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ABSTRACT 

   

 

There is a pervasive need in the defense industry for conformal, low-profile, 

efficient and broadband (HF-UHF) antennas. Broadband capabilities enable shared 

aperture multi-function radiators, while conformal antenna profiles minimize physical 

damage in army applications, reduce drag and weight penalties in airborne applications 

and reduce the visual and RF signatures of the communication node. This dissertation is 

concerned with a new class of antennas called Magneto-Dielectric wire antennas 

(MDWA) that provide an ideal solution to this ever-present and growing need. 

Magneto-dielectric structures (         ) can partially guide 

electromagnetic waves and  radiate them by leaking off  the structure or by scattering 

from any discontinuities, much like a metal antenna of the same shape. They are 

attractive alternatives to conventional whip and blade antennas because they can be 

placed conformal to a metallic ground plane without any performance penalty. 

A two pronged approach is taken to analyze MDWAs. In the first, antenna circuit 

models are derived for the prototypical dipole and loop elements that include the effects 

of realistic dispersive magneto-dielectric materials of construction. A material selection 

law results, showing that: (a) The maximum attainable efficiency is determined by a 

single magnetic material parameter that we term the hesitivity: Closely related to Snoek’s 

product, it measures the maximum magnetic conductivity of the material. (b) The 

maximum bandwidth is obtained by placing the highest amount of    loss in the 

frequency range of operation. As a result, high radiation efficiency antennas can be 
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obtained not only from the conventional low loss (low   ) materials but also with highly 

lossy materials (   (  )   ).  

The second approach used to analyze MDWAs is through solving the Green 

function problem of the infinite magneto-dielectric cylinder fed by a current loop. This 

solution sheds light on the leaky and guided waves supported by the magneto-dielectric 

structure and leads to useful design rules connecting the permeability of the material to 

the cross sectional area of the antenna in relation to the desired frequency of operation. 

The Green function problem of the permeable prolate spheroidal antenna is also solved as 

a good approximation to a finite cylinder.   
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Ring the bells that still can ring. 

Forget your perfect offering. 

There is a crack in everything. 

That is how the light gets in. 

- Leonard Cohen
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Chapter 1  

 

INTRODUCTION  

 

An antenna or an “aerial” (term deprecated in 1983 from IEEE Antenna Std. 

Definitions) has traditionally been considered as a metallic object that radiates energy and 

is used to send and receive radio signals over large distances. With the increasing use of 

non-metals in antenna design, the traditional definition of an antenna has been changed 

to: “that part” of a transmitting or receiving system that is designed to radiate or to 

receive electromagnetic waves. In the transmitting mode, a conventional metal antenna 

binds the electromagnetic wave and allows it to propagate close to the speed of light of 

the external medium. The principal sources of radiation are then the discontinuities at the 

ends of the antenna. In contrast, a dipole constructed from a penetrable material does not 

necessarily bind the electromagnetic wave but instead partially guides it, letting it leak off 

along the length of the structure. Whatever energy is carried to the ends of the antenna 

radiates at these discontinuities just like a metal antenna. Thus, such antennas make use 

of two distinct radiation mechanisms. In this report, we examine antennas made up of 

dielectric (    ,   ~1), permeable (    ,     ) or magneto-dielectric (     and 

     with      ) materials.  

The fundamental sources of radiation in antennas are the electric and magnetic 

currents supported by the antenna structure. The ‘source’ of any problem in 

electromagnetic theory or antenna theory is contained within Maxwell’s equations. 

Maxwells’ original “Treatise on Electricity and Magnetism” contained 20 equations with 
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20 unknowns represented using quaternions. Twelve of the original twenty were reduced 

to the set of the now conventional four by Oliver Heaviside. The two curl equations or 

circuital current equations in its simplest form as stated by Heaviside are: 

         (1-1) 

            (1-2) 

where,   is the electric current density and   is the magnetic current density. To maintain 

the symmetry of the curl equations, Heaviside defined these current densities as: 

  
  

  
    

(1-3) 

  
  

  
    

(1-4) 

where dD/dt and dB/dt are the electric and magnetic displacement current densities 

respectively and    and    are the electric and magnetic conduction current densities 

respectively. By introducing material properties, namely permittivity (  ) and 

permeability (  ) through the constitutive relations,         and        ,  the 

current density equations can be further expanded as: 

  
  

  
      

  

  
   (    )

  

  
      

  

  
 
   
  

    
(1-5) 

  
  

  
      

  

  
   (    )

  

  
      

  

  
 
   
  

    
(1-6) 

where,            (    )      is the electric polarization current density and 

           (    )      is magnetic polarization current density. In the case of 

metallic antennas, the antenna radiation source is the electric current due to   . In the case 

of the most general dielectric antenna, the source of radiation is the electric current due to 

both    and       . In the case of magneto-dielectric antennas with       the source 
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of radiation is the the magnetic polarization current density       , since magnetic 

monopoles don’t exist (    ). 

The motivation for the analysis of magneto-dielectric antennas comes from the 

fact that magneto-dielectric materials can be used as wire elements to make efficient 

conformal antennas over a metal ground plane. The IEEE Standard definition of terms for 

antennas defines a conformal antenna as an antenna that conforms to a surface whose 

shape is determined by considerations other than electromagnetic; for example 

aerodynamic or hydrodynamic. The surface or platform in this case can be part of an 

aircraft, truck, jeep or any other vehicle. Whip or Blade Antennas are commonly used as 

VHF/UHF antennas in military vehicles. These off-the-shelf antennas operate over a 

narrow band of frequency. Therefore, military vehicles often have many such antennas 

protruding from the body for use in navigation, communication, radars, etc. (Fig. 1-1).  

 

Fig. 1-1Off- the-shelf Whip and Blade Antennas on Military platforms. 

 

Such antennas are usually attached as an afterthought and routinely in locations and 

orientations that can damage them and expose them to the enemy. In other words, they 

are not low profile and are conspicuous. They cause considerable drag and increase fuel 

consumption. The ideal solution would be to replace several such antennas on a military 

platform with a “Single Conformal Wideband Antenna”. An antenna with wideband 



  4 

capabilities enables shared aperture multi-function radiators, while conformal profiles 

minimize physical damage of the antenna in Army applications, drag and weight 

penalties in Airborne applications and reduce the visual and RF signatures associated 

with the communication and RADAR systems. 

The traditional approach in designing conformal antennas on a metallic ground 

plane is to either place the antenna vertically on top of a metallic ground plane (the whip 

and the blade antennas in Fig. 1-1) or place it horizontally at a height      ,    being the 

operating wavelength, above the ground plane. According to image theory, the effect of 

the ground plane can be mimicked by replacing the ground plane with the image current 

pointing in the appropriate direction. In the case of a vertical metallic antenna, the 

antenna current and the image current point in the same direction thus ensuring 

constructive interference of the radiated waves from the two source currents (Fig. 1-2 

(a)). A horizontal antenna placed at a height ‘h’ over ground, on the other hand, has an 

image current that points in the opposite direction as the antenna current (Fig. 1-2 (b)).  

 

Fig. 1-2 Image effects of (a) Horizontal metallic antenna placed on a metallic ground-

plane at height ‘       ’(b) Vertical metallic antenna on a metallic ground plane. 

Thus, only if it is placed at a height         will there be constructive interference of 

the radiated waves from the antenna and its image. Neither a vertical monopole nor a 

horizontal dipole a quarter wave above ground can be considered to be conformal at  

VHF and UHF frequencies.   

(a) (b) 
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In order to circumvent the image problem faced by horizontal metallic antennas, 

high impedance metamaterials have been proposed to cover the surface of the metallic 

ground plane in order to ‘flip’ the direction of the image current (Fig. 1-3(a)).  But, such 

an approach requires the entire ground plane to be covered by this material. This adds 

weight and increases the cost of the system. Thus, this approach eventually runs into a 

problem of diminishing returns. The idea explored in this dissertation is to use the high 

impedance materials as the antenna itself. 

When a “high impedance” magneto-dielectric material is used as an antenna, it 

can be thought of as a magnetic conductor carrying magnetic currents. Therefore these 

antennas can be placed right on top of the ground plane (h ~ 0) since the image of a 

magnetic current on a conducting surface is always collinear with it (Fig. 1-3(b)).  

 

Fig. 1-3 Image effects of a (a) metallic antenna on a metallic ground plane covered with a 

high impedance material (b) Magneto-dielectric antenna on a metallic ground plane. 

 

It follows that the efficiency of a magneto-dielectric antenna is always enhanced by a 

nearby electrically conducting surface. As antenna elements, magneto-dielectric wires 

can replace blade/whip antennas 18” and taller with antennas that are no thicker than 1” 

over ground and consume a minimum amount of “real estate” on the surface of the 

vehicle.  

(a) (b) 
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The lowest order modes that a magneto-dielectric wire can carry are the HE11 

mode and the TE01 mode. The field structure of these modes along with that of a PMC 

(perfect magnetic conductor) wire are shown in Fig. 1-4. 

 

Fig. 1-4 (a) E and H field structure around a PMC wire (b)HE11 mode in a magneto-

dielectric material (c) TE01 mode in a magneto-dielectric material. 

 

 The HE11 mode shown in Fig. 1-4(b) has no cut-off or onset frequency. That is, 

the HE11 mode is well guided by the magneto-dielectric wire from dc to daylight. 

Although it is well supported by the structure, the HE11 mode looks like a two-wire PMC 

transmission line which we know is a poor radiator. The TE01 mode has a cut-off or 

onset frequency (       ) given by: 

        
         

   √      
    

(1-7) 

where    is the speed of light in free space and ‘ ’ is the radius of the wire. Below the 

TE01 onset frequency, the wave is loosely guided by the magneto-dielectric wire. The 

field shape of the TE01 wave outside the wire in this case looks like that of a PMC wire 

and hence is will radiate off of any discontinuities in the structure. This favorable TE01 

Im

Two PMC 
wire line

HE11 modePMC wire

Single 
PMC wire

TE01 mode

(a) (b) 

(c) 
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mode can be injected into the magneto-dielectric material using an electric current loop 

with the material place along its axis. This is the feeding mechanism utilized throughout 

this dissertation. 

The outline of the dissertation is shown as flow- chart in Fig. 1-5. Each section in 

the flow chart is covered in subsequent chapters as labeled.  

 
Fig. 1-5 Outline of the dissertation 

 

 In Chapter 2, the dielectric capacitor/condenser antenna is re-examined and we 

point out the efficacy of putting the dielectric material outside the capacitor plates instead 

of within them as in a condenser. This structure is referred to as a dielectric dipole and its 

comparison with conventional metallic antennas of the same size is shown. It is 

demonstrated through simulations that the performance of an electrically small dielectric 
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dipole can approach but never surpass a metallic dipole of the same dimension. A closed 

form expression of the radiation efficiency of this dielectric dipole using realistic 

materials is also derived which includes the often omitted loss tangent (tan (δ)) or 

imaginary part of permittivity i.e. ε” loss. The accuracy of this equation is tested through 

rigorous full-wave simulations. The results show that high radiation efficiency in 

dielectric dipoles can be obtained with both low loss and high loss materials which is a 

deviation from contemporary notion of requiring only low loss materials to achieve the 

same.   

In Chapter 3, the properties of an electrically small dipole antenna constructed 

from magneto-dielectric media (           ) are derived in closed form by following 

Schelkunoff’s original development for electrically small metallic antennas and 

exploiting duality. Such dipoles are attractive alternatives to vertical monopoles because 

they can be placed conformal to a metallic ground plane without performance 

degradation. The closed form expression of the radiation efficiency derived includes the 

often neglected imaginary part of permeability i.e.    loss. This analysis shows that it is 

possible to construct high radiation efficiency antennas out of not only the traditional or 

conventional low loss (low   ) materials but also with highly lossy materials 

(   (  )   ). This is a noteworthy conclusion given the fact that most magnetic 

materials exhibit loss beyond VHF or sometimes even beyond the HF range.  A magneto-

dielectric dipole using commercially available NiZn ferrite absorber tile material was 

constructed and tested in an anechoic chamber demonstrating significant efficiency . 

Finally, the duality between a magneto-dielectric dipole and the dielectric dipole of 

Chapter 2 is explored analytically and numerically.  
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In Chapter 4, the properties of a magneto-dielectric electrically small loop antenna 

are derived in closed form using the same approach as that followed for the magneto-

dielectric dipole in Chapter 3. A magneto-dielectric loop is an ideal alternative to vertical 

monopoles because they have same radiation pattern as the monopole and yet can be 

placed conformal to a metallic ground plane without performance degradation. Similar to 

Chapter 3, the results here also show that it is possible to construct high efficiency loops 

using lossy materials. An application to the case of a body wearable antenna is also 

discussed.  

In Chapter 5, a material selection law for selecting the most appropriate 

permeable material to design magneto-dielectric antennas is postulated. This selection 

law is derived within the bounds of three fundamental physical limits, namely, 1) the 

Gain-Bandwidth product limit, 2) Snoek’s product limit for magnetically permeable 

materials and 3) the restrictions imposed on the permeability function by the Kramers-

Krönig relations. Within these constraints it is shown that one dominant parameter with 

the units of magnetic conductivity characterizes the performance of the material. The 

validity and applicability of the selection law is demonstrated by full-wave simulations of 

conformal magneto-dielectric dipoles using both fictitious and realistic magneto-

dielectric materials.  

In Chapter 6, a simpler three element RLC circuit model for a magneto-dielectric 

dipole is postulated where the capacitance ‘C’ is proportional to the polarizabilty of the 

object. The proportionality factor that relates the two accounts for the morphology of the 

magnetic field structure and is found to be a single pole Debye function in the 

morphology variable (    (    )). The inductance and the radiation resistance are 
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then derived by duality from the case of the electric dipole. Although this approach 

extends the magneto-dielectric dipole model beyond the regime of the electrically small 

circuit models of Chapter 3, it implicitly assumes that the magnetic current distribution 

on the antenna is triangular. As is shown in Chapter 7 this is only true for a narrow range 

of frequencies and values of permeability that result in operation close to the onset of 

guided mode propagation.  

In Chapter 7, the Green function problem of a cylindrical magneto-dielectric rod 

of infinite length excited by an electric current loop current is solved. The magnetic 

current wave excited in a magneto-dielectric infinite rod is shown to go through a 

succession of fast wave-slow wave transitions as a function of frequency. Below the first 

mode and in between modes the fast wave regions exhibit leaky wave behavior with 

decaying amplitude and phase velocities faster than the speed of light. Every time we 

approach the onset of guidance of a mode, there is a band of frequencies over which the 

magneto-dielectric rod behaves very much like a PMC metal rod. Given the 

predominantly leaky wave behavior exhibited by these antennas in their most common 

application (low frequencies, electrically small elements) it is possible to calculate the 

minimum length of material required to get the same amount of radiated power as that of 

an infinite magneto-dielectric cylinder of the same cross-section. 

In Chapter 8, the Green function problem of a finite prolate spheroidal magneto-

dielectric antenna fed by a current loop is solved. The electric and magnetic fields 

calculated  are shown to agree well with full-wave simulations. An expression for the 

total radiated power from this finite dipole is also derived and compared to simulations. 
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At the end of every chapter, suggestions are given for follow-on work that could 

extend the results presented. Three Appendices are included covering the impact to the 

model of the skin effect in magneto-dielectric cylinders, an alternative derivation of the 

efficiency of a permeable dipole, and details of the solution of the Helmholtz wave 

equation in Prolate spheroidal coordinates.  
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Chapter 2  

 

DIELECTRIC DIPOLE ANTENNA 

 

2.1 Introduction 

 

Ever since the idea of accelerated charges radiating energy was first conceived, 

scientists and engineers have extensively used conductors or metals as antenna elements 

due to the abundance of free charges available in them. It was also known that dielectric 

materials can guide waves in them. But, it was an accepted fact that since dielectric 

materials guide waves, they have the tendency to trap these waves and hence do not 

promote radiation. Nevertheless, one of the first variants from the conventional metallic 

antennas was the capacitor/condenser antenna. Such a design employing dielectric 

materials was implemented but was immediately disregarded by prominent engineers like 

S. Schelkunoff [1] and H. A. Wheeler [2] [3] (Fig. 2-1(a) & Fig. 2-1(b)).  

 

Fig. 2-1 a) Schelkunoff’s dielectrically loaded antenna [1]  (b) Wheeler’s capacitor 

antenna [2] [3] (c) Dielectric Dipole antenna 
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 They pointed out that such an electrically small antenna would actually result in a 

decrease in net radiation compared to its bare metallic counterpart. Wheeler described its 

ineffectiveness using his ‘radiation power factor (p)’ which happens to be the inverse of 

antenna Q. The dielectric in the capacitor decreases the radiation power factor thereby 

decreasing the bandwidth of the antenna from its unloaded metallic case. On the other 

hand, Schelkunoff explained that the density of the polarization current (or displacement 

current in the medium minus the displacement current in free space) in the dielectric is in 

the direction opposite to that of the current in the dipole that feeds it.  The polarization 

current produces fields just as conduction currents do but in this case they weaken the 

field of the conducting current. Thus, the effective radiating current is reduced as it is 

inversely proportional to ‘ε’.  

But now along the same lines if the dielectric were to be placed outside the 

capacitor as shown in Fig. 2-1(c), then the polarization current would be in the same 

direction as the dipole feed current and hence aid radiation. We can immediately see that 

the capacitor will setup or pump energy into the TM mode in the dielectric that will leak 

out along the length of the antenna when operated below the cut-off frequency or onset 

frequency of the mode. Thus, the material and the dimensions are chosen to encourage 

leakage of the TM waves that are partially guided by it. Such an antenna can be truly 

called a dielectric antenna since the dielectric material is the most significant part of the 

radiating system.  

The analysis and comparison of this dielectric antenna and the capacitor antenna 

is shown in this chapter. Wheeler was quick to point out that the antenna with the 
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dielectric outside will be considerable larger in size. Hence in order to evaluate the 

performance of the “dielectric dipole”, comparison is done with a metallic dipole of the 

same length and cross-section. We show that in the electrically small limit we can never 

do better than a metallic small antenna with dielectric materials.  

A comprehensive summary of theoretical analysis and experimental data on 

electrically small and moderate dielectric loaded antennas done up to 1977 was presented 

by Smith [4]. Three distinct cases were considered and it was shown that i) a 

dielectrically loaded electrically small antenna always led to reduction in efficiency and 

bandwidth. ii) Metal monopoles are superior to antennas of moderate lengths with a thin 

dielectric coating and iii) dipole with thick dielectric coatings are intrinsically 

narrowband. 

Since the 1980s the focus of design of antennas that use dielectric materials 

shifted to another class of such antennas called ‘dielectric resonator antennas’. The term 

was first coined by Richtmyer [5] in 1939, however such antennas were first analyzed in 

detail in the eighties starting with Long et al. [6]. A detailed summary of research on this 

subject is given in [7]. These antennas have found widespread use in mobile phone 

handsets. These can also be called dielectric antennas but because they operate at 

frequencies past or around the resonance of the dielectric object, they are intrinsically 

narrowband. Their usual operating frequency range is anywhere between 1GHz-40GHz 

with the antenna length being greater than    . In this chapter, we shall concentrate on 

dielectric antennas operated in the electrically small regime (length    ).   

Another sub-class of antennas employing dielectric materials is the dielectric rod 

antenna or polyrod antenna [8-10]. These are typically fed from a dielectric filled metallic 
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waveguide that launches the lowest order surface wave into the dielectric rod several 

wavelengths long. Such antennas also rely on leakage along the length of the structure. 

As they are many wavelength’s long, these antennas also do not fall under the category 

that we are interested in. 

Although there are many variations of the dielectric dipole as listed above, we are 

going to restrict our analysis to the most fundamental case: a monopole over a ground 

plane. We start our analysis in Section 2.2 with the classic capacitor antenna and prove 

via simulations, Wheeler and Schelkunoff’s heuristic reasoning as to why they are not 

beneficial. This is followed by the dielectric dipole antenna analysis in Section 2.3 which 

showing how a dielectric material can aid the radiation process. In Section 2.4, the 

radiation efficiency of a realistic dielectric antenna with lossy material is derived based 

on the electrically small antenna circuit model. The result shows that unlike the classical 

notion that all materials ought to have very low loss for high radiation efficiency, an 

extremely lossy dielectric can also give high radiation efficiency. Section 2.5 contains the 

summary of the chapter, some notable conclusions and possible future work on this 

subject. 

The purpose of this chapter is to explain why and how small dielectric dipoles 

work the way they do and derive some simple expressions and antenna models that agree 

with simulations. It serves as an introduction to a much more useful and practical 

antenna: the magneto-dielectric dipole antenna.  
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2.2 Capacitor/ Condenser Antenna 

 

The HFSS simulation geometry for the capacitor antenna of Fig. 2-1(a) is shown 

below in Fig. 2-2(a). It’s a 10cm tall and 2cm diameter monopole over ground terminated 

in a top plate filled with a dielectric εr, with the center conductor extending all the way to 

the top plate. In order to prove Schelkunoff’s assessment, the conduction current ‘Ic’ in 

the center conductor and the total radiation current ‘Itotal’ (sum of conduction current in 

the center conductor and the displacement current in the dielectric) in the monopole are 

measured using two Amperean loops shown in Fig. 2-2(b). 

 

Fig. 2-2 (a) Simulation geometry of the capacitor antenna. (b) Ampere’s loop in the 

simulator to measure the conduction current in the center conductor and the total 

radiation current of the monopole. 

 

The dielectric constant εr of the material is swept from unity which is the basic 

metallic monopole over ground to εr=1000.  The ratio of the total radiating current to the 

conduction current at 100MHz is shown in Fig. 2-3. 

(a) 

(b) 
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Fig. 2-3 The ratio of the total radiated current (Itotal) to the conduction current (Ic) in the 

center conductor @ 100MHz plotted along the length of the loaded monopole for 

different values of   . 

 

For the metallic monopole, this ratio should be unity. The slight drop seen around 

the origin and around 10cm is due to the turbulence near the feed and the end 

discontinuity respectively. Clearly, as Schelkunoff envisioned the net current that 

accounts for radiation drops as the dielectric constant of the material increases. The input 

impedance of the capacitor antenna is shown in Fig. 2-4.  

 

Fig. 2-4 (a) Real and (b) Imaginary part of input impedance of the capacitor antenna for 

different values of εr. 

 

(a) (b) 
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Loading the dipole with a dielectric material has resulted in a drop in the real part 

of input impedance indicating a drop in radiation resistance due to the reduction in net 

radiating current as seen in Fig. 2-3. The added dielectric has also clearly shifted the 

dipole resonance to a much lower value. The resonance frequency decreases with 

increasing εr due to an increase in capacitance. The antenna Q can be now calculated 

using the equation below given by Best et al. [11].  

          
  

   
   

 (  )   
(2-8) 

The antenna Q calculated from the input impedance of the antenna is a convenient 

approximation and can have errors in cases where there are closely spaced resonances. 

For all the dielectrically loaded cases, the antenna Q is higher than that of the metal 

monopole (as seen in Fig. 2-5. It is not that significant but it still is higher than the metal 

for this particular geometry) and therefore the bandwidth is reduced. Also, the radiation 

efficiency of a capacitor antenna will always be lower than that of a pure metallic dipole 

assuming negligible conductor losses. Therefore the efficiency bandwidth product which 

is sometimes used as a figure of merit for antennas will always decrease when the 

capacitor antenna is loaded with a dielectric. Hence we can see that dielectrically loading 

a monopole is not useful in the electrically small regime. 
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Fig. 2-5(a) Antenna Q calculated from input impedance using (1) and (b) Ratio of the 

Antenna Q of the dielectric capacitor to the Q of the metallic monopole. The dielectric Q 

is higher than the metallic monopole throughout the band. 

 

 

 

2.3 Dielectric Monopole (Capacitive Feed) 

 

Now, consider a dielectric monopole postulated before, with the dielectric placed 

outside the capacitor similar to Fig. 2-1(c). The simulation geometry is shown below in 

Fig. 2-6. 

 
Fig. 2-6 Simulation geometry of the dielectric monopole. 

 

The dielectric constant    of the material is swept from unity which is the 

capacitive feed gap (a short monopole) by itself all the way to        . In order to 

(a) (b) 
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make a fair comparison with its metallic counterpart, a metallic monopole is also 

simulated of the same dimensions (i.e. height =10cm and 2cm diameter). The capacitive 

feed injects TM like modes (circulating    and longitudinal   ) into the dielectric 

material supported by it which when below the onset of guidance (i.e. below the cutoff 

frequency) will leak out of the material. The cutoff frequency of the TM modes depends 

on the antenna cross-section and the dielectric constant. For this geometry and set of 

dielectric constants the lowest order TM01 mode onset/cutoff frequencies are given 

below in Table 2-1. 

Dielectric Constant 

(εr) 

TM01 Onset 

Frequency (MHZ) 

20 2632.5 

80 1291 

300 663.6 

1000 363 

Table 2-1 TM01 onset/cutoff frequency for a 1cm radius dielectric cylinder for 

different   .  

 

The simulation frequency range is 30MHz-500MHz. Note that in this range, 

εr=1000 is the only case where the onset frequency is crossed. Figure 7 below gives the 

shape of the mode inside the dielectric material for different dielectrics at two different 

frequencies (100MHz and 500MHz). Figure 7(a) and (b) show the strength of the 

circulating magnetic field   , at a height       above the feed as a function of 

tranverse position (‘x’ in cm). The black vertical lines at        indicate the 

boundary of the rod. At 100MHz (Fig. 2-7(a)) the TM mode launched into the dielectric 

is strongly cutoff. At 500MHz (Fig. 2-7(b)) we see evidence of the onset of guided waves 
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particularly in the case of          where we can clearly see more than one transverse 

wavelength fit inside the dielectric. Outside the cylinder, the field drops exponentially as 

expected. As the wave becomes more and more trapped due to guidance, its energy 

migrates to the interior of the rod i.e    increases inside the cylinder and the next higher 

order mode(TM02) starts to appear.  

 

Fig. 2-7 (a) & (b) are plots of    along a line in the XY plane (@ z=4cm) indicating TM 

Mode structure inside the dielectric material at 100MHz and 500MHz respectively (c) 

Plot of displacement current density ‘  ’ plotted along the axis of the dielectric cylinder. 

 

In Fig. 2-8, the ratio of the total radiating current to the conduction current is 

plotted. The conduction current in this case is the current at the coaxial feed.  As expected 

in a clear contrast with the capacitor antenna, the net radiating current in the dielectric 

increases with increasing values of the dielectric constant   . 

(a) (b) 
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Fig. 2-8 The ratio of the total radiated current (Itotal) to the average conduction current 

(Ic) in the center conductor of the feed capacitor@ 100MHz plotted along the length of 

the dielectric monopole for different values of   . 

 

The input impedance and the antenna Q of this antenna is given in Fig. 2-9. The 

input resistance (Fig. 2-9(a)) increases with    since the wave is now partially guided 

over a longer distance along the material dipole as    rises. This apparent increase in the 

length of the antenna increases the net leaky radiation and therefore also increases the 

radiation resistance. The input reactance (Fig. 2-9(b)) drops as    increases because the 

external capacitance of the antenna increases with its apparent size. 

The short monopole feed has the highest Q (or smallest bandwidth) and as the 

dielectric constant increases the antenna Q improves as well (Fig. 2-9(c)). Note that no 

matter how high the permittivity is, the Q of a dielectric monopole never drops lower 

than that of a metallic monopole of the same dimension. The physical size of the antenna 

is one of the fundamental factors that should be taken into consideration when comparing 

two different small antennas. Therefore, as Wheeler pointed out [3] it is unfair to claim 
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that the dielectric monopole is better than its metallic counterpart by referring to its 

performance w.r.t the short monopole or the capacitive feed.  

Also, the radiation efficiency of the tall monopole will always be higher than the 

dielectric dipole assuming negligible conductor losses because on a metallic surface the 

wave always uses the full length of the antenna (i.e. no leakage occurs). Therefore, the 

efficiency bandwidth product of the metallic dipole will always be greater than the 

dielectric dipole of same dimensions. Thus, the antenna performance of a dielectric 

dipole can never surpass that of a metallic dipole of the same size. 

 

 

Fig. 2-9 (a) Real and (b) Imaginary part of input impedance of the dielectric monopole 

for different values of    . (c) Antenna Q calculated from input impedance. 

(a) (b) 

(c) 
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2.4 Radiation Efficiency of a Lossy Dielectric Dipole 

 

The goal of this section is to determine in closed form an equation for the 

radiation efficiency of a dielectric dipole antenna. There are two definitions of efficiency 

for antennas: the radiation efficiency and the antenna efficiency.  The radiation efficiency 

computes efficiency of radiation in the presence of antenna material losses (conductor 

losses or dielectric losses). The antenna efficiency is the total efficiency of the system 

which includes the feed mismatch loss. Since all realistic materials have some amount of 

loss in them (i.e.          or     (      ( )) where    or loss tangent     ( ) 

signifies the loss), we will start our analysis with the radiation efficiency. The radiation 

efficiency is defined as 

       
    

          
 

 

  
     
    

 
(2-9) 

where, ‘Prad’ is the power radiated by the antenna and ‘Plost’ is the power lost in the 

antenna material. 

Starting from Schelkunoff’s circuit model for electrically small metallic antennas 

[2]; a dielectric dipole antenna can be modeled by including the material properties in 

series with it i.e. with a series internal complex capacitance       (due to complex 

permittivity         ). This term accounts for the internal energy in the material. The 

circuit model is shown in Fig. 2-10. 
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Fig. 2-10 Dielectric dipole electrically small dipole model based on Schelkunoff’s model 

of electrically small metallic antennas. 

 

The elements from Schelkunoff’s model are defined as: 
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Therefore, the input impedance of this dielectric dipole is: 
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(2-13) 

The current distribution in the antenna is assumed to be triangular (just like a 

small metallic dipole). The internal reactance due to the complex capacitance for a 

triangular current distribution can be shown to be: 
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where,        (
  (    )  

 

 
). The factor of ‘3’ shows up due the triangular distribution. 

This factor is unity for uniform current distribution which would be a simple capacitor 

equation.       is derived by equating the electric energy integral to the circuital capacitor 

energy equation Free space is subtracted from the internal capacitance (i.e. dielectric 

constant (    )) since when      we must be left with just the feed. This internal 

reactance can be further expanded as, 

     
  (

      
 

 
)    (

  ( 
   )   

 
)

( (
  (    )   

 
))

 

 ( (
       

 
))

  

 

       
 

   
     

 
        

  
 
 

 

 
      

 

  

        
 

   (2-15) 

 

The loss in the antenna comes from the frequency dependent “loss resistance” or the 

terms with   . Therefore, the power lost in the antenna carrying a current ‘I’ can be 

defined as, 

      
 

 
        

 

 
  (

 

       
  

        
) 

(2-16) 

 

Now the radiated power ‘Prad’ is defined as 
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(2-17) 

From (2-16) and (2-17), 
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We know that k=ω/c0 ,      √     and    √           . Also,       

               .  
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Therefore, 
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(2-19) 

Or the radiation efficiency can be defined as: 
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(2-20) 

According to (2-20) there are two ways to get low power loss or high radiation 

efficiency:  either by using a material with       OR by using a material with      . 

The second conclusion, that we need a material that’s highly lossy shouldn’t come as a 

surprise since we know that a metal is a dielectric with      . Therefore as seen in (2-

20) when this condition is true, the radiation efficiency tends to unity which is the 

radiation efficiency of a perfectly conducting metallic dipole. Figure 11 below gives the 

contour plot of (2-20) with respect to    and    and also with respect to    and     ( ) at a 

single frequency of 100MHz.  The dipole radius             and the length 

is     . 

 

Fig. 2-11 Efficiency equation (2-20) contour plot (a) versus    and    and (b) versus    
and     ( ). The three regions indicate region of high loss, moderate loss and low loss 

(a) (b) 
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Fig. 2-11 is in greyscale with the efficiency going from highest to lowest as the 

shade goes from light to dark. The contours are divided in tens i.e the lightest region has 

efficiency greater than 90%, the next, greater than 80% and so on. Region I, II and III 

stands for regions of high loss (     ) or metal-like materials, moderate loss (where    

is comparable to   ) and low loss (     ) or what researchers call good dielectrics, 

respectively. The figure reiterates the comment made before that there are different ways 

to get low power loss-to-power radiated ratios. The figure also shows a third region of 

high efficiency where both    and    are sufficiently high and comparable to each other. It 

is obvious that the ‘good dielectrics’ of Region I will have high radiation efficiency due 

to low dielectric loss. In the metal-like Region I and Region II, the material skin-depth is 

very small compared to the antenna cross-section and hence all the fields are pushed out 

to the surface of the antenna. Therefore, the dielectric dipole tends to act more like the 

conventional metal dipole and therefore exhibit high radiation efficiency. 

Now if the assumed current distribution is uniform then, 
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(2-22) 

Therefore, the radiation efficiency assuming a uniform current distribution can be derived 

the same way as before to be: 
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In [3], Wheeler showed that the radiation power factor of a capacitor antenna (or 

inductor antenna) is somewhat greater than a factor      given below: 

     
 

  
     

(2-24) 

where, ‘k’ is the wave number in free space and ‘Ab’ is the cylindrical volume ‘V’ 

occupied by the antenna with A=area of cross-section=    and b: length of the antenna 

‘ ’. Re-writing (2-23) in terms of this quantity we see that: 

                
 

  
 

    

  
       

 
    

     
  

       

 
    

          
 

(2-25) 

The term in the denominator is the “loss power factor” [3] of this material antenna, i.e. 
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(2-26) 

This quantity can be measured using a Wheeler cap/ Radiation shield [12]. For the 

triangular current distribution, the radiation efficiency equation in terms of      will look 

like: 

             
    

     
 
       

 
(2-27) 

The term in front of ‘     ’ can be construed as a current distribution shape factor ‘  ’. 

Therefore in general we can define the efficiency of a cylindrical dielectric dipole as 
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(2-28) 

Simulations were run for the same set of dielectric constants    as the lossless 

case but now with a loss tangent of 0.05. The comparison between the simulation and the 

analytical equation (2-20) is shown below in Fig. 2-12. 

 

Fig. 2-12 Comparison of simulated results and analytical equation (2-20) of the Radiation 

Efficiency (dB) of a lossy dielectric dipole. 

 

The agreement between the simulated result and (2-20) is very good at the low 

end (upto        ) for all   . As in the lossless case, it is clear that increasing the 

permittivity of a low loss dielectric dipole results in higher radiation efficiency. The 

appropriateness of the assumption made regarding the current distribution is verified in 

Fig. 2-13. The assumption has limited validity but the effects of it are not drastic in this 

case.  
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Fig. 2-13 Assumed and Simulated current distribution in the lossy dielectric monopole 

Because of the leaky nature of these antennas, the shape of the current distribution 

is a decaying exponential away from the TM01 mode onset frequency and eventually 

becomes more and more triangular as the onset is approached. Therefore, along with the 

physical size of the antenna, the current distribution is a function of both frequency and 

permittivity. To prove unequivocally the accuracy of the radiation efficiency equation (2-

23) (and therefore also (2-20)) a dielectric dipole antenna with multiple capacitive feeds 

was simulated as shown in Fig. 2-14. 

 

Fig. 2-14 Dielectric dipole antenna with multiple capacitive feeds simulated using 

lumped ports 
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The multiple capacitive feed forces the dipole current distribution to be more 

uniform. The multiple feeds were implemented using lumped ports in the fullwave 

simulator. The resulting current distribution and the radiation efficiency comparison with 

(2-25) are shown in Fig. 2-15.  

 

Fig. 2-15 (a) Current distribution of the multiple feed 1m long dielectric dipoles using 

dielectrics with   ( )      .  (b) Radiation Efficiency as compared to (2-23). 

 

The ‘ ’ notches in Fig. 2-15(a) for all the cases are due to the calculation of the 

Amperean current at the lumped ports where there is no dielectric material. These notches 

are therefore non-radiating and can be ignored. The current distribution is significantly 

uniform and the comparison between simulated and calculated radiation efficiency shows 

better agreement as expected. These simulations were repeated for highly lossy materials 

i.e. with loss tangent    ( )   . The radiation efficiency for this case is shown in Fig. 

2-16.  

(a) (b) 
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Fig. 2-16 Radiation Efficiency as compared to (2-23) of the multiple capacitive feed 1m 

long dipole using dielectrics with tan(δ)=1. 

The current distribution is also uniform and the match between simulated 

efficiency and the analytical equation is still excellent. Thus the equation for radiation 

efficiency of (2-28) for a dielectric dipole is valid for all realistic materials. 

 

2.5 Summary, Conclusions and Future Work 

 

At the beginning of this chapter, the capacitor antenna conceived in the early part 

of last century was re-examined. It was shown through full-wave simulations that it is 

indeed true that adding a dielectric material is detrimental to radiation as envisioned by 

Wheeler and Schelkunoff. It was also shown that if the same dielectric material is placed 

outside the capacitor plates i.e. if the air capacitor is made to excite TM modes into a 

dielectric placed outside it, then we see an improvement in antenna Q and efficiency with 

increasing permittivity. But such a dipole can never surpass the performance of a metallic 

dipole of the same dimension. A closed form expression for radiation efficiency of a 
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dielectric dipole with complex permittivity was derived (2-20),(2-23) and shown to be 

accurate using full-wave simulations. The equation shows that there are three possible 

ways to get maximum radiation efficiency out of a material dipole: (a) use a material with 

very low loss (b) use a material with very high loss but low real part of permittivity and 

(c) using a dielectric with both high loss and high real part of permittivity. The efficiency 

equation was also written in terms of the radiation power factor described by Wheeler 

explicitly showing the radiation power factor and the loss power factor for the antenna.   

Based on the analysis in this chapter, it is seen that the electrically small dielectric 

dipole or monopole is an ineffectual antenna when compared to the metal alternative. 

That is, for electrically small monopoles we have access to materials with extraordinarily 

high   , namely metals, and the high efficiency that it entails. This is true at microwave 

frequencies but at optical frequencies, metals no longer have high    [13]. They behave 

more or less like a low loss dielectric material. Thus, the concepts learned in this chapter 

can be directly applied in design of optical dielectric antennas. 

However at microwave frequencies, when we consider low profile conformal 

antennas tangent to a ground plane, metallic antennas are not the answer and neither 

would be dielectric dipoles. In these antennas the primary radiating current is always 

fighting the opposing image current. Thus for conformal applications we require 

magnetic current radiators. Since magnetic conductors do not exist this leads us to the 

pragmatic choice of the permeable dipole, the electromagnetic dual of the dielectric 

dipole considered in this chapter. Such an antenna can be analyzed in the same way as the 

dielectric dipole by invoking duality.  
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Chapter 3  

 

MAGNETO-DIELECTRIC DIPOLE ANTENNA: CIRCUIT MODEL & RADIATION 

EFFICIENCY 

 

3.1 Introduction 

 

In Chapter 1, we developed an electrically small circuit model for a realistic 

dielectric dipole antenna where the primary radiator is a pure dielectric material of 

complex permittivity            . We concluded that as long as we have materials with 

extraordinarily high   , namely metals, the dielectric dipole will be inferior in 

performance to a metallic dipole of the same size in the microwave regime. However, 

when it comes to low profile conformal antennas, both metallic & dielectric dipoles are 

not the answer. In this chapter we develop an electrically small circuit model for a 

magneto-dielectric dipole that is suited for such conformal applications. Such an antenna 

is analyzed the same way as the dielectric dipole in Chapter 1 by invoking duality. 

Antennas made up of ideal magnetic conductors can be placed on a metallic 

ground plane without any adverse effect on their impedance or radiation efficiency 

because, unlike conventional metallic antennas, their primary radiating magnetic current 

is aided by the image current due to the ground plane. Since magnetic conductors do not 

exist, the more practical choice is to use permeable materials (with permeability:    

 ). Given that both natural and engineered permeable materials are often accompanied 

with a permittivity (  ) greater than 1, realistic magnetic materials are magneto-



  36 

dielectrics i.e. they are materials with        . In this chapter we analyze a dipole 

antenna constructed from magneto- dielectric materials with        . A unique 

feature of these magneto-dielectric dipole antennas is that the main radiating current is 

the displacement current in the material rather than the conduction current used in 

conventional metallic antennas.  Such an antenna is the ideal candidate for practical low 

profile conformal antenna applications. 

The permeable dipole antenna is the electromagnetic dual of the dielectric dipole 

antenna described in Chapter 1 and hence radiates in the same two ways: end 

discontinuity and wave leakage along the structure. The desired magnetic dipole mode, 

the TE mode, is generated using an electric feed loop.  In Section 3.2, we briefly review 

the classic and recent work on permeable and permeable core augmented radiators. In 

Section 3.3, starting with the electrically small circuit model of a dielectric dipole, we use 

the principle of duality to develop the model for the magneto-dielectric dipole and obtain 

a radiation efficiency equation that incorporates the material constitutive properties 

(complex    and   ). This analysis encompasses the classic work on ferrite rod antennas 

and extends it to the development of efficient low frequency conformal radiators. In 

Section 3.4, full-wave simulations are used to verify the correctness of the results. And in 

Section 3.5, experimental results of a magneto-dielectric dipole constructed out of NiZn 

ferrite tiles are shown that confirm the value of the closed-form formulation. In Section 

3.6, the duality between the magnetic dielectric dipole is shown via simulation and 

equations. Section 3.7 contains the summary of the chapter, some notable conclusions 

and possible future work on this subject. 
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3.2 Historical Development of Permeable Antennas 

 

Throughout most of the 20
th

 century, the most common kind of permeable dipole 

antenna that was investigated was the ferrite rod antenna [1-2], [14-16]. It is an 

electrically small loop antenna (usually a multi-turn loop or solenoid) with a ferrite core. 

They were generally used in AM broadcast receivers due to its high Signal to Noise Ratio 

(SNR) and compact size as opposed to a metallic monopole. Schelkunoff [1] showed that 

for a given current in the winding, the field, hence the radiated power and therefore the 

radiation resistance, is increased by the ferrite core. Wheeler [2]  also showed that the 

radiation power factor ‘p’ (which is the inverse of Quality factor ‘Q’) of such an inductor 

antenna is increased by the addition of the core thereby increasing the bandwidth of the 

antenna as well. The radiation efficiency of an electrically small ferrite loaded multi-turn 

loop antenna was first derived by Rumsey et al. [14] using the reaction concept [16]. 

Apart from ignoring permittivity they assumed that the ferrite had low loss i.e.      . 

The derived efficiency in [14] is:  

          
 

  
   

     (    )
  

 
  
(  ) 

 
(3-1) 

where,     is the length of the ferrite rod,     is the radius of the rod/solenoid,          

is the complex permeability of the ferrite,     is the wavelength in free space and     is 

the demagnetization factor. Using the same low loss ferrite assumption and ignoring 

permittivity, DeVore et al. [15] derived the radiation resistance      and loss resistance 

      of a multi-turn magnetically loaded loop antenna. Using      and      the radiation 

efficiency hence reads, 
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(3-2) 

where,     is the number of turns of the loop and     is the wave number. For large aspect 

ratio (length/diameter) ferrite rods, the demagnetization factor is approximately zero. For 

such a case, both (3-1) and  

(3-2) reduce to: 
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(3-3) 

Equation (3-3) leads us to two important conclusions: 

(a) The radiation efficiency improves if the real part of the complex permeability (  ) 

is increased.  

(b) High values of the imaginary part of the permeability (  ) reduce the antenna 

efficiency.  

Ever since these conclusions were reached, researchers appear to have believed 

that the only way to get efficient ferrite rod antennas was to use low loss materials; and 

since those were not readily available the interest in such antennas dwindled.  The fact is 

that both Rumsey [14] and DeVore [15] assumed in their derivation that all they had were 

low loss materials i.e.      . Therefore, it was and still is unfair to come to the 

conclusion that lossy materials are detrimental to radiation efficiency solely based on (3-

3). We show in this chapter, using a circuit model of the antenna in the electrically small 

regime, that it is possible to get high radiation efficiency using highly lossy materials.  
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Lately there has been a renewed interest in antennas that utilize magneto-

dielectric materials, due to the availability of considerably lower loss materials than what 

was available a decade or two ago. Stuart et al. [17] designed an electrically small electric 

dipole antenna surrounded by a high permeability material that has very low antenna Q 

(quality factor). Another example is the use of magneto-dielectric materials as the core in 

a spherical TE mode wire antenna [18], to reduce its Q [19-21]. The high permeability 

core excludes the magnetic field from within the spherical antenna thereby reducing the 

stored internal magnetic energy and reducing Q. This fact is true only when there are no 

internal resonances within the sphere since resonances would increase the internal stored 

energy and therefore would reduce Q. Thus the onset of internal resonances imposes a 

restriction on the size and value of permeability that can be used.  

Since all materials have some loss, the case of a lossy magneto-dielectric core was 

analyzed numerically in [22] and analytically in [23]. In [23], the authors showed that it 

is possible to get high radiation efficiency in a spherical wire antenna with a highly lossy 

magneto-dielectric core which goes against the conventional notion of requiring only low 

loss materials to get high efficiency. The magnetically loaded spherical antenna although 

attractive owing to its low Q is not a low-profile or conformal structure.  In this chapter, 

we restrict the analysis to linear magneto-dielectric dipoles that can be placed tangential 

to a metallic ground plane. A purely numerical analysis of an array of lossy magneto-

dielectric dipoles was shown in [24] in which the radiation efficiency was seen to 

increase as the loss tangent was increased beyond unity. We prove this observation 

analytically for a single magneto-dielectric dipole. 
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3.3 Radiation Efficiency of an Electrically Small Magneto-dielectric Dipole Antenna 

 

The radiation efficiency of an antenna is defined as: 

       
    

          
 

 

  
     
    

 
(3-4) 

 where, ‘    ’ is the power radiated by the antenna and ‘Plost’ is the power lost in the 

antenna material. 

In this section, the radiation efficiency of a magneto-dielectric dipole is derived 

starting from Schelkunoff’s circuit model for electrically small antennas. The ultimate 

goal is to estimate the material properties required to build a conformal magneto-

dielectric antenna that can meet a given target efficiency requirement. We will use the 

concept of duality to derive the equations for the magnetic dipole antenna starting from 

the circuit model of a dielectric antenna from Chapter 1. 

In the dielectric dipole model, the material properties are represented by a series 

internal impedance        term which is composed of a complex internal capacitance 

        to represent permittivity      and a complex internal inductance         to represent 

permeability     . This      term accounts for the internal energy in the material. For a 

rod of radius,    , the internal capacitance is defined by assuming a uniform E-field (TM 

like fundamental mode) in the material thus yielding a simple capacitor of area       

and separation     which is the length on the dipole. The internal inductance is the 

inductance of a wire with uniform current    . The current distribution is assumed 

uniform. The circuit model is shown in Fig. 3-1.  
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Fig. 3-1 Dielectric dipole model based on Schelkunoff’s model of electrically small 

metallic antennas. The permeability of the dielectric material is also included. 

where, 

     
 

       
         

i.e. 
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(3-5) 

Free space is subtracted from the internal capacitance (i.e. dielectric constant 

(    )) and internal inductance (i.e. permeability (    )) since when         we 

must be left with just the source. In such a case, the internal inductance is shorted out and 

the internal capacitance is open as expected. 

The rest of the elements are components of Schelkunoff’s electrically small 

metallic dipole model for uniform current distribution and are defined as: 
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(3-8) 

In Chapter 1, we did not include the effect of skin depth ‘ ’ since the majority of 

dielectric materials have      (      was ignored). This is not true about the relative 

permittivity of realistic magnetic materials i.e.    can be much greater than unity. For a 

plane wave, the skin depth can be calculated as: 

  
 

  (  √    )
 

(3-9) 

where,    
  is the wave number in free space. For small   , the calculated skin depth is 

usually larger than the radius ‘ ’ of the material i.e. a very significant amount of the field 

pervades the entire material. For such cases ‘ ’ is set equal to ‘ ’. In magnetic materials 

with large   , the electromagnetic skin depth of the material will force the magnetic flux 

to flow closer to the surface and therefore has the effect of decreasing the internal 

capacitance and internal inductance.  

Since we are concerned with TM like modes in the dielectric dipole, the internal 

complex capacitance as seen in the first term of (3-5) can be corrected to account for skin 

depth (due to the permeability in this case) with an Area Factor (AF) in front of it. This 

factor is given by  

   
     (   ) 

   
 
      

  
 

(3-10) 

The correction to the inductance term is ambiguous since the shape of the φ-

directed H-field in the transverse ‘r’ direction is a function of frequency, size of the 

cross-section and the material properties    and   . A simple and good approximation to 
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this rapidly changing field structure and the corresponding equation of the Hφ-field due to 

a current ‘ ’ in the electrically small regime is shown below in Fig. 3-2. 

 

Fig. 3-2 (a) Skin depth in a cylindrical dipole (b) The transverse field shape for 0<δ<ρ of 

the TM mode dielectric dipole. The solid line is the actual field shape and the dashed line 

is the closest approximation 

 

    The resulting internal Field Shape Factor (FSF) correction term to the complex internal 

inductance term is given below: 
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(3-11) 

This factor is derived by equating the magnetic energy integral to the circuital inductor 

energy equation and is shown in Appendix A. The input impedance of the dielectric 

dipole is therefore: 
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(3-12) 

 

(a) (b) 
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Using the concept of duality, we can obtain the magnetic input impedance (in mhos) of 

the dual antenna by: 

            
 (    )  

             
 (    )

  
  

(3-13) 

where, the superscript ‘m’ and ‘e’ represent magnetic and electric impedances, 

respectively. However, this dual problem maps a dielectric dipole with PEC feed lines 

and electric voltage source (Ve) to a permeable dipole with PMC feed line and magnetic 

voltage source (Vm) as shown in Fig. 3-3(a) and (b). Since we don’t have PMC wires and 

a magnetic voltage source, the simplest way to feed a permeable dipole is to use an 

electric loop as shown in Fig. 3-3(c). The cross section of this electric loop fed permeable 

dipole at the feed loop is shown in Fig. 3-4. 

 

 

Fig. 3-3 (a) A dielectric dipole carrying an electric current ‘Ie’ fed with an electric 

voltage source ‘Ve’ and PEC feed lines (solid lines) such that                     (b) 

Dual magnetic dipole carrying magnetic current ‘Im’ fed with a magnetic voltage source 

‘Vm’ and PMC feed lines (dashed lines) such that                          (c) 

Permeable or magnetic dipole carrying magnetic current ‘Im’ fed with an electric loop. 

 

(a) (b) 

duality

e

e

Ve

Ie m

m

Vm
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Ve

Im

(c) 
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Fig. 3-4 Cross-section of the permeable material dipole of Fig. 3-3(c) at the electric feed 

loop. The mode of operation is TE like with the B-field along the axis of the dipole. 

 

The magnetic current (Im) is defined as the surface integral of dB/dt or jωB 

passing through the surface ‘S’ and the magnetic voltage (Vm) is the line integral of the 

H-field around the closed contour of the surface. Now, according to Faraday’s law, the 

surface integral of jωB is equal to the line integral of the E-field along the closed contour 

of the surface ‘S’ (c(S)), which by definition is the electric voltage ‘Ve’. In other words, 
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(3-14) 

Also according to Ampere’s circuit law, the line integral of the H field along the 

closed contour formed by surface ‘S’ (c(S)), is the electric current Ie or in the dual world 

the magnetic voltage Vm. In other words,  
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(3-15) 

Therefore, 

            
 (    )  

  
  
 
  
  

             
 (     ) 

(3-16) 
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From (3-13) and (3-16) the input admittance of a permeable dipole antenna fed by an 

electric loop is given by: 
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(3-17) 

 

Since we are interested in a magneto-dielectric dipole and not just a permeable one, we 

will call the input admittance of the magneto-dielectric circuit            . Therefore 

from  

 

(3-12) and (3-17), the input admittance of the magneto-dielectric dipole can be written as 
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(3-18) 

where, 
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(3-19) 

            is the admittance of the following circuit shown in Fig. 3-5. 
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Fig. 3-5 Electrically small magnetic dipole antenna circuit model. 

Now since           and          ,      can be expanded to get 
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(3-20) 

As in the case of the dielectric dipole, the losses in the antenna arise from the two 

frequency dependent “loss conductance” terms above (real terms with    and   ).  

     
 

        

  

        
 
      

  
    

(3-21) 

Therefore, the power lost in the antenna with a voltage ‘V’ across its terminals is defined 

as: 

      
 

 
         

(3-22) 

while the radiated power (using Grad from (3-18)) is defined as: 

     
 

 
         

(3-23) 

From (3-4), (3-18), (3-21), (3-22) and (3-23) after some algebraic manipulation knowing 

that       ,    
 

√    
  and     √           the Radiation Efficiency of a 

magneto-dielectric antenna (      ) having uniform current distribution is given by: 

Y
m
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(3-24) 

Now if the assumed current distribution is triangular and not uniform then, 
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(3-27) 

Therefore, the radiation efficiency assuming a triangular current distribution can be 

derived in the same way as before to be: 
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(3-28) 

    Now for a purely magnetic material i.e.     , for     which implies AF = FSF = 

1, (3-24) simplifies to 
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(3-29) 

This equation is the exact dual of the radiation efficiency of a dielectric dipole in Chapter 

1. Equation (3-29) can be re-written in terms of Wheeler’s loss power factor and 

minimum power factor as 

              
 

  
 

    

  
       

 
    

     
  

       

 
    

          
 

(3-30) 

where, 



  49 

      
 

  
               

  

       
 

  

(    )  (  ) 
  

(3-31) 

(3-29) and (3-30) tell us that there are two ways to get low power loss (and therefore high 

radiation efficiency) using magnetic materials with        OR with       . The 

second conclusion that we need a material that is highly lossy should not come as a 

surprise since we know that a perfect magnetic conductor is a magnetic material with 

       . Therefore when this condition is true we see that the efficiency tends to unity 

which is the radiation efficiency of a PMC dipole. The contour plot of the efficiency 

equation of (3-29) for a 1 inch radius cylinder is shown in Fig. 3-6.   It is clear from Fig. 

3-6 that this particular conformal magnetic dipole will have approximately the same 

radiation efficiency as a purely metallic dipole for three different kinds of material: a) the 

well-known extremely low loss material with         which is labeled region III b) 

the unconventional extremely lossy material (      ) with low       or    ( )    

which is labeled region I and c) a region where both    and   are moderately high labeled 

region II.  

 

Fig. 3-6 (a) Efficiency equation (3-29) contour plot (a) versus μ’ and μ” and (b) versus μ’ 

and tan(δ). The three regions indicate region of high loss, moderate loss and low loss.     

(a) (b) 
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In Region I and Region II, the material skin-depth is so small that all the fields are 

pushed out of the antenna. Therefore, the material dipole tends to act more like the 

conventional metal dipole and therefore exhibit high radiation efficiency. The same 

conclusions were obtained for the dielectric dipole. 

 

 

3.4 Full-wave Simulations of the Magneto-dielectric Dipole Antenna 

 

 

Full wave simulations of the magneto-dielectric dipole were carried out using a 

variety of magneto-dielectric material parameters in order to ascertain the accuracy of (3-

24) and (3-28). Two simulation cases are shown in Fig. 3-7. In Fig. 3-7(a) a magnetic 

dipole is fed with a single current loop and in Fig. 3-7(b) a magnetic dipole is fed with 

eight current loops. The single loop simulation results will be compared with (3-28) in 

which the magnetic current distribution was assumed to be triangular. However, due to 

the leaky nature of radiation from a material antenna, this assumption will be true only 

for a small range of frequencies. The current distribution for a material dipole is not only 

a function of the antenna size but also of the material properties. Also, this leaky behavior 

implies that the entire length of the antenna will not contribute to radiation at all 

frequencies. The energy will leak out sooner when operated well below the TE01 

guidance frequency. 



  51 

 

Fig. 3-7(a) Simulation geometry of a magneto-dielectric dipole fed by a single electric 

feed loop and (b) eight feed loops 

 

One way to ensure that all the material available contributes to radiation is to 

employ multiple feed loops. By doing so, we force the magnetic current distribution to be 

more uniform for which we have derived (3-24). The magneto-dielectric dipole simulated 

is 1m long (extending from -50cm to 50cm on the simulation axis) with a radius of 

1cm.The magnetic current distribution      (volts) along the dipole length for the single 

feed loop case is shown in Fig. 3-8. 

 

Fig. 3-8(a) Magnetic current distribution along the length of the dipole at two frequencies 

(a) 100MHz (          ) (b) 200MHz (         ) 

(a) 
(b) 

(a) (b) 
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The radiation efficiency comparison with the triangular current distribution 

equation (3-28) is shown in Fig. 3-9. As expected from Fig. 3-8(a) the agreement is 

excellent throughout the electrically small regime for the high permeability case (   

        ) and degrades from there as the current becomes more exponentially 

damped. 

 

Fig. 3-9  Simulated Radiation Efficiency (symbols) comparison with (3-28) (solid curves) 

for a single loop fed magneto-dielectric dipole. 

 

As mentioned before, one way to obviate the problem of the exponentially 

damped (leaky) current is to employ multiple feed loops along the length of the antenna. 

This is tantamount to using a solenoid feed ensuring that the B-field or the magnetic 

current is uniform throughout the length of the dipole. A solenoid would work fine in the 

electrically small limit but, as the antenna becomes electrically large, there would be a 

considerable phase difference in the electric current along the length of the solenoid 

which can cause destructive interference in radiation. Therefore in order to minimize this 

effect, it is better to use multiple individual feed loops each fed in phase as shown in Fig. 

3-7(b). 
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The magnetic current distribution plots of a multi-loop fed 1m long (extending 

from -50cm to 50cm on the simulation axis) magnetic dipole are shown in Fig. 3-10. The 

current distribution is nearly uniform except for the spikes seen in the figure. These 

spikes/notches result from the calculation of the current as the closed line integral of the 

electric field when we get too close to the feed loops.  Very close to the loops we capture 

in the integral near field flux lines (higher order modes) that are not part of the assumed 

magnetic current in the material. 

 

Fig. 3-10 Uniform magnetic current distribution along the length of the dipole at two 

frequencies (a) 100MHz (          ) (b) 200MHz (         ) 

 

The simulated results for radiation efficiency and the comparison with equation 

(3-28) are shown in Fig. 3-11. The cases studied vary from low permeability to high 

permeability cases where the permittivity is also varied as           to validate the 

calculation of skin depth in equation (3-28).  Even though the above model was derived 

assuming the dipole is electrically small, it behaves properly all the way to the half-wave 

resonance (     ). For low loss materials the validity extends further as seen in Fig. 

3-11(a).  

(a) (b) 
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Fig. 3-11 Radiation Efficiency comparison of (3-28) with full-wave simulations of a 

multi-loop fed magnetic dipole made of (a) low loss (   (  )     (  )      ), (b) 

high magnetic but low electric loss (   (  )         (  )      ) (c) high 

loss(   (  )     (  )   ) (d) extremely high loss (   (  )     (  )    ) and 

(e) extremely high loss materials but neglecting skin depth effects in the efficiency 

calculation. 

(a) (b) 

(c) (d) 

(e) 
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For the low and moderate loss in permittivity or permeability or both, the 

inclusion of skin depth effect i.e. the area factor AF and the internal field shape factor 

have negligible effects on efficiency as skin depth ‘ ’ is almost always greater than 

radius ‘ ’. But for the extremely high loss case i.e. for    (  )     (  )    , the 

correction factors make a huge impact to retain the validity of the equation over a broader 

band of frequency. (Compare the results in Fig. 3-11(d) with those in Fig. 3-11(e) where 

the skin depth effect is neglected). 

 

3.5 Magneto-dielectric Dipole Prototype 

 

A magneto-dielectric dipole was constructed using commercially available NiZn 

ferrite tiles from FairRite by JEM Engineering LLC (Fig. 3-12). The antenna is 40” long, 

4” wide and 1.5” tall above the ground plane. The dipole was fed with four symmetric 

feed loops.  

 

Fig. 3-12 Magneto-dielectric dipole constructed using the NiZn ferrite tiles.  
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    Fig. 3-13(a) shows the material properties of the FairRite tiles used in the 

design. Note that in the frequency range of interest (VHF) the material is lossy with the 

magnetic loss tangent tan(δm) > 2. Fig. 3-13(b) shows the comparison between full-wave 

simulation radiation efficiency and the two closed form equations: (3-24) and the one 

derived by Rumsey et al. ignoring permittivity and assuming low material loss (3-3). As 

expected, since Rumsey’s equation was for only low loss materials (tan(δm)<<1) the 

curve deviates significantly from simulation results whereas, equation (3-24)’s agreement 

is excellent up to         that is well beyond the electrically small antenna assumption. 

 

Fig. 3-13 (a) NiZn FairRite tile material permeability. Permittivity of the ferrite is     
         . (b)Comparison of simulated Radiation Efficiency of the magneto-dielectric 

dipole with two closed form equations. 

 

   The magneto-dielectric antenna gain was measured in JEM’s anechoic chamber. 

The comparison between measured and simulated gain is shown in Fig. 3-14(b). Since 

the model assumes an infinite ground plane the measurement is compared to full wave 

simulations. Their gains agree well over the entire range of measured frequencies. This 

suggests that the circuit model works well in the electrically small limit since the 
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measured gain agreed with the simulations and the simulated radiation efficiency matches 

the analytical equation.  

 

Fig. 3-14 (a) Magneto-dielectric dipole antenna mounted in the anechoic chamber (b) 

Comparison of simulated realized gain & antenna gain measured in the chamber. 

 

The lossy magneto-dielectric dipole antenna performance was also compared to a 

conventional whip antenna mounted on top of a HUMVEE. The two antennas were 

mounted as shown in Fig. 3-15(a). Fig. 3-15(b) shows the comparison of raw gain 

measurements of two perpendicular planes (90
0
 & 270

0
). 

 

 

Fig. 3-15 (a) Conformity of a Magneto-dielectric dipole as compared to a conventional 

Whip antenna (b) Magneto-dielectric dipole raw measured gain comparison with the 

standard whip antenna on a Humvee. 

 

(a) (b) 

(a) (b) 
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   In the operational frequency range of the whip, the lossy MD antenna excels in 

performance compared to the standard whip between 30-88MHz. Any variations in gain 

in this range are due to structural resonances being setup in the HUMVEE by the antenna 

under test. The star marker (110MHz) indicates the whip antenna’s roll-off above 

88MHz. At the same frequency the conformal antenna is half wavelength away from the 

ground causing a null in the gain.    

 

3.6 A Note on the Duality between Material Dipoles 

 

We have always known that a PMC dipole fed by a magnetic voltage generator is 

the dual of a PEC dipole fed with an electric voltage generator. In the same way, a 

material dipole made up of a dielectric material fed using an electric voltage source must 

be the dual of dipole made up of magnetic material fed with magnetic voltage source. We 

used this principle while deriving the equation of radiation efficiency of a magneto-

dielectric dipole in the preceding section. We pointed out in that section that the analytic 

efficiency equations of a dielectric and magnetic dipole are perfectly dual. In this section, 

we prove this conjecture via simulations. Consider the two cases shown in Fig. 3-16. Fig. 

3-16(a) is a dielectric dipole fed with eight voltage ports to ensure uniform current 

distribution and (b) is the magnetic dipole of the previous section with eight metallic 

loops as feeds. The two dipoles are of the same length (1 m) and have the same cross-

section (radius =1”).   
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Fig. 3-16 (a) Magnetic dipole with 8 electric feed loops. (b) Dielectric Dipole with 8 

lumped port feeds. 

 

Fig. 3-17 shows the comparison of the radiation efficiency of the two cases. They 

are on top of each other which confirm our assertion that the dielectric dipole from 

Chapter 1 and the magnetic dipole presented in this chapter are perfect duals of each 

other. But, there is a basic fundamental difference between the two that makes the 

magnetic dipole much more valuable. The dielectric dipole due to its electric 

displacement currents cannot be placed conformal to a metallic ground plane as it would 

short out and is not the best replacement of metallic dipoles. Whereas the magnetic 

dipole, due to the fact that the       magnetic displacement current is the only source of 

radiation, can be placed perfectly conformal to any metallic surface without sacrificing 

performance. Assuming that area is not the limiting factor, magnetic dipoles are ideal 

candidates for low profile conformal antenna applications since their radiation 

performance can approximate that of its dual counterpart (a vertical electric monopole).   

(a) (b) 
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Fig. 3-17 Radiation Efficiency comparison of a dielectric and magnetic dipole of the 

same length and cross-section but with dual material properties. 

 

 

3.7 Summary, Conclusions and Future Work 

 

A closed form equation for the radiation efficiency equation was developed for a 

small magneto-dielectric dipole. The equation is derived from the electrically small 

circuit model of a conventional metallic dipole by adding additional elements (L for 

permeability and C for permittivity) to take into account the material properties. The 

equation shows that maximum radiation efficiency of a material dipole can be obtained 

not only by using a material with very low loss but also with a material that has very high 

loss. 

Two equations were derived, one for uniform magnetic current distribution 

generated by using multiple feed loops and the other for a triangular current distribution 

assumed with a single feed loop. It is hard to maintain a triangular current distribution 

across the length of a magneto-dielectric dipole due to the leaky nature of radiation 
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mechanism and hence the validity of the radiation equation for this case is limited. On the 

other hand, fairly uniform current distribution can be maintained with multiple loops and 

hence the radiation efficiency equation for uniform current distribution matches the full-

wave simulations accurately. 

The circuit model presented here does not include the details of the feed structure. 

Once the feed is included we would have a complete model that can be used to calculate 

the input impedance of the antenna. This will enable us to calculate the Antenna Q and 

hence the bandwidth of the antenna; thus yielding in one formulation the radiation 

efficiency and antenna bandwidth, the two parameters that completely characterize a 

given material dipole antenna.  

The next logical extension to this development is to analyze a loop or a toroid 

made up of a magneto-dielectric material. Although such an antenna would occupy more 

area over ground than the linear dipole it would offer unequivocal vertical polarization 

for all azimuth directions which can therefore replace a vertical metallic dipole antenna. 

Since there is a closed form model for the electrically small metallic loop antenna with 

uniform current distribution, we can use the same steps used in this chapter to arrive at 

the radiation efficiency equation of a magneto-dielectric toroid. This is the subject of the 

next chapter. 
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Chapter 4  

MAGNETO-DIELECTRIC LOOP/TOROID ANTENNA: CIRCUIT MODEL & 

RADIATION EFFICIENCY 

 

 4.1 Introduction 

 

The magneto-dielectric dipole in Chapter 3 has a broadside ‘figure of 8’ pattern 

just like a metallic dipole. However, often conformal low-profile antenna applications 

demand omnidirectional antenna coverage. In fact this is one of the reasons why a 

vertical metallic monopole is preferred over a horizontal metallic dipole, apart from the 

obvious problem of destructive image effect in the horizontal dipole. A magneto-

dielectric loop antenna has a radiation pattern that is identical to a vertical electric dipole. 

It has an omnidirectional pattern in the azimuth plane and it comes with the added 

advantage of being low profile and conformal without any adverse effects due to a 

conventional metallic ground plane. Therefore, it is quintessential to model the magneto-

dielectric loop antenna.  

The steps followed in the derivation of the model and the radiation efficiency 

equation is identical to that of the magneto-dielectric dipole. In Section 4.2, we will start 

with the electrically small circuit model of a metallic loop and introduce the material 

properties as a series impedance to come up with a model for a dielectric loop antenna. 

Then, similar to the derivation in Chapter 3, we will use the principle of duality and 

obtain an admittance circuit model of the magneto-dielectric loop which will then be used 

to derive the radiation efficiency. In Section 4.3, we will examine design trade-offs based 
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on the radiation efficiency equation between a magneto-dielectric loop and a magneto-

dielectric dipole. In Section 4.4, a practical application of the admittance circuit model of 

the loop: design of a Body Wearable Belt Antenna will be discussed. Section 4.5 contains 

the summary of the chapter, some notable conclusions and possible future work on this 

subject. 

 

4.2  Circuit model 

 

 

In this section, the radiation efficiency of a magneto-dielectric loop is derived 

starting from the circuit model for an electrically small metallic loop antenna. The 

ultimate goal is to estimate the material properties required to build a conformal 

magneto-dielectric antenna that can meet a given target efficiency requirement. As in 

Chapter 2, the material properties are introduced by a series internal impedance        

term which is composed of a complex internal capacitance         to represent 

permittivity      and a complex internal inductance         to represent permeability     . 

This      term accounts for the internal energy in the material. For a loop of radius     

and wire radius,    , the internal capacitance is defined by assuming a uniform E-field 

(TM like fundamental mode) in the material thus yielding a simple capacitor of area 

      and separation       which is the circumference of the loop. The internal 

inductance is the inductance of a wire of length equal to the circumference of the loop 

with a uniform current    . The current distribution is assumed uniform. The circuit model 

is shown in Fig. 4-1.  
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Fig. 4-1 Electrically small dielectric loop antenna model. 

where, 
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Free space is subtracted from the internal capacitance (i.e. dielectric constant (    )) 

and internal inductance (i.e. permeability (    )) since when         we must be 

left with just the source. In such a case, the internal inductance is shorted out and the 

internal capacitance is open as expected. 

The rest of the elements are components of the electrically small metallic loop model for 

uniform current distribution and are defined as: 
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To account for skin depth, the same correction factors as in Chapter 3 can be used. The 

internal complex capacitance is corrected by the area factor ‘AF’ (3-10). 
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The internal complex inductance is corrected by the Field Shape Factor ‘FSF’ (3-11). 
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The input impedance of the dielectric loop is therefore: 
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(4-4) 

Using the concept of duality as explained in Chapter 3, using (3-13),(3-16) and (3-17), 

the input admittance of the magneto-dielectric loop (           ) can be written as, 

                       (  (
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(4-5) 

where, 
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(4-6) 

            is the admittance of the following circuit shown in Fig. 3-52. 

 

Fig. 4-2 Electrically small magneto-dielectric loop antenna circuit model. 
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Now since           and          ,      can be expanded to get 
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(4-7) 

As in the case of the magneto-dielectric dipole, the losses in the antenna arise from the 

two frequency dependent “loss conductance” terms in (4-7) above (real terms with    

and   ).  
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(4-8) 

Therefore, the power lost in the antenna with a voltage ‘V’ across its terminals is defined 

as: 

      
 

 
         

(4-9) 

while the radiated power (using Grad from (3-18)) is defined as: 

     
 

 
         

(4-10) 

From (3-4), (4-5), (4-8),(4-9) and (4-10) after some algebraic manipulation knowing 

that       ,    
 

√    
  and     √           the Radiation Efficiency of a 

magneto-dielectric antenna (          ) having uniform current distribution is given by: 
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(4-11) 
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Now for a purely magnetic material i.e.     , for     which imp  lies AF = FSF = 1, 

(4-11) simplifies to 

              
 

  
  

       
    

(
 
 )

 
(  ) 

 
(4-12) 

(4-11)and (4-12) tell us that there are two ways to get low power loss (and therefore high 

radiation efficiency) using magnetic materials with μ”<<μ’ OR with μ”>>μ’. The second 

conclusion that we need a material that is highly lossy should not come as a surprise since 

we know that a perfect magnetic conductor is a magnetic material with μ”>>>μ’. 

Therefore when this condition is true we see that the efficiency tends to unity which is the 

radiation efficiency of a PMC loop. This conclusion was corroborated in Chapter 3 by the 

contour plot of the radiation efficiency equation of the magneto-dielectric dipole versus 

   and   . Here, let us plot the radiation efficiency of the magneto-dielectric loop as a 

function of the loss tangent (   ( )       ) for different fixed    ranging from 5 to 

5000 (Fig. 4-3) and different electrical size of the antenna by varying     from 0.1 to 1.  

  

(a) (b) 
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Fig. 4-3 (a) Efficiency equation (4-12) plot versus    ( )for (a) electrically small 

antenna         (b) small antenna         and (c) electrically large antenna 

     . The radiation efficiency is the lowest at    ( )    for any   . 

 

Fig. 4-3 shows that for low loss materials i.e.    ( )   , the radiation efficiency is high 

as expected from the conventional notion of highly efficient antennas. The radiation 

efficiency then drops as    ( ) is increased till it reaches a minimum at    ( )   . 

Beyond unity loss tangent, the radiation efficiency starts to rise back up again for all the 

three cases. In this region, the material skin-depth is so small that all the fields are pushed 

out of the antenna. Hence, the magneto-dielectric antenna tends to act more like the 

conventional metal loop and therefore exhibit high radiation efficiency.  

 

 

 

 

 

 

(c) 
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4.3 Full-wave Simulations of the Magneto-dielectric Loop Antenna 

 

 

Full wave simulations of the magneto-dielectric loop were carried out using a 

variety of magneto-dielectric material parameters in order to ascertain the accuracy of (4-

11). Consider a 12cm radius magneto-dielectric toroid/loop with a wire radius of 

              symmetrically fed by four electric feed loops as shown in Fig. 4-4. 

Since       , the circumference of the loop is 1  at ~400MHz or       at 

400MHz. Different magneto-dielectric materials are considered by varying the 

permeability and permittivity (                       ). The cases studied vary 

from low permeability to high permeability cases where the permittivity is also varied 

as          .   

 

Fig. 4-4 Magneto-dielectric loop HFSS simulation geometry 

 

The electric feed loop injects TE modes (circulating    and longitudinal   ) into 

the magneto-dielectric material which when below the onset of guidance (i.e. below the 

cutoff frequency) will leak out of the material. The cutoff frequency of the TE modes 

depends on the antenna cross-section and the relative permeability and permittivity. For 

this wire radius and set of relative constants the lowest order TE01 mode onset/cutoff 

frequencies are given below in Table 4-1. 

4 Feed Loops

Ground Plane
Ground Plane

Symmetric Electric Feed LoopMagneto-Dielectric
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Real 

Permeability (μ’) 

Real 

Permittivity (ε’) 

TE01 Onset 

Frequency (MHz) 

    value at 

the TE01 

Onset  

20 10 640 1.61 

80 10 320 0.8 

300 10 165 0.42 

Table 4-1 TE01 onset/cutoff frequency for a 0.5” wire radius magneto-dielectric cylinder 

for different    and   .  

 

The magnetic current distribution plots at two different frequencies (100MHz and 

200MHz) of the multi-loop fed magneto-dielectric loop for different materials are shown 

in Fig. 4-5. The current distribution is nearly uniform except for the spikes seen in the 

figure. These spikes/notches result from the calculation of the current as the closed line 

integral of the electric field when we get too close to the feed loops.  Very close to the 

loops we capture in the integral the near field flux lines (higher order modes) that are not 

part of the assumed magnetic current in the material. 

 

Fig. 4-5 Uniform magnetic current distribution along the length of the loop at two 

frequencies (a) 100MHz (        ) (b) 200MHz (       ) 

 

(a) (b) 
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The simulated results for radiation efficiency and the comparison with equation 

(4-11) are shown in Fig. 4-6. Even though the above model was derived assuming the 

dipole is electrically small, it behaves properly all the way to the loop resonance (    

 ). Note that in Fig. 4-6(a), which is the low loss case, near the onset frequency of the 

TE01 guidance (         for        (black curve) and         for       (blue 

curve)), the simulated efficiency curve starts to plateau and deviate from the curve that is 

generated using (4-11). There reaches a point beyond the onset frequency where the 

efficiency drops to a minimum (at          for        (black curve)) and then it 

rises again. This phenomenon occurs because once the onset frequency is crossed 

majority of the wave that the magneto-dielectric loop supports is trapped inside the loop 

and very little extends outside it. Therefore, it becomes progressively difficult to ‘leak 

off’ the structure due to just the curvature discontinuity of the toroid and you reach a 

minima in the efficiency curve. However beyond that point, the electric feed loop starts to 

favor the excitation of the next higher order TE mode which is the TE02 inside the 

magneto-dielectric loop. Hence, the radiation efficiency starts to climb up again due to 

TE02 mode radiation. As we keep going higher in frequency, this phenomenon keeps 

repeating and successive higher order TE modes appear and fade away just like the TE01 

mode. A detailed analysis of this phenomenon is done in Chapter 6. This effect is not 

seen in the lossy material cases, because the supported electromagnetic wave is never 

truly guided in the lossy structure, the wave always leaks off the structure.  
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Fig. 4-6 Radiation Efficiency comparison of (4-11) with full-wave simulations of a multi-

loop fed magnetic dipole made of (a) low loss (   (  )     (  )      ), (b) high 

loss(   (  )     (  )   ) (c) extremely high loss (   (  )     (  )    ) and 

(d) extremely high loss materials but neglecting skin depth effects in the efficiency 

calculation. 

 

For the low and moderate loss in permittivity or permeability or both, the 

inclusion of skin depth effect i.e. the area factor AF and the internal field shape factor 

have negligible effects on efficiency as skin depth ‘ ’ is almost always greater than 

radius ‘ ’. But for the extremely high loss case i.e. for    (  )     (  )    , the 

correction factors has a huge effect in retaining the validity of the equation over a broader 

band of frequency. (Compare the results in Fig. 4-6(c) with those in Fig. 4-6 (d) where 

the skin depth effect is neglected). 

 

(a) (b) 

(c) (d) 
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4.4 Practical Application of the Circuit Model: Body Wearable Belt Antenna 

 

 

In this section, we will discuss a practical application of the circuit model of the 

magneto-dielectric loop antenna described in Section 3.3. The circuit model will be used 

to evaluate the radiation efficiency of a Body Wearable Belt Antenna (BWBA) shown in 

Fig. 4-7. The antenna design is targeted towards use by the communication personnel in a 

battlefield. The goal is to replace the tall whip antennas carried around by these soldiers 

with a low observable body wearable antenna (Fig. 4-7). The performance of the new 

antenna must be better or at least the same as the standard antennas currently used for this 

purpose.  

 

Fig. 4-7 Body Wearable Belt Antenna designed to replace tall whip antennas carried by 

foot soldiers for interpersonal communication 
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The operational frequency band for the antenna design is from 30MHz to 

500MHz. But in particular, we want to maximize the efficiency of the antenna in the 

30MHz to 100MHz band in order to beat the conventional whip antennas, used in this 

range, convincingly. At the same time we want to minimize the manufacturing cost of 

these antennas so that they can be mass produced and distributed. Also, this antenna will 

be worn by the soldier, therefore we also want minimize the overall weight of the antenna 

as well. Therefore, the most appropriate approach to tackle this problem is to find an 

analytic circuit model of the system and then play ‘what if’ games with the volume of 

material used.  

The BW antenna system not only consists of the body wearable antenna made up 

of some magneto-dielectric material but also the “dielectric” human body. These are the 

two primary sources of radiation. Therefore, to model the system, we first simulate a 

dielectric cylinder representing the human body fed with an ideal lumped port source in 

the full-wave simulator. The human body is then ‘modeled’ as circuit impedance in the 

frequency range of interest. Next, the source is replaced by the body wearable belt 

antenna circuit model to complete the complete antenna model.  

Consider a dielectric cylinder having the frequency dependent permittivity of a 

human torso fed by a capacitive feed (lumped port in the simulator) over a ground plane 

(Fig. 4-8). A foot soldier does not stay stationary and moves his arms and legs during 

combat or in other words the shape of the dielectric human body radiator is constantly 

changing. A cylinder is a good statistical average for the shape of the human body. The 

dimensions of the cylinder soldier are 6 feet height and 32” waist. 
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Fig. 4-8 (a) Human body cylinder fed with an ideal lumped port at the same location as 

the eventual position of the BWA belt. (b) Frequency dependent permittivity of the 

human body. 

Full-wave simulation of the geometry above yields the curves in Fig. 4-9(a) for 

radiated power (Pradb) and power loss (Plossb). The input voltage (Vfeed) measured at 

the lumped port is shown in Fig. 4-9(b). Fig. 4-9(c) shows the real and imaginary part of 

the input impedance.  

 

Fig. 4-9 Simulation results of the geometry in Fig. 4-8(a) where (a) Radiated power and 

Power loss, (b) Feed Voltage and (c) Input impedance. 

Given these simulation data we can calculate the radiation resistance (Rradb) and 

loss resistance (Rlossb) the following way: 

(a) (b) 

(a) (b) (c) 
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The resulting radiation resistance and loss resistance is shown in Fig. 4-10(a). Fig. 

4-10(b) show that the sum of Rradb and Rlossb is equal to the real part of the input 

impedance as expected. The radiation efficiency of this dielectric cylinder fed with the 

ideal capacitive lumped port feed is shown in Fig. 4-10(c). This is the maximum radiation 

efficiency that can be achieved by this antenna system. Any addition of lossy materials to 

the system by replacing the ideal feed with a permeable material feed will bring down the 

radiation efficiency below this maximum value. 

 

Fig. 4-10 (a) Radiation resistance and loss resistance calculated from the simulation data 

(b) the sum of which equals the real part of input impedance. (c) Radiation Efficiency of 

the dielectric human body cylinder fed with an ideal lumped capacitive port feed 

(a) (b) 

(c) 
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 Therefore, the circuit model for the human body is now reduced to the one shown 

in Fig. X+4. The imaginary part of input impedance is left as it is and the real part has 

been separated into radiation and loss resistance. 

 

Fig. 4-11 Circuit model of the dielectric human body cylinder fed with a capacitive feed.  

 

The next step is to replace the ‘Vfeed’ with the magneto-dielectric loop circuit 

model from Fig. 4-2. The resulting model is shown in Fig. 4-12.  

 

Fig. 4-12 The circuit model of the BWA system that takes into account the ground plane.  

 

Now let us compare the model to full-wave simulations. The simulation geometry 

is shown in Fig. 4-13 where the lumped port of Fig. 4-8(a) has been replaced by the body 

wearable toroid belt of minor radius of 4cm (ρ=4cm). It also has its own finite metallic 
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ground plane. We will use quarter symmetry to simplify the simulations. The circuit 

element equations for the permeable toroid are the same as before except that we 

observed thorough simulation of the toroid by itself that we need to add a correction 

factor (2/5) to the Glossm. This factor comes from the fact that the model was developed 

for a toroid in free space. The problem at hand has a finite ground plane and a dielectric 

core. This factor accounts for this change in geometry. Since the ground plane and the 

core properties are fixed the factor will always be the same 2/5. The same factor is also 

applied to the radiation resistance. Thus,  
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(  )  (  ) 
                

    (   )
 

  
 (
 
 
)

 
(4-15) 

 

Fig. 4-13 Simulation geometry of the body wearable antenna system with quarter plane 

 

The permittivity of the human body is the same as in Fig. 4-8(b). To start with, 

different dispersion-less permeability was simulated and the comparison to the model is 

shown in Fig. 4-14. 
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Fig. 4-14 Radiation Efficiency comparison of the BWA system circuit model and full-

wave simulations for different values of permeability of the belt with (a),(b) having a loss 

tangent of tan(δ)=0.1 and (c)(d) with high tan(δ)=1. 

 

As seen in Fig. 4-14(c) and (d) the model works well for extremely lossy μr values 

as well. Next let us test the validity for different volume of the permeable material i.e. for 

different toroid radii ‘ρ’. Fig. 4-15 is for ρ=3cm and Fig. 4-16 is for ρ=6cm. 

(a) (b) 

(c) (d) 
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Fig. 4-15 Radiation efficiency comparison for different permeability values for a toroid 

minor radius of 3cm. 

 

Fig. 4-16 Radiation efficiency comparison for different permeability values for a toroid 

minor radius of 6cm. 

 

Fig. 4-14, Fig. 4-15 and Fig. 4-16 show that the circuit model is valid for different 

constant permeability values and for different belt radii. Now we are ready to play ‘what 

if’ games with the permeability and the amount of material to determine how far we are 

from the ideal radiation efficiency curve of Fig. 4-10(c). We know that the resulting 

radiation efficiency will always be below the curve of Fig. 4-10(c). Let us use a 

frequency dispersive magneto-dielectric material (Fig. 4-17(a)) and see the effect of 

changing the radii of the toroid. Fig. 4-17(b) show the radiation efficiency curves for 
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different ‘ρ’. Clearly as the radii of the belt increases, the radiation efficiency of the 

BWA system increases as well, but the price we pay is the increase in the amount of 

material required which corresponds to the increase in the overall cost of the belt. Table 

next to Fig. 4-17(b) also gives the volume of material used in cubic centimeters. Also 

beyond a certain radii (8cm in this case), any additional increase of the radius doesn’t 

show any appreciable increase in radiation efficiency.  

 

Fig. 4-17 (a) Magneto-dielectric material permeability used in the belt(b) Radiation 

efficiency of the BWA using the circuit model for different radii of the loop belt. 

 

 Another consequence of the circuit model for this body wearable antenna system 

is that we can clearly isolate the contribution towards radiation from the two sources, the 

human body and the permeable toroid. From the circuit model in Fig. 4-12, we can see 
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that the voltage ‘V’ at the toroid feed is the same as voltage fed to the human body circuit 

model. Therefore, the contribution to the radiated power from the toroid and that from the 

human body can be defined as                  and               , 

respectively. Thus the same voltage ‘V’ implies we can directly compare the two 

radiation conductance to see their individual effects. Fig. 4-18 below shows the plot of 

      and      . 

 

Fig. 4-18 Contribution to the total radiation from the two sources of radiation: the human 

body and the permeable toroid.  

 

The human body is clearly the greater source of radiation than the toroid belt. Therefore, 

we can say for a fact that the permeable toroid belt is the magnetic frill current feed for 

the dielectric human body. 

 

4.5 Summary, Conclusions and Future Work 

 

A closed form equation for the radiation efficiency equation was developed for a 

small magneto-dielectric loop. The equation is derived from the electrically small circuit 

model of a conventional metallic loop by adding additional elements (L for permeability 
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and C for permittivity) to take into account the material properties. The equation shows 

that maximum radiation efficiency of a material loop can be obtained not only by using a 

material with very low loss but also with a material that has very high loss. 

The main reason behind analyzing the Magneto-dielectric Loop antenna geometry 

is the fact that it has an omnidirectional pattern unlike the Magneto-dielectric Dipole. Just 

by examining the radiation efficiency equations of the two ((3-24) and (4-11)) the dipole 

is superior in the electrically small limit because the efficiency drops as a factor of (  )  

in its case as opposed to the (  )  in the loop.  

The circuit model presented here does not include the details of the feed structure. 

Once the feed is included we would have a complete model that can be used to calculate 

the input impedance of the antenna. This will enable us to calculate the Antenna Q and 

hence the bandwidth of the antenna; thus yielding in one formulation the radiation 

efficiency and antenna bandwidth, the two parameters that completely characterize a 

given material dipole antenna.  
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Chapter 5  

MATERIAL SELECTION RULE FOR MAGNETO-DIELECTRIC ANTENNA 

DESIGNS  

 

5.1 Introduction  

 

  

In Chapter 3 and 4, the two fundamental magneto-dielectric antenna designs, the 

magneto-dielectric dipole and the magneto-dielectric loop was analyzed. A simple small 

antenna equivalent circuit model was postulated using which the radiation efficiency 

equation for such antennas was derived and validated in the small antenna limit using 

full-wave simulations. The radiation efficiency equation is a function of the antenna 

geometry and the material properties (     ). Purely based on antenna geometry and 

operational frequency range, i.e. for the same magneto-dielectric material, the magneto-

dielectric dipole has higher radiation efficiency than the magneto-dielectric loop in the 

small antenna limit. In this chapter, it is shown that for either of the two fundamental 

geometries, for a given size constraints of the antenna, the desired operation frequency 

range and the desired efficiency in this range we can unequivocally identify the magneto-

dielectric material that can meet the required specifications. The analysis that follows is 

under the assumption that the frequency range of operation is below the onset frequency 

of the principal wave mode supported by the material antenna structure, theTE01 mode.   

There are numerous books written and countless papers published on magnetic 

materials each with its unique characteristics. The most basic classification of such 

materials based on its magnetic properties is quite literally done based on whether a 
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material is “magnetic” or not in the presence or absence of an external magnetic field. 

Materials are broadly classified as being diamagnetic, paramagnetic, ferromagnetic, 

ferrimagnetic or anti-ferromagnetic. This classification is briefly described in Section 5.2. 

Of these, ferromagnetic and ferromagnetic materials are most useful for antenna 

applications as they have sufficiently high frequency dispersive permeability in the 

frequencies of interest for antenna designs. In Section 5.3 we show three fundamental 

physical limits that dictate the eventual choice of magneto-dielectric material. These are: 

1) Gain Bandwidth Product limit 2) Snoek’s Product limit and 3) Kramers Krönig 

relation restriction on the permeability dispersion. Within these constraints it is shown 

that one single parameter which we call ‘hesitivity’ (  ) with the units of magnetic 

conductivity (   ) characterizes the performance of the material. In Section 5.4, the 

relationship between Hesitivity and antenna radiation efficiency is derived. The 

relationship shows that materials that have the same hesitivity will have the same antenna 

radiation efficiency. Hence, the parameter hesitivity is used to identify a family of 

materials that satisfy the design requirements. It is shown that, higher the hesitivity of the 

material family, the higher is the radiation efficiency over the frequency range of 

operation. In Section 5.5, we narrow down the choice of material from the family with a 

unique hesitivity to a single material based on the Gain-Bandwidth Product limit.  We 

show that any loss in the material (  ) improves the bandwidth of the antenna. Therefore 

we state the material selection law based on hesitivity (  ) and the magneto-dielectric 

material loss (  ). In Section 5.6, the material selection law is applied to realistic 

magneto-dielectric materials obtained from the literature.  Section 5.7 contains the 

summary of the chapter, some notable conclusions and possible future work. 
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5.2 Classification of Magnetic Materials: Dia, Para, Ferro, Ferri and Anti-Ferro  

 

 The origin of magnetism is directly related to the motion of electrons in an atom. 

Without delving deep into quantum physics, the two most significant sources of an 

electron’s magnetic properties are the orbital motion of the electron around the atom’s 

nucleus and the electron spinning around its own axis (Fig. 5-1). The electron orbiting the 

nucleus can be thought of as a small current loop generating a small magnetic field with a 

magnetic moment along its axis of rotation. The electron spinning on its axis has a spin 

magnetic moment associated with it whose vector direction depends on the direction of 

spin (up for right spin and down for left spin based on the right hand rule). Each atom 

therefore acts like a tiny magnet carrying an intrinsic or net magnetic dipole moment 

which is a superposition of the moments from these two sources. The type of magnetism 

is determined by how these elementary dipole moments are ordered and are broadly 

classified into diamagnetic, paramagnetic, ferromagnetic, ferrimagnetic or anti-

ferromagnetic.  

 

Fig. 5-1 Two sources of atomic magnetic dipole moments a) an orbiting electron and (b)a 

spinning electron 

 

 Most of the materials that exist on earth fall under the category of Diamagnetic 

materials. They do not have a net dipole moment i.e. the orbital and spin magnetic 

(a) (b) 
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moments cancel out within an atom. The application of an external magnetic field results 

in an induced magnetic moment which is in the opposite direction to the applied field. 

Thus, the relative permeability is less than unity (i.e. less than that of vacuum or free 

space) and hence the magnetic susceptibility (       ) is negative. Hence they are 

not useful for antenna applications. 

The individual atoms in a paramagnetic material on the other hand, have a net 

magnetic dipole moment. But they are randomly oriented such that the bulk material has 

no net magnetic dipole moment (Fig. 5-2(a)). When an external field is applied, the 

magnetic moments align preferentially in the direction of the applied field. This results in 

a relative permeability    that is slightly greater than 1. These materials are also not 

useful in designing magnetic antennas. 

 

Fig. 5-2 Intrinsic magnetic dipole moments in (a) Paramagnetic material (b) 

Ferromagnetic material (c) Anti-ferromagnetic material and (d) Ferrimagnetic materials 

 

Ferromagnetic materials possess a net magnetic dipole moment even in the 

absence of an external field (Fig. 5-2(b)). Such a permanent magnetic moment results 

from alignment of individual atomic moments (mostly spin moments) in a preferred 

direction. The mutual alignment of spins exists over relatively large volumes regions of 

the materials called domains. There could be several domains within a bulk structure each 

(a) (b) (c) (d) 
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with a magnetic moment vector that point in some random direction. This phenomenon in 

which the magnetic moments within a domain are bound to a preferred direction is said to 

be caused by an internal effective anisotropy field (  ). On the application of an external 

d.c field, the domains most closely oriented with the direction of the applied field grows 

at the expense of other domains, eventually occupying the material’s whole volume. 

When this happens, the material is said to be saturated with a saturation magnetization 

‘  ’ (units: Gauss in CGS) which is equal to the maximum magnetic flux density within 

the material. Any further increase in the strength of the external field will not result in an 

increase in the magnetic flux density in the material. Also, on the application of an 

external field ‘H’, the spinning electron starts to precess about the direction of H at a 

frequency ‘  ’ or ‘  ’. This frequency is called the Larmor frequency or ferromagnetic 

resonance frequency.  

Some examples of ferromagnetic materials are iron, nickel, cobalt, rare earth 

metals, etc. They have a large relative permeability and are hence one of the candidate 

material category in antenna applications. The only drawback with ferromagnetic 

materials is that they have very high electrical conductivity (therefore high   ). Apart 

from the obvious disadvantage seen just from the radiation efficiency equations ((3-24) 

and (4-11)), on the application of an external high frequency magnetic field, the high 

electrical conductivity results in creation of eddy currents in the material, which in turn 

creates a field in opposition to the external applied field. The opposition to the applied 

field results in the fields being pushed out from within the material. Thus, 

electromagnetic waves only penetrate to a certain depth, called the skin depth (seen in 

Chapter 3, Section 3.3), within the material. Therefore, only a fraction of the volume of 
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the bulk material will contribute towards radiation if used as a bulk material in magneto-

dielectric antenna designs. Furthermore, the skin depth loss dampens the effective 

permeability of the material and reduces the radiation efficiency of the antenna. Two 

possible workarounds to this problem are given in Fig. 5-3.  

 

Fig. 5-3  Possible solutions to negate eddy current effects in ferromagnetic materials (a) 

Lamination of thin films of material with an insulator in between and (b) Micro-particles/ 

Flakes of ferromagnetic materials mixed in with an insulating resin 

 

One solution is to form a laminate with thin layers or thin ferromagnetic films 

(     ), as thin as skin depth and interleaving them with equally thin insulating 

layers, to form a bulk structure. This is the standard technique used to make low loss 

transformer cores. This prevents formation of large eddy current loops that reduces the 

antenna efficiency. Another solution is to make a bulk composite by mixing micro-

particles or flakes of a ferromagnetic material with an insulating resin. Although these 

two methods negate eddy current effects, the effective permeability of the resulting 

composite is reduced. 

The next category is Anti-ferromagnetic materials. They have anti-parallel atomic 

magnetic moment alignment (Fig. 5-2(c)) which again results in a zero net magnetic 

moment. They are therefore not useful for antennas.  

(a) (b) 
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Ferrimagnetic materials or Ferrites have anti-parallel atomic magnetic moments 

as well, but they are not of equal strengths and hence do not cancel out in the bulk 

structure (Fig. 5-2(d)).They are generally oxides of iron combined with one or more 

mixtures of bivalent transition metals ’Me’ of the form “       ”. The prototypical 

ferrite, with just iron in it, is magnetite (     ), most commonly known as lodestone. 

Other examples are NiZn ferrite, MnZn ferrite, NiZnCo, CoZ Hexaferrites, etc. Their 

permeability spectra is similar to ferromagnetic materials i.e. they have a relatively high 

relative permeability (usually lower than ferromagnetic materials) but they come with an 

added advantage of high electrical resistivity due to the presence of insulating oxides. 

Therefore, eddy current or skin depth losses are not an issue unlike ferromagnetic metals 

and hence, it is also a candidate material category for antenna applications. 

To summarize this section, the two candidate magnetic material categories for use 

in magneto-dielectric antenna designs are ferromagnetic materials and ferrimagnetic 

materials or ferrites. The next criterion for narrowing down the candidate magneto-

dielectric material is the frequency dispersion of the relative permeability, both its real 

and imaginary components. The selection will depend on the three fundamental limits in 

the design of magneto-dielectric material antennas described in the next section. 
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5.3 Fundamental Physical Limits in Designing Low Profile & Conformal Electrically 

Small Magneto-dielectric Material Antennas 

 

Electrically small antennas constitute the primary component of the physical layer 

in a large percentage of wireless communication systems. Whether the application is 

commercial or scientific the benefits afforded by miniaturization of these systems 

continually drives the size of the antenna down. Frequently absent from many of these 

intriguing proposals is an examination of the fundamental limits of performance to which 

electromagnetic radiators are subjected. 

 

    5.3.1 Gain-Bandwidth or Efficiency-Bandwidth Product Limit 

 

 

  The first of these limits is the Gain-bandwidth Product(GBWP) limit. It is a 

known fact that an antenna performance is best described by the product of gain and 

bandwidth. Since the antenna Q is inversely proportional to the bandwidth (BW) of the 

antenna (      ), some researchers and authors prefer to state the Gain/Antenna Q 

limit [25] [26]. To reduce it a step further, since we are concerned with electrically small 

antenna whose directive gain is constant (approximately 1.5), we prefer to fix the 

Directive gain to unity (or ignore it in other words) and call it the Efficiency Bandwidth 

Product (EBWP) limit. Now, traditionally since a vast majority of radiators were metallic 

with unity radiation efficiency, the main concern was to estimate the minimum Q limit. 

The antenna Q is defined as the ratio of the energy stored per unit cycle in the near field 

of the antenna (    ) to the power radiated by the antenna (    ). The minimum Q 

equation for a resonant electrically small radiator that is completely enclosed in a sphere 
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of radius ‘a’ was first given by Chu in 1948 [25]. Since then, there have been numerous 

modifications and re-derivations to this equation but the most simple and accepted 

equation for the minimum Q (    ) of the lowest order mode (TE or TM) for an 

electrically small antenna is the one derived my McLean [27]. 

  
      

    
        

 

(   ) 
 

 

(   )
 

(5-1) 

Here,          is the propagation constant,    is the free space wavelength and ‘ ’ is 

the radius of the enclosing sphere. The limiting equation (5-1) gives us the maximum 

limit of the Efficiency bandwidth Product of an electrically small metallic antenna.  This 

limit is extremely stringent and difficult to achieve with realistic metallic antennas as 

only fields outside the sphere ‘ ’ were considered in deriving the equation. By including 

the fields inside the sphere, Thal [28] showed that the lowest achievable Q is about three 

times the value given by (5-1).  

Now, for magneto-dielectric antennas, Wheeler [2] showed that it is possible to 

come close to (5-1) limit using an infinitesimally small spherical permeable (  ) antenna. 

Hansen [29], Kim et al [23] have given equations for a spherical antenna with a lossless 

and lossy magneto-dielectric core for any size of the sphere. They showed that even with 

magneto-dielectric materials, the minimum Q that could be achieved is always greater 

than the equation given in (5-1). Since the radiation efficiency of realistic magneto-

dielectric antennas will always be less than unity, it is safe to assume that the maximum 

unassailable EBWP is given by       . 

The actual Antenna Q for any given antenna (metallic or magneto-dielectric) can 

be calculated from its input impedance ( ( )) in closed form using the equation given by 
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Best et al [11] ((2-8) given in Chapter 2). In the same paper, a better and more accurate 

expression for the Fractional bandwidth (FBW) of the antenna, than the 1/Q 

approximation, is given which depends on the allowable amount of reflection coefficient 

(   ). 

  
 

  ( )
   ( )            

     
 

        
          ( )  

 √ 

 ( )
 

(5-2) 

where,  ( )    ( ( )). The equation assumes that the antenna is perfectly matched at 

every frequency at which the FBW is calculated. That is, at every matched frequency, the 

reflection coefficient,     and antenna efficiency (Ant Eff.) is equal to the radiation 

efficiency (Radn Eff.) since,                 (      ). Therefore, using (3-24), 

(4-11) and (5-2) we can calculate the EBWP of a small magneto-dielectric antenna dipole 

or loop.  

The most important consequence of the antenna Q and EBWP calculation is the 

following:   

The magneto-dielectric antenna will radiate with the highest possible radiation efficiency 

given by (3-24) and (4-11) only if it operates within the FBW given by (5-2). This is also 

true for metallic radiators in the sense that the theoretical close to 100% radiation 

efficiency can only be attained if operated in the FBW given by (5-2). The only way to 

increase the bandwidth in either case is to sacrifice antenna efficiency by adding loss in 

the system. This trade-off between efficiency (or gain) and bandwidth does not affect or 

change the EBWP curve (or GBWP curve). 
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     5.3.2 Snoek’s Law Limit 

 

 

  The second limiting factor in the design of antennas using magnetic materials is 

the limit imposed by Snoek’s Law which was first postulated by J.L. Snoek in 1948 [30]. 

He observed a general trend in ferrites; the higher the dc permeability (   or    ) the 

lower the ferromagnetic resonance frequency. He made the theoretical connection 

between the two by realizing that, while the ferromagnetic resonance frequency is 

proportional to the internal anisotropy field ‘  ’, the initial dc permeability (or initial 

susceptibility          ) is inversely proportional to ‘  ’, and therefore, the 

product of these two quantities, which is now called Snoek Product (SP), is a constant 

that is dependent only on the saturation magnetization (  ) of the material. The Snoek’s 

Law for a bulk polycrystalline ferrite is: 

  (     )  (
 

 
)
    

  
               𝛾    

(5-3) 

→           (     )          𝛾
 

 
      

(5-4) 

All the members in a particular family of magnetic materials have roughly the same 

Snoek product value. An example is the               ferrite family given in Smit and 

Wijn [31] (Page 269) Fig. 5-4.  The Snoek Product for all the members in this family is 

~30,000. 
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Fig. 5-4 Complex permeability of the NiZn family from [31] 

 

Since the Snoek product is constant for members of the same family and since it 

is only a function of ‘  ’, we can say that chemical composition of such materials 

primarily alters the anisotropy field ‘  ’.  Therefore, Snoek’s law implies that to increase 

the resonance frequency of a member of a material family, the price paid is a drop in 

initial susceptibility. This has been an important limit in the development of magnetic 

materials for radiofrequency applications over the last half century because most 

designers look for materials with low loss (     ) at ever increasing frequencies. From 

Snoek’s law this means pushing the resonance frequency up past the desired operating 

frequency range and accepting a lower permeability. 
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     5.3.3 Limit imposed by the Kramer’s Krönig relations 

 

 

  The third limit is the recognition that the requirements of causality, linearity, 

passivity and energy conservation force the frequency dependent permeability and 

permittivity of all materials to be an analytic function of a very precise nature that obeys 

the Kramers-Krönig relations [32]. Two classic examples of analytic functions that obey 

these relations are a Debye function and a Lorentz function.  

   𝑦               𝑦         
   

   
 
  

 
(5-5) 

                     𝑦       
   

   
 
  

  (
 
  
)
  

(5-6) 

where, ‘   ’ is the DC susceptibility, ‘  ’ is the relaxation frequency (or resonance 

frequency) and ‘ ’ in the Lorentz function is the damping factor.  

An example of these two susceptibility functions is given in Fig. 5-5 with 

      ,      (      ) and       for the Lorentz function. 

 

Fig. 5-5 (a) A single Debye susceptibility function (b) A single Lorentz susceptibility 

function 
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Almost all material frequency dependent permittivity and permeability functions 

are either Debye or Lorentz or a linear combination of many single Debye and/or Lorentz 

functions. In the case of the dispersive permittivity function it can be shown these 

analytic functions can always be reduced to the form of an electric circuit consisting of a 

parallel sum of series Inductor- Capacitor-Resistor (LCR) circuits [33] [34]. Given the 

duality of Maxwell’s equations, the LCR circuit model also holds for the magnetic 

permeability function. Thus, the typical spin resonance of a single Debye permeable 

material and a single Lorentz material is represented by the LCR circuit of Fig. 5-6 (a) 

and (b) respectively, resulting in the dispersive permeability with a ferromagnetic 

resonance frequency   . In this representation, the complex permeability  ( )  

  ( )     ( ) is the magnetic capacitance of the RLC circuits. Any physically 

realizable magnetic material must, at the very least, be described by a single Debye 

relaxation or a single Lorentz resonance circuit. 

 

Fig. 5-6 (a) Single Debye equivalent RC circuit and (b) Single Lorentz equivalent RLC 

circuit 
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Here,      ,      (     ) and     (  
  ). The two resistors are given by, 

     
 

    (     )
 

(5-9) 

     
 

    (     )
 

(5-10) 

 A little algebra recovers the usual form of the Debye and Lorentz permeability 

dispersion given by, 

       {  
     

   
 
  

} 

(5-11) 

       {  
     

   
 
  

  (
 
  
)
 } 

(5-12) 

Now, a closer look at (5-9) and (5-10), reveals that the units of the inverse of this 

Debye and Lorentz circuit resistance is that of magnetic conductivity (   ). Heaviside 

first introduced the concept of magnetic conductivity when he postulated a completely 

symmetric form of Maxwell’s curl equations which some call Heaviside’s duplex 

equations [35]. By introducing the complex permittivity and permeability functions into 

his equations, Heaviside’s version of Maxwell’s equations is reduced to: 

                  ( 
   )         

               

 

(5-13) 

                    ( 
   )        

               

 

(5-14) 

From (5-14), Heaviside’s magnetic conductivity is defined as         . The plot of 

the magnetic conductivity for the two susceptibility examples given in Fig. 5-5 is shown 

in Fig. 5-7. 
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Fig. 5-7 Magnetic conductivity of the (a) Debye and (b) Lorentz examples in Fig. 5-5 

 

 The star marker represents the ‘maximum magnetic conductivity’ in both the 

Debye and Lorentz curve. For a Debye equation, this maximum value is twice the 

magnetic conductivity at the resonance frequency i.e.    (  ) and for the Lorentz 

function, this value is equal to the magnetic conductivity at resonance i.e.   (  ).We 

have given the term “hesitivity” (  ) to this maximum conductivity. In the Debye and 

Lorentz circuit equivalent (Fig. 5-6), the hesitivity is equal to the inverse of the circuit 

resistor (R). Therefore, 

   (   𝑦 )  
 

    
    (  )      (     ) 

(5-15) 

   (       )  
 

    
   (  )  

    (     )

 
 

(5-16) 

As will be shown momentarily, this quantity    determines the radiation 

efficiency of a magnetic antenna constructed from a permeable material. We should point 

out immediately that the hesitivity is proportional to the Snoek’s Product (5-4) and 

therefore is also a fundamental quantity that characterizes families of magnetic materials. 

Materials that belong to the same family have the same Hesitivity. For Debye materials, 
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hesitivity and Snoek Product is identical. Table 5-1shows typical hesitivities of some 

magnetic material families. 

Material Hesitivity    

(   ) 

Air 0 

Bulk NiZn ferrite 30,000 

Co2Z Hexaferrite(aligned) 280,000 

CoFeSiNoB ferromagnetic metal alloy 2,175,000 

CoZrNb ferromagnetic metal alloy 5,000,000 

Table 5-1 Typical Hesitivities of Microwave materials 

 

 

5.4 Hesitivity and Magneto-Dielectric Antenna Radiation Efficiency 

 

 In this section, we derive the radiation efficiency equations of a magneto-

dielectric dipole and the magneto-dielectric loop antenna in terms of hesitivity, the new 

term that we coined in Section 5.3 for maximum magnetic conductivity. We will show 

that the radiation efficiency equation is identical for both a single Debye permeability 

material and a single Lorentz permeability material in terms of hesitivity. The radiation 

efficiency of a magneto-dielectric dipole and magneto-dielectric loop was derived in 

Chapters 3, (3-24), and Chapter 4, (4-11), respectively. The terms that contain 

permeability components (  and   ) which are common to both these efficiency 

equations can be written together as  ( ):    
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(5-17) 

Let,             and       𝑦. Therefore,   

 ( )  
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(5-19) 

which is the equation of a circle with center at (  
 

  ( )
) and radius ‘

 

  ( )
’.  

Now for the Debye susceptibility function in (5-5), the real and imaginary parts of 

the function can be separated as 
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(5-20) 

Therefore, 

𝑦   (
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(5-21) 

Substituting (5-21) in (5-19), we get 
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(5-22) 

Comparing (5-22) and (5-20) we get 
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(5-23) 
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Now, the Hesitivity of a single Debye material is defined in (5-15) as:   

  (   𝑦 )           

Substituting in (5-23) we get: 

 ( )  
   

  (   𝑦 )
 

(5-24) 

Now, let us consider the single Lorentz material, the real and imaginary parts of 

susceptibility can be separated as 
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(5-25) 

Therefore, 

𝑦   
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Substituting (5-21) in (5-19), we get 
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(5-27) 

Comparing (5-22) and (5-20) we get 
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(5-28) 

Now, the Hesitivity of a single Lorentz material is defined in (5-15) as:   

  (       )  
       

 
 

 

Substituting in (5-23) we get: 

 ( )  
   

  (       )
 

(5-29) 

From (5-23) and (5-23), we see that for both a single Debye and a single Lorentz, the 

relationship between the function  ( ) and    is the same, i.e. 
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(5-30) 

Substituting (5-23) back into the equations of the radiation efficiency of the magneto-

dielectric dipole and the loop antenna we get the following two equations: 
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(5-32) 

where,           is the volume of the cylindrical dipole and      (   )(   ) is 

the volume of the loop.  

 Therefore, the efficiency of a cylindrical magneto-dielectric dipole and a 

magneto-dielectric loop carrying a uniform current is uniquely determined by a single 

parameter for the material, its hesitivity,  which is only a function of the d.c. 
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susceptibility, the resonance frequency and the damping constant (for the Lorentz). These 

results are readily shown to be true using a full-wave simulator like Ansoft HFSS.  

 Fig. 5-8 shows a 1 meter long dipole of 0.5” radius fed with eight electric feed 

loops, placed directly on a conducting surface. The eight feed loops are used to strictly 

enforce the uniform current distribution assumption.  

 

Fig. 5-8  Magneto-dielectric dipole antenna geometry used to test the radiation efficiency 

equations in terms of hesitivity 

Fig. 5-9(a) and (b) shows three different Debye materials and four different 

Lorentz materials, respectively, considered in the numerical experiment. All the Debye 

materials and the all the Lorentz materials have exactly the same hesitivity but with 

relaxation frequencies ranging from 300 MHz to 2 GHz as seen in the magnetic 

conductivity plots.  
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Fig. 5-9 Different (a) Debye and (b) Lorentz materials permeability and magnetic 

conductivity plots, used in the verification of the radiation efficiency equation (5-31). The 

hesitivity of the three seemingly different Debye materials is the same and the same is 

true for the four Lorentz materials. 

 

They clearly exhibit very different loss tangents across the frequency range that 

was simulated: 30MHz to 300MHz. Nevertheless as Fig. 5-10 shows that the efficiency 

computed by the full-wave solver is the same for all three Debye materials and also for 

the four Lorentz materials, and lies right on top of the result of equation (5-31) in the 

entire small antenna range. 

 

Fig. 5-10 The Radiation Efficiency of (a) single Debye materials and (b) single Lorentz 

materials shown in Fig. 5-9. The solid curve is using (5-31). 
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 Therefore, using (5-31) and (5-31), given the real estate available and a minimum 

efficiency requirement to design a low profile conformal magneto-dielectric material 

antenna, we can determine to which family of magnetic materials the candidate antenna 

material will belong to. That is, we can estimate the hesitivity of the family of the 

candidate magneto-dielectric material.  

In a different scenario, in antenna designs where we know beforehand the 

material that we intend to use, we can estimate the radiation efficiency at any frequency 

within the small antenna limit without having to measure the permeability of the material 

at the said frequencies because we would know the hesitivity of the material. 

The next obvious question is whether we can narrow down the choice of material 

further, by picking an optimum one within the family of same hesitivity materials. The 

answer lies within the first fundamental physical limit EBWP that was described in 

section 5.3 of this chapter: Antenna Bandwidth.  

 

5.5 Material Selection Law in the design of magneto-dielectric antennas 

  

 The radiation efficiency equations of (5-31) and (5-32) show that higher the 

hesitivity of the material used in the design of magneto-dielectric antennas, higher will be 

the radiation efficiency. But it is always possible to have more than one material with the 

same hesitivity, which is true of materials that belong to the same family, an example 

being the NiZn family in Fig. 5-4. The parameter that can aid us in the final choice of 

material is the antenna bandwidth. We have already described in Section 5.3 how the 

product of Efficiency and Bandwidth, EBWP, is a fundamental physical limit in antenna 
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designs. Let us calculate the bandwidth for the Debye and Lorentz materials that were 

simulated in Section 5.4 (Fig. 5-9) using the fractional bandwidth equations given by 

Best et al. [11] (5-2). In order to use this equation, the input impedance of the antenna 

(   ) is calculated by using ideal power splitters/dividers to form a single feed line. Since 

the efficiency for these materials is the same, the EBWP is essentially a plot of the 

antenna bandwidth.  

 The Efficiency Bandwidth Product along with the loss tangent of the Debye 

materials shown in Fig. 5-9(a), is shown in Fig. 5-11. The material with the highest    in 

the frequency band that was simulated gives the highest Efficiency Bandwidth Product. 

This is not a surprising result. We know that adding any kind of loss to the antenna 

system improves the bandwidth of the antenna. In contrast to some traditional methods to 

increase bandwidth like additional elements like a resistor in series to the input of the 

antenna, etc. the loss in the magneto-dielectric material itself is performing the function 

of raising antenna bandwidth.  

 

Fig. 5-11 (a) Loss tangent of the simulated Debye materials and (b) Efficiency Bandwidth 

Product (EBWP) curves for the same. 

(a) (b) 
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 Following the same steps as above, the Efficiency Bandwidth Product along with 

the loss tangent of the Lorentz materials shown in Fig. 5-9(b), is shown in Fig. 5-11. 

Again, among the different materials in the same hesitivity family, the material with the 

highest loss gives the highest Efficiency Bandwidth Product. 

 

Fig. 5-12 (a) Loss tangent of the simulated Lorentz materials and (b) Efficiency 

Bandwidth Product (EBWP) curves for the same. 

 Therefore, from the radiation efficiency equations in Section 5.4, we see that we 

need a magneto-dielectric material with high hesitivity for high radiation efficiency. 

From the EBWP calculations in this section, we have realized that we need materials that 

have high    within the frequency band of interest to get high antenna bandwidth. 

Therefore, by combining these two statements we state the material selection law to 

choose the optimum magneto-dielectric antenna material as: 

“The candidate material to design efficient broadband low profile conformal 

magneto-dielectric antenna will belong to the material family with the highest 

hesitivity and among that family; it will be the one that has the most    loss in the 

targeted frequency band of operation”. 
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Since the loss or the imaginary part of permeability (  ) peaks at the 

ferromagnetic resonance frequency (  ), a useful rule of thumb or extension to the 

material selection law is to ensure that the ferromagnetic resonance frequency of the 

material that is selected is within band of interest. 

   

5.6 Some Realistic and Almost Realistic Magneto-dielectric materials Evaluated using 

the Material Selection Law 

 

 In this section, the material selection law that was postulated in the previous 

section will be used to evaluate some of the existing magneto-dielectric material found in 

the literature. The permeability data obtained from these sources was fit to an analytic 

function (Debye or Lorentz) whenever it was possible to do so. The following materials 

were considered: 

a) NiZn:  Bulk NiZn ferrite produced by FairRite [36]. The permeability data was 

obtained from the same reference.  

b) Co2Z:  Unaligned Cobalt Hexaferrite (permeability data from the book by Smit 

and Wijn [31]. This material is also produced by Transtech Inc.)  

c) Bek12:  Bekaert CZN film sheets (12    Kapton substrate thin film) laminated to 

form a bulk composite (as in Fig. 5-3). The data sheet was provided by the 

manufacturer Bekaert Specialty Films. 

d) Bek7p5:  Bekaert CZN assuming that it is deposited on        insulating 

substrate; many such thin films are then assumed to be laminated to form the bulk 

structure.  
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e) Bek7p5_500:  Similar to d) but with the ferromagnetic resonance frequency 

artificially shifted to 500MHz while keeping the same hesitivity. Although this 

material doesn’t exist, it is used here to re-iterate the need to move the materials 

high loss (  ) region into the frequency range of interest.  

f) CoB7p5:  Cobalt Boron thin film from [37] assuming that it is deposited on a 

7.5micron Kapton substrate and laminated to form the bulk composite. 

Using the permeability dispersion data of a single film we can calculate the 

effective permeability of this composite. The frequency dispersive effective permeability 

of the bulk structure for each material is shown in Fig. 5-13.  

 

 

Fig. 5-13 Frequency dispersive permeability (Solid: Real and Dashed: Imaginary) of 

different magnetic materials that were considered for evaluation. 

(a) (b) 

(f) (c),(d),(e) 
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The hesitivity of the individual thin films and the hesitivity of the bulk sample are 

tabulated in Table 5-2. 

Magnetic 

Material 

Hesitivity (   ) 

(Single Film) 

Hesitivity (   ) 

(Bulk Sample) 

NiZn na 5.524*10
4
 

Co2Z na 1.042*10
5
 

Bek12 6.511 * 10
6
 3.951*10

5
 

Bek7p5 6.511 * 10
6
 5.01*10

5
 

Bek7p5_500 6.511 * 10
6
 5.01*10

5
 

CoB7p5 2.720 * 10
6
 8.646*10

4
 

Table 5-2 Hesitivity of the materials being evaluated using the material selection rule 

 

As expected, upon lamination the permeability of the single film gets diluted and 

the hesitivity drops. Notice that the hesitivity of the CoB drops significantly after 

lamination because the individual film found in the literature has a thickness of 300nm 

which is significantly thinner than the assumed dielectric substrate. Therefore, if it is 

possible to deposit thicker films while maintaining the same permeability dispersion, then 

the bulk hesitivity of this material will approach that of the Bekaert’s films. 

The materials arranged in the ascending order of hesitivity is therefore, 

              𝑦                                            

Also, among the two high hesitivity materials, Bek7p5 and Bek7p5_500, Bek7p5_500 

has the highest amount of loss (  ) in the frequency range of interest. Therefore, 

according to the Material Selection Law, the optimum choice among the materials above 

must be Bek7p5_500. This conclusion is easily validated by using a full-wave simulator.  
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Full-wave simulations of a 1m long cylindrical dipole of 0.5” radius fed with four 

feed loops were performed using these materials. This geometry was fixed for all the 

materials listed above for direct comparison. The frequency range of simulation was 

30MHz to 300MHz. The impedance seen at each feed port was combined using an ideal 

power divider netwrok as in Section 5.6, to find the total input impedance    . The 

bandwidth (BW) was again calculated using (5-2). The radiation efficiency, bandwidth 

(for Γ = -10dB) and Efficiency-Bandwidth Product (EBWP)’ for all these cases are 

shown in Fig. 5-14. 

 

 

Fig. 5-14 a) Radiation Efficiency (b) Fractional Bandwidth (c) Efficiency Bandwidth 

product for different materials for a 1m long, 0.5” radius dipole. 

(a) (b) 

(c) 
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From Fig. 5-14(a), it is clear that the radiation efficiency of the magneto-dielectric 

dipole increases with hesitivity. And also as expected, two different materials with 

different permeability dispersion but with the same hesitivity, have the same radiation 

efficiency (Orange: Bek7p5_500 curve is on top of the Green: Bek7p5 curve).   

The fractional bandwidth (FBW) curve, on the other hand (Fig. 5-14(b)), has a 

different trend. As we saw in Section 5.6, the highest FBW is obtained using the NiZn 

and CoB materials that are extremely lossy at these frequencies.  

Fig. 5-14(c) shows that at low frequencies, for this structure, the NiZn ferrite has 

the highest EBWP. The loss in this material makes it very easy to match the antenna and 

hence the boost in bandwidth overcomes the drop in efficiency as seen in Fig. 5-14(a)  

and Fig. 5-14(b). A similar result is observed in the case of CoB7p5 material. But, as 

frequency goes up, we see that the Bek7p5_500 material has the highest EBWP. The high 

hesitivity of this material results in high efficiency and as the ferromagnetic resonance of 

this material is close to the band of operation (ferromagnetic resonance f0=500MHz), the 

high μ” loss gives it higher FBW. The difference is clearly seen when compared to 

Bek7p5 which is a material from the same ‘family’ (same hesitivity). Although 

Bek7p5_500 and Bek7p5 have the same radiation efficiency, Bek7p5 has a lower 

bandwidth (and therefore lower EBWP) as it has low μ” in the frequency range of operation.  

These results validate the material selection law that was stated in Section 5.6. 

The laminated Bek7p5_500 material has the highest EBWP throughout the band of 

interest. Therefore, it is the right choice of material as predicted by the Material Selection 

Law. 
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5.7 Conclusions and Future Work 

 

 Using a closed form model of an electrically small magneto-dielectric antenna 

that satisfies automatically the Fano-Chu Gain bandwidth Product limit, and including in 

that model a dispersive permeability consistent with the Kramers Kronig relations, we 

obtain a material selection rule that states that given a fixed volume of material, 

maximum efficiency is obtained by choosing the material to have the largest possible 

hesitivity, a quantity commensurate with Snoek’s Product, and which has the largest 

amount of    loss in the desired frequency range of operation. This material selection rule 

enables the rapid design of magneto dielectric antennas for conformal applications. 

 Future work on this subject will include extending the material selection law to 

multi-Debye and multi-Lorentz materials.  

  



  115 

Chapter 6  

 

MAGNETO-DIELECTRIC DIPOLE ANTENNA CIRCUIT MODEL USING 

POLARIZABILITY  

 

6.1 Introduction 

 

In Chapters 3 and 4, we developed an electrically small magneto-dielectric 

antenna model by adding circuit elements (L & C) that are functions of the magneto-

dielectric material constitutes (permeability (  ) and permittivity (  ) respectively) to the 

electrically small RLC circuit model of a conventional metallic antenna. The additional 

elements accounted for the penetration of fields into the material. The external field 

structure were assumed to be the same as that of a metallic (or PEC) electrically small 

antenna and hence they were modeled by Schelkunoff’s electrically small antenna circuit 

elements. In this chapter, we take a different approach in modeling a magneto-dielectric 

dipole antenna in which we use only three basic elements (R, L and C) to come up with a 

much simpler (less circuit elements) equivalent magnetic circuit model, with the 

magnetic capacitor being a function of permeability. The permeability is incorporated 

into the antenna capacitance using polarizability (α) of the object. The polarizability 

equation enables us to model both the external and internal magnetic field morphology 

using a single magnetic capacitor.  The analysis is done for a purely magnetic material 

before extending it to a more general realistic lossy magneto-dielectric material. 
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Any dipole or loop like antenna in the electrically small regime can be modeled as 

an RLC circuit where R is the radiation resistance (    (   )
  

for a small dipole with 

triangular current distribution).  For a PEC dipole, a series resonant circuit is the best 

model (Fig. 6-1(a)), the equations for L and C given by Schelkunoff [38] are,  

             

   
 
  

(  (
 

 
)  

  

 
) 

 

(6-1) 

            
       

  (   )     
      

(6-2) 

The equations above are for a PEC dipole. For a magneto-dielectric antenna fed 

by either a frill magnetic current or an electric voltage gap, the L and C equations need to 

be a function of its constitutive properties namely μr and εr. Therefore, given the 

properties of the magneto-dielectric material we want to find the total antenna 

capacitance and inductance of the circuit model Fig. 6-1. 

 

Fig. 6-1 ESA circuit model of (a) PEC dipole (b) the proposed model for a Magneto-

dielectric Dipole 

 

 In Section 6.2, the relationship between the magnetic capacitance of the magneto-

dielectric antenna magnetic circuit model and polarizability is established. The two are 

related by a proportionality factor which is calculated in Section 6.3. In Section 6.4, the 

complete circuit model is compared with full-wave simulations. It is shown that the 
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agreement between the circuit model and the full wave simulations is good only in the 

electrically small limit. The summary and some notable conclusions of the chapter are 

outlined in Section 6.5.   

 

6.2  Polarizability and Antenna Capacitance 

 

  Let us complete the magnetic circuit model by starting with the antenna 

capacitance. Now we need a parameter that connects capacitance to its constituents. One 

such quantity is Polarizability ( ).  Suppose a uniform electric field (E) is impressed on a 

conducting sphere of radius ‘a’ (Fig. 6-2(a)).The induced dipole moment (p) of the sphere 

in the presence of this uniform E-field is given by 

       
                                         𝑦 (6-3) 

 

Fig. 6-2 (a) PEC sphere with external flux lines and a (b) Dielectric sphere with internal 

and external flux lines created in the presence of a uniform ambient E field(E). 

 

Now suppose, the sphere is not made up of PEC but a material say of finite 

dielectric constant (    ) (Fig. 6-2(b)), then the Polarizability, αmaterial, is that of a PEC 

E E 

PEC Sphere Dielectric Sphere (ε
r
<<∞) 

p=α(ε
r
)*E 

(a) (b) 
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sphere de-rated by the factor, (    ) (    ). The dipole moment is still p= αmaterial E. 

Note that the PEC sphere has only external flux lines while the material object has both 

internal and external flux lines. Now, if we consider a PEC sphere and wrap it with a 

magnetic ring current and make a spherical antenna (Fig. 6-3) we know that its near field 

looks like the field of a dipole and we can calculate its dipole moment. Therefore, is there 

a relation between the antenna capacitance (from the flux lines) and Polarizability? Let us 

assume that 

                             (6-4) 

 

Fig. 6-3 PEC spherical antenna excited by a magnetic ring current 

 

The antenna susceptance of different spherical modes of the metallic sphere is 

given by [38]: 

        
 

  
 

    

   (   )
     (

  

    {[
   
 ]  }

  )

 

 

Since we are interested in the electrically small domain; for the lowest order mode or 

principal wave (TM01), n=1, 

PEC Spherical 

Antenna 
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(6-5) 

From (6-3), (6-4) & (6-5) : 

           
          

 

 
  

 or          
 

 
   (6-6) 

Thus, (6-6) relates Polarizability to capacitance of a PEC sphere.  This can be extended to 

a magneto-dielectric sphere by using its polarizability αmaterial from above. But here we 

are interested in linear cylindrical objects as antennas that can be placed conformal to 

ground. We can always approximate a cylinder by a prolate spheroid of large aspect ratio 

(Fig. 6-4). The reason for considering a prolate spheroid is that unlike a cylinder, we 

know the Polarizability of a prolate spheroid in closed form [39]. 

 

Fig. 6-4 Prolate Spheroidal Magneto-Dielectric Antenna fed by an electric loop 

(Approximates a Cylinder) 

 

If ‘k1’ and ‘k2’ represent the constitutive properties of the external and the 

internal medium and k0 = ε0 or µ0 (depending on the type of material): 

        (
 

           
) 



  120 

  
  

 
    

(  )

    ( )
   ( ) 

  
 

 
[

 

  (
  
  

  )
 
 

 
 

  (
  
  

  ) (   )
] (
  

  
  ) 

             𝑦             (6-7) 

 

where, Aspect Ratio = (l/2)/a, a = Minor axis radius and  l/2 = Major axis radius  (See 

Fig. 6-4). Our next task is to find the factor that relates the Polarizability of a prolate 

spheroid and the total magneto-dielectric prolate spheroidal antenna capacitance. 

 

6.3 Factor Relating Polarizability and Antenna Capacitance of a Permeable Prolate 

Spheroid Antenna  

 

 

 We begin our analysis, by simulating prolate spheroidal antennas (in HFSS) of 

different Aspect Ratios (   (   )  ) going from 1 which is a sphere to 50 which 

looks like a needle (Fig. 6-5) and different µr (lossless i.e.     ) from      to 

       (a PMC) in the electrically small regime (30MHz to 100MHz). 

 

Fig. 6-5 Simulation model of a Prolate Spheroidal Antenna of different aspect ratios (AR) 

in the full wave simulator (Ansoft HFSS). 
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The circuit model assumed is shown in Fig. 6-1(b), but since we are working in 

the electrically small regime, we will ignore the inductance (  ) for now. In HFSS we 

measure the input impedance of the loop which is electric impedance Zine. We want the 

dual impedance     . We saw in Chapter 3 that the magnetic input impedance is 

equivalent to the electric input admittance. Thus, we can find the magnetic input 

impedance of the ESA equivalent circuit model by taking the inverse of the input 

impedance measured in the full wave simulator. 

Note, that although we said that the inductance of the equivalent circuit will be 

ignored, what we were talking about was the internal inductance. The antenna would 

always see the inductance of the feed loop itself. Hence, this extra inductance should be 

subtracted out of our antenna capacitance calculation. Therefore, before we analyze the 

magneto-dielectric case, let us analyze the electric feed loop by itself (µ’=1) in order to 

find out its self-inductance. Jeffimenko [40] gives us the static solution of the self-

inductance of a thin circular wire ring (circle radius ‘R’ and wire radius ‘ρ’): 

                    (  (
  

 
)  

 

 
) 

(6-8) 

On the other hand, Schelkunoff [41] also gives us the inductance of a small loop by 

integrating around the loop the inductance per unit length of the principal wave: 

                     (  (
 

 
)) 

(6-9) 

Surprisingly, the two equations are different. The comparison of the two 

equations along with the HFSS result for different loop radii is shown in Fig. 6-6. We can 

clearly see that Schelkunoff’s Loop equation agrees well with simulation for all the cases 
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considered keeping in mind that the simulation curves can go lower as we go deeper into 

the electrically small domain. Therefore, we will use his equation to subtract out the 

inductance of the loop in our antenna capacitance calculation.  

 

Fig. 6-6 Inductance of feed loop vs Frequency for different loop radii 

 

Therefore, the antenna capacitance calculated from HFSS is given by 

 

        
   (    )  

 

 
  (

 

    
) 

                         
 

    (
 

    
)
                  

(6-10) 

The factor of ‘2’ is to account for the fact that the antenna was placed on top of a PEC 

ground plane. Fig. 6-7 below shows this HFSS magnetic capacitance compared with the 

magnetic capacitance calculated from the polarizability for two different values of µr. 
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Fig. 6-7 Magnetic Capacitance of the ESA magneto-dielectric dipole Simulated and 

Calculated from Polarizability for (a)       (b)       . 

 

The capacitance calculated from the polarizability is encircled in Fig. 6-7. The 

factor for Aspect ratio of ‘1’ is the same for both the cases. In other words for a sphere 

(AR=1), the factor is independent of material properties i.e the polarizability takes into 

account the change in the shape of the fields inside and outside the spherical structure. In 

fact, from (6-6), the factor for a PEC (or PMC) was estimated to be 8/3 times the square 

of the radius of the sphere. That value for the simulated sphere is 0.0053. The value using 

the polarizability equation is 0.00513 for AR=1 (Fig. 6-7). In other words, the 

capacitance factor of a spherical magneto-dielectric antenna is the same as that of a 

spherical PEC or PMC antenna. 

(a) (b) 
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Also note that the in each plot the factor is different for different aspect ratio’s 

and at the same time the factor in Fig. 6-7(a) and (b) are different for a fixed aspect ratio 

except AR=1. This implies that the factor that relates polarizability and magnetic 

capacitance for a prolate spheroidal antenna is a function of both the Aspect ratio (AR) 

and the material property of the magneto-dielectric (µ’). The proportionality factor is 

plotted versus the Aspect ratio for different µ’s and vice versa in Fig. 6-8 below. 

 

Fig. 6-8 Magnetic Capacitance and Polarizability proportionality factor (a) versus Aspect 

Ratio and (b) versus Permeability 

 

The constant curve in Fig. 6-8(b) is for the sphere (AR=1) which as mentioned 

before is a constant w.r.t   . Fig. 6-8 clearly shows the variation of the proportionality 

factor with aspect ratio and   . Therefore, we are left with the task of finding a function 

for the factor which is a function of AR and   . Based on Diaz et. al. [42], since the 

problem at hand is that of finding the capacitance factor in the electrically small regime, 

Laplace’s equation must be satisfied. Thus, the equation of this capacitance factor that 

accounts for the morphology of the field structure as a function of    will be of a Debye 

equation form: 

(a) (b) 



  125 

       (       
             

  
 

      

) 

(6-11) 

where, ‘facPMC’ is the factor for PMC,  ‘facDia’ is the factor at the diaphanous limit 

(assuming μ=1.1 since μ=1 makes the polarizability zero),     (    ) and ‘upoles’ 

are the estimated poles of this function. Thus we have in effect separated the two possible 

sources of variation of the factor function into ‘facPMC’, ‘facDia’ and upoles that vary 

only with aspect ratio and ‘u’ that is a function of just the permeability   . The 

comparison between simulated factor and equation (6-11) for two different cross-

sectional radius of the prolate spheroid is shown in Fig. 6-9.  

 

Fig. 6-9 Single pole Debye factor function (6-11) compared to full-wave simulation 

extraction from polarizability for cross sectional radius (a) 1cm and (b) 1inch=2.54cm. 

 

(a) (b) 
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The plot of the terms of the factor function that depend on the aspect ratio is shown in 

Fig. 6-10. 

 

Fig. 6-10 a) Plot of factor for PMC dipole ‘facPMC’ and factor at the diaphanous limit 

‘facDia’ versus invers of the aspect ratio. (b) Plot of the poles of (6-11). 

As this function (6-11) is analytic; although it was derived for purely real μr, its 

validity extrapolates to the entire complex plane of permeability. For a few complex 

values of µr, HFSS simulations were run to find the magnetic capacitance as before. Note 

that since we have a complex µr, the Polarizability calculated from (6-4) and (6-11)  will 

be complex and therefore we end up with a Complex magnetic capacitance with the 

imaginary part corresponding to the magnetic loss resistance. In order to preserve the 

complex data from our HFSS ‘Zin’ measurement, we have to subtract out the Radiation 

resistance due to the magnetic current flowing in the magneto-dielectric dipole. Since we 

are operating in the electrically small regime it is safe to assume a triangular current 

distribution due to the leaky nature of the wave in this structure. Therefore, the magnetic 

radiation resistance of this dipole using duality is given by: 

      
 (   )

 

  
  

(6-12) 

where η0 is the impedance of free space, i.e. 377Ω.  

(a) (b) 
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Fig. 6-11shows the resulting calculated and HFSS simulated magnetic capacitance 

for different cases. There is an excellent agreement between simulation and the calculated 

magnetic capacitance from polarizability using the factor calculated before. The 

agreement is good not only in the real part of capacitance but also the imaginary term, 

which goes to show that the polarizability can also accurately account for the magnetic 

loss resistance incurred due to the complex permeability. Therefore we have determined a 

closed form expression for the magnetic capacitance      in the circuit model of Fig. 

6-1(b). Now all that is left is the inductance.   

 

Fig. 6-11 Simulated and Calculated complex magnetic capacitance for AR=30(a) & 

AR=50(b), (c) List of complex    used (numbered 1-10 => x-axis) 
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The antenna magnetic inductance, to first order, is the dual of (6-2). Therefore the 

zeroth order equations for the electrically small magnetic circuit model of a permeable 

prolate spheroidal dipole (Fig. 6-1 (b)) fed by a single electric loop are summarized as 

follows: 

From (6-12),                  
 (   )

 

  
  

From (6-4), (6-7) and (6-11),            
              

       
             

  
 

      

 

Using duality on (6-2)            
   

  
(  (

 

 
)  

  

 
)            

   

6.4 Circuit Model Comparison with Full-Wave Simulations 

 

Consider a 21 inch long and 2inch cross-section prolate spheroid permeable 

antenna. Note that the TE01 mode onset frequency for a cylinder of this cross section for 

the different permeability values simulated are:      => 4.5GHz;       => 1.5GHz; 

      => 645MHz and        => 202MHz which corresponds to      of 8, 2.7, 

1.15 and 0.36 respectively. The comparison of input impedance and the proposed circuit 

model is shown in Fig. 6-12.  
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Fig. 6-12 Input impedance comparison of circuit model and simulation of a 21” long, 1” 

radius antenna (a) Real part (b) Imaginary part of input impedance. 

 

The imaginary part of the input impedance matches well in the electrically small 

limit (antenna         long). The real part does not agree well even at the low end. All 

signs point towards the fact that our assumption of triangular current distribution is not 

accurate for all the values of   . Let us take a closer look at the magnitude of current 

distribution on the antenna (Fig. 6-13).  

 

(a) (b) 

(a) (b) 
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Fig. 6-13 The magnetic current ‘Im’ (in volts) plotted along the length of the antenna (a) 

30MHz (b) 100MHz and (c) 500MHz. (d) List of permeability    simulated. 

 

At 30MHz (Fig. 6-13(a)), for low values of permeability, the current magnitude 

drops extremely fast along the antenna length. The antenna is well below the TE01 mode 

onset frequency of the structure and hence the wave quickly leaks off the material. The 

antenna does not use the entire length of material available and therefore the apparent 

length of the antenna (effective length ‘    ’) is much shorter than the physical length and 

there is less radiation. Thus the red simulation curve of the real part of input impedance 

in Fig. 6-12(a) is lower than the model. As the permeability increases, the structure 

guides the wave longer and therefore the effective length is longer and hence the 

radiation resistance is higher. Note that the black curves in Fig. 6-12(a) almost match at 

l/λ=0.05 since the current distribution for        is almost triangular. Now as 

frequency increases, the effective length of the antenna increases faster as permeability 

increases and approaches the actual physical length. Thus, the current distribution is 

closer to being triangular and the simulation matches the model better (green curves in 

Fig. 6-12). But as the frequency increases even more, the structure starts guiding the 

mr

0

0

1

2

3

4

5

6

7

8

9

10

0

1.1

2

4

7

10

20

50

100

500

81·10



(c) (d) 



  131 

wave all the way to the ends of the antenna and hence deviates further away from the 

triangular distribution assumption (Fig. 6-13(c)). Hence the circuit model devised in this 

chapter is valid for only a narrow range of combination of frequency and permeability 

where the distribution is close to being triangular. 

 

6.5 Summary and Conclusions 

 

 In this chapter, we tried to come up with a simple three element (R,L and C) 

circuit model for an electrically small magneto-dielectric antenna. We were successful in 

calculating one of the three elements accurately, namely the magnetic capacitance Cm , by 

relating polarizability and antenna capacitance through a proportionality factor. This 

factor for a prolate spheroid antenna magneto-dielectric is a function of both the aspect 

ratio and the permeability of the material used. The prolate spheroid was analyzed as 

opposed a more conventional cylindrical geometry as we have a closed form equation of 

the polarizability of prolate spheroid. A high aspect ratio prolate spheroid is a good 

approximation for a cylinder. The inductance and the radiation resistance were assumed 

to be the dual of the electric dipole. By doing so, the current distribution on the antenna 

was fixed to triangular which on hindsight resulted in the final circuit model to be valid 

only for a narrow range of frequencies and value of permeability.   
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Chapter 7   

INFINITELY LONG MAGNETO-DIELECTRIC CYLINDER AS A MAGNETIC 

RADIATOR  

 

7.1 Introduction 

 

 

 In Chapters 3, 4, 5 & 6 we developed an electrically small magneto-dielectric 

antenna circuit model. The individual circuit elements were functions of the geometry 

and the magneto-dielectric material constitutes (permeability (μr) and permittivity (εr) ) . 

We determined the radiation efficiency of the antenna and the input impedance sans the 

feed circuit. But the circuit model did not and cannot tell us anything about the electric 

and magnetic field structure inside and around the antenna object, nor did it give us any 

insight on the kind of wave guided by this structure. The conventional approach to tackle 

this problem is to solve the wave equation for the antenna structure and apply the 

appropriate boundary conditions. However, it is difficult to obtain the wave equation 

solution for a finite cylinder because of the complexities involved in matching the 

boundary conditions at the finite ends of the cylinder. Therefore, we will start with the 

‘slightly easier’ problem of solving the wave equation for an infinite magneto-dielectric 

cylinder placed on the axis of a single electric feed loop source which will inject the 

desired TE-like modes into the cylinder. Depending on the frequency of operation and the 

radius of the cylinder, the injected TE waves either ‘leaks’ off the structure or is guided 

by it. Although such a structure is physically not realizable, the analysis gives us insight 

into how magneto-dielectric materials guide or partially guide the TE modes.  
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A material with a high enough real constitutive can provide a wave-guiding 

boundary, similar to conductors, as long as the modes excited in the structure is of the 

form of the TE (for magnetic structures) or TM (for dielectric structures) modes.  If the 

frequency of operation is below the cut-off (or onset) frequency of the modes, the 

electromagnetic wave excited in the material is loosely (or poorly) guided and radiates by 

leaving the antenna structure or if the structure is finite, by scattering off the ends of the 

antenna structure in a way similar to a wave guided by a metal antenna of the same shape. 

The magneto-dielectric antenna, being penetrable, exhibits intrinsic frequency dependent 

behavior. As frequency increases the wave on the penetrable rod becomes more and more 

tightly bound until the onset of the TE01 and TM01 modes, when it is formally a guided 

wave. Clearly, once the mode is well above this onset frequency, and trapped by the 

material, it will not be available to be radiated by scattering off the ends of the antenna.  

The purpose of this chapter is to elucidate partially guided or leaky wave and 

guided wave propagation in magneto-dielectric cylinders or wires. In Section 7.2, the 

equations for electric and magnetic fields everywhere in space is derived starting from 

Helmholtz vector wave equation and applying appropriate boundary conditions to arrive 

at the particular solution. The magnetic current (‘  ’ in Volts) along the length of the 

structure is calculated by performing the circulation integral of the E-field around the rod. 

The magnetic current amplitude and phase plots versus length along the antenna clearly 

show us whether the wave is guided or is leaky at a particular frequency. Using the 

electric and magnetic field equations, the power radiated by this structure is calculated by 

integrating the complex Poynting vector over a cylindrical surface enclosing the antenna. 

Using this equation, in Section 7.3, given the predominantly leaky wave behavior 
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exhibited by these antennas in their most common application (low frequencies, 

electrically small elements), a method to calculate the minimum length of material 

required to get the same amount of radiated power as that of an infinite magneto-

dielectric cylinder of the same cross-section is described. This effective length calculation 

is a quick and easy method to design magneto-dielectric dipoles where a particular ‘dB’ 

radiated power design specification has to be met. Section 7.4 contains the summary of 

the chapter, some notable conclusions and possible future work. 

 

 7.2 Infinite Magneto-Dielectric Cylinder Wave Equation Solution 

 

 

 Following the paper by Islam [43], the problem is to find the field equations at an 

observation point in space due to a semi-infinite magnetically loaded loop antenna as 

shown in Fig. 7-1.  

 

Fig. 7-1 Infinite Magneto-Dielectric cylinder of radius ‘a’ 
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It is a homogenous and isotropic semi-infinite (along the z-axis) permeable core 

of radius ‘a’ coaxial with a current loop also of radius ‘a’ located at a point ‘z0=0’ i.e. the 

origin on the z-axis. The approach is to solve the homogenous wave equation in terms of 

the vector potential ‘A’ and then apply the appropriate boundary conditions. 

             (7-1) 

The dimensions of the feed loop antenna itself are very small compared to the 

wavelength. The current ‘I’ through the loop is assumed to be uniform. The symmetry of 

the problem demands that we can only excite TE modes, since the source current, being 

  , can only create a φ-directed vector potential Aφ and only φ-directed E-fields i.e. 

        and there will be no variation with φ, i.e.  / φ=0. Therefore (7-1) can be 

expanded as 

    

   
 
 

 

   

  
 
  

  
 
    

   
            

(7-2) 

Now we can employ the classic separation of variables method by letting 
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→     
   

   
 
 

 
 
  

  
 
  

  
  

   

   
        

Dividing throughout by R*Z, we get 

 

 

   

   
 

 

  

  

  
 
 

 

   

   
    

 

  
   

Let ‘kz’ be the separation constant. Therefore, 
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(7-3) 

And  

 

 

   

   
    

           
   

   
     

           
(7-4) 

Since there are two regions, inside the magneto-dielectric i.e.     and outside i.e.    , 

the solution can be written as 

  
[ ]       (    ) 

                            (7-5) 

  
[ ]      

( )(    ) 
                       (7-6) 

Where,     √  
      and     √  

     . The        term implies a wave travelling 

along the +ve z-axis with a propagation constant   . 

Here, C and D are unknown constants to be determined by applying the boundary 

conditions,   (    ) is the Bessel function of the first kind and   
( )(    ) is the Hankel 

function of the second kind.  

Since the solution extends to infinity radially i.e. there are no cylindrical 

boundaries that might impose restrictions on  ( ), there are correspondingly no 

restrictions on    and the solution involves integral over all   . Therefore, 
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(7-7) 
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Now, the two boundary conditions to be enforced at the boundary of the two 

regions I and II are 

 ̂  (      )    

 ̂  (      )                                    𝑦 

These two equations can be rewritten in terms of the vector potential A (     ) as  

  
[ ]

   
[ ]

 (7-9) 
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[ ]
)  

 

  

 

  
(   

[ ]
)                                𝑦     

(7-10) 

Substituting (7-5) and (7-6) in (7-9) at     we get, 

     (    )      
( )(    ) 

Or 

   
  (    )

  
( )(    )

 
(7-11) 

Now, since the only surface current is at the feed loop located at the origin, the 

current can be represented by the Dirac Delta function    ( ). This Delta function can 

be expanded into an infinite set of current waves travelling along the z-axis each using 

the Fourier Integral theorem: 

 ( )  
 

  
∫          

 

  

 
(7-12) 

Substituting (7-7), (7-8) and (7-12) in (7-10) and keeping in mind that the integrands 

alone should satisfy this condition we get, 
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(7-13) 

The derivative of the Bessel or the Hankel function (let’s call it Y1(px)) is given by 
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Also 
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Substituting in (7-13) we get, 
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(7-14) 

Substituting (11) in (14) we get 
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Therefore, C(kz) is given by 
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(7-15) 

And  
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(7-16) 

 

Substituting (7-15)and (7-16)in (7-7) and (7-8) we get 
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(7-18) 

Now the individual field components can be derived using         and 

  
 

 
   . Therefore, using the two equations above we get the E and H fields in the 

two regions as: 

For     (inside the magneto-dielectric) 
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And 
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For     , 
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And 
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And 
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(7-24) 

Upon some manipulations we note that all fields have in common the following 

term in the denominator: 

{  
     

     

  
( )
(    )  (    )

  
( )
(    )  (    )

} 

When this is zero we have a pole. Rearranging the terms: 
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(    )  (    )

  
   

 
 

   
  
( )
(    )  (    ) 

We recognize this as precisely the transcendental equation for the propagation constant of 

the TE01 mode in a permeable rod. Thus during the calculation of the spatial fields we 

will have to deal with these surface wave poles. These poles can only arise in the range: 

         

Because in this range,     √  
          √      

 ;      is a negative imaginary 

number while     √  
      is a positive number. Now since: 
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The quantity 
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is known as the logarithmic derivative of   ( ) and is well behaved.  In fact, the quantity 

 

(   )

  
( )(   )
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is purely real and negative while in the same range the quantity 

{
(    )  (    )

  (    )
} 

is also purely real, so only in this range can the denominator vanish. Said another way: 

we know guided slow waves travel slower than free space but no slower than the rod 

medium, therefore it is only in this range between    and    that the    spectrum waves 

can match in speed the slow wave modes and it is then that they can couple strongly to 

them. 

When we are concerned with the onset of surface waves as a function of 

frequency in the source-less solution of the penetrable rod, this onset is controlled by the 

argument of the Bessel functions    . In the case of the spectrum excited by the current 

band, this onset is a function of   in the rod medium; and    is at its largest, namely 

equal to   , at the horizon when kz approaches k0: 

    √  
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Therefore, if the rod is internally electrically large enough to trap the wave, this pole will 

first appear in the spectrum at the horizon.  

Now we are interested in the current wave (guided displacement current dB/dt 

wave). We obtain this by integrating the circulating E-field at the surface of the rod: 

∮ ⃑    ⃑⃑  ⃑  ∫ 
  ⃑ 

  
             

[ ]
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( )(    ) 
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( )(    )  (    )  (    )  

( )(    )

  

  

 

 

(7-25) 

the magnetic current is in Volts. 

To perform the integration numerically, we deform the integration path in the 

vicinity of the surface wave poles. Fig. 7-2 shows the amplitude (a) and phase(b) of the 

current wave from 30MHz to 170MHz every 20MHz versus distance in wavelengths for 

a permeable rod of      ,      and radius a = 2 inches. Fig. 7-2(c) shows the 

structure of the mode inside the permeable rod (Plot of the    field). In Fig. 7-2(a), it is 

clear that for frequencies far below cutoff the current is not guided at all and we see a 

precipitous drop in amplitude. Therefore, far below cutoff the noise in the calculation 

makes determination of the phase velocity ambiguous for the black and gray curves in 

Fig. 7-2 (b) (30MHz and 50MHz). Nevertheless it is clear that they start below the light 

line and then all we see above one wavelength is noise.  Above 70MHz the phase plots 

are well behaved and we clearly see fast wave behavior with phase velocities that 

approach the light line (31.4
c
 over 5 wavelengths) at 170MHz.The amplitude and phase 

plots show that as 170MHz is approached, the approaching surface wave onset tends to 
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flatten the amplitude of the current wave and brings its speed close to light, thus the 

magneto-dielectric rod behaves more and more like a Perfect Magnetic Conductor 

antenna.  

 

Fig. 7-2 Amplitude (a),Phase (b) as a function of distance from the feed for a 2” radius 

     ,      rod from 30MHz to 170MHz (c) Mode Structure (  ) 

 

Fig. 7-3show the results from 190MHz to 330MHz every 20MHz again plotted versus 

distance from the feed in wavelengths. We are now in the region of the guided TE01 

mode. 

(a) (b) 

(c) 
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Fig. 7-3 Amplitude (a),Phase (b) as a function of distance from the feed for a 2” radius 

     ,      rod from 190MHz to 330MHz (c) Mode Structure (  ) 

 

At 190MHz, just above onset of the guided wave shows amplitude behavior very 

much like a PMC rod (   (     )). It also shows a phase velocity very close to that of 

light. As the frequency continues to increase the current becomes more uniform 

indicating a better guided wave with the accompanying phase velocity becoming slower 

than light (slope of phase lines greater than the light line).  From 250MHz to 270MHz the 

(a) (b) 

(c) 
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wave slows down even more and the amplitude, though flat is stationary. There is a 

sudden change between 270MHz and 290 MHz and this corresponds to the frequency 

above which the surface wave pole starts losing strength (In Fig. 7-3(c), the magnitude of 

Eφ drops from 270MHz to 290MHz). The wave becomes very slow and the amplitude of 

the current drops dramatically. This behavior is a result of exciting the rod at the surface. 

As the wave becomes more and more trapped its energy migrates to the interior of the rod 

i.e    increases inside the rod (Fig. 7-3(c)) and its surface field drops (   at ρ=a), 

reducing the reaction between the electric field and the exciting current. 

Thus above this frequency the TE01 mode becomes increasingly hard to excite 

and the next mode, the TE02 is beginning to appear.  As a result the excited current wave 

reverts to the rapidly attenuated fast wave (310MHz), with a plateau far from the feed. 

The phase curve reveals that this plateau is a very slow wave, probably the last time we 

can excite the TE01 mode from the surface of the rod. At 330MHz, the TE01 mode is out 

of reach and the TE02 has not hit onset and thus we are back to the leaky current mode 

(magenta curve) traveling just faster than light. 

Fig. 7-4 shows the same plots from 350MHz to 490MHz.  Around 410 MHz (the 

TE02 cutoff frequency) the amplitude becomes much like a PMC antenna and the phase 

velocity crosses the light line. Above that frequency the wave continues to become better 

bound again, this time as TE02 (Fig. 7-4 (c)), in complete analogy to what we saw above 

already. 
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Fig. 7-4 Amplitude (a),Phase (b) as a function of distance from the feed for a 2” radius 

     ,      rod from 350MHz to 490MHz (c) Mode Structure (  ) 

 

Fig. 7-5 below shows the Radiated power (Prad) versus frequency. Prad is 

calculated by integrating the complex Poynting vector over a cylindrical surface 

enclosing the antenna. The red lines indicate the cut-off frequencies of the TE0n modes.  

(a) (b) 

(c) 
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Fig. 7-5 Radiated Power (Prad) vs Frequency(MHz) for a 2” radius      ,      rod 

 

The Radiated power and hence the Radiation Resistance drops right after every TE0n 

cutoff as the mode is well guided. Prad continues to drop until the loop feed starts 

exciting the next higher order mode. 

 

7.3 Effective Length for a Finite Magneto-dielectric Dipole Based on the Radiated Power 

of an Infinite Magneto-dielectric cylinder  

 

 

 We know that the magneto-dielectric antenna radiates by leaking off energy off its 

structure. In Section 7.3, we calculated the magnetic current distribution of an infinite 

cylindrical antenna. Since we can’t make an infinite structure can we design a realistic 

finite magneto-dielectric antenna using what we have learned so far? 

Let us start by looking at the current distribution at a fixed frequency for different 

values of permeability   . A fixed radius (a=3cm) infinite magneto-dielectric rod was 
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simulated and the permeability varied from         to 160 (permittivity     ). The 

frequency was fixed to 100MHz which is well below the TE01 mode cut-off frequency 

for even the highest µr considered (        ,                 ). The magnetic 

current    is shown below in Fig. 7-6. 

 

Fig. 7-6  Magnetic current (Im) of a semi-infinite cylindrical magento-dielectric antenna 

(a = 3cm) vs antenna length measured from the feed loop. 

 

The ripples seen in the results are due to the numerical noise when solving the 

equations from Section 7.2. The magnetic current shows an exponential tail (leaky wave 

behavior) away from the feed, however, close to it we can clearly see a logarithmic drop 

in magnitude (ln(1/L)).  

Now, a closer look at the current curves shows that it is possible to fit the 

exponential tail of the magnetic current with a single exponential term (dashed black 

curves in Fig. 7-7).  
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Fig. 7-7  Magnetic current (  ) of a semi-infinite magneto-dielectric antenna fit to an 

exponential (dashed black curves). 

 

If we now subtract these exponential fits from the magnetic current,   , we get the 

following curves for different values of    (Fig. 7-8).  

 

Fig. 7-8 ‘Im’ and ‘Im – exp(fit)’ current curves for different µr vs antenna length. 
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Fig. 7-8 shows that the magnetic current    of a semi-infinite magneto-dielectric 

antenna is the sum of a constant perturbation current (Im-exp(fit) curves in Fig. 7-8) and 

an exponential leaky wave current of the TE01 mode below its cutoff. The constant 

perturbation current is due to all the higher order modes that are extremely leaky that can 

get coupled into the magneto-dielectric material.  

Now if we ask the question at what length should we truncate the antenna so that 

we can get as much radiated power as possible? For an exponential current distribution it 

is natural to choose the 1/e point as my effective length (    ). Table 7-1 lists      for 

different   . 

   Leff (in) Leff (cm) 

40 17.02 43.18 

60 21.29 54.07 

80 25.55 64.9 

100 30.46 77.36 

120 38.32 97.33 

140 47.57 120.84 

Table 7-1      values for different    

 

Now let us see how well did we do in choosing the length by comparing the 

radiated power of the finite dipole of length =        (Fig. 7-9) with that of an infinite 

dipole of same cross-section and permeability.  
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Fig. 7-9  Finite cylindrical magneto-dielectric rod with circular feed loop. 

 

As shown in Fig. 7-9, the outer conductor of the coaxial feed of the circular loop 

is extended out of the ground plane all the way to the center of the loop. This removes the 

asymmetry of the loop and maintains the unidirectional electric current flow. Fig. 7-10 

shows the electric current in the feed loop for this new configuration. 

 

Fig. 7-10 Electric Current ‘Ie’ in the feed loop vs angular position for different µr. 
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The circular loop has a uniform constant current distribution. Now we compare 

the analytical Prad of an infinite magneto-dielectric cylinder with the simulated Prad of a 

finite magneto-dielectric cylindrical dipole over ground vs µr (Fig. 7-11). 

 

Fig. 7-11 Radiated Power vs µr (Analytic: Infinite rod versus Simulated Finite cylindrical 

rod) 

 

The      simulated was calculated from f=100MHz magnetic current curves. The 

length was kept the same for the other two frequencies. If we consider just the f=100MHz 

case, the analytic and simulation results match fairly well for small ‘ ’. As the value of 

‘  ’ goes up, we keep getting closer and closer to the guided domain i.e. the waves are 

better guided by the PC rod. Hence, we can see that there is a deviation between analytic 

and simulated results for higher µr due to the fact that in the case of the finite rod there is 

an additional radiation effect from the end discontinuities. Therefore, we get a higher 

Prad in our finite rod simulations. In the 50MHz case, Prad is higher because we have 

started with a longer Leff than what would be required, as the 100MHz Leff was chosen.  
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So far, a finite magneto-dielectric antenna with different permeability at a fixed 

frequency was analyzed. In Fig. 7-11, the simulation and calculations at 50MHz and 

150MHz were done using the effective length values obtained from the 100MHz case. 

Therefore, in order to prove the validity of the method conclusively, the above approach 

was now repeated for a single value of    (=60) analyzed at different frequencies. Since 

we are interested in the leaky domain operation of these antennas; for 3cm magneto-

dielectric cylinder as before, 50MHz to 400MHz is the frequency range considered as the 

TE01 mode cutoff frequency for these values is 500MHz. Fig. 7-12 shows the Prad 

curves obtained analytically and from simulation along with the plot of the effective 

length calculated from the procedure outlined above w.r.t frequency. 

 

Fig. 7-12 a) Radiated power, (b) Effective (Half) Length of Finite 3cm radius magneto-

dielecric cylinder vs Frequency for µr = 60 

 

 Fig. 7-12(a) shows that the Prad curves has the same behavior as the case where 

different µ’s were analyzed. At low frequency, the analytic and simulated curves are on 

top of each other. As the frequency increases, the magneto-dielctric cylinder starts 

guiding the wave longer along its axis resulting in a stronger radiation from the two end 

(a) (b) 



  154 

discontinuities. Thus, we see around a factor of two increase in radiated power at higher 

frequencies close to cut-off. 

 Similar analysis was done for two other magneto-dielectric cross-sections. The 

results are shown below in Fig. 7-13. For a 0.75cm radius magneto-dielectric cylinder, 

the TE01 cut-off frequency for         is 2GHz and for a 6cm radius magneto-

dielectric cylinder, the TE01 cut-off frequency is 249MHz. 

 

 

Fig. 7-13 a) Radiated power, (b) Effective (Half) Length of finite 0.75cm radius magneto-

dielectric cylinder vs Frequency and (c) Radiated power, (d) Effective (Half) Length of 

finite 6cm radius magneto-dielectric cylinder vs Frequency. 

(a) (b) 

(c) (d) 
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The Prad curves in these two cases behave the same as Fig. 7-12. The radiated 

power is same as the analytic case at lower frequencies and deviates to about twice the 

amount as cut-off frequency is approached due to increase in radiation from the ends of 

the finite magneto-dielectric antenna. The three curves can be put together and plotted 

w.r.t    (     ) times the radius ‘a’ of the cylinder as shown below in Fig. 7-14. 

           is the cut-off value of the TE01 mode. 

 

 

Fig. 7-14 (a) Radiated power, (b) Effective (Half) Length (c) Effective (Half) Length / 

Radius of a magneto-dielectric Antenna versus k0*a for a permeability µr = 60 (d) 
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Fig. 7-14 (a) shows that the three Simulated ‘Prad’ curves lie on top of each other 

when plotted w.r.t    . Similarly, the effective length curves of the finite magneto-

dielectric antenna when normalized by the cross-section of the antennas lie on top of each 

other. Therefore, we have reduced our complete analysis to a single curve (Fig. 7-14(c)), 

i.e. given a magneto-dielectric materials permeability we can find the effective length of 

a finite magneto-dielectric antenna for any cross-section that gives the same amount of 

radiated power as an infinite magneto-dielectric rod at low frequency (           for 

       ) and about twice the amount of power as we approach the TE01 cut-off 

frequency (                ). 

 

7.4. Summary, Conclusions and Future Work 

 

The green function problem of the cylindrical permeable rod excited by a electric 

current loop was presented in this chapter. The current wave in a magneto-dielectric 

infinite rod is shown to go through a succession of fast wave-slow wave transitions. 

Below the first mode and in between modes the fast wave regions exhibit leaky wave 

behavior with decaying amplitude and waves travelling faster than speed of light. Every 

time we approach the onset of guidance of a mode, there is a band of frequencies over 

which the magneto-dielectric rod behaves very much like a PMC metal rod. Then as the 

mode gets more trapped the magnetic current and the radiated power eventually drop 

because this magnetic current cannot be excited from the surface. Eventually, as 
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frequency increases, the mode reverts to a fast wave leaky mode that corresponds to the 

next higher order mode.  

The exponential decay of the current during the leaky wave periods reduces the 

effective electrical length of the antenna. This reduced aperture size contributes to the 

lower gain bandwidth product when compared to a similarly sized metal dipole in free 

space.  

We also established a method to estimate the minimum length required for a magneto-

dielectric antenna to give the same (or slightly greater) radiated power than an infinite 

length magneto-dielectric rod of the same cross-section and permeability when operating 

in the leaky domain.  It is first shown that this length is directly proportional to the value 

of permeability of the rod for a fixed frequency and radius of the rod. When analyzed 

w.r.t frequency for a single permeability of µr = 60, it was observed that the effective 

length is a function of frequency as well. Finally, the complete analysis versus frequency 

was reduced to a single curve of ‘Effective length/a versus    ’ (Figure 2.14) from which 

it is possible to determine the effective length required to radiate more power than an 

infinite µr=60 magneto-dielectric rod for a given cross-section. In the future, this analysis 

can be repeated for different µ’s to obtain a family of effective length curves. 

So far we have discussed the case of loading a loop antenna with a cylinder of 

infinite length. Since an infinite cylinder is never realizable in reality, the next step in our 

effort to understand a pragmatic antenna is to obtain a rigorous model of a finite 

magneto-dielectric antenna. Because of the complexities involved in the analysis of the 

ends of a finite cylindrical magneto-dielectric rod we will assume a prolate spheroidal 

shape antenna. A long and thin prolate spheroid is a good approximation to a finite 
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cylinder.  We propose to solve this problem in a similar way as the infinite case, by 

solving the inhomogeneous wave equation using the appropriate boundary condition, 

however, this time due to the spheroidal geometry, a spheroidal coordinate system will be 

used. This analysis is done in Chapter 5. 

The most useful application of magneto-dielectric dipoles is in conformal antenna 

applications where it is placed tangential to a metallic ground plane. There are cases, 

where even this might be unacceptable for example on a UAV where any protrusion 

would increase the drag force and increase fuel consumption. Thus ideally we want to an 

antenna which can be buried in the ground plane. The use of permeable materials does 

enable us to do so. The magneto-dielectric antenna can be buried inside a metallic trough 

in the ground plane and thus be truly conformal. The analysis of such a trough structure is 

planned for the future. 
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Chapter 8   

FINITE MAGNETO-DIELECTRIC PROLATE SPHEROIDAL ANTENNA 

ANALYSIS 

 

8.1 Introduction 

 

 In Chapter 7, we analyzed an infinite magneto-dielectric cylinder and saw 

the guided and partially guided (leaky) wave propagation along the structure as a function 

of frequency and material properties. The infinite magneto-dielectric cylinder antenna 

problem was first tackled because the solution of the wave equation for a finite cylinder 

is not trivial due of the finite ends of the cylinder. Another workaround for that problem 

is to assume that the finite magneto-dielectric cylinder wire antenna to be analyzed is thin 

enough and long enough to be approximated by a large aspect prolate spheroid. The same 

argument was used in Chapter 6, where the cylindrical magneto-dielectric dipole was 

assumed to be a prolate spheroid since the polarizability has a closed form solution. 

Therefore, in this chapter we examine a finite magneto-dielectric prolate spheroid 

antenna which is analyzed by solving the wave equation and applying the appropriate 

boundary conditions in the prolate spheroidal coordinate system.  

A large aspect ratio (AR=major axis/minor axis) prolate mimics a long slender 

cylindrical dipole. Under quasi-static assumptions, the wave equation solution of a 

magneto-dielectric prolate spheroidal antenna fed by a single loop was analyzed by Islam 

[44]. In the last decade, using similar quasi-static assumptions, Simpson et al. analyzed 

solenoid fed prolate spheroidal [45] and hollow prolate spheroidal material antennas [46]. 
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The quasi-static assumptions ensured that the solution of the wave equation is a sum of 

Legendre polynomials which are orthogonal functions. Hence the algebra involved in 

matching boundary conditions to find the coefficients of the wave function solution was 

simplified. But , clearly the quasi-static analysis in [44] [45] [46] is applicable only for 

low frequencies. In [45], the validity is shown from 1MHz to 10MHz. 

In this chapter, the wave equation is solved in the prolate spheroidal coordinate 

system (ξ, η, φ). The derivation of the wave equation in this system is shown in Appendix 

C. The solution takes the form of a sum of angular spheroidal functions    (   ) and 

radial spheroidal functions     (   ) and     (   ) where,        √   and ‘f’ is 

the focus of the spheroid. The angular spheroidal functions are related to associated 

Legendre functions and the radial spheroidal functions are related to the spherical Bessel 

and Hankel functions.  

In Section 8.2, a brief description of the prolate spheroidal coordinate system is 

given along with the statement of the problem at hand. In Section 8.3, the solution of the 

wave equation is derived, the coefficients of which are found by applying appropriate 

boundary conditions. Section 8.4 contains the comparison with full-wave solutions and 

finally Section 8.5 contains a summary and a look at future work. 
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8.2 Prolate Spheroidal Antenna Problem Statement 

 

A set of prolate spheroids is obtained by revolution about the major axis of a 

family of confocal ellipses. Let ‘a’ be the major radius, ‘b’ the minor radius of the ellipse 

and ‘f’ the focus   √     . If x,y, and ‘z’ are Cartesian coordinates with   

√   𝑦  , then the prolate spheroidal coordinates (ξ, η, φ) are obtained by applying a 

hyperbolic cosine conformal transformation as shown below: 

           (    ) (8-1) 

       ( ) ,        ( ) and        (𝑦  ) (8-2) 

The range of each coordinate are   →   ;        and          . The coordinate 

system is shown in Fig. 8-1.  

 

Fig. 8-1 Prolate spheroidal coordinate system (     ) 

 

The goal is to find the electric and magnetic fields at a point in space (     ) in 

the prolate spheroidal coordinate system in the presence of a finite magneto-dielectric 
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(                     ) prolate spheroidal antenna fed by a circular current loop 

with a uniform electric current distribution located at (                 ) as shown in 

Fig. 8-2 

 

Fig. 8-2 Magneto-Dielectric finite prolate spheroidal antenna fed by anate spheroidal 

antenna fed by a circular electric current loop at                   

 

8.3 Solution of the Wave Equation 

 

The field equations are derived by solving the Helmholtz vector wave equation 

subject to the appropriate boundary conditions.  

          (8-3) 

 (   )              (8-4) 

where, A: magnetic vector potential and ‘k’ is the wave number. The first step is to 

express the vector wave equation (1) in prolate spheroidal coordinate system. Due to 

circular symmetry, only the ‘φ’ component of the magnetic vector potential will exist and 

 / φ=0. As shown in Appendix A, Helmholtz vector wave equation in spheroidal 

coordinates under circular ‘φ’ symmetry is: 

Magneto-dielectric
(μr>>1, εr>1)

Electric Current loop

Figure 1:  
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Now let us separate the variables by assuming     ( ) ( ) 

Then, 
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Diving throughout by UV we get, 
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(8-8) 

Since the left side of the above equation is a function of ξ only, the right side of 

the equation is a function of η only and that the equation must be valid for the left and the 

right hand side can be equated to a constant say -B. Therefore the left hand side is: 
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(8-9) 

Similarly the right hand side, 
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(8-10) 

The solution for U involves its behavior in the range: 1 to ∞ and the solution for V 

involves behavior between singular points -1 & +1. The current source as mentioned 

before is at ξ=ξ0 . 

The solution of (A) and (B) is of the form: 

  
[ ]  ∑      (   )    (   )                  (8-11) 

  
[ ]  ∑      (    )    (    )     ;                             (8-12) 

where,          √       and    and    are constants to be determined by 

applying the proper boundary conditions,    (   ) are angular spheroidal functions and  

    (    ) and     (   ) are radial spheroidal functions. 

Now at the boundary between the two regions I and II (    ), the boundary 

condition on the E-field is:-  

 ̂  (     )     =>    
[ ]    

[ ]
  

Therefore,  

∑     (   )    (    )  ∑     (    )    (     )

  

 
(8-13) 

The boundary condition on the H-field is 

 ̂  (     )                       
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The “true surface current” which in this case is the loop current I at       can 

be represented as 

                     
 

  
 (    ) 

(8-14) 

Therefore, the boundary condition on the H-field can be written as 
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(8-15) 

          are the scale factors of the prolate spheroidal system defined as  

    √
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(8-16) 

Substituting (8-16) in (8-15), the boundary condition on the H-field can be expanded as, 
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The Dirac delta function can be expanded as, 

 (    )  ∑
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   (    )   (     )

 

 
(8-18) 

where,    (  )  ∫        
 

  
 

Substituting (8-18) in (8-17) we get, 
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(8-19) 

 (Note that RHS=0 for all     ). Therefore, the term √     can be replaced by 

√    
 . 

In (8-13) and (8-19),    (   )and   (    )are two different terms that are not 

orthogonal to each other. Therefore strictly speaking we cannot compare terms. But, we 

can represent    (   )as: 
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(8-21) 

where the coefficients   
   ( ) are non-zero when r is even (odd) and n is odd (even). 

    
 ( ) is the associated Legendre function. Since     

 ( ) exists on both sides of the 

equations now, it is possible to make use of the orthogonality of Legendre polynomials or 

to compare both sides of the equations using the coefficients of     
 ( ). Therefore, (8-

13) can be rewritten as; 
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And (8-19) can be rewritten as: 
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(8-23) 

Since these two equations are valid for each ‘r’ sufficient equations can be 

generated depending on the number of coefficients required. Since   
   

 is non-zero only 

when n is odd(even) and r is even(odd), the equations involving the odd ordered 

functions are completely decoupled from those of even order. This implies that the 

problem can be broken into two parts: solving for even ordered coefficients and solving 

for the odd ordered coefficients. 

Equations (8-22) and (8-23) can be re-written as 

∑ (   )  
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where, 
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Therefore, (8-24) and (8-25) are system of equations that can be solved for Cn and Dn. In 

the matrix form 
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(8-31) 

where, E,F,G and H can be written as (X), (the first subscript is for ‘r’ and the second 

subscript for ‘n’) 
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And C or D can be represented as (Y): 
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And (K) can be written as 
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(8-34) 

 

Note that the function    (     )    when      i.e when the feed loop is at the 

center of the spheroid. Hence    and    coefficients are equal to zero when ‘n’ is even. 

Therefore in summary, given the coefficients we can find the magnetic vector potential 

Aφ at an point (     ) in space using (8-11) and (8-12). 

The individual field components can be determined as follows: Under circular 

symmetry,  

         (8-35) 

The H-field components can be obtained by taking the curl of the vector potential as  

  
 

  
     

(8-36) 
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In the far field, in the prolate spheroidal coordinate system, 
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Therefore, 
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Now equation (8-38) can be further simplified by first finding the derivative of the 

scaling factor, 
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Substituting in (8-38), 
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Similarly from (8-37), 
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Equation (8-40) can be further simplified as, 
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The complex Poynting vector is then, 
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(8-42) 

The radiated power ‘Prad’ can be calculated by integrating the complex Poynting vector 

over a closed surface enclosing the antenna for a large ξ>ξ0. That is, 
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All the field components outside the antenna (region 2) and the radiated power equation 

are summarized below: 
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8.4 Comparison with Full-Wave Simulations 

 

 In this section, the closed form equations derived in Section 8.4 are compared 

with full-wave HFSS simulations. The simulation geometry is shown in Fig. 8-2. The 

magneto-dielectric material used was       and     . The feed loop radius is same 

as the minor radius ‘b’ of the spheroid (It is slightly greater than ‘b’ to account for the 

finite wire thickness). The antenna is placed above a ground plane. Two cases were 

considered (A) a=8” and b=0.5” i.e. a 16 inch long antenna of 0.5” inch cross-sectional 
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radius & (B) a=12” and b=1.5” i.e. a 24 inch long antenna with a radius of cross-section 

of 1.5”. The first set of comparisons was done for    (8-35) versus η for a fixed value of 

ξ as shown in Fig. 8-3.                  

 

Fig. 8-3 Prolate spheroidal antenna with a=8” and b=0.5” showing the line ξ=1.1.  

 

The electric feed current was first measured in the full-wave simulator. The plot 

of feed electric current versus angle (alpha ‘ ’) on the feed loop is shown in Fig. 8-4. 

 

Fig. 8-4 (a)The electric feed loop used in the full-wave simulator. Note that the outer 

conductor was extended to the center to maintain symmetry w.r.t to the ground plane.   

(b) Measured feed current ‘Ie’ for different frequencies for case(A) 

 

ξ=1.1

(a) 

100 MHz
200 MHz
500 MHz

(b) 
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The average of the feed current in Fig. 8-4(b) was used for feed current ‘I0’ in the 

analytical equation (8-35). The comparison between the simulated    and the calculated 

Eφ for three different frequencies for ξ=1.1 and ξ=5 for case (A) is shown in Fig. 8-5. 

 

Fig. 8-5 Comparison of      of the analytical equation and the simulated result for case 

(A) at (a)       path in the near field and (b)     path which is in the far field. 

 

The agreement between the analytical equation and the simulation is excellent for 

near field (ξ=1.1) and far-field (ξ=5) at these frequencies. Note that as frequency 

increases the feed current starts becoming less and less uniform in the simulation. The 

feed loop becomes large w.r.t to the wavelength at these frequencies. This effect is more 

pronounced for a fatter dipole (and therefore a bigger feed loop since rad=b) as seen in 

Fig. 8-6 which shows the feed current for case (B) with a=12” and b=1.5”. 

 

Fig. 8-6 Measured electric feed current at different frequencies vs. angle ‘ ’ for case (B) 

100 MHz
200 MHz
500 MHz

(a) (b) 
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As seen in Fig. 8-6, the feed current at 500MHz can no longer be called uniform 

throughout the loop which is one of the first assumptions made in deriving the analytical 

equations. Nevertheless    is compared to simulation for the fat prolate spheroid case (B) 

in Fig. 8-7 by taking the average of the electric feed current versus ‘ ’ in Fig. 8-6.  

 

Fig. 8-7 Comparison of      of the analytical equation and the simulated result for case 

(B) at (a)       and (b)    . 

 

The agreement between the simulation and analytical equation is excellent at low 

frequencies and starts deviating slightly at higher frequencies due to the non-uniform 

electric feed current. Next, the radiated power calculated analytically in (8-43)  is 

compared with full-wave simulations for both case (A) and case (B) versus frequency in 

Fig. 8-8. 

 

Fig. 8-8 Comparison between analytic and simulated radiated power ‘Prad’ for the (A) 

a=8” & b=0.5” and (B) a=12” and b=1.5”. 

(a) (b) 

(a) (b) 
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Again, the agreement is excellent at low frequencies but it starts to deviate at 

higher frequencies and again the reason being that the electric feed current is no longer 

uniform due to the large size of the feed loop. This is clearly seen in the measured electric 

feed current in the HFSS simulator (Fig. 8-9). 

 

Fig. 8-9 (a) Non-uniform Electric feed current for higher frequencies computed in HFSS 

(b) Radiated power at those frequencies indicated by the circle markers. 

 

 

8.5 Summary and Future Work 

 

The closed form equations for the electric and magnetic fields in the near and far 

field of a finite prolate spheroidal magneto-dielectric antenna are derived in this chapter. 

The analytical equations agreed well with simulations. The power radiated by the antenna 

was also calculated. The equations are shown to be accurate as long as the electric feed 

current distribution is uniform. 

The magneto-dielectric material in this chapter was assumed to be lossless. Thus, 

a possible future work in this topic will be to derive the field equations for lossy 

magneto-dielectric prolate spheroidal dipole antenna.   

(a) (b) 
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APPENDIX A  

DERIVATION OF THE INTERNAL FIELD SHAPE CORRECTION FACTOR TO 

ACCOUNT FOR THE EFFECT OF SKIN DEPTH 
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The energy stored by an inductor ‘L’ is the amount of work done to establish a 

current ‘I’ through the inductor. That is, 

     𝑦  
 

 
    

(A-1) 

Now, the assumed TM internal magnetic field (  ) of a magneto-dielectric cylinder 

(       &       ) of radius ‘ρ’ with the skin depth ‘δ’ < ρ as shown in Fig. 3-2 is: 

   
 

   

  (   )

 
 

(A-2) 

The internal magnetic energy (IME) of this magneto-dielectric cylinder assuming a 

uniform field along the length ‘l’ of the cylinder is therefore given by 
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 (A-1) and (A-3) must be identical. Therefore 
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where, 
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(A-6) 

 

When skin depth can be neglected i.e. when δ>ρ, then δ is set equal to ρ and therefore 

FSF is unity which gives us 
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(A-7) 

This is the internal inductance of a wire of length ‘ ’. Now if the current distribution and 

therefore the magnetic field across the length of the wire is not uniform but triangular, 

then the current ‘I’ for a wire should be replaced by  

    (  
 

   
) 

(A-8) 

where,    is the maximum value of current seen at the origin(or feed point) with the wire 

extending from –     to    . Therefore on solving the integral in (A-4) with the current in 

(A-4) we get 

      
 

 

  

  
    

(A-9) 

which is the same as (3-26). 
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APPENDIX B  

DERIVATION OF EFFICIENCY OF A PERMEABLE DIPOLE FOLLOWING THE 

APPROACH BY DEVORE ET. AL. [15]  
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Consider a multi-turn loop antenna of ‘n’ turns radius ‘ρ’ of total length ‘l’ 

carrying a constant current ‘I0’. Let it be loaded by an ellipsoidal permeable material (μr) 

of length ‘l’. The internal magnetic field of an ellipsoidal core in terms of the an 

unperturbed static field ‘H0’ is given by 

   
  

   (    )
 

(B-1) 

where, D: is the demagnetization factor. The uniform field of the ellipsoidal winding is 

equated to the unperturbed field: 

      
 

 
(   )   

(B-2) 

If    is the cross-sectional area and    is the self-inductance of the ith winding then the 

self-inductance of the ith winding is given by 

   
 

  
 
   
  

     
    
  

 
(B-3) 

Therefore, the total inductance of the loaded multi-turn loop antenna by superposition 

over ‘n’ turns is given by 
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(B-4) 

Since the permeability    is complex (          ), to account for the energy lost in 

the permeable material we introduce a loss resistance      . 

         (  )       (B-5) 

From (B-4), 

    
  

 
(   )(   ) [

      

   (    )      
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(B-6) 

From (B-4), the imaginary part of the inductance ‘L’ can be expanded as 
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(B-7) 

From (B-4) and (B-4), the loss resistance       is given by: 
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(B-8) 

Now, the radiation resistance of an electrically small loop antenna is given by 

         
    

     
 

(B-9) 

where, ‘m’ is the magnetic dipole moment. The magnetic dipole moment of the antenna 

  is the magnetic moment of the core is given by 

  (    )  (  
  )         (B-10) 

The magnetic moment of the winding is given by 

      (  
 )         (B-11) 

Substituting (B-4)  and (B-4) into (B-4) and we get, 
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(B-12) 

Assuming that the flux is well contained that there is no demagnetization i.e. D~0. Now 

from (B-4) 
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(B-13) 

And (B-4) becomes 

            (    )           (B-14) 

Dividing (B-4) by (B-4) and expanding we get 
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(B-15) 

Therefore the radiation efficiency upon not assuming that       is given by 
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APPENDIX C  

HELMHOLTZ VECTOR WAVE EQUATION IN PROLATE SPHEROIDAL 

COORDINATES UNDER CIRCULAR ( ) SYMMETRY. 
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The electric and magnetic field equations of a finite prolate spheroid magneto-

dielectric antenna are derived by solving the Helmholtz vector wave equation subject to 

the appropriate boundary conditions.  

          (C-1) 

 (   )              (C-2) 

The first step is to express the vector wave equation (C-1) in prolate spheroidal 

coordinate system. Due to circular symmetry, only the ‘ ’ component of the magnetic 

vector potential will exist and       . Under these conditions,        and    

    can be expanded as 
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(C-3) 

where,       and    are the scale factors of the prolate spheroidal system defined as 
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And,       
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Now, 
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And  
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Substituting (C-7) and (C-6) in (C-5) we get, 
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Now, similarly from (C-3) 
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Now,  
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And 
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Substituting (C-11) and (C-10) in (C-9) we get, 
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From (C-8) and (C-12) 
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Now, 
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(C-13) 

Substituting (C-13) in (C-3) and then in (C-2), under circular symmetry, 
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(C-14) 

Equation (C-14) is the Helmholtz vector wave equation in spheroidal coordinates under 

circular ‘ ’ symmetry. 


