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ABSTRACT

While network problems have been addressed using a central administrative domain
with a single objective, the devices in most networks are actually not owned by a single
entity but by many individual entities. These entities make their decisions independently
and selfishly, and maybe cooperate with a small group of other entities only when this form
of coalition yields a better return. The interaction among multiple independent decision-
makers necessitates the use of game theory, including economic notions related to markets

and incentives.

In this dissertation, we are interested in modeling, analyzing, addressing network
problems caused by the selfish behavior of network entities. First, we study how the selfish
behavior of network entities affects the system performance while users are competing for
limited resource. For this resource allocation domain, we aim to study the selfish routing
problem in networks with fair queuing on links, the relay assignment problem in coopera-
tive networks, and the channel allocation problem in wireless networks. Another important
aspect of this dissertation is the study of designing efficient mechanisms to incentivize net-
work entities to achieve certain system objective. For this incentive mechanism domain,
we aim to motivate wireless devices to serve as relays for cooperative communication, and
to recruit smartphones for crowdsourcing. In addition, we apply different game theoretic
approaches to problems in security and privacy domain. For this domain, we aim to an-
alyze how a user could defend against a smart jammer, who can quickly learn about the
user’s transmission power. We also design mechanisms to encourage mobile phone users

to participate in location privacy protection, in order to achieve k-anonymity.
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Chapter 1

Introduction

Network problems have been addressed using a central administrative domain with a single
objective. The users in the network are always assumed to be obedient. However, the
devices in most networks are not own by a single entity but by many individual entities.
These entities make their decisions independently and selfishly, and maybe cooperate with
a small group of other entities only when this form of coalition yields a better return.
The interaction among multiple independent decision-makers necessitates the use of game

theory, including economic notions related to markets and incentives.

Game theory is the study that analyzes the strategic interactions among autonomous
decision-makers, whose actions have mutual, probably conflicting, consequences. Origi-
nally developed to model problems in the field of economics, game theory has recently
been applied to network problems, in most cases to solve the resource allocation prob-
lems in a competitive environment. The reason that game theory is an appropriate choice
for studying network problems is multifold. First, entities in the network are autonomous
agents, making decisions only for their own interests. Game theory provides us sufficient
theoretical tools to analyze the network users’ behaviors and actions. Second, game theory
primarily deals with distributed optimization, which often requires local information only.
Thus it enables us to design distributed algorithms. Finally, auction, a market game of in-
complete information, allows us to design mechanisms to provide incentives for network

entities participating in tasks, which would not be achieved without sufficient participation.



1.1 Game Theory 101

Game theory [46] is a discipline aimed at modeling scenarios where individual
decision-makers have to choose specific actions that have mutual or possibly conflict con-

sequences. A game consists of three major components:

* Players: The decision makers are called players, denoted by a finite set .4 = {1,2,...

 Strategy: Each player i € .4 has a non-empty strategy set S;. Let s; denote the
selected strategy by player i. A strategy profile s consists of all players’ strategies,
ie.,s=(s1,52,...,5,). Obviously, we have s € S = X,c_4S;, where X is the Cartesian

product.

« Utility/Payoff: The utility of player i is a measurement function, denoted by u; : S —
R, on the possible outcome determined by the strategies of all players, where R is

the set of real numbers.

The players of the game are assumed to be rational and selfish, which means each
player is only interested in maximizing its own utility without respecting others’ and the
system’s performance. Let s_; denote the strategy profile excluding s;. As a notational con-
vention, we have s = (s;,5_;). We say that player i prefers s; to s if u;(si,s—;) > ui(s},5_;).
When other players’ strategies are fixed, player i can select a strategy, denoted by b;(s—;),
which maximizes its utility function. Such a strategy is called a best response of player
i. A strategy is called a dominant strategy of player i if, regardless of what other players
do, the strategy earns player i a larger utility than any other strategy. In order to study the
interactions among players, the concept of Nash Equilibrium (NE) is introduced. A strat-
egy profile constitutes an NE if none of the players can improve its utility by unilaterally

deviating from its current strategy.



Definition 1.1. [Nash Equilibrium] A strategy profile s" = {s°,s5¢,...,s¥ } is called a

Nash Equilibrium (NE), if for every player i, we have:

ui(s") > ui(s", s7)

for every strategy si- es. [

To characterize and quantify the inefficiency of the system performance due to the

lack of cooperation among the players, we use the concept of price of anarchy (POA) [77].

Definition 1.2. [Price of Anarchy] The price of anarchy (POA) of a game is the ratio of the

total utility achieved in a worst possible NE over that of the social optimum. 0

The POA in game theory is an analogue of the approximation ratio in combinatorial
optimization. If a game has a POA lower bounded by o < 1, it means that for any instance
of the game, the system performance in any NE is at least o times the system performance

in the optimal solution.

Games can be classified into two categories, strategic form game (or static game)
and extensive form game (or dynamic game). The strategic form game is a one-shot game.
In this game, the players make their decisions simultaneously without knowing what others
will do. On the contrary, the extensive form game represents the structure of interactions
between players and defines possible orders of moves. The repeat game is a class of the
extensive form game, in which each stage is a repetition of the same strategic game. At
the beginning of each stage, players observe the past history of strategies before making
decisions. The number of stages may be finite or infinite. The utility of each player is
the accumulated utility through all the stages. Therefore, players care not only the current

utility but also the future utilities.



The Stackelberg game is an extensive form game, which is used to model the com-
petition between one player, called the leader, and a set of players, called the followers.
In this game, the leader takes action first and then the followers take actions. The leader
knows ex ante that the followers observe its action and take actions accordingly. The NE

in the Stackelberg game is called Stackelberg Equilibrium.

Player B

L R

U 32 6,5

Player A D 43 82

Table 1.1: Utility matrix: the first number in each cell is the utility of Player A, while the
second is the utility of Player B.

We illustrate these concepts using a simple example given in Table 1.1. Note that
this example is just for the illustration of an SE and not an instance of the problem studied.
Assume that Player A is the leader, and Player B is the follower. If A plays strategy U, B
would play strategy R, as it gives player B a utility of 5 (as opposed to a utility of 2 should
B play strategy L). This leads to a utility of 6 for player A. If A plays strategy D, B would
play strategy L, as it gives player B a utility of 3 (as opposed to a utility of 2 should B play
strategy R). This leads to a utility of 4 for player A. Hence A would play strategy U, since
doing so would result in a utility of 6 compared to 4 by playing strategy D. As explained
before, B would play R if A plays U. Therefore the Stackelberg Equilibrium of this game
is (U, R).

As game theory studies interactions between rational and intelligent players, it can
be applied to the economic world where people interact with each other in the market. The
marriage of game theory and economic models yields interesting games and fruitful the-

oretical results in microeconomics and auction theory. Auction is a decentralized market

4



mechanism for allocating resources. The essence of auction is a game of incomplete infor-
mation, where the players are the bidders, the strategies are the bids, and both allocations
and payments are functions of the bids. In an auction mechanism, each bidder i has some
private information #;, called its fype, and its strategy is the bid b;. A mechanism then
computes an output 0 = o(by,b,...,b,) and a payment vector p = (py,p2,...,pn), Where
pi = pi(b1,ba,...,by,) is the money given to the participating agent i. For each possible

output o, bidder i’s valuation is v;(#;,0). The utility of bidder i is u;(t;,0) = vi(t;,0) + p;.

Based on the number of objects auctioned on the market, auctions can be catego-
rized into single-object auction and multi-object auction. Two basic single-object auction
schemes are the first-price auction and the second-price auction. In the first-price auction,
the auctioneer grants the item to the highest bidder and charges the highest bid. In the
second-price auction, also known as Vickrey auction, the auctioneer grants the item to the
highest bidder, but charges the second highest bid. Multi-object auction can be homoge-

neous auction or heterogeneous auction, depending on whether the objects are identical.

There are four desirable properties while designing an auction scheme:

* Computation Efficiency: The outcome of the auction can be computed in polyno-

mial time.
 Individual Rationality: Each agent can expect a non-negative profit.

» System Efficiency: An auction is system-efficient if the sum of valuations of all

bidders is maximized.

* Truthfulness: An auction is truthful if revealing true private valuation is the dom-
inant strategy for each bidder. In other words, no bidder can improve its utility by
submitting a bid different from its true valuation, no matter how others submit.

5



For double auction, one more property is desirable, Budget Balance. An auction is
budget-balanced if the payment collected from the buyers is at least as much as the payment

paid to the sellers.

1.2 Overview and Contributions

This dissertation studies and addresses a number of important network problems.
It focuses on three problem domains: resource allocation, incentive mechanism design,
and security and privacy. The common thread throughout the research on these different
domains is applying game theory to modeling, analyzing, and solving problems caused by

the selfish behavior from network entities.

In general, for the resource allocation domain, we analyze how the selfish behav-
ior of users affect the system performance while users are competing against each other
for limited resource. In this domain, we consider three problems: 1) Selfish Routing in
Networks with Fair Queuing [161, 162]; 2) Relay Assignment for Cooperative Networks
[156, 159]; and 3) Channel Allocation in Non-Cooperative Multi-Radio Multi-Channel
Wireless Networks [158].

Contributions:

* We model the studied problem as a non-cooperative game.

* We prove the existence of Nash Equilibria. If an NE does not exist, we design a

charging scheme to influence users to converge to an NE.

* We quantitatively measure the degradation of the system performance caused by the

selfish behavior from users.

* For Problem 2), we design efficient schemes to induce users to converge an NE,

which meanwhile is also the optimal solution.
6



For the second domain, we design incentive mechanisms to stimulate network enti-
ties to achieve certain objective, which may not be possible otherwise. In this domain, we
consider two problems: 1) Motivating Wireless Devices for Cooperative Communications

[157]; and 2) Recruiting Smartphones for Crowdsourcing [163].

Contributions:

* We design auction-based incentive mechanisms to motivate network entities.
* We prove that the design incentive mechanisms satisfy several desirable economic

properties.

For the security and privacy domain, we adopt different game theoretic approaches
to either help the user defend against the attacker or protect users’ privacy. In this domain,
we consider two problems: 1) Coping with A Smart Jammer [164]; and 2) Motivating

Mobile Users for K-Anonymity Location Privacy [160].

Contributions:

* We derive an optimal strategy for the user to defend against a smart jammer.

* We design mechanisms to incentivize mobile users to achieve k-anonymity.



Part I

Resource Allocation



Chapter 2

Selfish Routing in Networks with Fair Queuing

Routing is the process of selecting paths in a network along which to send data packets.
In communication networks, the choice of a route between a source-destination pair has a
significant bearing on the resulting bandwidth. For example, in peer-to-peer networks, there
may be several pairs of peers sharing volumes of data between each other. The objective
of each pair of peers, considered as a user, is to send as many packets as possible through
the network while competing for network resources against other users. With this selfish
objective, a user will change its path if the new path provides a larger bandwidth value
even at the cost of other users. Since multiple users may compete for the bandwidth on the
same link, it is necessary to have a congestion control scheme to allocate bandwidth among
competing users. Hence max-min fair bandwidth allocation has been widely adopted as a
congestion control scheme at the link level [21, 34, 69, 89, 92, 105, 125]. The max-min fair
bandwidth allocation scheme treats all paths passing through a link equally and assigning
an equal share of bandwidth to each of them unless a path receives less bandwidth at another

link.

2.1 Introduction

In this work, we model the network using a directed graph, and present a game
theoretic study of non-cooperative routing under max-min fair congestion control, where
the goal of each user is to maximize the bandwidth of its chosen path. We call this prob-
lem the Maximal-Bandwidth Routing problem. Two questions arise while addressing this
problem: How can a user efficiently find a path with maximum bandwidth under max-min

fair congestion control, when the paths of all other users are given? and Will the network



oscillate or converge to a stable state? The first question is critical to our convergence
analysis, since it directly affects the convergence speed. It is also an independent prob-
lem to study, as we will point out later that the strong correlation among competing paths
makes the calculation of available bandwidth on each link challenging. The second ques-
tion is important because oscillation among different paths introduces dramatic overhead,

consuming network resources. This work answers both questions.

In answering the first question, we introduce the concept of observed available
bandwidth and prove that it can accurately predict the bandwidth of a path. In answering
the second question, we model the routing problem as a non-cooperative game and employ
game theoretic tools to analyze the interaction among users. This question boils down to the
existence of Nash Equilibria and the convergence of the game. One major challenge arises
while answering these questions. While selecting a new path, the available bandwidth
of a link may depend on the bandwidth of existing paths of other users. However, the
bandwidths of these paths in turn depend on the bandwidth of the new path. Therefore
the problem is significantly more involved than the traditional maximum capacity path

problem.

The major contributions of this work are as follows:

* We formulate the Maximal-Bandwidth Routing problem (MAXBAR) as a non-cooperative
strategic game where each player makes the routing decision selfishly to maximize
its bandwidth. In Section 2.5, we generalize it to the case where each user has a

bandwidth demand.

* We prove the existence of Nash Equilibria in the MAXBAR game, where no player
has any incentive to deviate from its chosen path. We also prove a lower bound

and an upper bound on the price of anarchy of the MAXBAR game, which is a
10



concept quantifying the system degradation due to selfish behavior of users. As
a byproduct, this also gives an approximation to the social optimal solution to the

MAXBAR problem.

* We introduce a novel concept of observed available bandwidth to compute the avail-
able bandwidth on each link. It empowers the efficient computation of the best re-
sponse strategy for each user. This is non-trivial, as the traditional widest path algo-
rithm cannot be directly applied due to the mutual influence between paths sharing

common links [89].

* We investigate the behavior and incentives of the players in the game and present
a game based algorithm to compute an NE. We prove that by following the natural

game course, the MAXBAR game converges to an NE.

The rest of this work is organized as follows. In Section 2.2, we present a brief
overview of related work. In Section 2.3, we describe our system model, present the
MAXBAR problem where each user would like to have as much bandwidth as possible,
and formulate it as a non-cooperative game. In Section 2.4, we prove the existence of
Nash Equilibria and quantify the inefficiency incurred by the lack of cooperation via price
of anarchy, present an efficient algorithm to select a path with maximum bandwidth in a
max-min fair network with multiple users, and provide a comprehensive analysis of the
MAXBAR game and prove the convergence to an NE. In Section 2.5, we study a gener-
alization of the MAXBAR problem where each user has a bandwidth demand, instead of
aiming to have as much bandwidth as possible. In Section 2.6, we present numerical re-
sults on randomly generated networks. These results show that the game converges to an
NE rapidly (within 7 iterations on average and 10 iterations at worst) and achieves better
fairness compared with other algorithms. We conclude this work in Section 2.7.
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2.2 Related Work

Congestion control is a critical task in communication networks to address the is-
sue of fairly and optimally allocating resources, bandwidth in particular, among multiple
competing users. Max-min fair bandwidth allocation has been proposed as one of the con-
gestion control schemes [11, 69]. This scheme was first presented in [69]. The author also
proved the optimality and the uniqueness of the allocation. In [34], Demers proposed a
fair queuing scheduler, which is employed on each gateway, to implement a max-min fair
network. In [89], Ma et al. studied how to route in max-min fair networks to improve the
total throughput of the network. To calculate the max-min fair bandwidth for each path,
they also presented a centralized algorithm. Note that the information used by the routing
algorithm is abstract and only an estimate of the accurate available bandwidth. Showing
that computing the max-min fair bandwidth requires global information, Mayer et al. [92]
designed a local distributed scheduling algorithm to approximate max-min fair bandwidth

allocation.

Chen and Nahrstedt [21] extended the concept of max-min fairness to the routing
level, since the max-min fair bandwidth allocation scheme was proposed to achieve fairness
at link level. They defined the fairness-throughput and introduced a new set of relational
operators to compare two different feasible bandwidth allocations at routing level. The
fairness-throughput performance of the bandwidth allocation is maximized if and only if
such an allocation is the largest under the relational operator. They also proposed a max-
min fair routing algorithm to select a path for the new user to maximize the minimum
bandwidth allocated to all users. In [105], Nace considered a model, where the routing is
splittable, and gave a linear programming based algorithm to compute the optimal max-min

fair bandwidth allocation. Schapira et al. [125] and Godfrey et al. [54] studied the effi-
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ciency and incentive compatibility of different congestion control schemes in the network
where users’ paths are fixed. They also presented a family of congestion control proto-
cols called Probing Increase Educated Decrease and showed that by following any of these

protocols, the network converges to a fixed point.

All the previous works mainly focused on either the case where paths are fixed [34,
69, 92] or the case where routing aims to improve the total performance [21, 54, 89, 105,
125]. In contrast, the objective of our work is to investigate the scenario where each user
in the network is able to adapt its routing decision based on the current environment and
driven by its own selfish objective. The game formulation of this scenario falls into the
category of bottleneck game [8]. There are also important works on stable routing in the
literature [48, 58, 59]. However, these works do not consider max-min fair bandwidth

allocation in their models.

2.3  Network Model and Problem Formulation

We first describe the network model and discuss the well known max-min fair con-

gestion control scheme. We then formulate the problem studied in this work.

2.3.1 Network Model

We model the network by a directed edge-weighted graph denoted by G = (V,E,b), where
V is the set of n nodes, E is the set of m links, and b is a weight function such that b(e) =
b(v,w) > 0 is the bandwidth of link e = (v,w) € E. In the network, there is a collection
U ={1,2,...,N} of users. User i € % needs to transmit packets from a source node
s; € V to a destination node #; € V over an s;—; path. An s— path in the network consists
of an ordered sequence of vertices s=vy, vy, ..., v,=t, where (vi,vis1) EEfor0<I<gq.

We denote such a path by vp-vi-----v,. We are only interested in simple paths—for which

13



the nodes in the sequence are distinct. Although there may be multiple s;—; paths, at any
given time, user i uses only one path, which is denoted by P,. We denote the set of paths
currently used by the users as &2 = {P|,P,,...,Py}. We denote the set of users currently

sharing link e by %, (%), i.e., %.(Z?) ={ili € % and e € B;}.

For routing approach, we will use link-state source routing algorithms as in [89].
In such routing schemes, each node knows the network topology and the state information
on each link [9, 134]. Thus it is possible for the node to select its path. In this work, we
consider best-effort flows [89] and assume that every source node always has sufficient data

to transmit.

2.3.2  Congestion Control

Since multiple users are competing for bandwidth resources, congestion control is neces-
sary for the management of bandwidth. The employed congestion control needs to satisfy
two requirements: 1) the bandwidth allocation is fair and 2) the bandwidth is fully allo-
cated. A simple way to allocate the bandwidth of a link to multiple competing paths is to
share it equally among them. However, some paths can use only less than the equal share
(due to some bottlenecks), while some can use more. Hence, equal allocation is not desir-
able. In this work, we assume that at the link level, max-min fair bandwidth allocation (also
known as fair queuing) [34, 69] is used for congestion control. Max-min fair bandwidth
allocation has been recognized as the optimal throughput-fairness definition [69, 92]. Intu-
itively, if there are multiple users sharing a common link, each user will get a “fair share”
of the link’s bandwidth. If some user cannot use up its fair share bandwidth because it has
a lower share assigned on another link, the excess bandwidth is “fairly” split among all
other users of this link. Such a network with max-min fair congestion control at the link

level is called a max-min fair network. We denote the bandwidth allocated to user i in a
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max-min fair network by b;(%?) (how to compute the value of b;(Z?) will be shown later).
Since user i will use only one path at any given time, we will say the bandwidth of user i
instead of the bandwidth of user i’s path when the path is clear from the context. We use
b(Z) = (b1(2P),b2(L),...,by(Z?)) to denote the Max-min Fair Bandwidth Allocation
(MFBA) given users’ paths &. The uniqueness of MFBA has been proved in [125]. While
assigning the bandwidth to each path P;, there must exist at least one link that keeps the
path from obtaining more bandwidth. We call such link a bottleneck of path P;. Note that
there could be more than one bottleneck for a path. We use %;(2?) to denote the set of all
bottlenecks of path P;. Each bottleneck e of path P, has two important properties, which can

be mathematically expressed as follows:

L Yjca(2)bj(Z) = ble),

Property 1) means that link e is saturated. We call a link saturated if its bandwidth is fully
allocated. This property is obvious as otherwise e is not a link that keeps P; from obtaining
more bandwidth. Property 2) states that there is no path being allocated more bandwidth
than P; on link e. The reason is that if there exists another path P; allocated more bandwidth,
P; could equally share the bandwidth with P; due to max-min fair bandwidth allocation and
obtain more bandwidth. These two properties have also been proved in Lemma 3 of [21]

and Lemma 3 of [69].

Algorithms for calculating the bandwidth allocation for each path in a max-min fair
network have been proposed in [69, 89]. To make our work self-contained, we illustrate
the pseudo code in Algorithm 1. For detailed description and correctness proof, we refer

the readers to [69, 89].
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Algorithm 1: ComB(G,b, 2, % )

input : Network G, path set & and user set %
output: b;(Z) forallic %
bi(P)+0,NieU,

—

2 repeat

3 Leté = argmin.ce EZ’)I in G(V,E,b);
s | Bremp =

s | foreach playeri€ U:(2) do

6 b,(ﬁ) <~ btemp;

7 foreach e € P, do

8 b(e) <+ b(e) —bi(P);

9 if b(e)=0then E < E\ {e};
10 end

11 P — P \{P};

12 end

13 until & = 0;
14 return b;( ) foralli € %

AL B )
oixd W
& \@%/‘@ o
@ 3‘,@/ @ * P ) - 3
&g o >2ff§ w

Figure 2.1: Example with 3 users. P; = s1-vi-va-t1 (red solid), P> = s2-vi-v2-v4-t5 (blue
dotted), and P; = s3-v{-v2-v4-t3 (green dashed).

The basic idea of Algorithm 1 is that in each iteration, we find a global bottleneck

b(e)

é, which is defined as the link having the least equal share, i.e., ¢ = argmin.cg 7))

We allocate the equal share of b(e) to all users in %;(%). Then all the paths of users in
16



Us( ) are removed from the network. The link bandwidths are reduced by the bandwidth
consumed by the removed users. The above procedure is repeated until all the paths have

been assigned bandwidth and removed from the network.

To illustrate the idea of Algorithm 1, we compute the bandwidth for the example in

Figure 2.1. In Figure 2.1(a), (v4,1,) is the & selected in the first iteration and % =3.

(vgut
Since user 2 (blue dotted) is the only one using link (v4,%2), we set by (Z) i23 remove
path P, from the network and subtract the bandwidth from all the links along path P, (blue
dotted). In the resulting network shown in Figure 2.1(b), (v, v>) is selected as é. There are
two paths, Pj (red solid) and P; (green dashed), sharing link (v, v;). Each of them obtains
bandwidth % =4. We set by (L) = b3(Z) = 4, and remove path P; and path P;.

Since there is no more paths left, the algorithm terminates.

2.3.3 Problem Formulation

In this work, we study the problem of routing in a max-min fair network with multiple
selfish users, where each user selects its path to maximize its bandwidth. We call this
problem the MAXimal-BAndwidth Routing (MAXBAR) problem. We are interested in

the following questions:

Q1. How does each user select the path to maximally increase its bandwidth?

Q2. Will the routing oscillate forever or converge to a stable state, where no user can

increase its bandwidth by unilaterally changing its path?

Q3. If the answer to Q2 is converging to a stable state, how is the social welfare in the

stable state compared to that in the optimal solution with centralized control?
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The MAXBAR problem can be formulated as a non-cooperative game, called MAXBAR
game, as follows. Each user is a player in this game. We define the strategy of player i
as its path P;. A strategy profile of all players is then &2. We denote the strategies except
player i’s by &2_;. We define the utility of player i as the bandwidth b;(2?) of path P,.
Since players are selfish but rational, each player makes independent routing decisions to
maximize its own utility. When player i’s path is not in the network, we use b(#_;) to
denote the MFBA and b;(#_;) to denote the bandwidth of path P;, where b;(#_;) =0 as
a technical convention. Let 3”|iPi’ denote the path profile where player i changes its path to
P/ and others remain the same. When the context is clear, we use 2|’ instead of 2|'P/ for
notational simplicity. Let b(2|") and b;(2|") denote the MFBA and the new bandwidth of
user j’s path. It is clear that %, (2| = U.(P_;)U{i} if e € P! and %(2P|") = U(P_))

otherwise.

An important subproblem of the MAXBAR problem, which is of independent in-
terest, is how to select a path to maximize the allocated bandwidth, given the network and

other users’ paths. This is known as best response in game theory.

Definition 2.1. [Best Response Routing | Given other users’ paths Py,--- ,Pi_1,Pi11,--- ,Pn,
the best response routing for user i is a path P; such that b;( &) is maximized over all si—t;

paths. U

Finding a best response path for a user is not straightforward. As we learned from
previous discussions, the allocated bandwidth for each path can be computed after con-
sidering the whole network topology and all path selections. Thus how to compute the
available bandwidth on each link before the routing is known has not been solved yet. This
problem was also studied in [89]. However, the authors only gave estimated information

for each link and their algorithm is approximate. We will present an efficient solution to
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this problem in Section 2.4.2.

In order to study the strategic interactions of the players, we first introduce the

concept of Nash Equilibrium [46].

Definition 2.2. [Nash Equilibrium] A strategy profile "¢ = {P/',Pj°,...,P{¢} is called
a Nash Equilibrium (NE), if for every player i, we have:
bi(P") 2 bi(P"|'P)

for every strategy P!, where P/ is an si—t; path. O

In other words, in an NE, no player can increase its utility by unilaterally changing

its strategy.

The social optimum in the MAXBAR game is a strategy profile &7* such that the
total utility, i.e. }.;cq bi(Z?*), is maximized among all &?. We use the concept of price of

anarchy defined in [77] to quantify the system inefficiency due to selfishness.

Definition 2.3. [Price of Anarchy] The price of anarchy (POA) of a game is the ratio of the

total utility achieved in a worst possible NE over that of the social optimum. U

Table 2.1 lists frequently used notations.

2.4 Analysis of the MAXBAR Game
2.4.1 Existence of Nash Equilibria

As a crucial step in proving the existence of NE, we show that every time a player changes
its path, the minimum bandwidth of the players, whose bandwidths change, increases

strictly.

Lemma 2.1. Assume that player i unilaterally changes its path from P, to P, such that

1

bi(2) < bi(2|). We have min je o, Uz, bi(2|) > min ey, bj(P), where %= = {j €
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Table 2.1: Frequently used Notations

Notation Description

G graph representing the network
V,E node set, link set
VW node

e,e link and global bottleneck
b(e)  bandwidth of link e
%,N user (player) set, number of users (players)
i,j,k,u user (player)
Si, b source node and destination node of user i
P path (strategy) of user i
P path (strategy) set of users

9__,~ path (strategy) set of users except i
ZP|'P|  path (strategy) set with user i’s path changed to P/
Z|" abbreviation of Z|'P/ when P/ is clear from the context

U.(Z)  setof users whose paths share link e for given &
bi(Z?)  bandwidth (utility) of user i for given &2
b(4?)  bandwidth (utility) vector of all users for given &2

Ubi(P) = bj(P)}, U = {j € Ubj(P) < bj(P|)} and U, = {j € U |bj(P) >
bi(2])}.

Proof. 1tis clear that i € %, since b;j(P) < b;(2|"). First we claim that, for any j € %,
there exists k € Uy, such that bj(P]") > bi(2]). Let e € B;(2|") be a bottleneck of P
)

Vk € U,(2|"). Therefore, we only need to prove that there exists a player k € %,(Z|') N

after player i changes its path. By Property 2) of bottleneck, we have b;(2|") > by (2

U 1fi € U(2|"), then we can take k = i. Next, we consider the case where i & %, (2|").
Note that %,(2)\ {i} = %.(2|') \ {i}, since only player i changes its path. Therefore
i & U(2|") implies that %,.(2|') C %(2). Assuming to the contrary that by (<) >

bi(2|)), Yk € U, (2P|'), the total bandwidth usage on link e in b(2|) is

bi(2+ Y, (2] <bi(P)+ Y, b(P)<b(e),
ke%.(2|H)\{j} ke%.(2)\{j}
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where the first inequality follows from j € % and %.(2|") C %.(2?), the second inequal-
ity follows from the feasibility of b(%?). This contradicts the fact that e is a bottleneck, and

proves the existence of player k in the case where i & %,(2|").

In summary, for any j € %), there exists k € % such that
bi(2) > b(P]') > b(P]1) > by(P), @1
Following inner pair of (2.1), we know that
minjeq,ua, bj(2)) = b, (2])
for some player k; € %;. Following outer pair of (2.1), we know that
minjequa bj( ) = by, (P)

for some player k € %. Since k; € %, we know that by, (2|") > by, (P) > by, (D).

Hence this lemma holds. ]
@— 6 »@8 —;@ 10 T@\7 @
4 2 8 5 2 6
® WX B
(a) Before player 2 changes its path

@—*@1@‘@\@

4

o ot o

(b) After player 2 changes its path
Figure 2.2: Example for Lemma 2.1.

We use the example in Figure 2.2 to illustrate the meaning of Lemma 2.1. In this

example, we have three players: player 1 (red solid), player 2 (blue dotted) and player 3
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(green dashed). From Figure 2.2(a) to Figure 2.2(b), player 2 changes its path from P, = s5-
Vi-V2-v3-tp t0 Py = s7-vi-va-to. Before the change, b; () =4, by(F) =2, and b3(P?) = 4.
After the change, by (P|*) = 4, by(P|*) = 4, and b3(P|*) = 6. In this example, Z- = {1},
U = {2,3}, and % = 0. We have min{b2(2|?),b3(Z|*)} > min{b2(2),b3(P)}.

We now prove the existence of NE in the MAXBAR game.

Theorem 2.1. There exists at least one NE in the MAXBAR game. 0

Proof. At every stage of the game, we arrange the bandwidth values of the paths lexi-
cographically in a non-decreasing order, resulting in a vector b; = (b1,by,...,by). In this
vector, the minimum bandwidth b is at the most significant coordinate. We have by < by
for 1 < k¥ < N. For any two vectors b; = (b, b, ...,by) and f); = (b),b},....bYy), b, < B;

in lexicographic order if and only if:

1) b < bll, or

2) 31 <t<Ns.t be=Dbl forl <k <7tandb; <b].

By Lemma 2.1, we conclude that every time a player changes its path, the ordering Bl in-
creases lexicographically. We know that there are a finite number of paths for each player.
Thus the number of different strategy profiles is finite as well. As each strategy profile cor-
responds to one vector, we pick the one corresponding to the largest vector as the strategies
for the players. We conclude that such strategy profile is an NE as no player can improve

its utility by unilaterally changing its strategy. 0

While we know the existence of NE, there are still open questions to answer. How

to efficiently find a path with maximum bandwidth in a max-min fair network? Will the
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MAXBAR game converge to an NE? We will answer these questions in Sections 2.4.2

and 2.4.3, respectively.

Now, we quantify the worst-case “penalty” incurred by the lack of cooperation
among the players in this game using the concept of price of anarchy (POA). Recall that
POA is the ratio of the total bandwidth of the worst NE to the total bandwidth of the social

optimum among all strategies.

Theorem 2.2. For the MAXBAR game, zlv < POA < O

=

Proof. We prove this theorem by proving the lower bound in Lemma 2.2 and the upper

bound in Lemma 2.3. O]

Lemma 2.2. For the MAXBAR game, POA > zlv O

Proof. Let 2" = {Py,P}°,...,Py’} be any NE of the MAXBAR game. Let &* =
P Py,... Py} be the social optimum. We first claim that b;(?"¢) > YT for an
1>12 N p N y
player i, where bi(Z*) is the bandwidth of P} in the social optimum. Since &"¢ is an

NE, no player has any incentive to change its path, i.e.,

b(e*)
N

bi(P") > bi(2|'PF) > (2.2)

where e is a bottleneck of P after player i unilaterally changes its path from P/ to P*. The
second inequality follows from the fact that each link can be shared by at most N players.
In the social optimum, we have b;(Z?*) < b(e) for any e € P;". Plugging it into (2.2), we

proved our claim. Based on the claim, the total utility is

Yicw bi(P") > Zieq{?(’@*) = b(?\l;’T) (2.3)

for any NE, where b(OPT) is the total bandwidth in the social optimum. Since (2.3) holds

for any NE, we have POA > O

1
N
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(a) Network topology (b) Players’ strategies

Figure 2.3: Example where the POA is 1%,

Lemma 2.3. For the MAXBAR game, POA < U

2
%

Proof. We prove this lemma with the help of an example. Figure 2.3 depicts (partly) a
network with N players. In this network, the bandwidth of each link is 1. As shown in
Figure 2.3(a), all the source-destination pairs with odd indices are located counterclockwise
on a ring topology, while those with even indices are located clockwise. The source and
destination for the same player are next to each other. Clearly, there are only two s,—; paths
for each player i with odd index (resp. even index), the clockwise (resp. counterclockwise)
path s;-S;j1-tj11-...-SN-IN-11-S1-. . .-t; and the counterclockwise (resp. clockwise) path s;-t;.
As shown in Figure 2.3(b), if each player i with odd index chooses the clockwise s;—; path
and each player i with even index chooses the counterclockwise s;—#; path, the resulting
strategy profile is an NE with b;( &) = ]%, for each player i. Because if any player i deviates
from the current strategy and chooses the clockwise s;—; path, it results in the bandwidth

#23- The total utility in this NE is 2.

Next, we consider the social optimum, where players with odd indices choose the
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counterclockwise paths and players with even indices choose the clockwise paths. The total

utility is N. Hence the POA of the MAXBAR game is at most 2/N. ]
Ok 7@ : »@ Ok »,@ 1@
1o @1

(a) Social optimum (b) Nash Equilibrium

Figure 2.4: A social optimum is not necessarily an NE.

Remark 1. Note that the social optimum in Figure 2.3 is also an NE. However, the

example in Figure 2.4 shows that a social optimum is not necessarily an NE.

Remark 2. Efficient algorithms to compute a social optimum are still open. Simple
brute fore algorithms may take exponential time, since the number of s-¢ paths for a single

player is exponential in the size of the network.

Remark 3. We do not know whether the bounds for the POA are tight. Either prov-

ing the tightness of these bounds or deriving tighter bounds is a topic for future research.

Remark 4. We also studied the MAXBAR game under an undirected model [161].

The POA is proved to be exactly zlv

2.4.2 Best Response Routing in Max-min Fair Networks

An important step in the MAXBAR game is for a player to decide whether it has any incen-
tive to change its strategy unilaterally. Intuitively, it is natural for the player to unilaterally
change its strategy to one that would give it the maximum utility. However, the utility of
the chosen path depends on other players’ strategies due to the competition among players

sharing links with this chosen path. Obviously, the player can try all its strategies and pick
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the one giving it the maximum utility. However, this may take exponential time as the

number of strategies of the user may not be polynomially bounded.

In this section, we introduce the novel concept of observed available bandwidth
(formally defined later in this section) and prove the following facts: 1) the observed avail-
able bandwidth on all links can be computed in O(Nm + NlogN) time; 2) the widest s;-t;
path with regard to the observed available bandwidth is a best response routing for player
i. Hence, player i can compute its best response routing in polynomial time. Therefore,
player i has an incentive to change its strategy if and only if the utility corresponding to its
best response strategy is larger than that corresponding to its current strategy. Given the
challenges outlined at the beginning of this section, our results are significant. Although

the facts are seemingly simple, the proofs are quite involved, which are the subjects of the

Player 4 @

Player 3

Player 2 1 1
Player 1

Figure 2.5: Link e with max-min fair bandwidth allocation, where there are three players
before player 4 joins.

rest of this section.

To get an intuition for calculating the available bandwidth, we take the link in Fig-
ure 2.5 as an example. In this example, we assume that player i = 4 needs to find a path.
Further assume that %, (Z_;) = {1,2,3} and b(e) = 11. Also, b (L_;) =1, by(P_;) =3,
and b3(Z_;) = 7. After player i joins, it is clear that player 1 would not lose its bandwidth

share, since it has less than the equal share, i.e., b (Z_;)) =1 < 14—1. If player i competes
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the bandwidth with players 2 and 3 for the residual bandwidth of 10, each of them gets
bandwidth of 13—0. We know before i joins, player 2 only uses bandwidth of 3, which is
less than %. Therefore, only 7 and 3 will compete for the residual bandwidth of 7 and get

bandwidth of % each.

To capture the process we conducted above, we introduce the concept of observed
available bandwidth. Assume that all players except i have their paths chosen. Now player
i needs to find a path with maximum bandwidth in the current network. For any link e and

player j € %.(27_;), let
Ue( P i, J) = {klk € Ue(P-) and b( i) <bj(P-)}

denote the set of players who are using less bandwidth than player j on link e. Let

U(P_1)={  jlj€ (P and

ble)— Y. b(2)
> ke (P—1.))
TNUND )| WPy )| +1

bi(Z-i) }

denote the set of players such that for any player j in this set, the new bandwidth b;(2|")
is at least as large as the bandwidth of the new path P/ of player i. The observed available
bandwidth b°(e) of link e € E is

ble) — Xjcuz)\au(2-) bi( P =)

Ple) = VACAES

(2.4)

If we first sort the paths according to their bandwidth values, then for each link e we can
compute %(P_i, 1), Ue( P_i,2),..., U P_i,N), and %(P_;) in O(N) additional time.
Thus we can compute b°(e) for all links e € E in O(Nm+ NlogN) time. Accordingly, the
observed bandwidth of the new path P/ is

b (2|') = mingep b°(e), (2.5)
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and the set of observed bottlenecks of path P/ is

B (P|') = argminb®(e).

ecP/

Considering the example in Figure 2.5, we have %,(2_;,1) = 0, %.(P_;,2) =

{1}, and %.(2_;,3) = {1,2}. The set Z,(2_;) is {3}. Therefore, b°(e) = L2 = 7.

The properties of the observed available bandwidth are summarized in the following

four lemmas, which will be used in later proofs in the rest of this section.

Lemma 2.4. Assume that j € %,(P_;). For allu € U(P—;), by(P—;) > bj(P_;) implies
uc %(y_i). O

Proof. Ttis obvious that if b,(Z_;) = b;(Z_,), then u € %.(Z_;). Next, we prove that if
bu(P_i) > bi(P_)), then u € Up(P_,). Let H = Ue( P—i,u) \ Uo P, J). We have
b(e) — Zkg@/}((@ii’u) bi(Z—i)

bu(P_)) — d
A [T A S
ble)— Y (Z-)— ) b(P-)
— (D) — kEUe(P_1.)) ket
U (P~ (e P ) 1) +1
ble)— Y, (P —|A|bi(P)
> bi(P) - L Pid) 2.6)
|U( P )| — (|Ue(P—i, J)| + 1)) +1
> 0, (2.7)

where (2.6) follows from the fact that k € %,(P_;)\ %.(Z_i, j) implies by(P_;) > bj(P_)),
and (2.7) follows from the fact that j € %,(Z?_;). Hence we have u € %,(2_;). O

Lemma 2.5. [f j € %,(P_;), then b;(P_;) > b°(e). If j € U(DP_i)\ X(P_)), then
bj(f@_i) < b"(e). O

Proof. Let x be the player whose path has the minimum bandwidth in %, (?_;). Thus we

have Xp(P_i,x) C U P_i)\ e P_;). For all j € U(P_y), if bj(P_)) > be( D),
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it follows from Lemma 2.4 that j € %,(Z?_;). Thus we have %.(Z_;,x) D U(P_;)\
Uo(P_;). Therefore Up(P_i,x) = U P_) \ Uo( P_;). Since x € U,(P_;), we have
ble)— ), bi(P-)

je?/l,(?],,-,x)

b(Z-i) > ~ (2.8)
\Ue(P—i)| = |Ue(P—i,x) |+ 1
b(e) — Y bi(Z-:)
_ JEUP-)\ U\ P-)
|Ue(P_i)|+ 1
= b(e). (2.9)

Therefore b, (Z_;) > b°(e). This implies the first part of the lemma, since b;(F_;) >

b(2_;) forany j € (2.

Next, we prove the second part of the lemma. If j ¢ %,(Z7_;), we know that
bi(P_i) < by(Z—;). Now assume that y is the player whose path has the maximum band-
width in %,(2_;) \ %(Z_;). Then, we have b;(P_;) = by(P_;), Vj € Ue(P_1,x) \
U(P_1,y). Let _F = U(P_1,x) \ %e( P_i,y). We have

b P-) = b°(e)
b€ = Yjed (1 b1 P )

= by(P_) - g (2.10)
U Pi)| = |Ue(P—i,x)| + 1
be)—( Y bi(Z)+ Y bi(P-
_ by(P ) €U P_iy) j€s
e % (P >|—<|%<@_l,y>|+|/|>+1
B Gl Ve TEBL| G P\ )
e (21| - <|%(<@-,7y)l+|f|)+1
< 0, 2.11)

where (2.10) follows from (2.8) and (2.9), (2.11) follows from the fact that y & %,(2_;).
In addition, we know that b;j(Z2_;) < by(P_;) < b°(e),Vj € U PN\ Ue(P-;). O

We now prove that the observed available bandwidth defined above accurately cal-

culates the bandwidth on each link in the sense that after we choose a path with the max-
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imum observed bandwidth and reallocate the bandwidth for each path using Algorithm 1,

the new allocated bandwidth of the path is equal to its observed bandwidth.

We use proof by contradiction. The sketch of our proof is as follows. If the new
allocated bandwidth of the path is not equal to its observed bandwidth, two cases may
happen: 1) the path is allocated more bandwidth than the observed bandwidth, or 2) the
path is allocated less bandwidth than the observed bandwidth. For each case, we show that
it will lead to a chain reaction, which results in a contradiction. We analyze two phenomena
that may occur and cause the chain reaction after a player chooses its new path based on the
observed available bandwidth. In Lemma 2.6 (resp. Lemma 2.7), we show that the decrease
(resp. increase) of the bandwidth of one path must be directly related to the increase (resp.
decrease) of that of another path. More importantly, the relation between new bandwidth
values of these two paths satisfies certain rules. In order to facilitate the understanding of

these lemmas, an example is presented in Figure 2.6.

Lemma 2.6. Let P! be the new s;-t; path chosen by player i based on the observed available

bandwidth. We have the following:

1. Ifbi( 2| < b2(2)Y), then 3k € U(P|") \ {i}, such that

i),

1a) bi(2|)) > bi(P_;) and 1b) bi(P|') < bi(P

where e € B(2|') is a bottleneck of path P!.
2. Ifbj(2|") < bj(P_;) for some j € U, then Ik € U(P|')\ {j}, such that

2a) b(2)") > bi(P_;) and 2b) bi(2)') < b;j(2])),

where e € B;(2|") is a bottleneck of path P; after player i changes its path. O

Proof. We prove 1) and 2) separately:
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We first prove 1). Assume that b;(2|") < b9(2|").

By Property 2) of bottleneck, we know that b;(2|") > b;(2|)), Vj € U(2|").
Thus it suffices to prove that 3k € %,(2|') \ {i}, such that 1a) holds. We prove this by
contradiction. Assume that b;(2|") < b;(2_;),Vj € %(2|")\{i}. The total bandwidth

usage on link e in b(2[") is

Yicu(2)) bi(2])

= bi(2h+ Y bi(2)+ Y bi(2|)
JEU( D)) JEUP_ i)\ P—;)
< (|Z(2-_)|+ Dbi(2]') + Y b;(2]) (2.12)
JEU P\ e P_))
< (|Zu(2_) |+ 1)B(2)) + Y bi(P_3) (2.13)
JEUP_i)\Ue(P_))
< D(e), (2.14)

where (2.12) follows from Property 2) of bottleneck, (2.13) follows from the condition
bi(2|") < b?(2|") and the assumption b;(2|") < b;(F_;), and (2.14) follows from (2.5)
and (2.4). This contradicts the fact that e € %;(P!), because e should be saturated in b(2|")

according to Property 1) of bottleneck. This completes the proof of 1).

We now prove 2). Assume that b;(2|') < b;(Z_;).

By Property 2) of bottleneck, we know that b;(2|") > by(2|"), Vk € U(2|").
Thus it suffices to prove that 3k € %,(2|') \ {j} such that 2a) holds. The condition
bi(2|") < bj(P_;) implies that i # j. If i € %.(Z?|"), we can take k = i and b;(2|) >
0 = b;(Z_;). Next, we consider the case where i & %,(|'). We prove 2a) by contradic-
tion. Assume that by (2|)) < b (L2_;), Yk € U(P|')\{j}. Note that i & %,(2|) implies
U(P_;) = U(P|"). The total bandwidth usage on e in b(2|') is

bi( 2N+ Y, (2 <bi(Z-)+ Y, b(P)<be),

ke, (2|H)\{j} . ke#e(7-i)\{j}



where the first inequality follows from b;(2|') < b;(?_;) and the assumption by (2|') <
bi(2_}), Vk € U(22]") \ {j}, and the second inequality follows from the feasibility of
b(Z_;). This contradicts the fact that e € %;(Z|"). Therefore, 2) holds.

We have finished the proof of this lemma. [
@— 6 »@8 —»@ 10 _’@\7 @
4 2 8 5 2 6
© B o

(a) Before player 2 chooses its path

@ + K L O

4

5 ot Yo

(b) After player 2 chooses its path
Figure 2.6: Example for Lemma 2.6 and Lemma 2.7.

Figure 2.6 illustrates Part 2) of Lemma 2.6 with i = k =2 and j = 1. From Fig-
ure 2.6(a), we observe that b (Z_,) = 5. From Figure 2.6(b), we observe that b (Z|?) = 4
and by(2|?) = 4. We note that the bandwidth of player 1 (red solid) decreases from 5

to 4 and the bandwidth player 2 (blue dotted) increases from 0 to 4. We also note that

by(2P) <bi(Z2]).

Lemma 2.7. Let P/ be the new s;-t; path chosen by player i based on the observed available

bandwidth. We have the following:

1 I bi(2)) > b

B, then Ik € U.(2|")\ {i}, such that

1a) b (2])) < bi(P_;) and Ib) b P])) < bi( 2],
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where e € 289(2|') is an observed bottleneck of path P!.
2. Ifbj(2|") > b;(P_;), then 3k € U(P_;)\{j}, such that

i)’

where e € Bj(P_;) is a bottleneck of path P; when player i’s path is not in the

2a) bk(f@’i) < bk(y_i) and 2b) bk(@‘i) < bj(gz

network. O

Proof. We prove Part 1) and 2) separately:

We first prove 1). Assume that b;(2|") > b?(2]").

We prove 1) by contradiction. Assuming to the contrary that by(Z|') > bi(Z_;)

or bi(2|") > bi(2|"), Vk € U.(2|")\ {i}, we have the following two claims:
Claim 1: For all k € U, (P_;), we have by(2|') > b?(2|").
When by (2]') > bi(Z_;) is true, we have
bi(2))) 2 bi(P-i) = b°(e) = b (2]'),

where the second inequality follows from Lemma 2.5 and the equality follows from the
fact that e € #9(2|"). When by(2|") > bi(2|') is true, we have by (2|') > b;j(2|') >
b? (2], due to the condition b;(2|") > b?( 2.

Claim 2: For all k € U,(P_;)\ Ue( P—;), we have bi(P|)) > bi(P_)).

Let k be any player in %,(Z_;) \ %(%_;). We need to prove that by(2|') >

br(Z_;). According to the contrary assumption at the beginning of this proof, we only

need to prove for the case where by (2|") > b;(Z|') is true. In this case, we have
b(2|') 2 bi(2') > b (2]) = b%(e) > bi(P-y),

where the last inequality follows from Lemma 2.5.
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Note that %, (2|') = U.(Z_;) U{i}. The total bandwidth usage on link e in b(Z|')

18

Y ) @15
k€. (1)
= b2+ Y (2)+ Y b(2")
ke, (P_;) k€U P )\Ue(P-))
> (| %(2-)1+Db(2]) + Y b(2-i) (2.16)
kEUe( D)\ Ue(P—)
= (|%(2-0)|+1)b°(e) + Y b (2-i)
KEU(P_i)\Ue(P—i)

= ble), 2.17)

where (2.16) follows from the condition of 1) and the two claims, and (2.17) follows from

(2.4). This contradicts the feasibility of b(Z|"). Thus we have proved 1).

We now prove 2). Assume that b;(2|') > b;(Z_;).

We prove 2) by contradiction. Assume to the contrary that by (2| > bi(Z_;) or

bi(2|) > bi(2|), Yk € U(P—-i)\{j}. When b (P|') > b;(2]') is true, we have
be(2)) > bi(2]') > bi(P-i) > bi(P-),

where we used the condition of 2) and the fact that e € %;(Z_;). Thus we have by(2|") >
bi(P_0), Yk € U(P_;)\ {j}. Then, considering the fact that %,(Z_;) C %.(2|'), the
total bandwidth usage on link e in b(Z|") is
bi(2])+ ) b(2]") > bj(P_)+ Y bi(Z_i) = b(e),
ke,(2|)\{j} keUe(Z-)\{Jj}
where the equality follows from the fact that e € %;(%7_;). This violates the feasibility of

b(2]"). We have proved 2). O
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Figure 2.6 illustrates Part 2) of Lemma 2.7 with i =2, j =3, and k = 1. From
Figure 2.6(a), we observe that b3(Z_;) =5 and by (Z_,) = 5. From Figure 2.6(b), we
observe that b3(2|?) = 6 and b1 (Z|?) = 4. We note that the bandwidth of player 3 (green
dashed) increases from 5 to 6, but the bandwidth of player 1 (red solid) decreases from 5

to 4. We also note that by (2|?) < b3(2]?).

Based on Lemma 2.6 and Lemma 2.7, we prove in the following an important the-

orem, which states that the bandwidth of the new path is equal to its observed bandwidth.

Theorem 2.3. Let P! be the new s;-t; path chosen by player i based on the observed avail-

able bandwidth. Then b;( 2|') = b?(2])). O

Proof. First, we prove that b;(2|") > b?(2|"). To the contrary, assume that b;(Z|') <

b?(2]"). We will derive a contradiction. By Part 1) of Lemma 2.6, we know that
3j,5.t,b;(P)) > b;(P_;) and b;(2|") < bi(2]"). (2.18)
By the first inequality of (2.18) and Part 2) of Lemma 2.7, we know that
Fk,s5.t., b (P|") < bi(P-;) and b (2]') < bj(2]"). (2.19)
By the first inequality of (2.19) and Part 2) of Lemma 2.6, we know that
3j1,8.L.,b;,(P[) > b (P-;) and b, (P|') < b (2]"). (2.20)
By the first inequality of (2.20) and Part 2) of Lemma 2.7, we know that

Fky, 5.8, by, (2] < by, (P-;) and by, (2]') < bj, (2]'). (2.21)

Repeating (2.20) and (2.21), we obtain a sequence i, k, kq, k2, . . ., such that b;(Z|) >

bi(2|") > by, (2|)) > by,(2]') > ---. Since the number of users is finite, there must be a
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user that is repeated an infinite number of times in the above sequence of users. This is a
contradiction, since the corresponding sequence of bandwidth values is strictly decreasing.

This contradiction proves that b;(2|') > b?(2]").

Using a similar logic, we can prove that b;(2|') < b?(Z|"). This implies that
bi(2I) =03(2]'). 0

Remark 5. As a direct consequence of Theorem 2.3, player i has an incentive to
change its strategy if and only if b2(2|") > b;(2?). Also, P! is the best response strategy
for player i.

2.4.3 Converging to Nash Equilibrium

In this section, we present a game based algorithm, listed in Algorithm 2, to compute an
NE of the MAXBAR game. The idea of the algorithm is as follows. In the initialization
stage (Line 2), each player i chooses an initial s;—; path regardless of the paths of other
players. Without loss of generality, each player chooses a path with maximum bandwidth
using an algorithm denoted by WP(G, s;,t;,b). Then Algorithm 2 proceeds in a round-robin

fashion. At every stage, there can be only one player changing its path. Such assumption

is common in game theory and essential to avoid oscillation.

When a player plans to change its path, it follows the following steps:

1. Compute its current bandwidth (Line 5).

2. Calculates the observed available bandwidth for each link in the resulting network

(Lines 6 and 7).

3. Finds a path with the maximum observed bandwidth (Line 8).
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4. If the observed bandwidth of the new path is greater than its current bandwidth, it

switches to the new path; otherwise, it keeps the same path (Line 9).

The process stops when no player can improve its bandwidth by changing to another path.

Algorithm 2: Game Based Algorithm
input : Network G(V,E,b) and set % of players {1,...,N}
output: A Nash Equilibrium &

1 P+ 0;

2 P+ WP(G,S,'J,',b), P gZU{Pl}, Vie U,

3 repeat

4 foreach playeric % do

5 (b1 (2),...,bn(P)) < ComB(G,b, P, % );
6 (b](r@ﬂ'),...,b]v<gzﬂ')) <—C0mB<G,b,¢@,i,%);
7 Compute b°(e) for all e € E using (2.4);

8 Pi/ < WP(G,Si,li,bO);

9 if 5°(P!) > b;(P) then & «+ 2|'Pl;

10 end

11 until there is no path changed,

12 return &,

In Algorithm 2, WP(G, s;,t;,b) returns a path with maximum bandwidth from s; to
t; in graph G with bandwidth function b. The basic idea of Algorithm 2 is as follows. First
(Line 2), each player i chooses an initial s;—#; path regardless of other players. Next, in a
round-robin fashion (Lines 3-11), each player changes its path to improve its utility, when
possible. This is referred to as the best-response move in [106]. The process stops when

no player can improve its bandwidth by changing to another path.

The correctness and an upper on the convergence speed of Algorithm 2 are captured

in the following theorem.

Theorem 2.4. For every instance of the MAXBAR game, Algorithm 2 converges to a set &

of paths in O((Nm+nlogn+ NlogN)(Nm)N) time, where N is the number of players, m is
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the number of links, and n is the number of nodes. Moreover, & is an NE of the MAXBAR

game. U

To prove this theorem, we need the following lemma, which shows an important

property of the global bottleneck.

Lemma 2.8. Let & be a path set of the users and b(Z?) be the corresponding MFBA. Let

é be a global bottleneck. We then have bj( ) = 7 E%” Vje U(2P). O

Proof. First, we claim that for any e € %;(Z) for some i, we have b;(Z) > %. Con-

sidering both Properties 1) and 2) of bottleneck e, we have
ble)= ), bj(P)<|%(P)|-bi(2).
JEU(Z)
Thus the claim is proved. Based on this claim and the fact that € is a global bottleneck, we

have

b(e)
bi(P)> TP Yj € U P). (2.22)

Assume that Jk € %;(7?) such that by () > I?/E g)z” The total bandwidth usage on é is
Yjcw,(2)bj(P) > b(é), contradicting the feasibility of b(4?). Hence we have proved that
bi(P) = oy Vi € U P). 0

Proof of Theorem 2.4: By Lemma 2.1, we conclude that every time a player
changes its path, the ordering b, increases lexicographically. Now we prove an upper bound
on the number of times the ordering can increase. By Lemma 2.8, we know that a global
bottleneck must be equally shared by all paths using it. As a result, the number of different
possible values of b; is bounded by O(Nm). For each possible value of by, there are at most
N players whose paths correspond to this value. If the value of b1 and the corresponding

path P; stay the same, the number of different possible values of b, is O(Nm). The reason
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is that we can subtract | from the bandwidth of each link along P;, and remove i from the
player set. This resulting graph is a smaller instance and all the lemmas still hold. Re-
peating this analysis for all the coordinates, we conclude that the number of times that the
lexicographic ordering can increase is bounded by O((Nm)™). The time complexity of Al-
gorithm 1 is O(Nm). Recall that computing b°(e) for all e € E takes O(Nm+ NlogN) time.
In addition, the time complexity of WP(G,b, Z?) is O(m+nlogn) by using a variant of Di-
jkstra’s shortest path algorithm [36, 44]. Therefore the time complexity of Algorithm 2 is
O((Nm+ nlogn +NlogN)(Nm)V). By Theorem 2.3, the returned & is an NE, since no

player can improve its utility by changing its path unilaterally.

Remark 6. Our extensive simulations in Section 2.5 show that the MAXBAR
game converges to an NE within 10 iterations. This indicates that our theoretical bound

O((Nm)N) on the number of iterations is quite conservative.

Remark 7. As shown in the example in Section 2.4, there could be more than
one NE. If the initial set of strategies were different from the one computed in Line 2 of
Algorithm 2, Lines 3—-12 may lead to a different NE. However, Lines 3—12 of the algorithm

will always lead to some NE.

Remark 8. In our algorithm, we require that only one player can change its path
each time. This is essential to the convergence of the algorithm. We use an example to
show that oscillation may occur when this requirement is violated. As shown in Figure 2.7,
assume that player 1’s path is s1-v{-v2-v3-f; and player 2’s path is sp-v{-v2-v3-1, at certain
point of the game. If the players are allowed to change their paths simultaneously, player
1 and player 2 would change their paths to s1-v{-v4-v3-t; and s2-v{-v4-v3-t2, respectively.
Because both of them expect that they can increase their bandwidth from 1 to 2. Since
two players change their paths simultaneously, the allocated bandwidth for each player is

actually 1.5. Now both players would change their paths back to the previous ones because
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they expect to increase their bandwidth from 1.5 to 2. Therefore the network will oscillate

between Figure 2.7(a) and Figure 2.7(b) if simultaneous path change is allowed.

O, AR, e, e O
OSSO} JOY

3 37 Ta. L2 T3 3E2
0RO 0
(a)

(b)

Figure 2.7: Oscillation when simultaneous path change is allowed

.
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One way to enforce the users in the network to follow the game course is to use a
token-based protocol, where a token is circulated among the users in a round-robin fashion—
only the user with the token has the opportunity to change its path. This token-based
protocol can guarantee the convergence of Algorithm 2. A distributed implementation
of ComB(G,b,??,% ) were proposed by [19, 69]. The information needed by (2.4) to
compute the observed available bandwidth is sent to each user by the link-state algorithm

for determining the new path.

2.5 Generalization of MAXBAR

We have studied the MAXBAR problem where users have infinite bandwidth de-
mand. In this section, we generalize the MAXBAR problem and consider the case where
each user has a bandwidth demand of y; > 0. We denote this generalized problem as
MAXBAR,. The difference between the MAXBAR, problem and the MAXBAR problem
is that we need to consider user’s bandwidth demand while allocating bandwidth. Each
user [ will only use up to % bandwidth and is not interested in switching to a path with
more bandwidth as long as its bandwidth demand is met. The MAXBAR problem is a

special case of the MAXBAR, problem, as we can consider that }; = o in the MAXBAR
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problem. It is seemingly necessary for us to redesign the ComB algorithm, and analyze
the existence of NEs and convergence of routing again. However, we will show that we
can transform any instance of the MAXBARy problem to a corresponding instance of the
MAXBAR problem, and study the MAXBAR problem using the algorithms and analysis

in previous sections.

Let %y = ((V,E,b),% ,y) be an instance of the MAXBARy problem, where G =
(V,E,b) is the edge-weighted graph for the network. We build a corresponding instance
S = ((V,E',b'),%") of the MAXBAR problem (where G’ = (V/,E',}’) is the edge-
weighted graph for the corresponding network) as follows. Corresponding to each node
v eV, V'’ contains a node v. Corresponding to each link (v,w) € E, E' contains a link (v,w)
and b’ (v,w) = b(v,w). Corresponding to each source s; € V, V' contains an additional node
s; and E contains an additional link (s},s;) with bandwidth &'(s},s;) = ¥;. Corresponding
to each user i € %, %' contains a user i, who needs to transmit packets from sg tot;in G'.

Figure 2.8 illustrates this transformation.

0 @,

Figure 2.8: Transforming an instance of the MAXBARy problem to a corresponding in-
stance of the MAXBAR problem

Note that although we allow users to have as much bandwidth as possible in the
MAXBAR problem, the special link (s}, s;) ensures that user i will only compete for band-
width up to the demand ¥;. It is clear that the MFBA for .#, can be obtained by computing

the MFBA for .#. Therefore all the lemmas and theorems for the MAXBAR problem still
41



hold for the MAXBAR, problem.

2.6 Performance Evaluation

In this section, we evaluate the performance and verify the convergence analysis of

Algorithm 2 (denoted as GBA) on network topologies generated by BRITE [15].
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Figure 2.9: Total bandwidth
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Figure 2.10: Disparity ratio

Simulation Setup

We compared GBA with two other routing algorithms. In the first algorithm, each
user acts independently and attempts to maximize its bandwidth as much as possible. We
denote this algorithm by IMA (Independent Maximization Algorithm). In the second al-
gorithm, the bandwidth allocation for the users is done sequentially. A user is chosen
randomly from the set of users that have not been allocated bandwidth. It then chooses

a widest path in the residual network, and has a bandwidth equal to that of the chosen
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Figure 2.11: Convergence speed. For (a) and (c), n = 120 and N = 100. For (b) and (d),
n=120and u =4.
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path. This procedure is repeated until all users are considered for bandwidth allocation.
This technique is similar to the Resource reSerVation Protocol (RSVP) [119], with the dif-
ference being that each user is allocated the maximum possible bandwidth in the residual

network. We denote this scheme by SRA (Sequential Reservation Algorithm).

BRITE [15] is a widely used Internet topology generator. We used the Waxman
model [145] with default values for o = 0.15 and 8 = 0.2. According to the Waxman
model, if d,,, denotes the Euclidean distance between two nodes v and w, the probability
of having a directed link (v,w) from v to w is given by 8 x exp (%), where L is the
maximum distance between two nodes. The nodes of the graph were deployed randomly in
a square region of size 1000 x 1000 m2. We varied the number of nodes n from 40 to 320
with increment of 40 and set the number of links to m = un, where u is the link density and
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was varied from 3 to 8. We varied the number of users N from 100 to 200 with increment
of 20. For each network size, we used BRITE to generate different network topologies,
where the link bandwidth was drawn from a uniform distribution in the range [1,10]. For

each setting, we randomly generated 100 test cases and averaged the results.

Performance Metrics:

¢ Total bandwidth: the sum of the bandwidth of all users.

* Bandwidth disparity ratio: the ratio of the highest bandwidth over the lowest band-

width among the users.

» Convergence speed: the number of the round-robin iterations (Lines 3—11 in Algo-

rithm 2) or the number of path changes (Line 9 in Algorithm 2).

Results Analysis

Total Bandwidth: Figure 2.9 shows the total bandwidth obtained by SRA, IMA

and GBA. We observe that GBA always outperforms IMA. This is as expected, because
IMA uses less information in decision making. SRA and GBA have similar performance,
because some users can reserve most of the bandwidth resources in SRA. We also notice
that the total bandwidth in Figure 2.9(c) increases first and almost remains the same after
n = 240. This is because the bandwidth of some users has reached the maximum value at

n = 240.

Disparity Ratio: Figure 2.10 shows the bandwidth disparity ratio obtained by SRA,

IMA and GBA. We observe that GBA is the fairest. SRA has the worst disparity ratio with
the value of o for all settings. This is because some users will be blocked and have zero
bandwidth in SRA, as other users have reserved all the bandwidth on the links connecting

their sources and destinations. We also see that the disparity ratios of IMA and GBA
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are independent of n, as shown in Figure 2.10(c), but decrease when the user density, ]n—i
becomes lower, as shown in Figure 2.10(a) and Figure 2.10(b). The reason is that when
the user density is low, users have a low probability of sharing common links and hence
competing the bandwidth. These results are not unexpected, as SRA and IMA are not

designed to achieve small disparity ratios.

Convergence Speed: Figure 2.11(a) and Figure 2.11(b) show the number of itera-

tions before GBA converges. We observe that the number of iterations is within 10 in all
cases. Figure 2.11(c) and Figure 2.11(d) show the number of path changes before GBA con-
verges. The theoretical bound on the number of path changes is O((Nm)") in Theorem 2.4.
However, as we can see, the number of path changes in the simulations is significantly less
than the theoretical bound. Another observation is that GBA converges slower when the
link density u is high, as shown in Figure 2.11(c). The reason is that when each node has
more links, a user is highly likely to find a path with higher bandwidth if the current path
results in low bandwidth, due to the competition from newly joined paths. According to
Theorem 2.4, the number of path changes is independent of n. Our simulation results also

confirm this proof and thus are omitted due to the space limitations.

To summarize, extensive simulations show that our algorithm converges to an NE

rapidly and achieves very good fairness as well as total bandwidth.

2.7 Conclusions

In this work, we formulated the problem of routing in networks with max-min fair
bandwidth allocation as a non-cooperative game, where each user aims to maximize its own
bandwidth. We proved the existence of Nash Equilibria, where no user has any incentive
to unilaterally change its path. We derived both a lower bound and an upper bound of the

system degradation, due to the selfish behavior of users. Finding a path with maximum
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bandwidth in the max-min fair network is both a key step for our main analysis and of
independent interest. To this end, we introduced a novel concept of observed available
bandwidth to accurately predict the available bandwidth on each link. We next presented
a game based algorithm to compute an NE and proved that the network converges to an
NE if all users follow the natural game course. Note that the theoretical convergence speed
proved in this work does not change even when an approximate Nash Equilibrium [31] is
considered. Deriving a tighter bound on the time complexity of the convergence speed is
a future research direction. Through extensive simulations, we showed that the network
can converge to an NE within 10 iterations and also achieve better fairness compared with

other algorithms.
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Chapter 3

HERA: An Optimal Relay Assignment Scheme for Cooperative Networks

Through cooperative relaying from wireless devices (generally called relay nodes), cooper-
ative communication (CC) [83] has been shown to have the potential to increase the channel
capacity between two wireless devices. The essence of CC is to exploit the nature of broad-
cast and the relaying capability of other nodes to achieve spatial diversity. Two primary CC
modes have been commonly used, Amplify-and-Forward (AF) and Decode-and-Forward
(DF) [83], depending on how the relay node processes the received signal and transmits to
the destination. Because an improper choice of the relay node for a source-destination pair
can result in an even smaller capacity than that under direct transmission, the assignment

of relay nodes plays a critical role in the performance of CC [12, 17, 37, 127, 168].

3.1 Introduction

In this work, we consider the following scenario. In a wireless network, there are a
number of source nodes and corresponding destination nodes. Other wireless devices can
function as relay nodes. We are interested in designing a relay assignment scheme, such

that the total capacity under the assignment is maximized.

We call the network with CC the cooperative network. Designing a relay assign-

ment scheme for cooperative networks is very challenging for the following reasons.

» System Performance: A relay assignment scheme should provide a relay assignment
algorithm, which appropriately assigns relay nodes to source nodes such that the
system capacity is maximized. The system capacity is the sum of the capacity of all

source nodes.
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* Selfish Behavior: Usually, wireless devices in cooperative networks are not owned
by a single entity, but by many profit-maximizing independent entities. Therefore,
even if an optimal relay assignment algorithm is developed, an individual source
node may not want to follow the assignment, given the fact that it can improve its
own capacity by selecting a different relay node. This selfish behavior can result in

system performance degradation.

» Potential Cheating: As to relay nodes, most of the protocols in cooperative networks
assume that all the wireless devices are cooperative, and in particular willing to par-
ticipate in cooperative communications as relay nodes. However, the voluntary coop-
erativeness assumption may not be true in reality as relaying data for other network
nodes can consume energy and other resources of the relay node. A naive solution
is to make payments to the participating relay nodes as an incentive. The question
arising from this naive solution is how much a relay node should be paid for helping
with the cooperative communication. A simple payment mechanism is vulnerable to
the dishonest behavior of relay nodes, in the sense that a relay node can profit from

lying about its true relaying capability, e.g. transmission power.

In this work, we design an integrated optimal relay assignment scheme for cooper-
ative networks, called HERA, named after the Goddess of Marriage in Greek Mythology.
To the best of our knowledge, HERA is the first relay assignment scheme for coopera-
tive networks, which considers both selfish and cheating behavior of network entities while
guaranteeing socially optimal system performance. HERA is composed of three com-
ponents: 1) an optimal relay assignment algorithm, 2) a payment mechanism for source
nodes, and 3) a payment mechanism for relay nodes. HERA is a centralized scheme,
where a system administrator is responsible for collecting the payment from the source

nodes and paying the relay nodes.
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HERA provides the following key features:

* HERA guarantees to find a relay assignment for the source nodes, such that the total
capacity is maximized. The system model considered in this paper allows a relay
node to be shared by multiple source nodes. Hence it is more general compared
with the model in [127], where each relay node is restricted to be assigned to only
one source node. Our assignment algorithm works regardless of which CC mode is
used in the network. It is also independent of the relation between the number of
source nodes and that of the relay nodes. In addition, our algorithm can guarantee
that the achieved capacity of each source node under the assignment is no less than

that achieved by direct transmission.

* HERA provides a payment mechanism to charge source nodes for using relaying
service from the relay nodes. To cope with the selfish behavior of source nodes, our
payment mechanism is designed in a way such that the system possesses a Strictly
Dominant Strategy Equilibrium (SDSE), where each selfish source node plays the
strategy that brings the maximum utility regardless of others’ strategies. Further-

more, the SDSE achieves the socially optimal system capacity.

* HERA also provides a payment mechanism to pay relay nodes for providing re-
laying service. To prevent relay nodes from lying about their relaying ability (e.g.
transmission power) to gain profits, the payment mechanism uses a VCG-based pay-
ment formula to calculate the payment. Under this payment mechanism, reporting
true relaying ability is the dominant strategy for each relay node. In other words,
the relay node can maximize its payment received from the system administrator by
reporting its true relaying ability.

* Finally, from the perspective of the system administrator, HERA assures that the
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system administrator will not run the system with any loss. In other words, the total
payment collected from source nodes is at least as much as the total payment paid to

relay nodes.

The remainder of this paper is organized as follows. In Section 3.2, we give a brief
review of the related work in the literature. In Section 3.3, we describe the system model
considered in this paper. In Section 3.4, we present a polynomial time optimal algorithm to
solve the relay assignment problem, study the selfish behavior of source nodes and design
a payment mechanism to charge source nodes for using relaying service, and consider the
potential cheating relay nodes in the system, design another payment mechanism to pay
relay nodes for providing relaying service and prove the desired properties of the designed
mechanism. We present our extensive experimental results in Section 3.5. We conclude

this paper in Section 3.6.

3.2 Background

In [12], Bletsas et al. proposed a novel scheme to select the best relay node for
a single source node from a set of available relays. However, this cannot be extended to a

network consisting multiple source nodes, which is the model studied in this work.

Some efforts have been made on the relay assignment or relay selection problem
in cooperative networks. In [17], Cai ef al. studied the problem of relay selection and
power allocation for AF wireless relay networks. They first considered a simple network
with only one source node, and then extended it to the multiple-source case. The proposed
algorithm is an effective heuristic, but offers no performance guarantee. Xu ef al. [152]
studied a similar problem with a different objective, which is to minimize the total power
consumption of the network. In [109], Ng and Yu jointly considered the relay node se-

lection, cooperative communication and resource allocation for utility maximization in a
50



cellular network. However, the algorithm is heuristic and not polynomial, as pointed out

by Sharma et al. [127].

In [127], Sharma et al. studied the relay assignment problem in a network environ-
ment, such that the minimum capacity among all source nodes is maximized. Following
this work, Zhang et al. [167] considered the relay assignment problem with interference
mitigation. In both models in [127] and [167], a relay node is restricted to be assigned to
at most one source node. In contrast, our model is more general in the sense that it allows
multiple source nodes to share the same relay node. In addition, different from [127], our
objective is to maximize the total capacity of all pairs. Although Zhang et al. [167] had

the same objective as ours, they only provided a heuristic algorithm.

There are few studies on the scheme design for cooperative communications in
the networking literature, among which the works in [66, 128, 141, 157] are most related
to our work. In [128], Shastry and Adve proposed a pricing-based system to stimulate
the cooperation via payment to the relay nodes. The goal in their scheme is to ensure
both the access point and the relay nodes benefit from cooperation. In [141], Wang et al.
employed a buyer/seller Stackelberg game, where a single buyer tries to buy services from
multiple relays. The buyer announces its selection of relays and the required transmission
power, then the relays ask proper prices to maximize their profits. In [66], Huang e? al.
proposed two auction mechanisms, which are essentially repeated games. In each auction
mechanism, each user iteratively updates its bid to maximize its own utility function with
the knowledge of others’ previous bids. With a common drawback, none of the above works
guarantees the optimal system capacity or considers truthfulness of relay nodes. In [157],
Yang et al. designed a truthful auction scheme for cooperative communications, which
satisfies truthfulness, individual rationality, and budget balance properties. Similarly, the

scheme cannot guarantee the optimal system capacity.
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3.3 System Model

We consider a static wireless network. There is a set . = {sy,52,--,8,} of n
source nodes and a set Z = {dy,d>,--- ,d,} of corresponding destination nodes, where s;
transmits to d;. Other nodes in the network function as relay nodes. We assume that there is
a collection Z = {ry,ra,...,ry} of mrelay nodes. As in [127], we assume that orthogonal
channels are available in the network (e.g. using OFDMA) to mitigate interference. We
further assume that each node is equipped with a single transceiver and can either transmit
or receive at a time. Let P’ denote the transmission power of source node s; and P; denote
the transmission power of relay node ;. Let P = (P}, P;,...,P;) and P" = (P{,P;,...,P},).
When node u transmits a signal to node v with power P,, the signal-to-noise ratio (SNR) at

node v, denoted as SNR,,,, is SNR,,, =

where N is the abient noise, ||u, V|| is the

Py
No-[[u,v|[*”
Euclidean distance between u and v, and « is the path loss exponent which is between 2

and 4 in general.

For the transmission model, we assume that each source node has an option to use
cooperative communication (CC) with the help of a relay node. A recent work by Zhao et
al. [168] showed that it is sufficient for a source node to choose the best relay node even
when multiple relay nodes are available to achieve full diversity. Therefore, it is reasonable
to assume that each source node will either transmit directly or use CC with the help of
only one relay node. When source node s transmits to destination node d directly, the
achievable capacity is ¢pr(s,d) = Wlog,(1 + SNRy;), where W is the bandwidth of the
channel. There are two different CC modes, Amplify-and-Forward (AF) and Decode-and-
Forward (DF) [83]. Let r denote the relay node and P, be the transmission power of r. The

achievable capacity from s to d under the AF mode is

w
car(s,rd) = ?logz (1 +SNR,; +
52
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The achievable capacity from s to d under the DF mode is

w
cpr(s,rd) = > min{log, (1 + SNRy,),log, (1 +SNRy; +SNR,4)}.

Note that, for given s and d, both c4r and cpp are functions of P,, ||s, r|| and ||r,d||.
Thus whether a source node can obtain larger capacity by using CC than it can by trans-
mitting directly depends on the relay node assigned. The scheme designed in this work is
independent of the CC mode. We use cg to denote the achievable capacity under CC. Let
S = U{so} and Z = #U{ry}, where s is a virtual source node and ry is a virtual re-
lay node. Let o = {(s1,r},),(s2,7},)-- -, (sn,7},) } € -7 x Z denote a relay assignment. If
(si,rj) € o, relay node r; is assigned to source node s; under assignment 7. If (s;, o) € o7,
s; transmits to d; directly under the relay assignment 7. Note that it is possible to have
(si,7}), (Sk,7j) € o, for s; # s,. This is a major difference between our model and the
model in [127], where a relay node is assigned to at most one source node. Since we do

not enforce such constraints, our model is more general.

_»d _»d
° si<y rl r— df sz\rzr — d,

k- slot 1 ¥ slot 2 Sk~ slot 3K slot 4
l% frame 1 —>| ¢<— frame 2 —>
(@) (b)

Figure 3.1: Multi-source cooperative communication

Now let us consider the case where the same relay node is assigned to multiple
source nodes. In this case, we use .#; to denote the set of source nodes being assigned r;,
i.e., ;= {si|(si,rj) € &/}. Note that .} is dependent on relay assignment .o7. We assume
that r; equally provides service to all the source nodes employing it. This can be achieved

for example by using a reservation-based TDMA scheduling. The relay node serves each
53



source node in a round-robin fashion. Each frame is dedicated to a single source node for

CC. Each source node gets served every n; frames, where n; = |.#;|. Therefore, the average
cr(si,rj,P} d;)

achievable capacity for each source node s; € . is .
J

. Let ¢(s;,rj,/,P") denote
the achievable capacity of s; under relay assignment ., where (s;,r;) € &7. Hereafter we

also omit d; in the capacity expression. Thus we have

is '7Pr .
CR(slnr:] _,)’ lfrj #ro’
c(si,rj, @ ,P") = !
CDT(S,'), if rj =Try.

In the expressions above, we take P" (or P; ) as a parameter, because a relay node may
lie about its transmission power. We will explain it in detail later. We define the system
capacity, denoted by C(.#, %, .o/ , P"), corresponding to relay assignment <7 and transmis-

sion power P’, as the total capacity of all the source nodes in ., i.e., C(/, %,/ ,P") =
Zley,(S[,rj)Emfc(sivrj7d7pr)-

The ultimate goal in the design of the relay assignment scheme can be defined as

the following optimization problem.

Definition 3.1. (Relay Assignment Problem (RAP)): Given ., 9, %, and P’, the Relay
Assignment Problem seeks for a relay assignment </ such that C(, %, </ ,P") is maxi-

mized among all possible relay assignments. U

RAP is different from the problem studied in [127], whose objective is to maxi-
mize the minimum capacity among all source nodes. Let «7*(.%, 2,%,P") be the opti-
mal solution to RAP. For notational simplicity, we use «/* to denote &/ (", 2, %,P")
and C to denote C(., %, </ ,P") when the context is clear. Correspondingly, C* denotes

(S, R, " PT).
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3.4 Design of HERA

In this section, we design an integrated optimal relay assignment scheme for coop-
erative networks, called HER A, named after the Goddess of Marriage in Greek Mythology.
To the best of our knowledge, HERA is the first relay assignment scheme for coopera-
tive networks, which considers both selfish and cheating behavior of network entities
while guaranteeing socially optimal system performance. HERA is composed of three
components: 1) an optimal relay assignment algorithm, 2) a payment mechanism for source
nodes, and 3) a payment mechanism for relay nodes. HER A is a centralized scheme, where
a system administrator is responsible for collecting the payment from the source nodes and

paying the relay nodes. HER A provides the following key features:

* HERA guarantees to find a relay assignment for the source nodes, such that the total
capacity is maximized. The system model considered in this work allows a relay
node to be shared by multiple source nodes. Hence it is more general compared
with the model in [127], where each relay node is restricted to be assigned to only
one source node. Our assignment algorithm works regardless of which CC mode is
used in the network. It is also independent of the relation between the number of
source nodes and that of the relay nodes. In addition, our algorithm can guarantee
that the achieved capacity of each source node under the assignment is no less than

that achieved by direct transmission.

* HERA provides a payment mechanism to charge source nodes for using relaying
service from the relay nodes. To cope with the selfish behavior of source nodes, our
payment mechanism is designed in a way such that the system possesses a Strictly

Dominant Strategy Equilibrium (SDSE), where each selfish source node plays the
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strategy that brings the maximum utility regardless of others’ strategies. Further-

more, the SDSE achieves the socially optimal system capacity.

HERA also provides a payment mechanism to pay relay nodes for providing re-
laying service. To prevent relay nodes from lying about their relaying ability (e.g.
transmission power) to gain profits, the payment mechanism uses a VCG-based pay-
ment formula to calculate the payment. Under this payment mechanism, reporting
true relaying ability is the dominant strategy for each relay node. In other words,
the relay node can maximize its payment received from the system administrator by

reporting its true relaying ability.

Finally, from the perspective of the system administrator, HERA assures that the
system administrator will not run the system with any loss. In other words, the total
payment collected from source nodes is at least as much as the total payment paid to

relay nodes.

Due to the possibility of sharing a common relay node among multiple source

nodes, solving RAP becomes a challenging task. Nonetheless, we can design a polyno-

mial time optimal algorithm to solve RAP by exploiting some special properties of the

problem.

3.4.1 Optimal Relay Assignment

We start with an example consisting of 5 source-destination pairs and 2 relay nodes. Each of

the five subtables in Table 3.1 represents a relay assignment. More specifically, the number

in the cell of column s; and row r; is the achievable capacity for source node s;, when relay

node r; is exclusively assigned to it. The symbol ¢ represents direct transmission to the

corresponding destination. For example, in Table 3.1(a), the numbers in the first column
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represent cg(s1,r1,P]) = 10, cr(s1,72,P;) = 4 and cpr(s1) = 4. Each highlighted cell
represents the current assigned relay node for the corresponding source node. For example,
in Table 3.1(b), @ = {(s1,r1), (s2,72),(54,72),(s5,72)}. From Table 3.1(a) to 3.1(d), we
illustrate an iterative procedure to improve the total capacity. Let C; = C(&7, %, <, P").
In each iteration, we change the relay assignment of the underlined source node from its
currently assigned relay node to transmitting directly. For example, in Table 3.1(b), we
change the relay assignment of s3 from r| to ¢ and improve the total capacity from 17 to
20. Note that during this procedure, it seems that we can improve the total capacity by
changing the assignment of the source node with minimum cg among all the source nodes
sharing the same relay node and letting it transmit directly to its destination. Later, we will

prove that this is not a coincidence but an inherent property.

S1 §2 83 S4 85 S1 52 S_3 S4 85 S1 S_2 §3 S4 S5

n'10 76 6 8 10 7 6 6 8 r 10 7 6 6 8
n 48 4 10 9 r 4 8 4710 9 r 4 8 4 10 9
6 4 2 1 3 1 ¢ 4 21 3 1 ¢ 4 2 1 3 1

(@ Cy =10 L B9 — 17 ()G =10+30 1 1=20 (00C;=10+1%24+241=225

S1 §2 83 S4 S1 §2 8§33 S4 S5

s5
rn 10 7 6 6 8 r 10 7 6 6 8
9
1

no4 8 4 10 n 4 8 410 9
6 4 2 1 3 6 4 2 1 3 1

(dCs=10+104+24+14+1=24 () C*=8+4+10+4+2+1=25

Table 3.1: Example with 5 source-destination pairs and 2 relays

The design of the optimal algorithm for RAP is based on Lemma 3.1 and Lemma 3.2.

Lemma 3.1. Let </ be a relay assignment, where relay node rj € Z is assigned ton; > 1

source nodes. Let s; € ./} be the source node with the minimum cg, i.e., cR(s,-,rj7P;) =

ming e 7, cr(Sk, rj, P ). If we let s; transmit to the destination d; directly, instead of using r;,
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while keeping others the same, the total capacity will be increased. That is C(/ %,/ ,P") >
C(S R, ,P"), where o' = o \ {(si,rj) } U{(si,r0)}- O

Proof. Let | = .7;\ {si}. If 5; transmits to d; directly, we have

C(S R, P)>C(S R, P
cr(sp,ri, PY)  cr(sg,ri,Pr cr(si,ri, Pt
:CDT(Si)+Z(R(kJ J)_R(kj J>>_R( J})

skG«VJ{ nj— 1 nj nj
cr(sk,7j,P)  cr(si,rj, PP)
= CDT(Si)+ 1] - /
S/<€=le nJ(nJ_ ) I’l]
1 cr(si,7j, P])
> cpr(si)+ | cr(siorj PP) Y, D~ ’
Sk€<7j/ nj(n] N ) "y
1 cr(si, 7, PY)

CDT(SI) + (CR(Slvrp ])(n] ) l’l](l’lj _ 1) nj

= CDT(S,') > 0.
Therefore, we complete the proof. 0

According to Lemma 3.1, we can always improve the system capacity if there exists
a relay node shared by more than one source node in the current relay assignment. Unfor-
tunately, the example in Table 3.1 shows that this procedure may lead to a local optimum.
Nonetheless, Lemma 3.1 implies a nice property pertaining to the optimal relay assignment

for RAP.

Lemma 3.2. Let o/* be an optimal solution to RAP. Each relay node is assigned to at most

one source node in /*. [l

Proof. Assume to the contrary that th