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ABSTRACT  
   

With the advent of parallel processing, primarily the time-interleaved pipeline ADCs, 

high speed and high resolution ADCs became a possibility. When these speeds touch 

giga samples per second and resolutions go beyond 12-bits, the parallelization 

becomes more extensive leading to repeated presence of several identical blocks in 

the architecture. This thesis discusses one such block, the sub-ADC (Flash ADC), of 

the pipeline and sharing it with more than two of the parallel processing channels 

thereby reducing area and power and input load capacitance to each stage. This 

work presents a design of 'sub-ADC shared in a time-interleaved pipeline ADC' in the 

IBM 8HP process. It has been implemented with an offset-compensated, kickback-

compensated, fast decision making (large input bandwidth) and low power 

comparator that forms the core part of the design. 
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1. Introduction 

Low-power, low-area analog-to-digital converters (ADCs) are always a subject of 

research due to the growing number of critical ADC applications, from satellites to 

mobile communications to medical instruments. Of these, of special interest are high 

resolution and high sampling rate ADCs. Figure 1-1 [5] shows where different types 

of ADCs fit into the specification space defined by part resolution or effective number 

of bits (ENOB) and sampling rate.    

 

Figure 1-1. Different types of ADCs over resolution and speed [5]. 

This thesis presents the details of different high-speed, high-resolution ADCs and 

presents a new resource sharing mechanism which can realized critical reductions in 

area and switching power.  
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2. ADC Architectures (High Speed ADCs) 

2.1 Flash ADC 

Flash ADCs are by far the fastest and simplest architecture types which are 

designed for resolutions up to seven or eight bits and frequencies ranging from few 

hundreds of kilo samples per second to beyond giga samples per second. Such high 

speeds of conversions are achieved due to fully parallel conversions of the input 

signal and hence the flash architectures are also called parallel ADCs.  

Figure 2-1 shows a typical N-bit flash converter. It employs a series of 

comparators, each comparing the input signal with a unique reference voltage. The 

difference between two consecutive reference voltages is one LSB and is derived by 

the stacked resistor ladder as shown. The comparison produces a “1” (logic high) 

when analog input voltage is greater than the applied reference voltage; otherwise, a 

“0” (logic low) is produced. This generates a 2N-1 bit thermometer code which is 

then encoded into an N-bit digital code. N-bits � 2N-1 bit thermometer code � 2N-1 

comparators  

The main drawbacks to this architecture are  

• It requires 2N-1 comparators for N-bit resolution implying that area, power 

and input parasitic capacitance become prohibitively large[5] beyond a six or 

seven bit implementation. Considering seven to eight bits a general necessity 

for a practical ADC, this architecture shows its weakness [4].  

• The linearity and resolution are dependent on resistor matching and the 

transistor matching in the comparators.  
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Figure 2-1. Flash ADC with Thermometer to Binary Encoder 

 

2.2 Two-step Flash 

A two-step flash is a split flash ADC where the most significant bits (MSBs) 

and least significant bits (LSBs) are converted using two ADCs. As shown in Figure 2-

2, it has an M-bit flash ADC for MSB conversion, an MDAC for analog conversion of 

these MSBs, an error amplifier (2M) for residue generation and an N-bit flash ADC for 

LSB conversion. MDAC must be M-bit linear and the second ADC N-bit linear.  
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The key features of this conversion process are shown in Figure 2-3. The 

advantage of this architecture is that the number of comparators is significantly 

reduced. For example if M and N were equal to K, for resolving 2K bits in flash, one 

would need 22K - 1 comparators and in this architecture we need just 2(2K - 1) 

comparators for resolving the same 2K bits.  

 

Figure 2-2.  Two Step Flash  

As the resolution increases, two-step ADCs still suffer from drawbacks similar 

to flash ADCs since the flash ADCs are the core part of conversion. The area and 

power are still a power function of the number of bits (as the number of bits increase 

the number of quantization levels in each ADC increase and hence the number of 

comparators increase). The linearity again depends on transistor matching in 

comparators and resistor matching of the reference voltage network. In order to 

address these linearity, power and area issues the next step is Pipelined ADCs. 
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Figure 2-3.  Voltage conversion in a 2-Step Flash  

As shown in the Figure 2-3, the first ADC, also called the ‘coarse ADC’, resolves the 

MSBs of the VinQtest and then a residue signal is generated using the input and the 

MDAC signals. This residue signal is multiplied by 2M and is resolved to give LSBs of 

the VinQtest and then the bits are added to give the final resolution of VinQtest. 

 

2.3 Pipeline ADC: 

The Pipeline architecture is a solution for higher resolution and high speed 

converters. The key idea is to cascade several low resolution stages to obtain a high 

overall resolution ADC. They work on the same principle as a 2-step flash, but they 

have more stages ‘pipelined’. A typical pipeline ADC is shown in Figure 2-4.  
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Figure 2-4. Pipelined ADC with RSD correction. 

Each stage (similar to first stage of 2-step flash) consists of S/H, Flash ADC, MDAC, 

feed-forward and a voltage gain amplifier. Each stage makes a ‘rough’ estimation of 

its input signal and passes a precise ‘remainder’ to the next stage for ‘fine’ 

estimation. While the next stage is operating on this remainder as its input, the 

previous stage samples a new input and performs its own operation simultaneously 

thereby increasing the throughput via this concurrent operation.  

Due to the stacking of stages and each stage having its own conversion-

dependent residue generation, pipeline ADCs have large latencies compared to other 



7 

high speed ADCs. Each stage produces Bk+r bits i.e. where Bk represents the 

regular output bits and r is the redundant bit. All the redundant bits caused by 

offsets in the comparators in the coarse ADC are corrected and resolved in 

Redundant Signed Digit (RSD) correction. The complexity of the design increases 

linearly with increased resolution. However with the increase of resolution (and 

eventually sampling rate), higher slew rate gain amplifiers are required which can 

bring design challenges in gain stages. A Time Interleaving ADC solves this problem.  

 

2.4 Time-Interleaved ADCs (TIA): 

Time-Interleaving is a technique to further parallelize the processing of the 

ADC or to multiply the sampling rates, using multiple channels. As shown in Figure 

2-5 [17], it cycles through N channels such that the total sample rate is N times the 

sample rate of individual channels.  Each channel has a clock which is phase shifted 

by   

Td = 1/(N*fts) ,    (2-1) 

where N is the number of channels (or interleaving factor) and fts is the aggregate 

sampling rate. Each channel’s sampling rate (or digitizing rate) would be fs/N. As 

shown in Figure 2-6, each clock that drives a unique channel has a unique sampling 

point in the time domain. So each channel’s output is given by equation  

yi[n] = x((nN + i)Ts) ,    (2-2) 

where Ts is sampling period of ith channel processing nth sample. 
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Figure 2-5. Time Interleaving ADC 

After output muxing (in the same order as input muxing) we have 

y[n] = yi((n - i)/N      (2-3) 

where i is n mod N. 

Two of the main drawbacks [17] of TIAs are: 

a) Gain and offset mismatch 

b) Timing skew 

a) Gain and offset mismatch 

These mismatches are caused by mismatch in the channels. The gain Gi in 

each channel is not precisely the same value. Each channel should be processing 

ideally, yi[n] = x((nN + i)Ts), but practically it processes, 

yi[n] = Gi*x((nN + i)Ts)                           (2-4) 

where Gi is the gain mismatch in ith channel and yi[n] output of the nth sample at the 

ith channel. 

Similarly we have offset mismatch defined as, 

yi[n] = x((nN + i)Ts) + oi  ,    (2-5) 

where oi is the offset mismatch caused in ith channel.  

 

ADC 1

ADC 2

ADC N

x(t) y[n]

ɸ1

ɸ2

ɸN
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Figure 2-6. Mismatches and skews in TIA 

b) Timing Skew 

Improper sampling of the input signal because of a skewed sampling edge in 

the ADC clock causes timing skew. So instead of the expected samples at every nNTs 

(discrete samples after time period of NTs i.e time between two samples in each 

channels), we have samples at nNTs ±td, where td is the skew in the clock. 

Hence we have samples at 

yi[n] = x((nN + i)Ts ± tdi )                   (2-6) 

where tdi is skew in each channel. The combined effects of these offsets and timing 

skew are shown in Figure 2-6. Gain and offset mismatch are usually corrected by 

means of digital calibration or by background calibration (by estimation and 

correction). 

x(t)

ɸ1

ɸ2

ɸN

t

Ideal Sampled/
Conversion
Points

Gain+offset 
mismatch

Timing skew

Practical Sampled/
Conversion
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For addressing the issue of timing skew, the popular solution is to have a 

Track and Hold (T/H) at the input stage before the signal is digitized by the channels. 

The T/H samples at N times the individual channel frequency so that every other 

channel gets a sample to digitize by the end of its clock cycle. 

 

 

Figure 2-7. Possible alignment of channel clocks according to the sampled input. 

This will make sure that the signals to channel ADCs are held (samples) and 

timing skews in channel clocks will have little effect on digitizing these samples. 

Figure 2-7 shows a possible alignment of channel clocks with respect to the input 

sample where a skew of td will not have an effect on digitizing the sample as long as 

td is not comparable to (1/4Φs). 

 

2.5 Architecture of 3GS/s, 13-bit, Low-Power, 8 way, Time-Interleaved Pipeline ADC 

(TIPA): 

Combining the architectures of Pipeline and Time-Interleaving, we can have 

an ADC capable of high sampling rates and high resolution as explained before. The 



11 

initial proposed architecture of a TIPA has a T/H as front end sampler (as discussed 

in chapter 2.4) and parallel channels following the sampler is shown in Figure 2-8. 

Figure 2-8. Showing TIPA 

Each channel has a front-end 2.5-bit stage followed by four 2.5-bit stages and 

a 3-bit flash at the back-end. This architecture has multiplexer (switches) between 

T/H and ADC for each channel so that the T/H is not overloaded by all eight channels 

at the same time. However having these switches will result in high settling errors 

thereby degrading the Signal-to-Noise and Distortion Ratio (SNDR) of the output. So 

there is a choice between having these switches based on the design complexity of 

these high linear switches and/or T/H load driving strength.  The design complexity 

increases as the new switches have to be high linear switches and the timing 

constraint becomes stringent as the new clocks required to drive these switches have 

very short duty cycle. So if the T/H is able to drive the channels with the new 

architecture, then we can avoid these switches. Also each stage of the channel has 
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its own switching network that works as sample and hold at the summation point. 

Figure 2-9 gives a more detailed view of first stage in the channel. 

 

Figure 2-9. Showing first stage of pipeline 

Since it operates at 3GS/s, the main T/H runs on a 3GHz clock and each of 

the channels run on 375 MHz (time-interleaving factor 8) complementary clocks. 

During the phase Φ1 high & Φ1bar low, the input xn(t)) is sampled by the switch cap 

(SC) block, the 2.5 Bit Flash ADC makes the conversion and these are read by flip 

flops clocked by delayed Φ1 so that the data after the flash is stored until the end of 

the clock cycle. During the phase Φ1 low & Φ1bar high, the sampled data by the SC 

is held and the MDAC output is subtracted and amplified to produce Vres. The idea 

extends to the following stages too, except that every other stage works on 

alternating clocks, i.e, if stage k works with Φ1 as a sampling clock and Φ1bar as the 

holding clock, then stage k+1 works with Φ1 as the holding clock and Φ1bar as the 

sampling clock. The architecture remains the same for other stages through Stage 6. 

All the clocks for the eight channels are shown in Figure 2-10. 
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Figure 2-10. Channel clocks each delayed by Td 

The clocks are generated as non-overlapped clocks in order to implement a 

double sampling technique. Φi and Φi+1 are separated by a time delay of Td (from 

chapter 2.4) of 333pS which is equivalent to a phase shift of 45˚. 

 

As shown in Figure 2-9, high resolution low power pipeline ADCs implement a 

first stage that resolves 2 bits (and a redundant bit) by a 2.5-bit Flash ADC that is 

connected to the output (xn(t)) of the T/H. Each 2.5-bit Flash ADC has 6 

comparators and 8 channels thus requires a total of 48 comparators. Each 

comparator (design discussed in chapter 3.3) presents a load of 30 fF to 60 fF 

(depending on the phase of operation) which makes the total load on the T/H due to 

the front end 2.5-bit stage 1.44pF to 2.88pF, which greatly effects the bandwidth of 

the T/H. Also the total number of comparators required in one channel (five 2.5-bit 

stages: 30 comparators, a three bit flash: 7 comparators) is 37. So eight channels 

need 296 comparators. This consumes significant amount of area. So we propose a 
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new sub-ADC architecture which exploits the availability of eight different-phased 

clocks and some good static timing management. This new sub-ADC can be shared 

between two or more (depending on the inputs) channels thereby becoming area 

efficient, power efficient and also offer less load to the T/H. 

 

2.6 Proposed Sub-ADC Architecture 

The proposed architecture, shown in Figure 2-11, uses specially designed 

comparators (discussed in chapter 3.4) that share their inputs with more than one 

channel and use the available clocks for novel switching leading to resource sharing 

approach. The clock sequences (clock seq1 and clock seq2 discussed in chapter 

3.4.2) form effectively a 4:1 demux from comparator outputs to the ROM encoder for 

the thermometer code for binary conversion. After the binary conversion, each of the 

bits is again distributed to its respective channel with proper timing analysis of the 

flip-flop clocks. 

 

 

Figure 2-11. Proposed sub-ADC Architecture 
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The proposed new front-end stage is shown in Figure 2-12 which has a sub-

ADC shared between four channels. The selection of channels were done after static 

timing analysis (discussed in chapter 3.4.2). 

 

 

Figure 2-12. Proposed front-end stage 

The goal is to design a 3-bit flash ADC that operates at the given channel 

frequency (375MHz), is able to generate 4-channel outputs and test its linearity for 

each of the channels.  

As discussed in chapter 2.1, an N-bit flash requires a 2N-1 levels (and hence 

2N-1 comparators) of thermometer code. Here we need a 2.5-bit flash or higher (3-

bit flash in this report) which has two effective bits and a half redundancy bit. Hence 

a 7-comparator flash with a resolution of 2.5-bits or more is needed. The first step of 

our design is the comparator, which forms the core of the Flash adc. 

 

3. Choice of Comparator 

3.1 Introduction 
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Comparison is a fundamental operation in any analog to digital converter. 

Typically a latched comparator that does the comparison on an edge of a clock is 

used in pipelined ADCs. These comparators can be classified based upon their power 

dissipation, speed of decision making (smaller input pulse width), kickback noise 

(discussed in chapter 3.4.2) and offset voltage.  

 

3.2 Pre-Amp based Comparators (Static Latched & Class AB Latched Comparators) 

 

Figure 3-1. Functional diagram of Amplifier based Comparators 

In this class of comparators we have an amplifier (or multiple stages of 

amplifiers cascaded) preceding the latch stage. They have two modes of operation: 

1) reset, where both complementary outputs are set at logical high (or low) and 2) 

evaluation, where outputs are toggled based upon the inputs at pre-amplifier. These 

kinds of comparators, because of their gain in the pre-amplifier, reduce the input-

referred offset voltage. The static latched (SL) comparator has less kickback noise 

than the standard Class AB latched type because of the lower drain voltages 

required. The SL comparator also offers high rates of data conversion. However since 

both topologies have static supply current flowing in the pre-amplifier (SL / class-

AB), they consume static power and hence are not good choice for low power data 

converters. Figure 3-1 shows a simple block diagram of a Pre-Amp based 

comparator. 
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3.3 Dynamic Latched Comparators: 

For low power comparators, the well-known solutions are dynamic Latched 

(DL) comparators. Unlike the pre-amp based comparators, current flows in these 

comparators only during regeneration phase. Three well known topologies of 

dynamic latched comparators are 1) Resistive Divider Comparator 2) Capacitive 

Differential Pair Comparator 3) Differential Pair Comparator 3) Modified Differential 

Pair Comparator.  

 

3.3.1 Resistive Divider Comparator (RDC): 

The comparator shown in Figure 3-2 is first introduced in [9] and is widely 

used in pipeline ADCs. It is based on differential sensing amplifier. Transistors M1-M4 

are biased in linear region and act as voltage controlled resistors (hence the name 

resistive divider). Transistors M5-M12 form a latch. 

During the reset phase, when the clock is low (Φ = 0): M7 and M8 are cutoff, 

M9 and M12 start conducting which forces output nodes Vout+ and Vout- to charge 

up to Vdd. This means the gates of M5 and M6 are also at Vdd. During the evaluation 

phase, when the clock is high (Φ = Vdd), M7 and M8 are turned on and act like 

switches thereby making the pairs M5-M10 and M6-M11 act as cross-coupled latches. 

Based on the imbalance between the currents flowing in branches B1 and B2, the 

cross-coupled inverters split to complementary (Vdd, 0) outputs. The imbalance in 

currents is caused by to the node voltages at B1 and B2. If no mismatch is present, 

the trip (voltage splitting in the cross-coupled latch) point is set when both the 

branches have same current. This happens when  

A

B
in in ref ref

W
V  V (V  V )

W
+ − + −− = −     (3-1) 

where WA = W2 = W4 and WB = W1 = W3.  
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Figure 3-2. RDC or Lewis Gray Comparator 

 

From the above equation it can be said that the trip point of the comparator is 

largely affected by the width mismatch of M1-M4, resulting in offset. Offsets due to 

mismatch in M7-M12 are attenuated by gain of M5 and M6. The currents through the 

branches are dependent on the input voltages of M1-M4. As the common mode 

voltage of the transistors increases, the gate controlled resistances decrease which 

results in larger offsets for smaller mismatches in the input pair. 
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Though this comparator is popular for its low static power, the offset reaches 

hundreds of millivolts which cannot be corrected by the RSD of the pipeline ADC. 

 

3.3.2 Capacitive Differential Pair Comparator (CDC) 

The topology shown in Figure 3-3 employs a charge summation at the input 

transistor pair M1-M2. This comparator’s offset voltage has no dependence on the 

input common mode voltage, due to the tail transistor M3 which keeps M1 and M2 in 

saturation region. During the reset phase (Φ = 0, Φb = Vdd), all sampling capacitors 

(Cin and Cref) are charged to inputs and reference voltages, transistors M1,M2 & M3 

are grounded (cutoff) and simultaneously the outputs Vout+ and Vout- are charged 

to Vdd. 

During the evaluation phase (Φ = Vdd, Φb = 0), the sampled voltages are 

summed at the gates of M1 and M2. M1, M2 and M3 are in saturation, setting 

voltages at cross-coupled latch. The trip point is set by the current imbalance 

between branches B1 and B2 which is dependent on the gate voltages and is given 

by 

ref

in
in in ref ref

CV  V V  V
C

[ ]+ − + −− = −    (3-2) 

The offset voltage is dependent on three factors. First is the mismatch in 

sampling capacitors. With the current technology the capacitors can be matched up 

to 0.02%, which is well within RSD correction. Second, the ratio of sampling 

capacitors and parasitic capacitors of input pair should be as small as possible to 

reduce the charge distribution during evaluation phase. This means large sampling 

capacitors, which leads to more load on the T/H and more power consumption in 

switched capacitors. The third factor that determines the offset voltage is the input 

differential pair: 
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Figure 3-3. Capacitive Differential Pair Comparator 

     
2

+ +
− ∆ ∆β

= ∆
β

gs t  L     
t  

L
os

V V RV V
R

[ ],                       (3-3) 

where ∆β  is transistor dimension mismatch, LR∆  load resistance mismatch and tV∆  

is threshold voltage mismatch between the transistors M1 and M2. Typically,∆β  

dominates the mismatch. Due to the large sampling capacitors it requires, the T/H 



21 

can exhibit settling time errors. Additionally due to the power consumption of 

switched capacitor network, this comparator is not chosen for the application 

discussed in this thesis. 

 

3.3.3 Differential Pair Comparator (DPC) 

The comparator shown in Figure 3-4 has a trip point that is set by the 

imbalance in currents of branches B1 and B2. 

 

Figure 3-4.  Differential Pair Comparator 

  The currents are controlled by the cross-coupled differential pairs with 

switched current sources. In the reset phase (Φ = 0), transistors M5-M6 are cutoff to 
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ensure no DC current flows to ground. Drain nodes Vout+ and Vout- (which are also 

gates of M7-M8) are pulled up to Vdd by the pull up p-channel MOSFETs (M9 and 

M10) forcing M7 and M8 to conduct. The drains of M5 and M6 are determined by the 

gate voltages of the input differential pairs. In evaluation phase (Φ = VDD) the pull 

up transistors are cutoff and the tail currents are turned on bringing the input 

differential pair transistors to saturation. M1-M4 compare (Vin+-Vin-) against 

(Vref+-Vref-). The trip point follows a equation 

1 1 3 3
D6 n ox ref D6 n ox ref

2 2
2 4 2 2W W W WI C I C

L L L L
2 k k V = 2 V

       
       
       
       

− −α µ µ ,    (3-4) 

where k = (∆Vin)/ (∆Vref),  α = ID5/ID6. ∆Vref = (Vref+ - Vref-) and  

∆Vin = (Vin+ - Vin─). 

The offset voltage follows the same equation as (3-3)  

Since all the differential pair transistors are always in saturation, the offset is 

insensitive to device mismatch. There are several shortcomings to this design. The 

non-linear complex relationship between input and reference voltages makes it 

difficult to calculate the trip point. Another drawback is that when a large input swing 

is applied, one of the differential pairs will be turned off (as the input voltages are 

differential in nature) resulting in all the current drawn into the “turned on” pair. 

Hence comparison of only one set of inputs (the pair that is turned on) is made. It 

compares either Vin+ with Vref+ or Vin- with Vref-. 

 

3.3.4 Modified Differential Pair Comparator: 

To overcome the above shortcomings, a modified differential comparator as 

shown in Figure 3-5 is chosen. 
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Figure 3-5.  Modified Differential Pair Comparator 

 

Combining two differential pairs under one tail current serves two purposes.  

a) The new current equations for the branches B1 and B2 are 

( ) ( )+B1= n ox 1 in- tn n ox 2 ref tn
2 2

C -  + C - I µ β V V µ β V V    (3-5) 

( ) ( )-B2= n ox 1 in+ tn n ox 2 ref tn
2 2

C -  + C - I µ β V V µ β V V     (3-6) 

where β1 = W2/L2 = W1/L1 and β2 = W3/L3 = W4/L4 
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The trip point is caused by an imbalance in the above currents. So from the above 

equations, the trip point occurs when IB1 = IB2 and can be expressed as    

( )+ -

2
in+ in-= ref ref

1
- - 

βV V V V
β

     (3-7) 

This trip point is similar to that of resistive divider comparator in equation (3-1) and 

is easy to determine. 

b) Since all the transistors have the same tail current, the differential pairs 

M1-M2 and M3-M4 will all contribute currents for the trip point unlike the previous 

topology. Pull up p-channel MOSFETs are also added at B1 and B2 to remove the 

memory effect of the previous trip point. The offset is the lowest in in this 

comparator compared to all of those analyzed above, however it still follows equation 

(3-2). 

   

The modified differential pair comparator is the best fit for proposed ADC 

application because of its low offset, low power consumption and simple trip point. 

Since all of the input differential pairs are in saturation, the trip point is independent 

of input common mode voltage, which strengthens its case for use in pipelined ADCs, 

where a wide range of input common mode voltages are used. However these 

comparators are still susceptible to offsets and kickback effects (during both reset 

and evaluation operation modes).  

 

In this thesis, an architecture based on the modified differential pair 

comparator which overcomes the earlier short comings and also is able to operate for 

multi-channels without effecting other equations of the comparator is used. 

The comparator used in this architecture, as shown in Figure 3-6, operates in the 

same way as a modified differential comparator. It operates based on two signals: 
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clock (Φ) and reset. Clock (Φi) and reseti together connect/disconnect latchi to 

(from) the common input differential pair transistors and current steering DAC. 

 

Figure 3-6.  4-Channel Modified Differential Pair Comparator 

 The signals Φi and reseti are chosen in such a way that during the evaluation 

of one channel, the other channel latches reset phases (Φ = 0, not to be confused 

with reset signal reseti) do not cause kickbacks [23]. The kickback effect works as 

shown in Figure 3-7. The input transistors and latches are designed in such a way 

that it has very little meta-stable delay so as to make decisions for really small input 



26 

pulse widths possible.  It should be noted that the inputs to the comparator are the 

sampled values xn(t) from the T/H. The decisions are made for these held values 

with proper clock edge placements. 

 

Figure 3-7. Illustration of kickback effects on to the inputs 

 

3.3.5 Meta-Stable Delay and Offset Voltage Compensation 

The meta-stable time for the above comparator is given by 

L 1
d = 

2

C V
ln

A V
   
   
   

τ      (3-8) 

where CL is the parasitic load capacitance (as shown on Figure 3-7), A is the gain of 

the latch, V1 is the final voltage to be reached and V2 is the initial voltage setup at 

the drains/gates. CL and A are inversely proportional when we use minimum length 

transistors. As we try to increase the gm (i.e., gain A) of the inverter by increasing its 

width we also increase the parasitic load capacitance. Another factor that can affect 
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(i.e., reduce) the meta-stable delay time is to decrease V1/V2 (initial voltage 

difference setup). This can be done by sizing up the input differential pair transistors 

which helps in more branch current difference (∆IB = IB1 – IB2). This also increases 

the β and hence reduces the offset voltage. The tail transistor is sized big so that the 

input differential pairs are brought to as close to ground as possible for large input 

signal swings. Hence, the bulk of the area of the comparator is in the input 

differential pair and tail transistors. The offset can also be calibrated post silicon with 

the programmable current steering DACs [26] which can draw current from either of 

the two branches thereby removing the current imbalance caused by mismatch and 

process variation.  

 

A test bench [27] has been implemented as shown in Figure 3-8 to measure 

voltage offsets due to β mismatch between input pairs, latch outputs, VT mismatch 

and capacitive load mismatch. 

 

Figure 3-8. Test bench for accurate offset calculation in comparator. 

In the system shown in Figure 3-8 the unity gain buffer converts the 

comparator’s (device under test) differential output to single ended output to +V or -

V. Depending on the S1 and S2 on/off state, the input voltage can be scaled from +-

V to +-V(R2/(2R1 + R2)). The integrator output keeps increasing/decreasing 
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depending on the sign of voltage at its input. This is fed as a negative feedback to a 

voltage control voltage source which decreases/increases the input signal. The 

system comes to an equilibrium after a long time when the input voltage Vin equals 

the reference voltage Vref (or the number of ones and zeroes to the integrator are 

equal averaged over time after reaching the equilibrium point). In order to reduce 

this long steady state time and gain equilibrium quickly, the switch-resistor pairs 

have been used which provide attenuation and reduce the input swing when they 

opened. This attenuates the input signal to the integrator and reduces the peak to 

peak variations of the integrator and helps reach closer to equilibrium. 

A possible worst case scenario has been calculated [22][27] for β mismatch of 3%, 

∆VT (Threshold voltage mismatch) of 10mV ∆CL (parasitic load cap mismatch C2-C1) 

of 3fF (10%) and has been simulated. The worst corner output waveform as shown 

in Figure 3-9 showed an offset voltage of ~55mV. 

 

 

Figure 3-9. Accurate offset simulation  
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This test case is re-simulated with the current steering DACs turned on to 

compensate the offset. A simulated offset calibration is shown in Figure 3-10 which 

calibrates up to 3mV of resolution 

 

Figure 3-10. Offset Compensation using current steering DACs  

 

3.3.6 Kickback Effects and Charge Injection and Static Timing Analysis for all 

Channels 

The drain node voltages of the input differential pairs in Figure 3-7 come 

under large variations during the evaluation phase due to positive feedback of the 

cross-coupled latch [21][23]. These variations couple to inputs (Vin1, Vin2) through 

the parasitic capacitances of the input differential pair causing a disturbance called 

kick-back noise. This can be mitigated in two steps [21]: 1) By providing an 

alternate path to the current during the evaluation and 2) By disconnecting the latch 

from the inputs during reset phase. 

In the Figure 3-6 transistors M10 and M11 provide an alternate path to the 

current during evaluation phase reducing the kickback effect on to the inputs during 

evaluation phase. Switches Φi and reseti disconnect the latch from inputs before the 
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reset phase protecting other channels from charge injection during reset edge (Φ = 

1�0). A careful timing analysis must be done in selecting the Φi and reseti signals so 

that the differential pairs are always attached to the latch when the inputs are ready 

and detached once the evaluation phase is completed. The clock and reset timing 

diagrams for the four channels that use the common input differential pair are shown 

in Figure 3-11. These clocks are already available in the pipelined ADC as mentioned 

in Figure 2-10. The resets are the other four channel clocks that are not used as 

evaluation phases in this comparator. 

 

Figure 3-11. Static timing of clocks and resets 

It should be noted that these combinations of resets and clocks will also avoid 

any static current through the tail transistor now that it is connected to Vdd unlike in 

previous case where it was clocked, during the reset phase of each latch. 
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4. 4-Channel 3-bit Sub-ADC 

 

 

Figure 4-1.  4-Channel 3-Bit Flash ADC 
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Once the outputs of the comparator are de-multiplexed they are fed to 

‘bubble’ correction combinational logic and a ROM-encoder. Bubble correction is 

correcting the improper bit in the thermometer code that results from a wrong 

decision of the comparator. The three bits of the flash ADC are passed to a set of D 

flip-flops which work on clocks of the respective channels so that these outputs can 

be fed back to their DACs for further processing down the pipeline. 

 

5. Simulation Results and Schematics 

Meta-stable Delay 

 

Figure 5-1.  Meta-Stable Delay at ∆Vo= ∆Vin - ∆Vref = 2mV 

 

Table 5-1. Meta-stable delay changing over ∆Vo  

Delay 130.3pS 124pS 116pS 109pS 

∆ Vo 2mV 10mV 25mV 50mV 
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As the difference in levels of comparison increases, the meta-stable delay decreases. 

The maximum meta-stable time of 130 pS indicates it can read pulse widths around 

100pS and can be used as front end sub-ADC. 

 

Transient Analysis of all four channels 

 

Figure 5-2. All four channels tripping at Vin = Vref for a slow input ramp from 0 to 
200mV in 400 nS  

 
  

 

Figure 5-3. Magnified portion of the tripping point for all four channels. Note the vin 
and vref values at ∆Vo = 522µV. 

 
Figure 5-2 and Figure 5-3 show the tripping points (at Vout+) of all the 

comparators as the input voltage crosses the reference voltage.  
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Figure 5-4. Channels Tripping for a fast moving input at 500MHz. 

 

 

Figure 5-5. Reconstruction of a input sine wave by the 3-bit Flash ADC at Fin = 
50.307765047364MHz 

 
 Figure 5-5 shows the Flash ADC output after reconstruction from 3-bit code. 
The Flash was operated at 378.78 MHz clock (2.64ns clock period). 
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The following plots are coherently sampled FFTs at 378.78 MS/s sampling rate and 
signal reconstruction. 
 

 

Figure 5-6. FFT of the reconstructed input sine wave by the 3-bit Flash ADC at Fin = 
50.307765047364MHz 

 
 

 

Figure 5-7. Reconstruction of a input sine wave by the 3-bit Flash ADC at Fin = 
807.88352262312MHz sub-sampled at Fout= 50.307765047364MHz 
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Figure 5-8. FFT of the reconstructed input sine wave by the 3-bit Flash ADC at Fin = 
807.88352262312MHz sub-sampled at Fout= 50.307765047364M 

 

 

Figure 5-9. Reconstruction of a input sine wave by the 3-bit Flash ADC at Fin = 
1.186671401411GHz sub-sampled at Fout= 50.307765047364MHz 
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Figure 5-10. FFT of the reconstructed input sine wave by the 3-bit Flash ADC at Fin = 
1.186671401411GHz sub-sampled at Fout= 50.307765047364MHz 

 

Table 5-2. SFDR vs Input frequency for all four channels at sampling rate of 
 fclk = 378.78MHz 

fin 50MHz 800MHz 1.18GHz 

Channel1 26.37dB 27.97dB 26.35dB 

Channel2 26.42dB 28.1dB 26.38dB 

Channel3 26.29dB 27.89dB 26.27dB 

Channel4 26.44dB 28.11dB 26.40dB 

 

Table 5-3. SNDR vs Input frequency for all four channels at clock sampling rate of  
fclk = 378.78MHz 

fin 50MHz 800MHz 1.18GHz 

Channel1 19.27dB 19.52dB 19.24dB 

Channel2 19.30dB 19.53dB 19.27dB 

Channel3 19.21dB 19.45dB 19.17dB 

Channel4 19.33dB 19.57dB 19.31dB 

 
 

The Estimated Number Of Bits (ENOB) for all the channels ranges from 2.89 

bits to 2.96 bits over the range of input frequencies up to 1.2 GHz. 
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Figure 5-11. Schematic showing the comparator circuit 

 

 

Figure 5-12. Schematics of 4-channels multiplexed onto single line  
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Figure 5-13. Schematic of complete 3-bit Flash with Bubble Correction and ROM 
encoder 

 
Each of the comparator shown in Figure 5-14 is a 4-channel comparator that 

has 4:1 multiplexed output. 
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Figure 5-14. Schematic of test bench for offset measurement  

Test bench using multiple gain control switch-resistor pair for better 

attenuation and quicker equilibrium with high accuracy. 
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6. Conclusion 

A 2.5 bit 4-channel Flash ADC was designed and simulated in a 130 nm IBM 

8HP process. The total number of comparators used were reduced from 296 to 136 

effectively reducing the sub-ADC occupied area by 2.1 times (accounting for 

independent latches also). The input load for the T/H is reduced by a factor of four 

from around 2.88 pF to 0.74 pF. The power consumption is similar or less (switching 

power from ROM encoding saved) compared to individual channel separate sub-ADC. 

A new comparator that can be shared across more than two channels, without 

compromising on accuracy and linearity, is presented and characterized across all 

parameters.  

 

The design for the comparator has been laid out and fabricated in IBM 130nm 

8HP process. The chips will be tested and then the complete flash will be integrated 

in to the main time-interleaving Pipelined ADC. Future scope of work extends to 

improving the power consumption by reducing the switching activity common to 

multiple channels and sharing of other sub-ADC parts like DACs and their switching 

circuits. 
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