i)
tr , a classifier model Mi is learned.
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2. Prediction: on the testing data Dte, make prediction using each classifier model Mi

and obtain classification result Pi and its weight wi.

3. Ensemble: combining all predictors and assign the class labels via majority voting

or weighted voting. That is, the final prediction is given by P∗ =
n
∑
i

wiPi. Note that

we fix wi = 1 for 1≤ i≤ n, if for majority voting.

The UEM framework takes the advantages of undersampling and ensemble

method, that is, every classifier model is learned from a balanced data and the

combination of multiple models is expected to improve the prediction performance.

3.4 Feature Selection Methods for Imbalanced Learning

Introduction to Feature Selection

Feature selection refers to the process of choosing features from the original set based on

some criteria, and then the derived subset of features will be used to develop the resultant

learning models [30, 31]. There is a principal assumption that supports the usage of

feature selection: the data contain some redundant or irrelevant variables. This

phenomenon commonly appears in high-dimensional data. Since most of biomedical data

suffer from the curse of dimensionality, we expect that the feature selection would be an

effective tool in learning from the biomedical data, as well as a powerful dimension

reduction technique for the high-dimensional data.

Moreover, in bioinformatics research, scientists are often interested in the

following questions:

• What features can best characterize the different classes of samples?

• What features may have great impact on classification performance?

• Which biomarkers are the causative factors?
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All of the above questions are related to feature selection. Note that compared with feature

extraction techniques, feature selection methods directly select a subset of features from

the original feature space. From this view of point, feature selection produce more

interpretable models.

To sum up, feature selection methods can improve the efficiency of the learning

models. After the reduction of feature dimension, the overall learning complexity and

running time decrease significantly. Moreover, in a reduced feature space, we can better

visualize the patterns in the data set and detect the noise or outliers from the samples.

Feature Selection Methods

Feature selection methods can be generally categorized into three types: filters, wrappers

and embedded methods. In this thesis, I take advantages of the feature selection

algorithms provided by the Arizona State University (ASU) Feature Selection Repository

[64]. The following summarizes the feature selection algorithms employed in this thesis1.

Gini Index

The Gini index proposed by Corrado Gini is a filter method. A Gini score is calculated to

measures the abilities of features to distinguish between classes [65, 66, 64]. Based on the

Lorentz curve, the Gini index (GI) of a term (feature) f among C classes is defined as

GI( f ) = 1−
C

∑
i=1

[pr(ci| f )]2. (3.9)

In a normalized sample space,

Pr(ci| f ) =
Pr( f |ci)

∑
|C|
k=1 Pr( f |ci)

, (3.10)

Pr( f |ci) =
1+N( f ,ci)

|V |+∑ f∈V N( f ,ci)
. (3.11)

1Other feature selection methods, e.g., sparse Logistic Regression with Bysesian Regularization, Chi-
square Score, Fisher Score, Kruskal-Wallis, Minimum Redundancy and Maximum Relevance (mRmR) and
Student’s t-test, are also included in the UFSEM framework, but I omit the details in this thesis.
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Note that N( f ,ci) denotes the probability that the term f occurs in a class ci and V is the

vocabulary set.

According to the criterion (3.9), the procedure of computation of the Gini index is

independent for each feature. Moreover, a feature with a smaller Gini score is more

significant.

Information Gain

The information gain is also a filter method that measures the dependence between a

feature and the class labels [67, 64]. To evaluate the information gain (IG) of a feature f

among C = {ci}m
i=1 classes, we use the following formula:

IG( f ) =−
m

∑
i=1

Pr(ci) logPr(ci) (3.12)

+Pr( f )
m

∑
i=1

Pr(ci| f ) logPr(ci| f )

+Pr( f̄ )
m

∑
i=1

Pr(ci| f̄ ) logPr(ci| f̄ ).

Similar to the Gini index, the information gain method deals with each feature

independently. However, a higher score obtained by the information gain indicates that the

corresponding feature is more relevant.

In addition, it is noteworthy to point out that, the above two feature selection

methods do not eliminate the redundant features, since both methods evaluate each feature

independently and rank all features based on their weights.

Stability Selection

In order to deal with the high-dimensional data and the data with redundant features, I

introduce the stability selection approach. Stability Selection is a feature selection

algorithm based on subsampling and combines the usage of a proper amount of

regularization [68].
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To Stability Selection, the first step is to randomly subsample half samples from

the original data set. For each subsampling, we next utilize the lasso and the sparse

logistic regression to select variables. Multiple parameter values are tested in each

subsampling to choose truly relevant variables. Then, the algorithm calculates the

selection probability for each variable and rank the features from the maximum selection

probability to the minimum probability. Besides, an extension of calculating the average

of top-k selection probabilities [69] is also implemented in this thesis.

In all experiments of this thesis, the stability selection is executed based on 1000

times subsampling and 10 regularization parameter values. I use the sparse logistic

regression function from the SLEP package [70] and the parameter values are determined

such that about 10 - 300 features are selected (or 1
3 of all features at maximum).

Feature Selection Methods for the UEM Framework

Figure 3.3 shows the framework of the combination of feature selection and

undersampling-based classifiers ensemble (UFSEM). Compared with the previous UEM

framework, there are some modifications as follows:

• In the training stage, after obtaining n subsets from the original training data via

undersampling, a feature selection method F is applied to each subset D
(i)
tr to obtain

the corresponding ranking list Fi. We then train the classifier model MFi by using

D
(i)
tr and Fi, i.e., a subset of selected features from D

(i)
tr is used to learn model MFi;

• In the prediction stage, for each model MFi obtained in the training stage, we use the

corresponding ranking list Fi to re-express the testing set D
(Fi)
te . We then make a

single prediction PFi by using the data D
(Fi)
te and the model MFi.

Since the feature dimension is reduced after feature selection, the learning

complexity and running time decrease significantly. For complex imbalanced (i.e.,
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Figure 3.3: The framework of the combination of feature selection and undersampling-
based classifiers ensemble (UFSEM).

imbalanced and high-dimensional) data, the UFSEM framework will further improve the

learning performance.

The UFSEM framework in figure 3.3 illustrate a pipeline of one single feature

selection strategy. This framework can be easily extended to more complicated cases, e.g.,

the combination of multiple feature selection methods and the one based on different

numbers of selected features.
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3.5 Novelty Detection Idea for Imbalanced Learning

In addition to the methods discussed in Sections 3.3 and 3.4, to deal with the imbalanced

classification problems, another idea is to use the novelty detection method.

The novelty detection, as known as anomaly detection or outlier detection, refers

to the technique of building patterns that capture the characteristics of normal samples and

detect any divergence or unexpected behaviors [71]. Sometimes, the novelty detection is

also called one-class classification problem. Differing from binary classification problem

that discriminates the positive and negative samples, one-class classification takes

advantage of the information from the normal class and aims at finding a better

description (hypersphere) for the normal data. For imbalanced biomedical data with

npos� nneg, healthy controls are apparently considered as the normal samples in novelty

detection, and patients are treated as outliers.

Recently studies on novelty detection studies suggest that we should focus on the

normal class, but also utilize the available abnormal information, e.g., Support Vector

Data Description (SVDD) approach [72]. Given a data set X = [x1, . . . ,xn] ∈ Rn×d , we

denote n = m1 +m2, where the first m1 samples of n are normal (positive) samples, and

the remain, m2 samples are outliers (negative class). The objective of SVDD is to build a

hypersphere in the feature space F that includes most of the normal observations and

keeps the outliers outside. This idea can be formalized as the following optimization

problem:

min
R,c,ξ

R2 +C1

m1

∑
i=1

ξi +C2

n

∑
j=m1+1

ξ j, (3.13)

subject to ‖φ(xi)− c‖2 ≤ R2 +ξi,1≤ i≤ m1; (3.14)

‖φ(x j)− c‖2 ≤ R2−ξ j,m1 < j ≤ n; (3.15)

ξk ≥ 0,1≤ k ≤ n, (3.16)
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where φ(·) stands for the mapping function from X to F ; c ∈F and R > 0 are the center

and the radius of the hypersphere builded in F , respectively; ξ = [ξ1, . . . ,ξn]
T ∈ Rn is the

vector of slack variables; and C1,C2 are the tuning parameters.

Based on SVDD, Wu and Ye proposed another approach - the small sphere and

large margin (SSLM) method, which utilizes additional information from the negative set

[73]. SSLM method extends SVDD by maximizing the margin ρ between normal samples

and the outliers, while SVDD only keeps the outliers away from the region. The SSLM

formulation is given as follows:

min
R,c,ξ

R2−C0ρ
2 +C1

m1

∑
i=1

ξi +C2

n

∑
j=m1+1

ξ j, (3.17)

subject to ‖φ(xi)− c‖2 ≤ R2 +ξi,1≤ i≤ m1; (3.18)

‖φ(x j)− c‖2 ≤ R2 +ρ
2−ξ j,m1 < j ≤ n; (3.19)

ξk ≥ 0,1≤ k ≤ n, (3.20)

where ρ is a real number, ρ2 ≥ 0 is denoted as the margin between the boundary of the

hypersphere and the outliers, and C0 is the tuning parameter for the margin.

SVDD and SSLM methods take advantage of the information from both classes of

samples. These one-class classification ideas can be used in the complex imbalanced

learning problems, especially for the case that few minority samples are available. We can

treat the majority class of samples as normal ones, and the samples of the minority class

are regarded as the outliers.

Compared with the UFSEM framework, these one-class classification approaches

have many beneficial. First of all, similar to the UFSEM framework, one-class

classification can perform well in imbalanced classification tasks. Second, abnormal

detection may be more efficient because only one classification operation is needed.
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However, it is noteworthy to point out that neither SVDD nor SSLM supports feature

selection.

3.6 Experiments

In this section, I conduct several experiments using the imbalanced biomedical data in the

Depression research. The undersampling-based classifiers ensemble framework is used to

deal with the imbalanced data set. In order to reduce the dimensionality and obtain useful

features, multiple feature selection methods are implemented in the UFSEM framework.

Moreover, I employ the SSLM one-class approach to identify abnormal samples.

Note that, in the following parts, I mainly focus on the target MelanDprs-C, i.e.,

the task of differentiating the melancholic depression patients from the healthy controls. I

use the Metabolite data, the Protein data and the Transcripts data in the experiments.

Some dimension reduction strategies are applied, for example:

• Use a reduced Metabolite data set that removes a list of metabolites, these

metabolites are highly sensitive to the storage time (see Appendix B for details);

• Use a reduced Protein data set based on the Immune Gene list and the related

mapping file (detailed gene list is not attached in the thesis due to its length);

• Use a reduced Transcripts data based on on the Depression Gene list (detailed gene

list is not attached in the thesis due to its length).

Table 3.1: The sample statistics of the Depression data set used in the MelanDpres-C target.

All Pos Neg Dimension

Metabolite 118 21 97 270
Metabolite R 118 21 96 228

Protein D 122 29 93 3181
Transcript I 124 28 96 1438
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Table 3.1 summarizes the sample statistics of the used data sets. It shows that the

data sets used in the MelanDprs-C target are all severely imbalanced. The Metabolite data

are further corrected based on the storage time at the Depression and imputed using KNN

method. In addition, the Protein data are imputed by the halfMin method. The feature

selection methods discussed in this thesis are restricted to the Gini index method, the

information gain method and Stability Selection. Moreover, I still use the random forest

and the SVM as the classifiers.

Undersampling Method and Imbalanced Learning

I first demonstrate the usage of the undersampling method in imbalanced learning.

Table 3.2 summarizes the classification performance of multiple the Depression

data sets on the MelanDprs-C target. Note that, in this experiment, we do not balance the

training set, but only use the 10-fold cross validation. It is clear that although the

accuracies shown in Table 3.2 are around 80% in most of the data sets, the sensitivities are

much lower than the accuracies or the specificities. Recall the sensitivity measures the

proportion of real positive cases that are correctly classified and here, the melancholic

depression patients denote the positive class. Therefore, the results imply that the

classifiers are all biased toward the negative set, i.e., the majority class.

Table 3.2: The melancholic depression classification performance on the Metabolite data,
the Protein data, and the Transcripts data; all features are included in this experiment.

Metabolite Metabolite R Protein D Transcripts I
RF SVM RF SVM RF SVM RF SVM

Accuracy 82.58% 81.32% 82.38% 78.88% 81.05% 80.99% 78.95% 78.25%
Sensitivity 15.00% 35.00% 10.00% 25.00% 26.67% 43.33% 13.33% 35.00%
Specificity 98.00% 91.44% 98.00% 90.44% 97.89% 92.44% 97.78% 90.56%

The above results are not surprising. Next, I will show the effectiveness of the

undersampling method.

36



The undersampling method randomly removes some samples in the majority class

until the two classes achieve balance. In this experiment, I do undersampling once on the

training set in each cross validation. A classifier is then trained based on a sampled

training set and tested with the testing set. Table 3.3 summarizes the classification

performance based on the one-time undersampling method.

Table 3.3: The classification performance of melancholic depression based on the under-
sampling method.

Metabolite Metabolite R Protein D Transcripts I
RF SVM RF SVM RF SVM RF SVM

Accuracy 76.95% 71.21% 73.92% 60.88% 72.79% 70.29% 64.46% 65.36%
Sensitivity 66.83% 60.00% 62.22% 40.00% 68.33% 61.67% 65.00% 65.00%
Specificity 79.32% 73.89% 76.57% 65.33% 74.00% 72.78% 64.44% 65.33%

Compared with Table 3.2, the three performance criteria: accuracy, sensitivity and

specificity are closer to each other in all cases. Thus, applying undersampling can lead to

similar learning performance on both classes of samples.

UEM Framework and Imbalanced Learning

As mentioned in Section 3.3, the undersampling method may bring some uncertainty due

to the inappropriate samplings. In other words, the method may discard some potentially

significant instances of the majority class in training. An intuitive solution is to increase

the number of sampling. The key to the UEM framework is the ensemble learning phase.

Based on the undersampling method, I next consider the undersampling-based classifiers

ensemble framework.

The figures shown in Fig. 3.4 are the classification results of the UEM framework,

which is based on 30 undersamplings. We compare the classification performance of the

simple averaging strategy, the majority voting strategy and the weighted voting strategy.

At the end of each figure, I enclosed the previous best results of the single undersampling.

37



Compared with the classification results obtained in a single undersampling, Fig.

3.4a & 3.4b show that, for the two Metabolite data sets, the UEM framework achieves

around 3%−5% improvement on most performance measurements. The classification

performance of the Protein data shown in Fig. 3.4c shows a slight decrease and the

Transcripts data shown in Fig. 3.4d does not show a clear difference. It is noteworthy that
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Figure 3.4: The melancholic depression classification performance based on the UEM
framework and different ensemble strategies. Average means the average strategy, Ma-
jority refers to the majority voting strategy and Weighted stands for the weighted voting
strategy.
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the results obtained from multiple undersamplings are more reliable than those from a

single sampling.

We can also compare different ensemble strategies via Figs. 3.4. The majority

voting and the weighted voting strategies perform better than the average strategy in the

two Metabolite data sets, while these three strategies do not show any significant

difference on the Protein data and the Transcript data.

UEM Framework with Feature Selection Methods

The UFSEM framework introduced in Section 3.4 is an imbalanced learning tool that

takes advantage of feature selection. In the following experiments, I apply the Gini index

method, the information gain method and Stability Selection in the learning tasks. For

each sampled training set, I first obtain a feature ranking list via a feature selection

method. The next step is to train the classifier based on a certain number of features. In

order to improve the efficiency of the learning system and obtain useful variables, I use the

first 3,6, · · · ,45 features to train the classifiers.

Fig. 3.5 illustrates the melancholic depression classification results based on the

UFSEM framework. It is clear from the figures that the classification performance is

significantly improved in all data sets. Both majority voting and weighted voting

strategies give better results than the single undersampling approach and the average

strategy. More especially, Fig. 3.5a shows that the Gini-SVM-Majority voting, the

Stability-SVM-Majority voting and the Stability-SVM-Weighted voting strategies

perform around 80% in the Metabolite data, in terms of accuracy, sensitivity and

specificity. The reduced Metabolite data shown in Fig. 3.5b indicate that the majority

voting based Random Forest classifiers obtain good performance in both feature selection

methods. The best performance is obtained via Stability Selection and the majority voting

strategy in the Protein data in Fig. 3.5c. In addition, for the Transcript data, the

InfoGain-SVM method increases the learning performance by 15%.
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In the UFSEM framework, we can compare the classification performance of using

different number of features. Figure 3.6 presents the experiments based on the Transcript

data set using the SVM classifier and the information gain method. The figures include

both majority voting and weighted voting strategies. The blue lines show the accuracies. It

can be observed in Fig. 3.6a that we obtain the best performance via the top 24 selected

features. In the case of weighted voting shown in Fig. 3.6b, the classifiers achieve better

performance by using approximately 27−36 features.
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Figure 3.6: The melancholic depression classification performance on the Transcript data;
Information Gain is used for feature selection and different number of features are used.

In addition, the UFSEM framework can provide a feature ranking among the

features, which is the byproduct of the feature selection methods. After obtaining the

feature rankings from each undersampling, we can combine these lists together and

generate a final ranking.
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Table 3.4 shows an example of the feature comparison table. The data sets shown

in the table is the Metabolite data. I list the top 20 features selected by each feature

selection method. The first 10 features obtained from the all-feature Metabolite data

shown using into different colors. The features colored as yellow are the ones not included

in the reduced Metabolite data set. A red arrow indicates the change of ranking of the top

10 metabolite features between the all-feature Metabolite data set and the reduced

Metabolite data set.

In addition, based on the number of features - performance analysis and the feature
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(c) Stability Selection

Figure 3.7: Visualization of sample distributions based on the top 2 PCs of Metabolite
Data; features are obtained using multiple feature selection methods.
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ranking, we can choose a certain number of features to visualize the data. The objective of

visualization is to communicate information in the data by the means of graphics [74]. For

example, using a principal component analysis (PCA), we can project the data into a 2D

or 3D space.

Figure 3.7 illustrates the sample distributions based on first two PCs obtained from

the previous UFSEM framework. The PCA is performed on a list of selected Metabolite

features. More especially, features in Fig. 3.7a are picked by the Gini index method;

features in Fig. 3.7b are selected by the infomation gain method; and features in Fig. 3.7c

are chosen by Stability Selection. It can be observed from the figures that the melancholic

depression patients and healthy controls are well separated.

SSLM and Imbalanced Learning

In Section 3.5, I discussed some alternative approaches that can deal with the imbalanced

classification problems, that is, the novelty detection methods. Meanwhile, I consider the

SSLM approach, which maximizes the margin between the outliers and the normal

samples.

I first compare the classification performance of the SVDD method and the SSLM

method. The experiment results shown in Fig. 3.8 are obtained from the Metabolite data

set and the target here is to identify the minority class of melancholic depression patients

from the majority class of healthy controls. Moreover, various training ratios have been

tested on the majority class of samples.

Figure 3.8 illustrates that the SSLM approach provides competitive performance

compared to SVDD for most of experimental conditions. In the 70% and 30% positive

training ratio cases, the SSML approach is more stable than the other one. The results here

are also close to those the UFSEM framework shown in Fig. 3.5a. In addition, the

experiment results demonstrate that the SSML can produce satisfactory performance, even
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Figure 3.8: Comparison of the melancholic depression classification performance between
the SVDD method and the SSLM method on Metabolite data; different training ratios of
patients are used.

if we use a small set of samples from the minority class (which will cause the data set

extremely imbalanced).

I then compare SSLM with the UFSEM framework. In each cross validation

partition, I randomly remove a certain proportion of samples in the minority class, and

then do the undersampling. The experiment results shown in Fig. 3.9 summarize the

accuracy, the sensitivity and the specificity obtained using different positive training ratios.

It can be observed in Fig. 3.9a that, if we control the minority class training ratio

at 90%, the learning accuracies obtained by the UFSEM approach are slightly better than

the SSLM method. Figure 3.9b illustrates that the sensitivity drops significantly if we use

less than 70% samples from the patients. These results show that, the SSLM approach is

effective in the complex imbalanced biomedical learning. Even if the minority set is very

small, the SSLM approach can still perform well.
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Figure 3.9: Comparison of the melancholic depression classification performance between
the SSLM method and the UFSEM framework on Metabolite data; different training ratios
of patients are used.
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Chapter 4

Clustering Methods in High-Dimensional Learning

Clustering, as an important unsupervised learning method, refers to the procedure of

assigning data into groups. A cluster is a subset of data that have a small within-cluster

distance and are dissimilar to objects outside the cluster. The criteria that evaluate the

similarity or the distance between data points including Euclidean distance, L1 distance

and the correlation etc. For a certain application, the appropriate distance criterion should

be applied.

Many clustering algorithms have been proposed in the past. These methods can be

generally categorized into four types: Exclusive, Overlapping, Hierarchical, and

Probabilistic Clustering. Exclusive clustering requires that each data point only belong to

a single cluster, while the overlapping approach does not have this restriction.

Hierarchical clustering and Probabilistic clustering are based on clusters union and the

probabilistic approach, respectively.

The biomedical data often suffer from the curse of dimensionality, and the data

may contain many strongly correlated variables. The elimination of these similar variables

can reduce the dimensionality of the data and may improve the performance of learning

algorithms.

In this chapter, I present some basic clustering algorithms, and then introduce the

approaches of using clustering methods in learning from the high-dimensional biomedical

data, that is, clustering highly correlated variables in data is followed by further

operations.

4.1 K-means Clustering

K-means clustering is one of the most well-known unsupervised learning algorithms for

clustering problems. K-means algorithm is an exclusive clustering method that partitions
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n observations into k clusters. Each cluster is described by a centroid such that each

observation belongs to one cluster with a minimal distance to the corresponding centroid,

and the over-all distance is minimized.

Given a dataset X = [x1, . . . ,xn] ∈ Rn×d , we denote

π j = {v | xv belongs to cluster j} (4.1)

as a cluster, and thus

Π = {π j}k
j=1 (4.2)

is a partitioning of X, which assigns n samples into k clusters. The centroid of a cluster is

defined as

c j =
1
n j

∑
v∈π j

xv, (4.3)

where n j is to the number of elements in set π j. Assume that Euclidean distance measure

is used, and then for a certain partitioning Π, the quality of the resulted clustering is

evaluated by the sum-of-squares cost function:

Q(Π) =
k

∑
j=1

∑
v∈π j

‖xv− c j‖2. (4.4)

In K-means, our target is to minimize the objective function, i.e., minQ(Π).

The K-means clustering algorithm uses an iterative refinement approach that is

shown in Algorithm 2.

Algorithm 2 The K-means Clustering Algorithm

Input: X,k

Output: Π

1: Initialization: Pick up k centroids in the objects space.

2: while not convergence do
3: Assign all data points of {xv}n

v=1 to their nearest centroid using a certain measure-
ment.

4: Recalculate the centroid of each cluster.
5: end while
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The choice of the positions of the initial cluster centroids is one of the key steps of

the K-means algorithm. An intuitive method is to randomly select k observations from all

n samples. Other strategies like Random Partition [75] are also utilized in various

applications. In addition, although this procedure usually converges fast, it cannot be

guaranteed that the algorithm achieves the global minimum solution. In practice, multiple

trials are necessary to obtain an approximately optimal solution. That is, we repeat the

K-means clustering algorithm multiple times, at each time, using a new set of initial

centroids to evaluate the cost calculated by the cost function. We then choose the best

solution from the results.

4.2 Hierarchical Clustering

The objective of hierarchical clustering is to build a hierarchy structure based on the data

points. This hierarchy structure is usually represented as a binary tree or a dendrogram of

clusters.

Agglomerative hierarchical clustering method is one of the most frequently used

approaches, which is shown in Algorithm 3.

This clustering method is a bottom-up monotonic procedure. The hierarchical

clustering algorithm can provide the whole tree structure of the objects, and thus it is easy

Algorithm 3 The Agglomerative Hierarchical Clustering Algorithm

Input: X = [x1, . . . ,xn] ∈ Rn×d

Output: The corresponding dendrogram.

1: Initialization: Assigning each sample of X to a cluster; there are n clusters in total.

2: Compute the distances between every two clusters.

3: while exists more than one cluster do
4: Find the closest pair of clusters and join them together, i.e., merge them into a new

cluster.
5: Compute the distances between the new cluster and the old parts.
6: end while
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to obtain a certain number of clusters from the dendrogram. It is noteworthy to point out

the two aspects in the hierarchical clustering method: one is the select of distance metric,

and the other is the linkage strategy.

As mentioned above, there are many distance criteria that can measure the distance

between two data points, for example, Euclidean distance and the correlation. The choice

of an appropriate distance criterion is very important for a particular application, e.g.,

using the correlation measuring the similarity among genes or among other biological

molecules [6]. Note that, these distances are defined based on individual data points.

However, in hierarchical clustering, we also concern the distance between two clusters of

data points. Next, I introduce the linkage strategies.

The strategy of linkage is aimed to measure the distance between two clusters of

observations. Given two clusters A = {a1, . . . ,an} and B = {b1, . . . ,bm} with n and m

elements respectively. The following are some frequently used linkage criteria:

• Single Linkage:

d(A,B) = min(dist(ai,b j)),1≤ i≤ n,1≤ j ≤ m. (4.5)

• Complete Linkage:

d(A,B) = max(dist(ai,b j)),1≤ i≤ n,1≤ j ≤ m. (4.6)

• Average Linkage:

d(A,B) =
1

n×m

n

∑
i=1

m

∑
j=1

dist(ai,b j). (4.7)

Single Linkage uses the minimum distance between elements in two clusters, while

Complete Linkage uses the maximum distance. Moreover, Average Linkage use the mean

distance between all pair of elements in two clusters. There are also other linkage criteria

utilized in practices, e.g., Median Linkage, Centroid Linkage and Wards Linkage.
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Different linkage strategies will lead to various hierarchical structures. For

example, Complete Linkage will bring a lot of compact clusters with similar diameters,

and Single Linkage method will result in the chaining phenomenon [76].

4.3 Clustering Methods in Features

Different from the traditional clustering methods that find a partitioning in samples, I

focus on the organization of variables. In learning from high-dimensional biomedical

data, traditional learning algorithms may not perform well due to the high dimensionality.

My current approach is to process clustering method on the feature dimension, that

is, to cluster highly correlated features in data. Consider a data set X ∈ Rn×d , where n is

the number of samples and d is the number of features. The target here is to partition d

features into k clusters. Before clustering, we require the data to be centered and scaled,

i.e., with mean zero and standard deviation one for each feature. I then apply the

clustering method to group the similar features into a cluster and keep the dissimilar

variables away from each other.

There will be many advantages brought from the strategy that clustering variables

in high-dimensional data set:

• Clustering method reduces the data dimension. After clustering, we can represent

the dataset using k cluster centroids, which is much smaller than the original feature

dimension. Thereby, the clustering method can further reduce the complexity of

learning task.

• The combination of highly correlated features can achieve a more reliable learning

result. For instance, in the regression tasks, those highly correlated variables will

lead to the multicollinearity, and then cause the inaccurate estimation of regression

[77].
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• Some learning algorithms are insensitive to the correlation structures among the

variables, so that the information store in those redundant features will be omitted

by the learning systems [6]. For example, Lasso is designed to select only one

variable from a group of correlated variables. Therefore, even if a variable is useful,

it still may be ignored in the scenario of data with highly correlated variables.

To sum up, applying clustering methods on feature space can reduce the

dimensionality of data, and meanwhile, improve the reliability, the performance and the

efficiency of learning systems. Moreover, clustering variables in high-dimensional

biomedical data have biological interpretability.

4.4 Experiments

In this section, I provide several experiments of using clustering methods on the

Metabolite data in the Depression research. These experiments include: (1) the

comparison of different linkage strategies for the hierarchical clustering (2) the

classification performance related to the data with clustered variables.

Comparison among Different Linkage Strategies

As mentioned in Section 4.2, the linkage strategies are used to measure the distance

between two clusters of observation. By using different linkage strategies, we will obtain

various cluster structures for hierarchical clustering.

I tested Single Linkage, Average Linkage and Complete Linkage on the

Depression Metabolite data - MelanDprs-C target. Figure 4.1 illustrates the cluster

structures by dendrograms. Each dendrogram is obtained from a hierarchical clustering

with a certain linkage strategy. The clusters given in Fig. 4.1a show an approximately

chaining structure, which is caused by the single linkage strategy. Figure. 4.1b illustrates

the result of the average linkage strategy and the cluster structure is expressed as the
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combination of several subchaings. Moreover, it is clear that the complete linkage method,

shown in Fig. 4.1c, brings many compact clusters with similar diameters.
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(b) Average Linkage
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(c) Complete Linkage

Figure 4.1: Dendrograms of hierarchical clusters, based on different linkage strategies on
the Depression Metabolite data; each dendrogram is built base on top 30 levels of the
hierarchical tree and the distance criterion is the correlation.

Recall that in the high-dimensional biomedical data learning, clustering is aimed

to group highly correlated variables among the original data. Consider the experiment

results shown in Fig. 4.1, if we choose a cutoff at a certain level of the hierarchical tree,

the single linkage is more likely to generate a cluster with a large number of features and

the remain clusters are both single ones. However, the clusters obtained via the complete

linkage will contains several features. This method is known as the farthest neighbour

clustering. Moreover, the average linkage can be considered as an intermediate state of the
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single linkage strategy and the complete linkage strategy. Therefore, I conclude that the

complete linkage is more suitable for our need.

In the experiments, I cluster 270 metabolites into 100 groups. The cluster statistics

of the usage of different linkage strategies are shown in Table 4.1. Compared with the

single linkage and the average linkage, the complete linkage strategy result in the lowest

standard deviation (SD), the smallest maximum cluster size, as well as the minimum

number of single clusters. Table 4.1 also verifies that the complete linkage clustering is

the most satisfactory method. Therefore, these results imply that the choice of the

Complete Linkage strategy may be a proper one for the agglomerative hierarchical

clustering on the biomedical data.

Table 4.1: The statistics of clusters among different linkage strategies on the Depression
Metabolite data set.

SD Max size of a cluster Number of single clusters

Single Linkage 14.19 143 80
Average Linkage 4.15 36 45

Complete Linkage 2.76 23 30

Clustering Methods and High-Dimensional Learning

In the learning process of the high-dimensional biomedical data set, the objectives of the

clustering methods on the feature space are as follows: (1) to reduce dimension; (2) to

group highly correlated variables; and (3) to select related features together. After

obtaining a clustered data set, the next step is to check its usability in the learning tasks.

The experiments shown in Fig. 4.2 are based on the Metabolite data. The learning

target here, again, is to identify the melancholic depression patients. For the all-feature

Metabolite data and the reduced Metabolite data, I built 100 clusters on each data set via

the K-means clustering method and the hierarchical clustering method separately. I then

use the UFSEM framework to learn each clustered data set.
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(a) K-means clustering
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(b) Hierarchical clustering

Figure 4.2: Comparison of the melancholic depression classification performance on clus-
tered Metabolite data.

Figure 4.2a illustrates the classification results based on the K-means clustering. It

is observed that the clustered all-feature Metabolite data produce similar performance

compared with those shown in Fig. 3.4a. The sensitivities improved via the Gini index in

both ensemble strategies. For the clustered reduced Metabolite data, the Gini index

method also performs 3% better than those in Fig. 3.4a. Figure 4.2b summarizes the

results of the hierarchical clustering. The stability selection method improves the
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sensitivities on the all-feature Metabolite data by 10%. The Gini index method and the

Stability selection method also provide competitive performance on the reduced

Metabolite data. Note that, both clustering methods bring better sensitivity scores in the

learning tasks, which implies that the classifiers can better identify the patients based on

these clustered data sets.

Therefore, the experiments results imply that the combination of clustering

methods and the UFSEM framework can provide satisfactory performance in the

high-dimensional imbalanced biomedical data learning.
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Chapter 5

Conclusion and Outlook

5.1 Summary of Conclusions

The major objective of this thesis is to study some machine learning techniques that can

be used to learn the high-dimensional imbalanced biomedical data sets. There are mainly

three issues in the learning tasks: (1) how to identify the patterns among multiple data sets

and class labels; (2) how to learn from a imbalanced data set; (3) how to improve the

performance in the high-dimensional learning.

Firstly, I discuss the inherent characteristics of the biomedical data and reveal

several the challenges in the learning process for the high-dimensional imbalanced

biomedical data. I then address the research targets and analyze the related works.

The sparse canonical correlation analysis method is the principal topic in the

second part. I first present the basic idea of correlation analysis and the usage of CCA

method in multidimensional variables. To deal with high-dimensional data, a penalized

CCA approach is presented. The choice of an appropriate penalty function and the

corresponding penalty constraints can yield the sparse solutions for the canonical vectors.

I then demonstrate how to use the sparse CCA to detect the patterns among a set of

high-dimensional data sets and the class labels. The classification experiment shows

positive results that the signal detected by the sparse CCA method is significant. Some

experiments also indicate that the sparse CCA can be used to find patterns between two

data sources.

Next, I address the challenges in imbalanced learning. In addition to accuracy, I

discuss some alternative criteria to evaluate the learning performance, e.g., sensitivity and

specificity. It is important to obtain the accurate models from both classes of samples in an

imbalanced learning task. To deal with the imbalanced class distributions, I present the
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undersampling method and combine it with the ensemble learning idea. In order to obtain

significant features, and improve the learning efficiency, I introduce multiple feature

selection methods and apply them to the previous approach. The UFSEM framework,

proposed in this thesis, is an effective method to learn from the imbalanced data sets.

Moreover, the small sphere and large margin approach is discussed as an alternative

method for the imbalanced classification tasks. In practice, both the UFSEM framework

and the SSLM method show satisfactory performance in learning from the imbalanced

biomedical data.

The last part summarizes the approaches of using clustering methods in dealing

with high-dimensional data. To deal with the data containing many highly correlated

variables, I employ the K-means clustering method and the hierarchical clustering method

in the feature dimension. Experiments demonstrate significant improvements by

clustering the highly correlated features in the data.

5.2 Future Works

There are several directions that can be explored in the future work. For example, the

sparse CCA method can be used to study multiple (three or more) data sets. Recently,

scientists are interested in taking advantages of multiple data sources and expect that

interesting patterns can be detected between the data sets. In addition, I also test some

ideas of using sparse CCA as a feature selection method in the UFSEM framework. We

can further employ other feature selection methods and different classifiers in the UFSEM

framework. Currently, I apply a very simple ensemble methods, we plan to explore other

more advanced ensemble methods in the future work [78].
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The previous works have pointed out that, in the Depression research, the Metabolite data

suffer from the confounding effect of storage time.
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Figure A.1: The pairwise linear correlation coefficient between each metabolite and the
storage time at the Depression, use all valid samples and impute missing values via KNN.

0 30 60 90 120 150 180 210 240 270
-26

-24

-22

-20

-18

-16

-14

-12

-10

-8

-6

-4

-2

0

Feature Index

P
-v

al
u

es
(l

o
g1

0
)

Figure A.2: The p-values for testing the hypothesis of no correlation against the alternative
that there is a nonzero correlation for each pair of metabolite and the storage time at the
Depression, use log10 transformation, use all valid samples and impute missing values via
KNN.
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Figures A.1 & A.2 illustrate the experiment results of the pairwise correlation test

between each metabolite feature and the storage time at the Depression. We consider that

a significant correlation will result in the correlation |ρ|> 0.2 or p < 0.01 (i.e.,

log10(p)<−2). Since the plasma samples were stored at −20◦, the concentration levels

of a large number of metabolites will be strongly affected by the storage time duration.

It has been detected that, for most of metabolites, the relation between the

metabolite concentration with storage time at the Depression is relatively linear within 200

days. In order to reduce this storage time confounder, I first remove two types of samples:

the one is the samples that are stored longer than 200 days; and the other is the samples

that failure in quality control. I then correct the storage time confounder by taking the

residuals of a linear regression line of storage time for each metabolite separately.

In this thesis,I correct the Metabolite data in two ways: one is based on all samples;

and the other is based on healthy controls (HCs). Detailed procedures are described below.

Let X be one column of original metabolite feature, and T be the column vector of

the storage time at the Depression for the corresponding samples (all valid samples

included). Then, the metabolite feature could be corrected in the following two ways:

• Correct the storage time confounder based on all samples

Because the storage time duration has a linear confounding effect to most of the

metabolites, we can obtain the linear regression model:

X = T β1 +β0, (A.1)

where β1 stands for the effect of storage time T on X and β0 is the bias. Problem

(A.1) can be solved by the least square estimation as: β0

β1

= (ST S)−1ST X , (A.2)
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where S is a two-column matrix where the entries of the first column are all one and

the entries of the second column are evaluated as T . Once β1 is determined, the

corrected metabolite feature Xc is:

Xc = X−T β1. (A.3)

• Correct the storage time confounder based on healthy controls

Recent studies [79] proposed a similar correction method but only use the

information from healthy controls. To fit the linear model built on only healthy

controls, we would replace criterion (A.1) as:

XHCs = THCsβ1 +β0, (A.4)

where XHCs and THCs correspond to the healthy controls’ metabolite feature column

and the storage time vector, respectively. Other steps remain the same.
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Feature Evaluation and Removal in the Metabolites Data Set
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As discussed in Appendix 5.2, the Depression Metabolite data suffer from the

confounding effect of storage time. To reduce this time confounder, I apply two correction

algorithms in the practice. However, the correction methods can not eliminate this inherent

effect in both metabolites. Therefore, in this appendix, I propose another approach that is

to remove some unstable metabolite features in the original Metabolite data set.

This work is base on a previous O-PLS1 test. We detect 72 metabolite features that

are sensitive to the storage time via O-PLS. These features can be categorized into four

groups according to their sensitivities to the storage time duration and the O-PLS loading

values: (1) highly sensitive & increase; (2) highly sensitive & decrease; (3) sensitive &

increase; (4) sensitive & decrease. We then compare these O-PLS test results with the

original metabolite concentrations and obtain 44 metabolites shown in Table B.1. Those

metabolites are sensitive to the storage time and meanwhile, the concentrations changing

tends of those features are varied between the melancholic depression patients and healthy

controls.

To further reduce the time confounder, I consider remove those features from the

original set. However, it is clear that removing those features may affect the learning

performance. Compared with the feature rankings obtained from the UFSEM framework

(see Table 3.4), some features in Table B.1 are very significant to the learning system. For

these potentially important metabolites, I then apply some further analysis to explore the

features such as t-test, correlation analysis and visualization method. Eventually, I keep 2

of them in the reduced Metabolite data set and remove the other 42 metabolites.

1O-PLS: Orthogonal Projection to Latent Structures Algorithm [80]. The O-PLS test is implemented to
predict storage time at -20C loading.
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Table B.1: The list of abnormal metabolites and their O-PLS test result. The texts in bold
face are considered to be kept; others are removed in the reduced Metabolite data set.

O-PLS Test Metabolite name

highly sensitive Glutamine
& decrease 3 4 Dihydroxyphenylacetic acid

3 4 Dihydroxyphenylalanine DOPA
3 4 Dihydroxyphenylglycol
Adrenaline
Noradrenaline
beta Carotene

highly sensitive Aspartate
& increase Glutamate

Triacylgyceride hydroperoxide C16 0 C18 1 C18 2 OOH
Triacylgyceride hydroperoxide C16 0 C18 1 C18 3 OOH additional Triacylgyceride hy-
droperoxide C16 0 C18 2 C18 2 OOH
Triacylgyceride hydroperoxide C18 1 18 2 C18 2 OOH additional Triacylgyceride
hydroperoxide C16 0 C18 1 C20 4 OOH Triacylgyceride hydroperoxide C18 1 C18
1 C18 3 OOH
Azelaic acid
Unknown 68100024
Unknown 68100033
Unknown 68100060
Unknown 68100426
Unknown 68100427
Unknown 68100434
Unknown 68100437

sensitive Taurine
& decrease Cryptoxanthin

1 2 Dioleoyl glycero 3 phosphatidylserine
1 Octadecenyl 2 arachidonoylglycero 3 phosphocholine Plasmalogen
Phosphatidylcholine 13
Phosphatidylcholine 3
Phosphatidylcholine C16 0 C22 6 or C18 2 C20 4
Phosphatidylcholine C18 0 C22 6
Sphingomyelin
Unknown 38100405
Unknown 38100434
Unknown 38100438
Unknown 38100474
Unknown 58100143
Unknown 68100428
Unknown 68100430
Unknown 68100433

sensitivee Serine
& increas Melissic acid C30 0

3 3’ 5 Triiodo L thyronine
Lysophosphatidylethanolamine
Unknown 58100019
Unknown 58100144
Unknown 58100156

72


