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ABSTRACT

Video object segmentation (VOS) is an important task in computer vision

with a lot of applications, e.g., video editing, object tracking, and object based

encoding. Different from image object segmentation, video object segmentation

must consider both spatial and temporal coherence for the object. Despite extensive

previous work, the problem is still challenging.

Usually, foreground object in the video draws more attention from humans,

i.e. it is salient. In this thesis we tackle the problem from the aspect of saliency,

where saliency means a certain subset of visual information selected by a visual

system (human or machine)[1]. We present a novel unsupervised method for video

object segmentation that considers both low level vision cues and high level motion

cues. In our model, video object segmentation can be formulated as a unified energy

minimization problem and solved in polynomial time by employing the min-cut

algorithm. Specifically, our energy function comprises the unary term and pair-wise

interaction energy term respectively, where unary term measures region saliency

and interaction term smooths the mutual effects between object saliency and motion

saliency. Object saliency is computed in spatial domain from each discrete frame

using multi-scale context features, e.g., color histogram, gradient, and graph based

manifold ranking. Meanwhile, motion saliency is calculated in temporal domain by

extracting phase information of the video. In the experimental section of this thesis,

our proposed method has been evaluated on several benchmark datasets. In MSRA

1000 dataset [2] the result demonstrates that our spatial object saliency detection

is superior to the state-of-art methods. Moreover, our temporal motion saliency

detector can achieve better performance than existing motion detection approaches

in UCF sports action analysis dataset [3] and Weizmann dataset [4] respectively.

Finally, we show the attractive empirical result and quantitative evaluation of our
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approach on two benchmark video object segmentation datasets.
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Chapter 1

Introduction

In past two decades, video object segmentation (VOS) has been widely used in high

level computer vision applications, e.g., video editing, object tracking, object based

encoding, and activity recognition. Compared to image object segmentation which

aims to group the similar pixels into labeled regions, video object segmentation

takes both spatial coherence and temporal coherence into consideration. The con-

cept of video object was proposed in MPEG-4 standard, which represented most

object-like regions in an image or video frame. It usually was a meaningful unit,

e.g. human, car, man-made object. Since, lacking of knowledge of video content,

lots of object detectors are trained from a large number of labeled images and de-

signed for one single object class detection [11, 12]. However, their performances

will be inevitably decreased when applied to videos, which have diverse conditions

that distinguish from training data. Several works [13, 14] explored motion tracking

or region clustering over time for a general object detection in the video. Besides

the difficulties in tracking, e.g., occlusion, drifting, these techniques do not have

a clear definition of what is a foreground object. Therefore, grouping the interest

pixels usually leads to over segmentation and lack of semantic meanings.

In this thesis we propose an unsupervised video object segmentation ap-

proach (Figure 1.1) which can automatically detect the object like regions by mod-

eling the object appearance. Our main idea is using spatial saliency features to

identify the object regions and employing temporal motion saliency to estimate the

dynamic cues through the motion trajectory. We begin with a general object detec-

tor by adapting saliency features. Inspired by [2, 15, 16, 17], we assume that video

foreground object should be the most saliency object among the frame based on

human visual attention mechanism [18, 19]. To capture the object like regions, we
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Figure 1.1: Our result on well known benchmark datasets [5][6].
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define three characters of saliency object based on psychological evidence[20]:

• the salient object is different from its surrounding context.

• the salient object is probably in the center of an image.

• the salient object should have the property of object (strong gradient, clear

boundary).

Following these characters and our assumption, our proposed method starts

from object measurement by measuring the probability of a region containing an

object. Given a single frame, we use superpixels to segment it into small regions

and each region is assigned a saliency value by multi-scale context features, e.g.

spatial location, gradient. To link the saliency and object measurement, we propose

a ranking function learned from spatial observations. Then the saliency region will

be used as foreground object queries for object measurement. To capture motion

cues, we define motion saliency by extracting the phase information of the whole

video. Finally, estimating the foreground object in the video can be achieved by

minimizing an energy function construed from a graphical model.

Why our saliency energy is related to video object? First, our saliency en-

ergy using appearance information, which is related to the human visual system

and follows the classic bottom up saliency model [18], to measure the most object

like regions. Second, our motion saliency suppresses the background motion re-

currence, which means the saliency region moves differently from its background,

i.e. it likely to be a human interest object [21]. Why our approach is better? Our

saliency energy combination not only considers the object appearance but also in-

tegrates the object motion cues especially for the fast moving object. More im-
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portantly, our energy function can utilize the efficient min cut algorithm which can

solve this challenging problem in polynomial time.

In this thesis we have three contributions: first, we propose a new generic

saliency object detection and show its good performance in benchmark dataset.

Second, we show our temporal saliency detector can be used in two key vision

tasks, e.g., action analysis and abnormal event detection. Third, we view the video

object detection problem in a new angle, which can solve the task in polynomial

time.

1.1 Video Object Segmentation

Both video object detection and video object segmentation (VOS) are two important

tasks in video analysis area. Compared to video object detection, video segmenta-

tion focuses on finding the exact object location and boundary. Despite extensive

researches in the literature, VOS is still a challenging problem in computer vision

area. Generally, the VOS can be achieved with the following two procedures :

foreground object segmentation and motion filed segmentation.

1.1.1 foreground object detection and segmentation

Object detection has been well researched in these years and addressed in some

different scenarios: co-object segmentation, image parsing and figure-ground seg-

mentation. Overall, foreground object in the video often means a moving object

without repeated patterns, e.g., a boat which is sailing on the sea, a car which is on

the road, therefore, comparing to foreground, background represents static objects.

Recently, some graph based approaches detected foreground object by extracting

the similar patterns through pairs or groups of unlabeled images, [22, 23]. As the

object size is uncertain, such approaches can not guarantee the accuracy of detected

region. To this end, [24] proposed an iterative boundary refinement approach for the

foreground detection, which ranked the interest region in each image and optimized
4



its location by other reference image. A similar approach [25] called ”key segment”

has drawn lots of attentions, the author first used motion and appearance cues to get

a set of key frames which were segmented into two regions: foreground and back-

ground. Then the foreground regions of other frames can be detected by ranking

according to the foreground region of the key frames. These group based fore-

ground approaches are heavily based on reference images, if the key frame object

is not annotated correctly, e.g. a video contains a fast moving object, the result will

degrade significantly. For semi automatic object detection approaches, foreground

segmentation often needs human input, e.g., snapcut [26], user will annotate the

foreground region or mark the foreground boundaries in some key frames or ini-

tial frames. These semi automatic approaches achieve better results than automatic

ones, however, when the video dataset is huge, the time cost will be significant in

the sense that user will need to mask the regions; in addition, the results have to

rely on the user input.

1.1.2 motion field object segmentation

Motion based object segmentation can be divided into two categories: over seg-

mented region matching and tracking based object segmentation. The methods

[14, 27] in the first group utilized bottom up features, e.g., shape, color, gradient,

to segment each frame into different regions and match them with nearby frames.

For tracking based methods, [5] used supervised approach for object initialization

and SIFT points for object tracking. [13] employed dense flow to cluster the pixels

through long term motion trajectories. There are two common problems of mo-

tion based video object segmentation, first, these methods tend to over segment the

object, second, the motion regions are lack of semantic meaning.
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1.2 Visual Saliency

Visual saliency means the region which draws most human attention. It is the capa-

bility of vision system to select the interest information which is a subset of received

visual information. In this thesis, we propose two saliency based approaches for

foreground object detection in static images and action, motion detection in video

respectively.

In the recent years, visual saliency has attracted a lot of interests and ef-

forts in the vision society. One of the most widely known works of visual saliency

can be found in [18]. Since then, a lot of different models have been proposed

for computing the visual saliency, which can be roughly divided into two groups:

bottom-up models are mainly based on features of the visual scenes; and top-down

model analyzes the human data and learns from these knowledge, tasks etc. Visual

saliency has also been applied in conventional vision task, e.g., object detection

[15, 16, 2, 17]. The saliency based object detection detects most salient regions

and extracts the whole extent of the object from the background. Like the visual

saliency model, the output of saliency object detection(SOD) is a salient map which

shows the probability of each pixel belonging to a salient object. Moreover, SOD is

also a special case of image segmentation problem It only gets salient object from

background, while image segmentation problem aims to find the region where the

pixels have the same property and coherence. Another question, which cannot be

ignored, is the difference between saliency model and SOD. The answer is saliency

model trying to predict the location of human eye fixation data and SOD segments

the salient object. They are interact with each other. There are lots of recent ap-

proaches on SOD, [28] proposed a Bayesian approach for SOD and [29] improved

by integrating superpixel and Harris interest points. Context based approach can be

found in [16, 17]. [2] presented a supervised approach to detect saliency object by
6



learning high level vision cues e.g. human face, street signs.

Recently, spectral-based approach has gained more interest due to its sim-

plicity and good performance. In [30], the saliency map was computed based on

spectrum residual together with the phase information. In [31], it was found that

it is the phase information rather than the spectrum related to the saliency regions.

The saliency model was based on quaternion Fourier transform which combined

color feature and adjacent frame motion vectors. However, However, there was a

lack of theoretic justification for such methods until [21], where it was shown that,

if the background is sparsely supported in the DCT domain and the foreground is

sparsely supported in the spatial domain the foreground will receive high value on

the computed saliency map.

In the real world, we are interacting with visual information over the time,

thus visual saliency should not only focus on the information of spatial domain,

but should also consider the information along the temporal domain. To this end,

motion saliency has been proposed, which tries to capture the region that is visually

attractive in the video. Currently, there are some works: [32] used saliency for

motion detection. [33] achieved good result in action analysis with spatiotemporal

saliency features. However, current approaches are time consuming and not well

explicating what is saliency represents in temporal domain.

1.3 Thesis Outline

In this thesis, we try to solve three computer vision tasks: salient object detection,

action and motion analysis, video object segmentation. For each task, we develop

an unsupervised algorithm and evaluate it on well known benchmark dataset.

The structure of this thesis is organized as following : the chapter 2 presents

the technique details about saliency object detection. In chapter 3, we propose a

7



novel spatiotemporal visual saliency detector for video analysis, based on the phase

information of the video. In chapter 4, we further research our saliency object

detection and spatiotemporal saliency detection. We demonstrate that our saliency

approach can be applied to video objection segmentation tasks. In chapter 5, we

conclude our three proposed algorithms and talk about future work.
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Chapter 2

Foreground Object Detection

Image object detection has been a challenging problem and extensive researched in

past decades, some successful approaches can be found in [12, 11, 23]. Most state

of art approaches are designed for one object class and need large scale training

data, which yield to the various environment. A generic object detector would cost

expensively in the sense of extensive training set and the performance may degrade

in some particular environment. Recently, salient object detection, which based on

human vision system, has attracted lots of attention. [16] claimed a saliency object

should be different from its context appearance, [34] presented a global color his-

togram contrast approach. [15] proposed a supervised saliency approach for generic

object class detection by measuring the region ”objectness”, which is a notation of

how likely a window contains an object. Inspired by these previous work, we pro-

pose a novel saliency object approach, we argue that saliency object should not only

depend on the context appearance, but also related to the boundary and divergence

values. Different with [15] which measures object boundary by a sliding window.

We measure boundary by regions, and compare the saliency region with its four

connected neighborhood context. Because lack of knowledge of saliency object,

recent approaches [16, 17] employed multi-scale context, intuitively, we follow this

idea in a different way by employing multiple superpixel scales.

Graph cut algorithm [8] has been successful applied in image segmentation

task, however, because the foreground object location is uncertain, most state of

art graph cut based algorithms need user input. In this chapter, we demonstrate

that our saliency approach can be effectively used in graph cut algorithm for data

term initialization. In our case, source node S and terminal node T represent image

foreground and background respectively, e.g. most saliency region is assigned to S

9



node. At last, the object segmentation problem can be solved by min cut algorithm

efficiently. In evaluation part, we use well known MSRA saliency object detection

dataset and manually binary mask ground truth provided by [35].

The structure of this chapter is as following, section 2.1 introduces the su-

perpxiel. In section 2.2 we introduce our proposed method and give the analysis.

In section 2.3 we discuss about the application of our proposed method. At last,

both quantitative and qualitative experimental results for MSRA dataset are demon-

strated in section 2.4.

2.1 SLIC superpixel

Recently, superpixel has become a popular technique for image segmentation, which

not only represents richer feature than pixel, but also greatly reduces computational

complexity. [36] proposed a graph based superpixel method based on local nearest

neighborhood, and other state-of-art approach can be found in [37, 38]. However,

these approaches are to slow. In [39], the SLIC superpixel is computed by cluster-

ing the pixels based color similarity and spatial distance. Give an image I with size

M ×N and the number of superpixels K, where Figure 2.1 demonstrates the result

given different superpixel numbers for one image. Instead of RGB color space,

for more perceptual accuracy all the pixels are clustered in LAB color distance and

spatial Euclidean distance. The cluster center C is computed by grid interval:

C =

√
M×N

K
(2.1)

The Lab color distance and spatial Euclidean distance is computed as :

Dlab =
√

(li − l j)2 +(ai −a j)2 +(bi −b j)2 (2.2)

Ds =
√

(xi − x j)2 +(yi − y j)2 (2.3)

Finally the cluster measurement is:

D = Dlab+
10
C

Ds (2.4)
10



Where i and j are different pixels belong to I. Usually the clustering will be con-

verged within 20 iterations and the time complexity of this algorithm is O(N).

Figure 2.1: The result of different superpixel scale.

2.2 Region Based Saliency Feature Extraction

Based on the saliency object characters defined in Chapter 1, a superpixel (region)

is salient depends on how is it different with its context which is a four-neighbor
11



connected superpixels system, in appearance and boundary information. To achieve

a better result and meaningful context information, we employ multi scale of super-

pixel regions. Given a image I and scales n, for each scale I will be segmented

into Kn regions {SPn
i }

K
i=1. For one superpiexl SPn

i , its context would be its four

neighborhood superpixels and its saliency value is computed as:

SalSPi = ∑
i ̸= j

(G(i, j)×d(i, j))+ρB(i, j))+ ∑
j∈R

(H(SPi,SPj)) (2.5)

Where i, j ∈ SP. The first term of equation calculates the global contrast, G and

B represent the gradient magnitude and boundary difference respectively and ρ is

weight ratio, here boundary information is calculated by Canny boundary detector.

d is Gaussian distance between two pixels. The second term in this equation com-

putes the local context contrast. H is χ distance between CIE LAB histograms of

two pixels. The ρ , d and χ distance are defined as below:

ρ = ∑
j∈Ri

B(i, j)
∑B

(2.6)

d = e
−(c(i)−c( j))2

2σ2 (2.7)

H(x,y) =
n

∑
i=1

(xi − yi)
2

1
2(xi + yi)

(2.8)

Finally, the saliency map is calculated as:

SalMap =
1
n

n

∑
i=1

Sal ·SpatialPrior (2.9)

The saliency map is computed as the mean of different scales. The spatial prior

is our second saliency cue, which satisfies center object should be more salient. It

defined as:

SpatialPrior = e−0.5(
dx(n)i

w2 +
dy(n)i

h2 ) (2.10)

where i is the ith pixel(not superpixel) in image I, dx,dy is Euclidean distance from

pixel i to image center and h,w is image height and width respectively. Figure
12



2.2 and Figure 2.3 demonstrate the saliency map of different approaches: first row

is input image,from second to sixth saliency map of Itti et al.[18], Goferman et

al.[16], Achanta et al. [40], Zhang et al.[28], Fang et al. [41], Jiang et al.[17], and

our proposed model. From visual comparison, foreground object in our proposed

model are almost uniformly detected

2.3 Interactive with Graph Cut

In Figure 2.4 we show that our saliency map can help saliency object segmentation.

First column (left) in the figure is input image, second column is our saliency map

with graph cut, third column is our saliency map without graph cut

In recent years, graph cut has been proved to be to a useful tool in low level

computer vision problem, such as image smoothing, image editing, stereo corre-

spondence. Such problems can be formulated as an energy minimization problem

via constructing a graphical model and solved by max flow/min cut algorithm in

polynomial time.

For a directed graph G =<V,E > with two nodes which called source node

s and sink node t, and each edge with a capacity c(u,v) , a flow f starts from s to t

and can not exceed than the capacity in each edge. The maxflow problem is defined

as finding a maximization flow in the network, Figure 2.5 shows an example of

maxflow problem, the current flow is 28 and it is the maxflow. Moreover, there

many algorithms can solve this problem in polynomial time, e.g. Ford-Fulkerson,

Edmond-Carp.

Figure 2.6 shows the binary label graph cut. Let denote A as a binary edge

map of an image, and L be a set of labels, P represents the set of pixels. The energy

function can be written as

E(A) = ρR(A)+B(A) (2.11)

13



Figure 2.2: Visual comparison the saliency map of different approaches(nature).

14



Figure 2.3: Visual comparison the saliency map of different approaches(manmade).
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Figure 2.4: Visual comparison of saliency map and saliency map with graph cut.
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Figure 2.5: Example of maxflow, taken from [7].

Figure 2.6: Graph cut demonstration ,taken from[8].
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B(A) = ∑
v1,v2∈N,Av1 ̸=Av2

e−
(Iv1−Iv2)2

2σ2 · 1
d(v1,v2) (2.12)

where B is smoothness term for image region, R is unary term and it represents

the penalty to assign label to pixel v, N represents the four neighborhood region,

and d is Euclidean distance between two pixels. This energy model will group all

the pixels into two group f oreground,background . Usually, to identify these two

label, people usually applied K-means clustering for initialize the two labels (shown

in Figure 2.7). Another way needs user the initialization shown in Figure 2.8.

Figure 2.7: Example of automatic segmentation by kmeans initialization.

Figure 2.8: Example of semi-automatic segmentation by user input.

Thus , in our interactive model we define saliency values as the initialize

value for the term R.

Rp(ob ject) = Probability(saliency|v) (2.13)

18



Rp(background) = 1−Probability(saliency|v) (2.14)

To make our model more robust we propose multi-scale in this part. Give an image

with different prior knowledge of regions, we use different saliency value threshold.

The final energy model would be:

E(A) =
1
K ∑(ρR(A)+B(A)+ω) (2.15)

where ω is a small value. In our experiment we use ρ = [1.3,1.4,1.5].

Figure 2.9: Image segmentation based on graph cut kmeans initialization and our
proposed saliency map.

2.4 Experiment

This section presents both quantitative and qualitative evaluation on benchmark

saliency object detection dataset: MSRA dataset which consists 20 categories up

to 25000 images with manually marked bounding boxes. For better evaluation ,

Achata [40] creates 1000 binary object contour masks from this dataset. Our quan-

titative result is measured by ROC curve and time consuming, for qualitative result

evaluation, we presents sample images and compared saliency map with nine state-

of-art approaches.
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Segmentation by fixed thresholding. For accurate evaluation, the easiest

way is segment saliency map into binary images, we follow Achata’s method with

fixed threshold ranges from [0,255] for a saliency map. For each threshold we com-

pute precision and recall and draw the ROC curve for each method Fig 2.8. This

method compares how well the saliency detection varies with different threshold in

the image. The precision and recall is defined as:

precision =
saliencymap∩groundtruth

saliencymap
(2.16)

recall =
saliencymap∪groundtruth

groundtruth
(2.17)

Figure 2.10: Precision recall curve for fixed thresholding, our proposed method is
compare with nine existing method.

We select these nine method: xue12[29], fang12[41], itti98[18], hou12[21],

jiang11[17], ac09[40], wei12[42] zhang08[28], ca12[16] according to: number of

citation (itt98, hou12), recent reported best result (xue12, jiang12, wei12), vari-

ous methods (itti98’s motivation is from biologic mechanism, while ac10’s is from

fuzzy angle, hou12 compute saliency map in frequency domain, fang12 proposes a

compress domain computational model for saliency detection, zhang08 presents an

approach based on Bayesian inference ).
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The ROC curve shows ours is comparable to wei’s and superior to others’

approaches. When Threshold T = 255, our method achieves about 30% of ground

truth area while the result of rest of approaches are much lower. More importantly,

our method can reach the converged precision value 95% at the recall 70%. For the

time consuming , we show in Table 1. We implement our algorithm in Matlab and

all others’ code are download from their original authors’ homepage and followed

by their instructions. In order for a fair comparison we didn’t rescale the image

for itti98 and hou12 , all the programs are run on a same computer with Dual Core

i7 2.4 GHz machine which with RAM 12GB. From the result we can see that our

algorithm is comparable in terms of accuracy and complexity .

Table 2.1: Average time taken for each method to compute a single image in MSRA
1000 database.

Method [18] [21] [29] [16] [41] [40] [28] ours
Code matlab matlab matlab matlab matlab c++ matlab matlab
Time(s) 2.5 1.2 363.2 53.4 7.2 0.9 8.3 3.5

Visual comparison is taken from MSRA 1000 dataset. Fig 2.10 shows

the results of different approaches, first row is input image, from second row to

eleventh row is ac09[40], ca12[16], jiang11[17], fang12[41], itti98[18], hou12[21],

xue12[29], zhang08[28], wei12[42], our proposed method with graph cut, and

ground-truth. For different types of input image, proposed method is more ro-

bust than others. Ac09[40] fails in flower images, while ca12[16] is very sensi-

tive to boundaries, which will cause much more noise. Jiang11[17], Xue12[29],

Itti[18] can not segment object from its background well. For zhang08[28] and

hou12[21] and fang12[41] only detect the saliency region and their result is not

accurate. Wei12’s[42] approach tests well on unified background, but for the im-

ages with more textures, e.g. grass image and chess image in Fig 2.9. While our

proposed approach is much more robust in different type of images.
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Figure 2.11: Visual comparison of nine existing approaches.
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2.5 Conclusion

In this chapter, we proposed a context based model for saliency object detection,

which computes from multi-scale contexts and global boundary information. The

time complexity of our proposed method is O(MNCK) where M and N is image

height and width respectively, C,K are the number of superpixels and scales. From

Table 2.1, it is necessary to notice that our approach compute 5 different scales,

but still comparable to others’ computation time. Experimental result tested from

the benchmark dataset demonstrates our approach is superior to existing state-of-art

methods in terms of quantitative and qualitative evaluation.
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Chapter 3

Motion Saliency Detection

In this chapter we propose a novel method for video analysis, based on the phase

information of the video. In addition, multi visual cues and scales are fused into pro-

posed method. Based on the saliency map computed using the proposed method,

we demonstrate that two fundamental vision tasks can be benefited from proposed

method, e.g. abnormal event detection and action recognition. In the experiment

part, we demonstrates the quantitative and qualitative evaluation between our pro-

posed method and state-of-art approaches.

The proposed method, compared with existing video saliency approaches,

has several advantages. Firstly, it computes the saliency information from the

whole video instead of adjacent frames, which is different from most of existing

approaches in the literature. In the experiment we have shown that motion vector

captured from two adjacent frames can not guarantee the accuracy of global motion

trajectories, especially for the complex scenes. Secondly, the proposed approach is

easy to implement and efficient. The time complexity of proposed method is only

O(NlnN), where N is the size of input. Last but no least, compared to most of

existing state-of-art approaches, our method is unsupervised which is more feasible

for practical tasks, e.g. action recognition.

This chapter is organized as following: in section 1-2 we describe the pro-

posed method including the analysis and the relationships between the existing

methods; section 3 is the experiment part, which presents the comparison of pro-

posed method with existing state of art approaches in quantitative and qualitative

evaluation on two vision tasks; and the chapter is concluded in section 4.

26



3.1 Proposed method

Most of existing approaches are predicting saliency region in spatial domain, how-

ever, the visual information of human being s are processed over the time by vision

system. Such that, it is necessary to consider temporal information for salient ob-

jects detection. A research in [43] found that, the objects will get more attraction if

it is moving differently from its surroundings. To this end, we propose a method to

compute the saliency map of dynamic scenes by utilizing the phase information of

temporal domain. In the proposed method, we compute the saliency map for video

data X ∈ RM×N×T as:

Z =

∣∣∣∣F−1
(

Y
|Y|

)∣∣∣∣2 (3.1)

where Y = F (X), F is 3D discrete Fourier transform and F−1 is the correspond-

ing inverse transform. After we get the saliency map, we smooth it with a 3D

Gaussian smooth filter. The 3D Fourier transform can be computed as:

Y(u,v,w) = ∑
t

∑
i

∑
j

X(i, j, t)e−i2π( ui
M+ v j

N +wt
T ) (3.2)

= ∑
t

e−i2π wt
T ∑

i
∑

j
X(i, j, t)e−i2π( ui

M+ v j
N )

i.e., the 3D Fourier transform can be computed as 1D Fourier transforms respec-

tively.

We refer the proposed method as video motion saliency. This saliency was

already used in existing works, e.g., [31], which computed the video saliency based

on color information in spatial domain and motion vectors from adjacent frames. As

a result, this temporal information based on two adjacent frames yield to complex

scenes. Instead, the video motion saliency proposed in this chapter which considers

whole the temporal span is more robust.

The method in Eqn. 3.1 evaluates the saliency region by exploring the infor-
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mation of the whole video. However in practical work, we may also be interested

in detecting the saliency region it terms of a small period. For example, if a video

contains multiple sessions, where each session is captured over activities of differ-

ent salient regions, then we may be more interested in analysis the saliency within

each session instead of the whole video. We can divided the videos into multiple

sessions, however the session size is usually unknown. To this end, we propose

multi-scale analysis for motion saliency. We first apply the window function to the

input signal X ·w(i, j, t), where · is the element-wise multiplication and w(i, j, t)

the window function centered at position (i, j, t), which is nonzero for only a small

support (i.e., the size of window function). The saliency map is computed for the

windowed signal:

Y = F [X ·w(i, j, t)] (3.3)

Z(i, j, t) = F−1
[

Y
|Y|

]
(3.4)

The video motion saliency is computed by sliding the window function

through the whole video. For different window size it has different meaning: for a

larger window size, the saliency value reflects more global motion cues and more

background scenes suppressed, while for a smaller window size, saliency value is

affected by the local information and contains more background information. Either

temporal and spatial domain can be applied with window function by our proposed

method, where saliency varies with different scales.

In [44], the author demonstrated it is important for video saliency to com-

bine different visual cues. In their model, both of color features and motion features

are combined together. Similarly, if there are two visual cues, we could utilize the

complex Fourier transform, where the two visual channels are encoded into the real

component and image component of input:
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X = I+ iV (3.5)

where I and V are the two visual channels, e.g., intensity and motion magnitude.

Even though, Hypercomplex Fourier transform (HFT) has be used to com-

bine multiple feature channels. In practice, the HFT is very hard to implement

and time consuming. In our experiments we run 1000 simulations and in each

simulation we generate a r × c× 4 array, where r and c is a random number be-

tween [1,1000] and 4 is the number of feature channels. We compute the saliency

map with different methods then measures their similarities via cross-correlation,

where 0.91 is reported for QFT and FFT. After smoothing the saliency map with a

Gauss kernel, the correlation is over 0.998. For natural image, we could expect an

even higher correlation. The result shows: if a data with multiple feature channels,

the correlation of saliency computed by Hypercomplex Fourier Transform and Fast

Fourier Transform is very high (0.998), Thus, for saliency computation the results

of combination each channel feature which calculated independently approximates

the result of using Hypercomplex Fourier Transform. In our experiment, we use

summation to combine all the feature channel, note that, other fusion scheme can

also be used other than adding.

Finally, we summarize the proposed algorithm below:

Algorithm

Input: data X, Gauss filter g, window function w

Output: saliency map Z

For each window location

For each feature channel

Apply w to the input X;
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Compute Fourier coefficient Y = F [X];

Extract the phase information Ŷ = Y
|Y| ;

Do the inverse transform Z =
∣∣F−1[Ŷ]

∣∣2;

Smooth saliency map Z = Z∗g;

End

Combine the Z of all channels together;

End

where w is optional and ∗ is the convolution.

3.2 Analysis

In the literature, abnormal means being deviating from what is normal or usual. [45]

found that the abnormal events easily draw people’s attention, i.e., they are salient.

Such that the proposed motion saliency map can be used to detect abnormality in

the videos.

To demonstrate the reason why our proposed method can detect the ab-

normal event, we employ two abnormal datasets: UMN abnormal dataset, UCSD

dataset, and compute magnitude spectrum along the temporal domain. It computed

by summing the magnitude spectrum in spatial domain. Figure 3,13.1 shows the re-

sult from one example where spectrum roughly follows the 1
f a distribution, where a

is related to the slope of the curve. Meanwhile, our proposed method can be viewed

as a high pass filter for it sets all magnitude to ones.

According to [46], a low pass filter and a band pass filter can model the

mechanism of visual system to detect event. Especially, the band pass filter will

dominate this mechanism when the interest signal frequency goes higher. For

abnormal event detection, the magnitude of hihg frequency of abnormal event is

higher than the background, thus the abnormal event can be detected by our pro-
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Figure 3.1: The magnitude spectrum along the temporal direction of one video from
UMN abnormal dataset.

posed method which will suppress the lower frequency component.

Aside from abnormal event detection, our proposed method is also related

to existing works in terms of temporal information computation. Currently, most of

the existing approaches compute the temporal cues in two directions, one is based

on the difference of adjacent frames, another is spatiotemporal cuboid which often

needs large labeled training set. Compared with these approaches, our proposed

method does not need any training stage and prior information. In addition, the

sliding window can control the saliency in terms of local salient and global salient.

At last, the time complexity of our proposed method for a data X ∈ RM×N×T is

O(KMNT log(MNT )), where K is the number of feature channels. Compared to

current approaches, our method is polynomial time.
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3.3 Experimental Result

In this section, we demonstrate that three fundamental vision tasks can be benefited

from our proposed motion saliency detection. i.e., motion detection, abnormality

detection and action recognition. The proposed algorithms are evaluated on sev-

eral benchmark datasets, e.g. UMN abnormal dataset, UCSD dataset, Wezimann

dataset, KTH dataset and UCF sports action dataset, with the comparisons to sev-

eral state-of-arts methods.

3.3.1 Motion and Simulation Experiment

Motion detection is essential vision task for many applications, e.g., object tracking,

object recognition. According to the analysis in last section, the proposed method

will highlight the moving objects and suppress the background, thus we can use the

saliency map for foreground object motion detection. Such that, we carry out the

following simulation experiment. With the dynamic background (Fig. 3.2) which

is generated by two images with complex texture, the foreground objects have have

uniformed appearance and their motion trajectories are defined as:

Γ1(t) =

x(t)

y(t)

=

128+64cos(πt
32)

128+64sin(πt
32)

 (3.6)

Γ2(t) =

x(t)

y(t)

=

64+32cos(πt
32)+ ε

64+32sin(πt
32)+ ε

 (3.7)

where ε is a random variable between [0,128]. The object with trajectory

Γ1 can be regarded as moving regularly, While another is not. In addition, we set

the Gaussian filter to smooth the result with standard deviation is 0.006
√

N2 +M2

and filter size with 1+6σ , where N ×M is the size of each frame.
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In Fig. 3.3, we demonstrate the result, where the red circle indicates the tra-

jectory Γ1; top: some sample frames from the input video, middle: the saliency map

computed with the proposed method, the comparison to the results of the method

proposed in [31] (bottom). From the result, we can find the proposed method high-

light the moving objects with random motion trajectory (i.e., with trajectory Γ2)

and suppress the background texture and another moving object which moving in

a circle (the one with trajectory Γ1). However, the method of [31] fails to distin-

guish the foreground object from background, besides, it can not detect the motion

saliency in terms of motion trajectory (moving irregularly). A probably answer for

the result of [31] is the simple calculated adjacent frames can not keep the motion

coherence in terms of fast moving object.

For real data, we apply the proposed method to the input video; we then bi-

narize the output saliency map to segment out the moving objects. From the exper-

iment, we found that 4µ ≤ ρ ≤ 8µ is a good choice for the binarization threshold,

where µ is the mean of the saliency map

(a) (b)

Figure 3.2: The dynamic background is a mixture the two images.
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Figure 3.3: Example of motion detection.

3.3.2 Abnormal Event Detection

For abnormal event detection, the abnormality can be described as the region which

has higher value in the saliency map from our proposed method. In the experiment,

we apply simply thresholding for the frames and the value higher than the threshold

may be the frame occurs abnormal event, the threshold in our experiment used as

mean score of all the frames and score for each frame is defined as”

s(t) = ∑
i

∑
j

X(i, j, t) (3.8)

where s(t) is the saliency score of tth frame, i, j, t are row, column and frame index

of the 3D saliency map accordingly. The frame with high saliency score would

contain abnormality.
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Table 3.1: The result on UMN dataset.

Method AUC
Optical flow [48] 0.84
Social force [48] 0.96

Chaotic invariants 0.99
NN [49] 0.93

Sparse reconstruction [49] 0.978
Interaction force 0.9961

Proposed 0.9378

We evaluate the proposed method for abnormal event detection on two datasets

UMN abnormal dataset( as shown in Figure 3.5, the top is the saliency value (Y-

axis) for each frame (X-axis) and bottom are sample frames picked from different

frames ) and UCSD dataset [47] and compared with six existing approaches, es-

pecially some of the approaches are supervised, e.g., social force [48], sparse re-

construction [49], MPPCA [50], MDT [47], while ours dose not need any training

data.

Table 3.1 shows the result of different method. In addition, we shows the

ROC curve with frame-level true positive rate and false positive rat. Figure 3.5

shows our result of three scenes, where we point out the saliency value for each

sample frame . The result on UCSD dataset is shown in Tab. 3.2, where we report

frame-level equal-error rate (EER) [47]( the lower the better) . Figure 3.6 shows

the ROC for UCSD dataset with the proposed method; Figure 3.7 shows our result

of eight sample frames. From the result we have shown, although our result is

unsupervised, we still outperform some state-of-art method.

3.3.3 Action Analysis

Human beings select the region where draws their most attestation for further pro-

cessing, in this section, we demonstrate that our proposed method can be used as a
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Figure 3.4: The ROC for the UMN dataset computed with the propose method.

Table 3.2: The frame level EER for UCSD dataset.

Method Ped1 Ped2 Overall
Social force [48] 31% 42% 37%

MPPCA [50] 40% 30% 35%
MDT [47] 25% 25% 25%

Adam 38% 42% 40%
Reddy 22.5% 20% 21.25%

Sparse [49] 19% N.A. N.A.
Proposed 27% 19% 23%

saliency interest point detector by sampling interest points on our proposed saliency

map.

At beginning, we compute the saliency map Z for the input data X. Then the

interest points are sampled based on non-maximum suppression: an interest point
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Scene 1

Scene 2

Scene 3

Figure 3.5: Some sample results for the UMN datasets.

(x,y, t) is defined as:

Z(x,y, t) ≥ ρ (3.9)

Z(x,y, t) ≥ Z(i, j,k) ∀(i, j,k) ∈ N(x,y, t)

where ρ is a predefined threshold (e.g., 2µ) and N(x,y, t) is the set of positions near

(x,y, t).

Each interest point (x,y, t) is assigned a descriptor (x,y, t,σ ,τ) extracted

from its four connected neighborhood area, where σ , τ are the spatial and temporal

scales respectively. The descriptor is computed as following: each neighborhood is
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Figure 3.6: The ROC for the UCSD dataset computed with the propose method.

divided into subblocks(e.g., 3×3×2 along spatial and temporal direction accord-

ingly); for each subblock, we computed its gradient histogram by quantizing the

orientation of the subblock 3D gradient g = [gx,gy,gt ]. At last, we normalize each

subblock and combine them into one histogram as a descriptor.

The interest points (e.g., [51]) have been received a lot of interest, since

the popularity of “bag of words” for action recognition. We evaluate the proposed

method on detecting motion interest points. For quantitative result comparison, we

employ three datasets: Weizmann dataset [52], KTH dataset [53] and UCF sports

dataset [3]. Since the method is proposed for detecting interest points, we only

compare it with several state-of-art interest point detectors: Harris3D [51], Gabor

[54], Hessian3D [55]. All the codes are download from author’s official homepage

and followed the instructions.

Figure 3.8 shows sample frames of videos from UCF sports action dataset
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Peds1: Wheelchair Peds1: Skater

Peds1: Bike Peds1: Cart

Peds2: Skater Peds2: Bike

Figure 3.7: Some sample results for the UCSD datasets.

and KTH dataset and corresponding saliency map respectively. From the figure,

we can see that most of background are suppressed and moving regions are high-

lighted. More importantly, the proposed method is also robust in terms of back-

ground moving, cluster background and scale variation. In addition, we can find

that our saliency interest points detector will be mostly sampled from those moving

parts , e.g., hands, gets higher saliency value (red color) then other static parts.

For the proposed method, we use the following parameters. Same as [51],

the neighborhood of interest point is divided into 3 × 3 × 2 equal-sized blocks,

where for each block we compute the histogram of gradient/optical flow. We also
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Table 3.3: The performances of different detectors on three datasets.

Method Weizmann KTH UCF sports
Harris3D 85.6% 91.8% 78.1%

Gabor N.A. 88.7% 77.7%
Hessian3D N.A. 88.7% 79.3%

Dense N.A. 86.1% 81.6%
Proposed 84.5% 88.0% 86.7%

Proposed* 89.3% 92.5% 82.4%

apply multiscale scheme, where size of neighbor of each interest point is 18×18×

10, 25×25×14 and 36×36×20.

For the interest point descriptor, we employ both histogram of gradient

(HoG) and histogram of optical flow (HoF) and the video is described by bag of

words. The codebook is represented by the histogram and SVM is used as classifier.

The size of of codebook is k = 2000, for SVM we use χ2 kernel, where C = 100.

For Weizmann dataset and UCF sports dataset, we use leave-one-out scheme for

training and testing; for KTH dataset. Tab. 3.3 reports the performances of differ-

ent detectors on these three dataset, where we test extracting feature on the original

video and also extracting feature on the saliency map of the original video (refer as

“proposed*”). From the table we find that, the proposed method (and “proposed*”)

achieves the best result over all three datasets. Especially “proposed*” achieved

the best results for KTH dataset and Weizmann data; “proposed” achieved the best

results for UCF sports action dataset.

3.4 Conclusion and Discussion

In this chapter, we proposed a novel approach for detecting video motion saliency,

which is easy to implement and computationally efficient. Inspired by recent devel-

opment of visual saliency approaches based on spectrum analysis, we extracting the

phase information for video saliency computation. In addition saliency in image has
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Figure 3.8: Some samples frames (left) from UCF sports action dataset (Row 1, 2)
and KTH dataset (Row 3, 4) with their saliency maps (right).
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been applied in more and more vision tasks recently, e.g., object detection, image

classification. A natural question arises: whether saliency in video is also helpful to

key vision tasks. Considering this, we designed algorithms and performed experi-

ments for applying saliency in video in abnormality detection (Sec. 3.2) and action

recognition (Sec. 3.3). The experiment results indicate that video saliency can be

used to facilitate these visions tasks.
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Chapter 4

Saliency Cut

Video object segmentation has been extensively researched in recent years. How-

ever, it is still a challenging problem in vision area. In Chapter 1, we briefly intro-

duced the problem background, in this chapter we focus on the related automatic

approaches in the literature. Currently, there are two predominant approaches to

VOS problem, one is tracking interest point through motion trajectory [13, 55],

another is clustering pixels from all the frames[25, 56]. However, both of them

have disadvantages in some aspects. In first approach, interest points are com-

puted from some ”key points” whose motion trajectory has higher correlation than

other points. However, it is difficult to guarantee the spatial coherence of the object

shapes. Therefore, the quality of object segmentation yields to the location of the

points. While for the methods based on pixel clustering from three dimensions of

the video, e.g. Gaussian Mixture Model [5], Key frame ranking [25], Graph cut [6]

, they are infeasible, first, it is difficult to identify the foreground objects [6], sec-

ond, these approaches need user input, e.g., annotate the object region in the first

frame [5]. Recently, [25] has attracted lots of interest, the author proposes a con-

tour matching algorithm which leads to segment the foreground object with highest

score. However, this approach does not predict the location of foreground object in

adjacent frames, which fails to detect the fast moving object.

In this chapter, we propose a novel video object segmentation algorithm

based on saliency features, as we described in the previous two chapters, the pro-

posed saliency object detection algorithm can be used as a generic object class

detector while spatial temporal detector can help analyze the motion and actions.

Motivated by graph cut [8] which is one of most well known algorithms for image

segmentation, we combine it with our saliency methods and introduce a new auto-

43



matic video segmentation method which we call saliency cut. Compared to existing

approaches, our saliency cut has two advantages: first, we model the foreground ap-

pearance in a saliency angle, second, our algorithm is efficient and easy implement

which is more feasible to practical problem, e.g. object based encoding.

More specifically, our model is defined as following: for a input video, we

load the whole video and extract the motion saliency feature as proposed method

described in Chapter 3. For each frame, all the pixels P = {p1, p2, p3, ...} are as-

signed distance score S(P) by measuring the spatial distance from its location to

motion boundary. Besides, we also compute the object saliency Sal(P) based on

graph based manifold ranking and proposed method described in Chapter 2 for

saliency object detection in spatial domain. Intuitively, the object segmentation in

each frame is formulated as a saliency energy minimization problem based on. For

S(P) we consider it as a pair-wise interaction term in the graph, which influences

the segmentation result based on the motion boundary . For unary term, we measure

the foreground object energy by ranking the saliency values.

The chapter is organized as following: in section 1, we describe our pro-

posed method and include analysis, section 2 presents the experimental result of

ours and comparison with three state-of-art approaches. And we conclude this

chapter in section 3.

4.1 Proposed Method

In Chapter 2, we observe that the an object can be measured by saliency values. In

this section, to further extract the object’s intrinsic appearance structure, we pro-

posed a graph based manifold ranking algorithm to extract the foreground object

based on our precomputed saliency map. The reason why we need rank our saliency

map is, compared to images, in a video with dynamic scene, the foreground’s

saliency value will be suppressed by background changing or noise. Moreover,
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Figure 4.1: Difference between linear interpolation and manifold interpolation.

the manifold learning is a nonlinear dimension reduction technique and it’s a bet-

ter way for image data distance metric (Figure 4.2) [57]. Saliency value computed

from one frame or spatial domain can not satisfy the motion coherence. If we sim-

ply estimate the motion value by linear interpolation, the result will not be accurate

(Figure 4.1). Such that, it is necessary to learn from adjacent frames and rank the

saliency region based on their relevance, such that, ranking the object regions will

help us to achieve a better result.
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Figure 4.2: Nonlinear dimensional reduction via manifold [9].

4.1.1 Ranking the Saliency Data

The Google is well known for its web page ranking algorithm called PageRank,

which employs the global hyper-links of the web. Recently, the idea of ranking

the data has been successful applied into image retrieval [58], video classification

[59] and other multimedia communications. In [57], the author proposed a ranking

algorithm which based on the intrinsic manifold data structures. Given a set of

data X ∈
{

x1,x2, ...xq,xq +1..xn
}
∈ Rm, we can label some points as queries and

leave rest points for ranking based on the relevance to the query labels. The ranking

function can be written as X → R , each data point xi will be assigned with a ranking

value fi, also the function f can be represents as a vector f = [ f1, f2, f3...]
T . Let

y be a label vector, which means if xi is query then yi = 1 otherwise yi = 0. Then

affinity matrix W will represent the edge weight between any two data points. Thus

the ranking function can be written as :
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f ∗ = (I −αS)−1y. (4.1)

Where I is Identical matrix, α is a parameter from zero to one, it smooths the

neighborhoods data points and initialize the ranking score. S is a symmetric matrix

defined as S = D−1/2WD−1/2 in which D is the diagonal matrix with diagonal

element i equals to the summation of ith row of W .

In order to find the a more accurate location of foreground, we proposed

a ranking measurement for object detection. Given a graph G =< V,E >, V is a

nodes set which represents data points and E is a set of edges which denotes the

weight between two nodes. Like chapter 1, we employ a superpixel to represent

a graph node. As neighborhood nodes, we change the definition, given a node, its

neighbors are the nodes connected it and nodes which share the boundaries with

its neighborhood. By this connection expansion, the result will exploit the spatial

appearance more. Then weight function is defined as :

wi j = e−|Ii−I j| (4.2)

where i, j ∈V , and Ii denotes the mean CIELab value of a superpixel region.

In conventional ranking problem, the queries are usually labeled by the ground

truth. In proposed method, we view the query as our proposed saliency regions. At

beginning, we binarize our saliency map by its mean value, those regions whose

value larger than the threshold will be the foreground and rest are background. As

foreground query is given, the label set y will make our ranking function to find the

regions which have higher correlation to our foreground. Finally, the final saliency

map would be:

Sali(k) = f ∗i (k) (4.3)
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where i is video frames, k is superpixel node in previous frame foreground region

and its neighborhood nodes. Which means , the foreground region should near the

foreground region in previous frame, this location constraint significantly improved

the performance of our method for it naturally captures the motion coherence.

4.1.2 Extract Motion Constrain

In chapter 2, we have introduced the background of graph cut algorithm, however,

for video object segmentation we need consider both spatial coherence and temporal

coherence. To this end, we first compute motion boundaries from saliency map

which computed by our proposed spatiotemporal saliency detector. The boundary

detector which we use is classic Canny operator. After that, motion score of each

pixel is calculated by distance transform.

Distance transform is an important image processing technique in computer

vision area, it has many applications, e.g. line detection, corner detection. A general

method was proposed in [10]. For an image I with heightH and widthW . The two

dimensional grid G is defined as G = 0,1,2...H −1× 0,1,2...W −1 and f is an

arbitrary function, the distance transform of f under the Euclidean distance is:

D f (x,y) = min((x− x
′
)2 +(y− y

′
)2 + f (x

′
,y

′
)) (4.4)

Specifically, in binary image, distance transform represents the distance of any pixel

to its nearest non-zero pixel. To this end, we normalize the pixel score and get the

final motion score S(P) for each pixel :

S(p) = 1− exp(D f (p)) (4.5)

where D f (P) represents the motion boundary map.

4.1.3 Energy Function for Video Object Segmentation

Given a video sequence S = {s1,s2, ...}, object saliency map for each frame Sal =

{Sal1,Sal2, ....} and motion constrains Sp =
{

Sp(s1),Sp(s2), ...
}

. The video object
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Figure 4.3: Example of Distance transform, the picture is taken from [10].

segmentation for i − th frame is formulated as an energy minimization problem

which is aimed to find the binary label set Li, where the element of L li ∈ { f ,b}

represents the pixels in ith frame, label f is foreground object, b is background

scenne. The formula is defined as:

EI(L) =
L= f

∑
i∈I

Ui +
L=b

∑
j∈I

Vj + ∑
p,q∈N,p̸=q

W (p,q) (4.6)

where I is i− th frame in the video sequence, i, j is any pixel in ith frame. N is four

connect neighborhood in I. The two terminal term and smoothness term is defined

as :

Ui = Sali (4.7)

Vi = 1−Sali (4.8)

W = αe(
|Ip − Iq|2

β
)+λSp(

p+q
2

) (4.9)

where β = E|Ip − Iq|2 and Sp(
p+q

2 ) ≈ Sp(P)+Sp(q)
2 The whole algorithm can be de-

scribed as:

Algorithm

Input: ith frame I, its object saliency map Sali, motion constrains Sp(I)

Output: binary image

Begin

For each frame

Create node for each the pixel in I;
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Create source node to represent label f and sink node for label b;

Add edge from source node to node for the pixels with weight ui

accordingly;

Add edge from node for the pixels to the sink node with weight vi

accordingly;

Add edge among the nodes for the pixels with weight w;

Apply max flow to proposed function;

End

4.2 Experiment

In this section, we demonstrate our quantitative and qualitative result in two bench-

mark datasets[5] [6]. The first dataset contains six different type of videos (bird,

girl, birdfall, parachute, penguin) with manually marked binary masks ground-truth.

To our best knowledge, this is the well known and largest video dataset with pixel

level ground-truth. This dataset includes common challenge tasks in video seg-

mentation, e.g., scale moving object, fast camera motion. We carefully follow the

work[5] and [25] to compute the pixel-error for each video (penguin is discarded)

and which is :

error =
XOR(GT ∩ f )

F
(4.10)

where f is segmentation result in each frame, GT is ground-truth mask for each

frame. F is the total frame number.

We compare our proposed method with three state-of-art methods [25], [5],

[60] and the result are shown in Table 4.1. Note that, our method is an unsupervised

and less time consuming. It achieves best result out of the compared method in

parachute video and the result is comparable in terms of girl and monkey dog video.
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Table 4.1: Segmentation errors as measured of the average number of incorrect
pixels.

Video ours [25] [5] [60]
bird f all 751 288 252 454
cheetah 1553 905 1142 1217

girl 1956 1785 1304 1698
monkeydog 573 521 563 683
parachute 192 205 235 502

supervised? N N Y Y
timeconsuming(s) 5.4 312 65.4 N/A

Specifically, [5] and [60] are supervised methods which need annotated ground truth

at first frame. Besides, for qualitative evaluation we also followed [25], we use two

videos from dataset[6]. Figure 4.3 shows the results from our method (first row)

and [6](second row). From the result we can see that our proposed can capture

the foreground in the sense of shape deformable over the time, while [6] does not

include foreground detector which causes over segmented.

4.3 Conclusion

In this chapter, we development an automatic video object segmentation method

based on graphical model, we use object saliency for foreground initialization and

object motion saliency for keeping temporal coherence. Our proposed method

clearly explicates the question what is the object in the video, besides, our method is

easy to implement and compute efficiently. Experimental result demonstrates that

our method is comparable to existing methods.
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Figure 4.4: Our result on dataset [5],from top to bottom: birdfall, girl, parachute,
cheetah, monkeydog.
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Figure 4.5: Result comparison on dataset[6].
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Chapter 5

Conclusion and Future Work

In this thesis, we have proposed a novel efficient video object segmentation algo-

rithm, which can automatically extract the foreground object and predict its loca-

tions through the video. Inspired from previous work [25, 6, 14], we address two

insufficiencies in VOS task: first, to our best knowledge, current works are lack of

definition or notation on what is foreground object in the video. Second, because

of lacking efficient computation model, there is no VOS work considers keeping

global motion coherence. Starting from these motivations, we introduce two unsu-

pervised saliency detectors for object detection and motion detection.

For saliency object detection, we consider spatial correlation between differ-

ent regions in static image. Following the basic principles of human vision attention

model[18, 16, 2]. We introduce three characters of saliency object : 1, local sur-

rounding character. 2, location character. 3, object character. To this end, we build

an object saliency computational model based on its context appearance, boundary

and gradients. Since deciding the object size in input image is difficult, we employ

multi-scale surrounding contexts based on the Gestlaw. In the experimental section,

we demonstrate our approach outperforms nine existing state of art approaches on

well known benchmark dataeset.

For temporal motion saliency detection, we propose a novel efficient model

which extracts the phase information from video. To overcome the computational

complexity of long term video, we provide a sliding window function, the size of

sliding window determines the motion cues, for large window size, more global in-

formation will be considered, for smaller window size, more local information will

be included which will improve the resolution. More importantly, we demonstrate

the multiple feature channels in our proposed model can be solved by complex FFT.
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Finally, in experimental part, proposed motion detector has shown its advantages in

three vision tasks: motion detection, abnormal event detection, and action recogni-

tion.

Motivated by [8], we combine our two saliency features into a graphical

model. We argue that the foreground should have characters of a saliency object,

first, the foreground object is more salient than background, which draws more hu-

man attention. Second, foreground object should have coherence closed boundary,

third, compare to static object, foreground object in the video should have motion

trajectories. To this end, the data term in graph model is initialized by our object

saliency map, for the smoothness term we considers both local interactive and mo-

tion constrains. For our video object segmentation algorithm, we evaluate it on two

common datasets and compare it with three state of art methods in quantatitively

and qualitatively results.

In order to achieve better result in the future, we consider to improve three

aspects from our proposed method, first, in saliency object detection section, we

only apply simple canny edge detector for boundary detection, however, many bet-

ter approaches have been proposed in recent year, we can explore boundary influ-

ence for saliency detection. Second, our video segmentation algorithm only seg-

ments the foreground once, which may not guarantee a high quality result (Figure

5.1), we will continue our research and find efficient model for result refinement.

Last but not least, since video object based video encoding is widely used in prac-

tice, we will apply our proposed object segmentation algorithm to object extraction

part in automatic multimedia community, e.g., video conference,video phones, and

compare with existing approaches.
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Figure 5.1: Failure cases of proposed method.
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