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ABSTRACT  
   

Each year, millions of aging women will experience menopause, a transition from 

reproductive capability to reproductive senescence. In women, this transition is 

characterized by depleted ovarian follicles, declines in levels of sex hormones, and a 

dysregulation of gonadotrophin feedback loops. Consequently, menopause is 

accompanied by hot flashes, urogenital atrophy, cognitive decline, and other symptoms 

that reduce quality of life. To ameliorate these negative consequences, estrogen-

containing hormone therapy is prescribed. Findings from clinical and pre-clinical 

research studies suggest that menopausal hormone therapies can benefit memory and 

associated neural substrates. However, findings are variable, with some studies reporting 

null or even detrimental cognitive and neurobiological effects of these therapies. Thus, at 

present, treatment options for optimal cognitive and brain health outcomes in menopausal 

women are limited. As such, elucidating factors that influence the cognitive and 

neurobiological effects of menopausal hormone therapy represents an important need 

relevant to every aging woman. To this end, work in this dissertation has supported the 

hypothesis that multiple factors, including post-treatment circulating estrogen levels, 

experimental handling, type of estrogen treatment, and estrogen receptor activity, can 

impact the realization of cognitive benefits with Premarin hormone therapy. We found 

that the dose-dependent working memory benefits of subcutaneous Premarin 

administration were potentially regulated by the ratios of circulating estrogens present 

following treatment (Chapter 2). When we administered Premarin orally, it impaired 

memory (Chapter 3). Follow-up studies revealed that this impairment was likely due to 

the handling associated with treatment administration and the task difficulty of the 
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memory measurement used (Chapters 3 and 4). Further, we demonstrated that the unique 

cognitive impacts of estrogens that become increased in circulation following Premarin 

treatments, such as estrone (Chapter 5), and their interactions with the estrogen receptors 

(Chapter 6), may influence the realization of hormone therapy-induced cognitive benefits. 

Future directions include assessing the mnemonic effects of: 1) individual biologically 

relevant estrogens and 2) clinically-used bioidentical hormone therapy combinations of 

estrogens. Taken together, information gathered from these studies can inform the 

development of novel hormone therapies in which these parameters are optimized. 
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CHAPTER 1 

GENERAL INTRODUCTION AND BACKGROUND 

 

Menopause and Models to Study Hormone Loss and Cognitive Aging 

Typically occurring in the fifth decade of life, aging women will experience 

menopause, a transition from reproductive capability to reproductive senescence (Timiras 

et al., 1995). The menopausal transition is characterized by depleted ovarian follicles, 

declines in naturally circulating levels of sex hormones, such as estrogens and 

progesterone, and a dysregulation of gonadotrophin feedback loops marked by increasing 

levels of follicular stimulating hormone and lutenizing hormone (Rannevik et al., 1995). 

As a result of these changing hormone levels, menopause is accompanied by hot flashes, 

urogenital atrophy, cognitive decline (specifically learning and memory), and other 

symptoms that reduce quality of life (Freedman, 2002; Sherwin and Henry, 2008). These 

consequences of the menopausal transition become important when considering that life 

expectancy has increased over the past century, but the age of menopause has not 

changed (Hawkes, 2003). Thus, women now spend a larger proportion of life in this post-

menopausal, hypoestrogenic state associated with memory deficits and other negative 

physiological consequences. As well, not only are women spending a longer portion of 

life post-menopausal, but also, the aging female population is growing. Indeed, by the 

year 2050, 90 million people are projected to be over 65 years of age; over half of this 

sizable population will be women (US Census, 2008). In both sexes, memory function 

declines during aging (Conrad and Bimonte-Nelson, 2010; Erickson and Barnes, 2003) 

and Alzheimer’s Disease, more prevalent in women than men (Fratiglioni et al.,1997), is 
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characterized by memory deficits. Thus, there is an important medical need to develop 

optimal treatments for the cognitive and physiological changes of the menopausal 

transition and aging processes. 

To address this important issue, a commonly used model to study age-related 

cognitive decline and memory changes following hormone loss and replacement is the 

middle-aged, ovariectomized (Ovx) rodent, made hormone deplete via the surgical 

removal of the ovaries. Many parallels exist between the aging menopausal woman and 

the aging Ovx rodent, making this an effective model for this field of study. In both 

women and female rodents, age-related deterioration of the hippocampus and declines in 

performance on hippocampal-dependent tasks has been well documented (Barnes et al., 

1980; Burke and Barnes, 2006). Further, evidence suggests that ovarian hormones play a 

protective role in preventing the observed memory decline in both species. For instance, 

relative to women without a history of taking hormone treatments, post-menopausal 

women who took exogenous estrogen-containing hormone therapy (HT) show enhanced 

performance on spatial memory measures (Kimura, 1995; Smith et al., 2001). Similarly, 

aging Ovx rats given exogenous estrogens show enhancements on tests of spatial memory 

as compared to untreated control rats (Bimonte-Nelson et al., 2010; Frick, 2009). Given 

these similarities, the benefit of utilizing the aging rodent model is that rodents with a 

median lifespan of greater than 20 months are considered appropriate aging models 

(Nadon, 2004a), while aging humans take many decades to reach senescence. Thus, 

researchers studying aging in rodents can develop interventions to attenuate, halt, reverse, 

or even prevent age-related memory decline in a relatively short time span. 
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In addition to their rapid rate of aging, another benefit of the rodent model is that 

the physiological and cognitive consequences of surgically-induced menopause are 

similar among women and rats. For instance, following oophorectomy in women, 

circulating levels of ovarian hormones decline rapidly (Sherwin, 2007). Comparably, 

following surgical ovary-removal (Ovx) in rats, circulating estrogens and progesterone 

fall to low levels (Wise and Ratner, 1980). In both models, the sudden loss of ovarian 

hormones is associated with memory impairments (Acosta et al., 2013; Henderson and 

Sherwin, 2007; Rocca et al., 2010b). Despite the similarity in ovarian hormone profiles 

following surgical ovary removal in women and rats, an important limitation of this 

model is that a large majority of women undergo a transitional, rather than surgical, 

menopause. Indeed, the majority of women experience a transitional menopause, in 

which follicles deplete and hormone levels change over many years, while only portion 

of women experience oophorectomy, menopause via a surgical removal of the ovaries 

(Timiras et al., 1995). However, the ‘blank’ ovarian hormone profile induced by Ovx in 

the rat allows investigators to isolate and evaluate the potentially distinct cognitive and 

neurobiological impacts of unique ovarian hormones as well as hormone formulations. 

This methodological approach permits the optimization of current and future menopausal 

HTs for cognitive outcomes, a primary aim of this dissertation.  

 

Menopausal Hormone Therapies, Estrogens, and Memory 

Premarin  

To alleviate menopausal symptoms, HT is given. Premarin (conjugated equine 

estrogens), a purified pregnant mare urine compound first developed by Wyeth, is the 
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most widely used estrogen-based menopausal HT in North America (Hersh et al., 2004). 

Although primarily composed of estrone (E1) sulfate, Premarin is a mixture of at least 10 

estrogen sulfates, many of which are unique to horses and have yet to be evaluated for 

their cognitive impacts in a human or rodent model (Kuhl, 2005). After metabolism, the 

biologically active hormones in circulation are primarily E1 and the more potent 17β-

estradiol (17β-E2), as well as equine-specific estrogens such as equilin and Δ8,9-

dehydroestrone (Bhavnani, 2003; Kuhl, 2005). Despite Premarin being an effective 

treatment for relieving the negative vasomotor symptoms and vaginal atrophy of 

menopause (Freedman, 2002), clinical and preclinical findings of Premarin’s cognitive 

effects are inconclusive. Cell culture models suggest that Premarin can be 

neuroprotective. Specifically, Premarin enhances neuronal growth and increases neuronal 

survival after experimentally-induced insult in vitro (Brinton et al., 2000a; Brinton et al., 

2000b). Benefits have also been reported in the behaving, middle-aged Ovx rat. Premarin 

administered via an acute subcutaneous injection (Walf and Frye, 2008) or via cyclical 

subcutaneous injections (Acosta et al., 2009b) enhances object memory and spatial 

navigation memory. In middle-aged women, the findings regarding Premarin-containing 

HT are mixed, with some studies reporting cognitive benefits, and others not (Hogervorst 

et al., 2000; Sherwin and Henry, 2008). Among these negative reports is the large, 

double-blind, placebo-controlled Women’s Health Initiative Memory Study, comprised 

of nearly 7,500 post-menopausal women (Shumaker et al., 2004). Findings showed a 

non-significant increased incidence of probable dementia and mild cognitive impairment 

in women 65+ given Premarin (Shumaker et al., 2004). In addition, 

Premarin+medroxyprogesterone acetate, given to women with an intact uterus to prevent 
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potentially cancer-causing uterine stimulation by estrogens, elevated probable dementia 

risk (Shumaker et al., 2003). Thus, loss of ovarian hormones is not optimal for cognition, 

but neither are the most commonly prescribed HTs. It is still unclear which parameters 

underlie the realization of cognitive and neurobiological benefits with Premarin.  

Bioidentical Hormone Therapy 

Following the surprising null and detrimental findings of the Women’s Health 

Initiative and Women’s Health Initiative Memory Study for cognitive as well as 

peripheral outcomes, there has been increased interest in "bioidentical" hormone therapy 

(BHT) options (Bhavnani and Stanczyk, 2012; Cirigliano, 2007). Bioidentical hormones 

are chemically identical to those hormones produced endogenously in women, but are 

derived from a variety of ‘natural’ or de novo synthetic sources (Cirigliano, 2007). To 

create BHTs, formulations are individually compounded by pharmacists to contain 

specific steroids in various dosages, including 17β-E2, E1, estriol (E3), progesterone, 

dehydroepiandrosterone, and testosterone (Cirigliano, 2007). Despite claims by some 

women’s health clinicians and popular authors (Walker, 2001) and the common belief 

among aging women (Adams and Cannell, 2001) that BHT is a natural, safer and more 

efficacious alternative to Premarin-based conventional HTs, these bioidentical 

formulations are not routinely tested by the Food and Drug Administration or other 

regulatory agencies. Further, there is little research thus far on the safety and efficacy of 

BHTs and there is a paucity of objective evaluations of the long-term cognitive 

consequences of these formulations (Bhavnani and Stanczyk, 2012; Cirigliano, 2007). 

Thus, at present, conventional HTs, such as Premarin-based compounds, are 

recommended for the treatment of menopausal symptoms given that ‘customized 
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compounded hormones have variable purity and potency…lack efficacy and safety data’ 

and may even ‘pose additional risks’ (American College of Obstetricians and 

Gynecologists, 2012). As such, given that Premarin is not an optimal menopausal HT for 

cognitive and physiological outcomes and given the increased use of BHT options in the 

absence of methodical evaluations of their effectiveness, there is a pressing clinical need 

for evaluation of the components of BHTs. Characterizing the unique contributions of 

individual estrogens endogenous to women is an important first step towards optimizing 

menopausal HT options for women.  

17β-estradiol 

Since it was first shown to enhance cognition in elderly women (Caldwell and 

Watson, 1952), there has been much interest in the ability of 17β-E2, the most potent 

naturally circulating estrogen (Kuhl, 2005), to impact the brain and memory. Today, 17β-

E2, a common component in conventional HTs and BHTs, is perhaps the most well-

characterized estrogen for neurobiological and cognitive outcomes. We and others have 

shown that 17β-E2 enhances spatial working (Bimonte and Denenberg, 1999; Daniel et 

al., 1997; Gibbs, 1999; Hruska and Dohanich, 2007; Luine and Rodriguez, 1994), 

reference memory (Bimonte-Nelson et al., 2006; El-Bakri et al., 2004; Markham et al., 

2002) and object memory (Luine et al., 2003) in young and middle-aged rodents. Yet, 

whether 17β-E2 will impart cognitive benefits seems to depend on a number of factors. 

One important factor may be the age at the time the treatment is initiated. Indeed, 

converging data suggest that cognitive responsiveness to estrogen stimulation seems to 

decline with age, especially on spatial reference memory tasks (Foster et al., 2003; 

Gresack et al., 2007; Talboom et al., 2008). For instance, the same dose of 17β-E2 
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treatment that effectively enhanced performance on the Morris water maze among 4 and 

16 month old, Ovx rats was generally ineffective in 24 month olds (Talboom et al., 

2008). However, some studies still report benefits of 17β-E2 administration in aged 

rodents, suggesting an interactive role for the route of administration and age in the 

realization of cognitive benefits with 17β-E2 (Frick et al., 2002; Markowska and 

Savonenko, 2002a). Optimization of the factors that influence whether 17β-E2 will 

impart memory benefits will improve current and future HT options. 

Estrone  

In addition to 17β-E2 and E3, E1 is an endogenous estrogen that naturally 

circulates in women (Kuhl, 2005). Prior to menopause, endogenous E1 circulates in 

approximately a 1:1 ratio with 17β-E2 (Rannevik et al., 1995). However, during the 

menopausal transition, levels of 17β-E2 decline to a greater extent than do levels of E1, 

changing the circulating E1 to 17β-E2 ratio to 2:1 (Rannevik et al., 1995). This shift to 

higher ratio of E1 to 17β-E2 may have a significant impact on cognitive ability. As well, 

E1 is a component of the tri-estrogen BHT, Triest (Cirigliano, 2007). Further, Premarin, 

the most commonly prescribed estrogen-based menopausal HT (Hersh et al., 2004), is 

over 50% E1-sulfate, (Kuhl, 2005). Following treatment with Premarin to peri- and post-

menopausal women, and middle-aged, Ovx rats, circulating levels of E1 increase (Acosta 

et al., 2009b; Yasui, 1999). Yet, the cognitive and neurobiological impacts of E1 are 

unclear. One study in young adult, Ovx rats has shown that a single subcutaneous E1 

injection impairs memory on the contextual fear conditioning task when given 30 minutes 

before training (Barha et al., 2009). Furthermore, although not all in vitro studies report 
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negative effects with E1 treatment (Zhao and Brinton, 2006), for most measures in which 

other estrogenic Premarin components (e.g., equilin and Δ8,9-dehydroestrone) were 

neuroprotective, E1 was ineffective. Thus, the lack of clarity regarding the cognitive and 

neurobiological impacts of this estrogen in middle-age rodents represents a gap in the 

literature. 

 

Estrogens and Putative Mechanisms of Action 

Interactions of Estrogen with its Receptors 

Once thought to only mediate reproductive behavior, estrogens such as 17β-E2 

and E1 are now understood to impact a variety of non-reproductive behaviors, including 

performance on learning and memory tasks (Bimonte-Nelson et al., 2010). At least some 

of estrogens’ diverse cognitive effects are mediated by ligand interactions with the 

classical, nuclear estrogen receptor (ER). Discovered in uterine tissue (Toft and Gorski, 

1966), ER-alpha (ERα) was the first nuclear ER that demonstrated binding specificity for 

17β-E2 and for many decades, was thought to be the sole ER with which estrogens 

interacted. However, the discovery of a second nuclear ER in ovarian granulosa cells, 

ER-beta (ERβ), added clarity, and perhaps more complexity, to the understanding of 

estrogen interactions with its receptors and the impacts on cognition (Kuiper et al., 1996). 

Since the discovery of the second ER, converging data suggest distinct, and complex, 

biological roles for each receptor subtype. For instance, although both ERs are members 

of the nuclear receptor superfamily (Peterson, 2000), they differ in their chromosomal 

localizations and ligand-binding domains (Gustafsson, 1999). As well, the pattern of ER 

distribution in the body and brain is complex. Although uterine tissues primarily express 
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ERα (Kuiper et al., 1997), both ER subtypes are found in cognitive brain regions 

associated with learning and memory, such as the hippocampus and basal forebrain 

(Shughrue et al., 1997). Some data suggest a predominate role for ERβ in cognitive 

enhancement following 17β-E2 treatment. For instance, animals lacking in ERβ and 

given 17β-E2 treatment are impaired on the Morris water maze and Y-maze tasks (Liu et 

al., 2008; Rissman et al., 2002). Interestingly, other findings indicate the importance of 

ERα in memory function. Specifically, Foster and colleagues (2008), using a lentiviral 

vector, restored ERα expression in adult Ovx, ERα knockout mice, finding that these 

mice displayed enhanced spatial reference memory Morris water maze performance 

compared to ERα knockout controls. 

Data from studies using selective estrogen receptor modulators (SERMs) add 

additional complexity to the understanding of the role of ER for learning and memory. 

For instance, in young adult, Ovx rats, some, but not all, studies report enhanced novel 

object memory with acute treatment of the ERα agonist, propylpyrazole triol (PPT) as 

well as with the ERβ agonist, diarylpropionitrile (DPN), suggesting that both ERs 

contribute to object recognition memory (Frye et al., 2007; Jacome et al., 2010; Walf et 

al., 2006). Additionally, SERMs have imparted mixed effects for spatial reference and 

working memory (Hammond et al., 2009; Rhodes and Frye, 2006). Thus, given the 

complexity of the cognitive impact of each ER, characterizing the role of ERs in memory 

is an important research direction that can lead to the development of estrogenic 

treatments that target ERs in ways that impart beneficial effects for memory. 
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In addition to the importance of characterizing the role of ERs in the memory 

performance of young adult animals, given that estrogen-containing menopausal 

treatments are commonly prescribed to middle-aged women, it is clinically relevant to 

evaluate the cognitive impact of ER stimulation in middle-age menopause models. 

Indeed, ER distribution changes with increasing age (Mehra et al., 2005; Yamaguchi-

Shima and Yuri, 2007) and cognitive responsiveness to estrogen stimulation seems to 

decline, especially on spatial reference memory tasks among aging animals (Foster et al., 

2003; Gresack et al., 2007; Talboom et al., 2008). Recently, it has been hypothesized that 

changes in ER ratios during aging may account for these observed findings, and predicted 

that increasing ERα expression may ameliorate age-related cognitive decline among Ovx 

rats (Foster, 2012). However, the only study to date to evaluate the cognitive impacts of 

systemic administration of SERMs in middle-aged rats reported subtle impairments of 

chronic administration of PPT on the spatial working memory delayed alternation (Neese 

et al., 2010). Thus, adding to this body of work characterizing the roles for cognitive 

outcomes following ER stimulation in middle-age represents an important area of study. 

 Estrogens, the Immune Response, and Cognition 

The immune response is characterized by the organized actions of the innate and 

adaptive systems for the protection against invading foreign pathogens (Abbas and 

Lichtman, 2001; Bird et al., 2008; Sompayrac, 1999). When a physical barrier is 

penetrated by a pathogen, the innate immune system, characterized by phagocytes, 

Natural Killer cells, and complement proteins, is an initial, rapid, generalized immune 

response. In addition, the secondary, adaptive immune system, characterized by the 

humoral B cell response and the cell-mediated T cell response, is a delayed, specific 
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immune response that generates a memory for the invading pathogen. Using professional 

antigen presenting cells, these two systems coordinate to effectively neutralize and 

destroy anything not identified as ‘the self’.  

The immune response impacts learning and memory. For instance, the Shatz 

laboratory has identified the expression of MHC I in neurons of the hippocampus and 

other regions of the non-immunologically challenged brain (Corriveau et al., 1998; Huh 

et al., 2000). Further, NMDA-dependent long-term potentiation is enhanced, and long-

term depression is abolished, in mice missing the cell surface MHC I or its CD3 receptor 

component, suggesting that MHC I plays an important role not only in the immune 

response but also in hippocampal plasticity (Huh et al., 2000). There is evidence to 

suggest that other immune system components, in addition to MHC I, are associated with 

behavioral alterations. For instance, chronic lipopolysaccharide-induced inflammation is 

associated with impairments on the spatial spontaneous alternation task, an effect thought 

to be mediated by an increase in activated microglia in cingulate cortex, entrohinal 

cortex, dentate gyrus, and hippocampus (Hauss-Wegrzynial et al., 2000). Cytokines also 

seem to impact behavioral output. Specifically, anxiety behaviors on the open field, 

elevated plus maze, and forced swim task are disrupted in tumor-necrosis factor-α 

knockout mice (Yamada et al., 2000). As well, the cytokine interleukin-1β suppresses 

hippocampal long-term potentiation, impairs contextual fear conditioning, and negatively 

impacts spatial reference memory performance on the Morris water maze (Pugh et al., 

2001). In regard to autoimmune disorders, in mice that spontaneously develop lupus, 

behavioral changes, such as increased anxiety-like behaviors in the open field and 

cognitive inflexibility via increased perseverative behavior in the Morris water maze, are 
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observed (Sakic et al., 1992). Further, an induced chronic complex immune disease is 

associated with changes on the Lashley maze, suggesting that the immune system can 

specifically alter learning and memory (Hoffman et al., 1998). Together, these data 

suggest that the immune system can impact learning and memory and does so, in part, via 

interactions within the hippocampus. 

Interestingly, estrogens affect both the immune response (Oertelt-Prigione, 2012; 

Zen et al., 2010) and learning and memory performance (Bimonte-Nelson et al., 2010). 

ERs are present on macrophages, dendritic phagocytes, blood mononuclear cells, B cells, 

and T cells (Gulshan et al., 1990; Hill et al., 2011; Mao et al., 2005; Samy et al., 2000; 

Weusten et al., 1986). As well, fluctuations in endogenous estrogen levels appear to 

regulate the immune response and immune disease states, although findings among 

studies are conflicting (Oertelt-Prigione, 2012). For example, while some studies report 

menstrual cycle stage-specific changes in CD4+ T cells, regulatory T cells, Natural Killer 

cells, and cytokine secretion, others report alterations in the opposite direction, or no 

change at all. During pregnancy, when circulating levels of sex hormones increase, there 

is a shift in Th cytokine profiles such that Th1 cell-mediated cytokines are inhibited while 

Th2 humoral cytokines are enhanced (Zen et al., 2010). This shift provides a potential 

mechanism for the observed improvement in symptoms of Th1 cell-mediated 

autoimmune disorders such as rheumatoid arthritis and the development or worsening of 

Th2 humoral autoimmune disorders during pregnancy (Zen et al., 2010). Further, 

treatment with exogenous estrogens also impacts the immune system. For example, 

among post-menopausal women, use of Premarin-containing HTs was associated with 

numerous beneficial immunological effects, such as more circulating B-cells and 
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increased mitogen-induced T-cell proliferation (Porter et al., 2001). Similarly, in aged 

mice, pre- treatment with 17β-E2 prior to burn injury reduced circulating interleukin-6 

levels and improved survival by 28% (Kovacs et al., 2004). That estrogens profoundly 

impact the immune system highlights a novel and potential therapeutic target with which 

learning and memory outcomes during female reproductive senescence and aging can be 

improved. 

 

 

Estrogens and Markers of Brain Health and Function 

Neurotrophins 

Discerning the mechanism of the cognitive effects of Premarin and its estrogenic 

components could have important implications for future HTs. Neurotrophins may be one 

mechanism of estrogen-induced neuroprotection and/or mnemonic changes. 

Neurotrophins are important for the survival and maintenance of neurons (Davies, 1996; 

Granholm, 2000). Age-related changes in neurotrophin levels, such as nerve growth 

factor (NGF) and brain-derived neurotrophic factor (BDNF), have been reported in 

animal models, and both NGF and BDNF have been associated with cognitive function, 

including spatial memory (Bimonte, 2008b; Bimonte et al., 2003; Granholm, 2000). For 

example, Bimonte et al., (2003) reported in aged 21-23 month old female rats, higher 

levels of NGF and BDNF in the frontal cortex were correlated with more errors 

committed on the water radial arm maze. Treatment with 17β-E2, the most potent 

naturally circulating estrogen (Kuhl, 2005), significantly impacts neurotrophin systems in 

Ovx rats, increasing NGF and its receptor mRNA levels in basal forebrain and 
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hippocampus (McMillan et al., 1996; Pan et al., 1999) and elevating NGF and BDNF 

protein levels in cognitive brain regions such as entorhinal and frontal cortecies 

(Bimonte-Nelson et al., 2004).  

Gene Expression 

High throughput gene expression experiments can yield insight into mechanistic 

and molecular processes involved in how HTs impact learning and memory. A few 

evaluations have been performed to determine whether 17β-E2 influences hippocampal 

gene expression in both young and middle-aged rats, with effects most notably 

recognized within domains of synaptic plasticity and signaling, transcription, growth, and 

neuroprotection (Aenlle and Foster, 2010; Aenlle et al., 2009; Pechenino and Frick, 

2009). For example, in both young and middle-aged Ovx rats, acute 17β-E2 resulted in 

increased expression of genes associated with synaptic structural components, and 

decreased expression of genes associated with oxidative phosphorylation and 

mitochondrial dysfunction (Aenlle and Foster, 2010). Given the absence of a mechanistic 

understanding of how Premarin acts in the brain to influence memory, gene expression 

represents a powerful tool to discern potential transcriptional mechanisms of action of 

Premarin. 

The Cholinergic System 

The basal forebrain cholinergic system is important for learning and memory, is 

susceptible to age-related changes, and is impacted by ovarian hormone removal and 

17β-E2 replacement (for review, see Gibbs, 2010). For example, in aged female rats with 

working memory impairments, less choline acetyltransferase (ChAT) protein activity was 

found in the vertical diagonal bands (vDB) of the basal forebrain, relative to younger 
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counterparts (Luine and Hearns, 1990), suggesting that lower levels of ChAT activity are 

associated with worse memory performance during aging. 17β-E2 seems to beneficially 

impact the basal forebrain cholinergic system, as well as cognitive performance. In adult 

Ovx rats, 17β-E2 treatment increased ChAT protein activity in the horizontal diagonal 

bands (hDB), as well as medial septum (MS) ChAT immunoreactive (ChAT-IR) neuron 

counts (Gibbs, 1997; Luine, 1985). Evidence from Gibbs’ laboratory suggests that the 

beneficial effects of 17β-E2 treatment on cognition require a functioning basal forebrain 

cholinergic system; for example, 17β-E2 was ineffective at improving cognition in 

animals with basal forebrain lesions, and enhanced memory only in non-lesion controls 

(Gibbs, 2002, 2007). Similar to the effects of 17β-E2, Premarin treatment in middle-aged 

Ovx rats increased basal forebrain ChAT-IR neuron counts in the vDB, and 

concomitantly aided spatial working memory and Morris water maze overnight retention 

(Acosta et al., 2009b). Yet, although it has been established that 17β-E2 and Premarin 

impact the basal forebrain cholinergic system, an effect which is likely related to 

cognitive enhancements (for review, see Bimonte-Nelson et al., 2010; Gibbs, 2010), 

whether E1 also impacts basal forebrain cholinergic neurons, as do 17β-E2 and Premarin, 

is not known.  

 

Goals of this Dissertation 

        The collective literature presented here have led us to propose that estrogens, or 

specific estrogenic compounds, can have profound impacts on memory and associated 

neural substrates, and that several factors likely influence the realization of beneficial 

mnemonic effects following HT. Thus, the body of work contained in this dissertation 
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aims to answer several important, translational questions regarding the impact of 

estrogens on the brain and cognition during aging. First, we wish to clarify the 

conflicting literature on the memory effects of the most commonly prescribed 

menopausal HT, Premarin, and in a series of experiments, we will evaluate the impact of 

route of Premarin administration on spatial memory and neurobiological outcomes. The 

first experiment will evaluate the impacts of continuous Premarin treatment on a battery 

of learning and memory tasks and compare these effects to those shown previously in our 

laboratory using cyclic subcutaneous injections. The second experiment will evaluate the 

mnemonic impacts of Premarin administered orally, the route in which women take this 

HT. Follow-up evaluations presented here will clarify the potentially interactive effects of 

experimental handling and estrogen-containing treatments. Second, we are interested in 

clarifying the role of ERα during middle-age and propose to use a selective ERα 

modulator as a tool to elucidate this role. Third, we aim to determine the mnemonic 

impacts of the unique estrogen, E1, the prominent endogenous estrogen following the 

menopausal transition, an estrogen released into circulation following Premarin 

administration and, an increasingly common component of BHT formulations. 
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CHAPTER 2 

TONIC PREMARIN DOSE-DEPENDENTLY ENHANCES MEMORY, AFFECTS 

NEUROTROPHIN PROTEIN LEVELS AND ALTERS GENE EXPRESSION IN 

MIDDLE-AGED RATS 

Manuscript Status: Published-Neurobiology of Aging, 2011 

 

Introduction 
Conjugated equine estrogen, trade name Premarin (Wyeth Pharmaceuticals, 

Philadelphia, PA), has been administered since 1942 and is the most widely used 

estrogenic component of hormone therapy (HT) in North America (Segal, 1997; Sitruk-

Ware, 2002). Premarin is given unopposed to women who have undergone surgical 

menopause including uterus removal (Segal, 1997; Sherwin, 1998). As well, Premarin is 

the estrogenic component of Prempro, the most prescribed combination HT for women 

with a uterus (Segal, 1997; Sherwin, 1998). Clinical findings assessing cognitive effects 

of Premarin-containing therapies have been inconclusive. Premarin-containing therapy 

has been reported to improve memory in case studies (Ohkura et al., 1995), non-

randomized small quasi-experimental designs (Carlson and Sherwin, 1998) and small 

double-blind placebo-controlled studies (Campbell and Whitehead, 1977). Also, a 

randomized, double-blind placebo controlled crossover trial showed that Premarin 

treatment altered brain activation patterns in women during memory task performance 

(Shaywitz et al., 1999). Yet, findings from the large placebo-controlled Women’s Health 

Initiative Memory Study, conducted by the National Institutes of Health, showed that 

Premarin treatment yielded a non-significant increased incidence of probable dementia 
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and mild cognitive impairment in women 65 and over (Espeland et al., 2004; Shumaker 

et al., 2004). Further, there was an elevated probable dementia risk, and no effect on mild 

cognitive impairment, in women taking Premarin+medroxyprogesterone (Shumaker et 

al., 2003). This combination therapy also had a negative effect on verbal memory, but a 

trend for positive effects on figural memory, in women 65 and over that were free of 

probable dementia (Resnick et al., 2006). Together, the clinical studies indicate that 

Premarin-containing therapy can result in both beneficial and detrimental actions on 

cognition in women. 

Cognitive effects of estrogen replacement have been evaluated in animal models. 

In young and middle-aged ovariectomized (Ovx) rodents, 17β-estradiol (17β-E2) 

enhances spatial working memory (Bimonte and Denenberg, 1999; Daniel et al., 1997; 

Daniel et al., 2005; Fader et al., 1999; Gibbs, 1999; Hruska and Dohanich, 2007; Luine 

and Rodriguez, 1994) and spatial reference memory (Bimonte-Nelson et al., 2006; El-

Bakri et al., 2004; Feng et al., 2004; Frick et al., 2002; Markham et al., 2002). Like the 

clinical findings testing Premarin, not all animal studies testing 17β-E2 have shown 

positive effects (Chesler and Juraska, 2000; Fernandez and Frick, 2004; Galea et al., 

2002; Galea et al., 2001; Holmes et al., 2002; Singh et al., 1994). To date, 17β-E2 has 

been the primary type of estrogen used to test cognitive effects of HT in the animal 

model. 17β-E2 is the most potent naturally-circulating estrogen, followed by estrone (E1) 

and estriol (E3), in order of receptor affinity (Kuhl, 2005; Sitruk-Ware, 2002). Premarin 

is derived from the urine of pregnant mares, and is comprised of a complex mixture of 

estrogen sulfates that have been conjugated by the horse’s liver before excretion in urine; 

many of the estrogens present in Premarin are unique to horses (Bhavnani, 1998). 
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Premarin contains the sulfates of at least ten estrogens, is over 50% E1 sulfate, 20-25% 

equilin sulfate, and has only trace amounts of 17β-E2; after metabolism, the resulting 

biologically active circulating hormones are primarily E1 and, after E1’s conversion, 

17β-E2, as well as equilin (Bhavnani, 2003; Sitruk-Ware, 2002). It is hypothesized that 

these three metabolites are primarily responsible for the estrogenic effects of Premarin 

(Sitruk-Ware, 2002). It is noted that there are other estrogens and related metabolites 

present in Premarin that could alter efficacy of 17β-E2 effects, and may initiate effects on 

their own; these hormones include, but are not limited to, Δ8,9-dehydroestrone, 

dihydroequilin-17β and equilenin (Kuhl, 2005). Therefore, the animal studies done thus 

far testing the cognitive effects of 17β-E2 cannot be directly compared to potential effects 

of Premarin. 

Like the cognitive enhancements seen after 17β-E2 treatment given via 

subcutaneous injection (Bimonte-Nelson et al., 2006; Chesler and Juraska, 2000; Luine et 

al., 2003), we recently showed cognitive enhancements after Premarin treatment given 

via cyclic, intermittent subcutaneous injections in middle-aged Ovx rats (Acosta et al., 

2009b). Specifically, with this regimen Premarin improved spatial working memory 

delayed match to sample plus-maze performance and attenuated overnight forgetting on 

the spatial reference memory Morris water maze. However, cyclic intermittent versus 

continuous (tonic) estrogen administration may influence realization of memory benefits. 

With continuous estrogen treatment, ERs become downregulated, while with cyclic 

intermittent estrogen treatment, ER recycling and other physiological changes occur that 

may enhance ultimate responsiveness for many parameters, including learning and 

memory (Blaustein, 1993; Brown et al., 1996; Kassis and Gorski, 1981; Rosser et al., 
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1993). Women, including those enrolled in the Women’s Health Initiative study, typically 

take HT as a daily oral continuous regimen, not intermittent in nature. The cognitive 

effects of continuous Premarin treatment have not been evaluated in an animal model. 

In vitro studies provide evidence that Premarin, or components thereof, has 

positive effects on the brain. Premarin enhances neuronal growth and increases neuronal 

survival after experimentally-induced insult in in vitro preparations, including in 

cognitive brain regions (Brinton et al., 2000a). While these in vitro experiments provide 

compelling evidence that Premarin could result in brain changes ultimately leading to 

enhancement in brain functions such as learning and memory, direct evaluations testing 

continuous Premarin’s effects on cognition have not been done in an animal model.  

Discerning the mechanism of the potentially cognitive enhancing effects of 

Premarin could have wide implications for future research and treatments for optimizing 

HT. Neurotrophins may be one mechanism of estrogen-induced neuroprotection or 

mnemonic changes. Survival and maintenance of cholinergic neurons are dependent upon 

neurotrophins, including nerve growth factor (NGF) and brain-derived neurotrophic 

factor (BDNF); age-related neurotrophin changes have been reported in animal models, 

and NGF and BDNF have been associated with cognitive function (Bimonte et al., 2003, 

Granholm, 2000; Hall et al., 2000; Kesslak et al., 1998). 17β-E2 treatment significantly 

impacts neurotrophin systems in young and aged Ovx rats, increasing neurotrophin and 

its receptor mRNA levels in basal forebrain, frontal cortex and hippocampus (McMillan 

et al., 1996; Pan et al., 1999) and elevating NGF and BDNF protein levels in cognitive 

brain regions (Bimonte-Nelson et al., 2004). Whether Premarin induces cognitive change, 
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and whether such changes are related to neurotrophin alterations, has not yet been 

evaluated.  

From a broader perspective, gene expression experiments can yield insight into 

mechanistic and molecular processes involved in nootropic HTs. Evaluations have been 

performed to determine whether 17β-E2 influences hippocampal gene expression. While 

these constitute a small handful of studies, and work has only been done in young mice, 

this nonetheless provides evidence that estrogens can impact gene expression (Malyala et 

al., 2004), with effects most notably recognized within domains of synaptic plasticity in 

the hippocampus (Aenlle et al., 2007; Pechenino and Frick, 2009). The present 

experiment capitalized on similar gene expression array procedures in the hippocampus 

to yield insight into potential mechanisms of action of Premarin in cognitively-

characterized middle-aged Ovx rats. 

The present study examined three Premarin doses in middle-aged rats after 

surgical menopause. The doses were based on the 0.625 mg/day dose commonly 

prescribed to women, and used in the Women’s Health Initiative studies, altered only for 

body weight of the rat. We tested whether Premarin altered learning and memory using a 

battery of tasks designed to tap several memory domains, followed by BDNF, NGF and 

gene expression assays. Since this is the first cognitive study to continuously administer 

Premarin to the rodent, we also obtained vaginal smears, uterine weights and pituitary 

weights to confirm endocrine responsiveness. Further, since 17β-E2 and E1 levels are 

increased in menopausal women after Premarin treatment (Sitruk-Ware, 2002), we 

measured 17β-E2 and E1 blood levels in our surgically menopausal rats. This allowed for 

treatment verification and determination of circulating levels that could be correlated 
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with maze scores to aid in interpretation of potentially effective treatment regimens. 

Indeed, while higher circulating 17β-E2 replacement levels have been correlated with 

better spatial reference memory Morris water maze performance (Talboom et al., 2008), 

correlations have not been evaluated for working memory. Furthermore, relationships 

between maze performance and circulating E1, or the ratio of E1:17β-E2, have not been 

assessed in the rodent, but have correlated with neuropsychological test scores in 

menopausal women (Lebrun et al., 2005; Phillips and Sherwin, 1992; Sherwin, 1988; 

Wolf and Kirschbaum, 2002).  

!

Materials and Methods 

Subjects  
Subjects were 37 middle-aged, 13 month old, inbred Fischer-344 female rats born 

and raised at the aging colony of the National Institute on Aging at Harlan Laboratories 

(Indianapolis, IN). Inbred rats were selected given that their low genetic and 

physiological variability allowed us to utilize a relatively small sample size to generalize 

observed cognitive impacts of our treatments to the general population (Nadon, 2004b). 

Rats were acclimated for several days, and were pair housed with an identical treatment 

assigned cage-mate. Animals had access to food and water ad libitum, and were 

maintained on a 12-h light/dark cycle. All procedures were approved by the local 

Institutional Animal Care and Use Committee and adhered to National Institutes of 

Health standards.  
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Ovariectomy and Treatment 
Fourteen days before behavioral testing, all rats were anesthetized with acute 

isoflurane inhalation and received Ovx. Bilateral dorsolateral incisions were made in the 

skin and peritoneum, and the ovaries and tips of uterine horns were ligatured and 

removed. The muscle was then sutured and the skin stapled. At the time of Ovx, Alzet 

osmotic pumps (model 2ML4, Durect Corporation, Cupertino, CA) containing either 

proplyene glycol (Ovx-Vehicle), or proplyene glycol plus one of three doses of Premarin 

(Ovx-Premarin-Low, Ovx-Premarin-Medium, Ovx-Premarin-High), were implanted 

dorsally into the scruff of the neck. Premarin was manufactured by Wyeth 

Pharmaceuticals (Philadelphia, PA) but obtained from a commercial pharmacy via 

veterinary prescription. The doses used in the current study were based on the daily 0.625 

mg Premarin dose commonly taken by women, and used in the Women’s Health 

Initiative Memory Study. Using the average female weight of 70 kg (www.halls.md) for 

calculations, resulting in 0.00893 mg drug/kg body weight woman, we determined the 

Premarin-Medium dose (24 µg Premarin powder, which is 10.53% Premarin) to be the rat 

body weight equivalent of what is clinically prescribed (Espeland et al., 2004; Shumaker 

et al., 2003; Shumaker et al., 2004). To approximate the injected doses we previously 

found to influence memory (Acosta et al., 2009b), we included 12µg (Ovx-Premarin-

Low) and 36µg (Ovx-Premarin-High) doses as well. Upon completion of both surgical 

procedures, rats were given rimadyl for pain and 2ml of saline. Two weeks following 

initial pump insertion and two days before behavioral testing began, the first pump was 

removed and a second pump, filled with the identical substrate to that given previously, 

was inserted in each rat in the same manner as the first pump insertion. Behavioral testing 
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began 16 days after hormone administration was first initiated via the first pump 

insertion.  

 

Verification of Peripheral Estrogenic Stimulation 
 To confirm Ovx and Premarin treatment, vaginal smears were performed at 

various time intervals throughout the study. Smears were classified as either proestrus, 

estrus, metestrus or diestrus (Goldman et al., 2007).  

 

Water Radial Arm Maze 
Subjects were tested on the water radial arm maze. This is a complex win-shift 

task that requires spatial working and reference memory and utilizes water-escape onto 

hidden platforms as the reinforcer (Bimonte and Denenberg, 1999; Bimonte et al., 2002; 

Hyde et al., 1998). The 8-arm maze was filled with room temperature water tinted black 

with nontoxic paint. Four arms had hidden platforms at their ends. Each subject had 

different platform locations that remained fixed throughout the experiment. A subject was 

released from the start arm and had 3 min to locate a platform. If an animal did not locate 

the platform within the allotted time limit, it was gently guided to the platform using a 

black plastic rod. Once a platform was found, the animal remained on it for 15 sec, and 

was returned to its heated cage for 30 sec until its next trial. During the inter-trial interval, 

the just-chosen platform was removed from the maze. The animal was placed again into 

the start alley and allowed to locate another platform. A daily session consisted of these 

events repeated until all four platforms were located. Consequently, for each animal a 

daily session consisted of four trials per session, with the number of platformed arms 
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reduced by one on each subsequent trial, and one more item of information to be 

remembered after every trial. Hence, the working memory system was increasingly taxed 

as trials progressed within a testing day.  

Error quantification and blocking procedures are based upon previous studies 

using the water radial arm maze (Bimonte and Denenberg, 1999; Bimonte et al., 2002; 

Hyde et al., 1998). Each subject was given one session a day for 11 consecutive days. 

The first day was considered training because the animal had no previous experience in 

the maze. Days 2-11 were testing sessions, blocked into two phases: the initial phase 

(days 2-6), and the latter phase (days 7-11). Behavioral testing took place between 0800 

and 1400 hour. An arm entry was counted when the tip of a rat’s snout reached a mark 

delineated on the outside of the arm (11 cm into the arm). Errors were quantified for each 

daily session using the orthogonal measures of working and reference memory errors 

(Jarrard, 1993), as done previously in water radial arm maze studies (Bimonte et al., 

2002). Working memory correct errors were first and repeat entries into any arm from 

which a platform had been removed during that session. Reference memory errors were 

first entries into any arm that never contained a platform. Working memory ncorrect 

errors were repeat entries into reference memory arms. During initial and latter phases, 

performance was measured for each type of error separately, as well as the three error 

subtypes combined (total errors). On day 12, a 4-hour delay was imposed between trials 

two and three to assess retention of multiple items of spatial information (Luine and 

Rodriguez, 1994). The dependent measure for performance on the delay day was total 

errors on trials three and four, the trials after the 4-hour delay. 
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Morris Water Maze  
 The Morris water maze evaluates spatial reference memory. This win-stay task 

consisted of a round tub (188 cm in diameter) filled with room temperature water made 

opaque with black non-toxic paint, with a hidden platform (10 cm wide) (Bimonte-

Nelson et al., 2006; Morris et al., 1982). A video camera above the maze tracked the rat’s 

path during each trial and a tracking system (Ethovision, Noldus Instruments, Leesburg, 

VA) analyzed each path. The rat was placed in the maze from any of four locations 

(North, South, East, or West) and had 60 sec to locate the platform, which remained in a 

fixed location (Northeast quadrant). Once the rat found the platform, the trial was 

terminated. If an animal did not locate the platform within the allotted time limit, it was 

gently guided to the platform using a black plastic rod. After 15 sec on the platform, the 

rat was removed from the maze and placed into its heated cage until the next trial. The 

rats were given five trials a day for three days. The approximate inter-trial interval was 

five-eight min. Swim distance (cm) was the dependent variable for the testing, non-probe 

trial portion of this task. To evaluate whether rats localized the platform to the spatial 

location, after all test trials were completed on day three, a sixth trial was given. This 

sixth trial was a 60 sec probe trial whereby the platform was removed. Since rats that 

learned the platform location were expected to spend the greatest percent distance in the 

target quadrant (Bimonte-Nelson et al., 2006), we analyzed probe trial data by assessing 

group differences in percent distance (cm) in the target (where the platform was 

previously located; Northeast) and opposite (quadrant diagonally opposite to where the 

platform was previously located; Southwest) quadrants. To further evaluate search 

strategy, the probe trial was divided into two 30 sec epochs. The frequency of platform 
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crossings, e.g. the number of times an animal swam over the previously platformed 

location, was quantified for each epoch. This analysis strategy was chosen to yield insight 

into whether animals knew the general vicinity of the platform location (via targeting the 

platform quadrant) and/or the exact platform location (via crossing over the platform 

location, quantified as platform crossings). Additionally, we assessed swim speed 

(distance swum/trial time) during both 30 sec epochs during the probe trial, as it could be 

a measure of motor ability and partially account for group differences in performance.  

 

Delayed Match to Sample Water Maze 
The water-escape delayed match to sample plus maze is a task that assesses 

spatial working and recent memory (Frick et al., 1995; Markowska and Savonenko, 

2002b). The apparatus had four arms (each 38.1 cm long and 12.7 cm wide) and was 

filled with room temperature water made opaque with black non-toxic paint. The maze 

had a hidden escape platform at the end of one of the four arms. The platform location 

changed every day, but was fixed within a day. Rats received six consecutive trials within 

a daily session. The first trial was the information trial where the rat was exposed to that 

day’s platform location, the second trial was the working memory trial (Frick et al., 

1995), and trials three through six were memory test trials. Rats were dropped off in a 

semi-randomly chosen start arm location, and were given a maximum of 90 sec to swim 

to the platform. If an animal did not locate the platform within the allotted time limit, it 

was gently guided to the platform using a black plastic rod. Once on the platform, the rat 

remained on it for 15 sec, followed by placement into a heated cage for a 30 sec inter-trial 

interval. An arm entry was counted when the tip of a rat’s snout reached a mark 
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delineated on the outside of the arm (11 cm into the arm). Entry into an arm with no 

platform counted as an error, the dependent variable. After four days of testing with a 30 

sec inter-trial interval between all trials, rats were tested with a 6-hour delay (day five) 

between the information trial (trial one) and the working memory trial (trial two) to 

assess delayed memory retention. There were no additional trials after the post-delay trial 

(e.g. trial two). Errors were defined as entry into an arm with no platform, and were 

quantified for trial two. In addition, to determine whether each group was affected by this 

delay test, performance of each group on trial two was compared to trial two at baseline 

(day four was used as baseline). 

 

Brain Tissue Collection 
  All rats were sacrificed the day after testing ended. Animals were anesthetized 

with isoflurane (Vetone, Meridian, Indiana) and decapitated according to National 

Institutes of Health euthanasia guidelines. Brains were rapidly dissected by the same 

experimenter who was blind to treatment group status. Referring to Paxinos and Watson 

(1998), from the left hemisphere, frontal cortex, cingulate cortex, entorhinal cortex, 

dorsal and ventral hippocampus (CA1/2), perirhinal cortex, and temporal cortex were 

dissected for neurotrophin quantification; from the right hemisphere the dorsal 

hippocampus (CA1/2) was dissected for gene expression profiling. Enzyme-linked 

immunosorbent assay procedures were carried out on the left hemisphere, and gene 

expression profiling was carried out on the right hemisphere, to reduce potential inter-

hemispheric variability, a procedure used by our laboratory and others (Bimonte, 2008a; 

French et al., 2006; Gobbo and O'Mara, 2004). Brain tissues were placed in pre-weighed 
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microcentrifuge tubes, quickly weighed, frozen on dry ice and stored in at -70 °C until 

analysis.  

 

Peripheral Tissue Collection, Uterine Weights, and Pituitary Weights 
To examine the effects of Premarin on uterine and pituitary tissues, at sacrifice the 

uteri of subjects were removed, trimmed of visible fat and immediately weighed (wet 

weight). Pituitaries were collected from the base of the skull following brain removal and 

weighed (wet weight).  

 

Hormone Assays 
After decapitation, serum was collected and stored at -4 °C until analysis. E1 and 

17β-E2 levels were determined by liquid chromatography-tandem mass spectrometry 

according to previously published methods (Nelson et al., 2004). After dansyl chloride 

derivatization, samples were separated by fast gradient chromatography and then were 

injected in a tandem mass spectrometer after formation of positive ions with atmospheric 

pressure chemical ionization. Limits of quantification for E1 and 17β-E2 were 0.2 and 

0.5pg/ml, respectively, with interassay CV’s of 15% or less at the concentrations 

obtained for these steroids.  

 

Neurotrophin Level Quantification 
         BDNF and NGF levels were assessed using commercially available assay kits from 

Promega (Madison, WI). Neurotrophin assay procedures were done as previously 

described (Bimonte, 2008a; Bimonte et al., 2003; Bimonte-Nelson et al., 2004; French et 



 

30 

al., 2006). In brief, flat-bottom plates were coated with the corresponding capture 

antibody, which binds the neurotrophin of interest. The captured neurotrophin was bound 

by a second specific antibody, which was detected using a species-specific antibody 

conjugated to horseradish peroxidase as a tertiary reactant. All unbound conjugates were 

removed by subsequent wash steps according to the Promega protocol. After incubation 

with chromagenic substrate, color change was measured in an enzyme-linked 

immunosorbent assay plate reader at 450 nm. Using these kits, growth factors can be 

quantified in the range of 4.7-300pg/ml and 7.8-500pg/ml, respectively. For each assay 

kit, cross-reactivity with other trophic proteins is < 2-3%.  

 

Hippocampal Gene Expression 
These gene expression procedures have been used in previous studies (Basu, 

2006; Long et al., 2009). For gene expression, dorsal hippocampal tissues from the Ovx-

Vehicle, Ovx-Premarin-Low and Ovx-Premarin-High rats that were used for maze testing 

were taken. However, for the final data analysis, three subjects from the Ovx-Vehicle 

group, three from the Ovx-Premarin-Low group and seven from the Ovx-Premarin-High 

group were used. This was due to a number of samples not progressing forward to data 

analysis because of stringent quality control measures. These samples did not meet the 

minimum cRNA amplification requirements for expression profiling, or they were 

dropped after evaluating quality control reports following array scanning. These samples 

did not pass at least one of the following criteria: a maximum 3'/5' GAPDH ratio of 3.0, 

at least 30% present calls, and/or a maximum scaling factor of 5.0. Values falling outside 

of these thresholds are indicative of sample degradation and thus a lower level of sample 
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quality. Thus some groups suffered more attrition than others and individuals represented 

in the groups compared varied. Total RNA was isolated from dorsal hippocampal 

samples using the Qiagen (Germantown, MD) RNeasy Mini Kit. Total RNA was eluted 

with 20µL of RNase-free water. RNA was precipitated by the addition of 1/10 volume 

3M NaOAc (pH 5.2) and 2.5 volumes absolute ethanol. After mixing and incubation at -

20 °C for 1 hour, the samples were spun at ≥12,000 g for 20 min at 4 °C.  The resulting 

pellet was washed twice with 80% ethanol and air dried. Pellets were resuspended in 

9.1µL of DEPC-treated water. Isolated total RNA from each sample was amplified, 

cleaned, and biotin-labeled using Affymetrix’s (Santa Clara, CA) GeneChip Once-Cycle 

Target Labeling kit with a T7 promoter as per manufacturer’s protocol. Amplified and 

labeled cRNA was quantitated on a spectrophotometer and run on a 1% TAE gel to check 

for an evenly distributed range of transcript sizes. 20µg of cRNA was fragmented to 

approximately 35 to 200 bp by alkaline treatment (200mM Tris-acetate, pH 8.2, 500 mM 

KOAc, 150 mM MgOAc) and run on a 1% TAE gel to verify fragmentation. Separate 

hybridization cocktails are made using 15µg of fragmented cRNA from each sample as 

per Affymetrix’s protocol. Two hundred µL of each cocktail was separately hybridized to 

an Affymetrix Rat Genome 230 2.0 Array for 16 hours at 45 °C in the Hybridization 

Oven 640. Arrays were washed on Affymetrix’s upgraded GeneChip Fluidics Station 450 

using a primary streptavidin phycoerythrin stain, subsequent biotinylated antibody stain, 

and secondary streptavidin phycoerythrin stain.  Arrays were scanned on Affymetrix’s 

GeneChip Scanner 3000 7G with AutoLoader.  Scanned images obtained by the 

Affymetrix GeneChip Operating Software v1.2 were used to extract raw signal intensity 

values per probe set on the array and calculate detection calls as absent, marginal, or 
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present. Assignment of detection calls was based on probe-pair intensities for which one 

probe was a perfect match of the reference sequence and the other was a mismatch probe 

for which the thirteenth base (of the 25 oligonucleotide reference sequence) was changed. 

Signals are calculated using the One-Step Tukey’s Biweight Estimate and all raw chip 

data was scaled in Affymetrix GeneChip Operating Software to 150 using MAS5.0 to 

normalize signal intensities for inter-array comparisons. 

 

Statistical Analyses 
Since our interest was to determine whether each dose enhanced performance 

relative to the Vehicle group, all of our two-group comparisons were planned. Uterine, 

serum, and brain analyses were run via independent samples t-tests set a priori. Because 

the group comparisons represented a priori planned contrasts, each comparison was 

evaluated using an alpha level of 0.05 except when noted otherwise (Keppel and 

Wickens, 2004 page 115). For behavior assessments, for each dependent variable 

described above, data were analyzed separately for each maze with a repeated measures 

ANOVA with Treatment as the between variable, and Days, Blocks of Days, Trials, 

Epoch, and/or Quadrant as the within variable, as appropriate for the specific maze test.  

Using Pearson r correlations, we correlated serum E1 and 17β-E2 levels (pg/ml), 

and the ratio of E1:17β-E2 (E1 divided by 17β-E2), with the following measures: water 

radial arm maze total errors for initial and latter phases, water radial arm maze total errors 

on post-delay trials, Morris water maze swim distance (cm), target quadrant percent 

distance (cm) on the Morris water maze probe trial, delayed match to sample maze 

working memory trial total errors on day 1-4, and delayed match to sample maze errors 
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after the delay. We also correlated these serum hormone levels to each other to aid 

interpretation of hormone profiles.  

Gene expression analysis consisted of two comparisons: (1) Ovx-Vehicle versus 

Ovx-Premarin-Low animals, and (2) Ovx-Vehicle versus Ovx-Premarin-High animals. 

Within each comparison, all samples in the comparison were first evaluated based on 

Affymetrix detection calls.  For the first comparison, those genes demonstrating at least 

one present call out of a total of six (three Ovx-Vehicle animals and three Ovx-Premarin-

Low animals) calls were extracted in order to remove genes that did not show measurable 

levels of expression across both sample groups.  Similarly, for the second comparison, 

those genes demonstrating at least one present call out of a total of ten calls (three Ovx-

Vehicle animals and seven Ovx-Premarin-High) were identified.  Following this 

detection call filter, the average expression signals were calculated for each group in both 

comparisons; those genes that have both average expression signals less than 100 in a 

comparison are removed (e.g. if the Ovx-Vehicle average signal and the Ovx-Premarin-

Low average signal for a gene are both less than 100 in the first comparison, the gene is 

removed) because changes at consistently low levels overlap with background. The ratio 

of average expression signals for each probe represents the fold change. The Student’s t-

test (heteroscedastic, two-tailed) was used to calculate p-values for transcriptomic 

changes for each gene. MetaCore GeneGo software was used for pathway analysis of 

significant genes. This software takes an input list of genes and evaluates the genes 

against an annotated database of genes/proteins and maps, which represent known 

relationships between genes/proteins. The software database also incorporates Gene 

Ontology (GO) processes under which the input list of genes can also be organized. This 
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tool supports the identification of processes and systems that are likely to be affected by 

changes in expression of specific genes. In this study, genes that demonstrate the most 

significant changes (p < 0.01) are input into the pathway analysis software to determine 

what mechanisms are likely affected by respective transcriptomic changes. For 

comparison 1, 962 genes were input into GeneGo, whereas for comparison 2, 120 genes 

were evaluated. The top ten processes for each comparison are listed in Chapter 3-Table 

II and III and represent the processes most likely affected by changes in gene expression.  

The numerator of the ratio represents the number of genes from the input list that are 

contained in the process, while the denominator represents the total number of genes in 

the process. 

 

Results 

Vaginal Smears, Uterine Weights, Pituitary Weights, and Serum Estrogen Levels 
 With the exception of one Ovx-Premarin treated rat, all Ovx-Premarin treated rats 

exhibited estrus-like vaginal smears that had many cornified cells. The animal was 

excluded from the study. All Ovx-Vehicle rats showed continuous diestrus-like smears. 

Ovx-Premarin-Low, Ovx-Premarin-Medium and Ovx-Premarin-High treatments 

increased uterine weights relative to Ovx-Vehicle animals [Ovx-Vehicle vs. Ovx-

Premarin-Low: t(16)=8.52; p < 0.0001; Ovx-Vehicle vs. Ovx-Premarin-Medium: 

t(15)=7.29; p < 0.0001; Ovx-Vehicle vs. Ovx-Premarin-High: t(14)=8.77; p < 0.0001] 

(Chapter 2-Figure 1a). Premarin also dose dependently influenced pituitary weights 

(Chapter 2-Figure 1b). Pituitary weights in the Ovx-Premarin-High group were 

significantly elevated compared to the Ovx-Vehicle treated group [t(13)=3.05; p < 0.01]. 
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Premarin treatment dose-dependently increased circulating hormone levels. All 

doses of Premarin increased E1 levels as compared to Vehicle [Ovx-Vehicle vs. Ovx-

Premarin-Low: t(7)=3.23; p < 0.05; Ovx-Vehicle vs. Ovx-Premarin-Medium: t(8)=6.92; 

p < 0.0001; Ovx-Vehicle vs. Ovx-Premarin-High: t(8)=4.62; p < 0.005] (Chapter 2-

Figure 1c). Since there appeared to be differences between the Premarin-dosed groups, 

and knowing whether these groups differed would aid interpretation of the behavior 

findings, we performed post-hoc comparisons comparing the three Premarin doses to 

each other for E1 and 17β-E2. Both medium [Ovx-Premarin-Low vs. Ovx-Premarin-

Medium: t(11)=5.66; p < 0.0001] and high [Ovx-Premarin-Low vs. Ovx-Premarin-High: 

t(11)=3.69; p < 0.0036] Premarin doses had higher E1 levels than low dose Premarin. 

Only the two higher doses significantly increased circulating 17β-E2 as compared to Ovx 

animals [Ovx-Vehicle vs. Ovx-Premarin-Medium: t(10)=5.54; p < 0.0005; Ovx-Vehicle 

vs. Ovx-Premarin-High: t(10)=3.41; p < 0.0001] (Chapter 2-Figure 1d). For E1, both 

medium (Ovx-Premarin-Low vs. Ovx-Premarin-Medium: t(11)=4.11; p < 0.0017) and 

high (Ovx-Premarin-Low vs. Ovx-Premarin-High: t(11)=2.37; p < 0.037)  Premarin 

doses elevated 17β-E2 levels significantly more than low dose Premarin. Post-hoc 

comparisons indicated that Ovx-Premarin-Medium and Ovx-Premarin-High groups did 

not differ from each other for E1 or 17β-E2 levels.  

E1 and 17β-E2 levels were positively correlated when all animals were included 

[r(24)=0.885, p < 0.0001] (Chapter 2-Figure 1e), as well as when the correlation was run 

with only the three Premarin treated groups [r(19)=0.894, < 0.0001]. To ensure that this 

significant correlation was not attributable to group differences in E1 and 17β-E2 levels 

due to the experimental manipulations, we centered the data by subtracting each animal’s 
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score from the mean of the treatment group to which they belonged (Enders and Tofighi, 

2007). We then replaced the original serum hormone measures with the centered values 

in the correlation analyses. The correlation remained significant [r(24)=0.710, p < 

0.0001], suggesting that the relationship between E1 and 17β-E2 was not being carried by 

group membership (Chapter 2-Figure 1f). 

 

Water Radial Arm Maze 
For the Initial (Chapter 2-Figure 2a) and Latter (Chapter 2-Figure 2b) phases, 

there were no Treatment main effects, nor were there interactions with Treatment for any 

dependent variable (working memory Correct, reference memory, working memory 

incorrect, total errors). On day 12, after all animals had been trained on the task, a four 

hour delay was instilled between trials two and three, placing a higher memory demand 

for trials three and four. The Ovx-Premarin-High group exhibited better performance than 

the Ovx-Vehicle group for total errors committed across the post-delay trials three and 

four [t(16)=2.86; p < 0.05] (Chapter 2-Figure 2c). No other Premarin treated group 

differed in post-delay performance compared to animals receiving Vehicle. 

 

Morris Water Maze  
  Chapter 2-Figure 3a shows the mean distance scores±SEM for each treatment 

group across the three days of Morris water maze testing. Premarin treatment did not alter 

overall spatial reference memory performance; there was no main effect of Treatment, 

nor did Treatment interact with Days or Trials for any comparison. For the probe trial, 

there was a Quadrant main effect for each Ovx-Premarin-treated vs. Ovx-Vehicle 
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comparison, with a higher percent distance spent in the target quadrant versus the 

opposite quadrant [Ovx-Vehicle vs Ovx-Premarin-Low: F(1,15)=81.79; p < 0.0001; Ovx-

Vehicle vs. Ovx-Premarin-Medium: F(1,14)=180.42; p < 0.0001; Ovx-Vehicle vs Ovx-

Premarin-High: F(1,16)=109.87; p < 0.0001] (Chapter 2-Figure 3b), thereby indicating 

that all groups, regardless of hormone status, localized the platform location by the end of 

testing.  

The frequency of platform crossings during the probe trial was dose dependently 

influenced by Premarin treatment. Ovx-Premarin-Low treated rats made fewer platform 

crossings than the Ovx-Vehicle controls [Treatment main effect: t(15)=2.36; p < 0.05], 

suggesting that Ovx-Premarin-Low animals were less able to localize the platform 

location on the probe trial. However, neither the Ovx-Premarin-Medium nor High groups 

differed from Ovx-Vehicle controls in number of platform crossings. To assess potential 

changes in platform search strategy across the 60 sec probe trial, we divided the probe 

trial into two 30 sec epochs and assessed the frequency of platform crossings across these 

epochs (Chapter 2-Figure 3c). A significant Treatment x Epoch interaction was found 

between the Ovx-Vehicle and Ovx-Premarin-Low groups [F(1,15)=6.54; p <0 .05]. For 

the first 30 sec epoch, Ovx-Premarin-Low rats made fewer platform crossings than Ovx-

Vehicle rats [t(15)=3.42; p < 0.01]; there were no group differences on the second 30 sec 

epoch. Neither the Ovx-Premarin-Medium nor the Ovx-Premarin-High animals differed 

from the Ovx-Vehicle animals during the first or second 30 sec epochs. There were no 

significant comparisons between any Premarin-treated group and the Vehicle group for 

swim speed during the total 60 second probe trial, nor for the first or second 30 sec epoch 

analyzed separately. 
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Delayed Match to Sample Water Maze 
Testing with a 30-second inter-trial interval: For the working memory test trial 

(trial two) collapsed across acquisition days, the Ovx-Premarin-Low group made more 

errors than the Ovx-Vehicle group [Treatment main effect: F(1,16)=6.24; p < 0.05] 

(Chapter 2-Figure 4a). There were no group differences between the Ovx-Vehicle group 

and either of the two higher Premarin dose groups for the working memory trial. For 

memory test trials (trials 3-6), there was a Treatment x Day interaction for the Ovx-

Vehicle and Ovx-Premarin-Low comparison [F(3,48)=4.67, p < 0.01] (Chapter 2-Figure 

4a), an effect due to Ovx-Premarin-Low animals committing more errors than Ovx-

Vehicle animals on day three [Treatment effect for Day 3: F(1,16)= 5.23; p < 0.05], but 

not on days 1, 2, or 4.  

Testing with a 6-hour inter-trial interval: For the 6-hour delay, Ovx-Premarin-

Medium rats committed fewer errors after the delay than Ovx-Vehicle rats [t(15)=2.41; p 

< 0.05], and Ovx-Premarin-High rats made somewhat fewer errors than Ovx-Vehicle rats, 

with a marginal effect [t(14)=1.94; p = 0.07; Chapter 2-Figure 4b]. When animals 

receiving the two highest Premarin doses were combined, this Ovx-Premarin-

Medium+High group committed significantly fewer errors on the test trial after the 6-

hour delay compared to the Ovx-Vehicle group [t(22)=3.05; p < 0.01] (Chapter 2-Figure 

4b). When we evaluated baseline performance (trial two of day four, the day before the 

delay) relative to post-delay performance (trial two of day five) to determine which 

groups were affected by the delay, it became clear that low-dose Premarin treatment 

impaired performance independent of the delay. Indeed, on this baseline day Ovx-

Premarin-Low rats made more total errors than Ovx-Vehicle rats [t(16)=2.94; p < 0.01] 
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and performance of the Ovx-Premarin-Low group did not change with the delay (pre-

delay total errors on trial 2 vs. post-delay total errors on trial 2: p > 0.36). In contrast, 

Ovx-Vehicle rats were impaired by the delay [F(1,8)=6.00; p < 0.05], while the delay did 

not impair performance in Ovx-Premarin-Medium and -High rats (ps > 0.59). 

 

Correlations of Circulating Estrogens with Maze Performance 
Premarin-treated animals that had higher levels of E1 [r = -0.672, p < 0. 

001](Chapter 2-Figure 5a), or a higher E1:17β-E2 ratio [r = -0.483, p < 0.05] (Chapter 2-

Figure 5b), tended to make fewer errors on the working memory trial of delayed match to 

sample testing. These significant correlations were not due to mean differences between 

treatment groups, as correlations each held up after data were centered to obviate effects 

of group membership [r = -0.470, p < 0.05; r = -0.499, p < 0.05, respectively](Chapter 2-

Figure 5c and 5d). There were no other significant relationships between E1, 17β-E2, and 

maze performance. 

 

Neurotrophin Levels  
The effect of Premarin treatment on neurotrophins was assessed in cingulate 

cortex, frontal cortex, entorhinal cortex, dorsal and ventral hippocampus, perirhinal 

cortex and temporal cortex (Chapter 2-Table I). All doses of Premarin significantly 

increased BDNF in the cingulate cortex compared to Vehicle [Ovx-Vehicle vs. Ovx-

Premarin-Low: t(16)=2.32; p < 0.05; Ovx-Vehicle vs. Ovx-Premarin-Medium: 

t(15)=2.39; p < 0.05; Ovx-Vehicle vs. Ovx-Premarin-High: t(14)=2.36; p < 0.05]. 

Similarly, the two highest Premarin doses increased NGF in the cingulate cortex; Ovx-
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Premarin-Medium and Ovx-Premarin-High groups had higher NGF protein levels in 

cingulate cortex as compared to the Ovx-Vehicle group [Ovx-Vehicle vs. Ovx-Premarin-

Medium: t(15)=3.80; p < 0.01; Ovx-Vehicle vs Ovx-Premarin-High: t(14)=4.00; p < 

0.01]. Premarin-High treatment, but no other dose, significantly decreased BDNF levels 

in the perirhinal cortex compared to Vehicle [t(14)= 2.20; p < 0.05]. No dose of Premarin 

altered perirhinal NGF levels, or BDNF or NGF levels in frontal cortex, temporal cortex, 

entorhinal cortex, dorsal hippocampus or ventral hippocampus. 

 

Hippocampal Gene Expression 
Expression profiling analysis of dorsal hippocampi led to identification of genes 

that were differentially expressed across treatment groups. In a comparison of the Ovx-

Vehicle and the Ovx-Premarin-Low groups, 962 genes demonstrated statistically 

significant (p < 0.01) changes, whereas in a comparison of the Ovx-Vehicle and the Ovx-

Premarin-High groups, only 120 genes showed significant (p < 0.01) changes. Top genes 

are shown in Chapter 2-Table II. For the Ovx-Premarin-Low group, primarily 

uncharacterized or predicted genes demonstrated the greatest changes (Chapter 2-Table 

II: List 1). For the Ovx-Premarin-High group, top genes (p < 0.01, greatest folds) include 

Homer1 (homer homolog 1), Pdk2 (pyruvate dehydrogenase kinase, isoenzyme 2), and 

Prkd2 (protein kinase D2) (Chapter 2-Table II: List 2). MetaCore GeneGo pathway 

analysis of significant genes also pinpointed cellular processes that may be affected by 

transcriptomic changes. The top 10 processes for each comparative analysis are listed in 

Chapter 2-Table III. 

 



 

41 

Chapter Summary and Discussion 
The current study is the first to evaluate continuous Premarin treatment for 

memory and associated brain variables using the rodent model. Here, we demonstrate that 

continuous Premarin treatment affects memory, neurotrophin protein levels and gene 

expression in the middle-aged Ovx rat. Confirming peripheral endocrine responsiveness, 

all three Premarin doses resulted in positive estrus-like vaginal smears and increased 

uterine weights, and the highest Premarin dose increased pituitary weights. There were 

also dose-related increases in serum E1 and 17β-E2 levels. These levels were within low 

physiological range for ovary-intact young and middle-aged rodents (Lerner et al., 1990; 

Page and Butcher, 1982). Accordingly, E1 and 17β-E2 levels increased to the low 

physiological range in women after 0.625 and 1.25 mg/tablet daily oral Premarin 

treatment (Gruber et al., 2002; O'Connell, 1995). Premarin is largely E1 sulfate, which 

gets converted to E1, and then to 17β-E2. Therefore, the Premarin-induced elevations in 

17β-E2 correspond with the expected sequence of steroid conversion, even though 

Premarin itself contains only trace amounts of 17β-E2 (Kronenberg et al., 2008). In the 

current study, circulating E1 levels significantly increased with low-, medium- or high- 

dose Premarin treatment, while 17β-E2 levels significantly increased only after the 

medium- and high- dose treatments. Further, the medium- and high- dose regimens 

resulted in E1 and 17β-E2 levels that were significantly higher than the low-dose 

regimen. This suggests that the ratio of these two estrogens varies with Premarin dose, 

and provides a dissociation of hormone profiles of the subjects in this study. This affords 

us the opportunity to evaluate whether the ratio of E1:17β-E2 correlates with the assessed 

cognitive and brain variables.  
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The dose-dependent cognitive effects of Premarin in this study are likely related 

to the resulting circulating hormone levels. Relative to Vehicle, the lowest dose tested, 

12µg daily, impaired spatial learning on two maze tasks, even though the tasks evaluated 

different types of spatial memory. Specifically, low-dose Premarin treatment impaired 

learning the Morris water maze (spatial reference memory) and the delayed match to 

sample plus maze (spatial working memory), but had no effect on the water radial arm 

maze (spatial working and reference memory). These effects are especially noteworthy 

given that the low-dose Premarin regimen was the only treatment that did not elevate 

circulating 17β-E2 levels relative to Ovx-Vehicle animals, while it did increase E1 

(Figure 1). These E1 levels were very low physiological (Lerner et al., 1990; Page and 

Butcher, 1982); significantly lower than those resulting from the medium- or high- doses 

of Premarin given in the current study. It is therefore plausible that these low circulating 

E1 levels, in the presence of very low 17β-E2 levels (comparable to that of Ovx animals), 

impairs performance on tasks that assess only reference memory place learning, or only 

working memory place learning, but not a task that is more complex such as the water 

radial arm maze. This more difficult water radial arm maze task likely challenged the 

Ovx group more so than the tasks solely testing reference or working memory, resulting 

in less discrimination compared to the low-dose Premarin effects. The correlation we 

found between performance on the delayed match to sample working memory trial and 

E1, and with the E1:17β-E2 ratio, further supports this tenet. Indeed, as levels of E1 

increased, and the ratio of E1:17β-E2 increased, animals tended to show better working 

memory performance on this measure. Taken together with the dissociation of dose-

specific estrogenic profiles, results suggest that higher levels of E1, in the presence of 
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17β-E2 concentrations higher than that of Ovx levels, are beneficial for memory. To our 

knowledge there is no animal study evaluating the cognitive effects of circulating E1 

levels, neither endogenous nor exogenous after hormone treatment, although some work 

has been done in humans in this regard. Higher circulating E1 and 17β-E2 levels both 

correlated with better verbal recall scores in oopherectomized women given estrogen-

containing HT (Phillips and Sherwin, 1992), and several cognitive measures improved 

after estrogen or estrogen-androgen therapy in oopherectomized women, concordant with 

increases in circulating E1 and 17β-E2 levels (Sherwin, 1988). Other studies have 

correlated E1 and 17β-E2 with cognitive measures in menopausal women that have not 

been given estrogen therapy. Findings range from higher E1 or 17β-E2 levels 

corresponding to better cognitive scores or a lower frequency of mild cognitive 

impairment (Lebrun et al., 2005; Wolf and Kirschbaum, 2002) to no correlation (Almeida 

et al., 2005) to higher 17β-E2 levels corresponding to worse cognitive scores (Barrett-

Connor and Goodman-Gruen, 1999). Interestingly, in the latter study, higher endogenous 

E1 levels were marginally related to better performance on a verbal memory test in 

menopausal women not on HT (p=.07, Barrett-Connor and Goodman-Gruen, 1999, p. 

1291). While these studies provide support that circulating E1 and 17β-E2 levels relate to 

cognition, there has been no methodical assessment of whether the balance between E1 

and 17β-E2 impacts the direction or efficacy of E1’s cognitive effects. 17β-E2’s presence 

should be presumed when referring to E1, and vice versa, due to interconversion of these 

two estrogens by oxidoreductase 17β-hydroxysteroid dehydrogenase (Khan et al., 2004).  

Thus, it could be argued one can truly not dissociate them. However, this does not 
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preclude estrogenic effects on brain functions due to: (1) total steroid level and/or (2) the 

balance of E1 and 17β-E2. 

In vitro, Premarin induced neuroprotection against β-amyloid, hydrogen peroxide 

and glutamate-induced toxicity in neurons derived from cognitive brain regions including 

the hippocampus, basal forebrain and cortex; in several cases Premarin was effective at 

multiple doses (Brinton et al., 2000a; Brinton et al., 2000b). Other in vitro work showed 

that high nanomolar to micromolar E1 concentrations exerted dose-dependent 

neuroprotective effects on cultured neurons (Bae et al., 2000; Brinton et al., 1997; Regan 

and Guo, 1997; Zhao and Brinton, 2006), although other components of Premarin were 

more effective than E1 (Brinton et al., 1997). We do not know the physiological 

concentrations of E1 or the E1:17β-E2 ratio in the brains of our animals, or how the 

effects may be distributed across various brain networks mediating our effects. However, 

collectively, the findings suggest that E1 can exert neurotrophic properties and 

neuroprotection (Prokai and Simpkins, 2007), which could translate to enhanced brain 

function, at least in the presence of 17β-E2 concentrations that are higher than Ovx 

levels.  

Using 17β-E2 treatment, dose dependent mnemonic effects are shown in rodent 

studies. High physiological 17β-E2 levels enhanced learning a place strategy on a plus 

maze in young rats (Korol and Kolo, 2002) and on the Morris water maze in young and 

middle-aged rats (Talboom et al., 2008). The water radial arm maze, Morris water maze, 

and delayed match to sample tests used in the current study were spatial tasks. While no 

Premarin dose used in this study enhanced learning of these tasks, it is possible that a 

higher Premarin dose would have resulted in higher 17β-E2 levels that could have 
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improved spatial task acquisition. Indeed, the 17β-E2 levels resulting from even our 

highest Premarin dose treatment were low physiological. The spatial learning 

enhancements noted previously were seen with 17β-E2 levels in the higher physiological 

range (Korol and Kolo, 2002; Talboom et al., 2008). In the current study, the two highest 

Premarin doses tested, 24- and 36µg daily, enhanced memory retention when subjected to 

an extended temporal challenge. Specifically, high-dose Premarin treatment improved 

retention of numerous items of information across a 4-hour delay on the water radial arm 

maze, and the two highest Premarin doses enhanced 6-hour retention of one item of 

information on the delayed match to sample task. Both of these tasks require working- or 

short-term memory. There was no effect of an overnight delay on the spatial reference 

memory Morris water maze, suggesting that continuous Premarin does not influence 

overnight forgetting. These findings suggest that the memory enhancing effects of 

Premarin are task specific and moreover, require a mnemonic challenge across hours to 

be manifested. Our findings that the two highest doses of Premarin improved memory 

retention correspond with other studies showing that a higher 17β-E2 dose may be 

necessary to enhance memory, especially in rats approaching old age. Specifically, we 

have shown that higher circulating 17β-E2 replacement levels correlate with better spatial 

reference memory in young and middle-aged Ovx rodents (Talboom et al., 2008). The 

necessity of a higher dose during aging may be especially poignant for memory retention 

(Foster et al., 2003). While findings are not yet reconciled, studies report that higher 

levels of 17β-E2 given via daily injection (Holmes et al., 2002), or an intermediate, but 

not high, 17β-E2 dose given via drinking water (Fernandez and Frick, 2004), impairs 
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spatial maze performance. Also of note, while it is hypothesized that 17β-E2 and E1 are 

two Premarin components largely responsible for the estrogenic effects of Premarin 

(Sitruk-Ware, 2002), there are other estrogens and metabolites present in Premarin that 

could alter efficacy of E1 effects and/or initiate effects on their own. Thus, although we 

found correlations between memory performance and E1, and the E1:17β-E2 ratio, 

cognitive effects due to Premarin treatment could also be related to metabolites of 

Premarin such as Δ8,9-dehydroestrone, dihydroequilin-17β or equilin (Kuhl, 2005). 

Many factors other than dose and the resulting ratios of estrogens in circulation 

likely also play a role in estrogenic effectiveness on memory and the brain. The amount 

of time between hormone loss and subsequent treatment likely impacts efficacy of 

estrogenic therapy. Women who participated in the Women’s Health Initiative Memory 

Study were between 65-79 years old, and many had experienced ovarian hormone 

deprivation for a substantial amount of time before receiving Premarin-containing 

treatment (Shumaker et al., 1998). In the rodent, 17β-E2 replacement initiated 

immediately after Ovx enhanced spatial memory performance in middle-aged rats, but 

imparted no benefit when given 5 months after Ovx (Daniel et al., 2006). Age-related 

changes in responsiveness may also influence the effectiveness of estrogen treatment. 

Aged Ovx rats were not responsive to the 17β-E2 replacement regimen that was effective 

in young and middle-aged Ovx rats (Talboom et al., 2008), concurring with Age x 17β-

E2 replacement interactions for spatial memory shown by Foster and colleagues (2003). 

The current study controlled for these factors since time after Ovx and age were constant 

for all groups. However, whether Premarin-induced memory enhancements would have 

completely reversed any observed age-related memory retention decrements cannot be 
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determined from the current experiment, as young animals were not assessed for 

comparison. Future studies incorporating this comparison group would be helpful in 

determining extent of Premarin-induced improvements during aging.  

Interestingly, we have previously shown in middle-aged Ovx rats that 10µg of 

Premarin, given via two injections 24 hours apart, followed by 48 hours without 

injection, enhanced learning of the delayed match to sample task used in the current study 

(Acosta et al., 2009b). In contrast, the 12µg continuous Premarin dose used herein 

impaired performance on this same measure. Intermittent cyclic vs. continuous regimens 

are a plausible explanation for the difference in findings. Differences in ER expression, 

with cyclic estrogen treatment facilitating ER recycling, and continuous estrogen 

treatment down-regulating ERs, indicate divergent neural mechanisms of action for 

cyclic and continuous administration that likely impact learning and memory changes 

(Blaustein, 1993; Brown et al., 1996; Kassis and Gorski, 1981; Rosser et al., 1993). There 

are age-related alterations in the number and activity of ERs, which could influence 

responsivity as aging ensues (Chakraborty and Gore, 2004). The animals in our current 

and prior (Acosta et al., in 2009b) Premarin studies were middle-aged. Data suggest an 

ER-dependent mechanism of 17β-E2-induced benefits on spatial memory (Zurkovsky et 

al., 2006). Thus, changes in ERs with age and with type of estrogen regimen could 

influence responsiveness to estrogen for spatial memory. Further, for 17β-E2, continuous 

treatment only enhanced memory when cyclic treatment was initiated first in older Ovx 

rats (Markowska and Savonenko, 2002). 

In addition to Premarin-induced dose-dependent effects on cognition, we found 

dose-dependent effects on neurotrophin protein levels in the cingulate and perirhinal 
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cortices. In the cingulate cortex, all Premarin doses increased BDNF, while only the two 

highest doses increased NGF. In the perirhinal cortex, only the highest Premarin dose 

affected neurotrophin levels, decreasing BDNF. BDNF and NGF proteins are implicated 

in learning and memory (Backman et al., 1996; Fischer, 1987; Frick, 1997; Mizuno, 

2000; Scali, 1994). Neurotrophins may play a role in estrogenic-induced memory 

changes, as indicated by the current study using Premarin and prior studies using 17β-E2. 

17β-E2 replacement increased BDNF and NGF proteins in the entorhinal cortex in aged 

Ovx rats (Bimonte-Nelson et al., 2004) and increased levels of TrkA, the high-affinity 

neurotrophin receptor, in the basal forebrain (McMillan et al., 1996; Singer et al., 1998). 

The neurotrophin findings in the current study also implicate the cingulate gyrus and 

perirhinal cortex as potential sites of action for Premarin treatment. These brain regions 

play critical roles for cognition in rodents, including for spatial and object memory 

(Bachevalier and Nemanic, 2008; Cain, 2006; Lee et al., 2006; Lukoyanov, 2005; Ramos, 

2008), and in humans as shown for spatial tasks (Kinderman, 2004; Moffat, 2006) and for 

degenerative changes with Alzheimer’s disease (Hirono, 1998; Liang, 2008; Reiman, 

2004). It is currently unknown how or whether Premarin-induced growth factor changes 

are related to the altered memory functions seen after treatment. Hypotheses set forth 

include compensatory relational changes in the hippocampal/basal forebrain retrograde 

transport system, which could account for upregulation in some brain regions, but 

downregulation in others (Granholm, 2000).  

In the current report, gene expression profiling of dorsal hippocampus identified 

mechanisms possibly involved with Premarin-induced memory changes. The dorsal 

hippocampus was chosen as the region of analysis since it has well-known links with 
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learning and memory, especially regarding spatial navigation (Jarrard, 1993; Morris et 

al., 1982). While implications of gene expression changes identified in the current study 

have yet to be determined, the genes listed in Table II represent molecular clues about the 

processes relating to Premarin-effects on the rat hippocampus. Of these, it is noted that 

high-dose Premarin treatment increased Homer1 expression. Homer1, which binds 

metabotropic glutamate receptors (Brakeman et al., 1997), is particularly interesting due 

to its previously implicated role in memory functions (Jaubert et al., 2007; Lominac, 

2005; Szumlinski et al., 2005). Since this study is the first to assess Premarin effects on 

gene expression in the brain after cognitive testing, it is recognized that further studies 

are necessary to distinguish those transcripts that may be altered by Premarin treatment 

alone, versus those transcripts that are regulated by a physiological cascade of the 

improved memory due to Premarin treatment.  

In conclusion, this is the first study testing continuous Premarin, the estrogen 

component of the most commonly utilized HT given to women since 1942, on a mempry 

test battery in an animal model. We found that Premarin can affect memory, with 

divergent effects depending on dose. In middle-aged Ovx rats, Premarin enhanced 

memory retention on two tasks at higher doses. Low-dose Premarin impaired some 

aspects of performance, specific to spatial platform localization and learning a working 

memory task, but had no effect on memory retention. Premarin-induced cognitive 

changes may relate to the ratio of E1 to 17β-E2, with higher levels associated with better 

performance, although it is recognized that other components of Premarin could account 

for Premarin-induced memory changes. Gene expression profiling identified Premarin-

associated transcriptomic changes, which likely includes Homer1, and provides a 
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foundation for delineating the molecular processes affected by Premarin. These findings 

suggest that Premarin can impact memory and the brain, and that dosing should be 

recognized as a clinically relevant factor possibly affecting the direction and efficacy of 

cognitive outcome.  
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CHAPTER 3 

ORALLY ADMINISTERED PREMARIN DOSE-DEPENDENTLY IMPAIRS 

PERFORMANCE ON AN 8-ARM, SPATIAL WORKING MEMORY TASK IN 

MIDDLE-AGED FEMALE RATS: RELATIONS WITH EXPERIMENTAL 

HANDLING ASSOCIATED WITH TREATMENT ADMINISTRATION 

Manuscript Status: In preparation 

 

Introduction 
Premarin, administered in the form of a daily oral tablet, is the most commonly 

prescribed estrogen-based form of menopausal hormone therapy (HT; Hersh et al., 2005). 

Yet, among peri- and post-menopausal women, Premarin’s mnemonic impact is still 

unclear, with some studies reporting benefits and others reporting null or even 

detrimental impacts on memory performance (Bimonte-Nelson et al., 2010; Hogervorst et 

al., 2000; Sherwin and Henry, 2008). Interestingly, studies thus far testing the cognitive 

effects of Premarin in rodents, in which treatments were administered via a subcutaneous 

route, have generally revealed favorable results (Acosta et al., 2009b, Engler-Chiurazzi et 

al., 2011; Walf and Frye, 2008). Together, these findings suggest that cognitive benefits 

can be realized with Premarin treatment and that isolating the factors that facilitate its 

beneficial effects on memory will be crucial in optimizing this HT for cognitive 

outcomes. 

Route of treatment administration could be one factor that impacts the realization 

of cognitive benefits with Premarin treatment. Indeed, important metabolic differences 

exist between the various options for administering menopausal HTs (Sherwin and 
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Henry, 2008). For instance, estrogens administered orally are first metabolized in the gut 

and liver before being released into circulation (Kuhl, 2005). This results in a rapid rise in 

circulating estrogens and a high ratio of blood estrone (E1) compared to 17β-estradiol 

(17β-E2; Kuhl, 2005). As such, compared to non-oral routes, higher doses of orally 

administered estrogen-containing treatments are needed to impart equivalent actions in 

the body. Conversely, estrogen treatments administered via the transdermal or 

subcutaneous route are released at a slow rate in which the ratio of circulating estrogens 

is closer to 1:1 and does not fluctuate greatly across time (Gleason et al., 2005; Kuhl, 

2005). Thus, characterizing the effects of orally administered represents an important 

area of research yet, while the impact of subcutaneous Premarin has been studied by our 

lab (Acosta et al., 2009b, Engler-Chiurazzi et al., 2011) and others (Walf and Frye, 

2008), there has been no study testing the effects of orally administered Premarin on 

cognitive outcomes.  

Here, we conducted a broad dose-response study to evaluate the mnemonic 

impact of orally administered Premarin. As subcutaneously administered Premarin  

(Acosta et al., 2009b, Engler-Chiurazzi et al., 2011) and orally administered estrogens 

(Fernandez and Frick, 2004) have been shown to impact cognition and the brain in 

middle-aged, ovariectomized (Ovx) rodents, we hypothesized that orally administered 

Premarin would also impact cognition and neurotrophins in this population. Given that 

Premarin, prescribed in form of an oral tablet, impairs cognition in peri- and post-

menopausal women, we predicted that the oral route of Premarin administration to 

middle-aged rats would impair performance on our battery of memory tasks.  
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Study 1 

Materials and Methods 

Subjects 
Subjects were 40 inbred Fischer-344 female rats born (14 month old) and raised at 

the aging colony of the National Institute on Aging at Harlan Laboratories (Indianapolis, 

IN). Inbred rats were selected given that their low genetic and physiological variability 

allowed us to utilize a relatively small sample size to generalize observed cognitive 

impacts of our treatments to the general population (Nadon, 2004b). Animals were 

acclimated for several weeks at the Arizona State University animal facility, were pair 

housed with an identically treated cage-mate, had exposure to food and water ad-libitum, 

and were maintained on a 12-h light/dark cycle. All procedures were approved by the 

local Institutional Animal Care and Use Committee and adhered to National Institutes of 

Health standards.  

 

Ovariectomy and Treatment 
The experimental timeline is presented in Chapter 3-Figure 1a. To remove 

ovarian-secreted hormones, all rats were anesthetized with acute isoflurane (Vetone, 

Meridian, Indiana) inhalation and rats received Ovx. Bilateral dorsolateral incisions were 

made in the skin and peritoneum, and the ovaries and tips of uterine horns were ligatured 

and removed. The muscle was then sutured and the skin stapled. Seventeen±1 days after 

surgery, rats began treatment administration. Based on a pilot study to determine the 

optimal method to give Premarin orally with limited handling, we determined that hand 

feeding via a needless syringe was most effective to ensure the entire product was 

ingested. Rats received either distilled water (Ovx-Vehicle) or one of the following doses 
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of Premarin dissolved in distilled water: 30µg (Ovx-Oral-30), 90µg (Ovx-Oral-90) or 

180µg (Ovx-Oral-180). The results of our prior findings showing memory enhancements 

after 30µg/day subcutaneous injections (Acosta et al., 2009b), and after 36µg/day via 

subcutaneous Alzet osmotic pumps (Engler-Chiurazzi et al., 2011), led us to use the 90µg 

dose as the middle oral dose. The oral Premarin doses were estimated based on the 

reduced bioavailability of estrogens when given orally (Kuhl, 2005). The 30µg/day oral 

dose, approximating a subcutaneous dose of 10µg/day, is one third of the medium dose, 

and the 180µg/day dose, approximating a subcutaneous dose of 60µg/day, is two times 

the middle dose. Fourteen±1 days after Ovx (three days before oral drug administration 

began), animals were introduced to the oral handling procedure daily for three days. 

Handling consisted of enwrapping each rat up to the shoulders in a clean rag, lifting the 

rat in the air, and inserting a syringe (without needle attached) into the mouth. Each 

syringe contained 0.1 ml of the appropriate substrate followed by a 0.1 ml distilled water 

chaser, and the entire syringe tip was dipped in sweetened condensed milk before 

placement in the mouth. Rats were given daily oral administration of their assigned 

substrate until the day of sacrifice. Behavioral testing began 40±1 days following Ovx, 

and 24±1 days after hormone administration was initiated. 

 

Verification of Peripheral Estrogenic Stimulation 
Since few studies have assessed orally administered Premarin in the rat, we 

verified peripheral estrogenic stimulation via evaluation of traditional markers including 

vaginal smears (Goldman et al., 2007), uterine weights (Westerlind, 1998), and pituitary 

weights (Spady, 1999). Beginning approximately five days after Ovx surgeries, smears 



 

55 

were taken daily for five days to confirm lack of uterine stimulation. Next, to establish a 

temporal profile of estrogenic action for orally administered Premarin in the middle-aged 

rat, vaginal smears were taken daily for 13 days, beginning three days following the first 

oral Premarin treatment. Smears were classified as either proestrus, estrus, metestrus or 

diestrus (Goldman et al., 2007). Body weights were collected once per week and 

continued for the duration of the experiment, beginning 21 days after Ovx. 

 

Delayed Match to Sample Water Maze 
Forty±1 days after Ovx, rats were trained on the water-escape delayed match to 

sample maze, a task that assesses spatial working and recent memory (Frick et al., 1995; 

Markowska and Savonenko, 2002). The apparatus was a radial arm water maze with 

eight arms (each 38.1 cm long and 12.7 cm wide), filled with room temperature water 

made opaque with black non-toxic paint. The maze had a hidden escape platform at the 

end of one of the eight arms. The platform location changed every day, but was fixed 

within a day. Rats received six consecutive trials within a daily session. The first trial was 

the information trial where the rat was exposed to that day’s platform location, the second 

trial was the working memory trial, and trials three through six were recent memory trials 

(Acosta 2009b; Engler-Chiurazzi et al 2011). Each rat was dropped off in a semi-

randomly chosen start arm location, and was given a maximum of 90 sec to swim to the 

platform. If an animal did not locate the platform within the allotted time limit, it was 

gently guided to the platform using a black plastic rod. Once on the platform, the rat 

remained on it for 15 sec, followed by placement into a heated cage for a 30 sec inter-trial 

interval. An arm entry was counted when the tip of a rat’s snout reached a mark 
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delineated on the outside of the arm (11 cm into the arm). Entry into an arm with no 

platform counted as an error, the dependent variable. After eight days of baseline testing 

with a 30 sec inter-trial interval between all trials, rats were tested using a 6-hour delay 

(day 9) and 8-hour delay (day 10) to assess delayed memory retention. Since the second 

trial is the initial trial to test recall of the updated information, the delays were given 

between trial one and two to determine whether the increased inter-trial interval 

impacted, specifically, memory retention of one item of information. For the delayed 

retention trials, there were no additional trials after the test trial (e.g. post-delay trial two). 

 

Morris Water Maze  
Next, rats were trained on the Morris water maze, a task that evaluates spatial 

reference memory. This win-stay task consisted of a round tub (188 cm in diameter) 

filled with room temperature water, made opaque with black non-toxic paint, and with a 

hidden platform (10 cm wide) submerged just below the surface. The rat was placed in 

the maze from any of four locations (North, South, East, or West) and had 60 sec to 

locate the platform, which remained in a fixed location (Northeast quadrant). If an animal 

did not locate the platform within the allotted time limit, it was gently guided to the 

platform using a black plastic rod. After 15 sec on the platform, the rat was placed into its 

heated cage until the next trial. Rats were given five trials a day for three days. Animals 

were tested in squads (eight-nine rats in each squad) so that trial one was completed for 

each rat in the group, then trial two, etc., as done previously (Hyde et al., 2002; Schrott et 

al., 1992; Stavnezer et al., 2002). A video camera and tracking system (Ethovision, 

Noldus Instruments) tracked and analyzed each rat’s path, with swim distance (cm) as the 
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dependent variable. To evaluate whether rats localized the platform to the spatial 

location, after the test trials, a 60 sec probe trial was given whereby the platform was 

removed. Since rats that learned the platform location were expected to spend the greatest 

percent distance in the target quadrant (Bimonte-Nelson et al., 2006), the dependent 

variable for the probe trial data was percent distance moved in the previously platformed 

quadrant.  

 

Black/White Discrimination  
Because many clinical studies have shown benefits of Premarin on measures of 

non-spatial, verbal memory such as the California Verbal Learning Test (Resnick et al., 

1998), the memory phase from the Blessed Information Memory Concentration test and 

the Buschke’s free and cued selective reminding test (Verghese, 2000), and word list 

recall (Kimura, 1995), rats were tested on a non-spatial black/white discrimination task to 

assess a non-spatial dimension of memory function. This win-stay, non-spatial, reference 

memory task is based on previously published protocols (Denenberg et al., 1992). The 

black Plexiglas maze (each arm was 38.1cm x 12.7cm) was filled with water made 

opaque with black non-toxic paint, and had a hidden platform at the end of one of the 

three arms. All spatial (extramaze) cues were blocked by curtains. For each rat, the 

hidden platform was paired with a black or white colored insert (counterbalanced across 

animals) in the arm of the maze. For any given rat, the platform and color stimulus 

remained paired throughout testing. The spatial location of the color stimulus was 

alternated across trials so that attention to any unblocked spatial cues would not support 

an effective maze solving strategy. Thus, the location of both the platform and paired 
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colored insert within the maze varied semi-randomly across trials. The start location was 

always in the arm with a gray colored insert, the spatial location of which was fixed 

across all days and trials. For a given trial, the rat was placed in the start arm and had 90 

sec to locate the platform. If an animal did not locate the platform within the allotted time 

limit, it was gently guided to the platform using a black plastic rod. After 15 sec on the 

platform, the rat was placed into its heated cage until the next trial. Rats were given eight 

trials a day for 12 days. Animals were tested in squads (nine-ten rats in each squad) so 

that trial one was completed for each rat in the group, then trial two, etc., resulting in an 

approximate inter-trial interval of eight min, as done on other mazes (Schrott et al., 1992; 

Hyde et al., 2002; Stavnezer et al., 2002). An arm entry was counted when the tip of a 

rat’s snout reached a mark delineated on the outside of the arm (11 cm into the arm). 

Entry into an arm with no platform counted as an error, which was the dependent 

measure. Errors were classified as first (initial entry into the unplatformed arm), repeat 

(repeated entries into the unplatformed arm), total (first and repeat errors combined) and 

start (first and repeat entries into the start arm) errors. In addition, each day, the number 

of correct first choices (where the rat entered the platformed arm) was quantified. After 

the final test trial, a 90 sec probe trial was given whereby the platform was removed from 

the maze. Arm entries, either into the previously platformed arm or into the previously 

unplatformed arm, was the dependent measure. 

 

Brain Tissue Collection 
  All rats were sacrificed the day after maze testing ended. Animals were 

anesthetized with isoflurane and decapitated according to National Institutes of Health 
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euthanasia guidelines. Brains were rapidly dissected by an experimenter who was blind to 

treatment group status. Referring to Paxinos and Watson (1998), from the left 

hemisphere, anterior and posterior cingulate cortex, frontal cortex, dorsal hippocampus, 

entorhinal cortex, perirhinal cortex, and pituitary were dissected. For the anterior and 

posterior cingulate cortex, a strip of the dorsal cortex along the medial longitudinal 

fissure was removed and divided into two halves, with the anterior half comprising the 

anterior cingulate and the posterior half comprising the posterior cingulate; for the frontal 

cortex, the most medial 1.5 to 2 mm portion of the frontal cortex was dissected; for the 

dorsal hippocampus, the dentate gyrus and the alveus were excluded; for the entorhinal 

cortex, a 2-3 mm sample ventral to the hippocampus was taken; for the perirhinal cortex, 

a 1-1.5 mm sample surrounding the rhinal fissure was collected. Tissues were placed in 

pre-weighed microcentrifuge tubes, quickly weighed, frozen on dry ice, and stored in at -

70 °C until analysis.  

 

Peripheral Tissue Collection, Uterine Weights, and Pituitary Weights 
At sacrifice, blood was taken via cardiocentesis. Uterine tissues were collected, 

trimmed of fat and connective tissue, and weighed as per previous methods (Acosta et al., 

2009b). Following the removal of the brain from the skull cavity, pituitary was extracted 

from the base of the skull and placed into a pre-weighed microcentrifuge tube.  

 

Hormone Assays 
Serum levels of E1 and 17β-E2 were determined by liquid chromatography-

Tandem Mass Spectrometry according to previously published methods (Nelson et al., 
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2004). After dansyl chloride derivatization, samples were separated by fast gradient 

chromatography and then were injected in a tandem mass spectrometer after formation of 

positive ions with atmospheric pressure chemical ionization. Limits of quantification for 

E1 and 17β-E2 were 0.2 and 0.5 pg/ml, respectively, with interassay CV’s of 15% or less 

at the concentrations obtained for these steroids.  

 

Neurotrophin Level Quantification 
            Brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) levels 

were assessed using commercially available assay kits from Promega (Madison, WI). 

Neurotrophin assay procedures were done as previously described (Bimonte et al., 2003; 

Bimonte-Nelson et al., 2004; Bimonte-Nelson et al., 2008; French, et al., 2006). In brief, 

flat-bottom plates were coated with the corresponding capture antibody, which binds the 

neurotrophin of interest. The captured neurotrophin was bound by a second specific 

antibody, which was detected using a species-specific antibody conjugated to horseradish 

peroxidase as a tertiary reactant. All unbound conjugates were removed by subsequent 

wash steps according to the Promega protocol. After incubation with a chromagenic 

substrate, color change was measured in an enzyme-linked immunosorbent assay plate 

reader at 450nm. Using these kits, BDNF and NGF can be quantified in the range of 4.7-

300 pg/ml and 7.8-500 pg/ml, respectively. For each assay kit, cross-reactivity with other 

trophic proteins is < 2-3%.  
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Statistical Analyses 
Pituitary weight, uterine weight, serum estrogen, and growth factor analyses were 

run via planned independent samples t-tests set a priori, comparing Vehicle to each 

Premarin treatment group. Since our interest was to determine whether each oral dose 

impacted these measures relative to the Vehicle group, all of our two-group comparisons 

were planned. Because the group comparisons represented a priori planned contrasts, 

each comparison was evaluated using an alpha level of .05, unless otherwise noted 

(Keppel and Wickens, 2004). For behavior assessments, data were analyzed separately 

for each maze with a one-way, repeated measures ANOVA with Treatment as the 

between variable and Blocks of Days, Days, Trials and/or Quadrant as the within 

variable, as appropriate for the specific maze test. This was done to allow interpretation 

of repeated measures effects in the context of potentially complex Treatment interactions. 

 

Results 

Vaginal Smears, Uterine Weights, Pituitary Weights, and Serum Estrogen 
Levels 
For vaginal smears following Ovx but before treatment administration, all animals 

consistently exhibited diestrus-like vaginal smears composed of very few leukocytes and 

scattered cornified cells. After treatment administration began and just prior to behavioral 

testing initiation, all but one rat given Vehicle treatment exhibited continuous diestrus-

like smears. This anomalous animal was excluded from the study. For Ovx-Oral-30 rats, 

approximately one third of rats within this group exhibited consistent smears that 

indicated positive vaginal stimulation. Among these rats, these estrus/metestrus-like 

smears, composed of numerous cornified and leukocytic cells with occasional epithelia 
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cells, were of stable profile (not cycling in cell type) across days. Approximately half of 

the Ovx-Oral-90 rats exhibited smears that indicated positive vaginal stimulation. Smears 

among these rats were cyclical, alternating between estrus/metestrus-like, and diestrus-

like, smears. Ovx-Oral-180 rats exhibited primarily estrus/metestrus-like smears, 

composed of many cornified and leukocytic cells, again of stable profile. 

Ovx-Oral-90 and Ovx-Oral-180 treatments increased uterine wet weights relative 

to Vehicle treatment [Vehicle vs. Ovx-Oral-90: t(14)=3.22; p < 0.01; Vehicle vs. Ovx-

Oral-180: t(13)=3.94; p < 0.005] (Table 1). Premarin also dose dependently influenced 

pituitary weights (Table 1). Ovx-Oral-90 and Ovx-Oral-180 treatments increased 

pituitary weights relative to Vehicle treatment [Vehicle vs. Ovx-Oral-90: t(15)=3.04; p < 

0.01; Vehicle vs. Ovx-Oral-180: t(14)=2.28; p < 0.05]. 

Premarin treatment dose-dependently increased circulating hormone levels. All 

oral Premarin doses increased E1 levels as compared to the Vehicle treatment [Vehicle 

vs. Ovx-Oral-30: t(14)=3.93; p < 0.005; Vehicle vs. Ovx-Oral-90: t(15)=4.54; p < 

0.0005; Vehicle vs. Ovx-Oral-180: t(14)=6.86; p < 0.0001]. Chapter 3-Figure 2a shows 

mean±SEM serum levels of E1 for each treatment group. It is noteworthy that circulating 

E1 levels following 90µg oral Premarin administration were similar to those following 

36µg of continuous subcutaneous Premarin administration (Engler-Chiurazzi et al., 

2011). 

All oral Premarin doses also increased circulating 17β-E2 levels as compared to 

the Vehicle treatment [Vehicle vs. Ovx-Oral-30: t(14)=2.53; p < 0.05; Vehicle vs. Ovx-

Oral-90: t(15)=3.52; p < 0.005; Vehicle vs. Ovx-Oral-180: t(14)=7.68; p < 0.0001] 

(Chapter 3-Figure 2b). Again, we found similarities with our prior work; circulating 17β-
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E2 levels following 90µg oral Premarin administration were similar to those following 

36µg of continuous subcutaneous Premarin administration (Engler-Chiurazzi et al., 

2011). 

!

Delayed Match to Sample Water Maze 
Testing with a 30-second inter-trial interval: Orally-administered Premarin dose-

dependently impaired spatial working memory. We blocked testing days into two four-

day blocks, and assessed Treatment x Block x Trial interactions for trials two through six. 

Any interactions with Days are not meaningful for this measure because an effect of Days 

in the context of multiple blocks of testing days only corresponds to unique days within a 

testing block; therefore, these were not reported.  

There were no significant Treatment x Block interactions for trials two through 

six. Because the working memory trial (trial two) assesses a unique memory domain 

(Frick et al.,1995; Markowska and Savonenko, 2002) and because we have shown 

impacts of Premarin on the working memory trial in past studies (Acosta et al., 2009b; 

Engler-Chiurazzi et al., 2011), we assessed performance on the working memory trial and 

recent memory trials (trials three-six) separately. For the working memory trial, there was 

a Treatment x Block interaction [F(3,31)=3.31; p < 0.05]. To further assess this 

interaction, we analyzed performance during each testing block separately. There was a 

Treatment main effect for the first block [F(3,31)=4.83; p < 0.01]. To determine which 

Premarin dose impacted performance during the first testing block, we compared each 

dose to the Vehicle group. There was a Treatment main effect for the Vehicle vs. Ovx-
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Oral-180 comparison [F(1,14)=5.84; p < 0.05], such that the Ovx-Oral-180 treatment 

increased total errors (Chapter 3-Figure 3a).  

Testing with a 6-hour inter-trial interval: Orally administered Premarin did not 

impact delayed memory retention. To determine whether each group was affected by 

each delay, performance within each group on the working memory trial of each delay 

day was compared to the working memory trial on the final baseline day (day eight) via a 

repeated measures ANOVA with Day (test trial for delay day vs. test trial for baseline 

day) as the repeated measure. There were no significant Day main effects, indicating that 

no group was impaired by the initiation of a six- or eight-hour delay between the 

information and working memory trials. We also assessed whether Treatment interacted 

with working memory trial performance before and after the initiation of the delay 

challenge; there were no Treatment x Day interactions for either the six- or eight-hour 

delay comparisons with the final day of baseline. 

 

Morris Water Maze  
  Orally-administered Premarin did not impact Morris water maze performance. 

There was a main effect of Days [F(2,62)=97.21; p < 0.0001] with decreasing distance 

scores across days. There was also a main effect of Trials [F(4,124)=11.29; p < 0.0001], 

with decreasing distance scores across trials (data not shown). There were no interactions 

between Treatment and Days and/or Trials. Because we have shown a benefit of 

overnight memory retention with subcutaneous 17β-E2 treatment (Talboom et al., 2008) 

and with subcutaneous Premarin treatment (Acosta et al., 2009b), we probed parameters 

that might yield insight into overnight memory retention. To do this, we assessed 



 

65 

performance on the final test trial of each day (trial five) versus the first trial of the 

following test day (trial one). For overnight forgetting, there were no Treatment x Trial 

interactions for the first (trial five on day one to trial one on day two) or second (trial five 

on day two to trial one on day three) overnight intervals, nor on both overnight intervals 

combined.  

For the probe trial, we assessed group differences in percent swim distance (cm) 

in the target (where the platform was previously located) and opposite (quadrant 

diagonally opposite to where the platform was previously located) quadrants. There was a 

Quadrant main effect, with a greater percent distance in the target quadrant (Northeast) 

than the opposite quadrant (Southwest) [F(1, 31)=215.23; p < 0.0001], but no interaction 

between Treatment and Quadrant, indicating that Premarin exposure did not impact the 

ability to localize the platform beyond that of the Vehicle treatment (data not shown).  

 

Black/White Discrimination  
Orally-administered Premarin did not impact non-spatial reference memory. We 

blocked data into four three-day blocks. As with other behavioral tasks, any interactions 

with Days are not meaningful for this measure because an effect of Days in the context of 

multiple blocks of testing days only corresponds to unique days within a testing block; 

therefore, these were not reported. There were no interactions with Treatment and 

Blocks, and/or Trials. We have previously shown that Premarin can attenuate overnight 

forgetting on the reference memory Morris water maze (Acosta et al., 2009b). Because 

this black/white discrimination task is also a reference memory task, we evaluated 
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overnight forgetting for this task as well. There were no Treatment x Trial interactions for 

the overnight forgetting measures.  

For performance on the final testing day, there were no group differences in the 

number of correct first choices including the probe trial. Similarly, there were no group 

differences for the percent of arm entries into the previously rewarded arm during the 

final probe trial. 

 

Neurotrophin Levels  
The effect of Premarin treatment on neurotrophins was assessed in anterior and 

posterior cingulate cortex, frontal cortex, hippocampus, entorhinal cortex, perirhinal 

cortex and pituitary (Chapter 3-Table 2). Ovx-Oral-180 increased NGF protein levels in 

the posterior cingulate cortex as compared to Vehicle treatment [t(14)=2.36; p < 0.05]. 

Ovx-Oral-180 treatment decreased NGF protein levels in the frontal cortex compared to 

Vehicle treatment [t(14)=2.50; p < 0.05], with no effect for any other dose for frontal 

cortex NGF. No dose of Premarin altered posterior cingulate or frontal cortex BDNF 

levels, or BDNF or NGF levels in anterior cingulate cortex, hippocampus, entorhinal 

cortex, perirhinal cortex or pituitary. 

 

Study 2 
In Study 1, orally-administered Premarin impaired spatial working memory. 

However, rodent handling associated with treatment administration can impact maze 

performance and obviate the spatial working memory benefits of 17β-E2 (Bohacek and 

Daniel, 2007). Thus, it was possible that the handling procedures we utilized to 
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administer the oral estrogen treatment were responsible for the cognitive effects we noted 

in Study 1. To systematically evaluate this, in Study 2, we probed the mnemonic 

influence of oral handling procedures on middle-aged, Ovx rats administered either 

subcutaneous Premarin or Vehicle. We predicted that Premarin treatment, given at a dose 

we have previously found to benefit memory (Engler-Chiurazzi et al., 2011), would only 

enhance performance in unhandled animals and that these treatment differences would be 

attenuated among the orally handled animals. 

 

Materials and Methods 

Subjects 
Subjects were 40 inbred Fischer-344 female rats (14 month old) born and raised at 

the aging colony of the National Institute on Aging at Harlan Laboratories (Indianapolis, 

IN). Acclimation and housing procedures were identical to those in Study 1. 

 

Ovariectomy and Treatment 
The experimental timeline is presented in Chapter 3-Figure 1b.To remove 

ovarian-secreted hormones, all rats were anesthetized with acute isoflurane inhalation and 

rats received Ovx as done in Study 1. Fourteen±1 days after Ovx surgery rats began 

treatment administration. Rats received either propylene glycol (Vehicle) or 36µg of 

Premarin dissolved in propylene glycol. The 36µg dose of Premarin was based on our 

prior findings showing memory enhancements after subcutaneous 30µg/day injections 

(Acosta et al., 2009) and 36µg/day via Alzet pumps (Engler-Chiurazzi et al., 2011). In 

parallel with other studies (Talboom 2011; Engler-Chiurazzi et al., 2011), Vehicle and 
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Premarin treatments were administered continuously using Alzet osmotic pumps (Model 

2004; Durect Corporation, Cupertino, CA). Briefly, Premarin was dissolved in propylene 

glycol (Sigma, St. Louis, MO) and inserted into the pumps as per manufacturer’s 

instructions. For the Vehicle group, pumps were filled with propylene glycol only. For 

pump insertion, under isoflurane anesthesia, a small incision was made in the dorsal 

scruff of the neck, and a subcutaneous pocket was created. One pump filled with Vehicle 

or Premarin was inserted into the pocket and the skin was stapled. We allowed four days 

for rats to recovery from pump insertion surgery and for dorsal neck incisions to heal. 

Handling procedures began 18±1 days after Ovx. Rats of both subcutaneous treatment 

groups were randomly assigned to receive either daily oral handling procedures or to 

remain in their home cages unhandled until sacrifice. Thus, the groups were: 1) 

unhandled, Vehicle-treated rats (Vehicle-Unhandled), 2) unhandled, Premarin-treated rats 

(Premarin-Unhandled), 3) oral handled, Vehicle-treated rats (Vehicle-Handled), and 4) 

oral handled, Premarin-treated rats (Premarin-Handled). There were 10 rats for each 

treatment group. Oral handling procedures were identical to those used in Study 1, except 

that each syringe contained only 0.2ml distilled water (no hormone treatments), and the 

entire syringe tip was dipped in sweetened condensed milk before placement in the rat’s 

mouth. Given that the 2004 Alzet model pump secretes 0.25µl/hour of hormone for four 

weeks, in order to complete the battery of mazes used in Study 2, behavioral testing 

began 18 treatment administration and 14 days after handling, respectively, were 

initiated. 
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Verification of Peripheral Estrogenic Stimulation 
We verified peripheral Premarin stimulation via evaluation of vaginal smears 

(Goldman et al., 2007), pituitary weights (Spady et al., 1999), and uterine weights 

(Westerlind et al., 1998), as done in Study 1. Fourteen±1 days after Ovx surgery, rats 

were vaginally smeared to confirm complete Ovx. Beginning 21 days following Ovx and 

eight days following treatment administration, vaginal smears were taken daily for two 

days to confirm treatment. Body weights were collected 14 and 21 days following Ovx. 

 

Delayed Match to Sample Water Maze 
Thirty-one days following Ovx, rats were trained on the 8-arm, spatial working 

memory, water-escape delayed match to sample maze, as done in Study 1. Rats were 

given six trials/day for eight days. 

 

Morris Water Maze  
Forty-three days following Ovx, rats were trained on the spatial reference 

memory, Morris water maze, as done in Study 1. Rats were given five trials/day for three 

days.  

 

Black/White Discrimination  
Forty-six days following Ovx, rats were trained on the three-arm, non-spatial 

reference memory, water-escape black/white discrimination task, as done in Study 1. In a 

pilot study, we noted that regardless of treatment status, rats for which the hidden 
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platform was paired with the black insert outperformed those paired with a white insert. 

Thus, for each rat in Study 2, the hidden platform was paired with a black arm insert, 

which remained constant across all nine days of testing. Rats were given eight trials/day 

for nine days.  

 

Visible Platform 
Fifty-five days following Ovx, rats were trained on the visible platform task. The 

visible platform task is used to confirm that our aging animals have maintained visual and 

motor competence and can perform the procedural components of a water escape task.  A 

rectangular tub (99 cm x 58.5 cm) was filled with clear water. A black platform (10 cm 

wide) was positioned approximately 3.75 cm above the water surface (Hunter et al., 

2003). Opaque curtains covered obvious extramaze cues. Animals were given six trials in 

one day. The drop off location remained the same across trials, and the platform location 

for each trial varied semi-randomly. Each rat had 90 sec to locate the platform, where the 

rat then remained for 15 sec before being placed back into its heated cage. If an animal 

did not locate the platform within the allotted time limit, it was gently guided to the 

platform. The inter-trial interval was approximately eight min. Latency (sec) to reach the 

platform was the dependent measure.  

 

Peripheral Tissue Collection, Uterine Weights, and Pituitary Weights 
Upon completion of behavioral testing, animals were sacrificed and blood, 

pituitary, and uterine tissues were collected, as done in Study 1.  
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Hormone Assays 
Serum levels of E1 and 17β-E2 were conducted similarly to Study 1, according to 

previously published methods (Nelson et al., 2004). 

 

Statistical Analyses 
Pituitary, uterine, and serum analyses were run via planned independent samples 

t-tests set a priori with Treatment (Vehicle versus Premarin) as the between factor. For 

behavior assessments, data were analyzed separately for each maze with a two factor, 

repeated measures ANOVA with Treatment and Handling as the between variables and 

Blocks of Days, Days, Trials, and/or Quadrants as the within variable, as appropriate for 

the specific maze test. This was done to allow interpretation of Days and/or Trials 

repeated measures effects in the context of potentially complex Treatment and/or 

Handling interactions. Each comparison was evaluated using an alpha level of 0.05, 

unless otherwise noted. 

 

Results 

Vaginal Smears, Uterine Weights, Pituitary Weights, and Serum Estrogen 
Levels 
Premarin administration induced peripheral estrogenic stimulation. Before 

treatment administration, all animals exhibited diestrus-like smears composed of few, 

primarily leukocytic cells. Following pump implantation, all Vehicle-treated rats 

exhibited diestrus-like smears, and, as we have found previously (Engler-Chiurazzi et al., 
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2011), all Premarin-treated animals exhibited estrus/metestrus-like smears with many 

cornified cells.  

Premarin increased uterine weights relative to Vehicle treatment [Treatment main 

effect: F(1,37)=154.25; p < 0.0001](Chapter 3-Table 1). In addition, Premarin increased 

pituitary weights relative to Vehicle treatment [Treatment main effect: F(1,38)=42.27; p 

< 0.0001] (Chapter 3-Table 1). 

Premarin treatment increased circulating hormone levels. Premarin treatment 

increased E1 levels [t(32)=62.20; p < 0.0001] (Chapter 3-Figure 2c), and 17β-E2 levels 

[t(35)=73.33; p < 0.0001] (Chapter 3-Figure 2d) as compared to Vehicle treatment. !

 

Delayed Match to Sample Water Maze 
As we did in Study 1, we blocked testing days into two four-day blocks and 

assessed Treatment x Handling x Block x Trial interactions for trials two through six. 

However, there were no significant main effects nor interactions of Treatment and/or 

Handling with Block for trials two through six. Because we have shown that Premarin 

impacts the working memory trial on this task (Study 1; Engler-Chiurazzi et al., 2011), 

we assessed performance on the working memory trial (trial two), and recent memory 

trials (trials three through six), separately. For the working memory trial, there was a 

main effect of Handling for total errors [F(1,36)=4.10; p = 0.05] (Chapter 3-Figure 3b), 

such that handled animals made more errors than unhandled animals. Thus, handling 

procedures associated with oral treatment administration detrimentally impact spatial 

working memory performance. 

 



 

73 

Morris Water Maze  
Neither Treatment nor Handling manipulations significantly impacted spatial 

reference memory performance or retention. For the analysis including all days and trials 

of testing, there was a Treatment x Handling x Trial interaction [F(1,144)=2.49; p < 0.05] 

(data not shown). To further clarify this interaction, as we have shown a benefit of 

overnight memory retention with subcutaneous 17β-E2 (Talboom et al., 2008) and with 

subcutaneous Premarin injections (Acosta et al., 2009b), as we did in Study 1, we 

assessed overnight forgetting. There were no Treatment and/or Handling x Trial 

interactions for the first (trial five on day one to trial one on day two) or second (trial five 

on day two to trial one on day three) overnight intervals, nor on both overnight intervals 

combined.  

For the probe trial, all animals localized to the previously platformed quadrant. 

For percent distance moved in the target (Northeast) versus opposite (Southwest) 

quadrants, there was a Quadrant main effect, with a greater percent distance swum in the 

target (Northeast) than the opposite (Southwest) quadrant by all groups [F(1,36)=449.51; 

p < 0.0001] but no interaction between Quadrant and Treatment and/or Handling (data 

not shown). 

 

Black/White Discrimination  
Performance was analyzed during three-day blocks with all eight trials included. 

There was a Treatment x Block interaction [F(2,72)=5.04; p < 0.001]. For the third block, 

there was a Treatment x Handling x Trials interaction [F(7,252)=2.84; p < 0.01]. Higher 

order interactions with Trials are not meaningful for this task unless they are driven by 
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differences in overnight reference memory retention. Thus, as we did for Morris water 

maze performance, we assessed overnight retention during the third testing block. For the 

overnight intervals during the third testing block, there was a Treatment x Handling x 

Trials interaction [F(1,36)=6.13; p < 0.05] (Chapter 3-Figure 4). To further probe this 

interaction, we assessed the effect of Handling within each Treatment group separately. 

For the Premarin-treated animals, there was a Handling x Trials interaction 

[F(1,18)=5.19; p < 0.05], such that handling enhanced overnight retention of the color of 

the platformed arm (Chapter 3-Figure 4 insert).  

For performance on the final testing day (including the probe trial), there were no 

group differences in the number of correct first choices. Similarly there were no group 

differences for the percent of arm entries into the previously rewarded arm during the 

probe trial. 

 

Visible Platform 
 All animals, regardless of group, demonstrated visual and motor competence. The 

ANOVA revealed a Trials main effect [F(5, 36)=11.03; p < 0.0001], indicating that for 

all animals, latency to reach the visible platform decreased across trials (data not shown). 

There were no interactions between Treatment and/or Handling and Trials.  

 

Chapter Summary and Discussion  
Here, we evaluated the cognitive effects of orally administered Premarin, the most 

commonly prescribed menopausal HT (Hersh et al., 2005). In both Study 1 and 2, 

Premarin impacted markers of peripheral estrogenic stimulation. In Study 1, orally 
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administered Premarin increased uterine and pituitary weights, and the medium and high 

oral Premarin doses increased serum E1 and 17β-E2 levels in middle-aged Ovx rats. As 

well, 36µg subcutaneous Premarin similarly impacted these measures in Study 2. This 

indicates that our medium and high oral Premarin treatments and our 36µg subcutaneous 

Premarin treatment induced peripheral estrogenic stimulation, allowing a clear 

interpretation of Premarin-induced impacts on spatial cognition. The Ovx-Oral-180 dose 

impaired spatial working memory on the delayed match to sample task. That we found 

oral Premarin-induced impairments during the first testing block, but not when memory 

was challenged during the delay testing, suggests that these impairments were specific to 

initial task acquisition. Thus, the findings of Study 1 suggest that the realization of 

memory benefits with Premarin treatment may depend on the route of administration. 

Other studies evaluating orally administered estrogens suggest mixed nmemonic effects 

depending on task and memory type. For instance, oral-gavage administered estradiol 

valerate failed to enhance spatial reference memory Morris water maze performance in 

five month old Ovx rats (Aguiar et al., 2006). Similarly, while benefits were found with 

17β-E2 administered via subcutaneous silastic implants, oral-gavage administered 17β-

E2 failed to enhance water radial arm maze performance in this same age group (Garza-

Meilandt et al., 2006). As well, 17β-E2 dissolved in drinking water imparted dose 

dependent effects in middle-aged, Ovx mice, such that 1,500nM dose (approximating 

110µg/kg/day) impaired working memory performance on the water radial arm maze 

(Fernandez and Frick, 2004). Interestingly, the 1,000, 1,500, and the 2,500nM doses 

(corresponding to 70, 110, and 180µg/kg/day, respectively) enhanced object memory. 

Thus, converging evidence suggests that oral administration of estrogens imparts task-
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specific memory effects and thus is not optimal for achieving consistent beneficial 

memory outcomes. 

Neurobiological assessments of orally-administered Premarin in Study 1 revealed 

that the highest oral Premarin dose increased NGF levels in the posterior cingulate cortex 

and decreased NGF levels in the frontal cortex. That this dose increased NGF in the 

posterior, but not anterior, cingulate cortex clarifies and extends findings from Engler-

Chiurazzi et al., (2011). In that study, increased NGF levels in the cingulate cortex 

(anterior and posterior combined) were found with 24- and 36-µg/day subcutaneously 

administered Premarin, doses that enhanced delayed match to sample working memory. 

These collective findings suggest that the mechanism for oral Premarin-induced working 

memory impairments may be related to the decrease in NGF in the frontal cortex, while 

Premarin-related memory enhancements may be related to NGF increases in whole 

cingulate. Orally administered 17β-E2 has also been shown to impact growth factors 

levels in brain. Specifically, the oral 1500nM 17β-E2 dose that impaired water radial arm 

maze performance also decreased frontoparietal NGF levels (Fernandez and Frick, 2004). 

Taken together, these findings identify a potential neurobiological mechanism for the 

detrimental impact of orally administered estrogen treatments. 

In the context of findings from previous rodent studies reporting beneficial 

cognitive effects of subcutaneous Premarin (Acosta et al., 2009b; Engler-Chiurazzi et al., 

2011; Walf and Frye, 2008), a limitation to the interpretation of Study 1 is the 

methodological differences in experimental handling associated with subcutaneous versus 

oral treatment administration. Indeed, rodent handling associated with treatment 

administration has been shown to interact with exogenous estrogen therapies such that 
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water radial arm maze benefits of 17β-E2 are masked by the enriching effects of two 

minutes/day of experimental handling (Bohacek and Daniel, 2007). Findings from Study 

2 help to clarify the distinct cognitive impact of oral Premarin from that of the 

experimental handling associated with oral Premarin administration. For behavioral 

testing, oral-associated handling, rather than Premarin treatment, impaired spatial 

working memory on the delayed match to sample task. This suggests that the spatial 

working memory impairments following orally-administered Premarin observed in the 

current study were likely due to the detrimental cognitive impact of handling rather than 

Premarin treatment. As well, we found that among Premarin-treated animals, oral 

handling enhanced overnight retention on black/white discrimination, further supporting 

the hypothesis that handling influences memory independently of Premarin treatment. 

 Interestingly, in Study 2, Premarin did not impart working memory benefits on 

the delayed match to sample task, as we have previously observed (Acosta et al., 2009b, 

Engler-Chiurazzi et al., 2011). This lack of replication may be due to differences in the 

apparatus utilized across studies. Indeed, in Engler-Chiurazzi et al., (2011), the reported 

enhancements of subcutaneous Premarin were found using a 4-arm version of the delayed 

match to sample task. Yet, in the current studies, the impairments of Premarin were found 

using an 8-arm version of this same task. The addition of the arms likely made the task 

more complex. Of note, in women, estrogen-containing treatments have been shown to 

enhance cognition on some tasks, such as those requiring verbal and working memory, 

but not others (Sherwin and Henry, 2008), suggesting a role for task complexity in the 

realization of cognitive benefits with menopausal HTs. Exploring the potential interaction 

between task complexity and estrogen treatment will aid in the optimization of HT 
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options for women. To evaluate this interaction, in the next chapter, we methodically 

manipulate number of maze arms and assess cognitive efficacy of subcutaneous Premarin 

treatment in the rat model used in Engler-Chiurazzi and colleagues (2011) and Study 2. 

Together, the findings from Studies 1 and 2 suggest that oral-associated handling 

exerts unique nmemonic effects that are distinct from those of Premarin, and that these 

effects impair spatial, but enhance non-spatial, memory. These findings suggest that the 

detriments associated with Premarin-treatment observed in the human population are 

likely not due to the oral route of Premarin administration. However, adding to the 

intricacy of Premarin’s impact on the brain and cognition, these collective findings 

suggest that task complexity may be another important factor in the realization of 

memory benefits with Premarin-containing HT.  
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CHAPTER 4 

SUBCUTANEOUS PREMARIN TREATMENT ENHANCES 4-ARM, BUT IMPAIRS 

8-ARM, WORKING MEMORY PERFORMANCE: INTERACTIONS WITH ORAL 

AND ACCLIMATION HANDLING 

Manuscript Status: In preparation 

 

Introduction 
The complex formulation, Premarin, is prescribed to middle-aged women for the 

treatment of negative menopausal symptoms, including hot flashes and vaginal atrophy 

(Timiras et al., 1995). Given, the well-established protective effect of estrogens on 

learning and memory (Bimonte-Nelson et al., 2010), interest in the ability of Premarin to 

attenuate, and even prevent age-related cognitive decline has increased. Although some 

clinical and preclinical findings regarding Premarin suggest that this hormone therapy 

(HT) can impart benefits for cognitive outcomes, evidence suggests that these beneficial 

outcomes depend on many factors including route of administration, dose, or 

experimental handling (Acosta et al., 2013). For instance, subcutaneous Premarin 

enhanced (Acosta et al., 2009b; Engler-Chiurazzi et al., 2011), whereas oral Premarin 

impaired, spatial working memory (Chapter 3-Study 1). In a follow-up study designed to 

isolate the mnemonic effects of handling from those of Premarin, rats that were 

administered either Vehicle, or the subcutaneous dose of Premarin (36µg/day) we had 

previously found to enhance memory (Engler-Chiurazzi et al., 2011), were randomly 

assigned to receive handling associated with oral treatment administration. We found 

that, regardless of Vehicle or Premarin treatment, handling associated with oral 
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administration of Premarin impaired spatial working memory (Chapter 3-Study 2). Thus, 

independent of Premarin treatment, it is likely that handling associated with oral 

treatment administration contributed to the working memory impairments observed in 

Chapter 3-Study 1. However, methodological differences in the difficulty of the tasks 

used could also partly account for the conflicting outcomes of these studies. Indeed, the 

spatial working memory enhancements of subcutaneous Premarin were found using a 4-

arm version of the delayed match to sample task (Acosta et al., 2009b; Engler-Chiurazzi 

et al., 2011). Yet, the impairments of oral Premarin were found on an 8-arm version of 

this same task (Chapter 3). Determining whether task complexity underlies the realization 

of cognitive benefits with Premarin treatment will help to inform the optimal conditions 

in which to administer this HT. 

Here, we aimed to clarify the potential interaction between task complexity and 

Premarin treatment by evaluating the impact of subcutaneous Premarin treatment on 

spatial working memory in middle-aged, surgically menopausal rats; we directly 

compared performance on a 4-arm version of the delayed match to sample task to an 8-

arm version. As well, although experimental handling in rodents can impact memory 

performance, the direction of the effect varies across studies. For instance, handling 

associated with HT administration and acclimation enhanced memory performance 

among untreated rats, obviating the beneficial memory effects of 17β-estradiol (17β-E2; 

Bohacek and Daniel, 2007). Yet, handling associated with oral treatment of estrogen-

containing HT can also impair memory (Chapter 3-Study 2). As such, we aimed to 

determine if the mnemonic effects of Premarin treatment differ depending on the type of 

handling experience. To do this, in addition to comparing Vehicle- and Premarin-treated 
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rats that experienced no handling or oral handling, we added a comparison group that 

experienced handling procedures designed to acclimate rodents, based on Bohacek and 

Daniel (2007). Among unhandled rats, we predicted that, compared to Vehicle, 

subcutaneous continuous Premarin would enhance performance on the 4-arm version, as 

we have shown previously (Engler-Chiurazzi et al., 2011), but impair performance on the 

more complex, 8-arm version. Further, we predicted that acclimation-like handling 

procedures would mask Premarin-induced benefits, similar to findings with 17β-E2 

(Bohecek and Daniel, 2007), and that oral handling procedures would impair 

performance in both treatment groups, as reported in Chapter 3. 

 

Materials and Methods 

Subjects 
Subjects were 53 inbred Fischer-344 female rats (14 month old) born and raised at 

the aging colony of the National Institute on Aging at Harlan Laboratories (Indianapolis, 

IN). Inbred rats were selected given that their low genetic and physiological variability 

allowed us to utilize a relatively small sample size to generalize observed cognitive 

impacts of our treatments to the general population (Nadon, 2004). Animals were 

acclimated for several weeks at the Arizona State University animal facility, were pair 

housed with an identically treated cage-mate, had exposure to food and water ad-libitum, 

and were maintained on a 12-h light/dark cycle. All procedures were approved by the 

local Institutional Animal Care and Use Committee and adhered to National Institutes of 

Health standards.  
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Ovariectomy and Treatment 
Thirty-two±1 days before behavioral testing ensued, all rats were anesthetized 

with acute isoflurane inhalation and received ovariectomy (Ovx). Bilateral dorsolateral 

incisions were made in the skin and peritoneum, and the ovaries and tips of uterine horns 

were ligatured and removed. The muscle was then sutured and the skin stapled. Fifteen±1 

days after Ovx surgery, rats began treatment administration. Based on our prior findings 

showing memory enhancements after subcutaneous 30µg/day injections and 36µg/day via 

Alzet pumps (Durect Corporation, Cupertino, CA), we choose selected the 36µg/day 

dose. Thus, rats received either propylene glycol (Vehicle) or 36µg of Premarin dissolved 

in propylene glycol continuously via an Alzet osmotic pump. Handling procedures began 

19±1 days after Ovx. Rats of both subcutaneous treatment groups were randomly 

assigned to remain in their home cages unhandled or to receive either 1) daily handling 

procedures typically associated with rat-experimenter acclimation or 2) daily handling 

procedures associated with oral treatment administration. Acclimation handling consisted 

of picking up the rat, allowing a rat to explore the top of a testing cart for 7.5 sec, 

followed by 7.5 sec of being nuzzled in the experimenter’s arms and gently stroked 

similar to Bohacek and Daniel (2007). To make this handling equitable with the duration 

of oral handling used in previous studies (Chapter 3), the total duration of acclimation 

handling was 15 sec per day. As we have done previously (Chapter 3), orally handled rats 

were hand fed via a needleless syringe. Each syringe contained 0.2ml distilled water, and 

the entire syringe tip was dipped in sweetened condensed milk before placement in the 

mouth. The rat was then wrapped up in a hand towel such that only the head protruded, 

the syringe was inserted into the rat’s mouth and the liquid was dispensed. The oral 
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handling process lasted approximately 15 sec for each rat. Rats were given daily oral 

handling or acclimation handling until the day of sacrifice. Behavioral testing began 17 

and 13 days after treatment administration and handling were initiated, respectively. For 

behavioral testing, to control for the order in which rats were tested on the behavioral 

tasks, rats within each treatment and handling condition were further subdivided into 

groups based on test order. One set was tested first on the 4-arm maze followed the 8-arm 

maze, and the other set was tested on the 8-arm maze followed by the 4-arm maze. Thus, 

for each maze version, rats were either behavioral testing naive or behavioral testing 

experienced. In summary, the experimental groups were as follows: 1) Vehicle-treated, 

unhandled rats (Vehicle, N=9), 2) Premarin-treated, unhandled rats (Premarin, N=9), 3) 

Vehicle-treated, acclimation handled rats (Vehicle-Acclimation, N=9), 4) Premarin-

treated, acclimation handled rats (Premarin-Acclimation, N=9), 5) Vehicle-treated, oral-

administration handled rats (Vehicle-Oral, N=8), and 6) Premarin-treated, oral-

administration handled rats (Premarin-Oral, N=8). 

 

Verification of Peripheral Estrogenic Stimulation 
We verified peripheral stimulation via evaluation of vaginal smears (Goldman et 

al., 2007), pituitary weights (Spady, 1999), and uterine weights (Westerlind, 1998). 

Fifteen±1 days after Ovx surgery, rats were smeared to confirm Ovx status. Beginning 

seven days following treatment administration, vaginal smears were taken daily for two 

days. Smears were classified as either proestrus, estrus, or metestrus, all of which are 

indicative of estrogenic stimulation, or diestrus, which is indicative of the absence of 

estrogenic stimulation (Goldman et al., 2007).  
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Delayed Match to Sample Water Maze 
The water-escape delayed match to sample plus maze is a task that assesses 

spatial working and recent memory (Engler-Chiurazzi et al., 2011; Frick et al., 1995; 

Markowska and Savonenko, 2002b). Rats were trained on two versions of the task, a 4-

arm and 8-arm version. The apparatus was a water radial arm maze with eight arms (each 

38.1 cm long and 12.7 cm wide). For the 4-arm version, the apparatus had four arms 

available for entry (the other four arms were blocked). For the 8-arm version, the 

apparatus had eight arms available for entry. In the 8-arm spatial task, the increased 

complexity included the potential interference from more arms, and their associated 

spatial locations, in which to enter. There were no other procedural differences between 

the two task versions. Each animal was tested on both task versions, in a counterbalanced 

order. 

In each version of the task, the apparatus was filled with room temperature water 

made opaque with black non-toxic paint. For both the 4-arm and 8-arm versions, animals 

were required to locate one platform, the location of which was fixed within a day and 

changed across days, hence requiring working memory. Rats received six consecutive 

trials within a daily session. The first trial was the information trial where the rat was 

exposed to that day’s platform location, the second trial was the working memory test 

trial, and trials three through six were memory test trials (Acosta et al., 2009b; Engler-

Chiurazzi et al., 2011). Rats were dropped off in a semi-randomly chosen start arm 

location, and were given a maximum of 90 sec to swim to the platform. If an animal did 

not locate the platform within the allotted time limit, it was gently guided to the platform 
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using a black plastic rod. Once on the platform, the rat remained on it for 15 sec, 

followed by placement into a heated cage for a 30 sec inter-trial interval. An arm entry 

was counted when the tip of a rat’s snout reached a mark delineated on the outside of the 

arm (11 cm into the arm). Entry into an arm with no platform counted as an error, the 

dependent variable. After eight days of testing with a 30 sec inter-trial interval between 

all trials, rats were tested with a six-hour delay (day nine) given between trial one and 

trial two. Since the second trial is the first trial to test recall of the updated information 

(working memory), the delays were given between trial one and trial two to determine 

whether the increased inter-trial interval impacted, specifically, working memory. There 

were no additional trials after the post-delay trial (e.g. trial two). 

 

Visible Platform 
The visible platform task is used to confirm that animals have maintained visual 

and motor competence and can perform the procedural components of a water escape 

task. A rectangular tub (99 cm x 58.5 cm) was filled with clear water. A black platform 

(10 cm wide) was positioned approximately 3.75 cm above the water surface (Hunter et 

al., 2003). Opaque curtains covered obvious extramaze cues. Animals were given six 

trials in one day. The drop off location remained the same across trials, and the platform 

location for each trial varied semi-randomly. Each rat had 90 sec to locate the platform, 

where the rat then remained for 15 sec before being placed back into its heated cage. If an 

animal did not locate the platform within the allotted time limit, it was gently guided to 

the platform. The inter-trial interval was approximately eight min. Latency (sec) to reach 

the platform was the dependent measure.  
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Peripheral Tissue Collection, Uterine Weights, and Pituitary Weights 
The day following the completion of behavioral testing, rats were anesthetized 

with isoflurane and immediately decapitated. Blood was taken via cardiocentesis. Uterine 

tissues were collected, trimmed of fat and connective tissue, and weighed as per previous 

methods (Acosta et al., 2009b). Pituitary was extracted from the base of the skull 

following the removal of the brain from the skull cavity, and placed into pre-weighed 

microcentrifuge tubes.  

 

Statistical Analyses 
Pituitary and uterine weight analyses were run via planned one-way ANOVAs set 

a priori, with Treatment as the between factor. For delayed match to sample behavior 

assessments, to test replication of our prior findings regarding the working memory 

impact of subcutaneous Premarin treatment (Engler-Chiurazzi et al., 2011), to evaluate 

the potentially unique mnemonic impacts of Premarin within each handling condition, 

and to assess the potential interactive impact of prior testing experience, we conducted 

hypothesis-driven one way ANOVAs with Treatment as the between variable for each 

handled group. We collapsed across Days and evaluated Blocks of Days and Trials as the 

repeated variables for each handling group (unhandled, acclimation-typical, and oral) on 

each maze version (4-arm and 8-arm) separately. Data were collapsed across Days 

because any interactions with Days are not meaningful; an effect of Days in the context 

of multiple blocks of testing days only corresponds to unique days within a testing block. 

In the presence of significant Treatment interactions with one or more of the dependent 
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variables, follow-up analyses were conducted to further clarify the effects. For the visible 

platform task, we assessed performance on the final trial via one way ANOVAs with 

Treatment as the between variable for each handling group (unhandled, acclimation-

typical, and oral). Each comparison was evaluated using an alpha level of .05, unless 

otherwise noted (Keppel and Wickens, 2004, p. 115). 

 

Results 

Vaginal Smears, Uterine Weights, and Pituitary Weights 
Premarin treatment induced peripheral stimulation. At the time of pump insertion 

to initiate Premarin treatment, all but one of the animals showed diestrus-like smears, 

characterized by the presence of leukocytes and relatively low numbers of total cells. 

This one anomalous animal exhibited estrus-like smears, characterized by numerous 

cornified cells. This animal was excluded from all uterine weight, pituitary weight and 

behavioral data analyses. Following pump implantation, all Vehicle-treated animals 

showed diestrus-like smears. As expected Engler-Chiurazzi et al., 2011), all Premarin-

treated animals showed estrus- or metestrus-like smears, with many cornified cells. 

For uterine weights, one Vehicle-treated animal had a fluid filled cyst on the 

uterus and was excluded from the uterine weight data analysis. Because we have 

previously shown 36ug subcutaneous, continuous Premarin treatment to increase uterine 

and pituitary weights (Engler-Chiurazzi et al., 2011), we evaluated these effects using a 

one-tailed t-test. There was a Treatment main effect [t(48)=11.09; p < 0.0001], such that 

Premarin treatment increased uterine weights (Chapter 4-Table 1). For pituitary weights, 
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there was a Treatment main effect [t(49)=1.70; p < 0.05], such that Premarin treatment 

increased pituitary weights (Chapter 4-Table 1). 

 

Delayed Match to Sample Water Maze 

 Evaluation of Difficulty of the 4-arm versus 8-arm Mazes 
 To verify that the 8-arm version of the delayed match to sample task was more 

complex and challenging than the 4-arm version, we compared the sum of total errors for 

all memory test trials (days one-eight, trials two-six) via an ANOVA with Maze (4-arm 

vs 8-arm) as the repeated measure. There was a Maze main effect [F(1,51)=169.51; p < 

0.0001], such that more errors were committed on the 8-arm maze than on the 4-arm 

maze (data not shown). This finding confirms that the 8-arm version (Mean±SEM 

=62.60±3.23) was more challenging than the 4-arm version (Mean±SEM =18.31±1.25). 

Treatment Memory Effects in Unhandled Rats 
Testing with a 30-second inter-trial interval: For the 4-arm maze, there was a 

Treatment x Block x Trial interaction [F(4,64)=4.37; p < 0.005]. To further probe this 

finding, we assessed performance on each testing block separately. For the first testing 

block (Days 1-4), there was a Treatment x Trial interaction [F(4,64)=3.92; p < 0.01] 

(Chapter 4-Figure 1a). Because the working memory trial (trial two) assesses a unique 

memory domain and because we have shown impacts of Premarin on this trial in past 

studies (Acosta et al., 2009b; Engler-Chiurazzi et al., 2011), to follow up on this 

interaction, we assessed performance on the working memory trial (trial two) and recent 

memory trials (trials three-six) separately. There was a Treatment main effect for the 

working memory trial [F(1,16)=5.44; p < 0.05], such that Premarin enhanced 
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performance, with the Premarin group making fewer total errors than the Vehicle group 

(Chapter 4-Figure 1a). For the second testing block (Days 5-8), there were neither 

Treatment main effects nor a Treatment x Trial interaction. 

 For the 8-arm maze, there was a Treatment x Block interaction [F(1,16)=6.28; p < 

0.05]. When we assessed this interaction on each testing block separately, during the first 

testing block (Days 1-4), there was a Treatment main effect [F(1,16)=4.61; p < 0.05], 

such that Premarin impaired performance with the Premarin group making more total 

errors than the Vehicle group (Chapter 4-Figure 2a). For the second testing block (Days 

5-8), there were neither Treatment main effects nor a Treatment x Trial interaction 

(Chapter 4-Figure 2a).  

Testing with a 6-hour inter-trial interval: We assessed treatment group differences 

in performance on the working memory trial on the final baseline day (30 sec inter-trial 

interval) compared to the post-delay trial (six-hour inter-trial interval), for both 4-arm and 

8-arm task versions. When we assessed performance on the 4-arm maze, there were no 

Treatment x Day interactions (Figure 3a). For the 8-arm maze, there was a Treatment x 

Day interaction [F(1,16)=15.89; p < 0.005], such that Premarin-treated rats outperformed 

Vehicle-treated rats on baseline day eight but were impaired when memory was 

challenged by the delay on day nine (Chapter 4-Figure 3a). 

Treatment Memory Effects in Acclimation Handled Rats 
Testing with a 30-second inter-trial interval: When we assessed performance on 

the 4-arm maze, there were no Treatment main effects, nor were there interactions 

between Treatment and any repeated measures (Chapter 4-Figure 1b). As well, when we 
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assessed performance on the 8-arm maze, there were no Treatment main effects, nor were 

there interactions between Treatment and any repeated measures (Chapter 4-Figure 2b).  

Testing with a 6-hour inter-trial interval: We assessed treatment group differences 

in performance on the working memory trial on the final baseline day (30 sec inter-trial 

interval) compared to the post-delay trial (six-hour inter-trial interval) for both 4-arm and 

8-arm mazes. However, there were no Treatment x Day interactions for either the 4-arm 

and 8-arm maze (Chapter 4-Figure 3b). When we assessed performance on the working 

memory trial for the second four-day block of baseline (collapsed across days 5-8) 

compared to the post six-hour delay trial, there were no Treatment x Day interactions for 

either maze. When we assessed performance on the post-delay working memory trial, 

there were no main effects of Treatment for either maze. 

Treatment Memory Effects in Oral Handled Rats 
Testing with a 30-second inter-trial interval: When we assessed performance on 

the 4-arm maze, there were no Treatment main effects, nor were there interactions 

between Treatment and any repeated measures (Chapter 4-Figure 1c). As well, when we 

assessed performance on the 8-arm maze, there were no Treatment main effects, nor were 

there interactions between Treatment and any repeated measures (Chapter 4-Figure 2c).  

Testing with a 6-hour inter-trial interval: We assessed treatment group differences 

in performance on the working memory trial on the final baseline day (30 sec inter-trial 

interval) compared to the post -delay trial (six-hour inter-trial interval) for both 4-arm and 

8-arm mazes. However, there were no Treatment x Day interactions for either the 4-arm 

and 8-arm maze (Chapter 4-Figure 3c). We also assessed performance on the working 

memory trial for the second four-day block of baseline (collapsed across days 5-8) 
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compared to the post six-hour delay trial for both 4-arm and 8-arm mazes. Again, there 

were no Treatment x Day interactions for either maze. Finally, we assessed performance 

on the post-delay working memory trial. However, there were no main effects of 

Treatment for either maze. 

 

Visible Platform 
 All animals, regardless of group, demonstrated visual and motor competence. On 

the final trial, there were no main effects of Treatment, indicating that for all animals, 

latency to reach the visible platform decreased across trials (data not shown).  

 

Chapter Summary and Discussion 
 Here, we evaluated: 1) whether task complexity is a factor underlying the 

realization of memory benefits with exogenous Premarin, and 2) whether these effects of 

Premarin differ depending on handling experience. Subcutaneous Premarin treatment 

resulted in positive vaginal smears and increased uterine and pituitary weights. Among 

unhandled rats, 36µg subcutaneous Premarin enhanced working memory trial 

performance on the 4-arm, but impaired performance on the 8-arm, maze. Thus, our 

hypothesis that the impact of Premarin on memory would be modulated by task difficulty 

was supported. Providing further support for this hypothesis, in aging women, estrogen-

containing menopausal therapies enhance cognition on some tasks, such as those 

requiring verbal and working memory, but not others (Sherwin and Henry, 2008).  

Interestingly, the task-dependent effects of Premarin treatment were not observed 

among the acclimation and oral handled groups. That handling reversed the beneficial 
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effects of Premarin on memory extends work by Bohacek and Daniel (2007), in which 

radial arm maze benefits of 17β-E2 treatment were obviated by the enriching effects of 

two minutes/day of experimental handling. Here, approximately 15 sec of daily handling 

resulted in a similar attenuation of Premarin enhancements. Thus, the current findings, 

that handling masked Premarin-induced benefits, support our prediction. However, that 

handling also reversed the detrimental memory impacts of Premarin on the 8-arm delayed 

match to sample task was somewhat surprising given our previously reported 

impairments of oral handling on this same maze (Chapter 3-Study 2). In the context of a 

difficult task with a high memory demand, it is possible that both Premarin treatment and 

handling experience can each exert detrimental effects for memory performance, 

culminating in a significant impairment relative to unhandled, untreated controls. 

Together, these findings suggest that specific, optimized parameters regarding the 

handling experience and the difficulty of the cognitive task are necessary for the 

realization of Premarin-induced learning and memory benefits.  

It is possible that the impairing effects of Premarin on the 8-arm maze were due to 

stress brought on by the difficulty of the task. Indeed, in the current study, the 8-arm task 

was associated with more total errors than the 4-arm maze, suggesting that the 8-arm 

version was more difficult and potentially more stressful than the 4-arm version. In 

middle-aged women, stress can obviate the beneficial effects of exogenous estrogen 

(Baker et al., 2012; Newhouse et al., 2010). For instance, oral hydrocortisone reversed 

benefits of chronic transdermal 17β-E2 on measures of verbal memory, working 

memory, and selective attention (Baker et al., 2012). In animals, although the interaction 

between sex and stress on cognitive outcomes is complex and likely depends on a number 
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of factors, findings from several studies suggest sex differences in cognitive outcomes 

following exposure to chronic stress such that males, but not females, are impaired on 

hippocampal-dependent memory tasks (Gillies and McArthur, 2010; Luine et al., 2007). 

For instance, a chronic restraint stress paradigm of 6 hour/day for 21 days impaired 

spatial Y-maze performance in adult male rats, but enhanced performance in female rats  

(Conrad et al., 2003). As well, exposure to chronic stress appears to enhance maze 

performance among estrogen-treated, Ovx rats (Luine, 2007). For instance, chronically 

stressed, 17β-E2-treated Ovx rats required fewer arm visits to complete the radial arm 

maze than non-stressed, 17β-E2-treated rats as well as stressed and non-stressed, 

cholesterol-treated rats (Bowman et al., 2002). The effect of Premarin treatment in 

chronically stressed, Ovx rats has not yet been evaluated. However, assuming that 

chronic stress and Premarin interact to influence memory among Ovx, female rats in a 

similar manner to that of the 17β-E2/stress interaction, if the added difficulty of the 8-

arm task used here induced a stress response, we would expect that Premarin-treated rats 

show enhanced, rather than impaired, working memory. Thus, it is unlikely that 

differences in the stress associated with each task contributed to the current findings. 

 In conclusion, we found that among unhandled rats, Premarin enhanced working 

memory on the 4-arm delayed match to sample task, but impaired working memory on 

the 8-arm version. As well, acclimation and oral handling obviated the mnemonic effects 

of Premarin treatment in both maze versions. Together, these findings that the impacts of 

Premarin vary depending on handling experience and task difficulty, suggest that there 

are limited and very specific conditions in which Premarin will impart learning and 

memory benefits. Furthermore, that, within the same animal, the beneficial working 
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memory effects of Premarin are reversed when memory is challenged by a more difficult 

task suggest that this compound is not an ideal menopausal HT, and highlights the need 

to develop novel treatment options that are more optimal for cognitive outcomes. For 

example, a more beneficial HT option would enhance performance across a wide range of 

cognitive tasks, would be less sensitive to parameter alterations, and would impart 

cognitive benefits across a greater variety of conditions, such as task difficulty. 

Subsequent work in this dissertation will investigate some chemical and neurobiological 

mechanisms that could result in cognitive benefits versus impairments. 
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CHAPTER 5 

CONTINUOUS ESTRONE TREATMENT IMPAIRS SPATIAL MEMORY AND 

DOES NOT IMPACT NUMBER OF BASAL FOREBRAIN CHOLINERGIC 

NEURONS IN THE SURGICALLY MENOPAUSAL MIDDLE-AGED RAT 

Manuscript Status: Published – Hormones and Behavior, 2012 
 

Introduction 
Premarin (conjugated equine estrogens) has been given to menopausal women 

since 1942 (Stefanick, 2005), was the estrogenic component tested in the Women’s 

Health Initiative Memory Study (Shumaker et al., 2004; Shumaker et al., 1998), and is 

the most widely prescribed estrogenic component of menopausal hormone therapy (HT) 

in the United States, even despite a decrease in use after the 2002 publication of clinical 

trial results (Hersh et al., 2004). Premarin has been shown to have both positive and 

negative effects on cognition in menopausal women (for review see Hogervorst et al., 

2000; Sherwin and Henry, 2008), and can dose-dependently enhance memory in the 

middle-aged ovariectomized (Ovx) rat (Acosta et al., 2009b; Engler-Chiurazzi et al., 

2011). Premarin is a complex estrogen formulation comprised of 50% estrone (E1) 

sulfate, and it contains the sulfates of at least ten other estrogens (Kuhl, 2005), many of 

which have yet to be individually evaluated for cognition in women or rodent models. 

Determining effects of the specific estrogen components of this complex formulation 

could help determine why it sometimes enhances, and why it sometimes impairs, 

cognition. Furthermore, it may identify a group of cognitively enhancing estrogens to be 

combined into optimal HT formulations for specific populations of women, as well as 



 

96 

identify estrogens detrimental to the brain and cognition to be excluded from future 

formulations. In women, 17β-estradiol (17β-E2), present only in trace amounts in 

Premarin, is the most potent naturally-circulating estrogen, followed by E1 and estriol 

(E3), in order of receptor affinity (Kuhl, 2005). 17β-E2 and E1 are biologically 

interconvertible; in vivo, they readily get converted into one another (Kuhl, 2005; Prokai-

Tatrai and Prokai, 2005). Circulating levels of E1 increase following treatment with 

Premarin to menopausal and post-menopausal women (Yasui et al., 1999), and following 

administration of Premarin to middle-aged Ovx rats (Acosta et al., 2009b; Engler-

Chiurazzi et al., 2011). Although we have shown that the Premarin components Δ8,9-

dehydroestrone, and to a lesser extent, equilin, exert benefical cognitive effects in 

middle-aged, Ovx rats (Talboom et al., 2010), the cognitive impact of the principle 

circulating estogen following Premarin administration, E1, is unclear. We hypothesize 

that E1 will impair cognition in middle-aged Ovx rats. Indeed, one paper in young rats 

has shown a single subcutaneous E1 injection impairs contextual fear conditioning 

memory when given 30 minutes before training (Barha et al., 2009). Furthermore, 

although not all in vitro studies report negative effects with E1 treatment (Zhao and 

Brinton, 2006), for most measures in which other estrogenic Premarin components (e.g., 

equilin and Δ8,9-dehydroestrone) were neuroprotective in vitro, E1 was ineffective (Zhao 

and Brinton, 2006).  

The basal forebrain cholinergic system is important for learning and memory, is 

susceptible to age-related changes, and is impacted by ovarian hormone removal and 

17β-E2 replacement (for review see Gibbs, 2010).  For example, in aged female rats, less 

choline acetyltransferase (ChAT) protein activity was found in the vertical diagonal 
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bands (vDB), relative to younger counterparts (Luine and Hearns, 1990). Also, in adult 

Ovx rats, 17β-E2 treatment increased ChAT protein activity in the hDB (horizontal 

diagonal bands; Luine, 1985), as well as ChAT-immunoreactive (ChAT-IR) neuron 

counts in the MS (Gibbs, 1997). Importantly, evidence from Gibbs’ laboratory suggests 

that the effects of 17β-E2 on cognition require a functioning basal forebrain cholinergic 

system; for example, 17β-E2 was ineffective in animals with basal forebrain lesions, and 

enhanced memory only in non-lesion controls (2002, 2007). Although it has been 

established that 17β-E2 impacts the basal forebrain cholinergic system, an effect which is 

likely related to cognitive enhancements (for review see Bimonte-Nelson et al., 2010; 

Gibbs, 2010), there has been no study evaluating whether E1 impacts basal forebrain 

cholinergic neurons. 

In the present study, we evaluated the cognitive impact of subcutaneously 

administered continuous E1 treatment in middle-aged Ovx rats, utilizing several spatial 

memory mazes previously shown to be sensitive to the effects of aging (Frick et al., 

1995; Talboom et al., 2008), and hormone administration (Acosta et al., 2009b; Bimonte-

Nelson et al., 2006; Engler-Chiurazzi et al., 2011; Walf et al., 2009), such that a potential 

pattern of E1’s effects on specific memory types could be revealed. Several classic 

peripheral markers of estrogenic action, including vaginal smears and uterine weights,  

were measured to confirm effects of Ovx and E1 treatment. Lastly, we evaluated the 

impact of E1 on the basal forebrain cholinergic system by quantifying the number of 

ChAT-IR neurons in the medial septum (MS) and the hDB/vDB of the basal forebrain in 

the cognitively tested animals. Because 17β-E2 has been shown to impact ChAT protein 

activity (Luine, 1985) and ChAT-IR neuron counts (Gibbs, 1997) in the basal forebrain,  
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to aid in interpretation of potential E1 ChAT-IR effects, we evaluated ChAT-IR neuron 

numbers after treatment with 17β-E2 using the same quantification procedures as those 

used in the current study. Determining the impact of E1 on spatial memory and the 

cholinergic system will help to characterize the unique cognitive and neurobiological 

impacts of this estrogen, which is a primary circulating estrogen after administration of 

the commonly used HT, Premarin. 

 

Materials and Methods 

Subjects  
We used 32 middle-aged (13 months old at the beginning of the study) Fischer-

344 female rats born and raised at the National Institute on Aging colony at Harlan 

Laboratories (Indianapolis, IN). Inbred rats were selected given that their low genetic and 

physiological variability allowed us to utilize a relatively small sample size to generalize 

observed cognitive impacts of our treatments to the general population (Nadon, 2004b). 

Animals were pair-housed, acclimated for several weeks at Arizona State University, had 

exposure to food and water ad libitum, and were maintained on a 12-h light/dark cycle at 

23°C. Experimental procedures were approved by the Arizona State University 

Institutional Animal Care and Use Committee and adhered to Guidelines for the Care and 

Use of Laboratory Animals and NIH standards. 

  
Ovariectomy and Treatment  

Approximately 28 days before behavioral testing ensued, under isoflurane 

inhalant anesthesia, all rats underwent Ovx surgery to remove endogenous ovarian 

hormones. Dorsolateral incisions were made in the skin and peritoneum, and ovaries and 
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tips of uterine horns were ligated and removed. Rats were then separated into the 

following groups: Ovx with Vehicle only (polyethylene glycol)(Vehicle, n=9), Ovx plus 

2.6µg/day of E1 (E1-Low, n=7), Ovx plus 4.0µg/day of E1 (E1-Med, n=8), and Ovx plus 

8.0µg/day of E1 (E1-High, n=8). All hormones were purchased from Sigma (St. Louis, 

MO). The E1-Low dose was based on the most efficacious dose of 17β-E2 found in a 

dose response study conducted in our laboratory evaluating spatial working memory 

(unpublished observations). The E1-Med dose was based on findings from Beyer and 

colleagues (1976) in which 4.0µg/day of E1 induced lordosis behavior and increased 

uterine weights. To assess the cognitive and physiological impact of a broad range of E1 

doses, the E1-High dose was double the E1-Med dose. Corresponding to published 

studies evaluating E1 and other estrogens (Barha et al., 2009; Talboom et al., 2010) in 

which subjects were given approximately one to two weeks between Ovx and hormone 

treatment, in the current study, hormone treatment began 19±1 days after Ovx. In parallel 

with other studies (Engler-Chiurazzi et al., 2011; Talboom et al., 2010), Vehicle and E1 

treatments were administered continuously using Alzet osmotic pumps (Model 2004; 

Durect Corporation, Cupertino, CA). Briefly, E1 was dissolved in polyethylene glycol 

(Sigma, St. Louis, MO) and inserted into the pumps as per manufacturer’s instructions. 

For the Vehicle group, pumps were filled with polyethylene glycol only. For pump 

insertion, under isoflurane anesthesia, a small incision was made in the dorsal scruff of 

the neck, and a subcutaneous pocket was created. One pump filled with Vehicle or the 

appropriate E1 dose was inserted into the pocket and the skin was stapled. Nine days after 

pump insertion surgery, cognitive testing began. All animals had Vehicle or E1 exposure 

for until sacrifice. 
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Verification of Peripheral Estrogenic Stimulation 
To confirm the effects of Ovx as well as E1 treatments, we assessed several 

peripheral physiologic markers that routinely change with estrogen treatment. Notably, 

E1 has been found to impact peripheral tissues, including the uterus (Beyer et al., 1976). 

We therefore performed vaginal smears (Goldman et al., 2007) and measured uterine 

weights (Westerlind, 1998), the latter of which was done upon animal sacrifice. Smears 

were classified as proestrus, estrus, metestrus or diestrus (Acosta et al., 2009b; Engler-

Chiurazzi et al., 2011; Goldman et al., 2007). Vaginal smears were conducted to confirm 

the lack of uterine stimulation and complete Ovx 18 days after Ovx, which was one day 

before E1 administration via pump implantation. Vaginal smears were also conducted 

daily for four days beginning five days after pump implantation. 

 

Delayed Match to Sample Water Maze   
The delayed match to sample water maze assessed spatial working memory. The 

maze had four arms (each 38.1 cm long and 12.7 cm wide) in a plus configuration, and 

was filled with room temperature water made opaque with black non-toxic paint. The 

maze had a hidden escape platform at the end of one arm. The platform location changed 

every day, but was fixed within a day. Rats received six consecutive trials within a daily 

session, for seven consecutive days. The first trial was an information trial, where the rat 

had to first locate the platform position for that day. Trials two through six were memory 

test trials, in which the location of the platform was repeatedly reinforced (Acosta et al., 

2009b; Engler-Chiurazzi et al., 2011). For each trial (one-six), rats were dropped off in a 
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semi-randomly chosen start arm location, and were given a maximum of 90 sec to swim 

to the platform. If an animal did not locate the platform within the allotted time limit, it 

was gently guided to the platform using a black plastic rod. Once on the platform, the rat 

remained on it for 15 sec, followed by placement into a heated cage for a 30 sec inter-trial 

interval.  An arm entry was counted when the tip of a rat’s snout reached a mark 

delineated on the outside of the arm (11cm into the arm). Entry into an arm with no 

platform counted as an error, the dependent variable. As the rate of learning can change 

across the task and be impacted by treatment (Acosta et al., 2009a), and to gain insight 

into errors committed across different phases of task acquisition, we grouped the data into 

two three-day blocks (block one = days two to four; block two = days five to seven). As 

we have previously shown effects of Premarin on six-hour delayed memory retention 

(Engler-Chiurazzi et al., 2011), to test effects of E1 on extended memory retention after 

only one exposure to the platform location, on day eight rats were tested with a delayed 

inter-trial interval of six hours. Within treatment group comparisons of performance on 

trial two of baseline versus trial two of the delay day revealed that no group was impacted 

by the six-hour delay. Thus, on day nine, rats were tested with a longer delayed inter-trial 

interval of eight hours. Delayed inter-trial intervals were instituted between trial one 

(information trial) and trial two. Thus, on these days, animals were given trial one, given 

the appropriate delayed inter-trial interval, and then given trial two.  

 

Open Field 
The open field task evaluated locomotor activity and emotional reactivity in 

response to being placed in an empty open field (Denenberg, 1969). A black Plexiglas 
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box measuring 95.75 cm x 95.25 cm x 45.70 cm was utilized. The rat was placed in the 

apparatus facing the North wall. Each animal received a 10 min session whereby they 

were allowed to freely explore the box. Between each subject tested, the apparatus was 

thoroughly cleaned with 70% isopropyl alcohol. Each animal’s activity was recorded 

using Ethovision (XT 5.1, Noldus Information Technology, Wageningenm, Netherlands) 

and the dependent variable was distance moved (cm). Using the computer system, the 

open field arena (9120.19 cm2) was virtually divided into three concentric zones, 

including an outer (5790.19 cm2), middle (3078.78 cm2) and inner (251.63 cm2) zone. 

Overall activity (total distance travelled in the box), as well as movement in each zone, 

were the dependent variables.  

 

Morris Water Maze  
The Morris water maze tested spatial reference memory and consisted of a round 

tub (188 cm in diameter) filled with room temperature water made opaque with black 

non-toxic paint. Briefly, the rat was placed in the maze from any of four locations (North, 

South, East, or West) and had 60 sec to locate the platform, which remained in a fixed 

location (Northeast quadrant). If an animal did not locate the platform within the allotted 

time limit, it was gently guided to the platform. After 15 sec on the platform, the rat was 

placed into its heated cage until the next trial. Animals were tested in squads (eight or 

nine rats in each squad) so that the first trial was completed for each rat in the group, then 

the second, etc., as done previously (Engler-Chiurazzi et al., 2011; Stavnezer et al., 

2002). The testing procedure was based on the work of Markham and colleagues (2002) 

wherein beneficial effects of 17β-E2 have been noted in rats. Rats received six trials/day 
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for three days, with a 15 min delay instilled between trials three and four (Markham et 

al., 2002). There was approximately an eight to ten min inter-trial interval between all 

other trials. A video camera recorded each rat and a tracking system (Ethovision XT 5.1, 

Noldus) analyzed each rat’s path. The dependent measure was swim distance (cm). To 

assess platform localization, a probe trial was given on trial seven of the last day of 

testing, whereby the platform was removed from the maze. For the probe, percent of total 

swim distance (cm) travelled in the target Northeast quadrant (i.e., quadrant that 

contained the platform) as compared to the opposite (Southwest) quadrant was the 

dependent measure (Stavnezer et al., 2002). Additional probe trial dependent variables 

included the frequency of crossing into the platform zone, the Northeast quadrant, and the 

Southwest quadrant. 

 

Visible Platform 
The visible platform task confirms that animals can perform the procedural 

components of a water escape task, including visual and motor competence. A 

rectangular tub (99 cm x 58.5 cm) was filled with clear water. A black platform (10 cm 

wide) was positioned approximately 3.75 cm above the water surface (Hunter et al., 

2003). Opaque curtains covered obvious extramaze cues. Animals were given six trials in 

one day. The drop off location remained the same across trials, and the platform location 

for each trial varied semi-randomly. Each rat had 90 sec to locate the platform, where the 

rat then remained for 15 sec before being placed back into its heated cage. If an animal 

did not locate the platform within the allotted time limit, it was gently guided to the 
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platform. The inter-trial interval was approximately eight min. Latency (sec) to reach the 

platform was the dependent measure.  

 

Tissue Collection, Hormone Assays, and Uterine Weights  
The day following the completion of maze testing, all animals (15 months old at 

this time) were sacrificed on the same day, with researchers blinded to treatment group 

assignment. Rats were anesthetized with isoflurane, and rats were decapitated. Brains 

were rapidly removed and the anterior portion of the brain containing the basal forebrain 

was separated from the posterior portion of the brain. Uterine tissues were collected, 

trimmed of fat and connective tissue, and weighed as per previous methods (Acosta et al., 

2009b). Wet uterine weight (g) was the dependent measure. 

 

Basal Forebrain Choline Acetyltransferase-immunoreactive Neuron Counts 
 Each brain was post fixed in 4% paraformaldehyde in phosphate-buffer solution 

(PB, pH 7.4) for 48 hours, and then the tissues were transferred to phosphate buffer until 

sectioning. The basal forebrain region was sectioned (plates 1-25; Paxinos and Watson, 

2005) on a Vibratome 3000 (Vibratome) in phosphate-buffered saline (pH 7.4) at 40 

microns for immunohistochemistry (Granholm et al., 2002). Every fourth section through 

the basal forebrain was selected for the ChAT immunohistochemistry and incubated for 

15 min in a 0.03% Triton (Triton X-100) in phosphate buffered saline to permeabilize the 

tissue. As done previously (Acosta et al., 2009b), the tissue was then blocked, by 

incubating tissues at room temperature for 30 min in a blocking solution containing 

0.03% phosphate buffered saline with Triton and 0.03% heat inactivated horse serum 
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(Fischer Scientific, Pittsburg, PA). Three phosphate buffered saline washes (3 min each) 

were then done. The primary polyclonal antibody, goat Anti-Rat-ChAT (1:1000, 

Millipore, Billerica, MA), was added to each well, and sections were incubated overnight 

at 4°C on a Rocker II (Boekel Scientific, Feasterville, PA). Next, sections were washed in 

phosphate buffered saline three times (3 min each) followed by immersion in the 

secondary antibody solution (1: 200 biotinylated Donkey anti-Goat IgG, Vector) and 

blocking solution for 45 min on a Titer Plate Shaker (Barnstead International, Dubuque, 

IO) at room temperature. Sections were washed three times in phosphate buffered saline 

(3 min each), and then placed into an 11% methanol and 1% H202 (Fischer) in phosphate 

buffered saline solution for 30 min on a Titer Plate Shaker to quench endogenous 

peroxidase activity. After three washes in phosphate buffered saline (3 min each), ABC 

reagent (Vector Laboratories, Burlingame, CA) was added to each well and incubated for 

45 min at room temperature on a Titer Plate Shaker. Sections were washed three times in 

phosphate buffered saline (3 min each), and were then incubated with DAB Peroxidase 

Substrate (Vector). After the desired color was achieved (dark purple), brain sections 

were washed three times in phosphate buffered saline (3 min each), mounted on subbed 

slides, air dried, dehydrated and cover slipped with Permount (VWR, Randor, PA). Each 

group was equally represented in each round of staining, to avoid group inter-variability 

in staining. Further, control procedures were run excluding primary and secondary 

antibodies. Exclusion of the primary antibody resulted in no cell staining, and exclusion 

of secondary antibody resulted in a lack of DAB Peroxidase Substrate color development. 
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Basal Forebrain Choline Acetyltransferase Image Analysis 
ChAT-IR neurons were quantified in the basal forebrain. Images were acquired 

using PictureFrame software (MicrobrightField, Burlington, VT) from a CX9000 camera 

(MicrobrightField) coupled to an Olympus BX51 microscope. A 4x objective was used to 

capture images (Olympus, Center Valley, PA). Captured images for each section were 

then manually counted using the “Point Picker” plugin from NIH ImageJ software 

(Rasband, 1997-2004). Three sections per animal within the range of plates 23-28 from 

Paxinos and Watson (2005) were quantified similar to prior publications (Gibbs, 1997). 

ChAT-IR neurons were counted in the MS, and the hDB/vDB, and counts from the three 

sections were averaged to yield one value per basal forebrain region per animal.  

Since 17β-E2 impacts ChAT protein activity (Luine, 1985) and ChAT-IR neuron 

counts in the basal forebrain (Gibbs, 1997), a group of rats that had been administered 

continuous subcutaneous Vehicle (propylene glycol) or 17β-E2 were analyzed separately 

for basal forebrain quantifications to aid in interpretation of potential E1 effects found in 

the current study. These 15-16 month old rats were given Ovx, and 19 days later, 

administered an Alzet osmotic pump containing either propylene glycol or 4.0µg/day 

17β-E2. The Ovx and pump insertion surgical procedures were similar to those used in 

the current study, and these animals were behaviorally tested on a cognitive maze battery 

(unpublished). 17β-E2 treatment was initiated 19±1 days after Ovx in the comparison 

study, which corresponds exactly to the E1 study whereby E1 treatment was administered 

19±1 days after Ovx. For the 17β-E2 treated rats, treatment continued for approximately 

50 days, until animals were sacrificed, brains removed, and sections processed via 

immunohistochemistry for ChAT identical to the methods described for the E1 study. 
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Statistical Analyses  
To determine whether each treatment group showed learning of delayed match to 

sample and Morris water maze, we first assessed overall performance within each 

treatment group, with Days and/or Trials as the repeated measure. Our a priori interest 

was to determine the impact that each dose of E1 had on maze performance. Thus, to test 

the effects of each E1 dose, as compared to Vehicle (Vehicle vs. E1-Low, Vehicle vs. E1-

Med, and Vehicle vs. E1-High), two-group planned comparisons were evaluated using an 

alpha level of 0.05, as Type I error correction is not necessary with orthogonal planned 

comparisons (Keppel and Wickens, 2004). For delayed match to sample, Morris water 

maze, and visible platform, data were analyzed using these two-group planned repeated 

measures ANOVAs with Treatment as the between factor, and Blocks of Days, Days, 

Trials, and/or Quadrants as the repeated measure, depending on the maze. For open field, 

data were analyzed using two-group planned comparisons with Treatment as the between 

factor and distance moved (cm) as the dependent variable. Uterine weight and ChAT-IR 

analyses were performed using planned t-tests for two-group comparisons. Because 

treatment with Premarin (Acosta et al., 2009b; Engler-Chiurazzi et al., 2011), 17β-E2 

(Talboom et al., 2008), and E1 (Shiverick and Muther, 1982) has been previously shown 

to increase uterine weights, all analyses of uterine weights were one-tailed. ChAT-IR data 

in each distinct basal forebrain region from the comparison study using 17β-E2 were 

analyzed separately from the E1 study. Only significant interactions or main effects are 

reported. 
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Results 

Vaginal Smears and Uterine Weights 
 After Ovx (before E1 administration), vaginal smears revealed that all animals 

exhibited diestrus-like smears, indicating a lack of uterine stimulation, as expected 

(Goldman et al., 2007). Five days after pump implantation, all Vehicle rats continued to 

exhibit diestrus-like smears, while E1-treated animals (all doses) alternated between 

estrus- and metestrus-like smears, with each smear showing numerous cornified cells, 

indicating uterine stimulation (Goldman et al., 2007). At sacrifice, pump inspection 

revealed that no pumps were cracked. 

 For uterine wet weights, as previously reported for E1 (Beyer et al., 1976), each 

dose of E1 increased uterine weights compared to the Vehicle group [Vehicle vs. E1-

Low: t(14)=11.28; p < 0.0001; Vehicle vs. E1-Med: t(15)=13.54; p < 0.0001; Vehicle vs. 

E1-High: t(15)=9.82; p < 0.0001] (Chapter 5-Figure 1). 

 

Delayed Match to Sample Water Maze 
Testing with a 30-second inter-trial interval: Acquisition Effects: To evaluate 

learning, we analyzed performance within each treatment group from days one to seven 

(trials two to six), the repeated measure. This analysis revealed a main effect of Day for 

each group [Vehicle: F(6,48)=4.81; p < 0.001, E1-Low: F(6,36)=2.63; p < 0.05, E1-Med: 

F(6,42)=3.68; p < 0.005, E1-High: F(6,42)=4.74; p < 0.001], with errors decreasing as 

days progressed, indicating learning for each group (data not shown). There was also a 

main effect of Trial for each group [Vehicle: F(4,32)=7.57; p < 0.0005, E1-Low: 

F(4,24)=8.70; p < 0.0005, E1-Med: F(4,28)=5.97; p < 0.005, E1-High: F(4,28)=6.27; p < 
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0.001], with errors decreasing as trials progressed, indicating learning of the new 

platform location within a day for each group (data not shown). 

Testing with a 30-second inter-trial interval: Treatment Effects: For all days (days 

one-seven) and trials (trials two-six), no E1 group differed from the Vehicle group. Since 

we have shown ovarian-hormone effects on this task that are specific to testing phase 

(Acosta et al., 2009a), we collapsed the data into three-day blocks. There were no 

significant differences between any E1-dosed group and the Vehicle group during the 

first testing block (days two to four). During the second testing block (days five to 

seven), the highest E1 dose impaired performance (Chapter 5-Figure 1a), with the E1-

High group making more errors relative to the Vehicle group [Hormone Treatment main 

effect for Vehicle vs. E1-High: F(1,15)=6.66; p < 0.05].  

Testing with a 6-hour inter-trial interval: No group showed a difference in errors 

committed on the post-delay test trial on day eight (the six-hour delay) versus that on day 

nine (the eight-hour delay); thus, we averaged the error scores across the two delays, into 

one overall delayed inter-trial interval measure. E1-High treatment impaired performance 

as compared to Vehicle [F(1,15)=6.77; p < 0.05], suggesting that the E1-High group was 

impaired on the post-delay trial, relative to the Vehicle group. As we found group 

differences between the Vehicle and the E1-High groups during the last three-day block 

of the delayed match to sample task, we then assessed performance on the last three-day 

block for trial two (baseline) as compared to the combined days of the delay challenge for 

trial two (the post-delay trial). For this assessment, a repeated measures ANOVA was 

used for each within group comparison, with Day as the repeated measures. The E1-High 

treated rats were impaired on the combined delay measure (Chapter 5-Figure 1b), making 
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more errors relative to their baseline performance on the post-delay trial during the last 

testing block [F(1,7)=5.78; p < 0.05]. Neither the Vehicle, E1-Low, or E1-Med groups 

were impaired by the delay as interpreted relative to their own baseline score (ps>0.50). 

 

Open Field 
To determine the impact of E1 on locomotor activity, we assessed distance moved 

(cm) in the whole open field arena, as well as each of the zones, with Zone as a repeated 

measure (inner, middle, and outer zones). There were no Hormone Treatment main 

effects or interactions for locomotor activity in any analyses (data not shown).  

 

Morris Water Maze 
Learning Effects: To evaluate learning, we analyzed performance across all days 

(days one to three), collapsed across trials (trials one to six). There was a main effect of 

Day for each treatment group [Vehicle: F(2,16)=33.55; p < 0.0001, E1-Low: F(2, 

12)=27.33; p < 0.0001, E1-Med: F(2,14)=47.15; p < 0.0001, E1-High: F(2,14)=29.69; p 

< 0.0001], with swim distance decreasing as days progressed, indicating learning for each 

treatment group (data not shown). 

Treatment Effects: No dose of E1 impacted overall performance as compared to 

Vehicle, for all days and trials (ps > 0.10; data not shown). Since we and others have 

shown that 17β-E2 (Markham et al., 2002; Talboom et al., 2008) and Premarin (Acosta et 

al., 2009b) can enhance retention of the platform location overnight, we assessed 

overnight retention here by comparing swim distance from the last trial on the first day 

(trial six on day one) to the first trial the next day (trial one on day two), as well as from 
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day two to three (trial six on day two, to trial one on day three). No group showed an 

increase in swim distance across either overnight interval. When we collapsed the data 

across the two overnight intervals, to increase power, still no Hormone Treatment main 

effects or interactions were observed for any E1 dose comparison to Vehicle.  

Probe Trial Effects: For the probe trial, for each treatment group, there was a 

Quadrant effect, with a greater percent swim distance in the Northeast target, versus the 

Southwest opposite, quadrant [Vehicle: F(1,8)=42.70; p < 0.0005; E1-Low: 

F(1,6)=38.60; p < 0.001; E1-Med: F(1,7)=94.76; p < 0.0001; E1-High: F(1,7)=38.03; p < 

0.0005]. Thus, all groups localized to the target quadrant (data not shown). There were no 

Hormone Treatment effects in the frequency of crossings in the Northeast target 

quadrant, or in the Southwest opposite quadrant, again suggesting that E1 did not affect 

spatial localization on this task. 

 

Visible Platform 
All animals located the platform within 20 sec during trial six confirming that all 

animals had the visual and motor competence to solve a swimming maze task. No E1 

group differed from the Vehicle group on this task (data not shown). 

 

Basal Forebrain Choline Acetyltransferase-immunoreactive Neuron Counts 
Chapter 5-Figures 3a and 3b show mean ±SEM MS and hDB/vDB ChAT-IR 

neuron counts, and Chapter 5-Figures 3c-h are photomicrographs of the basal forebrain 

for each treatment group. For the MS, E1 did not impact the number of ChAT-IR 

neurons, as there were no significant pairwise comparisons between the Vehicle group 



 

112 

and any E1-dosed group. However, the comparison study showed that, replicating 

findings of others (Gibbs, 1997), 17β-E2 increased the number of ChAT-IR neurons in 

the MS relative to Vehicle treatment [t(8)=2.34; p < 0.05]. For the hDB/vDB, neither 

17β-E2 nor E1 impacted the number of ChAT-IR neurons. 

 

Chapter Summary and Discussion 
In the current study, all E1 doses evaluated resulted in the peripheral estrogenic 

actions expected if estrogenic stimulation did indeed occur. These include increases in 

uterine weights (Westerlind, 1998) and cornified vaginal smears (Goldman et al., 2007). 

This confirms that E1 stimulated peripheral tissues, and was present in the E1-treated 

animals until the end of the experiment. No such effects were seen in Ovx animals given 

Vehicle treatment, as expected. These findings concur with work showing peripheral 

stimulation with Premarin treatment in middle-aged Ovx rats (Acosta et al., 2009b; 

Engler-Chiurazzi et al., 2011). Here, we found that the low and medium doses of E1 did 

not differ from Vehicle treatment in their impact on spatial memory performance. Yet, 

the high dose of E1 impaired both late acquisition, as well as retention, on the spatial 

working memory delayed match to sample task. The observed impairments of E1 

therefore do not appear to be generalized to all memory types, as we found specific 

detriments on spatial working memory and delayed memory retention, with no impact on 

spatial reference memory, at least as measured on the Morris water maze. Further, in the 

current report while 17β-E2 increased basal forebrain ChAT-IR neuron counts, as 

expected based on prior studies (for review see Gibbs, 2010), no dose of E1 impacted this 

measure when compared to Vehicle treatment. Taken together, these findings extend 
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those of previous studies and indicate that E1, a primary circulating estrogen present after 

Premarin administration, impairs spatial working memory and delayed memory retention, 

and does not alter the number of cholinergic positive neurons in a brain region known to 

modulate memory, the basal forebrain, as does 17β-E2.  

Behavioral findings regarding the impact of E1 on cognition are mixed. 

Administration of E1 directly into the hippocampus of adult mice post-training improved 

performance by decreasing the number of retention test trials needed to reach criterion on 

a T-maze footshock avoidance task (Farr et al., 2000). Behavioral effects may be dose 

specific, as Barha and colleagues (2009) noted that in adult rats, a subcutaneous E1 

injection of 1.0µg impaired contextual fear conditioning, while 0.3µg or 10.0µg had no 

impact. It is important to note these outcomes reported previously may be mediated by a 

number of factors including the route of administration (intrahippocampal vs. 

subcutaneous), the timing of administration (post-training vs. before conditioning), the 

species (mouse vs. rat), or the specific paradigm wherein E1 is being studied. Further, 

since in our current study animals were tested on a cognitive maze battery, it is possible 

that the experience of being tested on multiple mazes influenced performance outcomes, 

especially on the latter cognitive tests. As such, further evaluation elucidating the 

potentially interactive effects of previous maze experience and estrogen treatments on 

memory is an interesting future direction of research. Systematic evaluations of each of 

these factors are important future directions in characterizing the potential cognitive 

impact of E1. 

In women, Premarin can have beneficial effects on some memory measures; yet, 

some studies have found that Premarin has null or detrimental effects on memory (for 
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review see Hogervorst et al., 2000; Sherwin and Henry, 2008). Several factors, including 

socioeconomic status and age at time of HT treatment, as well as the temporal window of 

treatment after ovarian hormone loss, can impact the potential cognitive benefits of 

Premarin in human clinical studies (for review see Hogervorst et al., 2000; Rocca et al., 

2010a). Studies using animal models, in which such issues are obviated or can be 

controlled, have reported beneficial cognitive effects of Premarin. For example, an 

subcutaneous Premarin injection regimen to middle-aged, Ovx rats benefitted memory 

retention for objects (Walf and Frye, 2008). We have shown that chronic subcutaneous 

Premarin injections enhanced spatial working memory, prevented scopolamine-induced 

amnesia, and improved overnight retention on the Morris water maze in middle-aged Ovx 

rats (Acosta et al., 2009b). We have also found that Premarin administered continuously 

via subcutaneous Alzet osmotic pumps to middle-aged, Ovx rats at medium (24µg daily 

Premarin) and high (36µg daily Premarin) doses enhanced working memory retention 

(Engler-Chiurazzi et al., 2011). However, the lowest dose (12µg daily Premarin) 

impaired learning on the delayed match to sample and Morris water maze tasks. We 

hypothesized that this dose-dependent effect of Premarin was related to the resulting 

circulating relative levels of E1 and 17β-E2. Indeed, in the same study, the lowest 

Premarin dose, which impaired memory scores, increased serum E1 but not 17β-E2 

levels; whereas, the two higher doses each enhanced performance and concomitantly 

increased both E1 and 17β-E2. This suggested that elevated levels of E1 in the absence of 

sufficient 17β-E2, similar to the hormone profile of the postmenopausal woman (Gruber 

et al., 2002), impairs memory. In line with this, although the previously reported 

cognitive impacts of E1 are mixed (Barha et al., 2009; Farr et al., 2000), many studies 
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report enhanced spatial working memory (Bimonte and Denenberg, 1999; Daniel et al., 

1997; Fader et al., 1999; Gibbs, 1999; Hruska and Dohanich, 2007) and reference 

memory (Bimonte-Nelson et al., 2006; Feng et al., 2004; Frick et al., 2004; Markham et 

al., 2002; Talboom et al., 2008) with subcutaneous 17β-E2 administration to Ovx rats, 

although this effect appears to depend on task, dose, age, and timing after surgical 

menopause (for review see Bimonte-Nelson et al., 2010; Daniel and Bohacek, 2010; 

Frick, 2009; Gibbs, 2010). The current findings build on this previous work, supporting 

the tenet that E1 can impair spatial memory. 

Premarin is a complex mixture of at least 10 different estrogen moieties (Kuhl, 

2005). It is therefore possible that some estrogens contained in Premarin, such as Δ8,9-

dehydroestrone (Kuhl, 2005), are increased with higher Premarin doses, and, thus, 

contribute to Premarin’s beneficial cognitive effects. Along these lines, we recently 

showed that middle-aged, Ovx rats treated with Δ8,9-dehydroestrone, but not the Premarin 

component equilin, enhanced learning on spatial working and reference memory 

(Talboom et al., 2010). As such, it appears that the issue is quite complex, and likely 

involves ratios of other steroid hormones. Indeed, E1 can be derived from the androgen 

precursor, androstenedione (Martini et al., 1993), which we have recently shown to 

correlate with memory impairment in the rodent at higher physiological levels (Acosta et 

al., 2010). Collectively, this suggests that cognitive benefits can be realized with 

estrogen-containing HTs given the “proper” parameters, including a hormone preparation 

with an optimal ratio of the various estrogens.  

 It has been established that estrogen and the basal forebrain cholinergic system are 

each intimately involved in learning and memory (for review see Gibbs, 2010). Basal 
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forebrain cholinergic neurons project to the hippocampus and surrounding cortical areas 

(Woolf, 1991), and basal forebrain lesion results in significant spatial memory 

impairments (Gibbs, 2002). Additionally, basal forebrain ChAT may be related to 

memory scores, as 2 month old female rats that were significantly impaired on the spatial 

working memory land radial-arm maze had less ChAT protein activity in the basal 

forebrain (Luine and Hearns, 1990). Premarin treatment in Ovx rats increased basal 

forebrain ChAT-IR neuron counts in the vDB, and concomitantly aided spatial working 

memory and Morris water maze overnight retention (Acosta et al., 2009b). Similarly, 

17β-E2 treatment in Ovx rats increases ChAT-IR neuron counts (Gibbs, 1997) and ChAT 

protein activity (Luine, 1985) in the basal forebrain. Here, in the 17β-E2 comparison 

evaluation, continuous 17β-E2 treatment increased ChAT-IR cell counts in the MS, as 

expected. Yet, using the same quantifying procedures, E1 did not impact ChAT-IR cell 

counts in either the MS or the hDB/vDB regions, at least at the E1 doses tested.  

Although the duration of hormone treatment in the 17β-E2 comparison study was not 

identical to the hormone treatment used in the E1 study (treatment was 3 weeks longer in 

the 17β-E2 comparison study), for both the 17β-E2 ad E1 analyses, the sections were 

counted by the same experimenter, blind to the treatment group, using the same counting 

protocol. Thus, the finding that 17β-E2 increased ChAT-IR cell counts in the MS 

suggests that our counting procedure is effective in detecting significant treatment group 

differences and adds an important interpretative value for the lack of effects of E1 on this 

basal forebrain cholinergic system. Taken together, these findings suggest that E1 does 

not impact the basal forebrain cholinergic system as does 17β-E2 or Premarin. Thus, the 

negative impact of E1 on cognition may involve other estrogen sensitive neural systems 
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such as monoamines (Luine, 1998) and/or neurotrophins (Granholm, 2000). 

In conclusion, this study demonstrates that the principal estrogen moiety E1, a 

primary circulating estrogen present after Premarin administration, can impair specific 

memory domains of spatial memory in middle-aged, surgically menopausal rats. E1 

treatment at the doses tested in this study did not impact the number of ChAT-IR 

neurons in the MS or the hDB/vDB regions, whereas in a comparison study using the 

same quantification procedures, 17β-E2 increased the number of ChAT-IR neurons in 

the MS. That we have previously shown Premarin can enhance cognition and increase 

ChAT-IR basal forebrain neuron number, and now find that the primary circulating 

estrogen after Premarin treatment, E1, does not have these effects, suggests that 

previously observed beneficial effects of Premarin on these variables are not likely due 

to the E1 component alone. Findings from preclinical, interdisciplinary basic science 

studies can inform the design of specific combinations of estrogens that could be 

beneficial to the brain and cognition. The results shown here build on the findings of 

others and suggest that, for cognitive and brain health measures, E1 is not likely one of 

these key beneficial estrogens. 
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CHAPTER 6 

A PUTATIVE MECHANISM OF ESTROGEN’S IMPACT ON SPATIAL MEMORY: 

RELATIONS WITH ESTROGEN RECEPTOR-ALPHA 

Manuscript Status: In Preparation 

 

Introduction 
Estrogens, once thought to only to impact reproductive organs and associated sex 

behaviors, are now understood to impact substrates of the immune (Oertelt-Prigione, 

2012; Zen et al., 2010), and central nervous (Bimonte-Nelson et al., 2010), systems. For 

instance, many studies report enhanced memory performance on tasks of spatial working 

memory (Bimonte and Denenberg, 1999; Daniel et al., 1997; Fader et al., 1999; Gibbs, 

1999; Hruska and Dohanich, 2007) and spatial reference memory (Bimonte-Nelson et al., 

2006; Feng et al., 2004; Frick et al., 2004; Markham et al., 2002; Talboom et al., 2008) 

following subcutaneous 17β-estradiol (17β-E2) administration to adult ovariectomized 

(Ovx) rats. However, cognitive responsiveness to estrogen stimulation seems to decline 

with age, especially on spatial reference memory tasks (Foster et al., 2003; Gresack et al., 

2007; Talboom et al., 2008). For instance, the same dose of 17β-E2 treatment that 

effectively enhanced performance on the Morris water maze among 4 and 16 month old 

Ovx rats was generally ineffective in 24 month olds (Talboom et al., 2008). Given that 

estrogen-containing therapies are administered to middle-aged women for the treatment 

of menopausal symptoms, investigating the cognitive impacts of estrogen treatments and 

the mechanisms by which they impart these effects during middle-age is an important 

area of study.  
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A potential mechanism by which estrogens impact cognitive outcomes is via 

stimulation of the two nuclear estrogen receptor (ER) subtypes (Kuiper et al., 1996; 

Kuiper et al., 1997). Both ER subtypes, alpha (ERα) and beta (ERβ), are found in 

cognitive brain regions associated with learning and memory, such as the hippocampus 

and basal forebrain (Shughrue et al., 1997). Moreover, the neural expression and 

distribution of ERs is known to change during aging in humans and rodents (Adams et 

al., 2001; Ishunina et al., 2007; Mehra et al., 2005; Yamaguchi-Shima and Yuri, 2007), 

providing a potential mechanism by which cognitive responsiveness to estrogens declines 

with age.  

Findings from studies using selective ER modulators (SERMs) as tools to clarify 

the mechanism of estrogen action at an individual ER subtype contribute to the complex 

cognitive role of ERα. In young adult, Ovx rats, acute injections of the ERα agonist, 

propylpyrazole triol (PPT), either enhanced novel object memory (Frye et al., 2007; Walf 

et al., 2006) or failed to impact performance on object recognition and object place 

recognition tasks (Jacome et al., 2010). For spatial memory, PPT also has unclear 

impacts. In young adult rats, PPT had no impact of the spatial reference memory Morris 

water maze (Rhodes and Frye, 2006) yet PPT enhanced spatial working memory on the 

delayed matching to place task (Hammond et al., 2009). Only one study to date has 

evaluated the impacts of SERMs in middle-aged rats, finding subtle impairments of 

chronic administration of PPT at the highest dose, 0.2 mg/kg/day, on the spatial working 

memory delayed alternation (Neese et al., 2010). Thus, the role of ERα in cognitive 

outcomes, especially during middle-age, remains unclear. 
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In the current study, we sought to yield further insight into the mechanism by 

which estrogens impact cognition in middle-aged, Ovx rats using PPT as a tool to 

preferentially stimulate ERα. Indeed, PPT binds with a 400-fold higher affinity for ERα 

than ERβ (Stauffer et al., 2000). We assessed memory using a battery of spatial memory 

tasks shown to be sensitive to aging (Frick et al., 1995; Talboom et al., 2008) and to 

estrogens (Acosta et al., 2009b; Bimonte-Nelson et al., 2006; Engler-Chiurazzi et al., 

2011; Talboom et al., 2010; Talboom et al., 2008). 

 

Materials and Methods 

Subjects  
Subjects were 23 middle-aged (13 month old) Fischer-344 female rats born and 

raised at the National Institute on Aging colony at Harlan Laboratories (Indianapolis, IN). 

Inbred rats were selected given that their low genetic and physiological variability 

allowed us to utilize a relatively small sample size to generalize observed cognitive 

impacts of our treatments to the general population (Nadon, 2004b). Animals were 

acclimated for several weeks at Arizona State University, had exposure to food and water 

ad-libitum, and were maintained on a 12-h light/dark cycle (7am/7pm) at 23°C. 

Experimental procedures were approved by the Arizona State University Institutional 

Animal Care and Use Committee and adhered to Guidelines for the Care and Use of 

Laboratory Animals and National Institutes of Health standards. 
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Ovariectomy and Treatment  

Approximately 28 days before behavioral testing began, under isoflurane 

anesthesia, all rats underwent Ovx surgery. For Ovx, dorsolateral incisions were made in 

the skin and peritoneum, and ovaries and tips of uterine horns were ligated and removed. 

Rats were then separated into the following groups: Ovx with Vehicle polyethylene 

glycol treatment (Vehicle, n=9), Ovx plus 125µg/day of PPT (PPT-Low, n=7) and Ovx 

plus 500µg/day of PPT (PPT-High, n=7).  Polyethylene glycol was purchase from Sigma 

(St. Louis, MO), and PPT was purchased from Tocris Bioscience (Elliaville, MO). The 

doses of PPT were selected based on the 1.0mg/kg PPT dose used in the laboratory of Dr. 

Robert Handa, a dose shown to induce anxiety-like behaviors, as measured by increased 

rearing, in the open field test relative to Vehicle-treated animals (Weiser et al., 2009). To 

evaluate potential dose-related cognitive impacts of PPT, we used two doses of PPT, low 

and high; the PPT-Low dose was approximately half, and the PPT- High dose was 

double, the 1.0mg/kg PPT dose used in the previous study (Weiser, et al., 2009). 

Hormone treatment began approximately 19 days after Ovx, similar to prior studies 

testing cognitive effects of estrogens (Talboom et al., 2010). In parallel with other studies 

(Engler-Chiurazzi et al., 2011; Talboom et al., 2010), Vehicle and PPT treatments were 

administered continuously using Alzet osmotic pumps (Model 2004; Durect Corporation, 

Cupertino, CA). Briefly, the appropriate dose of PPT was dissolved in polyethylene 

glycol and inserted into the pumps as per the manufacturer’s instructions; for the Vehicle 

group, pumps were filled with polyethylene glycol only. For pump insertion, under 

isoflurane anesthesia, a small incision was made in the dorsal scruff of the neck, and a 
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subcutaneous pocket was created. One pump filled with Vehicle or the appropriate dose 

of PPT was inserted into the pocket and the skin was stapled.  

 

Verification of Peripheral Estrogenic Stimulation  
Because both ER subtypes have been found in the uterus (Kuiper et al., 1997) and 

as it has been demonstrated that PPT stimulates rodent uterine tissue (Le Saux and Di 

Paolo, 2005; Morissette et al., 2008), we verified peripheral stimulation via evaluation of 

traditional markers of estrogenic action including vaginal smears (Goldman et al., 2007) 

and uterine weights (Westerlind et al. 1998). Smears were classified as indicative of a 

lack of, or a presence, of uterine stimulation. Eighteen days after Ovx surgeries, and one 

day before Vehicle or PPT administration via pump implantation, smears were taken to 

confirm lack of uterine stimulation and complete Ovx, indicated by the presence of 

leukocytes and a paucity of epithelial and cornified cells.  

 

Delayed Match to Sample Water Maze  
The delayed match to sample task assessed spatial working memory. The maze 

had four arms (each 38.1 cm long and 12.7 cm wide) in a plus configuration and was 

filled with room temperature water made opaque with black non-toxic paint. The maze 

had a hidden escape platform at the end of one arm. The platform location changed daily, 

but was fixed within a day. Each rat received six consecutive trials within a daily session 

for seven consecutive days. The first trial was the information trial where the rat was 

exposed to the platform location for that day. Trials two through six were memory test 

trials, in which the location of the platform was repeatedly reinforced (Engler-Chiurazzi 



 

123 

et al., 2011). Each rat was dropped off in a semi-randomly chosen start arm location and 

was given a maximum of 90 sec to locate the hidden platform. Once found, the rat 

remained on the platform for 15 sec and was then placed into a heated cage for a 30 sec 

inter-trial interval. An arm entry was counted when the tip of a rat’s snout reached a mark 

delineated on the outside of the arm (11 cm into the arm). Entry into an arm with no 

platform was counted as an error, the dependent variable. To test memory retention 

across an extended inter-trial interval, rats were tested with a six-hour delay (day eight) 

and eight-hour delay (day nine). Since the working memory test trial (trial two) is the first 

trial to test recall of the updated information (working memory), the delays were given 

between trial one and trial two to determine whether the increased inter-trial interval 

impacted, specifically, memory retention after only one exposure to the platform location. 

Thus, on the delay days, animals were given the information trial (trial one), given the 

appropriate delayed inter-trial interval, and then given the post-delay working memory 

test trial (trial two) as done previously in our laboratory (Engler-Chiurazzi et al., 2011). 

On the post-delay trial, total errors were the dependent variable.  

 

Open Field 
On the day following the completion of delayed match to sample testing, each rat 

was tested on the open field task. The open field task evaluated locomotor activity and 

emotional reactivity levels (Denenberg, 1969). A black Plexiglas box measuring 

approximately 95.75 cm x 95.25 cm x 45.70 cm, was placed upon a plywood table. Eight 

desk lamps (60 watt each), four placed on the table and four placed on the floor, were 

used to provide indirect room lighting. All lamps were directed towards the walls and 
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away from the open field box. The rat was placed in the apparatus on the outside edge of 

the arena facing the North wall. Each animal received a ten min session whereby they 

were allowed to freely move within the box. Between each subject, the apparatus was 

thoroughly cleaned with 70% isopropyl alcohol. Each animal’s locomotor activity was 

recorded using Ethovision (Noldus Information Technology, Wageningenm, 

Netherlands). Using the computer system, the open field arena (9120.19 cm2) was 

virtually divided into three concentric zones including the outer frame (5790.19 cm2), 

middle frame (3078.78 cm2) and center zone (251.63 cm2). The dependent variables were 

distance moved (cm) in the whole arena as well as in each of the zones, frequency of 

rearing, defined as a rat sitting up on its hind legs and sniffing (Weiser et al., 2009), and 

number of fecal boli excreted. 

 

Morris Water Maze 
 The Morris water maze (Morris et al., 1982) tested spatial reference memory. This 

task consisted of a round tub (188 cm in diameter) filled with room temperature water 

made opaque with black non-toxic paint. Morris water maze testing began on the day 

following open field testing. For the testing procedure, rats received six trials/day for 

three days, with a 15 min delay instilled between trials three and four. This procedure 

was used in a previous study which reported beneficial effects of 17β-E2 (Markham et 

al., 2002). Briefly, for each trial, the rat was placed in the maze from any of four 

locations (North, South, East, or West) and was allowed 60 sec to locate the platform, 

which remained in a fixed location throughout all days and trials of testing (Northeast 

quadrant). If the rat failed to locate the platform during the allotted trial time, it was 
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gently led to the platform location. After 15 sec on the platform, the rat was placed into 

its heated cage until the next trial. Animals were tested in groups of eight to nine rats (all 

treatments was represented in each testing group) so that the first trial was completed for 

each rat in the testing group, then the second trial, etc., as done previously (Stavnezer et 

al., 2002). Thus, with the exception of the additional 15 min delay between trials three 

and four, there was approximately an eight to ten min inter-trial interval between all 

trials. A video camera recorded, and a tracking system (Ethovision XT 5.1, Noldus 

Information Technology, Wageningen, Netherlands) analyzed, each rat’s path. The 

dependent measure was distance moved (cm). To assess platform localization, an 

additional trial whereby the platform was removed from the maze, referred to as a probe 

trial, was given on trial seven of the last day of testing. For the probe trial, percent of total 

distance (cm) moved in the target Northeast quadrant (i.e., quadrant that contained the 

platform) vs. the opposite Southwest quadrant was the dependent measure (Stavnezer et 

al., 2002). Additional probe trial dependent variables included the frequency of crossing 

into the platform zone, the Northeast quadrant, and the Southwest quadrant. 

 

Visible Platform  
This task confirmed that animals were able to perform the procedural components 

of water escape tasks by verifying rat visual and motor competence. A rectangular tub 

(99 x 58 cm) was filled with clear, room temperature water. A black platform (ten cm 

wide) was positioned approximately four cm above the water surface following 

previously published methods (Hunter et al., 2003). Opaque curtains covered all 

extramaze cues. Animals were tested on the day following the completion of Morris 
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water maze testing and were given six trials for one day. The drop off location remained 

the same across trials, and the platform location for each trial varied semi-randomly. 

Each rat had 90 sec to locate the platform. Once the platform was located, the rat 

remained on it for 15 sec before being placed back into a heated cage. The inter-trial 

interval was five to eight min. Latency (sec) to reach the platform was the dependent 

measure.  

 

Tissue Collection and Uterine Weights  
On the day following the end of maze testing, all subjects were sacrificed by 

researchers blinded to treatment group assignment. Rats were anesthetized with 

isoflurane, blood was taken via cardiocentesis, and rats were decapitated. Uterine tissues 

were collected, trimmed of fat and connective tissue, and weighed (g) per prior protocol 

(Acosta et al., 2009b; Ashby et al., 1997; Engler-Chiurazzi et al., 2011; Talboom et al., 

2010). Wet uterine weight (g) was the dependent measure. 

 

Statistical analyses  
To test treatment group differences, our a priori interest was to determine the 

impact that each dose of PPT had on maze performance, as compared to Vehicle (Vehicle 

vs. PPT-Low and Vehicle vs. PPT-High). These two-group planned comparisons were 

evaluated using an alpha level of 0.05 as described previously (Keppel and Wickens, 

2004). Maze data were analyzed with repeated measures ANOVAs with Treatment as the 

between variable and Blocks of Days, Days, Trials, and/or Quadrant as the repeated 

measure, unless otherwise noted. Because we expected an increase in uterine weights 
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following PPT treatment (Saux and Di Paolo, 2005), one-tailed analyses were performed 

for uterine weight two-group planned comparisons. 

 

Results 

Vaginal Smears and Uterine Weights 
After Ovx but before PPT administration, vaginal smears showed that all animals 

were in diestrus, characterized by few leukocytes. At sacrifice, uterine horns were 

examined and lack of ovary was confirmed. For uterine weights (Chapter 6-Figure 1), 

both doses of PPT increased uterine weights relative to Vehicle [Vehicle vs. PPT-Low: 

t(14)=3.25; p < 0.01; Vehicle vs. PPT-High: t(14)=2.20; p < 0.05].  

 

Delayed Match to Sample Water Maze 
Testing with a 30-second inter-trial interval: There were no Treatment interactions with 

Days and/or Trials nor Treatment main effects for total errors on days one to seven, trials 

two to six. As we have shown ovarian hormone-induced effects specific to testing phase 

(Acosta et al., 2009a), we grouped the data into two three-day blocks. Planned 

comparisons of each dose of PPT versus Vehicle during each testing block revealed a 

Treatment main effect for Block 2 (days five to seven) of testing [Vehicle vs. PPT-Low: 

F(1,14)=4.32; p < 0.06; Vehicle vs. PPT-High: F(1,14)=5.72; p < 0.05] such that PPT-

Low marginally, and PPT-High significantly, impaired performance (Chapter 6-Figure 

2). When animals receiving both doses of PPT were combined, this PPT-treated group 

committed more errors than Vehicle-treated rats [F(1,21)=6.21, p < 0.05]. 
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Testing with a 6-hour inter-trial interval: PPT did not impact delay performance. To 

determine if any treatment group was impacted by the extended inter-trial interval 

between the information and working memory trials, within each treatment group, we 

compared performance on the working memory trial of the last three-day block to 

performance on the working memory trial of the six- and the eight-hour delay, with Days 

as the repeated measure. As evidenced by non-significant effects of Days, no treatment 

group was impaired by either the six- (Vehicle: p > 0.61; PPT-Low: p > 0.19; PPT-High: 

p > 0.38) or the eight-hour (Vehicle: p > 0.49; PPT-Low: p > 0.56; PPT-High: p > 0.85) 

delay compared to the final testing block. Additionally, there were no main effects of 

Treatment for the working memory trial of the six-hour delay (mean±SEM = Vehicle: 

0.67±0.29; PPT-Low: 0.57±0.43; PPT-High: 1.43±0.53) or the eight-hour delay 

(mean±SEM = Vehicle: 0.67±0.24; PPT-Low: 1.71±1.06; PPT-High: 0.86±0.26). 

 

Open Field 
  Across the ten-min trial, Treatment did not impact overall locomotor activity as 

measured by distance moved (cm) in the arena (mean±SEM = Vehicle: 3001.63±252.65; 

PPT-Low: 2796.93±221.03; PPT-High: 2576.87±432.55). PPT-Low marginally increased 

the frequency of entry into the outer zone [F(1,14)=3.51; p < 0.09] (Chapter 6-Figure 3a). 

PPT treatment did not significantly impact the number of rears although both doses of 

PPT reduced rearing behavior (Chapter 6-Figure 3b), as predicted from findings of 

Weiser et al (2009),. As an additional measure of anxiety-like responsivity (Denenberg, 

1969), we evaluated the number of fecal boli excreted while in the open field. PPT-Low 

increased fecal boli excreted [F(1,14)=5.27; p < 0.05] (Chapter 6-Figure 3c). Visual 
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inspection of the graph suggested that both doses of PPT increased the number of fecal 

boli. Thus, we assessed the impact of PPT (doses combined) on fecal boli excreted. This 

combination PPT analysis showed an increased number of fecal boli excreted in PPT-

treated animals [F(1,21)=5.55; p < 0.05].  

 

Morris Water Maze 
Treatment with PPT imparted transient modest benefits for Morris water maze 

performance. We analyzed swim distance (cm) performance on days one to three, trials 

one to six, and no Treatment main effects or interactions with either Days of Trials were 

observed. For forgetting across the 15 min delay, we compared performance on trial three 

vs. trial four collapsed across all testing days (Chapter 6-Figure 4). There was a 

Treatment x Day x Trial interaction for the Vehicle versus PPT-Low comparison 

[F(2,28)=4.14; p < 0.05]. When we further probed this interaction by assessing 

performance across the 15 min delay on each testing day, there was a Treatment x Trial 

interaction on Day 1 [F(1,14)=5.99; p < 0.05]. For overnight forgetting, comparing 

performance on trial one vs. trial six of the previous day, Treatment did not interact with 

Days or Trials. 

For the probe trial, there was a Quadrant main effect in the absence of Treatment 

main effects or interactions with Quadrant, with a greater percent swim distance in the 

Northeast (target) versus the Southwest (opposite) quadrant [Vehicle vs. PPT-Low: 

F(1,14)=81.01; p < 0.0001 Vehicle vs. PPT-High: F(1,14)=119.51; p < 0.0001]. This 

indicates that all rats swam a greater distance in the target quadrant regardless of 

treatment condition. 
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Visible Platform 
When we assessed latency to reach the escape platform on trials one through six, 

there was a main effect of trials [Vehicle vs. PPT-Low: F(5,70)=3.06, p < 0.05; Vehicle 

vs. PPT-High: F(5,70)=2.63; p < 0.05] but there were no effects of Treatment, suggesting 

that all rats improved across trials. These data confirm that all animals had the visual and 

motor competence to solve a swimming maze task. 

 

Chapter Summary and Discussion 
 Here, in middle-aged Ovx rats, we continuously administered PPT, the selective 

ERα modulator (Stauffer et al., 2000). We found that PPT treatment induced modest 

impairments of spatial working memory during the second testing block on the delayed 

match to sample task. That we found there were PPT-induced impairments during the 

second testing block, but not when memory was challenged by an extended delay 

between the information and working memory trials, suggests that impairments were 

specific to task learning. In addition, that PPT impaired performance only in the second 

testing block suggests that the PPT-high treatment did not influence initial task 

acquisition. Rather, data suggest that the PPT-High treatment specifically impaired later 

task learning as PPT-high treated animals failed to reach asymptotic performance levels. 

As treatment did not impact locomotor activity on the open field nor the rate of non-

spatial visible platform task acquisition, the spatial working memory impairments of PPT 

are not likely due to motor or visual system changes with age or treatment. The PPT-

induced spatial working memory delayed match to sample task impairment in middle-
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aged rats shown here is noteworthy given that Hammond et al (2009) reported 

enhancements on the working memory delayed matching to position T-maze in young 

adult, Ovx rats using a similar method of PPT administration. Together, this suggests, 

that for spatial working memory, the cognitive effects of PPT may change during aging.  

On the spatial reference memory Morris water maze, the PPT-Low treatment 

appeared to exert modest, very brief improvements of short-term retention of the platform 

location. The Treatment x Trial interaction was only found on the first testing day and did 

not persist throughout the remainder of testing. Thus, PPT seems to impart only limited, 

transient benefits to spatial reference memory in middle-aged Ovx rats after instillation of 

a short delay in inter-trial interval. Providing further support for the limited duration of 

these minor beneficial effects, on the probe trial, there were no differences in the extent 

of platform localization, suggesting that all rats, regardless of treatment group, learned 

the platform location. That here, in middle-aged Ovx rats, and elsewhere, in young adults 

(Rhodes and Frye, 2006), no impairments on the reference memory Morris water maze 

have been observed suggests that the PPT-induced memory impairments observed in the 

current study on the delayed match to sample task were memory type- and task-specific. 

From our measures of peripheral estrogenic action and anxiety behavior, our 

findings suggest that PPT treatments were imparting effects. Given that ERα is present in 

uterus (Kuiper et al., 1997), it was not surprising that we found PPT-induced increases in 

uterine weights, as others have shown previously (Le Saux and Di Paolo, 2005; 

Morissette et al., 2008). This indicates that our PPT treatments induced peripheral 

estrogenic stimulation, which was present in PPT-treated animals at the completion of the 

study. PPT did not influence overall locomotor activity in the open field, indicating that 
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our observed behavioral findings were not likely due to changes in activity or 

exploration. The PPT-Low treatment tended to increase the frequency of outer zone 

entry, suggesting anxiogenic effects. As well, visual inspection of the graph revealed that 

our PPT treatments reduced number of rears, as expected given previous findings (Weiser 

et al., 2009). However, here, neither PPT group significantly differed from Vehicle in 

impact on rearing behavior in the open field. Thus, we failed to replicate the PPT-induced 

anxiogenic findings of Weiser and colleagues (2009), the study upon which our doses 

were based. However, evidence from increased fecal boli excretion indicates that PPT did 

induce anxiety-like behavior in the PPT-treated rats. Together, these trends suggest that 

the PPT-treatments we administered imparted expected physiological effects but that the 

PPT-induced deficits on spatial memory should be interpreted with caution given the lack 

of significant results on open field anxiety behavior. 

Existing literature examining the roles of ERs on cognitive function suggests that 

ERα is has limited involvement with cognitive and memory performance in young adult 

rats. Both ERα and ERβ are found throughout the rat central nervous system (Österlund 

et al., 1998; Shughrue et al., 1997), with ERα more abundant in non-cognitive brain 

regions such as the hypothalamic nuclei and ERβ more abundant in cognitive brain 

regions such as the hippocampus. Studies using knockout mice have revealed that ERα 

knockout mice are able to learn spatial memory tasks such as the Morris water maze 

(Fugger et al., 1998), and that treatment with 17β-E2 can improve hippocampal-

dependent Y-maze performance in ERα, but not ERβ, knockout animals (Liu et al., 

2008). These findings suggest that ERα activation is not necessary for spatial learning 
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and memory nor for memory enhancements following 17β-E2 treatment. Yet, studies 

using PPT are inconsistent in findings regarding selective ERα stimulation. For instance, 

PPT also does not appear to influence inhibitory avoidance when given via a single 

subcutaneous post-training 10ug injection (Rhodes and Frye, 2006). Similarly, for object 

memory, PPT given either via an acute pre-training subcutaneous injection regimen (3 or 

5mg/kg) to young adult rats had no impact on visual object recognition or place object 

recognition (Jacome et al., 2010). In the same study, PPT given as a single subcutaneous 

injection (1mg/kg) immediately following training also failed to enhance discrimination 

on these object tasks. Yet, Frye and colleagues (Walf et al., 2006, Frye et al., 2007) have 

found that a single post-training injection of PPT (0.9mg/kg) can enhance object 

recognition and place object recognition in young adult, Ovx. Further, for spatial 

memory, although post-training PPT (10ug injection) fails to impact spatial reference 

Morris water maze performance (Rhodes and Frye, 2006), another study noted that PPT, 

administered continuously via an osmotic pump (5µg per day) before training, enhanced 

spatial working memory on the delayed matching to position T-maze (Hammond et al., 

2009), suggesting that the role of ERα in learning and memory may be task specific in 

young adult, Ovx rats. Taken together, in young adult animals, the impact of PPT, and the 

role of ERα, for cognition remains unclear. 

Interestingly, the few studies testing PPT treatment in middle-aged animals 

suggest that ERα stimulation could impart memory impairments. Neese et al (2010) were 

the first to utilize a middle-aged, Ovx rodent model to evaluate the cognitive impacts of 

SERMs, finding that chronic subcutaneous injections of PPT resulted in subtle 

impairments on the operant spatial working memory delayed alternation (Neese et al 
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2010). Here, in middle-aged, Ovx rats, we found that continuous PPT impaired spatial 

working memory. Together, these collective findings suggest age could be an important 

factor when assessing the mnemonic impact of ERα stimulation via PPT. Yet, in addition 

to age, it is possible that dose of PPT impacted the realization of cognitive benefits 

among Ovx rats. In the current study, continuous PPT-High treatment administered via a 

subcutaneous osmotic pump (2.0 mg/kg/day; 500µg/day assuming a 250g rat) impaired 

spatial working memory on the delayed match to sample task. Yet, a lower dose of PPT 

administered continuously (5µg/day) to young adult, Ovx rats enhanced working memory 

on the delayed matching to position T-maze (Hammond et al., 2009). Future studies 

should evaluate the impact of lower doses of continuous PPT in the middle-aged rodent 

model to clarify this important issue. 

In conclusion, the findings here indicate that continuous PPT, a selective ERα 

modulator, could impair late learning of the spatial working memory delayed match to 

sample task in middle-aged Ovx rats. However, further studies are necessary to better 

define these potential effects. Moreover, these spatial working memory impairments 

following PPT administration were found in middle-aged rats. Whereas other work has 

reported benefits on a similar task in younger animals, these findings suggest that the 

effects of ERα stimulation differ among unique age-groups. However, certain outcomes 

in the current experiment, namely the lack of open field anxiety replication, limit 

generalization of these findings. Additional studies isolating the factors that could have 

influenced the outcomes observed here, primarily subject age and treatment dosage, 

should be conducted to further clarify the role of ERα for cognition in middle-age. 
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CHAPTER 7 

GENERAL SUMMARY AND DISCUSSION 

    The population of aging women in the United States is increasing (US Census, 2008). 

Each of these women will undergo the menopausal transition, accompanied by cognitive 

decline and other symptoms that reduce quality of life (Freedman, 2002; Sherwin and 

Henry 2008). Premarin is the most widely used hormone therapy (HT) for the treatment 

of menopausal symptoms in North America (Hersh et al., 2004). Clinical and preclinical 

research assessing its cognitive effects have yielded mixed results (Hogervorst et al., 

2000; Sherwin and Henry, 2008). Elucidating factors that influence the cognitive and 

neurobiological effects of menopausal HT represents an important need relevant to every 

aging woman. To this end, the work contained in this dissertation has supported the 

hypothesis that multiple factors, including post-treatment circulating estrogen levels, 

experimental handling, type of estrogen treatment, and estrogen receptor (ER) activity, 

can impact the realization of cognitive benefits with Premarin. A summary of the 

research questions and findings from this dissertation are presented in Chapter 7-Table I. 

Information gathered from these studies can enable the development of future HTs in 

which these parameters are optimized. 

    It has been hypothesized that one of the many factors that influences the cognitive 

impact of Premarin-containing HT is route of administration (Sherwin and Henry, 2008). 

Prior studies evaluating Premarin have reported beneficial effects for object and spatial 

memory with either an acute (Walf and Frye, 2008) or chronic (Acosta et al., 2009b) 

subcutaneous injection regimen in middle-aged, ovariectomized (Ovx) rats. These 

beneficial findings in rats conflict with the null or detrimental cognitive effects of 
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Premarin-containing HT reported in the Women’s Health Initiative Memory Study 

(Espeland et al., 2004; Shumaker et al., 2004; Shumaker et al., 2003) and indicate that 

Premarin could indeed result in benefits under optimal conditions. Extending this 

knowledge, findings from Chapter 2 of this dissertation noted dose-dependent spatial 

working memory enhancements of Premarin administered in a continuous subcutaneous 

regimen (Engler-Chiruazzi et al., 2011). Interestingly, memory benefits were only 

realized with the doses that resulted in elevated circulating 17β-estradiol (17β-E2) and 

estrone (E1) levels. Conversely, the only dose to impair memory performance was also 

the only dose to elevate circulating levels of E1 in the absence of elevated 17β-E2. Thus, 

data from this chapter indicate that non-optimal ratios of circulating estrogens impair 

spatial memory. Whether cognitive impairments could occur with a non-optimal, high E1 

to 17β-E2 ratio resulting from a subcutaneous injection regimen like that used by Acosta 

and colleagues (2009b) is not known and is an important future direction in clarifying the 

cognitive role of circulating ratios of estrogens following HT.  

    Further clarifying the mnemonic impact of route of Premarin administration, in 

Chapter 3-Study 1, we assessed Premarin administered to middle-aged, Ovx rats via an 

oral route. The oral route of administration was the route used in the Women’s Health 

Initiative Memory Study (via a daily pill), which reported null and detrimental cognitive 

effects of Premarin-containing treatments (Espeland et al., 2004; Shumaker et al., 2004; 

Shumaker et al., 2003). We found that orally administered Premarin impaired spatial 

working memory in middle-aged Ovx rats, supporting the hypothesis that route of 

administration was a crucial factor in determining the cognitive outcome of a Premarin-

containing HT. However, experimental handling procedures can influence spatial 
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memory performance, independent of hormone treatment (Bohacek and Daniel, 2007). 

Thus, another factor that could have contributed to the detrimental memory findings in 

Chapter 3-Study 1 was the handling associated with oral treatment administration. Given 

that this handling differs from handling associated with subcutaneous injections (Acosta 

et al., 2009b) and the little handling required with subcutaneous continuous osmotic 

pumps (Engler-Chiurazzi et al., 2011), in Chapter 3-Study 2, we isolated the distinct 

memory impact of oral handling from that of Premarin treatment. To accomplish this, we 

methodically manipulated oral handling experience among rats given continuous 

subcutaneous Premarin using a method and dose we have previously found to benefit 

maze performance. We found that oral-associated handling impaired spatial working 

memory performance. As well, among Premarin-treated rats, oral-associated handling 

enhanced overnight retention of non-spatial information. Thus, the findings in Chapter 3-

Study 2 suggest that the spatial working memory impairing effects of Premarin reported 

in Chapter 3-Study 1 were likely not due to the oral route of administration. 

An additional methodological difference between the studies benefitting memory 

performance and those showing detrimental mnemonic effects following Premarin 

treatment is the difficulty of the memory task utilized. Indeed, the previously reported 

working memory enhancements of subcutaneous Premarin were found using a 4-arm 

version of the delayed match to sample task (Engler-Chiurazzi et al 2011). Yet, orally-

administered Premarin (Chapter 3-Study 1) and oral handling (Chapter 3-Study 2) 

impaired performance on an 8-arm version of this same task. Thus, differences in the 

difficulty of the tasks used could also partly account for the conflicting outcomes of these 

studies. When we systematically evaluated the impact of handling and task difficulty in 
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Chapter 4, we found that among unhandled rats, 36µg subcutaneous Premarin, the dose 

with which we have shown benefits memory (Engler-Chiurazzi et al., 2011), enhanced 

working memory performance on the 4-arm, but impaired performance on the 8-arm, 

maze. Interestingly, these task-dependent effects of Premarin treatment were not 

observed among the acclimation and oral handled groups. In fact, both acclimation and 

oral handing obviated the beneficial effects of Premarin in the 4-arm task and obviated 

the detrimental effects of Premarin on the 8-arm task. Together, these data suggest that 

specific parameters regarding the handling experience and the difficulty of the cognitive 

task, but not route of administration, are necessary for the realization of Premarin-

induced learning and memory benefits.  

Another factor that may influence the cognitive outcome of Premarin is the 

unique cognitive and neurobiological actions of the specific estrogen types contained 

within it. Indeed, Premarin is over 50% E1-sulfate, but also is a complex mixture 

containing at least ten estrogens (Kuhl, 2005). Each of these estrogen subtypes differ in 

several ways including structure, ER binding affinity, and potency (Kuhl, 2005). These 

differences may partly explain the diversity of cognitive effects following treatment with 

estrogen-containing therapies reported in the literature. For instance, while exogenous 

17β-E2 is used in most studies in middle-aged women and rodents that report cognitive 

benefits following HT, studies using Premarin have yielded conflicting findings 

(Bimonte-Nelson et al., 2010; Sherwin and Henry, 2008). In Chapter 5, we characterized 

the cognitive effects of E1. Although our laboratory has reported memory benefits with 

another Premarin component, Δ8,9-dehydroestrone (Talboom et al., 2010), E1 imparted 

spatial working memory impairments in middle-aged, Ovx rats. As well, 
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mechanistically, unlike other studies finding an increased number of basal forebrain 

choline acetyltransferase-immunoreactive (ChAT-IR) neurons following treatment with 

17β-E2 (Gibbs, 1997) and Premarin (Acosta et al., 2009b), we found that E1 had no 

impact on the number of cholinergic ChAT-IR neurons in either sub-region of the basal 

forebrain. This is especially noteworthy given that following Premarin administration, 

and the removal of the bound sulfate group via hepatic metabolism (Kuhl, 2005), levels 

of E1 increase in serum (Acosta et al., 2009b; Yasui, 1999). As well, E1 is a component 

of the tri-estrogen bioidentical hormone therapy (BHT), Triest, a menopause treatment 

option that has experienced a recent surge in popularity despite a lack of objective 

evaluations of the long-term physiological and cognitive consequences of BHTs 

(Cirigliano, 2007). Thus, individual estrogens appear to exert unique impacts of 

cognitive performance and the brain. Findings from studies systematically evaluating the 

distinct contributions of these individual estrogens have meaningful implications for the 

composition of future HTs, informing the design of specific combinations of estrogens 

that could be beneficial to the brain and cognition. Importantly, these results suggest 

that, for cognitive and brain health measures, E1 is not likely one of these key beneficial 

estrogens and should be omitted from future HT options. 

From a mechanistic approach, the diverse cognitive effects of estrogens and 

estrogen formulations are thought to be mediated by ligand interactions with the classical, 

nuclear ERs, alpha (ERα) and beta (ERβ). Both ER subtypes are localized to cognitive 

brain regions associated with learning and memory, such as the hippocampus and basal 

forebrain (Shughrue et al., 1997). Findings from some studies have indicated a role for 

ERβ in memory enhancements following estrogenic treatment. Specifically, Rissman 
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(2002) found that 17β-E2 impaired learning on the Morris water maze in ERβ knockout 

mice compared to estrogen-treated wild type controls. Similarly, ERβ knockout mice 

given 17β-E2 were impaired on the Y-maze, exhibiting a lower percentage of trials 

without an error than wild type and ERα knockout mice receiving the same treatment 

(Liu et al., 2010), further supporting the requirement of ERβ, and but not ERα, for 17β-

E2-induced spatial memory enhancements. Interestingly, other findings highlight the 

importance of ERα in memory function. Foster and colleagues (2008) used a lentiviral 

vector to restore ERα expression in adult Ovx, ERα knockout mice, finding that 

increased ERα expression in these animals enhanced spatial reference memory Morris 

water maze performance compared to that of ERα knockout controls. 

Studies using selective ER modulators (SERMS) as tools to evaluate the impact of 

ER stimulation in young adult rats have also imparted mixed mnemonic effects. For 

instance, there is disagreement regarding the impact of SERMS on object memory, with 

some studies reporting that both propylpyrazole triol (PPT) and diarylpropionitrile (DPN) 

enhance performance, and others reporting that either DPN or PPT, but not both, impart 

benefits (Frye et al., 2007; Jacome et al., 2010; Walf et al., 2006). As well, findings on 

spatial memory tasks are also inconsistent. For example, on the Morris water maze, DPN 

benefitted, while PPT failed to impact, spatial reference memory performance (Rhodes 

and Frye, 2005). Conversely, PPT, DPN and 17β-E2 each enhanced spatial working 

memory performance on the delayed matching to place task (Hammond et al., 2009). 

Given that estrogen-containing menopausal treatments are commonly prescribed to 

middle-aged women, it is clinically relevant to evaluate the cognitive impact of ER 
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stimulation in middle-age menopause models. Yet, the small, but growing literature 

regarding the cognitive impact of ER stimulation in middle-aged is conflicting. Recently, 

Foster and colleagues have proposed that changes in ER ratios during aging may account 

for these observed findings (Foster, 2012) and suggest that increasing ERα expression 

may ameliorate age-related cognitive decline. Initial support for this hypothesis is 

promising, given that transient 17β-E2 exposure in middle-age imparted long-lasting 

protection against age-related memory decline on the radial arm maze and increased 

hippocampal ERα expression (Rodgers et al., 2010). As well, directly increasing 

hippocampal ERα expression in middle-aged Ovx rats via a lentiviral vector improved 

spatial working memory on the radial arm maze (Witty et al., 2012). However, findings 

from studies using PPT suggest that memory impairments are associated with SERM-

induced ERα stimulation in middle-aged, Ovx rats. Indeed, in Chapter 6, we found that 

stimulation of ERα using PPT is associated with spatial working memory impairments on 

the delayed match to sample task. These findings coincide with those from the only other 

study to assess the cognitive impacts of PPT-driven ERα modulation in middle-aged Ovx 

rats, which noted delayed alternation impairments (Neese et al., 2010). Thus, the 

conflicting findings from these studies indicate that the relationship between memory 

outcomes, ERs, ER ligand stimulation, and aging is complex and requires further 

investigation to uncover clinical applications for ER-targeted interventions. 

Accumulating findings in translational neuroendocrinology have laid the 

groundwork for exciting future directions in the field of women’s health. An overarching 

goal of this research is to develop menopausal HT options that are optimal for both the 

peripheral physiological symptoms, and the cognitive consequences, of menopause-
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related hormone loss. To this end, an important research direction is to continue to isolate 

and assess the unique cognitive and neurobiological contributions of biologically relevant 

estrogens. Substantial work has evaluated the impact of 17β-E2 on memory performance 

and the aging brain (Acosta et al., 2013). As well, recent interest in the impact of E1 has 

identified this estrogen as a sub-optimal treatment option for the realization of memory 

benefits. Given the increasing popularity of BHT as an alternative to Premarin-containing 

formulations, there is a clinical need to evaluate the cognitive impact of exogenously 

administered estrogens that are found naturally in the female body. Estriol (E3), generally 

thought of as an estrogen of pregnancy (Gruber et al., 2002), is biologically weak due to 

its short interactions at the ER (Kuhl, 2005; Sitruk Ware, 2002). Although levels diminish 

during the menopausal transition, E3 is still present in circulation during aging (Gruber et 

al., 2002. Treatment with E3-containing formulations is reported to relieve peripheral 

menopausal symptoms such as hot flashes and vaginal dryness (Kuhl, 2005). However, 

little is known regarding the cognitive impacts of E3; E3 has yet to be methodically 

evaluated in the middle-aged, Ovx rat model. Thus, before clear interpretations can be 

made regarding the cognitive impacts of BHTs composed of several estrogens, the next 

step is to characterize the unique cognitive impacts of E3 and compare these outcomes 

with those of the more well-studied endogenous estrogens, 17β-E2 and E1. Further, the 

interactive cognitive effects of exogenous administration of several naturally-circulating 

estrogens, as done in BHT, is completely unexplored. Therefore, a parallel translational 

research direction will be to evaluate the mnemonic effects of clinically-used 

combinations of these hormones. 
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In conclusion, the study of women’s health during aging is a clinically relevant 

and important research topic, yet options for menopausal HTs with optimal cognitive 

outcomes are limited. Data from studies here demonstrate that the most commonly 

utilized HT Premarin, has inconsistent impacts on cognition and memory performance 

that depend, at least partly, on the ratio of resulting circulating estrogens, the complexity 

of the task being assessed, and the handling associated with the experimental 

manipulations. Further, mechanistic findings suggest that each estrogen in circulation 

following Premarin treatment may distinctly impact memory performance. The unique 

mnemonic impacts of these individual estrogenic Premarin components may be in part 

due to the specific actions of each on ERα and ERβ. Taken together, data from this 

dissertation indicate that Premarin is not an ideal HT for the treatment of cognition-

related menopausal symptoms. However, this work has also elucidated several important 

factors that impact the realization of memory benefits, and can inform the development of 

novel treatment options that are more optimal for cognitive outcomes. If optimal 

cognitive outcomes are a desired goal for treatment of menopausal symptoms, the data 

contained herein suggests that future HT options exclude estrogens or estrogenic 

compounds that impair memory, such as E1, or preferentially stimulate ERα, such as 

PPT.  
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Chapter 2-Figure 1: Measures of Peripheral Estrogenic Stimulation 

 
 
Chapter 2-Figure 1. a) Mean (±SEM) uterine weights (g). All doses of Premarin 
increased uterine weights relative to untreated controls. b) Mean (±SEM) pituitary 
weights (g). The highest dose of Premarin increased pituitary weights as compared to all 
other groups. c) Mean (±SEM) serum E1 (pg/ml). All doses of Premarin increased serum 
E1 levels relative to controls. Medium (dashed lines) and high (dashed lines) Premarin 
doses produced significantly higher E1 levels than the low dose. d) Mean (±SEM) serum 
17β-E2 (pg/ml). Medium and high, but not low, dose Premarin increased serum 17β-E2 
as compared to Vehicle controls. Medium (dashed lines: p < 0.01) and high (dashed lines) 
Premarin doses produced significantly higher 17β-E2 levels than the low dose. e) 
Scattergram of serum estrogens. 17β-E2 and E1 were significantly correlated (r = 0.885). 
f) Centered scattergram of serum estrogens. The correlation remained significant after 
mean group differences were removed, suggesting that the significant correlation was not 
due to group membership (r = 0.710). Sample size (N) for tissue weights- Vehicle = 7, 
Premarin-Low = 10, Premarin-Medium = 10, Premarin-High = 9. Sample size (N) for 
serum estrogens- Vehicle = 5, Premarin-Low = 6, Premarin-Medium = 7, Premarin-High 
= 7. 
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Chapter 2-Figure 2: Spatial Working and Reference Memory Water Radial Arm Maze 

 
  

Chapter 2-Figure 2. a) Mean (±SEM) number of errors for total errors on the initial 
phase (D2-6) of the water radial arm maze. No dose of Premarin affected performance. 
b) Mean (±SEM) number of errors for total errors on the latter phase (D7-11) of the 
water radial arm maze. No dose of Premarin affected performance. c) Mean (±SEM) 
number of total errors on water radial arm maze post-delay trials, after a four-hour delay 
was imposed between trials two and three. High-dose Premarin animals made fewer 
errors than Vehicle-treated animals on the post-delay trials. Sample size (N)- Vehicle = 
9, Premarin-Low = 9, Premarin-Medium = 9, Premarin-High = 9. 
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Chapter 2-Figure 3: Spatial Reference Memory Morris Water Maze  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Chapter 2-Figure 3. a) Mean (±SEM) swim distance (cm) during Morris maze 
testing. There were no differences between Premarin- and vehicle- treated groups on 
learning across days. b) Mean (±SEM) probe trial percent distance in the target and 
opposite quadrants. All animals, regardless of treatment, swam a higher percent 
distance in the quadrant where the platform had been previously located, indicating 
that all animals localized the platform location. c) Mean (±SEM) platform crossings 
on the probe trial. During the first 30 sec of the probe trial, animals given low dose 
Premarin made fewer platform crossings than those given vehicle. During the second 
30 sec, there were no group differences in number of platform crossings. Sample 
size (N)- Vehicle = 9, Premarin-Low = 8, Premarin-Medium = 7, Premarin-High = 
9. 
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Chapter 2-Figure 4: Spatial Working Memory Delayed Match to Sample Water Maze 
 

 
 
 
Chapter 2-Figure 4. a) Mean (±SEM) total errors during delayed match to sample testing. 
Animals given low dose Premarin made more working memory errors than those given 
Vehicle or medium dose Premarin (ps < 0.05). There were no group differences for recent 
memory. b) Mean (±SEM) errors on trial two of the baseline day (day 4) and on trial two 
after the six-hour delay (day 5). Animals given low dose Premarin were impaired on day 
4 compared to those given Vehicle, and thus were not further impaired by the added 
challenge of a delay (day 4 compared to day 5). While all Premarin groups were 
unchanged from day 4 to day 5 suggested they were not affected by the delay, the Ovx-
Vehicle group was significantly impaired after the delay. On the post-delay trials, the 
combined Medium and High group made significantly fewer errors compared to the 
Vehicle group. Sample size (N) - Vehicle = 9, Premarin-Low = 9, Premarin-Medium = 8, 
Premarin-High = 7. 
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Chapter 2-Figure 5: Serum Estrogen Correlations with Behavior 

 
 
Chapter 2-Figure 5. a) E1 levels were negatively correlated with delayed match to sample 
errors on the working memory trial (r = -0.672, p < 0.001), indicating that animals with 
higher E1 levels tended to exhibit better working memory scores. b) The ratio of E1:17β-
E2 was also negatively correlated with delayed match to sample performance on the 
working memory trial (r = -0.483, p < 0.03). c) Centered scattergram of E1 and memory. 
The correlation of E1 and total delayed match to sample errors committed on the working 
memory trial remained significant after mean group differences were removed, indicating 
that the significant correlation was not due to group differences in hormone levels or 
maze scores. (r = -0.470, p < 0.05). d) Centered scattergram of the estrogen ratio and 
memory. The correlation of the E1:17β-E2 ratio and total delayed match to sample errors 
committed on the working memory trial remained significant after mean group 
differences were removed, suggesting that the significant correlation was not due to 
group membership (r = -0.499, p < 0.05). Sample size (N) - Vehicle = 5, Premarin-Low = 
6, Premarin-Medium = 7, Premarin-High = 7. 
 
 
 



 

170 

* 

* 
* 
* 

* P < 0.05, significantly different from Ovx-Premarin-Vehicle 
** P < 0.01, significantly different from Ovx-Premarin-Vehicle 

* 
* * 
* 

Chapter 2-Table I: Mean±SEM Neurotrophin Levels in Cognitive Brain Regions 
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Chapter 2-Table II: Significant Transcriptomic Changes in the Dorsal Hippocampi (Right 
Hemisphere) of Treatment Groups 
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Chapter 2-Table III: Genego Pathway Analysis of Significant Genes 
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Chapter 3-Figure 1: Experimental Timelines 

 
Chapter 3-Figure 1: a) Experimental timeline for Study 1. b) Experimental timeline for 
Study 2. 
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Chapter 3-Figure 2: Mean±SEM Serum Estrogen Levels 

 
Chapter 3-Figure 2: a) Study 1 mean (±SEM) serum E1 levels (pg/ml). All doses of oral 
Premarin increased serum E1 levels (ps < 0.005). Comparison data from Engler-
Chiurazzi et al (2011), revealed that the 90µg/day oral Premarin dose resulted in similar 
E1 levels to the 36µg/day dose of subcutaneously administered Premarin that enhanced 
working memory performance. Sample size (N)- Vehicle = 5, 36µg SC Premarin = 7, 
Vehicle = 7, 30µg Oral Premarin = 9, 90µg Oral Premarin = 10, 180µg Oral Premarin = 
9. b) Study 1 mean (±SEM) serum 17β-E2 levels (pg/ml). All doses of oral Premarin 
increased serum 17β-E2 levels (ps < 0.05). The 90µg/day oral Premarin dose resulted in 
similar 17β-E2 levels to the 36µg/day dose of subcutaneously administered Premarin 
(Engler-Chiurazzi 2011). Sample size (N)- Vehicle = 5, 36µg SC Premarin = 7, Vehicle = 
7, 30µg Oral Premarin = 9, 90µg Oral Premarin = 10, 180µg Oral Premarin = 9. c) Study 
2 mean (±SEM) serum E1 levels (pg/ml). Subcutaneous Premarin (36µg/day) increased 
serum E1 levels (p < 0.001). Sample size (N)- Vehicle (Unhandled and Handled groups 
combined = 14, 36µg Premarin (Unhandled and Handled groups combined) = 20. 
d) Study 2 mean (±SEM) serum 17β-E2 levels (g/ml). Subcutaneous Premarin 
(36µg/day) increased serum 17β-E2 levels (p < 0.001). Sample size (N)- Vehicle 
(Unhandled and Handled groups combined = 17, 36µg Premarin (Unhandled and 
Handled groups combined) = 20. 
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Chapter 3-Figure 3: Spatial Working Memory Delayed Match to Sample Water Maze 

 
Chapter 3-Figure 3: a) Study 1 mean (±SEM) number of total errors. Ovx-Oral-180 rats 
made more total errors than Vehicle-treated rats during the first testing block (p < 0.05). 
Sample size (N)- Vehicle = 7, 30µg Premarin = 9, 90µg Premarin = 10, 180µg Premarin 
= 9. b) Study 2 mean (±SEM) number of total errors. There was a Treatment main effect 
(p = 0.05), such that oral handled rats made more total errors than unhandled rats. Sample 
size (N)- Vehicle-Unhandled = 10, Premarin-Unhandled = 10, Vehicle-Handled = 10, 
Premarin-Handled = 10. 
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Chapter 3-Figure 4: Non-spatial Reference Memory Black/White Discrimination Task 

 
Chapter 3-Figure 4: Study 2 mean (±SEM) number of total errors during the overnight 
intervals of the third testing block. During the third testing block, there was a Treatment x 
Handling x Trials interaction. As indicated in the insert, there was a Handling x Trials 
interaction (p < 0.05), such that among Premarin-treated rats, handling enhanced 
overnight retention of the color of the platformed arm. Sample size (N): Vehicle-
Unhandled = 10, Premarin-Unhandled = 10, Vehicle-Handled = 10, Premarin-Handled = 
10. 
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Chapter 3- Table I: Mean±SEM Uterine and Pituitary Weights  
 Treatment Uterine Weight (g) Pituitary Weight (g) 
Study 1 Vehicle 0.212 ± 0.016 0.010 ±0.001 

Ovx-Oral-30 0.231 ± 0.024 0.012 ± 0.002 
Ovx-Oral-90 0.295 ± 0.017* 0.013 ± 0.001* 
Ovx-Oral-180 0.389 ± 0.035* 0.013 ± 0.001* 

Study 2 Vehicle 0.142 ± 0.005 0.010 ± 0.0004 
Premarin 0.422 ± 0.057* 0.015 ± 0.001* 

* = significantly different from Vehicle group, p < 0.05 
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Chapter 3-Table 2: Mean±SEM Neurotrophin Levels in Cognitive Brain Regions 
 BDNF (pg/ml; mean±SEM) NGF (pg/ml; mean±SEM) 

Anterior 
Cingulate 
Cortex 

Ovx-Oral-Vehicle = 1.24±0.19 
Ovx-Oral-30 = 1.13±0.15 
Ovx-Oral-90= 1.22±0.11 
Ovx-Oral-180= 1.13±0.06  

Ovx-Oral-Vehicle = 3.24± 0.29 
Ovx-Oral-30 = 3.45±0.36 
Ovx-Oral-90= 4.18± 0.39 
Ovx-Oral-180= 3.62±0.27  

Posterior 
Cingulate 
Cortex 

Ovx-Oral-Vehicle = 1.98±0.34 
Ovx-Oral-30 = 2.71±0.35 
Ovx-Oral-90= 2.54±0.54 
Ovx-Oral-180= 2.70±0.62  

Ovx-Oral-Vehicle = 2.93±0.37 
Ovx-Oral-30 = 3.56± 0.27 
Ovx-Oral-90= 5.13±0.90 
Ovx-Oral-180= 3.97±0.36 * 

Frontal Cortex 

Ovx-Oral-Vehicle = 1.97±0.51  
Ovx-Oral-30 = 1.65±0.25 
Ovx-Oral-90= 2.11±0.67 
Ovx-Oral-180= 1.15±0.13  

Ovx-Oral-Vehicle = 2.88±0.36 
Ovx-Oral-30 = 2.98± 0.27 
Ovx-Oral-90= 3.55±0.42 
Ovx-Oral-180=2.04±0.12 * 

Hippocampus 

Ovx-Oral-Vehicle = 1.85±0.17 
Ovx-Oral-30 = 1.91±0.29 
Ovx-Oral-90= 1.92±0.29 
Ovx-Oral-180= 1.94±0.30  

Ovx-Oral-Vehicle = 2.80±0.32 
Ovx-Oral-30 = 2.63±0.22 
Ovx-Oral-90= 2.59±0.16 
Ovx-Oral-180= 2.95±0.31  

Entorhinal 
Cortex 

Ovx-Oral-Vehicle = 2.16±0.66 
Ovx-Oral-30 = 1.68±0.18 
Ovx-Oral-90= 2.72±0.55 
Ovx-Oral-180= 1.29±0.16  

Ovx-Oral-Vehicle = 1.48±0.08 
Ovx-Oral-30 = 1.65±0.14 
Ovx-Oral-90= 1.70±0.19 
Ovx-Oral-180= 1.28±0.11 

Perirhinal 
Cortex 

Ovx-Oral-Vehicle = 3.48±0.46 
Ovx-Oral-30 = 4.84±0.99 
Ovx-Oral-90= 4.13±0.49 
Ovx-Oral-180= 3.98±0.35 

Ovx-Oral-Vehicle = 1.79±0.19 
Ovx-Oral-30 = 2.38±0.34 
Ovx-Oral-90= 2.33±0.40 
Ovx-Oral-180= 2.18±0.19 

Pituitary 

Ovx-Oral-Vehicle = 1.98±0.12 
Ovx-Oral-30 = 1.77±0.18 
Ovx-Oral-90= 1.78±0.18 
Ovx-Oral-180=1.97±0.12  

Ovx-Oral-Vehicle = 6.01±0.79 
Ovx-Oral-30 = 4.71±0.92 
Ovx-Oral-90= 4.60±0.80 
Ovx-Oral-180= 7.05±1.27  

* = significantly different from Vehicle group, p < 0.05 
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Chapter 4-Figure 1: Spatial Working Memory Delayed Match to Sample Water Maze 
Performance on the 4-arm Task 
 

  
Chapter 4-Figure 1: a) Mean (±SEM) total errors among unhandled rats. During the first 
testing block, there was a Treatment x Trial interaction. Replicating previous findings, 
follow-up assessments revealed a main effect of Treatment for the working memory trial, 
such that Premarin enhanced performance (p < 0.05). There were no Treatment main 
effects nor interactions between Treatment and Trials for the second testing block. b) 
Mean (±SEM) total errors among acclimation handled rats. There were no Treatment 
main effects nor interactions between Treatment and any repeated measure. c) Mean 
(±SEM) total errors among oral handled rats. There were no Treatment main effects nor 
interactions between Treatment and any repeated measure. Sample size (N): Vehicle = 9, 
Premarin = 9, Vehicle-Acclimation = 9, Premarin-Acclimation = 9, Vehicle-Oral = 8, 
Premarin-Oral = 8. 
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Chapter 4-Figure 2: Spatial Working Memory Delayed Match to Sample Water Maze 
Performance on the 8-arm Task 

 
Chapter 4-Figure 2: a) Mean (±SEM) total errors among Unhandled Rats. During the first 
testing block, there was a Treatment main effect, such that Premarin impaired 
performance (p < 0.05). There were no Treatment main effects nor interactions between 
Treatment and Trials for the second testing block. b) Mean (±SEM) total errors among 
acclimation handled rats. There were no Treatment main effects nor interactions between 
Treatment and any repeated measure. c) Mean (±SEM) total errors among oral handled 
rats. There were no Treatment main effects nor interactions between Treatment and any 
repeated measure. Sample size (N): Vehicle = 9, Premarin = 9, Vehicle-Acclimation = 9, 
Premarin-Acclimation = 9, Vehicle-Oral = 8, Premarin-Oral = 8. 
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Chapter 4-Figure 3: Spatial Working Memory Delayed Match to Sample Water Maze 
Performance on the 6-hour Delay Challenge 

 
Chapter 4-Figure 3: a) Mean (±SEM) total errors among unhandled rats. For the 4-arm 
maze, there were no interactions between Treatment and Day. For the 8-arm maze, there 
was a Treatment x Day interaction (p <0.005), such that Premarin-treated rats 
outperformed Vehicle rats on baseline day 8 (30 sec inter-trial interval) but were 
impaired when memory was challenged on day 9 (six hour inter-trial interval). b) Mean 
(±SEM) total errors among acclimation handled rats. There were no Treatment x Day 
interactions for either the 4-arm nor the 8-arm mazes. c) Mean (±SEM) total errors 
among oral handled rats. There were no Treatment x Day interactions for either the 4-arm 
nor the 8-arm mazes. Sample size (N): Vehicle = 9, Premarin = 9, Vehicle-Acclimation = 
9, Premarin-Acclimation = 9, Vehicle-Oral = 8, Premarin-Oral = 8.  
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Chapter 4-Table I: Mean±SEM Uterine and Pituitary Weights  
 Treatment Uterine Weight (g) Pituitary Weight (g) 
Engler-Chiurazzi 
et al., 2011 

Vehicle 0.198 ± 0.014 0.010 ±0.001 
Low Premarin 
(12µg/day) 

0.463 ± 0.033* 0.011 ± 0.002* 

Medium Premarin 
(24µg/day) 

0.676 ± 0.068* 0.011 ± 0.001* 

High Premarin 
(36µg/day) 

0.587 ± 0.047* 0.019 ± 0.004* 

Current Study Vehicle 0.175 ± 0.008 0.011 ± 0.001 
Premarin 
(36µg/day) 

0.402 ± 0.018* 0.015 ± 0.002* 

* = significantly different from Vehicle group in respective study, p < 0.05 
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Chapter 5-Figure 1: Mean±SEM Uterine Weights (g) 

 
Chapter 5-Figure 1. All doses of E1 increased uterine weights relative to Vehicle rats. 
Sample size (N): Vehicle = 9, E1-Low = 7, E1-Medium = 8, E1-High = 8. 
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Chapter 5-Figure 2: Spatial Working Memory Delayed Match to Sample Water Maze 

 
 
Chapter 5-Figure 2. a) Mean (±SEM) total errors during testing. During the second three-
day testing block, the highest dose of E1 impaired performance, with -High rats making 
more total errors than Vehicle rats. b) Mean (±SEM) total errors during delay testing. 
Within subjects comparisons revealed that E1-High treated rats made more errors on the 
post-delay trial (trial two) of the combined delay measure, as compared to trial two of 
baseline. Sample size (N): Vehicle = 9, E1-Low = 7, E1-Medium = 8, E1-High = 8. 
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Chapter 5-Figure 3: Basal Forebrain Cholinergic System 

 
Chapter 5-Figure 3. a) Mean (±SEM) ChAT-IR neurons in the medial septum. As a 
positive control evaluation, a comparison group treated with 17β-E2, and corresponding 
Vehicle group, was used. Treatment with 4.0µg/day 17β-E2, but no dose of E1, increased 
ChAT-IR neurons (* p < 0.05). b) Mean (±SEM) ChAT-IR neurons in the hDB/vDB. 
Neither 17β-E2 nor any dose of E1 impacted the number of ChAT-IR neurons compared 
to Vehicle rats. Representative basal forebrain photomicrograph of the: c) Vehicle 
comparison group, d) 4.0µg/day 17β-E2 comparison group, e) Vehicle group, f) E1-Low 
group, g) E1-Med group, and h) of E1-High group. Sample size (N): Vehicle = 5, 4.0µg 
17β-E2 = 5, Vehicle = 7, E1-Low = 7, E1-Medium = 6, E1-High = 5. 
 
 
  



 

186 

Chapter 6-Figure 1. Mean±SEM Uterine Weights (g) 

 
Chapter 6-Figure 1. Both doses of PPT increased uterine weights relative to Vehicle rats 
(* p < 0.05). Sample size (N): Vehicle = 9, PPT-Low = 7, PPT-High = 7. 
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Chapter 6-Figure 2: Spatial Working Memory Delayed Match to Sample Water Maze 

 
Chapter 6-Figure 2: a) Mean (±SEM) total errors during testing. During the second three-
day testing block, PPT impaired performance, with PPT-Low (# p < 0.06) and PPT-High 
(* p < 0.05) rats making more total errors than Vehicle rats. The insert displays that when 
animals receiving both doses of PPT were combined, this PPT-treated group committed 
more errors than Vehicle-treated rats (p < 0.05). Sample size (N): Vehicle = 9, PPT-Low 
= 7, PPT-High = 7. 
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Chapter 6-Figure 3: Open Field  

 
Chapter 6-Figure 3: a) Mean (±SEM) frequency of outer zone entry. PPT-Low 
marginally increased the frequency of outer zone entries (p < 0.09). b) Mean (±SEM) 
rears. PPT-treatment appeared to reduce the number of rears during the trial. c) Mean 
(±SEM) fecal boli excreted. PPT-Low increased the number of fecal boli excreted during 
the trial (p < 0.05). When PPT-treated groups were combined, PPT treatment increased 
the number of fecal boli excreted (p < 0.05). Sample size (N): Vehicle = 9, PPT-Low = 7, 
PPT-High = 7. 
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Chapter 6-Figure 4: Spatial Reference Memory Morris Water Maze  
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Chapter 6-Figure 4: Mean (±SEM) swim distance (cm) on trials 3 and 4 across all testing 
days. There was a Treatment x Day x Trial interaction for the Vehicle versus PPT-Low 
comparison (* p < 0.05). Further analyses indicated that this interaction was specific to 
Day 1 (* p < 0.05). Sample size (N): Vehicle = 9, PPT-Low = 7. 
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Chapter 7-Figure 1: Summary of Factors that Influence the Memory Effects of Premarin 

 
 
Chapter 7-Figure 1: Several factors likely influence the realization of memory benefits 
with Premarin HT. Although evidence collected in this dissertation suggests that route of 
administration is not likely to influence the memory impact of Premarin, handling 
associated with a specific route can influence memory performance. Further, task 
complexity modulates Premarin’s impact on memory such that Premarin enhances 
performance on simple tasks but impairs performance on complex tasks. It is also noted 
that handling and task difficulty interact to further influence Premarin’s mnemonic 
impact. As well, rather than dose, the type of estrogen administered, and the circulating 
estrogen ratios, appear to account for observed benefits or detriments following Premarin 
treatment. Both these factors are important when considering that stimulation of ERα 
appears to impair memory in a middle-aged Ovx rat.  
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Chapter 7-Table I: Summary of Experimental Findings 

Chapter Research Question Summary of Findings 
2 Can continuous subcutaneous 

Premarin impact memory and 
neural outcomes? 
 

• Premarin dose-dependently enhanced, 
and impaired, memory  

• Premarin dose-dependently increased 
neurotrophin levels in cingulate and 
perirhinal cortex 

• Premarin altered hippocampal gene 
expression of Homer1 

3 

Study 1 Does orally-administered 
Premarin impact memory and 
brain? 
 

• The highest dose of oral Premarin 
impaired working memory 

• This same dose increased posterior 
cingulate, and decreased frontal 
cortex, nerve growth factor levels 

Study 2 Can handling procedures 
associated with oral 
administration account for 
Study 1 impairments? 

• Oral handling impaired spatial 
working memory, regardless of 
treatment 

• Oral handling enhanced non-spatial 
memory in Premarin-treated rats 

4 Does task difficulty impact 
Premarin’s memory effects? 
Are these memory impacts 
influenced by oral or 
acclimation handling? 

• Among unhandled rats, Premarin 
enhanced 4-arm, but impaired 8-arm, 
working memory tasks. 

• Acclimation and oral handling 
obviated these memory effects 

5 How does the Premarin 
metabolite, E1, impact 
cognition and brain in middle 
age? 

• Estrone impaired cognition 
• Unlike 17β-E2, E1 did not impact 

basal forebrain cholinergic neuron 
number 

6 Does estrogen receptor alpha 
stimulation impact cognition 
in middle age? 

• Propylpyrazole triol impaired 
working, and modestly enhanced 
short-term reference, memory 
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APPENDIX A  

PASTA A LA CARBONARA  
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 This recipe is one of my favorites; I ate a version of this dish the night I got 
engaged! It is sumptuous and comforting, yet refined and bright in flavor. My twist on a 
Roman classic, this meal will satisfy a craving for indulgence. 
Ingredients: 
• Splash of extra virgin olive oil 
• 1 pound pancetta, diced 
• freshly ground black pepper, to taste (for pancetta and for sauce) 
• 6 eggs, room temperature 
• 1/2 - 2/3 cup heavy whipping cream, room temperature 
• at least 1 cup freshly grated Parmesan cheese 
• juice of one lemon 
• zest of one lemon, reserve some to garnish each plate 
• 1 package arugula, rinsed 
• a handful of salt (for pasta water)  
• salt, to taste (for sauce) 
• 1 pound dried spaghetti or other similar pasta 

Directions: 
In a large, flat sauté pan, over medium heat, add a splash of extra virgin olive oil to 

coat. Add in the pancetta and season with pepper. Cook until maillard reaction has taken 
place and the meat is nicely browned. Remove pan from heat and set aside. 

Bring a large pot of water, with a generous helping of salt, to a rolling boil. Add 
spaghetti and continue boiling until just barely al dente (tender and slightly firm inside), 
about 7 minutes. Reserve at least 1 cup of cooking liquid. 

Meanwhile, in a mixing bowl, combine eggs, cream, about 1/3 cheese, lemon juice, 
lemon zest, salt and pepper. 

Put the sauté pan with the pancetta onto the stove over low heat. Add arugula and wilt 
briefly (just a few minutes). Just prior to adding the pasta, pour the egg mixture into the 
pan. When the pasta is ready, transfer while still hot to sauté pan and quickly toss with 
the pancetta and sauce using tongs. Work quickly to avoid curdling the egg. Toss with the 
remaining Parmesan cheese, add pasta water to loosen the sauce if necessary, and season 
with salt and pepper to taste. To serve, using tongs, grab a portion of pasta and lower into 
a bowl, rotating your wrist to create a bird’s nest shape. Garnish with lemon zest or 
twirls. Serve with tempranillo or other full-bodied red wine. 



 

 

 


