
Coping with Selfish Behavior in Networks using Game Theory

by

Dejun Yang

A Dissertation Presented in Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy

Approved June 2013 by the
Graduate Supervisory Committee:

Guoliang Xue, Chair
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ABSTRACT

While network problems have been addressed using a central administrative domain

with a single objective, the devices in most networks are actually not owned by a single

entity but by many individual entities. These entities make their decisions independently

and selfishly, and maybe cooperate with a small group of other entities only when this form

of coalition yields a better return. The interaction among multiple independent decision-

makers necessitates the use of game theory, including economic notions related to markets

and incentives.

In this dissertation, we are interested in modeling, analyzing, addressing network

problems caused by the selfish behavior of network entities. First, we study how the selfish

behavior of network entities affects the system performance while users are competing for

limited resource. For this resource allocation domain, we aim to study the selfish routing

problem in networks with fair queuing on links, the relay assignment problem in coopera-

tive networks, and the channel allocation problem in wireless networks. Another important

aspect of this dissertation is the study of designing efficient mechanisms to incentivize net-

work entities to achieve certain system objective. For this incentive mechanism domain,

we aim to motivate wireless devices to serve as relays for cooperative communication, and

to recruit smartphones for crowdsourcing. In addition, we apply different game theoretic

approaches to problems in security and privacy domain. For this domain, we aim to an-

alyze how a user could defend against a smart jammer, who can quickly learn about the

user’s transmission power. We also design mechanisms to encourage mobile phone users

to participate in location privacy protection, in order to achieve k-anonymity.
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Chapter 1

Introduction

Network problems have been addressed using a central administrative domain with a single

objective. The users in the network are always assumed to be obedient. However, the

devices in most networks are not own by a single entity but by many individual entities.

These entities make their decisions independently and selfishly, and maybe cooperate with

a small group of other entities only when this form of coalition yields a better return.

The interaction among multiple independent decision-makers necessitates the use of game

theory, including economic notions related to markets and incentives.

Game theory is the study that analyzes the strategic interactions among autonomous

decision-makers, whose actions have mutual, probably conflicting, consequences. Origi-

nally developed to model problems in the field of economics, game theory has recently

been applied to network problems, in most cases to solve the resource allocation prob-

lems in a competitive environment. The reason that game theory is an appropriate choice

for studying network problems is multifold. First, entities in the network are autonomous

agents, making decisions only for their own interests. Game theory provides us sufficient

theoretical tools to analyze the network users’ behaviors and actions. Second, game theory

primarily deals with distributed optimization, which often requires local information only.

Thus it enables us to design distributed algorithms. Finally, auction, a market game of in-

complete information, allows us to design mechanisms to provide incentives for network

entities participating in tasks, which would not be achieved without sufficient participation.

1



1.1 Game Theory 101

Game theory [46] is a discipline aimed at modeling scenarios where individual

decision-makers have to choose specific actions that have mutual or possibly conflict con-

sequences. A game consists of three major components:

• Players: The decision makers are called players, denoted by a finite set N = {1,2, . . . ,n}.

• Strategy: Each player i ∈ N has a non-empty strategy set Si. Let si denote the

selected strategy by player i. A strategy profile s consists of all players’ strategies,

i.e., s= (s1,s2, . . . ,sn). Obviously, we have s∈ S=×i∈N Si, where× is the Cartesian

product.

• Utility/Payoff: The utility of player i is a measurement function, denoted by ui : S 7→

R, on the possible outcome determined by the strategies of all players, where R is

the set of real numbers.

The players of the game are assumed to be rational and selfish, which means each

player is only interested in maximizing its own utility without respecting others’ and the

system’s performance. Let s−i denote the strategy profile excluding si. As a notational con-

vention, we have s = (si,s−i). We say that player i prefers si to s′i if ui(si,s−i)> ui(s′i,s−i).

When other players’ strategies are fixed, player i can select a strategy, denoted by bi(s−i),

which maximizes its utility function. Such a strategy is called a best response of player

i. A strategy is called a dominant strategy of player i if, regardless of what other players

do, the strategy earns player i a larger utility than any other strategy. In order to study the

interactions among players, the concept of Nash Equilibrium (NE) is introduced. A strat-

egy profile constitutes an NE if none of the players can improve its utility by unilaterally

deviating from its current strategy.
2



Definition 1.1. [Nash Equilibrium] A strategy profile sne = {sne
1 ,sne

2 , . . . ,sne
N } is called a

Nash Equilibrium (NE), if for every player i, we have:

ui(sne)≥ ui(sne
−1,s

′
i)

for every strategy s′i ∈ S. �

To characterize and quantify the inefficiency of the system performance due to the

lack of cooperation among the players, we use the concept of price of anarchy (POA) [77].

Definition 1.2. [Price of Anarchy] The price of anarchy (POA) of a game is the ratio of the

total utility achieved in a worst possible NE over that of the social optimum. �

The POA in game theory is an analogue of the approximation ratio in combinatorial

optimization. If a game has a POA lower bounded by α ≤ 1, it means that for any instance

of the game, the system performance in any NE is at least α times the system performance

in the optimal solution.

Games can be classified into two categories, strategic form game (or static game)

and extensive form game (or dynamic game). The strategic form game is a one-shot game.

In this game, the players make their decisions simultaneously without knowing what others

will do. On the contrary, the extensive form game represents the structure of interactions

between players and defines possible orders of moves. The repeat game is a class of the

extensive form game, in which each stage is a repetition of the same strategic game. At

the beginning of each stage, players observe the past history of strategies before making

decisions. The number of stages may be finite or infinite. The utility of each player is

the accumulated utility through all the stages. Therefore, players care not only the current

utility but also the future utilities.
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The Stackelberg game is an extensive form game, which is used to model the com-

petition between one player, called the leader, and a set of players, called the followers.

In this game, the leader takes action first and then the followers take actions. The leader

knows ex ante that the followers observe its action and take actions accordingly. The NE

in the Stackelberg game is called Stackelberg Equilibrium.

Player B

L R

Player A
U 3,2 6,5
D 4,3 8,2

Table 1.1: Utility matrix: the first number in each cell is the utility of Player A, while the
second is the utility of Player B.

We illustrate these concepts using a simple example given in Table 1.1. Note that

this example is just for the illustration of an SE and not an instance of the problem studied.

Assume that Player A is the leader, and Player B is the follower. If A plays strategy U , B

would play strategy R, as it gives player B a utility of 5 (as opposed to a utility of 2 should

B play strategy L). This leads to a utility of 6 for player A. If A plays strategy D, B would

play strategy L, as it gives player B a utility of 3 (as opposed to a utility of 2 should B play

strategy R). This leads to a utility of 4 for player A. Hence A would play strategy U , since

doing so would result in a utility of 6 compared to 4 by playing strategy D. As explained

before, B would play R if A plays U . Therefore the Stackelberg Equilibrium of this game

is (U , R).

As game theory studies interactions between rational and intelligent players, it can

be applied to the economic world where people interact with each other in the market. The

marriage of game theory and economic models yields interesting games and fruitful the-

oretical results in microeconomics and auction theory. Auction is a decentralized market
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mechanism for allocating resources. The essence of auction is a game of incomplete infor-

mation, where the players are the bidders, the strategies are the bids, and both allocations

and payments are functions of the bids. In an auction mechanism, each bidder i has some

private information ti, called its type, and its strategy is the bid bi. A mechanism then

computes an output o = o(b1,b2, . . . ,bn) and a payment vector p = (p1, p2, . . . , pn), where

pi = pi(b1,b2, . . . ,bn) is the money given to the participating agent i. For each possible

output o, bidder i’s valuation is vi(ti,o). The utility of bidder i is ui(ti,o) = vi(ti,o)+ pi.

Based on the number of objects auctioned on the market, auctions can be catego-

rized into single-object auction and multi-object auction. Two basic single-object auction

schemes are the first-price auction and the second-price auction. In the first-price auction,

the auctioneer grants the item to the highest bidder and charges the highest bid. In the

second-price auction, also known as Vickrey auction, the auctioneer grants the item to the

highest bidder, but charges the second highest bid. Multi-object auction can be homoge-

neous auction or heterogeneous auction, depending on whether the objects are identical.

There are four desirable properties while designing an auction scheme:

• Computation Efficiency: The outcome of the auction can be computed in polyno-

mial time.

• Individual Rationality: Each agent can expect a non-negative profit.

• System Efficiency: An auction is system-efficient if the sum of valuations of all

bidders is maximized.

• Truthfulness: An auction is truthful if revealing true private valuation is the dom-

inant strategy for each bidder. In other words, no bidder can improve its utility by

submitting a bid different from its true valuation, no matter how others submit.
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For double auction, one more property is desirable, Budget Balance. An auction is

budget-balanced if the payment collected from the buyers is at least as much as the payment

paid to the sellers.

1.2 Overview and Contributions

This dissertation studies and addresses a number of important network problems.

It focuses on three problem domains: resource allocation, incentive mechanism design,

and security and privacy. The common thread throughout the research on these different

domains is applying game theory to modeling, analyzing, and solving problems caused by

the selfish behavior from network entities.

In general, for the resource allocation domain, we analyze how the selfish behav-

ior of users affect the system performance while users are competing against each other

for limited resource. In this domain, we consider three problems: 1) Selfish Routing in

Networks with Fair Queuing [161, 162]; 2) Relay Assignment for Cooperative Networks

[156, 159]; and 3) Channel Allocation in Non-Cooperative Multi-Radio Multi-Channel

Wireless Networks [158].

Contributions:

• We model the studied problem as a non-cooperative game.

• We prove the existence of Nash Equilibria. If an NE does not exist, we design a

charging scheme to influence users to converge to an NE.

• We quantitatively measure the degradation of the system performance caused by the

selfish behavior from users.

• For Problem 2), we design efficient schemes to induce users to converge an NE,

which meanwhile is also the optimal solution.
6



For the second domain, we design incentive mechanisms to stimulate network enti-

ties to achieve certain objective, which may not be possible otherwise. In this domain, we

consider two problems: 1) Motivating Wireless Devices for Cooperative Communications

[157]; and 2) Recruiting Smartphones for Crowdsourcing [163].

Contributions:

• We design auction-based incentive mechanisms to motivate network entities.

• We prove that the design incentive mechanisms satisfy several desirable economic

properties.

For the security and privacy domain, we adopt different game theoretic approaches

to either help the user defend against the attacker or protect users’ privacy. In this domain,

we consider two problems: 1) Coping with A Smart Jammer [164]; and 2) Motivating

Mobile Users for K-Anonymity Location Privacy [160].

Contributions:

• We derive an optimal strategy for the user to defend against a smart jammer.

• We design mechanisms to incentivize mobile users to achieve k-anonymity.
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Part I

Resource Allocation
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Chapter 2

Selfish Routing in Networks with Fair Queuing

Routing is the process of selecting paths in a network along which to send data packets.

In communication networks, the choice of a route between a source-destination pair has a

significant bearing on the resulting bandwidth. For example, in peer-to-peer networks, there

may be several pairs of peers sharing volumes of data between each other. The objective

of each pair of peers, considered as a user, is to send as many packets as possible through

the network while competing for network resources against other users. With this selfish

objective, a user will change its path if the new path provides a larger bandwidth value

even at the cost of other users. Since multiple users may compete for the bandwidth on the

same link, it is necessary to have a congestion control scheme to allocate bandwidth among

competing users. Hence max-min fair bandwidth allocation has been widely adopted as a

congestion control scheme at the link level [21, 34, 69, 89, 92, 105, 125]. The max-min fair

bandwidth allocation scheme treats all paths passing through a link equally and assigning

an equal share of bandwidth to each of them unless a path receives less bandwidth at another

link.

2.1 Introduction

In this work, we model the network using a directed graph, and present a game

theoretic study of non-cooperative routing under max-min fair congestion control, where

the goal of each user is to maximize the bandwidth of its chosen path. We call this prob-

lem the Maximal-Bandwidth Routing problem. Two questions arise while addressing this

problem: How can a user efficiently find a path with maximum bandwidth under max-min

fair congestion control, when the paths of all other users are given? and Will the network
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oscillate or converge to a stable state? The first question is critical to our convergence

analysis, since it directly affects the convergence speed. It is also an independent prob-

lem to study, as we will point out later that the strong correlation among competing paths

makes the calculation of available bandwidth on each link challenging. The second ques-

tion is important because oscillation among different paths introduces dramatic overhead,

consuming network resources. This work answers both questions.

In answering the first question, we introduce the concept of observed available

bandwidth and prove that it can accurately predict the bandwidth of a path. In answering

the second question, we model the routing problem as a non-cooperative game and employ

game theoretic tools to analyze the interaction among users. This question boils down to the

existence of Nash Equilibria and the convergence of the game. One major challenge arises

while answering these questions. While selecting a new path, the available bandwidth

of a link may depend on the bandwidth of existing paths of other users. However, the

bandwidths of these paths in turn depend on the bandwidth of the new path. Therefore

the problem is significantly more involved than the traditional maximum capacity path

problem.

The major contributions of this work are as follows:

• We formulate the Maximal-Bandwidth Routing problem (MAXBAR) as a non-cooperative

strategic game where each player makes the routing decision selfishly to maximize

its bandwidth. In Section 2.5, we generalize it to the case where each user has a

bandwidth demand.

• We prove the existence of Nash Equilibria in the MAXBAR game, where no player

has any incentive to deviate from its chosen path. We also prove a lower bound

and an upper bound on the price of anarchy of the MAXBAR game, which is a
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concept quantifying the system degradation due to selfish behavior of users. As

a byproduct, this also gives an approximation to the social optimal solution to the

MAXBAR problem.

• We introduce a novel concept of observed available bandwidth to compute the avail-

able bandwidth on each link. It empowers the efficient computation of the best re-

sponse strategy for each user. This is non-trivial, as the traditional widest path algo-

rithm cannot be directly applied due to the mutual influence between paths sharing

common links [89].

• We investigate the behavior and incentives of the players in the game and present

a game based algorithm to compute an NE. We prove that by following the natural

game course, the MAXBAR game converges to an NE.

The rest of this work is organized as follows. In Section 2.2, we present a brief

overview of related work. In Section 2.3, we describe our system model, present the

MAXBAR problem where each user would like to have as much bandwidth as possible,

and formulate it as a non-cooperative game. In Section 2.4, we prove the existence of

Nash Equilibria and quantify the inefficiency incurred by the lack of cooperation via price

of anarchy, present an efficient algorithm to select a path with maximum bandwidth in a

max-min fair network with multiple users, and provide a comprehensive analysis of the

MAXBAR game and prove the convergence to an NE. In Section 2.5, we study a gener-

alization of the MAXBAR problem where each user has a bandwidth demand, instead of

aiming to have as much bandwidth as possible. In Section 2.6, we present numerical re-

sults on randomly generated networks. These results show that the game converges to an

NE rapidly (within 7 iterations on average and 10 iterations at worst) and achieves better

fairness compared with other algorithms. We conclude this work in Section 2.7.
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2.2 Related Work

Congestion control is a critical task in communication networks to address the is-

sue of fairly and optimally allocating resources, bandwidth in particular, among multiple

competing users. Max-min fair bandwidth allocation has been proposed as one of the con-

gestion control schemes [11, 69]. This scheme was first presented in [69]. The author also

proved the optimality and the uniqueness of the allocation. In [34], Demers proposed a

fair queuing scheduler, which is employed on each gateway, to implement a max-min fair

network. In [89], Ma et al. studied how to route in max-min fair networks to improve the

total throughput of the network. To calculate the max-min fair bandwidth for each path,

they also presented a centralized algorithm. Note that the information used by the routing

algorithm is abstract and only an estimate of the accurate available bandwidth. Showing

that computing the max-min fair bandwidth requires global information, Mayer et al. [92]

designed a local distributed scheduling algorithm to approximate max-min fair bandwidth

allocation.

Chen and Nahrstedt [21] extended the concept of max-min fairness to the routing

level, since the max-min fair bandwidth allocation scheme was proposed to achieve fairness

at link level. They defined the fairness-throughput and introduced a new set of relational

operators to compare two different feasible bandwidth allocations at routing level. The

fairness-throughput performance of the bandwidth allocation is maximized if and only if

such an allocation is the largest under the relational operator. They also proposed a max-

min fair routing algorithm to select a path for the new user to maximize the minimum

bandwidth allocated to all users. In [105], Nace considered a model, where the routing is

splittable, and gave a linear programming based algorithm to compute the optimal max-min

fair bandwidth allocation. Schapira et al. [125] and Godfrey et al. [54] studied the effi-
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ciency and incentive compatibility of different congestion control schemes in the network

where users’ paths are fixed. They also presented a family of congestion control proto-

cols called Probing Increase Educated Decrease and showed that by following any of these

protocols, the network converges to a fixed point.

All the previous works mainly focused on either the case where paths are fixed [34,

69, 92] or the case where routing aims to improve the total performance [21, 54, 89, 105,

125]. In contrast, the objective of our work is to investigate the scenario where each user

in the network is able to adapt its routing decision based on the current environment and

driven by its own selfish objective. The game formulation of this scenario falls into the

category of bottleneck game [8]. There are also important works on stable routing in the

literature [48, 58, 59]. However, these works do not consider max-min fair bandwidth

allocation in their models.

2.3 Network Model and Problem Formulation

We first describe the network model and discuss the well known max-min fair con-

gestion control scheme. We then formulate the problem studied in this work.

2.3.1 Network Model

We model the network by a directed edge-weighted graph denoted by G = (V,E,b), where

V is the set of n nodes, E is the set of m links, and b is a weight function such that b(e) =

b(v,w) > 0 is the bandwidth of link e = (v,w) ∈ E. In the network, there is a collection

U = {1,2, . . . ,N} of users. User i ∈ U needs to transmit packets from a source node

si ∈ V to a destination node ti ∈ V over an si–ti path. An s–t path in the network consists

of an ordered sequence of vertices s=v0, v1, . . ., vq=t, where (vl,vl+1) ∈ E for 0 ≤ l < q.

We denote such a path by v0-v1-· · · -vq. We are only interested in simple paths–for which
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the nodes in the sequence are distinct. Although there may be multiple si–ti paths, at any

given time, user i uses only one path, which is denoted by Pi. We denote the set of paths

currently used by the users as P = {P1,P2, . . . ,PN}. We denote the set of users currently

sharing link e by Ue(P), i.e., Ue(P) = {i|i ∈U and e ∈ Pi}.

For routing approach, we will use link-state source routing algorithms as in [89].

In such routing schemes, each node knows the network topology and the state information

on each link [9, 134]. Thus it is possible for the node to select its path. In this work, we

consider best-effort flows [89] and assume that every source node always has sufficient data

to transmit.

2.3.2 Congestion Control

Since multiple users are competing for bandwidth resources, congestion control is neces-

sary for the management of bandwidth. The employed congestion control needs to satisfy

two requirements: 1) the bandwidth allocation is fair and 2) the bandwidth is fully allo-

cated. A simple way to allocate the bandwidth of a link to multiple competing paths is to

share it equally among them. However, some paths can use only less than the equal share

(due to some bottlenecks), while some can use more. Hence, equal allocation is not desir-

able. In this work, we assume that at the link level, max-min fair bandwidth allocation (also

known as fair queuing) [34, 69] is used for congestion control. Max-min fair bandwidth

allocation has been recognized as the optimal throughput-fairness definition [69, 92]. Intu-

itively, if there are multiple users sharing a common link, each user will get a “fair share”

of the link’s bandwidth. If some user cannot use up its fair share bandwidth because it has

a lower share assigned on another link, the excess bandwidth is “fairly” split among all

other users of this link. Such a network with max-min fair congestion control at the link

level is called a max-min fair network. We denote the bandwidth allocated to user i in a
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max-min fair network by bi(P) (how to compute the value of bi(P) will be shown later).

Since user i will use only one path at any given time, we will say the bandwidth of user i

instead of the bandwidth of user i’s path when the path is clear from the context. We use

b(P) = (b1(P),b2(P), . . . ,bN(P)) to denote the Max-min Fair Bandwidth Allocation

(MFBA) given users’ paths P . The uniqueness of MFBA has been proved in [125]. While

assigning the bandwidth to each path Pi, there must exist at least one link that keeps the

path from obtaining more bandwidth. We call such link a bottleneck of path Pi. Note that

there could be more than one bottleneck for a path. We use Bi(P) to denote the set of all

bottlenecks of path Pi. Each bottleneck e of path Pi has two important properties, which can

be mathematically expressed as follows:

1. ∑ j∈Ue(P) b j(P) = b(e),

2. bi(P)≥ b j(P),∀ j ∈Ue(P).

Property 1) means that link e is saturated. We call a link saturated if its bandwidth is fully

allocated. This property is obvious as otherwise e is not a link that keeps Pi from obtaining

more bandwidth. Property 2) states that there is no path being allocated more bandwidth

than Pi on link e. The reason is that if there exists another path Pj allocated more bandwidth,

Pi could equally share the bandwidth with Pj due to max-min fair bandwidth allocation and

obtain more bandwidth. These two properties have also been proved in Lemma 3 of [21]

and Lemma 3 of [69].

Algorithms for calculating the bandwidth allocation for each path in a max-min fair

network have been proposed in [69, 89]. To make our work self-contained, we illustrate

the pseudo code in Algorithm 1. For detailed description and correctness proof, we refer

the readers to [69, 89].
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Algorithm 1: ComB(G,b,P,U )

input : Network G, path set P and user set U
output: bi(P) for all i ∈U

1 bi(P)← 0, ∀i ∈U ;
2 repeat
3 Let ē := argmine∈E

b(e)
|Uē(P)| in G(V,E,b);

4 btemp← b(ē)
|Uē(P)| ;

5 foreach player i ∈Uē(P) do
6 bi(P)← btemp;
7 foreach e ∈ Pi do
8 b(e)← b(e)−bi(P);
9 if b(e) = 0 then E← E \{e};

10 end
11 P ←P \{Pi};
12 end
13 until P = /0;
14 return bi(P) for all i ∈U ;
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Figure 2.1: Example with 3 users. P1 = s1-v1-v2-t1 (red solid), P2 = s2-v1-v2-v4-t2 (blue
dotted), and P3 = s3-v1-v2-v4-t3 (green dashed).

The basic idea of Algorithm 1 is that in each iteration, we find a global bottleneck

ē, which is defined as the link having the least equal share, i.e., ē = argmine∈E
b(e)
|Ue(P)| .

We allocate the equal share of b(ē) to all users in Uē(P). Then all the paths of users in
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Uē(P) are removed from the network. The link bandwidths are reduced by the bandwidth

consumed by the removed users. The above procedure is repeated until all the paths have

been assigned bandwidth and removed from the network.

To illustrate the idea of Algorithm 1, we compute the bandwidth for the example in

Figure 2.1. In Figure 2.1(a), (v4, t2) is the ē selected in the first iteration and b(v4,t2)
|U(v4,t2)

(P)| = 3.

Since user 2 (blue dotted) is the only one using link (v4, t2), we set b2(P) = 3, remove

path P2 from the network and subtract the bandwidth from all the links along path P2 (blue

dotted). In the resulting network shown in Figure 2.1(b), (v1,v2) is selected as ē. There are

two paths, P1 (red solid) and P3 (green dashed), sharing link (v1,v2). Each of them obtains

bandwidth b(v1,v2)
|U(v1,v2)

(P)| = 4. We set b1(P) = b3(P) = 4, and remove path P1 and path P3.

Since there is no more paths left, the algorithm terminates.

2.3.3 Problem Formulation

In this work, we study the problem of routing in a max-min fair network with multiple

selfish users, where each user selects its path to maximize its bandwidth. We call this

problem the MAXimal-BAndwidth Routing (MAXBAR) problem. We are interested in

the following questions:

Q1. How does each user select the path to maximally increase its bandwidth?

Q2. Will the routing oscillate forever or converge to a stable state, where no user can

increase its bandwidth by unilaterally changing its path?

Q3. If the answer to Q2 is converging to a stable state, how is the social welfare in the

stable state compared to that in the optimal solution with centralized control?
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The MAXBAR problem can be formulated as a non-cooperative game, called MAXBAR

game, as follows. Each user is a player in this game. We define the strategy of player i

as its path Pi. A strategy profile of all players is then P . We denote the strategies except

player i’s by P−i. We define the utility of player i as the bandwidth bi(P) of path Pi.

Since players are selfish but rational, each player makes independent routing decisions to

maximize its own utility. When player i’s path is not in the network, we use b(P−i) to

denote the MFBA and b j(P−i) to denote the bandwidth of path Pj, where bi(P−i) = 0 as

a technical convention. Let P|iP′i denote the path profile where player i changes its path to

P′i and others remain the same. When the context is clear, we use P|i instead of P|iP′i for

notational simplicity. Let b(P|i) and b j(P|i) denote the MFBA and the new bandwidth of

user j’s path. It is clear that Ue(P|i) = Ue(P−i)∪{i} if e ∈ P′i and Ue(P|i) = Ue(P−i)

otherwise.

An important subproblem of the MAXBAR problem, which is of independent in-

terest, is how to select a path to maximize the allocated bandwidth, given the network and

other users’ paths. This is known as best response in game theory.

Definition 2.1. [Best Response Routing] Given other users’ paths P1, · · · ,Pi−1,Pi+1, · · · ,PN ,

the best response routing for user i is a path Pi such that bi(P) is maximized over all si–ti

paths. �

Finding a best response path for a user is not straightforward. As we learned from

previous discussions, the allocated bandwidth for each path can be computed after con-

sidering the whole network topology and all path selections. Thus how to compute the

available bandwidth on each link before the routing is known has not been solved yet. This

problem was also studied in [89]. However, the authors only gave estimated information

for each link and their algorithm is approximate. We will present an efficient solution to

18



this problem in Section 2.4.2.

In order to study the strategic interactions of the players, we first introduce the

concept of Nash Equilibrium [46].

Definition 2.2. [Nash Equilibrium] A strategy profile Pne = {Pne
1 ,Pne

2 , . . . ,Pne
N } is called

a Nash Equilibrium (NE), if for every player i, we have:

bi(P
ne)≥ bi(P

ne|iP′i )

for every strategy P′i , where P′i is an si–ti path. �

In other words, in an NE, no player can increase its utility by unilaterally changing

its strategy.

The social optimum in the MAXBAR game is a strategy profile P∗ such that the

total utility, i.e. ∑i∈U bi(P∗), is maximized among all P . We use the concept of price of

anarchy defined in [77] to quantify the system inefficiency due to selfishness.

Definition 2.3. [Price of Anarchy] The price of anarchy (POA) of a game is the ratio of the

total utility achieved in a worst possible NE over that of the social optimum. �

Table 2.1 lists frequently used notations.

2.4 Analysis of the MAXBAR Game

2.4.1 Existence of Nash Equilibria

As a crucial step in proving the existence of NE, we show that every time a player changes

its path, the minimum bandwidth of the players, whose bandwidths change, increases

strictly.

Lemma 2.1. Assume that player i unilaterally changes its path from Pi to P′i , such that

bi(P) < bi(P|i). We have min j∈U↓∪U↑ b j(P|i) > min j∈U↓∪U↑ b j(P), where U= = { j ∈
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Table 2.1: Frequently used Notations

Notation Description

G graph representing the network
V , E node set, link set
v,w node
e, ē link and global bottleneck
b(e) bandwidth of link e
U , N user (player) set, number of users (players)

i, j,k,u user (player)
si, ti source node and destination node of user i
Pi path (strategy) of user i
P path (strategy) set of users

P−i path (strategy) set of users except i
P|iP′i path (strategy) set with user i’s path changed to P′i
P|i abbreviation of P|iP′i when P′i is clear from the context

Ue(P) set of users whose paths share link e for given P
bi(P) bandwidth (utility) of user i for given P
b(P) bandwidth (utility) vector of all users for given P

U |b j(P) = b j(P|i)}, U↑ = { j ∈ U |b j(P) < b j(P|i)} and U↓ = { j ∈ U |b j(P) >

b j(P|i)}. �

Proof. It is clear that i ∈U↑, since bi(P)< bi(P|i). First we claim that, for any j ∈U↓,

there exists k ∈ U↑, such that b j(P|i) ≥ bk(P|i). Let e ∈B j(P|i) be a bottleneck of Pj

after player i changes its path. By Property 2) of bottleneck, we have b j(P|i)≥ bk(P|i),

∀k ∈Ue(P|i). Therefore, we only need to prove that there exists a player k ∈Ue(P|i)∩

U↑. If i ∈Ue(P|i), then we can take k = i. Next, we consider the case where i 6∈Ue(P|i).

Note that Ue(P) \ {i} = Ue(P|i) \ {i}, since only player i changes its path. Therefore

i 6∈ Ue(P|i) implies that Ue(P|i) ⊆ Ue(P). Assuming to the contrary that bk(P) ≥

bk(P|i), ∀k ∈Ue(P|i), the total bandwidth usage on link e in b(P|i) is

b j(P|i)+ ∑
k∈Ue(P|i)\{ j}

bk(P|i)< b j(P)+ ∑
k∈Ue(P)\{ j}

bk(P)≤ b(e),
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where the first inequality follows from j ∈U↓ and Ue(P|i)⊆Ue(P), the second inequal-

ity follows from the feasibility of b(P). This contradicts the fact that e is a bottleneck, and

proves the existence of player k in the case where i 6∈Ue(P|i).

In summary, for any j ∈U↓, there exists k ∈U↑ such that

b j(P)> b j(P|i)≥ bk(P|i)> bk(P). (2.1)

Following inner pair of (2.1), we know that

min j∈U↓∪U↑ b j(P|i) = bk1(P|i)

for some player k1 ∈U↑. Following outer pair of (2.1), we know that

min j∈U↓∪U↑ b j(P) = bk2(P)

for some player k2 ∈ U↑. Since k1 ∈ U↑, we know that bk1(P|i) > bk1(P) ≥ bk2(P).

Hence this lemma holds.
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Figure 2.2: Example for Lemma 2.1.

We use the example in Figure 2.2 to illustrate the meaning of Lemma 2.1. In this

example, we have three players: player 1 (red solid), player 2 (blue dotted) and player 3
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(green dashed). From Figure 2.2(a) to Figure 2.2(b), player 2 changes its path from P2 = s2-

v1-v2-v3-t2 to P′2 = s2-v1-v2-t2. Before the change, b1(P) = 4, b2(P) = 2, and b3(P) = 4.

After the change, b1(P|2)= 4, b2(P|2)= 4, and b3(P|2)= 6. In this example, U== {1},

U↑ = {2,3}, and U↓ = /0. We have min{b2(P|2),b3(P|2)}> min{b2(P),b3(P)}.

We now prove the existence of NE in the MAXBAR game.

Theorem 2.1. There exists at least one NE in the MAXBAR game. �

Proof. At every stage of the game, we arrange the bandwidth values of the paths lexi-

cographically in a non-decreasing order, resulting in a vector~bl = (b1,b2, . . . ,bN). In this

vector, the minimum bandwidth b1 is at the most significant coordinate. We have bκ ≤ bκ+1

for 1≤ κ < N. For any two vectors~bl = (b1,b2, . . . ,bN) and~b
′
l = (b′1,b

′
2, . . . ,b

′
N),~bl <~b

′
l

in lexicographic order if and only if:

1) b1 < b′1, or

2) ∃ 1 < τ ≤ N s.t. bκ = b′κ for 1≤ κ < τ and bτ < b′τ .

By Lemma 2.1, we conclude that every time a player changes its path, the ordering~bl in-

creases lexicographically. We know that there are a finite number of paths for each player.

Thus the number of different strategy profiles is finite as well. As each strategy profile cor-

responds to one vector, we pick the one corresponding to the largest vector as the strategies

for the players. We conclude that such strategy profile is an NE as no player can improve

its utility by unilaterally changing its strategy.

While we know the existence of NE, there are still open questions to answer. How

to efficiently find a path with maximum bandwidth in a max-min fair network? Will the
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MAXBAR game converge to an NE? We will answer these questions in Sections 2.4.2

and 2.4.3, respectively.

Now, we quantify the worst-case “penalty” incurred by the lack of cooperation

among the players in this game using the concept of price of anarchy (POA). Recall that

POA is the ratio of the total bandwidth of the worst NE to the total bandwidth of the social

optimum among all strategies.

Theorem 2.2. For the MAXBAR game, 1
N ≤ POA≤ 2

N . �

Proof. We prove this theorem by proving the lower bound in Lemma 2.2 and the upper

bound in Lemma 2.3.

Lemma 2.2. For the MAXBAR game, POA≥ 1
N . �

Proof. Let Pne = {Pne
1 ,Pne

2 , . . . ,Pne
N } be any NE of the MAXBAR game. Let P∗ =

{P∗1 ,P∗2 , . . . ,P∗N} be the social optimum. We first claim that bi(Pne) ≥ bi(P
∗)

N for any

player i, where bi(P∗) is the bandwidth of P∗i in the social optimum. Since Pne is an

NE, no player has any incentive to change its path, i.e.,

bi(P
ne)≥ bi(P|iP∗i )≥

b(e∗)
N

, (2.2)

where e∗ is a bottleneck of P∗i after player i unilaterally changes its path from Pne
i to P∗i . The

second inequality follows from the fact that each link can be shared by at most N players.

In the social optimum, we have bi(P∗) ≤ b(e) for any e ∈ P∗i . Plugging it into (2.2), we

proved our claim. Based on the claim, the total utility is

∑i∈U bi(Pne)≥ ∑i∈U bi(P
∗)

N = b(OPT )
N (2.3)

for any NE, where b(OPT ) is the total bandwidth in the social optimum. Since (2.3) holds

for any NE, we have POA≥ 1
N .
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Figure 2.3: Example where the POA is 2
N .

Lemma 2.3. For the MAXBAR game, POA≤ 2
N . �

Proof. We prove this lemma with the help of an example. Figure 2.3 depicts (partly) a

network with N players. In this network, the bandwidth of each link is 1. As shown in

Figure 2.3(a), all the source-destination pairs with odd indices are located counterclockwise

on a ring topology, while those with even indices are located clockwise. The source and

destination for the same player are next to each other. Clearly, there are only two si–ti paths

for each player i with odd index (resp. even index), the clockwise (resp. counterclockwise)

path si-si+1-ti+1-. . .-sN-tN-t1-s1-. . .-ti and the counterclockwise (resp. clockwise) path si-ti.

As shown in Figure 2.3(b), if each player i with odd index chooses the clockwise si–ti path

and each player i with even index chooses the counterclockwise si–ti path, the resulting

strategy profile is an NE with bi(P) = 2
N for each player i. Because if any player i deviates

from the current strategy and chooses the clockwise si–ti path, it results in the bandwidth

2
N+2 . The total utility in this NE is 2.

Next, we consider the social optimum, where players with odd indices choose the
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counterclockwise paths and players with even indices choose the clockwise paths. The total

utility is N. Hence the POA of the MAXBAR game is at most 2/N.

2

3

2

4

1 1

s1 v1

v2s2

t1

t2

(a) Social optimum

2

3

2

1 1

s1

v2s2 t2

v1 t14

(b) Nash Equilibrium

Figure 2.4: A social optimum is not necessarily an NE.

Remark 1. Note that the social optimum in Figure 2.3 is also an NE. However, the

example in Figure 2.4 shows that a social optimum is not necessarily an NE.

Remark 2. Efficient algorithms to compute a social optimum are still open. Simple

brute fore algorithms may take exponential time, since the number of s-t paths for a single

player is exponential in the size of the network.

Remark 3. We do not know whether the bounds for the POA are tight. Either prov-

ing the tightness of these bounds or deriving tighter bounds is a topic for future research.

Remark 4. We also studied the MAXBAR game under an undirected model [161].

The POA is proved to be exactly 1
N .

2.4.2 Best Response Routing in Max-min Fair Networks

An important step in the MAXBAR game is for a player to decide whether it has any incen-

tive to change its strategy unilaterally. Intuitively, it is natural for the player to unilaterally

change its strategy to one that would give it the maximum utility. However, the utility of

the chosen path depends on other players’ strategies due to the competition among players

sharing links with this chosen path. Obviously, the player can try all its strategies and pick
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the one giving it the maximum utility. However, this may take exponential time as the

number of strategies of the user may not be polynomially bounded.

In this section, we introduce the novel concept of observed available bandwidth

(formally defined later in this section) and prove the following facts: 1) the observed avail-

able bandwidth on all links can be computed in O(Nm+N logN) time; 2) the widest si-ti

path with regard to the observed available bandwidth is a best response routing for player

i. Hence, player i can compute its best response routing in polynomial time. Therefore,

player i has an incentive to change its strategy if and only if the utility corresponding to its

best response strategy is larger than that corresponding to its current strategy. Given the

challenges outlined at the beginning of this section, our results are significant. Although

the facts are seemingly simple, the proofs are quite involved, which are the subjects of the

rest of this section.

?

11
7

3

1Player 1

Player 2

Player 3

Player 4

Figure 2.5: Link e with max-min fair bandwidth allocation, where there are three players
before player 4 joins.

To get an intuition for calculating the available bandwidth, we take the link in Fig-

ure 2.5 as an example. In this example, we assume that player i = 4 needs to find a path.

Further assume that Ue(P−i) = {1,2,3} and b(e) = 11. Also, b1(P−i) = 1, b2(P−i) = 3,

and b3(P−i) = 7. After player i joins, it is clear that player 1 would not lose its bandwidth

share, since it has less than the equal share, i.e., b1(P−i) = 1 < 11
4 . If player i competes
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the bandwidth with players 2 and 3 for the residual bandwidth of 10, each of them gets

bandwidth of 10
3 . We know before i joins, player 2 only uses bandwidth of 3, which is

less than 10
3 . Therefore, only i and 3 will compete for the residual bandwidth of 7 and get

bandwidth of 7
2 each.

To capture the process we conducted above, we introduce the concept of observed

available bandwidth. Assume that all players except i have their paths chosen. Now player

i needs to find a path with maximum bandwidth in the current network. For any link e and

player j ∈Ue(P−i), let

Ûe(P−i, j) = {k|k ∈Ue(P−i) and bk(P−i)< b j(P−i)}

denote the set of players who are using less bandwidth than player j on link e. Let

Ũe(P−i) = { j| j ∈Ue(P−i) and

b j(P−i)≥

b(e)− ∑
k∈Ûe(P−i, j)

bk(P−i)

|Ue(P−i)|− |Ûe(P−i, j)|+1
}

denote the set of players such that for any player j in this set, the new bandwidth b j(P|i)

is at least as large as the bandwidth of the new path P′i of player i. The observed available

bandwidth bo(e) of link e ∈ E is

bo(e) =
b(e)−∑ j∈Ue(P)\Ũe(P−i)

b j(P−i)

|Ũe(P−i)|+1
. (2.4)

If we first sort the paths according to their bandwidth values, then for each link e we can

compute Ûe(P−i,1),Ûe(P−i,2), . . . ,Ûe(P−i,N), and Ũe(P−i) in O(N) additional time.

Thus we can compute bo(e) for all links e ∈ E in O(Nm+N logN) time. Accordingly, the

observed bandwidth of the new path P′i is

bo
i (P|i) = mine∈P′i

bo(e), (2.5)
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and the set of observed bottlenecks of path P′i is

Bo
i (P|i) = argmin

e∈P′i
bo(e).

Considering the example in Figure 2.5, we have Ûe(P−i,1) = /0, Ûe(P−i,2) =

{1}, and Ûe(P−i,3) = {1,2}. The set Ũe(P−i) is {3}. Therefore, bo(e) = 11−1−3
1+1 = 7

2 .

The properties of the observed available bandwidth are summarized in the following

four lemmas, which will be used in later proofs in the rest of this section.

Lemma 2.4. Assume that j ∈ Ũe(P−i). For all u∈Ue(P−i), bu(P−i)≥ b j(P−i) implies

u ∈ Ũe(P−i). �

Proof. It is obvious that if bu(P−i) = b j(P−i), then u ∈ Ũe(P−i). Next, we prove that if

bu(P−i)> b j(P−i), then u ∈ Ũe(P−i). Let K = Ûe(P−i,u)\ Ûe(P−i, j). We have

bu(P−i)−
b(e)−∑k∈Ûe(P−i,u)

bk(P−i)

|Ue(P−i)|− |Ûe(P−i,u)|+1

= bu(P−i)−

b(e)− ∑
k∈Ûe(P−i, j)

bk(P−i)− ∑
k∈K

bk(P−i)

|Ue(P−i)|− (|Ûe(P−i, j)|+ |K |)+1

> b j(P−i)−

b(e)− ∑
k∈Ûe(P−i, j)

bk(P−i)−|K |b j(P−i)

|Ue(P−i)|− (|Ûe(P−i, j)|+ |K |)+1
(2.6)

≥ 0, (2.7)

where (2.6) follows from the fact that k∈Ue(P−i)\Ûe(P−i, j) implies bk(P−i)≥ b j(P−i),

and (2.7) follows from the fact that j ∈ Ũe(P−i). Hence we have u ∈ Ũe(P−i).

Lemma 2.5. If j ∈ Ũe(P−i), then b j(P−i) ≥ bo(e). If j ∈ Ue(P−i) \ Ũe(P−i), then

b j(P−i)< bo(e). �

Proof. Let x be the player whose path has the minimum bandwidth in Ũe(P−i). Thus we

have Ûe(P−i,x) ⊆ Ue(P−i) \ Ũe(P−i). For all j ∈ Ue(P−i), if b j(P−i) ≥ bx(P−i),
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it follows from Lemma 2.4 that j ∈ Ũe(P−i). Thus we have Ûe(P−i,x) ⊇ Ue(P−i) \

Ũe(P−i). Therefore Ûe(P−i,x) = Ue(P−i)\ Ũe(P−i). Since x ∈ Ũe(P−i), we have

bx(P−i) ≥

b(e)− ∑
j∈Ûe(P−i,x)

b j(P−i)

|Ue(P−i)|− |Ûe(P−i,x)|+1
(2.8)

=

b(e)− ∑
j∈Ue(P−i)\Ũe(P−i)

b j(P−i)

|Ũe(P−i)|+1
= bo(e). (2.9)

Therefore bx(P−i) ≥ bo(e). This implies the first part of the lemma, since b j(P−i) ≥

bx(P−i) for any j ∈ Ũe(P−i).

Next, we prove the second part of the lemma. If j 6∈ Ũe(P−i), we know that

b j(P−i)< bx(P−i). Now assume that y is the player whose path has the maximum band-

width in Ue(P−i) \ Ũe(P−i). Then, we have b j(P−i) = by(P−i), ∀ j ∈ Ûe(P−i,x) \

Ûe(P−i,y). Let J = Ûe(P−i,x)\ Ûe(P−i,y). We have

by(P−i)−bo(e)

= by(P−i)−
b(e)−∑ j∈Ûe(P−i,x)

b j(P−i)

|Ue(P−i)|− |Ûe(P−i,x)|+1
(2.10)

= by(P−i)−

b(e)− ( ∑
j∈Ûe(P−i,y)

b j(P−i)+ ∑
j∈J

b j(P−i))

|Ue(P−i)|− (|Ûe(P−i,y)|+ |J |)+1

= by(P−i)−
b(e)−∑ j∈Ûe(P−i,y)

b j(P−i)−|J |by(P−i)

|Ue(P−i)|− (|Ûe(P−i,y)|+ |J |)+1
< 0, (2.11)

where (2.10) follows from (2.8) and (2.9), (2.11) follows from the fact that y 6∈ Ũe(P−i).

In addition, we know that b j(P−i)≤ by(P−i)< bo(e), ∀ j ∈Ue(P−i)\ Ũe(P−i).

We now prove that the observed available bandwidth defined above accurately cal-

culates the bandwidth on each link in the sense that after we choose a path with the max-
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imum observed bandwidth and reallocate the bandwidth for each path using Algorithm 1,

the new allocated bandwidth of the path is equal to its observed bandwidth.

We use proof by contradiction. The sketch of our proof is as follows. If the new

allocated bandwidth of the path is not equal to its observed bandwidth, two cases may

happen: 1) the path is allocated more bandwidth than the observed bandwidth, or 2) the

path is allocated less bandwidth than the observed bandwidth. For each case, we show that

it will lead to a chain reaction, which results in a contradiction. We analyze two phenomena

that may occur and cause the chain reaction after a player chooses its new path based on the

observed available bandwidth. In Lemma 2.6 (resp. Lemma 2.7), we show that the decrease

(resp. increase) of the bandwidth of one path must be directly related to the increase (resp.

decrease) of that of another path. More importantly, the relation between new bandwidth

values of these two paths satisfies certain rules. In order to facilitate the understanding of

these lemmas, an example is presented in Figure 2.6.

Lemma 2.6. Let P′i be the new si-ti path chosen by player i based on the observed available

bandwidth. We have the following:

1. If bi(P|i)< bo
i (P|i), then ∃k ∈Ue(P|i)\{i}, such that

1a) bk(P|i)> bk(P−i) and 1b) bk(P|i)≤ bi(P|i),

where e ∈Bi(P|i) is a bottleneck of path P′i .

2. If b j(P|i)< b j(P−i) for some j ∈U , then ∃k ∈Ue(P|i)\{ j}, such that

2a) bk(P|i)> bk(P−i) and 2b) bk(P|i)≤ b j(P|i),

where e ∈B j(P|i) is a bottleneck of path Pj after player i changes its path. �

Proof. We prove 1) and 2) separately:
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We first prove 1). Assume that bi(P|i)< bo
i (P|i).

By Property 2) of bottleneck, we know that bi(P|i) ≥ b j(P|i), ∀ j ∈ Ue(P|i).

Thus it suffices to prove that ∃k ∈ Ue(P|i) \ {i}, such that 1a) holds. We prove this by

contradiction. Assume that b j(P|i)≤ b j(P−i), ∀ j ∈Ue(P|i)\{i}. The total bandwidth

usage on link e in b(P|i) is

∑ j∈Ue(P|i) b j(P|i)

= bi(P|i)+ ∑
j∈Ũe(P−i)

b j(P|i)+ ∑
j∈Ue(P−i)\Ũe(P−i)

b j(P|i)

≤ (|Ũe(P−i)|+1)bi(P|i)+ ∑
j∈Ue(P−i)\Ũe(P−i)

b j(P|i) (2.12)

< (|Ũe(P−i)|+1)bo
i (P|i)+ ∑

j∈Ue(P−i)\Ũe(P−i)

b j(P−i) (2.13)

≤ b(e), (2.14)

where (2.12) follows from Property 2) of bottleneck, (2.13) follows from the condition

bi(P|i)< bo
i (P|i) and the assumption b j(P|i)≤ b j(P−i), and (2.14) follows from (2.5)

and (2.4). This contradicts the fact that e∈Bi(P′i ), because e should be saturated in b(P|i)

according to Property 1) of bottleneck. This completes the proof of 1).

We now prove 2). Assume that b j(P|i)< b j(P−i).

By Property 2) of bottleneck, we know that b j(P|i) ≥ bk(P|i), ∀k ∈ Ue(P|i).

Thus it suffices to prove that ∃k ∈ Ue(P|i) \ { j} such that 2a) holds. The condition

b j(P|i) < b j(P−i) implies that i 6= j. If i ∈ Ue(P|i), we can take k = i and bi(P|i) >

0 = bi(P−i). Next, we consider the case where i 6∈Ue(P|i). We prove 2a) by contradic-

tion. Assume that bk(P|i)≤ bk(P−i), ∀k ∈Ue(P|i)\{ j}. Note that i 6∈Ue(P|i) implies

Ue(P−i) = Ue(P|i). The total bandwidth usage on e in b(P|i) is

b j(P|i)+ ∑
k∈Ue(P|i)\{ j}

bk(P|i)< b j(P−i)+ ∑
k∈Ue(P−i)\{ j}

bk(P−i)≤ b(e),
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where the first inequality follows from b j(P|i)< b j(P−i) and the assumption bk(P|i)≤

bk(P−i), ∀k ∈ Ue(P|i) \ { j}, and the second inequality follows from the feasibility of

b(P−i). This contradicts the fact that e ∈B j(P|i). Therefore, 2) holds.

We have finished the proof of this lemma.
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Figure 2.6: Example for Lemma 2.6 and Lemma 2.7.

Figure 2.6 illustrates Part 2) of Lemma 2.6 with i = k = 2 and j = 1. From Fig-

ure 2.6(a), we observe that b1(P−2) = 5. From Figure 2.6(b), we observe that b1(P|2) = 4

and b2(P|2) = 4. We note that the bandwidth of player 1 (red solid) decreases from 5

to 4 and the bandwidth player 2 (blue dotted) increases from 0 to 4. We also note that

b2(P|2)≤ b1(P|2).

Lemma 2.7. Let P′i be the new si-ti path chosen by player i based on the observed available

bandwidth. We have the following:

1. If bi(P|i)> bo
i (P|i), then ∃k ∈Ue(P|i)\{i}, such that

1a) bk(P|i)< bk(P−i) and 1b) bk(P|i)< bi(P|i),
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where e ∈Bo
i (P|i) is an observed bottleneck of path P′i .

2. If b j(P|i)> b j(P−i), then ∃k ∈Ue(P−i)\{ j}, such that

2a) bk(P|i)< bk(P−i) and 2b) bk(P|i)< b j(P|i),

where e ∈ B j(P−i) is a bottleneck of path Pj when player i’s path is not in the

network. �

Proof. We prove Part 1) and 2) separately:

We first prove 1). Assume that bi(P|i)> bo
i (P|i).

We prove 1) by contradiction. Assuming to the contrary that bk(P|i) ≥ bk(P−i)

or bk(P|i)≥ bi(P|i), ∀k ∈Ue(P|i)\{i}, we have the following two claims:

Claim 1: For all k ∈ Ũe(P−i), we have bk(P|i)≥ bo
i (P|i).

When bk(P|i)≥ bk(P−i) is true, we have

bk(P|i)≥ bk(P−i)≥ bo(e) = bo
i (P|i),

where the second inequality follows from Lemma 2.5 and the equality follows from the

fact that e ∈Bo
i (P|i). When bk(P|i) ≥ bi(P|i) is true, we have bk(P|i) ≥ bi(P|i) >

bo
i (P|i), due to the condition bi(P|i)> bo

i (P|i).

Claim 2: For all k ∈Ue(P−i)\ Ũe(P−i), we have bk(P|i)≥ bk(P−i).

Let k be any player in Ue(P−i) \ Ũe(P−i). We need to prove that bk(P|i) ≥

bk(P−i). According to the contrary assumption at the beginning of this proof, we only

need to prove for the case where bk(P|i)≥ bi(P|i) is true. In this case, we have

bk(P|i)≥ bi(P|i)> bo
i (P|i) = bo(e)> bk(P−i),

where the last inequality follows from Lemma 2.5.
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Note that Ue(P|i)=Ue(P−i)∪{i}. The total bandwidth usage on link e in b(P|i)

is

∑
k∈Ue(P|i)

bk(P|i) (2.15)

= bi(P|i)+ ∑
k∈Ũe(P−i)

bk(P|i)+ ∑
k∈Ue(P−i)\Ũe(P−i)

bk(P|i)

> (|Ũe(P−i)|+1)bo
i (P|i)+ ∑

k∈Ue(P−i)\Ũe(P−i)

bk(P−i) (2.16)

= (|Ũe(P−i)|+1)bo(e)+ ∑
k∈Ue(P−i)\Ũe(P−i)

bk(P−i)

= b(e), (2.17)

where (2.16) follows from the condition of 1) and the two claims, and (2.17) follows from

(2.4). This contradicts the feasibility of b(P|i). Thus we have proved 1).

We now prove 2). Assume that b j(P|i)> b j(P−i).

We prove 2) by contradiction. Assume to the contrary that bk(P|i) ≥ bk(P−i) or

bk(P|i)≥ b j(P|i), ∀k ∈Ue(P−i)\{ j}. When bk(P|i)≥ b j(P|i) is true, we have

bk(P|i)≥ b j(P|i)> b j(P−i)≥ bk(P−i),

where we used the condition of 2) and the fact that e∈B j(P−i). Thus we have bk(P|i)≥

bk(P−i), ∀k ∈ Ue(P−i) \ { j}. Then, considering the fact that Ue(P−i) ⊆ Ue(P|i), the

total bandwidth usage on link e in b(P|i) is

b j(P|i)+ ∑
k∈Ue(P|i)\{ j}

bk(P|i)> b j(P−i)+ ∑
k∈Ue(P−i)\{ j}

bk(P−i) = b(e),

where the equality follows from the fact that e ∈B j(P−i). This violates the feasibility of

b(P|i). We have proved 2).
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Figure 2.6 illustrates Part 2) of Lemma 2.7 with i = 2, j = 3, and k = 1. From

Figure 2.6(a), we observe that b3(P−2) = 5 and b1(P−2) = 5. From Figure 2.6(b), we

observe that b3(P|2) = 6 and b1(P|2) = 4. We note that the bandwidth of player 3 (green

dashed) increases from 5 to 6, but the bandwidth of player 1 (red solid) decreases from 5

to 4. We also note that b1(P|2)< b3(P|2).

Based on Lemma 2.6 and Lemma 2.7, we prove in the following an important the-

orem, which states that the bandwidth of the new path is equal to its observed bandwidth.

Theorem 2.3. Let P′i be the new si-ti path chosen by player i based on the observed avail-

able bandwidth. Then bi(P|i) = bo
i (P|i). �

Proof. First, we prove that bi(P|i) ≥ bo
i (P|i). To the contrary, assume that bi(P|i) <

bo
i (P|i). We will derive a contradiction. By Part 1) of Lemma 2.6, we know that

∃ j,s.t.,b j(P|i)> b j(P−i) and b j(P|i)≤ bi(P|i). (2.18)

By the first inequality of (2.18) and Part 2) of Lemma 2.7, we know that

∃k,s.t.,bk(P|i)< bk(P−i) and bk(P|i)< b j(P|i). (2.19)

By the first inequality of (2.19) and Part 2) of Lemma 2.6, we know that

∃ j1,s.t.,b j1(P|
i)> b j1(P−i) and b j1(P|

i)≤ bk(P|i). (2.20)

By the first inequality of (2.20) and Part 2) of Lemma 2.7, we know that

∃k1,s.t.,bk1(P|
i)< bk1(P−i) and bk1(P|

i)< b j1(P|
i). (2.21)

Repeating (2.20) and (2.21), we obtain a sequence i, k, k1, k2, . . ., such that bi(P|i)>

bk(P|i)> bk1(P|i)> bk2(P|i)> · · · . Since the number of users is finite, there must be a
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user that is repeated an infinite number of times in the above sequence of users. This is a

contradiction, since the corresponding sequence of bandwidth values is strictly decreasing.

This contradiction proves that bi(P|i)≥ bo
i (P|i).

Using a similar logic, we can prove that bi(P|i) ≤ bo
i (P|i). This implies that

bi(P|i) = bo
i (P|i).

Remark 5. As a direct consequence of Theorem 2.3, player i has an incentive to

change its strategy if and only if bo
i (P|i) > bi(P). Also, P′i is the best response strategy

for player i.

2.4.3 Converging to Nash Equilibrium

In this section, we present a game based algorithm, listed in Algorithm 2, to compute an

NE of the MAXBAR game. The idea of the algorithm is as follows. In the initialization

stage (Line 2), each player i chooses an initial si–ti path regardless of the paths of other

players. Without loss of generality, each player chooses a path with maximum bandwidth

using an algorithm denoted by WP(G,si, ti,b). Then Algorithm 2 proceeds in a round-robin

fashion. At every stage, there can be only one player changing its path. Such assumption

is common in game theory and essential to avoid oscillation.

When a player plans to change its path, it follows the following steps:

1. Compute its current bandwidth (Line 5).

2. Calculates the observed available bandwidth for each link in the resulting network

(Lines 6 and 7).

3. Finds a path with the maximum observed bandwidth (Line 8).
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4. If the observed bandwidth of the new path is greater than its current bandwidth, it

switches to the new path; otherwise, it keeps the same path (Line 9).

The process stops when no player can improve its bandwidth by changing to another path.

Algorithm 2: Game Based Algorithm
input : Network G(V,E,b) and set U of players {1, . . . ,N}
output: A Nash Equilibrium P

1 P ← /0;
2 Pi←WP(G,si, ti,b), P ←P ∪{Pi}, ∀i ∈U ;
3 repeat
4 foreach player i ∈U do
5 (b1(P), . . . ,bN(P))←ComB(G,b,P,U );
6 (b1(P−i), . . . ,bN(P−i))←ComB(G,b,P−i,U );
7 Compute bo(e) for all e ∈ E using (2.4);
8 P′i ←WP(G,si, ti,bo);
9 if bo(P′i )> bi(P) then P ←P|iP′i ;

10 end
11 until there is no path changed;
12 return P;

In Algorithm 2, WP(G,si, ti,b) returns a path with maximum bandwidth from si to

ti in graph G with bandwidth function b. The basic idea of Algorithm 2 is as follows. First

(Line 2), each player i chooses an initial si–ti path regardless of other players. Next, in a

round-robin fashion (Lines 3-11), each player changes its path to improve its utility, when

possible. This is referred to as the best-response move in [106]. The process stops when

no player can improve its bandwidth by changing to another path.

The correctness and an upper on the convergence speed of Algorithm 2 are captured

in the following theorem.

Theorem 2.4. For every instance of the MAXBAR game, Algorithm 2 converges to a set P

of paths in O((Nm+n logn+N logN)(Nm)N) time, where N is the number of players, m is
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the number of links, and n is the number of nodes. Moreover, P is an NE of the MAXBAR

game. �

To prove this theorem, we need the following lemma, which shows an important

property of the global bottleneck.

Lemma 2.8. Let P be a path set of the users and b(P) be the corresponding MFBA. Let

ē be a global bottleneck. We then have b j(P) = b(ē)
|Uē(P)| , ∀ j ∈Uē(P). �

Proof. First, we claim that for any e ∈Bi(P) for some i, we have bi(P)≥ b(e)
|Ue(P)| . Con-

sidering both Properties 1) and 2) of bottleneck e, we have

b(e) = ∑
j∈Ue(P)

b j(P)≤ |Ue(P)| ·bi(P).

Thus the claim is proved. Based on this claim and the fact that ē is a global bottleneck, we

have

b j(P)≥ b(ē)
|Uē(P)|

,∀ j ∈Uē(P). (2.22)

Assume that ∃k ∈ Uē(P) such that bk(P) > b(ē)
|Uē(P)| . The total bandwidth usage on ē is

∑ j∈Uē(P) b j(P)> b(ē), contradicting the feasibility of b(P). Hence we have proved that

b j(P) = b(ē)
|Uē(P)| , ∀ j ∈Uē(P).

Proof of Theorem 2.4: By Lemma 2.1, we conclude that every time a player

changes its path, the ordering~bl increases lexicographically. Now we prove an upper bound

on the number of times the ordering can increase. By Lemma 2.8, we know that a global

bottleneck must be equally shared by all paths using it. As a result, the number of different

possible values of b1 is bounded by O(Nm). For each possible value of b1, there are at most

N players whose paths correspond to this value. If the value of b1 and the corresponding

path Pi stay the same, the number of different possible values of b2 is O(Nm). The reason
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is that we can subtract b1 from the bandwidth of each link along Pi, and remove i from the

player set. This resulting graph is a smaller instance and all the lemmas still hold. Re-

peating this analysis for all the coordinates, we conclude that the number of times that the

lexicographic ordering can increase is bounded by O((Nm)N). The time complexity of Al-

gorithm 1 is O(Nm). Recall that computing bo(e) for all e∈ E takes O(Nm+N logN) time.

In addition, the time complexity of WP(G,b,P) is O(m+n logn) by using a variant of Di-

jkstra’s shortest path algorithm [36, 44]. Therefore the time complexity of Algorithm 2 is

O((Nm+ n logn+N logN)(Nm)N). By Theorem 2.3, the returned P is an NE, since no

player can improve its utility by changing its path unilaterally.

Remark 6. Our extensive simulations in Section 2.5 show that the MAXBAR

game converges to an NE within 10 iterations. This indicates that our theoretical bound

O((Nm)N) on the number of iterations is quite conservative.

Remark 7. As shown in the example in Section 2.4, there could be more than

one NE. If the initial set of strategies were different from the one computed in Line 2 of

Algorithm 2, Lines 3–12 may lead to a different NE. However, Lines 3–12 of the algorithm

will always lead to some NE.

Remark 8. In our algorithm, we require that only one player can change its path

each time. This is essential to the convergence of the algorithm. We use an example to

show that oscillation may occur when this requirement is violated. As shown in Figure 2.7,

assume that player 1’s path is s1-v1-v2-v3-t1 and player 2’s path is s2-v1-v2-v3-t2 at certain

point of the game. If the players are allowed to change their paths simultaneously, player

1 and player 2 would change their paths to s1-v1-v4-v3-t1 and s2-v1-v4-v3-t2, respectively.

Because both of them expect that they can increase their bandwidth from 1 to 2. Since

two players change their paths simultaneously, the allocated bandwidth for each player is

actually 1.5. Now both players would change their paths back to the previous ones because
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they expect to increase their bandwidth from 1.5 to 2. Therefore the network will oscillate

between Figure 2.7(a) and Figure 2.7(b) if simultaneous path change is allowed.
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Figure 2.7: Oscillation when simultaneous path change is allowed

One way to enforce the users in the network to follow the game course is to use a

token-based protocol, where a token is circulated among the users in a round-robin fashion–

only the user with the token has the opportunity to change its path. This token-based

protocol can guarantee the convergence of Algorithm 2. A distributed implementation

of ComB(G,b,P,U ) were proposed by [19, 69]. The information needed by (2.4) to

compute the observed available bandwidth is sent to each user by the link-state algorithm

for determining the new path.

2.5 Generalization of MAXBAR

We have studied the MAXBAR problem where users have infinite bandwidth de-

mand. In this section, we generalize the MAXBAR problem and consider the case where

each user has a bandwidth demand of γi > 0. We denote this generalized problem as

MAXBARγ . The difference between the MAXBARγ problem and the MAXBAR problem

is that we need to consider user’s bandwidth demand while allocating bandwidth. Each

user i will only use up to γi bandwidth and is not interested in switching to a path with

more bandwidth as long as its bandwidth demand is met. The MAXBAR problem is a

special case of the MAXBARγ problem, as we can consider that γi = ∞ in the MAXBAR

40



problem. It is seemingly necessary for us to redesign the ComB algorithm, and analyze

the existence of NEs and convergence of routing again. However, we will show that we

can transform any instance of the MAXBARγ problem to a corresponding instance of the

MAXBAR problem, and study the MAXBAR problem using the algorithms and analysis

in previous sections.

Let Iγ = ((V,E,b),U ,γ) be an instance of the MAXBARγ problem, where G =

(V,E,b) is the edge-weighted graph for the network. We build a corresponding instance

I = ((V ′,E ′,b′),U ′) of the MAXBAR problem (where G′ = (V ′,E ′,b′) is the edge-

weighted graph for the corresponding network) as follows. Corresponding to each node

v ∈V , V ′ contains a node v. Corresponding to each link (v,w) ∈ E, E ′ contains a link (v,w)

and b′(v,w) = b(v,w). Corresponding to each source si ∈V , V ′ contains an additional node

s′i and E ′ contains an additional link (s′i,si) with bandwidth b′(s′i,si) = γi. Corresponding

to each user i ∈U , U ′ contains a user i, who needs to transmit packets from s′i to ti in G′.

Figure 2.8 illustrates this transformation.

si

··· 

sisi

··· 

Figure 2.8: Transforming an instance of the MAXBARγ problem to a corresponding in-
stance of the MAXBAR problem

Note that although we allow users to have as much bandwidth as possible in the

MAXBAR problem, the special link (s′i,si) ensures that user i will only compete for band-

width up to the demand γi. It is clear that the MFBA for Iγ can be obtained by computing

the MFBA for I . Therefore all the lemmas and theorems for the MAXBAR problem still
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hold for the MAXBARγ problem.

2.6 Performance Evaluation

In this section, we evaluate the performance and verify the convergence analysis of

Algorithm 2 (denoted as GBA) on network topologies generated by BRITE [15].
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Figure 2.9: Total bandwidth
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Figure 2.10: Disparity ratio

Simulation Setup

We compared GBA with two other routing algorithms. In the first algorithm, each

user acts independently and attempts to maximize its bandwidth as much as possible. We

denote this algorithm by IMA (Independent Maximization Algorithm). In the second al-

gorithm, the bandwidth allocation for the users is done sequentially. A user is chosen

randomly from the set of users that have not been allocated bandwidth. It then chooses

a widest path in the residual network, and has a bandwidth equal to that of the chosen
42
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Figure 2.11: Convergence speed. For (a) and (c), n = 120 and N = 100. For (b) and (d),
n = 120 and µ = 4.

path. This procedure is repeated until all users are considered for bandwidth allocation.

This technique is similar to the Resource reSerVation Protocol (RSVP) [119], with the dif-

ference being that each user is allocated the maximum possible bandwidth in the residual

network. We denote this scheme by SRA (Sequential Reservation Algorithm).

BRITE [15] is a widely used Internet topology generator. We used the Waxman

model [145] with default values for α = 0.15 and β = 0.2. According to the Waxman

model, if dvw denotes the Euclidean distance between two nodes v and w, the probability

of having a directed link (v,w) from v to w is given by β × exp
(

dvw
α·L

)
, where L is the

maximum distance between two nodes. The nodes of the graph were deployed randomly in

a square region of size 1000×1000 m2. We varied the number of nodes n from 40 to 320

with increment of 40 and set the number of links to m = µn, where µ is the link density and
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was varied from 3 to 8. We varied the number of users N from 100 to 200 with increment

of 20. For each network size, we used BRITE to generate different network topologies,

where the link bandwidth was drawn from a uniform distribution in the range [1,10]. For

each setting, we randomly generated 100 test cases and averaged the results.

Performance Metrics:

• Total bandwidth: the sum of the bandwidth of all users.

• Bandwidth disparity ratio: the ratio of the highest bandwidth over the lowest band-

width among the users.

• Convergence speed: the number of the round-robin iterations (Lines 3–11 in Algo-

rithm 2) or the number of path changes (Line 9 in Algorithm 2).

Results Analysis

Total Bandwidth: Figure 2.9 shows the total bandwidth obtained by SRA, IMA

and GBA. We observe that GBA always outperforms IMA. This is as expected, because

IMA uses less information in decision making. SRA and GBA have similar performance,

because some users can reserve most of the bandwidth resources in SRA. We also notice

that the total bandwidth in Figure 2.9(c) increases first and almost remains the same after

n = 240. This is because the bandwidth of some users has reached the maximum value at

n = 240.

Disparity Ratio: Figure 2.10 shows the bandwidth disparity ratio obtained by SRA,

IMA and GBA. We observe that GBA is the fairest. SRA has the worst disparity ratio with

the value of ∞ for all settings. This is because some users will be blocked and have zero

bandwidth in SRA, as other users have reserved all the bandwidth on the links connecting

their sources and destinations. We also see that the disparity ratios of IMA and GBA
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are independent of n, as shown in Figure 2.10(c), but decrease when the user density, N
m ,

becomes lower, as shown in Figure 2.10(a) and Figure 2.10(b). The reason is that when

the user density is low, users have a low probability of sharing common links and hence

competing the bandwidth. These results are not unexpected, as SRA and IMA are not

designed to achieve small disparity ratios.

Convergence Speed: Figure 2.11(a) and Figure 2.11(b) show the number of itera-

tions before GBA converges. We observe that the number of iterations is within 10 in all

cases. Figure 2.11(c) and Figure 2.11(d) show the number of path changes before GBA con-

verges. The theoretical bound on the number of path changes is O((Nm)N) in Theorem 2.4.

However, as we can see, the number of path changes in the simulations is significantly less

than the theoretical bound. Another observation is that GBA converges slower when the

link density µ is high, as shown in Figure 2.11(c). The reason is that when each node has

more links, a user is highly likely to find a path with higher bandwidth if the current path

results in low bandwidth, due to the competition from newly joined paths. According to

Theorem 2.4, the number of path changes is independent of n. Our simulation results also

confirm this proof and thus are omitted due to the space limitations.

To summarize, extensive simulations show that our algorithm converges to an NE

rapidly and achieves very good fairness as well as total bandwidth.

2.7 Conclusions

In this work, we formulated the problem of routing in networks with max-min fair

bandwidth allocation as a non-cooperative game, where each user aims to maximize its own

bandwidth. We proved the existence of Nash Equilibria, where no user has any incentive

to unilaterally change its path. We derived both a lower bound and an upper bound of the

system degradation, due to the selfish behavior of users. Finding a path with maximum
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bandwidth in the max-min fair network is both a key step for our main analysis and of

independent interest. To this end, we introduced a novel concept of observed available

bandwidth to accurately predict the available bandwidth on each link. We next presented

a game based algorithm to compute an NE and proved that the network converges to an

NE if all users follow the natural game course. Note that the theoretical convergence speed

proved in this work does not change even when an approximate Nash Equilibrium [31] is

considered. Deriving a tighter bound on the time complexity of the convergence speed is

a future research direction. Through extensive simulations, we showed that the network

can converge to an NE within 10 iterations and also achieve better fairness compared with

other algorithms.
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Chapter 3

HERA: An Optimal Relay Assignment Scheme for Cooperative Networks

Through cooperative relaying from wireless devices (generally called relay nodes), cooper-

ative communication (CC) [83] has been shown to have the potential to increase the channel

capacity between two wireless devices. The essence of CC is to exploit the nature of broad-

cast and the relaying capability of other nodes to achieve spatial diversity. Two primary CC

modes have been commonly used, Amplify-and-Forward (AF) and Decode-and-Forward

(DF) [83], depending on how the relay node processes the received signal and transmits to

the destination. Because an improper choice of the relay node for a source-destination pair

can result in an even smaller capacity than that under direct transmission, the assignment

of relay nodes plays a critical role in the performance of CC [12, 17, 37, 127, 168].

3.1 Introduction

In this work, we consider the following scenario. In a wireless network, there are a

number of source nodes and corresponding destination nodes. Other wireless devices can

function as relay nodes. We are interested in designing a relay assignment scheme, such

that the total capacity under the assignment is maximized.

We call the network with CC the cooperative network. Designing a relay assign-

ment scheme for cooperative networks is very challenging for the following reasons.

• System Performance: A relay assignment scheme should provide a relay assignment

algorithm, which appropriately assigns relay nodes to source nodes such that the

system capacity is maximized. The system capacity is the sum of the capacity of all

source nodes.
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• Selfish Behavior: Usually, wireless devices in cooperative networks are not owned

by a single entity, but by many profit-maximizing independent entities. Therefore,

even if an optimal relay assignment algorithm is developed, an individual source

node may not want to follow the assignment, given the fact that it can improve its

own capacity by selecting a different relay node. This selfish behavior can result in

system performance degradation.

• Potential Cheating: As to relay nodes, most of the protocols in cooperative networks

assume that all the wireless devices are cooperative, and in particular willing to par-

ticipate in cooperative communications as relay nodes. However, the voluntary coop-

erativeness assumption may not be true in reality as relaying data for other network

nodes can consume energy and other resources of the relay node. A naive solution

is to make payments to the participating relay nodes as an incentive. The question

arising from this naive solution is how much a relay node should be paid for helping

with the cooperative communication. A simple payment mechanism is vulnerable to

the dishonest behavior of relay nodes, in the sense that a relay node can profit from

lying about its true relaying capability, e.g. transmission power.

In this work, we design an integrated optimal relay assignment scheme for cooper-

ative networks, called HERA, named after the Goddess of Marriage in Greek Mythology.

To the best of our knowledge, HERA is the first relay assignment scheme for coopera-

tive networks, which considers both selfish and cheating behavior of network entities while

guaranteeing socially optimal system performance. HERA is composed of three com-

ponents: 1) an optimal relay assignment algorithm, 2) a payment mechanism for source

nodes, and 3) a payment mechanism for relay nodes. HERA is a centralized scheme,

where a system administrator is responsible for collecting the payment from the source

nodes and paying the relay nodes.
48



HERA provides the following key features:

• HERA guarantees to find a relay assignment for the source nodes, such that the total

capacity is maximized. The system model considered in this paper allows a relay

node to be shared by multiple source nodes. Hence it is more general compared

with the model in [127], where each relay node is restricted to be assigned to only

one source node. Our assignment algorithm works regardless of which CC mode is

used in the network. It is also independent of the relation between the number of

source nodes and that of the relay nodes. In addition, our algorithm can guarantee

that the achieved capacity of each source node under the assignment is no less than

that achieved by direct transmission.

• HERA provides a payment mechanism to charge source nodes for using relaying

service from the relay nodes. To cope with the selfish behavior of source nodes, our

payment mechanism is designed in a way such that the system possesses a Strictly

Dominant Strategy Equilibrium (SDSE), where each selfish source node plays the

strategy that brings the maximum utility regardless of others’ strategies. Further-

more, the SDSE achieves the socially optimal system capacity.

• HERA also provides a payment mechanism to pay relay nodes for providing re-

laying service. To prevent relay nodes from lying about their relaying ability (e.g.

transmission power) to gain profits, the payment mechanism uses a VCG-based pay-

ment formula to calculate the payment. Under this payment mechanism, reporting

true relaying ability is the dominant strategy for each relay node. In other words,

the relay node can maximize its payment received from the system administrator by

reporting its true relaying ability.

• Finally, from the perspective of the system administrator, HERA assures that the
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system administrator will not run the system with any loss. In other words, the total

payment collected from source nodes is at least as much as the total payment paid to

relay nodes.

The remainder of this paper is organized as follows. In Section 3.2, we give a brief

review of the related work in the literature. In Section 3.3, we describe the system model

considered in this paper. In Section 3.4, we present a polynomial time optimal algorithm to

solve the relay assignment problem, study the selfish behavior of source nodes and design

a payment mechanism to charge source nodes for using relaying service, and consider the

potential cheating relay nodes in the system, design another payment mechanism to pay

relay nodes for providing relaying service and prove the desired properties of the designed

mechanism. We present our extensive experimental results in Section 3.5. We conclude

this paper in Section 3.6.

3.2 Background

In [12], Bletsas et al. proposed a novel scheme to select the best relay node for

a single source node from a set of available relays. However, this cannot be extended to a

network consisting multiple source nodes, which is the model studied in this work.

Some efforts have been made on the relay assignment or relay selection problem

in cooperative networks. In [17], Cai et al. studied the problem of relay selection and

power allocation for AF wireless relay networks. They first considered a simple network

with only one source node, and then extended it to the multiple-source case. The proposed

algorithm is an effective heuristic, but offers no performance guarantee. Xu et al. [152]

studied a similar problem with a different objective, which is to minimize the total power

consumption of the network. In [109], Ng and Yu jointly considered the relay node se-

lection, cooperative communication and resource allocation for utility maximization in a
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cellular network. However, the algorithm is heuristic and not polynomial, as pointed out

by Sharma et al. [127].

In [127], Sharma et al. studied the relay assignment problem in a network environ-

ment, such that the minimum capacity among all source nodes is maximized. Following

this work, Zhang et al. [167] considered the relay assignment problem with interference

mitigation. In both models in [127] and [167], a relay node is restricted to be assigned to

at most one source node. In contrast, our model is more general in the sense that it allows

multiple source nodes to share the same relay node. In addition, different from [127], our

objective is to maximize the total capacity of all pairs. Although Zhang et al. [167] had

the same objective as ours, they only provided a heuristic algorithm.

There are few studies on the scheme design for cooperative communications in

the networking literature, among which the works in [66, 128, 141, 157] are most related

to our work. In [128], Shastry and Adve proposed a pricing-based system to stimulate

the cooperation via payment to the relay nodes. The goal in their scheme is to ensure

both the access point and the relay nodes benefit from cooperation. In [141], Wang et al.

employed a buyer/seller Stackelberg game, where a single buyer tries to buy services from

multiple relays. The buyer announces its selection of relays and the required transmission

power, then the relays ask proper prices to maximize their profits. In [66], Huang et al.

proposed two auction mechanisms, which are essentially repeated games. In each auction

mechanism, each user iteratively updates its bid to maximize its own utility function with

the knowledge of others’ previous bids. With a common drawback, none of the above works

guarantees the optimal system capacity or considers truthfulness of relay nodes. In [157],

Yang et al. designed a truthful auction scheme for cooperative communications, which

satisfies truthfulness, individual rationality, and budget balance properties. Similarly, the

scheme cannot guarantee the optimal system capacity.
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3.3 System Model

We consider a static wireless network. There is a set S = {s1,s2, · · · ,sn} of n

source nodes and a set D = {d1,d2, · · · ,dn} of corresponding destination nodes, where si

transmits to di. Other nodes in the network function as relay nodes. We assume that there is

a collection R = {r1,r2, . . . ,rm} of m relay nodes. As in [127], we assume that orthogonal

channels are available in the network (e.g. using OFDMA) to mitigate interference. We

further assume that each node is equipped with a single transceiver and can either transmit

or receive at a time. Let Ps
i denote the transmission power of source node si and Pr

j denote

the transmission power of relay node r j. Let Ps = (Ps
1 ,P

s
2 , . . . ,P

s
n) and Pr = (Pr

1 ,P
r
2 , . . . ,P

r
m).

When node u transmits a signal to node v with power Pu, the signal-to-noise ratio (SNR) at

node v, denoted as SNRuv, is SNRuv =
Pu

N0·||u,v||α , where N0 is the abient noise, ||u,v|| is the

Euclidean distance between u and v, and α is the path loss exponent which is between 2

and 4 in general.

For the transmission model, we assume that each source node has an option to use

cooperative communication (CC) with the help of a relay node. A recent work by Zhao et

al. [168] showed that it is sufficient for a source node to choose the best relay node even

when multiple relay nodes are available to achieve full diversity. Therefore, it is reasonable

to assume that each source node will either transmit directly or use CC with the help of

only one relay node. When source node s transmits to destination node d directly, the

achievable capacity is cDT (s,d) = W log2(1+ SNRsd), where W is the bandwidth of the

channel. There are two different CC modes, Amplify-and-Forward (AF) and Decode-and-

Forward (DF) [83]. Let r denote the relay node and Pr be the transmission power of r. The

achievable capacity from s to d under the AF mode is

cAF(s,r,d) =
W
2

log2

(
1+SNRsd +

SNRsr ·SNRrd

SNRsr +SNRrd +1

)
.
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The achievable capacity from s to d under the DF mode is

cDF(s,r,d) =
W
2

min{log2(1+SNRsr), log2(1+SNRsd +SNRrd)}.

Note that, for given s and d, both cAF and cDF are functions of Pr, ||s,r|| and ||r,d||.

Thus whether a source node can obtain larger capacity by using CC than it can by trans-

mitting directly depends on the relay node assigned. The scheme designed in this work is

independent of the CC mode. We use cR to denote the achievable capacity under CC. Let

S̄ = S ∪{s0} and R̄ = R ∪{r0}, where s0 is a virtual source node and r0 is a virtual re-

lay node. Let A = {(s1,r j1),(s2,r j2), . . . ,(sn,r jn)} ⊆S ×R̄ denote a relay assignment. If

(si,r j)∈A , relay node r j is assigned to source node si under assignment A . If (si,r0)∈A ,

si transmits to di directly under the relay assignment A . Note that it is possible to have

(si,r j),(sk,r j) ∈ A , for si 6= sk. This is a major difference between our model and the

model in [127], where a relay node is assigned to at most one source node. Since we do

not enforce such constraints, our model is more general.

r

s1 s2

d1 d2

(a)

r
s1

d2s2 r
d1r d2r …

frame 1 frame 2

slot 1 slot 3 slot 4slot 2

d1

(b)

Figure 3.1: Multi-source cooperative communication

Now let us consider the case where the same relay node is assigned to multiple

source nodes. In this case, we use S j to denote the set of source nodes being assigned r j,

i.e., S j = {si|(si,r j) ∈A }. Note that S j is dependent on relay assignment A . We assume

that r j equally provides service to all the source nodes employing it. This can be achieved

for example by using a reservation-based TDMA scheduling. The relay node serves each
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source node in a round-robin fashion. Each frame is dedicated to a single source node for

CC. Each source node gets served every n j frames, where n j = |S j|. Therefore, the average

achievable capacity for each source node si ∈S j is
cR(si,r j,Pr

j ,di)

n j
. Let c(si,r j,A ,Pr) denote

the achievable capacity of si under relay assignment A , where (si,r j) ∈A . Hereafter we

also omit di in the capacity expression. Thus we have

c(si,r j,A ,Pr) =


cR(si,r j,Pr

j )

n j
, if r j 6= r0,

cDT (si), if r j = r0.

In the expressions above, we take Pr (or Pr
j ) as a parameter, because a relay node may

lie about its transmission power. We will explain it in detail later. We define the system

capacity, denoted by C(S ,R,A ,Pr), corresponding to relay assignment A and transmis-

sion power Pr, as the total capacity of all the source nodes in S , i.e., C(S ,R,A ,Pr) =

∑si∈S ,(si,r j)∈A c(si,r j,A ,Pr).

The ultimate goal in the design of the relay assignment scheme can be defined as

the following optimization problem.

Definition 3.1. (Relay Assignment Problem (RAP)): Given S , D , R, and Pr, the Relay

Assignment Problem seeks for a relay assignment A such that C(S ,R,A ,Pr) is maxi-

mized among all possible relay assignments. �

RAP is different from the problem studied in [127], whose objective is to maxi-

mize the minimum capacity among all source nodes. Let A ∗(S ,D ,R,Pr) be the opti-

mal solution to RAP. For notational simplicity, we use A ∗ to denote A ∗(S ,D ,R,Pr)

and C to denote C(S ,R,A ,Pr) when the context is clear. Correspondingly, C∗ denotes

C(S ,R,A ∗,Pr).
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3.4 Design of HERA

In this section, we design an integrated optimal relay assignment scheme for coop-

erative networks, called HERA, named after the Goddess of Marriage in Greek Mythology.

To the best of our knowledge, HERA is the first relay assignment scheme for coopera-

tive networks, which considers both selfish and cheating behavior of network entities

while guaranteeing socially optimal system performance. HERA is composed of three

components: 1) an optimal relay assignment algorithm, 2) a payment mechanism for source

nodes, and 3) a payment mechanism for relay nodes. HERA is a centralized scheme, where

a system administrator is responsible for collecting the payment from the source nodes and

paying the relay nodes. HERA provides the following key features:

• HERA guarantees to find a relay assignment for the source nodes, such that the total

capacity is maximized. The system model considered in this work allows a relay

node to be shared by multiple source nodes. Hence it is more general compared

with the model in [127], where each relay node is restricted to be assigned to only

one source node. Our assignment algorithm works regardless of which CC mode is

used in the network. It is also independent of the relation between the number of

source nodes and that of the relay nodes. In addition, our algorithm can guarantee

that the achieved capacity of each source node under the assignment is no less than

that achieved by direct transmission.

• HERA provides a payment mechanism to charge source nodes for using relaying

service from the relay nodes. To cope with the selfish behavior of source nodes, our

payment mechanism is designed in a way such that the system possesses a Strictly

Dominant Strategy Equilibrium (SDSE), where each selfish source node plays the
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strategy that brings the maximum utility regardless of others’ strategies. Further-

more, the SDSE achieves the socially optimal system capacity.

• HERA also provides a payment mechanism to pay relay nodes for providing re-

laying service. To prevent relay nodes from lying about their relaying ability (e.g.

transmission power) to gain profits, the payment mechanism uses a VCG-based pay-

ment formula to calculate the payment. Under this payment mechanism, reporting

true relaying ability is the dominant strategy for each relay node. In other words,

the relay node can maximize its payment received from the system administrator by

reporting its true relaying ability.

• Finally, from the perspective of the system administrator, HERA assures that the

system administrator will not run the system with any loss. In other words, the total

payment collected from source nodes is at least as much as the total payment paid to

relay nodes.

Due to the possibility of sharing a common relay node among multiple source

nodes, solving RAP becomes a challenging task. Nonetheless, we can design a polyno-

mial time optimal algorithm to solve RAP by exploiting some special properties of the

problem.

3.4.1 Optimal Relay Assignment

We start with an example consisting of 5 source-destination pairs and 2 relay nodes. Each of

the five subtables in Table 3.1 represents a relay assignment. More specifically, the number

in the cell of column si and row r j is the achievable capacity for source node si, when relay

node r j is exclusively assigned to it. The symbol φ represents direct transmission to the

corresponding destination. For example, in Table 3.1(a), the numbers in the first column
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represent cR(s1,r1,Pr
1) = 10, cR(s1,r2,Pr

2) = 4 and cDT (s1) = 4. Each highlighted cell

represents the current assigned relay node for the corresponding source node. For example,

in Table 3.1(b), A2 = {(s1,r1),(s2,r2),(s4,r2),(s5,r2)}. From Table 3.1(a) to 3.1(d), we

illustrate an iterative procedure to improve the total capacity. Let Ci = C(S ,R,Ai,Pr).

In each iteration, we change the relay assignment of the underlined source node from its

currently assigned relay node to transmitting directly. For example, in Table 3.1(b), we

change the relay assignment of s3 from r1 to φ and improve the total capacity from 17 to

20. Note that during this procedure, it seems that we can improve the total capacity by

changing the assignment of the source node with minimum cR among all the source nodes

sharing the same relay node and letting it transmit directly to its destination. Later, we will

prove that this is not a coincidence but an inherent property.

s1 s2 s3 s4 s5

r1 10 7 6 6 8
r2 4 8 4 10 9
φ 4 2 1 3 1

(a) C1 =
10+6

2 + 8+10+9
3 = 17

s1 s2 s3 s4 s5

r1 10 7 6 6 8
r2 4 8 4 10 9
φ 4 2 1 3 1

(b) C2 = 10+ 8+10+9
3 +1 = 20

s1 s2 s3 s4 s5

r1 10 7 6 6 8
r2 4 8 4 10 9
φ 4 2 1 3 1

(c) C3 = 10+ 10+9
2 +2+1 = 22.5

s1 s2 s3 s4 s5

r1 10 7 6 6 8
r2 4 8 4 10 9
φ 4 2 1 3 1

(d) C4 = 10+10+2+1+1 = 24

s1 s2 s3 s4 s5

r1 10 7 6 6 8
r2 4 8 4 10 9
φ 4 2 1 3 1

(e) C∗ = 8+10+4+2+1 = 25

Table 3.1: Example with 5 source-destination pairs and 2 relays

The design of the optimal algorithm for RAP is based on Lemma 3.1 and Lemma 3.2.

Lemma 3.1. Let A be a relay assignment, where relay node r j ∈R is assigned to n j > 1

source nodes. Let si ∈ S j be the source node with the minimum cR, i.e., cR(si,r j,Pr
j ) =

minsk∈S j cR(sk,r j,Pr
j ). If we let si transmit to the destination di directly, instead of using r j,
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while keeping others the same, the total capacity will be increased. That is C(S ,R,A ′,Pr)>

C(S ,R,A ,Pr), where A ′ = A \{(si,r j)}∪{(si,r0)}. �

Proof. Let S ′
j = S j \{si}. If si transmits to di directly, we have

C(S ,R,A ′,Pr)>C(S ,R,A ,Pr)

= cDT (si)+ ∑
sk∈S ′

j

(cR(sk,r j,Pr
j )

n j−1
−

cR(sk,r j,Pr
j )

n j

)
−

cR(si,r j,Pr
j )

n j

= cDT (si)+

 ∑
sk∈S ′

j

cR(sk,r j,Pr
j )

n j(n j−1)
−

cR(si,r j,Pr
j )

n j


≥ cDT (si)+

cR(si,r j,Pr
j ) ∑

sk∈S ′
j

1
n j(n j−1)

−
cR(si,r j,Pr

j )

n j


= cDT (si)+

(
cR(si,r j,Pr

j )(n j−1) · 1
n j(n j−1)

−
cR(si,r j,Pr

j )

n j

)
= cDT (si)> 0.

Therefore, we complete the proof.

According to Lemma 3.1, we can always improve the system capacity if there exists

a relay node shared by more than one source node in the current relay assignment. Unfor-

tunately, the example in Table 3.1 shows that this procedure may lead to a local optimum.

Nonetheless, Lemma 3.1 implies a nice property pertaining to the optimal relay assignment

for RAP.

Lemma 3.2. Let A ∗ be an optimal solution to RAP. Each relay node is assigned to at most

one source node in A ∗. �

Proof. Assume to the contrary that there exists a relay node r j ∈R that is assigned to more

than one source nodes, i.e. n j > 1. By Lemma 3.1, we can obtain a new relay assignment
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with strictly higher total capacity by changing one of the source nodes in S j to transmit

to the destination node directly. This contradicts the optimality of the relay assignment

A ∗. Therefore, each relay node is assigned to at most one source node in the optimal

solution.

Surprisingly, although our model allows multiple source nodes to share a common

relay node, an optimal relay assignment preferably assigns a relay node to at most one

source node to achieve the maximum system capacity. On the other hand, we know that

each source node will either employ a relay node for CC or transmit to the destination

directly, but not both at the same time. This one-to-one matching relation in the optimal

solution indicates that we can transform any instance of RAP into that of the Maximum

Weighted Bipartite Matching (MWBM) problem [146] and solve it using corresponding

algorithms.

Now we are ready to present our optimal algorithm for RAP. The pseudo-code is

illustrated in Algorithm 3.

The correctness and the computational complexity of Algorithm 3 are guaranteed

by Theorem 3.1.

Theorem 3.1. Algorithm 3 guarantees to find an optimal relay assignment A ∗(S ,R,D ,Pr)

for RAP in time bounded by O(n2m).

Proof. We prove the correctness and the running time separately.

Correctness Analysis: First, Lemma 3.2 assures that each relay node is assigned to at most

one source node in the optimal relay assignment. In other words, each source node either

transmits directly to its destination or use cooperative communication with the help of a

relay node that is not shared with any other source nodes. Therefore, each optimal relay
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Algorithm 3: ASGMNT(S ,R,D ,Pr)

1 Construct a set U of n vertices corresponding to S ;
2 Construct a set V of n+m vertices corresponding to D ∪R;
3 Construct a set E of edges, where (si,v) ∈ E if v = di or v ∈R;
4 for i = 1 to n do
5 w(si,di)← cDT (si);
6 end
7 for ∀si ∈U and ∀r j ∈R do
8 w(si,r j)← cR(si,r j,Pr

j );
9 end

10 Apply an MWBM algorithm to find a maximum weighted matching M ∗ in graph
G = (U ,V ,w);

11 A ∗← /0;
12 for (si,v) ∈M ∗ do
13 if v ∈R then A ∗←A ∗∪{(si,v)};
14 else A ∗←A ∗∪{(si,r0)};
15 end
16 return A ∗.

assignment can be mapped to a matching in the graph G constructed from Line 1 to Line

9. Assume that there exists another relay assignment A ′ resulting in a higher capacity

than A ∗ returned by Algorithm 3. If we map it back to a matching in graph G, we obtain

a matching M ′ with higher weight than that of M ∗ corresponding to A ∗. It contradicts

the fact that M ∗ is a maximum weighted matching in G. Hence, A ∗ is an optimal relay

assignment.

Running Time: Note that the most time consuming component in Algorithm 3 is the MWBM

algorithm in Line 10. Thus we focus our analysis on this algorithm. The MWBM prob-

lem can be solved using a modified shortest path search in augmenting path algorithm. If

the Dijkstra algorithm with Fibonacci heap is used, the running time is O(min{|U |, |V |} ·

((|U |+ |V |) log(|U |+ |V |)+ |E |)) [25]. Since |U |= n, |V |= n+m and |E |= nm+n =

O(nm), the running time of Algorithm 3 is bounded by O(n(n+m) log(n+m)+ n2m) =

O(n2m).
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3.4.2 Mechanism Design for Selfish Users

System capacity maximization is only desirable from a global point of view, not from the

point of view of an individual selfish user. Yet most wireless devices in the network are

owned by independent profit-maximizing entities. In this section, we use the term selection

instead of assignment, because selection is from the user’s point of view while assignment

is from the system’s point of view. When selfish users have their own preferences on

relay selection, several questions may arise: Is there a stable state, where no user has the

incentive to deviate from its current selection? How can users reach such a state? If the

system performance is not optimized in the stable state, how can the system administrator

exert influence on the relay selection to achieve social optimum? These questions will be

the focus of this part.

To study the relay selection problem with selfish entities, we model it by a game,

called Relay Selection Game (RSG). In this game, the source nodes are players, because

they make relay selections. The strategy of each player is its relay selection γi ∈ R̄.

The strategy profile γ = (γ1,γ2, . . . ,γn) is a vector of all players’ strategies. Let γ−i =

(γ1, . . . ,γi−1,γi+1, . . . ,γn) denote the strategy profile excluding player si’s strategy. Hence,

γ = (γi,γ−i) is a strategy profile where si plays γi and others play γ−i. Given a strategy pro-

file γ , we can construct the corresponding relay assignment A = {(s1,γ1),(s2,γ2), . . . ,(sn,γn)}.

Given a relay assignment A = {(s1,r j1),(s2,r j2), . . . ,(sn,r jn)}, we have the correspond-

ing strategy profile γ , where γi = r ji for each si ∈ S . In this game, each player si se-

lects a strategy γi to maximize its own utility, which is defined as its achieved capacity

us
i (γ) = c(si,γi,A ,Pr). If us

i (γi,γ−i) > us
i (γ
′
i ,γ−i), we say that player si prefers γi to γ ′i

when others play γ−i .

As a motivation to the design of our payment mechanism, we show that an NE of
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RSG is not necessarily social optimal. Note that RSG is closely related to the Congestion

Game introduced by Rosenthal [123]. Specifically, RSG can be reduced to the Congestion

Game with Player-specific Payoff Function, which was studied by Milchtaich [96]. Due to

space limitations, we make reference to [96] for the existence proof of NE and the algorithm

for computing an NE.

Recall that C∗ is the optimal system capacity. A simple example in Table 3.2 shows

that the selfishness of players can degrade the system performance by half.

s1 s2 s3 · · · sn

r0 1 1 1 · · · 1
r1 10 1 1 · · · 5
r2 10 10 1 · · · 1
r3 1 5 10 · · · 1
r4 1 1 5 · · · 1
...

...
...

...
...

...
rm 1 1 1 · · · 10

(a) Cne = 10+5(n−1)

s1 s2 s3 · · · sn

r0 1 1 1 · · · 1
r1 10 1 1 · · · 5
r2 10 10 1 · · · 1
r3 1 5 10 · · · 1
r4 1 1 5 · · · 1
...

...
...

...
...

...
rm 1 1 1 · · · 10

(b) C∗ = 10n

Table 3.2: Example with POA = 10+5(n−1)
10n ≈ 1

2

To achieve the optimal relay assignment, we need to exert influence on players’

selection of relay nodes. Here we require players to make payments for using relaying

service.

As in many existing scheme designs, we assume virtual currency exists in the sys-

tem. Each source node (player) needs to pay certain amount of currency to the adminis-

trator based on its relay node selection. In particular, given the strategy profile γ and the

62



corresponding A , we define the payment of player si as

ps
i =


c(si,γi,A ,Pr)+

(
g(γi,γ

∗
i )− 1

n−1 ∑
k 6=i

g(γk,γ
∗
k )

)
, if γi 6= r0,

g(γi,γ
∗
i )− 1

n−1 ∑k 6=i g(γk,γ
∗
k ), if γi = r0.

Here g(γi,γ
∗
i ) = l · |x− y|, where γi = rx and γ∗i = ry, l = maxsi∈S cDT (si)+ ε and ε > 0 is

a constant. In other words, g(γi,γ
∗
i ) is equal to l times the difference between the indices of

the relay node selected by si and the relay node assigned in the optimal solution. Intuitively,

a source node needs to pay for using relaying service if it selects a relay node. Each source

node also pays (or receives) a penalty (resp. bonus) depending on how much more (resp.

less) it deviates from the optimal strategy γ∗ than others. Here γ∗ is the strategy profile

corresponding to the optimal solution A ∗ of RAP computed by Algorithm 3. The utility

of player si is then defined as

us
i (γi,γ−i) = c(si,γi,A ,Pr)− ps

i . (3.1)

A similar payment mechanism was also used by Wu et al. to solve a different prob-

lem [150]. We call the Relay Selection Game with utility function (3.1) the Incentive-added

Relay Selection Game (IRSG). Next we prove that γ∗ is an SDSE in IRSG.

Theorem 3.2. Let γ∗ be the strategy profile corresponding to the optimal solution A ∗ of

RAP. Then γ∗ is an SDSE for IRSG. Therefore, γ∗ is the unique NE of IRSG. �

Proof. To prove this theorem, it suffices to prove that ∀si ∈ S , ∀γ−i,∀γi 6= γ∗i , we must

have us
i (γ
∗
i ,γ−i)> us

i (γi,γ−i). Plugging the payment ps
i into (3.1), we have

us
i (γi,γ−i) =


1

n−1 ∑k 6=i g(γk,γ
∗
k )−g(γi,γ

∗
i ), if γi 6= r0,

cDT (si)−

(
g(γi,γ

∗
i )− 1

n−1 ∑
k 6=i

g(γk,γ
∗
k )

)
, if γi = r0.
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Assume player si plays strategies γ∗i and γi 6= γ∗i , respectively. We consider all the possible

cases:

Case 1: γ∗i 6= r0 and γi 6= r0.

us
i (γ
∗
i ,γ−i)−us

i (γi,γ−i) = g(γi,γ
∗
i )−g(γ∗i ,γ

∗
i ) = g(γi,γ

∗
i )> 0,

where the second equality and the last inequality follow from the definition of g(·, ·) and

the assumption that γi 6= γ∗i .

Case 2: γ∗i 6= r0 and γi = r0.

us
i (γ
∗
i ,γ−i)−us

i (γi,γ−i) = g(γi,γ
∗
i )− cDT (si)−g(γ∗i ,γ

∗
i ) = g(γi,γ

∗
i )− cDT (si)> 0,

where the last inequality follows from the definition of g(·, ·).

Case 3: γ∗i = r0 and γi 6= r0.

us
i (γ
∗
i ,γ−i)−us

i (γi,γ−i) = cDT (si)+g(γi,γ
∗
i )−g(γ∗i ,γ

∗
i ) = cDT (si)+g(γi,γ

∗
i )> 0.

We have proved that γ∗ is an SDSE of IRSG. Hence, γ∗ is the unique NE of IRSG.

3.4.3 Mechanism Design to Prevent Relay Nodes from Cheating

Relay nodes involved in the final assignment help source nodes with cooperative com-

munications at the cost of their own energy and other resources. Without an attractive

incentive, a relay node may not be willing to participate in cooperative communications. A

naive solution to this problem is to pay each relay node the achieved capacity of coopera-

tive communications involving it (while the relay assignment A is computed based on the

reported transmission power, the achieved capacity is computed based on the true trans-

mission power and the relay assignment A ). However, such a simple payment mechanism
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could result in relay nodes’ lying about their transmission power. For example, a relay node

would not be selected if it reports its transmission power honestly, but could be selected if

it reports a larger transmission power instead. Likewise, a relay node would be assigned

to cooperate with a source node, resulting in a small capacity, if it reports its transmission

power honestly. But it could cooperate with another source node by lying, resulting in a

larger capacity. These two examples are shown in Figure 3.2. In both examples, the relay

node receives a larger payment by lying about its transmission power.

s1 s2

r3r1 r2

5 5 3

s1 s2

r3r1 r2

5 5 6(3)

(a) r2 increases its payment from 0 to 3. The sys-
tem capacity is decreased from 5 to 3.

s1 s2

r1 r2

4 36 2

s1 s2

r1 r2

4 6(3)6 3(2)

(b) r2 increases its payment from 2 to 3. The sys-
tem capacity is decreased from 8 to 7.

Figure 3.2: Examples showing that a relay node can increase its payment by lying. Solid
links represent the relay assignment. The numbers beside the links represent the achieved
capacities calculated based on reported transmission power (outside the parentheses) and
based on the true transmission power (inside the parentheses) if it is different from the
reported transmission power.

Obviously, the dishonest behavior of relay nodes may influence the relay assign-

ment and further degrade the system performance. Hence it is essential to design a pay-

ment mechanism such that every relay node will report its transmission power truthfully to

maximize its payment.

In our design, we assume that each relay node r j is an agent and the type of r j

is its transmission power Pr
j . Before the relay assignment, each relay node r j reports a

transmission power Tj, which may or may not be equal to Pr
j . Let Pr = (Pr

1 ,P
r
2 , . . . ,P

r
m)

be the true transmission power profile and T = (T1,T2, . . . ,Tm) the reported transmis-

sion power profile. ASGMNT(S ,D ,R,T ) (illustrated in Algorithm 3) is then applied

to compute an optimal relay assignment A ∗(T ), which is optimal with respect to T . Ac-

cording to Lemma 3.2, each relay node r j is assigned to at most one source node un-
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der A ∗(T ). Under A ∗(T ), let σ j(T ) ∈ S̄ denote the source node, to which r j is as-

signed. If σ j(T ) = s0, it indicates that r j is not assigned to any source node. Let σ(T ) =

(σ1(T ),σ2(T ), . . . ,σm(T )) be the source nodes corresponding to all the relay nodes in R.

Let Ψ(S ,R,T ) denote the optimal capacity of the system consisting of S and R based

on T , i.e., Ψ(S ,R,T ) =C(S ,R,A ∗(T ),T ). Let S−si =S \{si}, R−r j =R \{r j}, and

T− j = (T1, . . . ,Tj−1,Tj+1, . . . ,Tm). We define the payment to relay node r j (for a given T )

by the following

pr
j(T ) =


0, σ j(T ) = s0,

c(σ j(T ),r j,A ∗(T ),Pr)− (Ψ(S ,R−r j ,T− j)

−Ψ(S−σ j(T ),R−r j ,T− j)), o/w,

(3.2)

where c(σ j(T ),r j,A ∗(T ),Pr) is the achieved capacity in the cooperative communication,

and Ψ(S ,R−r j ,T− j)−Ψ(S−σ j(T ),R−r j ,T− j) is a charge determined by the system ad-

ministrator, based on T .

Before proving the properties of the designed payment mechanism, we note the fact

that

c(σ j(T ),r j,A
∗(T ),Pr)+Ψ(S−σ j(T ),R−r j ,T− j) =C(S ,R,A (T ′),T ′), (3.3)

where T ′ = (Pr
j ,T− j) and A (T ′) is some relay assignment for the RAP instance given by

(S ,D ,R,T ′). The intuition behind this fact is that, after the optimal assignment A ∗(T ) is

computed, the values of c(σ j(T ),r j,A ∗(T ),Pr) and Ψ(S−σ j(T ),R−r j ,T− j) are indepen-

dent of Tj, and only dependent on T ′. In addition, their sum is the system capacity under

A (T ′), which may be different from A ∗(T ′). Similarly, if relay node r j reports its true

transmission power Pr
j and other relay nodes report T− j, we have

c(σ j(T ′),r j,A
∗(T ′),Pr)+Ψ(S−σ j(T ′),R−r j ,T− j) =C(S ,R,A ∗(T ′),T ′). (3.4)
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Theorem 3.3. HERA is individually rational. �

Proof. Let r j be any relay node and T ′ = (Pr
j ,T− j). Then the payment to relay node r j is

pr
j(T
′)

= c(σ j(T ′),r j,A
∗(T ′),Pr)+Ψ(S−σ j(T ′),R−r j ,T− j)−Ψ(S ,R−r j ,T− j)

= C(S ,R,A ∗(T ′),T ′)−Ψ(S ,R−r j ,T− j) (3.5)

= C(S ,R,A ∗(T ′),T ′)−C(S ,R−r j ,A
∗(T− j),T− j)

≥ 0,

where (3.5) follows from (3.4). This completes the proof.

Theorem 3.4. HERA is truthful. �

Proof. Assume r j reports a transmission power Tj 6= Pr
j . Let T ′ = (Pr

j ,T− j). Then the

difference between its received payment and that when reporting truthfully is

pr
j(T
′)− pr

j(T )

= c(σ j(T ′),r j,A
∗(T ′),Pr)+Ψ(S−σ j(T ′),R−r j ,T− j)

−
(

c(σ j(T ),r j,A
∗(T ),Pr)+Ψ(S−σ j(T ),R−r j ,T− j)

)
= C(S ,R,A ∗(T ′),T ′)−

(
c(σ j(T ),r j,A

∗(T ),Pr)+Ψ(S−σ j(T ),R−r j ,T− j)
)
(3.6)

= C(S ,R,A ∗(T ′),T ′)−C(S ,R,A (T ′),T ′) (3.7)

≥ 0, (3.8)

where (3.6) follows from (3.4), (3.7) follows from (3.3), and (3.8) follows from the opti-

mality of A ∗(T ′).

We have designed a payment mechanism to charge source nodes for using relaying

service. Now we designed another payment mechanism to pay relay nodes for providing
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relaying service. A question arising naturally is whether HERA is budget-balanced. That

is, whether the payment collected from all the source nodes is enough to pay all the relay

nodes. The following theorem confirms the budget-balance property of HERA.

Theorem 3.5. HERA is budget-balanced. �

Proof. By Theorem 3.2, we know that all the source nodes will follow the optimal relay

assignment. Let T = (T1,T2, . . . ,Tm) be the reported transmission power profile. Let γ∗ be

the strategy profile of source nodes corresponding to A ∗(T ). Therefore, the total payment

collected from all source nodes is

ps = ∑
si∈S

ps
i = ∑

si∈S ,γ∗i 6=r0

c(si,γ
∗
i ,A

∗(T ),Pr). (3.9)

The total payment paid to all the relay nodes is

pr = ∑
r j∈R

pr
j

= ∑
r j∈R,σ j(T )6=s0

c(σ j(T ),r j,A
∗(T ),Pr)

− ∑
r j∈R,σ j(T )6=s0

(
Ψ(S ,R−r j ,T− j)−Ψ(S−σ j(T ),R−r j ,T− j)

)
,

where the second equality follows the fact that

∑si∈S ,γ∗i 6=r0 c(si,γ
∗
i ,A

∗(T ),Pr) = ∑r j∈R,σ j(T )6=s0 c(σ j(T ),r j,A ∗(T ),Pr).

The profit of the administrator is

ps− pr = ∑
r j∈R,σ j(T )6=s0

(
Ψ(S ,R−r j ,T− j)−Ψ(S−σ j(T ),R−r j ,T− j)

)
≥ 0,

where the inequality follows from the fact that

Ψ(S ,R−r j ,T− j)−Ψ(S−σ j(T ),R−r j ,T− j)≥ 0.

We finished the proof of the theorem.
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3.5 Performance Evaluation

We considered a wireless network, where wireless nodes are uniformly randomly

distributed in a 1000m× 1000m square. We followed the same parameter settings as in

[127]. The only exception was the transmission power, which in our setting is uniformly

distributed over (0,1], i.e., Ps
i ,P

r
j ∈ (0,1] Watt for all si ∈ S and r j ∈ R. We set the

bandwidth W to 22 MHz for all channels. For the transmission model, we assumed that the

path loss exponent α = 4 and the abient noise N0 = 10−10. In most of the experiments, we

varied both n and m from 50 to 400 with increment of 50. For each setting, we randomly

generated 100 instances and averaged the results.

Assignment Algorithm

Since this is the first work on the design of relay assignment scheme for cooperative

networks with the objective to maximize the total capacity, we compared our algorithm with

the algorithms listed below.

• Greedy Assignment Algorithm (Greedy): This algorithm proceeds iteratively. In each

iteration, it greedily assigns a relay node to the source node or lets the source node

transmit directly, such that the system capacity under the current assignment is max-

imized.

• Direct Transmission Algorithm (DT): In this algorithm, each source node trans-

mits to its destination directly. The system capacity under this assignment is C =

∑si∈S cDT (si). DT serves as a lower bound of the system capacity of the network

under any relay assignment.

• ORA [127]: The basic idea of ORA is to adjust the assignment iteratively, starting

from any arbitrary initial assignment. In each iteration, ORA identifies the source
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node with currently minimum capacity among all the source nodes and searches a

better relay node for it. Although ORA is not intentionally designed for RAP, we

include it in the comparison for the sake of completeness.

Cheating Report Distribution

We assume that a relay node can cheat by reporting a transmission power larger

than its true transmission power. If Pr
j is the transmission power of relay node r j, then its

reported transmission power is Pr
j +δ , where δ is a random number uniformly distributed

over (∆,∆+1] and ∆ is a parameter.

The performance metrics in the experiments include the system capacity and the

number of cooperative communications.

Evaluation of Assignment Algorithms

Figure 3.3 shows the system capacity under the assignments returned by different

algorithms. As expected, HERA has the best performance while DT has the worst. Sur-

prisingly, the performance of Greedy is only slightly worse than that of HERA, especially

when m > n. The reason is that some source nodes may not need to compete with other

source nodes for their best relay nodes. Therefore, we may have the same assignment for

these source nodes in both HERA and Greedy. Another observation is that when the num-

ber of relay nodes exceeds that of the source nodes, the system capacity tends to keep the

same.

Impact of Selfishness on System Performance

We have shown in an example in Table 3.2 that the POA of the Relay Selection

Game can be as small as 1
2 . We turn to evaluate how the selfish behavior of source nodes

affects the system performance in randomly generated networks. Figure 3.4 plots the ca-
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Figure 3.3: Comparison among relay assignment algorithms. For (a), n = 200. For (b),
m = 200.
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Figure 3.4: Impact of selfish behavior of source nodes on system capacity. For (a), n= 200.
For (b), m = 200. The maximum and minimum values among 100 random instances are
shown as error bars.
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Figure 3.5: Number of source nodes using CC. For (a), n = 200. For (b), m = 200. The
maximum and minimum values among 100 random instances are shown as error bars.
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Figure 3.6: Impact of cheating behavior of relay nodes on system capacity where n = m =
50. For (a), ∆ = 4.

pacities of the systems when HERA is applied and when it is not. We note that the degra-

dation of NE over HERA decreases with the increase of m, as shown in Figure 3.4(a). This

is because source nodes do not need to compete with each other for relay nodes when there

are enough relay nodes. Another observation is that the degradation becomes worse with

the increase of n, as shown in Figure 3.4(b). This can be explained by the same reason

above, as source nodes sharing the same relay node can improve the system capacity if one

of them changes to direct transmission. Figure 3.5 illustrates the number of source nodes

using CC in both HERA and NE. We observe that, when the number of relay nodes is more

than that of the source nodes, there are more source nodes competing relay nodes for CC in

NE than there are in HERA. This verifies our analysis on the results shown in Figure 3.4.

Impact of Cheating on System Performance

Next we focus on the impact of cheating behavior of relay nodes on system perfor-

mance. Figure 3.6 shows the system degradation due to the cheating behavior in a network

consisting of 50 source nodes and 50 relay nodes. In Figure 3.6(a), we set ∆ = 4. Our first

observation is that when the number of cheating relay nodes is small, the system perfor-

mance is not affected significantly. This is because a small number of cheating relay nodes

will unlikely affect the matching process in the algorithm. Another observation is that the
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degradation increases with the increase of the number of cheating relay nodes, which is as

expected.

We then evaluate the impact of parameter ∆. Intuitively, the larger ∆ is, the more a

relay node can untruthfully report its transmission power. Figure 3.6(b) shows the system

performance degradation in the networks with different values of ∆. We see that the degra-

dation increases when the value of ∆ increases. The reason is that a relay node reporting

a large transmission power has a high probability to be selected in the relay assignment.

However, its true transmission power may be very small. Hence the final system capacity

is degraded.

3.6 Conclusion

In this section, we designed HERA, an integrated optimal relay assignment scheme

for cooperative networks. It is composed of three components: an optimal relay assignment

algorithm, a payment mechanism to charge source nodes for using relaying service, and a

payment mechanism to pay relay nodes for proving relaying service. HERA induces selfish

source nodes to converge to the optimal assignment and prevents relay nodes from reporting

transmission power untruthfully to gain profit. In addition, HERA satisfies budget-balance

property, which means the payment collected from source nodes is no less than the payment

paid to relay nodes.
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Chapter 4

Channel Allocation in Non-Cooperative Wireless Networks

The development of the IEEE 802.11a/b/g standards has spurred the emergence of broad-

band wireless networks. Due to the common transmission media shared by communication

devices, interference arises if communication devices are operating on the same frequency.

It has been shown that interference severely limits the network capacity [62]. Frequency

Division Multiple Access (FDMA) is a widely used technique to enable multiple devices to

share a communication medium. In FDMA, the available bandwidth is divided into multi-

ple sub-bands, named channels. Using multiple channels in multi-radio wireless networks

can greatly alleviate the interference and improve the network throughput [117]. Ideally, if

there are a sufficient number of channels and each device assigns different channels to its

radios, there would be no interference in the network at all. However, since the spectrum

is a scarce resource, we are only allowed to divide the available bandwidth into a limited

number of channels. For example, there are 3 and 12 non-overlapping channels for the

IEEE 802.11b/g standards in 2.4 GHz and the IEEE 802.11a standard in 5 GHz, respec-

tively. A fundamental problem in multi-radio multi-channel (MR-MC) wireless networks is

how to allocate channels to radios, which is commonly referred to as the channel allocation

problem (also known as the channel assignment problem).

While tremendous efforts have been made on the channel allocation problem, most

of them are on cooperative networks where devices are assumed to be cooperative and

unselfish; however this assumption may not hold in practice. Usually, a wireless device

is owned by an independent individual, who is only interested in selfishly maximizing its

own profit without respecting the system performance. There are a few works considering

non-cooperative networks [42, 49, 149, 150]. However, all of these works only consider
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the problem in a single collision domain, which means all the transmissions will interfere

with each other if they are on the same channel.

4.1 Introduction

In this section, we study the channel allocation problem in non-cooperative MR-

MC networks with multiple collision domains. To characterize the network with multiple

collision domains, we introduce interference models into the network. The results in this

work are independent of the interference model adopted as long as the model is defined on

pairs of communications, for example, the protocol interference model is used in this work.

We model the channel assignment problem in non-cooperative MR-MC wireless networks

as a strategic game. We show that the game may oscillate indefinitely when there are no

exogenous factors to influence players’ behavior. This possible oscillation can result in

significant communication overhead and the degradation of the system performance. To

avoid this undesirable outcome, we develop a charging scheme to induce players’ behavior.

The design of the charging scheme ensures the convergence to a Nash Equilibrium (NE).

Players are in an NE if no player can improve its utility by changing its strategy unilaterally.

Although NE is usually not social optimal, we can prove that the system performance in an

NE is guaranteed to be at least a factor of the system performance in the optimal solution.

We summarize our main contributions as follows:

• To the best of our knowledge, we are the first to study the channel allocation problem

in non-cooperative MR-MC wireless networks with multiple collision domains. We

model the problem as a strategic game, called ChAlloc.

• We show that the ChAlloc game can result in an oscillation, where players keep

changing their strategies back and force trying to improve their utilities.

75



• To avoid the possible oscillation, we design a charging scheme to influence players’

behavior. We prove that, under the charging scheme, the ChAlloc game converges

to an NE. We also prove that the system performance in an NE is guaranteed to be

at least (1− r̄
h) of the system performance in the optimal solution, where r̄ is the

maximum number of radios equipped on wireless devices and h is the number of

available channels.

• We design a localized algorithm for players to find an NE and prove that it takes

O(r̄hn3(n+ logh)) time for the ChAlloc game to converge to an NE, where n is the

number of players.

• In order to verify our proof of the system performance in an NE, we give an LP-based

algorithm to derive efficiently computable upper bounds on the optimal solution.

• Through extensive experiments, we validate our analysis of the possible oscillation

in the ChAlloc game lacking the charging scheme and confirm the proof of the con-

vergence of the ChAlloc game with the charging scheme. The results also show that

the system performance in an NE is very close to the optimal solution and thus verify

our proof of the system performance.

The remainder of this section is organized as follows. In Section 4.2, we review

the current literature on the channel allocation problem. In Section 4.3, we present the

system model considered in our work and formulate the channel allocation problem as a

game, called ChAlloc. In Section 4.4, we first use an example to show that it is possible for

the ChAlloc game to oscillate endlessly when there are no exogenous factors to influence

players’ behavior. Then we design a charging scheme to induce players to converge to an

NE, compute the price of anarchy of the ChAlloc game, and develop a localized algorithm

for players. In addition, we give an LP-based algorithm to find an upper bound on the
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Table 4.1: Relation to previous work on channel allocation

Single Collision Multiple Collision
Domain Domains

Cooperative none [29, 75, 91, 114, 115, 130, 132, 135]
Non-cooperative [42, 49, 149, 150] our work

optimal solution. In Section 4.5, we evaluate the performance of the ChAlloc game through

extensive experiments. Finally, we form our conclusion in Section 4.6.

4.2 Relation to Previous Work on Channel Allocation

Most previous works on channel allocation can be categorized into two categories,

channel allocation in cooperative networks [29, 75, 91, 114, 115, 130, 132, 135] and chan-

nel allocation in non-cooperative networks [42, 49, 149, 150]. We summarize the related

works in Table 4.1.

Channel Allocation in Cooperative Networks: There is a considerable amount of works

on the channel allocation problem in Wireless Mesh Networks (WMNs). In [29], Das et

al. presented two mixed integer linear programming (ILP) models to solve the channel al-

location problem in WMNs with the objective to maximize the number of simultaneously

transmitting links. However, it is known that solving an ILP is NP-hard. In [114], Ra-

machandran et al. proposed a centralized channel allocation algorithm utilizing a novel

interference estimation technique in conjunction with an extension to the conflict graph

model, called the multi-radio conflict graph. In [132], Sridhar et al. proposed a localized

channel allocation algorithm called LOCA, which is a heuristic algorithm. Subramanian et

al. [135] and Marina et al. [91] studied the channel allocation problem where each link

is assigned a channel with the constraint that the number of different channels assigned to

the links incident on any node is at most the number of radios on that node. Subramanian

et al. [135] developed a centralized algorithm based on Tabu search and a distributed
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algorithm based on the Max-K-cut problem. Marina et al. [91] proposed a greedy heuris-

tic channel allocation algorithm, termed CLICA. In [75], Ko et al. studied the channel

allocation problem with a different objective function and proposed a distributed algorithm

without any performance guarantee. In [130], Shin et al. considered the channel allocation

problem to maximize the throughput or minimize the delay, and presented the an allocation

scheme, called SAFE, which is a distributed heuristic.

All the above related works are based on the assumption that wireless devices in the

network cooperate to achieve a high system performance. However, this assumption might

not hold in practice. Usually, a wireless device is owned by an independent individual,

who is only interested in selfishly maximizing its own profit without respecting the system

performance or considering others’ profits.

Channel Allocation in Non-cooperative Networks: Game theory has been widely used

to solve problems in non-cooperative wireless networks, for instance, Aloha networks [90]

and CSMA/CA networks [16, 76]. Based on a graph coloring game model, Halldórsson et

al. [64] provided bounds on the price of anarchy of the channel allocation game. However,

their model does not apply to multi-radio networks.

In an earlier work, Félegyházi et al. [42] formulated the channel allocation prob-

lem in non-cooperative MR-MC wireless networks as a game, analyzed the existence of

Nash Equilibria and presented two algorithms to achieve an NE. Along this line, Wu et al.

[150] introduced a payment formula to ensure the existence of a strongly dominant strategy

equilibrium (SDSE). Furthermore, when the system converges to an SDSE, it also achieves

global optimality in terms of system throughput. In [49], Gao et al. extended the problem

to multi-hop networks and also addressed coalition issues. Most recently, Wu et al. [149]

studied the problem of adaptive-width channel allocation in non-cooperative MR-MC wire-

less networks, where contiguous channels may be combined to provide a better utilization
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of the available channels. However, all the above results can only be applied to a single

collision domain, without considering multiple collision domains. In this work, we fill this

void and study the channel allocation problem in non-cooperative MR-MC networks with

multiple collision domains.

4.3 Network Model and Game Formulation

The network model in this work closely follows the models in [42, 49, 149, 150].

We consider a static wireless network consisting of a set L = {L1,L2, . . . ,Ln} of n com-

munication links. Each link Li is modeled as an undirected link between two nodes vi and

ui, where vi and ui denote two wireless devices communicating with each other. The use

of the undirected link model reflects the fact that the IEEE 802.11 DCF requires the sender

to be able to receive the acknowledgement message from the receiver for every transmit-

ted packet. Since links are undirected, two nodes are able to coordinate to select the same

channels for communication. As in [42, 49, 149, 150], we assume that the links are back-

logged and always have packets to transmit. Each wireless device is equipped with multiple

radio interfaces. We further assume that each transmission must be between two radios, of

which one functions as a transmitter and the other as a receiver. Thus, it is reasonable to

assume that both nodes of Li have the same number of radios, denoted by ri. We assume

the wireless devices have the same maximum transmission power, but each of the devices

adjusts its actual data transmission power according to the length, denoted by li, of the

transmission link. Let R denote the transmission range under the maximum transmission

power. Furthermore, there are h > 1 orthogonal channels available in the network, e.g.

12 orthogonal channels in the IEEE 802.11a protocol. We denote the set of channels by

C = {c1,c2, . . . ,ch}.

To communicate, two nodes of a link have to tune at least one of their radios to
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the same channel(s). Parallel communications are allowed between two nodes if they share

multiple channels on radios. In order to avoid the co-radios interference in a device [49],

we assume that different radios on a node should be tuned to different channels. Therefore,

it is reasonable to assume that ri < h for all Li ∈L as it would be straightforward to allocate

channels otherwise. Allocating each channel to at most one radio has also been proved to

be a necessary condition to maximize the device’s transmission data rate [42, 49, 149].

Due to the common transmission medium, wireless transmission along a commu-

nication link may interfere with the transmissions along other communication links, espe-

cially those within its vicinity. While existing works [42, 49, 149, 150] have studied the

channel allocation problem in non-cooperative networks for both single-hop and multi-hop

models, all the results can only be applied to a single collision domain. In other words, they

assume that all transmissions interfere with each other if they share at least one channel.

However, the strength of a wireless transmission signal decays exponentially with respect

to the distance it travels from the transmitter. Therefore the signal from a distant trans-

mission is, if not negligible, not destructive enough to prevent another transmission from

succeeding. In this work, we generalize the channel allocation problem to networks with

multiple collision domains.

To characterize networks with multiple collision domains, an appropriate interfer-

ence model is necessary. Various interference models have been proposed in the literature,

for example, the primary interference model [63], the protocol interference model [62, 70],

and the physical interference model (a.k.a SINR interference model) [62, 70]. The results

in this work are independent of the specific interference model used as long as the inter-

ference model is defined on pairs of communication links. For the sake of presentation, the

protocol interference model is adopted throughout this work. This model has been used by

most of the works on channel allocation problems [1, 6, 91, 117, 135, 136]. In this model,
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Figure 4.1: Network of 5 links, where L = {L1,L2,L3,L4,L5}, r1 = 3,r2 = 3,r3 = 2,r4 =
2,r5 = 1 and C = {1,2,3,4}.

each node has an interference range γli, which is at least as large as the transmission range

(equal to li), i.e., γ ≥ 1. We assume that li ≤ R
γ

, for any Li. Any node u will be interfered

by node v if u is within v’s interference range. We can imagine that, associated with each

Li, there is an interference disk Dui centered at ui, and an interference disk Dvi centered at

vi. The union of Dui and Dvi , denoted by Dui ∪Dvi , constitutes the interference area of Li.

Link Li interferes with link L j if and only if either of v j and u j is in Dui ∪Dvi , and two

links share at least one common channel. Before the channels on the radios are known, we

can only say that Li potentially interferes with L j. As an illustrating example, Figure 4.1

shows a 5-link network, where dashed peanut-shaped curves represent the boundaries of

interference areas (numbers in parentheses will be explained later). In this example, L3

potentially interferes with L1 while L1 cannot interfere with L3.

Conflict graphs are widely used to facilitate the design of channel allocation al-

gorithms [70, 91, 98, 114, 135]. We use a similar concept, called potential interference

graph (PING), to characterize the interfering relationships among the links. Different from

the conflict graph, the edges in the PING are directed due to the heterogeneity of the in-
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Figure 4.2: The PING, MPING and MING for the example in Figure 4.1

terference range. In a PING, Gp = (Vp,Ap), nodes correspond to communication links.

Hereafter, we also use Li to denote the corresponding node in Gp. There is an arc from

Li to L j if Li potentially interferes with L j. Figure 4.2(a) shows a PING of the example in

Figure 4.1. Unfortunately, the above defined PING does not accurately model the devices

with multiple radios. For example, if Li potentially interferes with L j and both links have

two radio pairs, there should be two interference arcs. Therefore, we extend the PING

to model multi-radio networks and call the new model multi-radio potential interference

graph (MPING). An MPING is a directed multigraph, Gm = (Vm,Am), where nodes still

represent transmission links, arcs represent potential interference between links, and par-

allel directed arcs may exist between two vertices. There are min{ri,r j} arcs from Li to

L j if (Li,L j) ∈ Ap. Let A−m(Li) and A+
m(Li) be the set of in-arcs and the set of out-arcs,

respectively. The in-arc set A−m(Li) of Li is the set of arcs going into Li and the out-arc set

A+
m(Li) of Li is the set of arcs going from Li. The in-arcs in A−m(Li) are called the potential

interference arcs of Li. Let N−m (Li) be the set of in-neighbors and N+
m (Li) be the set of out-

neighbors in the MPING Gm. The in-neighbor set N−m (Li) of Li is the set of vertices, which

are the tails of in-arcs and the out-neighbor set N+
m (Li) of Li is the set of vertices, which are

the heads of out-arcs. The MPING corresponding to Figure 4.1 is shown in Figure 4.2(b).
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We formulate the channel allocation problem in non-cooperative MR-MC wireless

networks as a game, called ChAlloc. In this game, each transmission link is a player, whose

strategy space is the set of all the possible channel allocations on its radios. We assume that

players are selfish, rational and honest. We leave the case where players can cheat for our

future work. Throughout the rest of this work, we will use link and player interchangeably.

The channel allocation of Li is defined to be a vector si = (si1,si2, . . . ,sih), where sik = 1

if Li assigns channel ck to one radio pair and sik = 0 otherwise. To sufficiently utilize the

channel resource, we require that ∑
h
k=1 sik = ri, which is also proved to be optimal for each

player for the single-collision domain case [42]. The strategy profile s is then an n× h

matrix defined by all the players’ strategies, s = (s1,s2, . . . ,sn)
T .

Although previous works in the literature [42, 49, 149, 150] have used achievable

data rate as the utility function, they assume that all the links are in a single collision

domain. Because of the hidden terminal problem, it is unlikely to have a closed-form

expression to calculate the achievable data rate for each player in the network with multiple

collision domains. This difficulty has also been discussed in [42, 150]. An alternative is to

use the interference as a performance metric. As shown in [166, Eq.(4)], the data rate is

approximately a linear function of the interference that the link can overhear. The use of

the interference as a performance metric can also be found in [114, 135, 136].

Given a strategy profile s, we say a communication radio pair interferes with Li if

this radio pair belongs to a link interfering with Li and has been tuned to a channel that is

also allocated by Li. We define the interference number of Li, denoted by Ii(s), to be the

number of communication radio pairs interfering with Li. Mathematically, we have

Ii(s) = ∑L j∈N−m (Li)
si · s j,

where the symbol · is the dot product between two vectors. Note that Ii(s) ≤ |A−m(Li)|
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for all Li ∈ L . When s is given, we can construct the multi-radio interference graph

(MING), Gm(s) = (Vm(s),Am(s)), from the MPING by removing corresponding potential

interference arcs. The number of arcs from Li to L j is equal to si · s j.

In this work, we define the utility function of a player to be a function of its inter-

ference number. More specifically, the utility function ui(s) of player Li is defined as

ui(s) = |A−m(Li)|− Ii(s). (4.1)

In other words, the objective of Li is to remove as many of the potential interference arcs

as possible from N−m (Li) by allocating channels to its radios. When the network is given,

|A−m(Li)| is a constant. Hence maximizing (4.1) can achieve the goal of minimizing Ii(s),

which is the interference suffered by Li under the strategy profile s.

Intuitively, the system performance function is defined as

U(s) = |Am|−∑Li∈L Ii(s), (4.2)

which is the total potential interference removed from the MPING under allocation profile

s. Likewise, |Am| is a constant, hence maximizing (4.2) can achieve the goal of minimizing

∑Li∈L Ii(s), which is the overall network interference.

Use the example in Figure 4.1 for illustration. The numbers in the parentheses

associated to each link represent the allocated channels. The corresponding channel al-

location vectors are s1 = (1,1,0,1), s2 = (0,1,1,1), s3 = (0,1,1,0), s4 = (0,1,0,1), and

s5 = (0,0,1,0). The interference graph under s is shown in Figure 4.2(c). Under this strat-

egy profile, we have u1(s) = 2, u2(s) = 0, u3(s) = 0, u4(s) = 1 and u5(s) = 1. The system

performance is U(s) = 4.
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4.4 ChAlloc Game

4.4.1 Possible Oscillation

We first show that players might not converge to any stable status, i.e. NE, according to

the current defined utility function. Consider the network illustrated in Figure4.3(a). Ob-

viously, we have the MPING as shown in Figure4.3(b). Assume that each link is equipped

only one radio pair and there are two channels {c1,c2} available. Due to the special topol-

ogy and the dependency relation, we have the following conclusions.

• If L4 uses c1, both L1 and L2 will use c2.

• If both L1 and L2 use c2, L3 will use c1.

• If L3 uses c1, L4 will use c2.

• If L4 uses c2, both L1 and L2 will use c1.

• . . .

This process turns into an infinite loop.

This possible oscillation is definitely undesirable for two reasons: 1) The channel

switching delays can be in the order of milliseconds [18], an order of magnitude higher

than typical packet transmission time (in microseconds). 2) It can introduce a significant

amount of communication overhead, as two devices need to coordinate to switch channels.

4.4.2 Game Analysis

As we have discussed above, the ChAlloc game can run into an oscillation problem, which

is undesirable from the system’s perspective. In order to induce players to converge to an

NE, we design a charging scheme to influence the players.
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Figure 4.3: Example where players oscillate forever

Charging Scheme Design: Similar approaches have also been used in [149, 150].

Their charging functions are designed based on the globally optimal channel allocation.

Essentially, players who deviate from the optimal channel allocation will be punished ac-

cording to the charging function. Unfortunately, it has been proved that the optimization

problem of maximizing the system performance function (4.2) is NP-hard [135]. Dif-

ferent variations of the channel allocation problem have also been shown to be NP-hard

[1, 91, 114, 117]. Therefore, we focus on designing a charging scheme, which can make

the ChAlloc game converge to an NE and achieve guaranteed system performance.

As in [149, 150, 157], we assume that there exists a virtual currency in the system.

Each player needs to pay certain amount of virtual money to the system administrator based

on the strategy profile s. We define the charge pi of player Li as

pi(s) = ∑L j∈N+
m (Li)

si · s j, (4.3)

which is the total interference player Li imposes on the others. The charge can be consid-

ered to be the fee for accessing the channels. We then redefine the utility function for each
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player Li ∈L as

ui(s) =
∣∣A−m(Li)

∣∣− Ii(s)− pi(s), (4.4)

which is equal to the original utility minus its payment to the system administrator.

Existence of Nash Equilibria: Having defined a new utility function for the player, we

next prove the existence of Nash Equilibria with the help of the concept of potential game

[101].

Definition 4.1. [Potential Game] A function Φ : Π 7→ Z∗ is an exact potential function

for a game if the change of any player’s utility can be exactly expressed in the function.

Formally, Φ should satisfy

Φ(si,s−i)−Φ(s′i,s−i) = ui(si,s−i)−ui(s′i,s−i),

for all s−i and si,s′i ∈ Πi. A game is called a potential game if it admits an exact potential

function. �

A nice property of being a potential game is that if Φ is bounded, we can prove

that the game possesses an NE and any improvement path leads to an NE. An improvement

path is a sequence of strategy profiles, each of which (except the first one) is formed from

the previous one by changing a unique player’s strategy to improve the player’s utility.

Therefore we first prove that the ChAlloc game is a potential game and then prove that its

corresponding potential function is bounded.

Lemma 4.1. The ChAlloc game is a potential game. �

Proof. We prove this lemma by constructing an exact potential function Φ. Define Φ as

Φ(s) =
1
2 ∑

Li∈L
ui(s).
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We next prove that Φ(si,s−i)−Φ(s′i,s−i) = ui(si,s−i)−ui(s′i,s−i) for all s−i and si,s′i ∈Πi.

First, we have

Φ(s) =
1
2 ∑

Li∈L

∣∣A−m(Li)
∣∣− ∑

L j∈N−m (Li)

si · s j− ∑
L j∈N+

m (Li)

si · s j


=
|Am|

2
− 1

2 ∑
Li∈L

 ∑
L j∈N−m (Li)

si · s j + ∑
L j∈N+

m (Li)

si · s j

 , (4.5)

where the second equality follows from the fact that |Am|= ∑Li∈L |A
−
m(Li)|. We then have

Φ(si,s−i)−Φ(s′i,s−i)

=
1
2

 ∑
L j∈N−m (Li)

s j · s′i− ∑
L j∈N−m (Li)

s j · si + ∑
L j∈N+

m (Li)

s j · s′i− ∑
L j∈N+

m (Li)

s j · si

+ ∑
L j∈N−m (Li)

s′i · s j + ∑
L j∈N+

m (Li)

s′i · s j−

 ∑
L j∈N−m (Li)

si · s j + ∑
L j∈N+

m (Li)

si · s j


=

 ∑
L j∈N−m (Li)

s′i · s j + ∑
L j∈N+

m (Li)

s′i · s j−

 ∑
L j∈N−m (Li)

si · s j + ∑
L j∈N+

m (Li)

si · s j


= ui(si,s−i)−ui(s′i,s−i),

where the first equality follows from the fact that the change of player Li’s strategy only

affects players in N−m (Li) and N+
m (Li), and the last equality follows from

ui(si,s−i)−ui(s′i,s−i)

= ∑
L j∈N−m (Li)

s′i · s j + ∑
L j∈N+

m (Li)

s′i · s j−

 ∑
L j∈N−m (Li)

si · s j + ∑
L j∈N+

m (Li)

si · s j

 .

We have proved that Φ(s) is an exact potential function (Definition 4.1) of the ChAl-

loc game. Hence the ChAlloc game is a potential game.

The bound of Φ(s) is given in the following lemma.

Lemma 4.2. For any s ∈Π, Φ(s) is bounded by O(r̄n2). �
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Proof. By (4.5), we have

Φ(s)≤ |Am|
2
≤ ∑Li∈L ri(n−1)

2
≤ 1

2
r̄n2.

This completes the proof.

Now we give the main theorem.

Theorem 4.1. The ChAlloc game possesses an NE. �

Proof. Combining Lemma 4.1 and Lemma 4.2, this theorem directly follows from Corol-

lary 2.2 in [101], which states that every finite potential game possesses a Nash Equilib-

rium.

Price of Anarchy: Although we have proved that there exist Nash Equilibria in the ChAlloc

game, we know that NE is usually not socially efficient in the sense that the system per-

formance in an NE is not optimized. Nevertheless, we prove that the POA of the ChAlloc

game is independent of the number of players involved in the game and is lower bounded

by a constant when the number of channels and the number of radios equipped on devices

are fixed.

Theorem 4.2. In the ChAlloc game, POA≥
(
1− r̄

h

)
. Recall that r̄ is the maximum number

of radios equipped on wireless devices and h is the number of available channels. �

Proof. Before proving the POA of the ChAlloc game, we first find a lower bound of the

utility of any player in an NE. Let sne = (sne
1 ,sne

2 , . . . ,sne
n )T be any NE of the ChAlloc game.
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Let sopt = (sopt
1 ,sopt

2 , . . . ,sopt
n )T be a social optimum. We have

ui(sne)

=
∣∣A−m(Li)

∣∣− ∑
L j∈N−m (Li)

sne
i · sne

j − ∑
L j∈N+

m (Li)

sne
i · sne

j

≥ ∑
si∈Πi

∣∣A−m(Li)
∣∣− ∑

L j∈N−m (Li)

si · sne
j − ∑

L j∈N+
m (Li)

si · sne
j

/|Πi| (4.6)

=
∣∣A−m(Li)

∣∣− ri

h

(∣∣A−m(Li)
∣∣+ ∣∣A+

m(Li)
∣∣) (4.7)

≥
∣∣A−m(Li)

∣∣− r̄
h

(∣∣A−m(Li)
∣∣+ ∣∣A+

m(Li)
∣∣) , (4.8)

where (4.6) follows from the definition of NE, (4.7) follows from the fact that each arc is

counted
(h−1

ri−1

)
times and |Πi|=

(h
ri

)
, next (4.8) follows from r̄ = maxLi∈L ri.

Then the system performance is

U(sne)

= ∑
Li∈L

ui(sne)+ ∑
L j∈N+

m (Li)

sne
i · sne

j

 (4.9)

≥ ∑
Li∈L

(∣∣A−m(Li)
∣∣− r̄

h

(∣∣A−m(Li)
∣∣+ ∣∣A+

m(Li)
∣∣))+ ∑

Li∈L
∑

L j∈N+
m (Li)

sne
i · sne

j (4.10)

= |Am|−
2r̄
h
|Am|+ ∑

Li∈L
∑

L j∈N+
m (Li)

sne
i · sne

j (4.11)

= |Am|−
2r̄
h
|Am|+ |Am|−U(sne), (4.12)

where (4.9) follows from (4.2) and (4.4), (4.10) follows from (4.8), and (4.12) follows from

the fact that |Am|=U(sne)+∑Li∈L ∑L j∈N+
m (Li)

sne
i · sne

j .

Considering the obvious fact that U(sopt)≤ |Am|, we have

U(sne)≥
(

1− r̄
h

)
U(sopt). (4.13)

Since (4.13) holds for any NE of the ChAlloc game, it is straightforward to prove that

POA≥
(
1− r̄

h

)
.
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A Localized Algorithm for the ChAlloc Game: Since the ChAlloc game is a potential

game (Lemma 4.1), any improvement path leads to an NE [101]. To form an improvement

path, we need to require the sequential action of the players. Each player takes its best re-

sponse strategy upon its turn. Note that bi(s−i) can be computed just based on the strategies

of the players in N−m (Li) and N+
m (Li). Therefore we can design a localized algorithm for

players to find an NE. A localized algorithm needs no information to propagate through the

whole network. Thus it is scalable to the network size and robust to the topology change.

Algorithm 4: A Localized Algorithm for Li

1 Randomly allocate ri channels as si;
2 Wi← i, ctr← 0;
3 while true do
4 if Wi = 0 then
5 Get the current channel allocation;
6 s′i← bi(s−i);
7 if s′i = si then
8 if ctr = n then break; else ctr← ctr+1;
9 else si← s′i, ctr← 0;

10 Wi← n;
11 else Wi←Wi−1;
12 end

The localized algorithm is illustrated in Algorithm 4. The implementation issue

will be discussed later. To avoid the simultaneous change in channel allocations of dif-

ferent players, we let each player Li have a counter Wi, which is initially set to i. At the

beginning of the algorithm, each player Li randomly picks ri channels as its initial strategy.

In every iteration, Li checks the value of Wi. If Wi is equal 0, Li gets the current channel

allocations and calculates its best response strategy bi(s−i). If the best response strategy is

the same with its current strategy, it increases another counter ctr by 1. Otherwise, it up-

dates its strategy and resets ctr to 0. The value of ctr indicates how many times its current

strategy has been the best response strategy consecutively. The use of ctr is to avoid early
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termination before the ChAlloc game converges to an NE. If the counter Wi has not reached

0, Li decreases its value by 1.

Lemma 4.3. The best response strategy bi(s−i) can be computed in O(h(n+ logh)) time.

�

Proof. We prove this lemma by giving an algorithm to compute bi(s−i). For each channel

ck ∈ C , we compute the value of ∑L j∈N−m (Li)
ek · s j +∑L j∈N+

m (Li)
ek · s j, where ek denotes the

vector with a 1 in the kth coordinate and 0’s elsewhere. This can be finished in O(hn)

time. Sort the channels in a nondecreasing order, which can be finished in O(h logh) time.

Since channels are independent, Li selects the first ri channels as bi(s−i). Hence the above

algorithm can be finished in time bounded by O(h(n+ logh)).

Theorem 4.3. For any instance of the ChAlloc game, if all the players follow Algorithm 4,

it takes O(r̄hn3(n+ logh)) time to converge to an NE. �

Proof. According to Lemma 4.1 and Lemma 4.2, every time a player changes its strategy

(to one introducing better utility), the potential function Φ(s) will be increased accordingly

and the value of Φ(s) is bounded by O(r̄n2). Therefore the number of strategy updates

is bounded by O(r̄n2). Since there will be at least one strategy update in each round, the

number of rounds is also bounded by O(r̄n2). Using Lemma 4.3 and the fact that n players

take actions sequentially in each round, we can prove that it takes O(r̄hn3(n+ logh)) time

for the ChAlloc game to converge to an NE.

Implementation Issue: Existing works [65, 75, 130, 132] on distributed or localized

channel allocation algorithms all assume that the interference sets are given, but do not

discuss how to find them in a distributed manner. We assume that during the channel

allocation stage, all the players are using the same channel on one of their radios, which
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is called the control channel, and using the maximum transmission power to send packets.

Because of the assumption that li ≤ R
γ

, it is guaranteed that all the links in the interference

range of link Li can overhear the packets. The packet to be exchanged during the channel

allocation stage is of form (i,si). For each player Li, upon its turn, it sends out the packet.

During other time periods, it listens to the control channel and receives packets from others.

For the packet received from L j, Li computes its distance from L j according to the received

signal strength, puts L j in N+
m (Li) if L j is within its interference range, and puts L j in

N−m (Li) if it is within L j’s interference range.

4.4.3 Upper Bounds on Optimal Channel Allocation

In this section, we derive efficiently computable upper bounds on the channel allocation

problem, which will be used in Section 4.5 to evaluate the system performance of the

ChAlloc game. We first formulate the channel allocation problem as an integer linear

program (ILP) and then relax the constraints to achieve an upper bound on the optimal

solution.

Let sik ∈ {0,1} denote Li’s allocation on ck, where sik = 1 if Li allocates ck to one

of its radios and sik = 0 otherwise. Let xi jk ∈ {0,1} denote the interference from Li to L j

via ck. Our ILP can be formulated as follows,

max |Am|−
n

∑
i=1

n

∑
j=1, j 6=i

h

∑
k=1

xi jk

s.t.
h

∑
k=1

sik = ri (Li ∈L ) (4.14)

xi jk ≥ sik + s jk−1 ((Li,L j) ∈ Am,ck ∈ C ) (4.15)

sik ∈ {0,1} (Li ∈L ,ck ∈ C )

xi jk ∈ {0,1} (Li,L j ∈L ,Li 6= L j,ck ∈ C ),
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where Constraints (4.14) follow our system model, and Constraints (4.15) guarantee that

xi jk = 1 if and only if both Li and L j have one radio tuned to channel ck.

Unfortunately, solving an ILP is in general NP-hard [51], which means it may take

exponential time to find the optimal solution. Hence we relax the above ILP to an LP

by allowing sik and xi jk to be real values between 0 and 1. The LP has been shown to be

solvable in polynomial time [78]. As the constraints are relaxed, the LP only gives an upper

bound on the ILP’s optimal solution.

4.5 Performance Evaluation

Experiment Setup: In the simulations, links were randomly distributed in a 1000m×

1000m square. The length of each link was uniformly distributed over [1,30]. The inter-

ference range of the node was set to 2 times of the link length. The number of available

channels was varied from 5 to 12 with increment of 1. The number of links was varied from

10 to 100 with increment of 10. The number of radio pairs on each link was uniformly se-

lected over [1,r], where r ∈ {2,3,4,5}. Note that r̄ = r in most cases. For every setting, we

randomly generated 100 instances and averaged the results.

Channel Allocation Algorithms: To evaluate the system performance of the ChAlloc

game, we compare the ChAlloc game with other two algorithms listed as below.

• LP-based Algorithm (LP): This algorithm is based on the LP formulation in Section

4.4.3.

• Random Allocation Algorithm (Rand): In this algorithm, each link Li randomly select

ri channels out of the h channels. To certain extent, Rand serves as a lower bound of

the system performance in any channel allocation.

Performance Metric: The performance metrics include the system performance defined
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by (4.2), the player’s removed interference defined by (4.1), and the convergence speed

defined as the number of rounds before an NE is reached.

Convergence of the ChAlloc Game

We first verify that the ChAlloc game with the charging scheme, denoted by ChAl-

loc, does converge while the one without the charging scheme, denoted by No-Charge, may

oscillate. In this set of simulations, we set n to 50, r to 3, and h to 8. The x-axis represents

the number of runs, each of which is an iteration of the while-loop in Algorithm 4. Using

runs can show the results in at a more granular level than using rounds. Although the algo-

rithm will terminate when the game reaches an NE, we let it keep running for the sake of

comparison. We have the results for 10000 runs, but only show the first 1000 runs due to

the space limitation. Figure 4.4(a) shows the system performance of these two difference

game settings. As expected, ChAlloc converges to an NE after 222 runs, while No-Charge

still oscillates even after 1000 runs. The factors affecting the convergence speed will be

investigated later.
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Figure 4.4: Convergence of the ChAlloc game

Figure 4.4(b) shows the removed interference for a random player (player 44). We

observe that the removed interference of the player stays the same after about 200 runs in

ChAlloc, but oscillates even after 1000 runs in No-Charge. Note that other players have the
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similar results.
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Figure 4.5: Convergence speed

We next verify our analysis of the convergence speed, measured by the number of

rounds. According to Theorem 4.3, the theoretical value is O(r̄n2). We set h to 8 and r to

3 in Figure 4.5(a). We set n to 50 and r to 3 in Figure 4.5(b). We set n to 50 and h to 8

in Figure 4.5(c). Figure 4.5(a) and Figure 4.5(b) show the impact of n and the impact of

r on the convergence speed, respectively. We observe that the convergence speed is much

faster than the theoretical speed, and that all the instances can converge within 10 rounds

on average. Figure 4.5(c) shows that the convergence speed is almost independent of h,

with the varying range of the average being less than 1.

System Performance

We now compare the system performance of the ChAlloc game with those of other

algorithms. Figure 4.6 shows all the results. As expected, LP has the best performance

while Rand has the worst. The first observation is that all the results are consistent with

our performance analysis in Theorem 4.2. In particular, Figure 4.6(a), Figure 4.6(b) and

Figure 4.6(c) show the impact of n, r and h on the system performance, respectively. The

results confirm that the system performance of ChAlloc compared to LP is independent of

n. The less radios or the more channels there are, the closer the performance of ChAlloc
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Figure 4.6: Comparison on the system performance

is to the performance of LP. Another observation is that the gap between the performance

of Rand and the performance of ChAlloc gets narrower when the number of channels in-

creases or the number of radios decreases. The reason is that when the value of r̄
h decreases,

the probability that two interfering links share the same channels decreases as well.

4.6 Conclusion

In this work, we have studied the channel allocation problem in non-cooperative

MR-MC networks. Compared with existing works, we removed the single collision do-

main assumption and considered networks with multiple collision domains. We modeled

the problem as a strategic game, called ChAlloc. Via an example, we showed that ChAlloc

may result in an oscillation when no exogenous factors exist. To avoid this possible oscil-

lation, we design a charging scheme to influence players’ behavior. We then proved that
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ChAlloc will converge to an NE in polynomial number of steps. We further proved that the

system performance in any NE is guaranteed to be at least (1− r̄
h) of that in the optimal so-

lution, where r̄ is the maximum number of radios equipped on wireless devices and h is the

number of available channels. We also developed a localized algorithm for players to find

an NE strategy. Through extensive experiments, we validated our analysis of the possible

oscillation and the convergence when there is and is not the charging scheme. Finally, the

experiment results also confirmed our proof on the system performance compared to the

upper bounds returned by an LP-based algorithm.
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Part II

Incentive Mechanisms
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Chapter 5

Truthful Auction for Cooperative Communications

Cooperative communication [83] has been shown to have great potential to increase the

channel capacity between two wireless devices. It essentially exploits the nature of broad-

cast and the relaying capability of other nodes to achieve spatial diversity. Yet the appli-

cations of cooperative communication technology are rarely seen in reality, even in some

scenarios where capacity demand continually grows. The cellular network is one of such

examples. The demands for bandwidth-hungry multimedia applications have pushed the

system designers to develop more and more innovative network solutions. This fact is mir-

rored by the exponentially fast growth of 3G/4G wireless networks. Cell phone carrier

companies spend billions of dollars on building the infrastructures. As the second largest

cell phone carrier company in the U.S., AT&T plans to invest 19 billion dollars on the

improvement of 3G networks next year [4]. In contrast to 3G/4G wireless networks, co-

operative communication technology does not require extra infrastructure and offers the

advantage of flexibility. Although this technology is promising, a main obstacle lying be-

tween the potential capability of channel capacity improvement and the wide adoption of

cooperative communication is the lack of incentives for the participating wireless nodes

to serve as relay nodes. Why would a cell phone carrier be willing to relay the traffic of

another carrier at the cost of its own resource? One answer to this question is to let the

relay node have monetary value in return. Therefore there must be a trade between the

wireless node requesting relay service and the one providing such service. Auction is one

of the most popular trading form [79], as it allows competitive price discovery and fair and

efficient resource allocation.

An auction involving both buyers and sellers is called a double auction. To be more
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Seller

Auctioneer

Figure 5.1: Auction for cooperative communications. Relay nodes (sellers) offer prices to
sell their relay services. Source nodes (buyers) bid these services for cooperative commu-
nication. The base station (auctioneer) determines winners and clearing prices.

specific, the double auction scheme designed in this this falls into the category of single-

round multi-item double auction. In this auction scheme, as shown in Figure 5.1, n buyers

are interested in multiple items from m sellers. However, each buyer needs at most one item

at the end of the auction and each seller can sell its item to at most one buyer. The whole

auction procedure processes in a single round fashion. Fairly surprisingly, little work has

been done in either networking literature or economics literature. Existing double auction

schemes [33, 67, 94, 110, 113] cannot be directly applied to the cooperative communication

auction. We will give a brief review on the related work in Section 5.2.

The auction design is a crucial aspect of trading market, because the auction scheme

not only directly defines the trading rules, but also implicitly defines the behaviors of partic-

ipating agents. Specifically, truthfulness (also called strategy-proofness) is the most critical

property of auction scheme. An auction scheme is truthful if revealing the truthful pri-

vate value is every participating agent’s dominant strategy no matter what strategies other

agents are doing. It has been shown both theoretically and practically that an auction could

be vulnerable to market manipulation and produce very poor outcomes if this property is
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not guaranteed [74]. Besides truthfulness, the following properties are also desirable when

designing an auction scheme: 1) Individual Rationality: each agent participating in the

auction can expect a non-negative profit; 2) Budget Balance: the auctioneer should finish

the auction with no profit loss; 3) System Efficiency: the sum of valuations of all agents is

optimized, e.g. the total capacity in this work. Unfortunately, the well-known result from

[104] shows that no double auction mechanism can achieve truthfulness, budget-balance,

and efficiency at the same time, even putting individual rationality to aside. As our goal of

this work is to stimulate the participation of wireless nodes in relay services, we focus our

design on satisfying truthfulness, individual rationality and budget balance.

5.1 Introduction

In this work, we design a Truthful Auction Scheme for Cooperative communica-

tions (TASC). The main contributions of this work are as follows. Firstly, we are the first

to design a truthful auction scheme for cooperative communications, named TASC. TASC

implicitly makes it the dominant strategy to bid or ask truthfully for participating agents,

thereby eliminating the fear of market manipulation and the overhead of strategizing over

others. Secondly, besides being truthful, TASC is also individually rational and budget-

balanced. To the best of our knowledge, this is also the first truthful multi-item double

auction scheme even in the economic literature. We hope our study can incite more atten-

tion on this type of auction from other researchers. Thirdly, TASC allows the auctioneer to

choose any relay assignment algorithm based on its performance requirement. For exam-

ple, the maximum weighted matching algorithm can be used to maximize the total capacity;

Algorithm ORA [129] can be used to maximize the minimum capacity; and the maximum

matching algorithm can be used to maximize the number of successful trades. Last but

not least, extensive experiments confirm the truthfulness of TASC, and show that TASC

achieves all the required properties with limited degradation on the system efficiency.
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The remainder of this section is organized as follows. First, we briefly review exist-

ing related double auction schemes in the economic literature in Section 5.2. Then we pro-

vide an overview of the necessary preliminaries and formulate the problem in Section 5.3.

In Section 5.4, we first discuss the challenges of designing a truthful double auction scheme

with required economic properties. Next we give the detailed design of our auction scheme

TASC. Extensive experiment results are presented in Section 5.5. Finally we conclude this

work in Section 5.6.

5.2 Existing Auction Schemes

We categorize the related work into two groups, of which one is the related auction

schemes from economics literature and the other is specifically for cooperative communi-

cations from networking literature.

Although auction theory has been extensively studied in the economics literature,

the existing auction designs cannot fully satisfy the required properties stated in Section 1.1.

We summarize the most related works in Table 5.1. In this table, we list the major differ-

ences between the existing works and the auction scheme designed in this work. Here the

heterogeneity of trading items plays an important role in the auction design. It makes the

design more challenging as each buyer has preferences on different items from different

sellers. Besides the difference listed in the table, some of the existing schemes are also

multi-round auctions [5, 33, 99]. Multi-round auction is unsuitable for the cooperative

communications, where timeliness is a necessary requirement and large communication

overhead is unfavorable.

There are few studies on the auction design for cooperative communications in net-

working literature, among which the works in [66, 128, 141] are most related to our work.

In [128], Shastry and Adve proposed a pricing-based system to stimulate the cooperation
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Existing Work Heter. Item Double Auction Truthful

[33] 3 7 3

[113] 7 3 7

[94] 7 3 3

[7] 7 3 3

[110] 3 3 7

[35] 3 3 7

[67] 7 3 3

[5] 3 7 −
[99] 3 7 −

This work 3 3 3

Table 5.1: Existing auction schemes. “−” means that the corresponding property is un-
known.

via payment to the relay node. In [141], Wang et al. employed a buyer/seller Stackelberg

game, where a single buyer tries to buy services from multiple relays. The buyer announces

its selection of relays and the required transmission power, then the relays ask proper prices

to maximize their profits. In [66], Huang et al. proposed two auction mechanisms, which

are essentially repeated games. In each auction mechanism, each user iteratively updates its

bid to maximize its own utility function with the knowledge of others’ previous bids. With

a common drawback, none of the above works considered truthfulness, which is critical to

the auction scheme.

5.3 System Model

We use a well-known three-node example in Figure 5.2 to describe the essence

of cooperative communications (CC). In this example, s is the source node that transmits

information, d is the destination node that receives information and r is the relay node that

both receives and transmits information to enhance the communication between the source

and the destination. CC proceeds in a frame-by-frame fashion. Each frame is divided into

two time slots. The source s transmits data to the destination d in the first time slot. Due to
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the broadcast nature, relay node r can overhear this transmission. In the second time slot, r

forwards the data to d using different techniques depending on different CC modes. There

are two CC modes, Amplify-and-Forward (AF) and Decode-and-Forward (DF) [83]. For

details about AF and DF, we refer interested readers to [83]. We use cR(s,r,d) to denote the

achievable capacity under CC and cD(s,d) to denote the achievable capacity without CC.

s d

r

(a)

rs d dr …r
ds dr

frame 1 frame 2

slot 1 slot 3 slot 4slot 2

(b)

Figure 5.2: Three-node example for CC

In this work, we consider a static ad hoc wireless network consisting of n source-

destination pairs {s1,d1;s2,d2; . . . ;sn,dn} and a set R = {r1,r2, . . . ,rm} of m relay nodes.

We use S = {s1,s2, . . . ,sn} to denote the set of source nodes and D = {d1,d2, . . . ,dn}

to denote the set of destination nodes. We assume that there is a base station acting as a

central control and an auctioneer in the auction scheme, e.g. the base station in the cellular

networks, where di is the base station for all si’s, as shown in Figure 5.1.

We design the cooperative communication auction as a single-round multi-item dou-

ble auction. In this auction, source nodes are buyers, relay nodes are sellers, and the base

station is the auctioneer. Throughout this work, we may use source node and buyer, relay

node and seller, and base station and auctioneer interchangeably. For narration conve-

nience, we call both buyers and sellers agents in general. Buyers bid for relay services

for cooperative communication, while sellers offer cooperative services at the cost of re-

sources, e.g. energy, and receive monetary payment in return. For each buyer, it has

different valuations of the relay nodes as it can achieve different capacities by cooperat-
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ing with different relay nodes. Let V j
i be buyer si’s true valuation of relay service from

seller r j, which describes the true price that si is willing to pay for the relay service. Let

Vi = (V 1
i ,V

2
i , . . . ,V

m
i ) be the true valuation vector of buyer si. Obviously, we have V j

i > 0

if cR(si,r j,di)> cD(si,di) and V j
i = 0 otherwise. A buyer has no incentive to buy the relay

service which cannot provide higher capacity than transmitting directly. Similarly, let C j

be seller r j’s true cost of providing relay service, which is for example related to the energy

consumption. A seller does not differentiate among buyers as it uses the same transmission

power. We assume that each buyer wants at most one relay to facilitate the cooperative

communication. A recent work by Zhao et al. [168] shows that it is sufficient for a source

node to choose the best relay node even when multiple are available to achieve full diver-

sity. We also assume that each relay node can be shared by at most one source node as it

would provide different capacity from what the buyer expects otherwise.

The auction is a sealed-bid auction. Following the terminology in auction theory,

we refer the price submitted by a buyer and a seller as bid and ask, respectively. Each buyer

(resp. seller) submits its private bid (resp. ask) to the auctioneer and has no knowledge

about others. We assume that both asks and bids are static and will not change during

the auction. At the beginning of the auction, each buyer si submits a bid vector Bi =

(B1
i ,B

2
i , . . . ,B

m
i ), where B j

i is the bid for seller r j. Bi may or may not be the same as its true

valuation vector Vi. Each seller r j submits its ask A j, which may or may not be its true cost

C j. Let B = (B1;B2; . . . ;Bn) represent the bid matrix consisting of bid vectors submitted

by all buyers. Similarly, let A = (A1,A2, . . . ,Am) represent the set of asks submitted by all

sellers. Let B− j
i = (B1

i , . . . ,B
j−1
i ,B j+1

i , . . . ,Bm
i ) denote the bid vector of buyer si with bid B j

i

removed. Let B−i = (B1; . . . ;Bi−1;Bi+1; . . . ;Bn) denote the bid matrix with si’s bid vector

Bi removed. Let B|iB denote the bid matrix with si’s bid vector changed to B. We have A− j

and A| jA defined in similar ways. Given S , R, D , B and A, the auctioneer decides the
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winners, including both winning buyers and winning sellers, allocates the relay nodes to

the source nodes, and determines the clearing price for both winning buyers and winning

sellers according to the designed auction scheme. Let Sw⊆S be the set of winning buyers

and Rw ⊆R be the set of winning sellers. Let σ : {i : si ∈Sw} → { j : r j ∈Rw} be the

relay node assignment decided by the auctioneer. Note that σ(·) is actually a one-to-one

mapping from the indices of winning buyers to those of winning sellers. Therefore, σ−1( j)

is the index of the source node that relay node r j is assigned to. Let Pb
i be the price that

the winning buyer si needs to pay. Let Ps
j be the payment the auctioneer pays the winning

seller r j. Then the utility of buyer si ∈S is defined as

Ub
i =


V σ(i)

i −Pb
i if si ∈Sw,

0 otherwise.
(5.1)

Accordingly, the utility of seller r j ∈R is defined as

U s
j =


Ps

j −C j if r j ∈Rw,

0 otherwise.
(5.2)

5.4 TASC

5.4.1 Challenge of the Auction Design

In this section, we illustrate the challenges of designing a truthful cooperative communica-

tion auction. To better understand these challenges, we show the failures of existing double

auction schemes when directly applied to the cooperative communication auction. There

are two existing double auction schemes, VCG-based double auction and McAfee double

auction. We analyze each of them in Section 5.4.1 and Section 5.4.1, respectively.

VCG-based Double Auction

The most well-known auction scheme is the Vickrey-Clarke-Groves (VCG) scheme

[23, 60, 138], which can guarantee the truthfulness. In the VCG-based double auction
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scheme [110], the winners and the assignment between buyers and sellers are determined

in a way such that the social welfare W = ∑si∈Sw(B
σ(i)
i −Aσ(i)) is maximized. Intuitively,

this can be achieved by finding the maximum weighted matching in the bipartite graph

G = (S ,R,E ,δ ), where (si,r j) ∈ E if B j
i > 0 and δ (si,r j) = B j

i −A j is the weight on

edge (si,r j). Let W ∗ be the optimal value. Let W ∗−si
be the optimal value when buyer si is

removed from the auction. Let W ∗−r j
be the optimal value when seller r j is removed from

the auction. The price each buyer si ∈Sw needs to pay is

Pb
i = Bσ(i)

i − (W ∗−W ∗−si
). (5.3)

The payment each seller r j ∈Rw receives is

Ps
j = A j +(W ∗−W ∗−r j

). (5.4)

Obviously, both W ∗−W ∗−si
and W ∗−W ∗−r j

are non-negative for all si ∈Sw and r j ∈

Rw. Therefore, the VCG-based double auction satisfies the individual rationality property.

Furthermore, it has been shown that VCG-based auctions are truthful [110]. The proof

closely follows standard Vickrey auction proofs. However, a counter example in Figure 5.3

shows that the VCG-based double auction scheme is not budget balanced. In this example,

W ∗ = 9, W ∗−s1
= 4, W ∗−s2

= 7, W ∗−r1
= 7, and W ∗−r2

= 3. Hence Pb
1 = 10− (9− 4) = 5,

Pb
2 = 4− (9− 7) = 2, Ps

1 = 2+ (9− 7) = 4 and Ps
2 = 3+ (9− 3) = 9. The auctioneer

finishes the auction with a loss of (4+9)− (5+2) = 6.

McAfee Double Auction

In the McAfee double auction [94], items for auction are homogeneous. Buyers

have no preference on these items. Therefore each buyer si only submits one bid Bi and

each seller r j offers one ask A j. The auctioneer starts by sorting the bids in non-increasing

order and the asks in non-decreasing order: Bi1 ≥ Bi2 ≥ . . .Bin and A j1 ≤ A j2 ≤ . . .A jm . The
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Figure 5.3: Example showing the budget imbalance of the VCG-based double auction.
The two numbers associated with link (si,r j) are bid B j

i and δ (si,r j). The thick blue lines
represent the maximum weighted matching. The number besides each seller is its ask.

auctioneer then finds the largest k such that Bik ≥ A jk and Bik+1 < A jk+1 . Let t =
Bik+1+A jk+1

2 .

The clearing prices are determined as follows:
Pb = Ps = t if A jk ≤ t ≤ Bik ,

Pb = Bik ,P
s = A jk otherwise,

where Pb is the price charged to each winning buyer and Ps is the payment that each win-

ning seller receives. Although McAfee double auction satisfies all three properties desired

in this work [94], the homogeneity of auction items makes it unsuitable for the cooperative

communication auction without further development.

5.4.2 Design of TASC

Now, we present TASC, a truthful and computationally efficient auction scheme for co-

operative communications. We start by giving a brief overview of the design rationale.

We then describe the detailed design consisting of two main stages. Next we show that

TASC satisfies the three properties listed in Section 1.1. Finally, we prove that TASC has

a polynomial time complexity of O(T + l2), where T is the time complexity of the relay

assignment algorithm and l = min{n,m}.

Overview: Although the VCG-based double auction is superficially closest to the auction

we aim to design, the imbalance of the budget is unacceptable to the auctioneer. In contrast,
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TASC is inspired by the design of McAfee double auction. TASC consists of two stages:

Assignment and Winner-Determination &Pricing. To overcome the limitation of McAfee

double auction, we apply an assignment algorithm to find a relay assignment in the assign-

ment stage. In the second stage, we apply McAfee double auction to determine the clearing

price for both sellers and buyers. The auctioneer charges all winning buyers the same price

and pays all winning sellers the same payment.

Design: We now describe the design of TASC in detail. In the assignment stage, we need to

design a new relay assignment algorithm or apply the existing relay assignment algorithms

with the requirement of being independent of the buyers’ bids and the sellers’ asks. The

relay assignment algorithm’s dependency on either the bids or the asks could make the

auction vulnerable to market manipulation. Our procedure for the assignment stage is

shown in Algorithm 5.

Algorithm 5: TASC-Asgmnt(S , R, D)
1 Construct a set U of vertices corresponding to S ;
2 Construct a set V of vertices corresponding to R;
3 E ← /0;
4 forall the si ∈S , r j ∈R do
5 if cR(si,r j,di)> cD(si,di) then
6 E ← E ∪{(si,r j)};
7 end
8 end
9 (Sc,Rc,σ)←Φ(U ,V ,E ,cR);

10 return (Sc,Rc,σ);

Depending on the specific scenario, the auctioneer can choose different assignment

algorithms (Φ(·)) for different purposes. For example, to maximize the total capacity,

the maximum weighted matching algorithm can be applied; to maximize the minimum

capacity among all source nodes, Algorithm ORA in [129] can be applied; to maximize

the number of trades, the maximum matching algorithm fulfills the mission. The return
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values include the candidate winning buyers Sc, the candidate winning sellers Rc and the

assignment σ .

In the winner-determination & pricing stage, we tightly integrate the winner deter-

mination and the pricing operation. With the assignment obtained in the previous stage, we

can apply McAfee double auction to determine the winners and the clearing prices. The

detailed algorithm is shown in Algorithm 6.

Algorithm 6: TASC-WD&Pricing(Sc,Rc,σ ,B,A)
1 Sw← /0, Rw← /0;
2 Sort all the buyers in Sc to get an ordered list S=< si1,si2, . . . > such that

Bσ(i1)
i1 ≥ Bσ(i2)

i2 . . .;
3 Sort all the sellers in Rc to get an ordered list R=< r j1,r j2, . . . > such that

A j1 ≤ A j2 . . .;

4 Find the largest k, such that Bσ(ik)
ik ≥ A jk ;

5 if k < 2 then return (Sw,Rw,0,0);
6 (x,y)← (ik, jk);
7 // Determine the price and the payment

8 Pb← Bσ(x)
x , Ps← Ay;

9 // Sacrifice one buyer and one seller to ensure the truthfulness

10 Sw← Sx \{sx}, Rw← Ry \{ry};
11 // Determine the final winners

12 for si ∈Sw do
13 if rσ(i) 6∈Rw then Sw←Sw \{si};
14 end
15 for r j ∈Rw do
16 if sσ−1( j) 6∈Sw then Rw←Rw \{r j};
17 end
18 return (Sw,Rw,Pb,Ps);

For ease of illustration, we introduce more notations and concepts.

• S denotes an ordered list of buyers sorted in non-increasing order according to their

bids on the assigned relay nodes.
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• R denotes an ordered list of sellers sorted in non-decreasing order according to their

asks.

• Sk denotes the sublist of the first k buyers in S.

• Rk denotes the sublist of the first k sellers in R.

• Σ(S,R) denotes the set of matchings induced by S and R, i.e., Σ(S,R) = {(si,r j) :

si ∈ S,r j ∈ R, j = σ(i)}.

• We call the buyer-seller pair, according to which the auctioneer determines the win-

ners and clearing prices, the boundary pair. In McAfee double auction, sik–r jk is

such a pair.

• Since the winning buyer and the winning seller are pairwise determined, we call

(si,rσ(i)) or (sσ−1( j),r j) the winning pair.

The main algorithm of TASC is illustrated in Algorithm 7.

Algorithm 7: TASC(S , R, D , B, A)
1 (Sc,Rc,σ)← TASC-Asgmnt(S , R, D);
2 (Sw,Rw,Pb,Ps)← TASC-WD&Pricing(Sc,Rc,σ ,B,A);
3 return (Sw,Rw,σ ,Pb,Ps);

Properties of TASC: Having given the detailed design of TASC, we now prove the prop-

erties mentioned in Section 1.1.

Theorem 5.1. TASC is individually rational. �

Proof. For each winning buyer si ∈Sw ⊆ Sx, we know that Bσ(i)
i ≥ Bσ(x)

x = Pb. The same

claim also holds for each seller. This completes our proof.
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Theorem 5.2. TASC is budget-balanced. �

Proof. Note that we have |Sw| = |Rw| based on the assignment assumption. For each

winning buyer si ∈ Sw and its assigned winning seller rσ(i) ∈ Rw, we have Pb
i = Pb =

Bσ(x)
x ≥ Ay = Ps = Ps

j . Therefore we have ∑si∈Sw Pb
i −∑r j∈Rw Ps

j = |Sw|(Pb−Ps) ≥ 0,

which completes the proof.

Theorem 5.3. TASC is truthful. �

Before proving Theorem 5.3, we need to prove a series of lemmas. We show that the

auction result of each buyer is partially independent of its bid in Lemma 5.1, the winner-

determination is bid-monotonic [7] (resp. ask-monotonic) for the buyer in Lemma 5.2

(resp. the seller in Lemma 5.3), the pricing is bid-independent for buyers in Lemma 5.4

(resp. ask-independent for the sellers in Lemma 5.5) and TASC is truthful for buyers in

Lemma 5.6 (resp. sellers in Lemma 5.7).

Hereafter, we use tilde to differentiate notations with the same meaning, but dif-

ferent values, e.g., B̃i and Bi are two different bid vectors of si. In addition, we define

several comparison operators: > j,= j,< j. We say B̃i> jBi if B̃ j
i > B j

i , B̃i= jBi if B̃ j
i = B j

i

and B̃i< jBi if B̃ j
i < B j

i .

Lemma 5.1. If buyer si is assigned relay rσ(i) in the assignment stage, then the auc-

tion result for si is independent of its bids B−σ(i)
i . In other words, the results of Ψ =

(S ,R,D ,B|iBi,A) and Ψ̃ = (S ,R,D ,B|iB̃i,A) are the same, if Bi=σ(i)B̃i. �

Proof. The assignment stage is independent of bids and asks. In the winner-determination

and pricing stage (Algorithm 6), it is clear that both the winner determination and the price

charged to the buyer are only dependent on the bid the buyer bids on rσ(i) and the asks A

of sellers. Therefore, our lemma holds.
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Due to the space limitation, we prove the properties for buyers in the following

lemmas and only prove one for sellers. Other properties for sellers can be proved in similar

ways as we prove for buyers.

  

 

     

     

sx  si si 

ry 

Figure 5.4: Illustration for Lemma 5.2

Lemma 5.2. If si wins Ψ=(S ,R,D ,B|iBi,A) by bidding Bi, it can also win Ψ̃=(S ,R,D ,B|iB̃i,A)

by bidding B̃i>σ(i)Bi. �

Proof. In the assignment stage, since the relay assignment algorithm is independent of bids

and asks, if si is assigned a relay node rσ(i) in Ψ, it is assigned the same relay node in Ψ̃

as well. Let pi and p̃i be si’s positions in S and S̃, respectively. An illustration is shown in

Figure 5.4. Because B̃σ(i)
i > Bσ(i)

i , the orders in S and S̃ after pi are exactly the same. In

addition, we know that the values of k (Line 4) are the same in both S and S̃. Therefore,

during the winner determination stage, sx and ry are still selected as the boundary pair in

Ψ̃, which implies that buyer si is also a winner in Ψ̃.

Lemma 5.3. If r j wins Ψ=(S ,R,D ,B,A| jA j) by asking A j, it can also win Ψ̃=(S ,R,D ,B,A| jÃ j)

by asking Ã j < A j. �

Proof. Since the relay assignment algorithm is independent of bids and asks, r j is assigned

to the same buyer sσ−1( j) in both Ψ and Ψ̃. Let qi and q̃i be r j’s positions in R and R̃,

respectively. An illustration is shown in Figure 5.5. Because Ã j < A j, the orders in R and
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Figure 5.5: Illustration for Lemma 5.3

R̃ after qi are exactly the same. In addition, we know that the values of k (Line 4) are the

same in both R and R̃. Therefore, during the winner determination stage, sx and ry are still

selected as the boundary pair in Ψ̃, which implies that seller ri is also a winner in Ψ̃.

Lemma 5.4. If si wins both Ψ = (S ,R,D ,B|iBi,A) and Ψ̃ = (S ,R,D ,B|iB̃i,A) by bid-

ding Bi and B̃i, it is charged the same price, i.e., Pb = P̃b. �

Proof. By Lemma 5.1, we know that buyer si’s bid B−σ(i)
i will not change the auction

result nor the charged price if it wins the auction. Hence, without loss of generality, we

assume that B̃i>σ(i)Bi. As mentioned in the proof of Lemma 5.2, sx and ry are selected as

the boundary pair in both Ψ and Ψ̃. According to the pricing strategy, we know that, buyer

si is charged the same price, Pb = P̃b = Bσ(x)
x , in both Ψ and Ψ̃.

Lemma 5.5. If r j wins both Ψ = (S ,R,D ,B,A| jA j) and Ψ̃ = (S ,R,D ,B,A| jÃ j) by

asking A j and Ã j, it is paid the same payment, i.e., Ps = P̃s. �

Lemma 5.6. TASC is truthful for buyers. �

Proof. We prove this theorem by showing that no buyer si can improve its utility by bidding

Bi 6= Vi, i.e. Ũb
i ≤Ub

i for any Bi 6= Vi, where Ũb
i and Ub

i are the utilities of si when bidding

Bi and Vi, respectively. We examine all the possible cases one by one as shown in Table 5.2.
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Case Result

Bi=σ(i)Vi Ũb
i =Ub

i

Bi>σ(i)Vi

Bi: w, Vi: w Ũb
i =Ub

i

Bi: w, Vi: l Ũb
i ≤Ub

i

Bi: l, Vi: l Ũb
i =Ub

i

Bi<σ(i)Vi

Bi: w, Vi: w Ũb
i =Ub

i

Bi: l, Vi: w Ũb
i ≤Ub

i

Bi: l, Vi: l Ũb
i =Ub

i

Table 5.2: Proof logic of Lemma 5.6. w means it wins and l means it loses.

• Case 1: Bi=σ(i)Vi

By Lemma 5.1, we know that buyer si is charged the same price Pb by bidding Bi and Vi

if Bi=σ(i)Vi. Therefore, we have Ũb
i =V σ(i)

i −Pb =Ub
i .

• Case 2: Bi>σ(i)Vi

By Lemma 5.2, we know that it is impossible that buyer si wins the auction by bidding

Vi but loses by bidding Bi. Hence there are three subcases: 1) si wins by bidding both Vi

and Bi; 2) si wins by bidding Bi but loses by bidding Vi; and 3) si loses by bidding both

Vi and Bi. For subcase 1), buyer si is charged the same price Pb according to Lemma 5.4.

Hence, we have Ũb
i =Ub

i = V σ(i)
i −Pb. For subcase 3), we have Ũb

i =Ub
i = 0 because

si loses in both auctions. Now we focus on subcase 2). Since si wins by bidding Bi and

loses by bidding Vi, we know that P̃b = Bσ(x̃)
x̃ ≥ V σ(i)

i , where x̃ is the index of buyer

selected in Line 6 in Ψ̃. Hence, we have Ũb
i =V σ(i)

i − P̃b ≤ 0 =Ub
i .

• Case 3: Bi<σ(i)Vi

By Lemma 5.2, we know that it is impossible that the buyer wins the auction by bidding

Bi but loses by bidding Vi. Hence there are three subcases: 1) si wins by bidding both

Vi and Bi; 2) si loses by bidding Bi but wins by bidding Vi; and 3) si loses by bidding
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both Vi and Bi. For subcases 1) and 3), we can prove that Ũb
i =Ub

i following the same

analysis as in Case 2. For subcase 2), it is clear that Ũb
i = 0 and Ub

i ≥ 0.

We have proved that a buyer cannot improve its utility by submitting a bid vector other than

its true valuation vector. This completes the proof.

Lemma 5.7. TASC is truthful for sellers. �

Proof of Theorem 5.3: Lemma 5.6 and Lemma 5.7 together prove that TASC is truthful.

Theorem 5.4. The time complexity of TASC is O(T + l2), where T is the time complexity

of relay assignment algorithm and l = min{n,m}. �

Proof. For the assignment stage, the time complexity depends on the relay assignment

algorithm used. For example, the maximum weighted matching algorithm has time com-

plexity of O((n+m)2 log(n+m)+ (n+m)nm) [26], Algorithm ORA [129] takes O(nm2)

time, and the maximum matching algorithm has time complexity of O(
√

n+m · nm). We

denote the time complexity of the relay assignment algorithm by T in general. In the

winner determination & pricing stage, since the input is the assignment result, we have the

number of buyers equal to the number of sellers. Obviously, this number, denoted as l, is

not greater than min{n,m}. Sorting both sellers and buyers takes O(l log l) time (Lines 2

and 3). Finding the boundary pair takes O(l) time (Line 4). Determining the final winning

pairs takes O(l2) time (Lines 10 to 17). The time complexity of this stage is thus O(l2).

Therefore the overall time complexity of TASC is O(T + l2).

Theorem 5.5. The time complexity of TASC is O(T + l2), where T is the time complexity

of relay assignment algorithm and l = min{n,m}. �
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Proof. For the assignment stage, the time complexity depends on the relay assignment

algorithm used. For example, the maximum weighted matching algorithm has time com-

plexity of O((n+m)2 log(n+m)+ (n+m)nm) [26], Algorithm ORA [129] takes O(nm2)

time, and the maximum matching algorithm has time complexity of O(
√

n+m · nm). We

denote the time complexity of the relay assignment algorithm by T in general. In the

winner determination & pricing stage, since the input is the assignment result, we have the

number of buyers equal to the number of sellers. Obviously, this number, denoted as l, is

not greater than min{n,m}. Sorting both sellers and buyers takes O(l log l) time (Lines 2

and 3). Finding the boundary pair takes O(l) time (Line 4). Determining the final winning

pairs takes O(l2) time (Lines 10 to 17). The time complexity of this stage is thus O(l2).

Therefore the overall time complexity of TASC is O(T + l2).

5.5 Performance Evaluation of TASC

In this section, we present extensive experiments to evaluate the performance of

TASC and study the economic impact on the system efficiency.

Experiment Setup: We considered a wireless network where nodes are randomly dis-

tributed in a 1000×1000 square. We followed the same parameter settings as in [129]. Let

the bandwidth be 22 MHz for all channels. The transmission power is 1 Watt for all wire-

less nodes. For the transmission model, we assume that the path loss exponent is 4 and the

noise is 10−10. For cooperative communication, DF mode was used. We fixed the number

of buyers (n) at 100 and varied the number of sellers (m) from 50 to 150 with increment of

10. For each setting, we randomly generated 1000 instances and averaged the results. All

the tests were run on a Linux PC with 2.00 GHz Intel Pentium CPU and 1.5 GB memory.

For the auction, we assume the buyers’ bids are randomly distributed over (0,Vmax],

where Vmax is set to 4 in most of experiments and varied in the experiments showing the
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Figure 5.6: The utilities of a buyer ((a)-(c)) and a seller ((d)-(f)) in auctions with different
assignment algorithms, where n = m = 100. In each auction, V is the true valuation of the
buyer and C is the true cost of the seller. Two different values are tested for both buyer’s
true valuation V and seller’s true cost C. For each different true valuation (resp. cost), the
buyer (resp. the seller) cannot improve its utility by submitting bid (resp. offering ask)
different from its true valuation (resp. cost).

impact of bid distribution on the system efficiency. Similarly we assume the sellers’ asks

are randomly distributed over (0,1].

The performance metrics in the experiments include agents’ utilities, auctioneer’s

profit, total capacity, number of successful trades and the minimum capacity among all

buyers. Throughout all the experiments, we denote the maximum weighted matching algo-

rithm by MWM and the maximum matching algorithm by MM.

Truthfulness of TASC

To verify the truthfulness of TASC, we randomly pick one buyer and one seller, and

examine how their utilities change when they bid or ask different values. The results are

shown in Figure 5.6(a)-(c) for the buyer and in Figure 5.6(d)-(f) for the seller. We note that
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Figure 5.7: Profit of the auctioneer

no buyer (resp. seller) can improve its utility by biding (resp. asking) untruthfully.

Impact on Profit

Although making profit is not the goal of designing TASC, it is still necessary to

study the impacts of different assignment algorithms on the profit. Figure 5.7 plots the

profits of the auctioneer when different relay assignment algorithms are applied. The first

observation is that the profits are low for all three different relay assignment algorithms,

with the maximum profit less than 2. Due to the way we determine the price and the pay-

ment, we have Pb = Ps for many instances. Therefore, the profits are 0 in these instances.

Another observation is that the profit decreases with the increase of the number of sellers.

This is because as more and more sellers are involved in the auction, the probability that

Pb = Ps is becoming higher.

Impact on System Efficiency

Depending on the system performance requirement, the system efficiency could be

the total capacity, the number of successful trades, and the minimum capacity among all the

participating buyers. Clearly, since the auctioneer cannot allow all the participating agents

to be winners, it is inevitable to have degradation over the pure relay assignment, except
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for the auction with ORA. When the minimum capacity is the system efficiency, TASC will

not degrade the performance since the winner decision is made upon the optimal results.

To capture the economic impact on the system efficiency, we plot the degradation of TASC

over pure relay assignment algorithms in Figure 5.8(a). Surprisingly, the degradation is

independent of the number of sellers for both MWM and MM.
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Figure 5.8: System degradation of TASC over pure relay assignment algorithms

Next we study the impact of the bid distribution on the system efficiency. Fig-

ure 5.8(b) illustrates the degradation of TASC with both MWM and MM for different val-

ues of Vmax. We observe that when the maximum bid value Vmax increases, the degradation

of TASC over the pure relay assignment algorithms decreases. In other words, when buy-

ers have higher true valuations on the services from relay nodes, TASC can achieve all the

required economic properties without degrading the system efficiency significantly.

Running Time

To confirm our time complexity analysis in Section 5.4.2, we illustrate the running

time of TASC with different assignment algorithms in Figure 5.9. We note that the running

time increases with the increase of the number of sellers for both MWM and ORA. How-

ever, for MM, the running time increases first and then becomes stable after m = n. This is

because the maximum number of matching is limited by n even when m keeps increasing.
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Figure 5.9: The running time of TASC, where n = 100 and m is varying from 50 to 150. (a)
and (b) use the same set of results, while (b) shows the results without MWM for clarity.

5.6 Conclusion

In this work, we have designed TASC, a truthful auction scheme for cooperative

communications. To stimulate the participation of wireless devices in relaying traffic for

others, TASC allows potential relay nodes to offer prices on their relay services and re-

quires interested source nodes to bid on them. With a careful design, TASC explicitly

enforce both sellers and buyers to submit their true valuations, thereby eliminating the fear

of market manipulation and the overhead of strategizing over others for them. Meanwhile,

TASC also satisfies individual rationality and budget balance properties. In addition, TASC

can use any relay assignment algorithm to achieve different system performance require-

ments. Extensive experiment results confirm our theoretic analysis of TASC and show

that TASC can achieve all the required economic properties with limited system efficiency

degradation.
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Chapter 6

Recruiting an Army of Smartphones for Crowdsourcing

The past few years have witnessed the proliferation of smartphones in people’s daily lives.

With the advent of 4G networks and more powerful processors, the needs for laptops in

particular have begun to fade. Smartphone sales passed PCs for the first time in the final

quarter of 2010 [24]. This inflection point occurred much quicker than predicted, which

was supposed to be 2012 [95]. According to the International Data Corporation (IDC)

Worldwide Quarterly Mobile Phone Tracker, it is estimated that 982 million smartphones

will be shipped worldwide in 2015 [68].

Nowadays, smartphones are programmable and equipped with a set of cheap but

powerful embedded sensors, such as accelerometer, digital compass, gyroscope, GPS, mi-

crophone, and camera. These sensors can collectively monitor a diverse range of human ac-

tivities and surrounding environment. Smartphones are undoubtedly revolutionizing many

sectors of our life, including social networks, environmental monitoring, business, health-

care, and transportation [82].

If all the smartphones on the planet together constitute a mobile phone sensing

network, it would be the largest sensing network in the history. One can leverage millions

of personal smartphones and a near-pervasive wireless network infrastructure to collect and

analyze sensed data far beyond the scale of what was possible before, without the need to

deploy thousands of static sensors.

Realizing the great potential of the mobile phone sensing, many researchers have

developed numerous applications and systems, such as Sensorly [126] for making cellu-

lar/WiFi network coverage maps, Nericell [100] and VTrack [137] for providing traffic
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information, PIER [102] for calculating personalized environmental impact and exposure,

and Ear-Phone [116] for creating noise maps. For more details on mobile phone sensing,

we refer interested readers to the survey work [82].

Smartphone Users
Sensed Data

Sensing Plan

Sensing Task 

Description Cloud

Platform

Figure 6.1: Mobile phone sensing system

As shown in Figure 6.1, a mobile phone sensing system consists of a mobile phone

sensing platform, which resides in the cloud and consists of multiple sensing servers, and

many smartphone users, which are connected with the platform via the cloud. These smart-

phone users can act as sensing service providers. The platform recruits smartphone users

to provide sensing services.

Although there are many applications and systems on mobile phone sensing [100,

102, 116, 126, 137], most of them are based on voluntary participation. While participating

in a mobile phone sensing task, smartphone users consume their own resources such as

battery and computing power. In addition, users also expose themselves to potential privacy

threats by sharing their sensed data with location tags. Therefore a user would not be

interested in participating in mobile phone sensing, unless it receives a satisfying reward to

compensate its resource consumption and potential privacy breach. Without adequate user

participation, it is impossible for the mobile phone sensing applications to achieve good

service quality, since sensing services are truly dependent on users’ sensed data. While

many researchers have developed different mobile phone sensing applications [28, 84],

they either do not consider the design of incentive mechanisms or have neglected some
124



critical properties of incentive mechanisms.

6.1 Introduction

To fill the void caused by the lack of incentive mechanisms, we will design several

incentive mechanisms to motivate users to participate in mobile phone sensing applications.

We consider two types of incentive mechanisms for a mobile phone sensing sys-

tem: platform-centric incentive mechanisms and user-centric incentive mechanisms. In a

platform-centric incentive mechanism, the platform has the absolute control over the total

payment to users, and users can only tailor their actions to cater for the platform. Whereas

in a user-centric incentive mechanism, the roles of the platform and users are reversed.

To assure itself of the bottom-line benefit, each user announces a reserve price, the lowest

price at which it is willing to sell a service. The platform then selects a subset of users and

pay each of them an amount that is no lower than the user’s reserve price.

The main contributions of this work include:

• We design incentive mechanisms for mobile phone sensing, a new sensing paradigm

that takes advantage of the pervasive smartphones to scale up the sensed data collec-

tion and analysis to a level of what was previously impossible.

• We consider two system models from two different perspectives: the platform-centric

model where the platform provides a fixed reward to participating users, and the user-

centric model where users can have their reserve prices for the sensing service.

• For the platform-centric model, we design an incentive mechanism using a Stack-

elberg game. We present an efficient algorithm to compute the unique Stackelberg

Equilibrium, at which the utility of the platform is maximized, and none of the users

can improve its utility by unilaterally deviating from its current strategy.
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• For the user-centric model, we design an auction-based incentive mechanism, which

is computationally efficient, individually-rational, profitable and, more importantly,

truthful.

The remainder of this work is organized as follows. In Section 6.2, we briefly

review the state of the art on the incentive mechanism design for mobile phone sensing

systems. In Section 6.3, we describe the mobile phone sensing system model including

both the platform-centric model and the user-centric model. We then study, design and

analyze the incentive mechanisms for these two models in Section 6.4.1 and Section 6.4.2,

respectively. Next we evaluate the performance of proposed incentive mechanisms through

extensive simulations in Section 6.5. Finally, we conclude this work in Section 6.6.

6.2 Related Work

In [118], Reddy et al. developed recruitment frameworks to enable the platform

to identify well-suited participants for sensing services. However, they focused only on

the user selection, not the incentive mechanism design. To the best of our knowledge,

there are few research studies on the incentive mechanism design for mobile phone sensing

[28, 84]. In [28], Danezis et al. developed a sealed-bid second-price auction to motivate

user participation. However, the utility of the platform was neglected in the design of the

auction. In [84], Lee and Hoh designed and evaluated a reverse auction based dynamic

price incentive mechanism, where users can sell their sensed data to the service provider

with users’ claimed bid prices. However, the authors failed to consider the truthfulness in

the design of the mechanism.

The design of the incentive mechanism was also studied for other networking prob-

lems, such as spectrum trading [50, 142, 170] and routing [169]. However none of them can

be directly applied to mobile phone sensing applications, as they all considered properties
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specifically pertain to the studied problems.

6.3 System Model

We use Figure 6.1 to aid our description of the mobile phone sensing system. The

system consists of a mobile phone sensing platform, which resides in the cloud and con-

sists of multiple sensing servers, and many smartphone users, which are connected to the

platform via the cloud. The platform first publicizes the sensing tasks. Assume that there

is a set U = {1,2, . . . ,n} of smartphone users interested in participating in mobile phone

sensing after reading the sensing task description, where n ≥ 2. A user participating in

mobile phone sensing will incur a cost, to be elaborated later. Therefore it expects a pay-

ment in return for its service. Taking cost and return into consideration, each user makes

its own sensing plan, which could be the sensing time or the reserve price for selling its

sensed data, and submits it to the platform. After collecting the sensing plans from users,

the platform computes the payment for each user and sends the payments to the users. The

chosen users will conduct the sensing tasks and send the sensed data to the platform. This

completes the whole mobile phone sensing process.

The platform is only interested in maximizing its own utility. Since smartphones are

owned by different individuals, it is reasonable to assume that users are selfish but rational.

Hence each user only wants to maximize its own utility, and will not participate in mobile

phone sensing unless there is sufficient incentive. The focus of this work is on the design of

incentive mechanisms that are simple, scalable, and have provably good properties. Other

issues in the design and implementation of the whole mobile phone sensing system is out

of the scope of this work. Please refer to MAUI [27] for energy saving issues, PRISM [30]

for application developing issues, and PEPSI [32] and TP [122] for privacy issues.

We study two models: platform-centric and user-centric. In the platform-centric
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model, the sensing plan of an interested user is in the form of its sensing time. A user

participating in mobile phone sensing will earn a payment that is no lower than its cost.

However, it needs to compete with other users for a fixed total payment. In the user-centric

model, each user asks for a price for its service. If selected, the user will receive a payment

that is no lower than its asked price. Unlike the platform-centric model, the total payment is

not fixed for the user-centric model. Hence, the users have more control over the payment

in the user-centric model.

Platform-Centric Model:

In this model, there is only one sensing task. The platform announces a total reward

R > 0, motivating users to participate in mobile phone sensing, while each user decides its

level of participation based on the reward.

The sensing plan of user i is represented by ti, the number of time units it is willing

to provide the sensing service. Hence ti ≥ 0. By setting ti = 0, user i indicates that it will

not participate in mobile phone sensing. The sensing cost of user i is κi× ti, where κi > 0

is its unit cost. Assume that the reward received by user i is proportional to ti. Then the

utility of user i is

ūi =
ti

∑ j∈U t j
R− tiκi, (6.1)

i.e., reward minus cost. The utility of the platform is

ū0 = λ log

(
1+ ∑

i∈U
log(1+ ti)

)
−R, (6.2)

where λ > 1 is a system parameter, the log(1+ ti) term reflects the platform’s diminishing

return on the work of user i, and the outer log term reflects the platform’s diminishing return

on participating users.

Under this model, the objective of the platform is to decide the optimal value of

R so as to maximize (6.2), while each user i ∈ U selfishly decides its sensing time ti to
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maximize (6.1) for the given value of R. Since no rational user is willing to provide service

for a negative utility, user i shall set ti = 0 when R≤ κi ∑ j 6=i∈U t j.

User-Centric Model:

In this model, the platform announces a set Γ = {τ1,τ2, . . . ,τm} of tasks for the

users to select. Each τ j ∈ Γ has a value ν j > 0 to the platform. Each user i selects a subset

of tasks Γi ⊆ Γ according to its preference. Based on the selected task set, user i also has

an associated cost ci, which is private and only known to itself. User i then submits the

task-bid pair (Γi,bi) to the platform, where bi, called user i’s bid, is the reserve price user

i wants to sell the service for. Upon receiving the task-bid pairs from all the users, the

platform selects a subset S of users as winners and determines the payment pi for each

winning user i. The utility of user i is

ũi =


pi− ci, if i ∈S ,

0, otherwise.
(6.3)

The utility of the platform is

ũ0 = v(S )− ∑
i∈S

pi, (6.4)

where v(S ) = ∑τ j∈∪i∈S Γi ν j.

Our objective for the user-centric model is to design an incentive mechanism sat-

isfying the three desirable properties in Section 1.1. Note that in this specific incentive

mechanism design, we also consider Profitability. The platform should not incur a deficit.

In other words, the value brought by the winners should be at least as large as the total

payment paid to the winners.
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6.4 Incentive Mechanism Design

6.4.1 Design for the Platform-Centric Model

We model the platform-centric incentive mechanism as a Stackelberg game [46], which

we call the MSensing game. There are two stages in this mechanism: In the first stage,

the platform announces its reward R; in the second stage, each user strategizes its sensing

time to maximize its own utility. Therefore the platform is the leader and the users are the

followers in this Stackelberg game. Meanwhile, both the platform and the users are players.

The strategy of the platform is its reward R. The strategy of user i is its working time ti.

Let t = (t1, t2, . . . , tn) denote the strategy profile consisting of all users’ strategies. Let t−i

denote the strategy profile excluding ti. As a notational convention, we write t = (ti, t−i).

Note that the second stage of the MSensing game itself can be considered a non-

cooperative game, which we call the Sensing Time Determination (STD) game. Given the

MSensing game formulation, we are interested in answering the following questions:

Q1: For a given reward R, is there a set of stable strategies in the STD game such that no

user has anything to gain by unilaterally changing its current strategy?

Q2: If the answer to Q1 is yes, is the stable strategy set unique? When it is unique, users

will be guaranteed to select the strategies in the same stable strategy set.

Q3: How can the platform select the value of R to maximize its utility in (6.2)?

The stable strategy set in Q1 corresponds to the concept of Nash Equilibrium (NE) in game

theory [46].

Definition 6.1 (Nash Equilibrium). A set of stra- tegies (tne
1 , tne

2 , . . . , tne
n ) is a Nash Equilib-
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rium of the STD game if for any user i,

ūi(tne
i , tne
−i)≥ ūi(ti, tne

−i),

for any ti ≥ 0, where ūi is defined (6.1).

The existence of an NE is important, since an NE strategy profile is stable (no

player has an incentive to make a unilateral change) whereas a non-NE strategy profile is

unstable. The uniqueness of NE allows the platform to predict the behaviors of the users

and thus enables the platform to select the optimal value of R. Therefore the answer to Q3

depends heavily on those to Q1 and Q2. The optimal solution computed in Q3 together with

the NE of the STD game constitutes a solution to the MSensing game, called Stackelberg

Equilibrium.

User Sensing Time Determination:

Based on the definition of NE, every user is playing its best response strategy in an

NE. From (6.1), we know that ti ≤ R
κi

because ūi will be negative otherwise. To study the

best response strategy of user i, we compute the derivatives of ūi with respect to ti:

∂ ūi

∂ ti
=

−Rti
(∑ j∈U t j)2 +

R
∑ j∈U t j

−κi, (6.5)

∂ 2ūi

∂ t2
i

=−
2R∑ j∈U \{i} t j

(∑ j∈U t j)3 < 0. (6.6)

Since the second-order derivative of ūi is negative, the utility ūi is a strictly concave function

in ti. Therefore given any R > 0 and any strategy profile t−i of the other users, the best

response strategy βi(t−i) of user i is unique, if it exists. If the strategy of all other user

j 6= i is t j = 0, then user i does not have a best response strategy, as it can have a utility

arbitrarily close to R, by setting ti to a sufficiently small positive number. Therefore we

are only interested in the best response for user i when ∑ j∈U \{i} t j > 0. Setting the first
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derivative of ūi to 0, we have

−Rti
(∑ j∈U t j)2 +

R
∑ j∈U t j

−κi = 0. (6.7)

Solving for ti in (6.7), we obtain

ti =

√
R∑ j∈U \{i} t j

κi
− ∑

j∈U \{i}
t j. (6.8)

If the RHS (right hand side) of (6.8) is positive, is also the best response strategy of user i,

due to the concavity of ūi. If the RHS of (6.8) is less than or equal to 0, then user i does not

participate in the mobile sensing by setting ti = 0 (to avoid a deficit). Hence we have

βi(t−i)=


0, if R≤ κi ∑ j∈U \{i} t j;√

R∑ j∈U \{i} t j
κi

− ∑
j∈U \{i}

t j, otherwise.
(6.9)

These analyses lead to the following algorithm for computing an NE of the SDT

game.

Algorithm 8: Computation of the NE
1 Sort users according to their unit costs, κ1 ≤ κ2 ≤ ·· · ≤ κn;
2 S ←{1,2}, i← 3;

3 while i≤ n and κi <
κi+∑ j∈S κ j
|S | do

4 S ←S ∪{i}, i← i+1;
5 end
6 foreach i ∈U do
7 if i ∈S then tne

i = (|S |−1)R
∑ j∈S κ j

(
1− (|S |−1)κi

∑ j∈S κ j

)
;

8 else tne
i = 0;

9 end
10 return tne = (tne

1 , tne
2 , . . . , tne

n )

Theorem 6.1. The strategy profile tne = (tne
1 , . . . , tne

n ) computed by Algorithm 8 is an NE of

the STD game. The time complexity of Algorithm 8 is O(n logn).
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Proof. We first prove that the strategy profile tne is an NE. Let n0 = |S |. We have the fol-

lowing observations based on the algorithm: 1)κi ≥
∑ j∈S κ j

n0−1 , for any i 6∈S ; 2)∑ j∈S tne
j =

(n0−1)R
∑ j∈S κ j

; and 3)∑ j∈S \{i} tne
j = (n0−1)2Rκi

(∑ j∈S κ j)
2 for any i ∈S . We next prove that for any i 6∈S ,

tne
i = 0 is its best response strategy given tne

−i. Since i 6∈ S , we have κi ∑ j∈U \{i} tne
j =

κi ∑ j∈S tne
j . Using 1) and 2), we have κi ∑ j∈S tne

j ≥ R. According to (6.9), we know that

βi(tne
−i) = 0.

We then prove that for any i ∈S , tne
i is its best response strategy given tne

−i. Note

that κi <
∑

i
j=1 κ j

i−1 according to Algorithm 8. We then have

(n0−1)κi = (i−1)κi +(n0− i)κi <
i

∑
j=1

κ j +
n0

∑
j=i+1

κ j,

where κi ≤ κ j for i+1≤ j ≤ n0. Hence we have κi <
∑i∈S κi

n0−1 . Furthermore, we have

κi ∑
j∈U \{i}

tne
j = κi ∑

j∈S \{i}
tne

j =κi
(n0−1)2Rκi(

∑ j∈S κ j
)2 <R.

According to (6.9),

βi(tne
−i) =

√
R∑ j∈U \{i} tne

j

κi
− ∑

j∈U \{i}
tne

j

=
(n0−1)R
∑ j∈S κ j

− (n0−1)2Rκi(
∑ j∈S κ j

)2 = tne
i .

Therefore tne is an NE of the STD game.

We next analyze the running time of the algorithm. Sorting can be done in O(n logn)

time. The while-loop (Lines 3-5) requires a total time of O(n). The for-loop (Lines 6-9)

requires a total time of O(n). Hence the time complexity of Algorithm 8 is O(n logn).

The next theorem shows the uniqueness of the NE for the STD game.
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Theorem 6.2. Let R > 0 be given. Let t̄ = (t̄1, t̄2, . . . , t̄n) be the strategy profile of an NE for

the STD game, and let S̄ = {i ∈U |t̄i > 0}. We have

1) |S̄ | ≥ 2.

2) t̄i =


0, if i 6∈ S̄ ;

(|S̄ |−1)R
∑ j∈S̄ κ j

(
1− (|S̄ |−1)κi

∑ j∈S̄ κ j

)
, otherwise.

3) If κq ≤max j∈S̄ {κ j}, then q ∈ S̄ .

4) Assume that the users are ordered such that κ1 ≤ κ2 ≤ ·· · ≤ κn. Let h be the largest

integer in [2,n] such that κh <
∑

h
j=1 κ j

h−1 . Then S̄ = {1,2, . . . ,h}.

These statements imply that the STD game has a unique NE, which is the one computed by

Algorithm 8.

Proof. We first prove 1). Assume that |S̄ |= 0. User 1 can increase its utility from 0 to R
2

by unilaterally changing its sensing time from 0 to R
2κ1

, contradicting the NE assumption.

This proves that |S̄ | ≥ 1. Now assume that |S̄ | = 1. This means t̄k > 0 for some k ∈U ,

and t̄ j = 0 for all j ∈ U \ {k}. According to (6.1) the current utility of user k is R− t̄kκk.

User k can increase its utility by unilaterally changing its sensing time from t̄k to t̄k
2 , again

contradicting the NE assumption. Therefore |S̄ | ≥ 2.

We next prove 2). Let n0 = |S̄ |. Since we already proved that n0 ≥ 2, we can use

the analysis at the beginning of this section (6.7), with t replaced by t̄, and S replaced by

S̄ . Considering that ∑ j∈U t̄ j = ∑ j∈S̄ t̄ j, we have

−Rt̄i
(∑ j∈S̄ t̄ j)2 +

R
∑ j∈S̄ t̄ j

−κi = 0, i ∈ S̄ . (6.10)

Summing up (6.10) over the users in S̄ leads to n0R−R = ∑ j∈S̄ t̄ j ·∑ j∈S̄ κ j. Therefore
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we have

∑
j∈S̄

t̄ j =
(n0−1)R
∑ j∈S̄ κ j

. (6.11)

Substituting (6.11) into (6.10) and considering t̄ j = 0 for any j ∈ U \ S̄ , we obtain the

following:

t̄i =
(n0−1)R
∑ j∈S̄ κ j

(
1− (n0−1)κi

∑ j∈S̄ κ j

)
(6.12)

for every i ∈ S̄ . This proves 2).

We then prove 3). By definition of S̄ , we know that t̄i > 0 for every i ∈ S̄ . From

(6.12), t̄i > 0 implies (n0−1)κi
∑ j∈S̄ κ j

< 1. Therefore we have

κi <
∑ j∈S̄ κ j

|S̄ |−1
,∀i ∈ S̄ . (6.13)

(6.13) implies that

max
i∈S̄

κi <
∑ j∈S̄ κ j

|S̄ |−1
. (6.14)

Assume that κq ≤max j∈S̄ {κ j} but q 6∈ S̄ . Since q 6∈ S̄ , we know that t̄q = 0. The

first-order derivative of ūq with respect to tq when t = t̄ is

R
∑ j∈S̄ t̄ j

−κq=
∑ j∈S̄ κ j

n0−1
−κq > max

i∈S̄
{κi}−κq ≥ 0. (6.15)

This means that user q can increase its utility by unilaterally increasing its sensing time

from t̄q, contradicting the NE assumption of t̄. This proves 3).

Finally, we prove 4). Statements 1) and 3) imply that S̄ = {1,2, . . . ,q} for some

integer q in [2,n]. From (6.13), we conclude that q ≤ h. Assume that q < h. Then we

have κq+1 <
∑

q+1
j=1 κ j

q , which implies
∑

q
j=1 κ j

q−1 −κq+1 > 0. Hence the first order derivative of

ūq+1 with respect to tq+1 when t = t̄ is
∑

q
j=1 κ j

q−1 −κq+1 > 0. This contradiction proves q = h.

Hence we have proved 4), as well as the theorem.
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Platform Utility Maximization

According to the above analysis, the platform, which is the leader in the Stackelberg

game, knows that there exists a unique NE for the users for any given value of R. Hence

the platform can maximize its utility by choosing the optimal R. Substituting (6.12) into

(6.2) and considering ti = 0 if i 6∈S , we have

ū0 = λ log

(
1+ ∑

i∈S
log(1+XiR)

)
−R, (6.16)

where Xi =
(n0−1)

∑ j∈S κ j

(
1− (n0−1)κi

∑ j∈S κ j

)
.

Theorem 6.3. There exists a unique Stackelberg Equilibrium (R∗, tne) in the MSensing

game, where R∗ is the unique maximizer of the platform utility

ū0 = λ log

(
1+ ∑

i∈S
log(1+XiR)

)
−R,

over R ∈ [0,∞), S and tne are given by Algorithm 8 with the total reward set to R∗.

Proof. The second order derivative of ū0 is

∂ 2ū0

∂R2 =−λ

∑i∈S
X2

i
(1+XiR)2Y +

(
∑i∈S

Xi
(1+XiR)

)2

Y 2 < 0, (6.17)

where Y = 1+∑i∈S log(1+XiR). Therefore the utility ū0 defined in (6.16) is a strictly

concave function of R for R ∈ [0,∞). Since the value of ū0 in (6.16) is 0 for R = 0 and goes

to −∞ when R goes to ∞, it has a unique maximizer R∗ that can be efficiently computed

using either bisection or Newton’s method [13].

6.4.2 Design for the User-Centric Model

Auction theory [80] is the perfect theoretical tool to design incentive mechanisms for the

user-centric model. We propose a reverse auction based incentive mechanism for the user-
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centric model. An auction takes as input the bids submitted by the users, selects a subset

of users as winners, and determines the payment to each winning user.

Auctions Maximizing Platform Utility

Our first attempt is to design an incentive mechanism maximizing the utility of

the platform. Now designing an incentive mechanism becomes an optimization problem,

called User Selection problem: Given a set U of users, select a subset S such that ũ0(S )

is maximized over all possible subsets. In addition, it is clear that pi = bi to maximize

ũ0(S ). The utility ũ0 then becomes

ũ0(S ) = v(S )− ∑
i∈S

bi. (6.18)

To make the problem meaningful, we assume that there exists at least one user i such that

ũ0({i})> 0.

Unfortunately, as the following theorem shows, it is NP-hard to find the optimal

solution to the User Selection problem.

Theorem 6.4. The User Selection problem is NP-hard.

Proof. We prove the NP-hardness of the optimization problem by giving a polynomial time

reduction from the NP-hard Set Cover problem:

INSTANCE: A universe Z = {z1,z2, . . . ,zm}, a family C = {C1,C2, . . . ,Cn} of sub-

sets of Z and a positive integer s. QUESTION: Does there exist a subset C ′ ⊆ C of size s,

such that every element in Z belongs to at least one member in C ′?

We construct a corresponding instance of the User Selection problem as follows:

Let Γ be the task set corresponding to Z, where there is a task τ j ∈ Γ for each z j ∈ Z.

Corresponding to each subset Ci ∈ C , there is a user i ∈U with task set Γi, which consists
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of the tasks corresponding to the elements in Ci. We set ν j to n for each task τ j and ci to 1

for each user i ∈U . We prove that there exists a solution to the instance of the Set Cover

problem if and only if there exists a subset S of users such that ũ0(S )≥ nm− s.

We first prove the forward direction. Let C ′ be a solution to the Set Cover instance.

We can select the corresponding set S of users as the solution to the mechanism design

instance. Clearly, ũ0(S ) = nm− |S | ≥ nm− s. Next we prove the backward direction.

Let S be a solution to mechanism design instance. We then have ũ0(S ) ≥ nm− s. The

only possibility that we have such a value is when the selected user set covers all the

tasks, because s ≤ m. Therefore the corresponding set C ′ is a solution to the Set Cover

instance.

Since it is unlikely to find the optimal subset of users efficiently, we turn our atten-

tion to the development of approximation algorithms. To this end, we take advantage of the

submodularity of the utility function.

Definition 6.2 (Submodular Function). Let X be a finite set. A function f : 2X 7→ R is

submodular if

f (A ∪{x})− f (A )≥ f (B∪{x})− f (B),

for any A ⊆B ⊆X and x ∈X \B, where R is the set of reals.

We now prove the submodularity of the utility ũ0.

Lemma 6.1. The utility ũ0 is submodular.

Proof. By Definition 6.2, we need to show that

ũ0(S ∪{i})− ũ0(S )≥ ũ0(T ∪{i})− ũ0(T ),
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for any S ⊆T ⊆U and i ∈U \T . It suffices to show that v(S ∪{i})−v(S )≥ v(T ∪

{i})− v(T ), since the second term in ũ0 can be subtracted from both sides. Considering

v(S ) = ∑τ j∈∪i∈S Γi ν j, we have

v(S ∪{i})− v(S ) = ∑
τ j∈Γi\∪ j∈S Γ j

ν j (6.19)

≥ ∑
τ j∈Γi\∪ j∈T Γ j

ν j (6.20)

= v(T ∪{i})− v(T ). (6.21)

Therefore ũ0 is submodular. As a byproduct, we proved that v is submodular as well.

When the objective function is submodular, monotone and non-negative, it is known

that a greedy algorithm provides a (1−1/e)-approximation [108]. Without monotonicity,

Feige et al. [41] have also developed constant-factor approximation algorithms. Unfortu-

nately, ũ0 can be negative.

To circumvent this issue, let f (S ) = ũ0(S )+∑i∈U bi. It is clear that f (S ) ≥ 0

for any S ⊆ U . Since ∑i∈U bi is a constant, f (S ) is also submodular. In addition,

maximizing ũ0 is equivalent to maximizing f . Therefore we design an auction mechanism

based on the algorithm of [41], called Local Search-Based (LSB) auction, as illustrated in

Algorithm 9. The mechanism relies on the local-search technique, which greedily searches

for a better solution by adding a new user or deleting an existing user whenever possible. It

was proved that, for any given constant ε > 0, the algorithm can find a set of users S such

that f (S )≥ (1
3 −

ε

n) f (S ∗), where S ∗ is the optimal solution [41].

How good is the LSB auction? In the following we analyze this mechanism using

the four desirable properties described in Section 1.1 as performance metrics.

• Computational Efficiency: The running time of the Local Search Algorithm is O(1
ε
n3m logm)
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Algorithm 9: LSB Auction
1 S ←{i}, where i← argmaxi∈U f ({i});
2 while there exists a user i ∈U \S such that f (S ∪{i})> (1+ ε

n2 ) f (S ) do
3 S ←S ∪{i};
4 end
5 if there exists a user i ∈S such that f (S \{i})> (1+ ε

n2 ) f (S ) then
6 S ←S \{i}; go to Line 2;
7 end
8 if f (U \S )> f (S ) then S ←U \S ;
9 foreach i ∈U do

10 if i ∈S then pi← bi;
11 else pi← 0;
12 end
13 return (S , p)

[41], where evaluating the value of f takes O(m) time and |S | ≤ m. Hence our mech-

anism is computationally efficient.

• Individual Rationality: The platform pays what the winners bid. Hence our mechanism

is individually rational.

• Profitability: Due to the assumption that there exists at least one user i such that

ũ0({i}) > 0 and the fact that f (S ) strictly increases in each iteration, we guarantee

that ũ0(S )> 0 at the end of the auction. Hence our mechanism is profitable.

• Truthfulness: We use an example in Figure 6.2 to show that the LSB auction is not

truthful. In this example, U = {1,2,3}, Γ = {τ1,τ2,τ3,τ4,τ5}, Γ1 = {τ1,τ3,τ5}, Γ2 =

{τ1,τ2,τ4}, Γ3 = {τ2,τ5}, c1 = 4, c2 = 3, c3 = 4. Squares represent users, and disks

represent tasks. The number above user i denotes its bid bi. The number below task τ j

denotes its value ν j. For example, b1 = 4 and ν3 = 1. We also assume that ε = 0.1.

We first consider the case where users bid truthfully. Since f ({1}) = v(Γ1)− b1 +

∑
3
i=1 bi = (5+1+4)−4+(4+3+4) = 17, f ({2}) = 18 and f ({3}) = 14, user 2 is first

selected. Since f ({2,1}) = v(Γ2∪Γ1)−(b2+b1)+∑
3
i=1 bi = 19>

(
1+ 0.1

32

)
f ({2}) =
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18.2, user 1 is then selected. The auction terminates here because the current value of

f cannot be increased by a factor of (1+ 0.1
9 ) via either adding a user (that has not been

selected) or removing a user (that has been selected). In addition, we have p1 = b1 = 4

and p2 = b2 = 3.

We now consider the case where user 2 lies by bidding 3+ δ , where 1 ≤ δ < 1.77.

Since f ({1}) = 17+δ , f ({2}) = 18 and f ({3}) = 14+δ , user 1 is first selected. Since

f ({1,2}) = 19 >
(
1+ 0.1

9

)
f ({1}), user 2 is then selected. The auction terminates here

because the current value of f cannot be increased by a factor of (1+ 0.1
9 ) via either

adding a user or removing a user. Note that user 2 increases its payment from 3 to 3+δ

by lying about its cost.

1 2 3 4 5

1 2 33

4 3 4

5 3 1 2 4

(a) Users bid truthfully.

1 2 3 4 5

1 2 33

4 3+δ 4

5 3 1 2 4

(b) User 2 lies by bidding 3+ δ , where
1≤ δ < 1.77.

Figure 6.2: Example showing the untruthfulness of the Local Search-Based Auction mech-
anism, where U = {1,2,3}, Γ = {τ1,τ2,τ3,τ4,τ5}, Γ1 = {τ1,τ3,τ5}, Γ2 = {τ1,τ2,τ4},
Γ3 = {τ2,τ5}. Squares represent users. Disks represent tasks. The number above user i
denotes its bid bi. The number below task τ j denotes its value ν j. We also assume that
ε = 0.1.

MSensing Auction

Although the LSB auction mechanism is designed to approximately maximize the

platform utility, the failure of guaranteeing truthfulness makes it less attractive. Since our

ultimate goal is to design an incentive mechanism that motivates smartphone users to partic-

ipate in mobile phone sensing while preventing any user from rigging its bid to manipulate
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the market, we need to settle for a trade off between utility maximization and truthfulness.

Our highest priority is to design an incentive mechanism that satisfies all of the four desir-

able properties, even at the cost of sacrificing the platform utility. One possible direction is

to make use of the off-the-shelf results on the budgeted mechanism design [20, 131]. The

budgeted mechanism design problem is very similar with ours, with the difference that the

payment paid to the winners is a constraint instead of a factor in the objective function.

To address this issue, we can intuitively plug different values of the budget into the bud-

geted mechanism and select the one giving the largest utility. However, this can potentially

destroy the truthfulness of the incentive mechanism.

Now we present a novel auction mechanism that satisfies all four desirable proper-

ties. The design rationale relies on Myerson’s well-known characterization [103].

Theorem 6.5. ([131, Theorem 2.1]) An auction mechanism is truthful if and only if:

• The selection rule is monotone: If user i wins the auction by bidding bi, it also wins by

bidding b′i ≤ bi;

• Each winner is paid the critical value: User i would not win the auction if it bids

higher than this value.

Based on Theorem 6.5, we design our auction mechanism, which is called MSens-

ing auction. Illustrated in Algorithm 10, the MSensing auction mechanism consists of two

phases: the winner selection phase and the payment determination phase.

The winner selection phase follows a greedy approach: Users are essentially sorted

according to the difference of their marginal values and bids. Given the selected users S ,

the marginal value of user i is vi(S ) = v(S ∪{i})− v(S ). In this sorting the (i+ 1)th

user is the user j such that v j(Si)−b j is maximized over U \Si, where Si = {1,2, . . . , i}
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Algorithm 10: MSensing Auction
1 // Phase 1: Winner selection

2 S ← /0, i← argmax j∈U
(
v j(S )−b j

)
;

3 while bi < vi and S 6= U do
4 S ←S ∪{i};
5 i← argmax j∈U \S

(
v j(S )−b j

)
;

6 end
7 // Phase 2: Payment determination

8 foreach i ∈U do pi← 0;
9 foreach i ∈S do

10 U ′←U \{i}, T ← /0;
11 repeat
12 i j← argmax j∈U ′\T

(
v j(T )−b j

)
;

13 pi←max{pi,min{vi(T )−(vi j(T )−bi j),vi(T )}};
14 T ←T ∪{i j};
15 until bi j ≥ vi j or T = U ′;
16 if bi j < vi j then pi←max{pi,vi(T )};
17 end
18 return (S , p)

and S0 = /0. We use vi instead of vi(Si−1) to simplify the notation. Considering the

submodularity of v, this sorting implies that

v1−b1 ≥ v2−b2 ≥ ·· · ≥ vn−bn. (6.22)

The set of winners are SL = {1,2, . . . ,L}, where L ≤ n is the largest index such that vL−

bL > 0.

In the payment determination phase, we compute the payment pi for each winner

i ∈S . To compute the payment for user i, we sort the users in U \{i} similarly,

v′i1−bi1 ≥ v′i2−bi2 ≥ ·· · ≥ v′in−1
−bin−1, (6.23)

where v′i j
= v(T j−1 ∪{i j})− v(T j−1) denotes the marginal value of the jth user and T j

denotes the first j users according to this sorting over U \ {i} and T0 = /0. The marginal

value of user i at position j is vi( j) = v(T j−1∪{i})−v(T j−1). Let K denote the position of
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the last user i j ∈U \{i}, such that bi j < v′i j
. For each position j in the sorting, we compute

the maximum price that user i can bid such that i can be selected instead of user at jth

place. We repeat this until the position after the last winner in U \ {i}. In the end we set

the value of pi to the maximum of these K +1 prices.

We will prove the computational efficiency (Lemma 6.2), the individual rational-

ity (Lemma 6.3), the profitability (Lemma 6.4), and the truthfulness (Lemma 6.5) of the

MSensing auction in the following.

Lemma 6.2. MSensing is computationally efficient.

Proof. Finding the user with maximum marginal value takes O(nm) time, where computing

the value of vi takes O(m) time. Since there are m tasks and each winner should contribute

at least one new task to be selected, the number of winners is at most m. Hence, the while-

loop (Lines 3–6) thus takes O(nm2) time. In each iteration of the for-loop (Lines 9–17), a

process similar to Lines 3–6 is executed. Hence the running time of the whole auction is

dominated by this for-loop, which is bounded by O(nm3).

Note that the running time of the MSensing Auction, O(nm3), is very conserva-

tive. In addition, m is much less than n in practice, which makes the running time of the

MSensing Auction dominated by n.

Before turning our attention to the proofs of the other three properties, we would

like to make some critical observations: 1) vi( j)≥ vi( j+1) for any j due to the submodularity

of v; 2) T j = S j for any j < i; 3) vi(i) = vi; and 4) v′i j
> bi j for j ≤ K and v′i j

≤ bi j for

K +1≤ j ≤ n−1.

Lemma 6.3. MSensing is individually rational.
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Proof. Let ii be user i’s replacement which appears in the ith place in the sorting over

U \{i}. Since user ii would not be at ith place if i is considered, we have vi(i)−bi≥ v′ii−bii .

Hence we have bi ≤ vi(i)− (v′ii − bii). Since user i is a winner, we have bi ≤ vi = vi(i). It

follows that bi ≤min
{

vi(i)− (v′ii−bii),vi(i)
}
≤ pi. If ii does not exist, it means i is the last

winner in U . We then have bi ≤ vi(U \{i})≤ pi, according to Line 16.

Lemma 6.4. MSensing is profitable.

Proof. Let L be the last user j ∈U in the sorting (6.22), such that b j < v j. We then have

ũ0 =∑1≤i≤L vi−∑1≤i≤L pi. Hence it suffices to prove that pi≤ vi for each 1≤ i≤ L. Recall

that K is the position of the last user i j ∈U \{i} in the sorting (6.23), such that bi j < v′i j
.

When K < n−1, let r be the position such that

r = arg max
1≤ j≤K+1

min
{

vi( j)− (v′i j
−bi j),vi( j)

}
.

If r ≤ K, we have

pi = min
{

vi(r)− (v′ir −bir),vi(r)
}

= vi(r)− (v′ir −bir)< vi(r) ≤ vi,

where the penultimate inequality is due to the fact that bir < v′ir for r ≤ K, and the last

inequality relies on the fact that T j−1 = S j−1 for j ≤ i and the decreasing marginal value

property of v. If r = K +1, we have

pi = min
{

vi(r)− (v′ir −bir),vi(r)
}
= vi(r) ≤ vi.

Similarly, when K = n−1, we have

pi ≤ vi(r)≤ vi,

for some 1≤ r ≤ K. Thus we proved that pi ≤ vi for each 1≤ i≤ K.
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Lemma 6.5. MSensing is truthful.

Proof. Based on Theorem 6.5, it suffices to prove that the selection rule of MSensing is

monotone and the payment pi for each i is the critical value. The monotonicity of the

selection rule is obvious as bidding a smaller value can not push user i backwards in the

sorting.

We next show that pi is the critical value for i in the sense that bidding higher pi

could prevent i from winning the auction. Note that

pi = max
{

max
1≤ j≤K

(
vi( j)− (v′i j

−bi j)
)
,vi(K+1)

}
.

If user i bids bi > pi, it will be placed after K since bi > vi( j)− (v′i j
−bi j) implies v′i j

−bi j >

vi( j)− bi. At the (K + 1)th iteration, user i will not be selected because bi > vi(K+1). As

K+1 is the position of the first loser over U \{i} when K < n−1 or the last user to check

when K = n−1, the selection procedure terminates.

The above four lemmas together prove the following theorem.

Theorem 6.6. MSensing is computationally efficient, individually rational, profitable, and

truthful. �

6.5 Evaluation of Incentive Mechanisms

To evaluate the performance of our incentive mechanisms, we implemented the

incentive mechanism for the platform-centric model, the Local Search-Based auction, de-

noted by LSB, and the MSensing auction, denoted by MSensing. In order to reduce the

running time of MSensing, we applied the lazy update algorithm [97]. We denote the

MSensing auction with the lazy update as MSensing-L. The idea of the lazy update algo-

rithm is that we revaluate the marginal value of each user only when necessary. We keep
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a list of users sorted in a non-increasing order according to the difference between their

marginal values and bids. Before searching for the user with the largest difference between

its marginal value and bid, we revaluate the marginal value of the first user in the list. If

the new value is the same as the old one, it is guaranteed that the first user still provides

the largest difference of the marginal value and the bid, due to the submodularity of v.

Otherwise, we revaluate all the users in the list and sort them according to the new value.

Performance Metrics: The performance metrics include running time, platform util-

ity, and user utility in general. For the platform-centric incentive mechanism, we also study

the number of participating users.

Simulation Setup

We varied the number of users (n) from 100 to 1000 with the increment of 100. For

the platform-centric model, we assumed that the cost of each user was uniformly distributed

over [1,κmax], where κmax was varied from 1 to 10 with the increment of 1. We set λ to

3, 5, and 10. For the user-centric model, we varied the number of tasks (m) from 100 to

500 with the increment of 100. We set ε to 0.01 for LSB. We also made the following

assumptions. The value of each task is uniformly distributed over [1,5]. The number of

tasks of each user is uniformly distributed over [1,10]. The cost ci is ρ|Γi|, where ρ is

uniformly distributed over [1,5].

All the simulations were run on a Linux machine with 3.2 GHz CPU and 16 GB

memory. Each measurement is averaged over 100 instances.

Evaluation of the Platform-Centric Incentive Mechanism

Running Time: We first evaluate the running time of the incentive mechanism and show

the results in Figure 6.3. We observe that the running time is almost linear in the number

of users and less than 2×10−4 seconds for the largest instance of 1000 users. As soon as
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the users are sorted and S is computed, all the values can be computed using closed-form

expressions, which makes the incentive mechanism very efficient.
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Figure 6.3: Running time

Number of Participating Users: Figure 6.4 shows the impact of κmax on the number

of participating users, i.e., |S |, when n is fixed at 1000. We can see that |S | decreases as

the costs of users become diverse. The reason is that according to the while-loop condition,

if all users have the same cost, then all of them would satisfy this condition and thus partic-

ipate. When the costs become diverse, users with larger costs would have higher chances

to violate the condition.
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Figure 6.4: Impact of κmax on |S |

Platform Utility: Figure 6.5 shows the impact of n and κmax on the platform utility.

We set λ to 3, 5, and 10. In Figure 6.5(a), we fixed κmax = 5. We observe that the platform

utility is almost linear in n and the slope becomes higher as λ is larger. Also, we have
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higher utility when λ is larger, which is expected. In Figure 6.5(b), we fixed n = 1000.

With the results in Figure 6.4, it is expected that the platform utility decreases as the costs

of users become more diverse.
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Figure 6.5: Platform utility

User Utility: We randomly picked a user (ID = 31) and plot its utility in Figure 6.6.

We observe that as more and more users are interested in mobile phone sensing, the utility

of the user decreases since more competitions are involved.
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Evaluation of the User-Centric Incentive Mechanism

Running Time: Figure 6.7(a) shows the running time of different auction mechanisms pro-

posed in Section 6.4.2. We fixed m= 200. We can see that LSB has the best efficiency while

MSensing has the worst. Both MSensing and MSensing-L are linear in n, as we proved in
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Lemma 6.2. After using lazy update, we can dramatically improve the time efficiency of

MSensing. As shown in 6.7(b), the time improvement of MSensing-L over MSensing is

roughly around 60%.
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Figure 6.7: Running time

Platform Utility: Now we show how much platform utility we need to sacrifice to

achieve the truthfulness compared to LSB. As shown in Figure 6.8, we can observe that

the platform utility sacrifice is not severe compared to the mechanism with the best-known

platform utility approximation. We also observe that when the number of users becomes

larger, the gap between MSensing-L and LSB becomes smaller.
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Figure 6.8: Platform utility

Truthfulness: We also verified the truthfulness of MSensing by randomly picking

two users (ID = 944 and ID = 427) and allowing them to bid prices different from their
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true costs. We illustrate the results in Figure 6.9. As we can see, user 944 achieves its

optimal utility if it bids truthfully (b944 = c944 = 10) in Figure 6.9(a) and user 427 achieves

its optimal utility if it bids truthfully (b427 = c427 = 15) in Figure 6.9(b).

0 5 10 15 20
0

1

2

3

b
333

u
3
3
3

Utilities for optimal bids

(a) c944 = 10

0 5 10 15 20
−15

−10

−5

0

b
851

u
8
5
1

Utilities for optimal bids

(b) c427 = 15

Figure 6.9: Truthfulness of MSensing

6.6 Conclusion and Discussion

In this work, we have designed incentive mechanisms that can be used to motivate

smartphone users to participate in mobile phone sensing, which is a new sensing paradigm

allowing us to collect and analyze sensed data far beyond the scale of what was previ-

ously possible. We have considered two different models from different perspectives: the

platform-centric model where the platform provides a reward shared by participating users,

and the user-centric model where each user can ask for a reserve price for its sensing ser-

vice.

For the platform-centric model, we have modeled the incentive mechanism as a

Stackelberg game in which the platform is the leader and the users are the followers. We

have proved that this Stackelberg game has a unique equilibrium, and designed an efficient

mechanism for computing it. This enables the platform to maximize its utility while no

user can improve its utility by deviating from the current strategy.

For the user-centric model, we have designed an auction mechanism, called MSens-
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ing. We have proved that MSensing is 1) computationally efficient, meaning that the win-

ners and the payments can be computed in polynomial time; 2) individually rational, mean-

ing that each user will have a non-negative utility; 3) profitable, meaning that the platform

will not incur a deficit; and more importantly, 4) truthful, meaning that no user can im-

prove its utility by asking for a price different from its true cost. Our mechanism is scalable

because its running time is linear in the number of users.

Discussion

For the Platform-Centric model, we assumed that the users have the knowledge of

other users’ cost. As a future research topic, we are interested in the case where the cost

information of other users is not available. Instead, each user knows only the cost distribu-

tion function. This distribution function can be obtained based on the statistical data in the

smartphone market and the technical specifications of smartphones. For example, the mar-

ket share of iPhone is 19.4% in 2011 according to Gartner [52]. Hence it is very reasonable

to assume that the probability that a users cost is equal to that of an iPhone is 0.194. With

the cost distribution function, we will reformulate the utility functions for both users and

the platform. Under the new Stackelberg game formulation, we will study the existence

and the uniqueness, if possible, of the NE in the WTDG. Our ultimate goal is to compute

the Stackelberg Equilibrium of the Stackelberg game with incomplete information.
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Part III

Security and Privacy
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Chapter 7

Being Smarter: How to Cope with a Smart Jammer

Wireless networks are highly vulnerable to jamming attacks, since jamming attacks are

easy to launch. Attacks of this kind usually aim at the physical layer and are realized

by means of a high transmission power signal that corrupts a communication channel, as

shown in Figure 7.1.

7.1 Introduction

In this work, we are interested in defending against smart jammers, who can quickly

learn the transmission pattern of the users and adjust their jamming strategies so as to

exacerbate the damage. Since jammers need to consider transmission cost, transmitting

with the maximum power may not be the optimal strategy. As a first step along this line,

we study the battle between a single user (a transmitter-receiver pair) and a single smart

jammer (a malicious transmitter). This problem arises, for example, in military operations,

where one radio station transmits data to another in a hostile environment. In this paper,

we aim to derive the optimal power control for the user in the presence of a smart jammer.

Game theory is a natural tool to model and address this problem. Jamming defense

can be considered a game, where both the user and the jammer are players. Previous

works [2, 3] have been done on this topic by proving the existence of Nash Equilibria and

computing a Nash Equilibrium. A Nash Equilibrium (NE) is the status where no player has

an incentive to change its strategy unilaterally so as to increase its own utility. However,

Nash Equilibrium is not the best solution to the problem studied in this paper, because

the rationality of Nash Equilibrium is based on the assumption that all players take actions

simultaneously. In our model, the jammer is intelligent in the sense that it can quickly learn
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Figure 7.1: Jamming in wireless networks

the user’s transmission power and adjust its transmission power accordingly. Stackelberg

game serves the purpose of modeling this scenario. In this game, players, including one

leader and one follower, are in a hierarchical structure 1. The leader takes actions first, and

then the follower takes actions accordingly. Similar to the Nash Equilibrium in the standard

game, there is Stackelberg Equilibrium in this game. Different from the Nash Equilibrium,

Stackelberg Equilibrium is the optimal strategy of the leader, given the fact that the follower

would take actions according to the leader’s strategy, together with the optimal strategy of

the follower corresponding to the leader’s optimal strategy.

To the best of our knowledge, this paper is the first to study the power control

problem in the presence of a smart jammer. As an initial step, we consider a single user

and a single jammer (the more challenging scenario with multi users/jammers is a subject of

future research). Both the user and the jammer can adjust their transmission power levels.

We consider both the single-channel model and the multi-channel model. We model the

power control problem with a smart jammer as a Stackelberg game [133], called Power
1There could be more than one follower. Since we only consider one follower in this paper, we refer the

readers to [46] for more details.
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Control with Smart Jammer (PCSJ) game. In this game, the user is the leader and the

jammer is the follower. The user is aware of the jammer’s existence and has the knowledge

of jammer’s intelligence, based on which the user chooses an optimal strategy so as to

maximize its own utility, while the jammer plays its best response strategy given the user’s

strategy. For the single-channel model, we derive closed-form expressions for the jammer’s

best response strategy and the user’s optimal strategy, which together constitute the unique

Stackelberg Equilibrium (SE). For the multi-channel model, we design an algorithm for

computing the jammer’s best response strategy, given the user’s strategy. We also develop

two algorithms to approximate the user’s optimal strategy and thus the SE strategies.

The rest of this paper is organized as follows: In Section 7.2, we briefly describe

the related works. In Section 7.3, we introduce the system model and the Stackelberg game

formulation. In Section 7.5.1, we study the PCSJ game under the single-channel model. In

Section 7.5.2, we study the PCSJ game under the multi-channel model. In Section 7.6, we

present numerical results. We conclude this paper in Section 7.7.

7.2 Related Work

Due to the importance of jamming defense, wireless network jamming has been

extensively studied in the past few years. Many jamming defense mechanisms have been

proposed on both the physical layer [86, 87, 107, 154, 155] and the MAC layer [120, 121]

to detect jamming, as well as to avoid it. Spread spectrum technologies have been shown

to be very effective to avoid jamming. With enough bandwidth or widely spread signals, it

becomes harder to detect the start of a packet quickly enough in order to jam it.

Since jamming activities can be considered as a player (the jammer) playing against

another player (the user), game theory is an appropriate tool to deal with this kind of

problem. Many previous works have studied jamming defense with game theory formula-
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tions [2, 3, 85, 124, 151, 171]. In [2], Altman et al. studied the jamming game in wireless

networks with transmission cost. In this game, both the user and the jammer take the power

allocation on channels as their strategies. The utility of the user is the weighted capacity

minus transmission cost. The utility of the jammer is the negative of the user’s weighted ca-

pacity minus transmission cost. The authors proved the existence and uniqueness of Nash

Equilibrium. In addition, they provided analytical expressions for the equilibrium strate-

gies. In [3], the same group of authors extended the jamming problem to the case with

several jammers. The difference from [2] is that they did not consider transmission cost

and they considered SINR and −SINR as the utility values for the user and the jammers,

respectively. They showed that the jammers equalize the quality of the best sub-carriers for

transmitter on as low level as their power constraint allows, meanwhile the user distributes

its power among these jamming sub-carriers. In [124], Sagduyu et al. considered the

power-controlled MAC game, which includes two types of players, selfish and malicious

transmitters. Each type of user has a different utility function depending on throughput

reward and energy cost. They also considered the case where the transmitters have in-

complete information regarding other transmitter’s types, modeled as probabilistic beliefs.

They derived the Bayesian Nash Equilibrium strategies for different degrees of uncertainty,

and characterized the resulting equilibrium throughput of selfish nodes.

The jamming problems have also been studied in cognitive radio networks [85, 151,

171]. The anti-jamming game in this scenario is often modeled as a (stochastic) zero-sum

game, where the sum of the utility values of the jammer(s) and the secondary user is zero.

In [171], Zhu et al. assumed the transition between idle and busy states of the channel

to be Markovian. They considered a single secondary user and a single jammer in the

cognitive radio system. The strategy of the user is the channel selected to transmit on,

while the strategy of the jammer is the channel selected to jam. The utility of the user
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is 1 if the selected channel is not occupied by the primary user and not jammed by the

jammer. They considered mixed strategies and proved the conditions for the uniqueness

of the Nash Equilibrium. They also showed that the secondary user can either improve

its sensing capability to confuse the jammer or choose to communicate under states where

the available channels are less prone to jamming, in order to improve its utility value.

In [85], Li and Han studied the problem of defending primary user emulation attack, which

is similar to the jamming attack in wireless networks. There is only one jammer and one

or multiple secondary users in their models. The strategy of each secondary user is the

channel selected to transmit on, while the strategy of the jammer is the channel selected to

jam. The utility of each secondary user is a reward if it senses a channel and the jammer

is not jamming. They computed the unique Nash Equilibrium and analyzed the efficiency.

In [151], Wu et al. first investigated the case where a secondary user can access only one

channel at a time and then extended to the scenario where secondary users can access all

the channels simultaneously. For the former case, the secondary user uses channel hopping

as its defense strategy. The utility of the secondary user is equal to a communication gain,

if the transmission is successful, minus cost and a significant loss when jammed. They

found an approximation to the Nash Equilibrium by letting the user and jammers iteratively

update their strategies against each other. For the latter case, the secondary user could

allocate power to several channels. The utility of the secondary user is equal to the total

number of successful transmissions. They showed that the defense strategy from the Nash

Equilibrium is optimal.

In all the previous works on jamming defense, the authors assumed that the users

and the jammers take actions simultaneously. In this paper, we study the power control

problem in the presence of a smart jammer, which has more power compared to the jammer

model studied before. To the best of our knowledge, we are the first to address this problem.
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7.3 System Model

In this section, we present the system model and formulate the problem to be stud-

ied.

System Model

Our system consists of a user (i.e., a transmitter-receiver pair), and a jammer (i.e.,

a malicious transmitter), as illustrated in Figure 7.1. The user (jammer, respectively) has

control over its own transmission power. This problem arises, for example, in military

operations, where one radio station transmits data to another radio station in a hostile envi-

ronment. We consider two models in this paper: single-channel model and multi-channel

model.

Single-channel model: Let P denote the transmission power of the user and J denote

the transmission power of the jammer. In addition, we assume that the user and the jammer

transmit with cost E and C per unit power. As in [3, 124], we adopt SINR as the reward

of the user in our model. Hence, the utility of the user is

us(P,J) =
αP

N +βJ
−EP, (7.1)

and the utility of the jammer is

vs(P,J) =−
αP

N +βJ
−CJ, (7.2)

where N is the background noise on the channel, and α > 0 and β > 0 are fading channel

gains of the user and the jammer, respectively. Note that we have omitted power constraint

in this model. If power constraint is added, we can still derive closed-form expressions

for the SE. However, the corresponding analysis is more complicated, involving ad-hoc

discussions of many cases. Hence, we choose to concentrate on this model, which allows

us to to emphasize the main contributions without excessive ad-hoc analysis.
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Multi-channel model: We assume that there are n available channels. Let αi ∈ (0,1]

and βi ∈ (0,1] denote the fading channel gains of the user and the jammer on channel i,

respectively. Let P̂ > 0 and Ĵ > 0 denote the total transmission power of the user and the

jammer, respectively. Let Pi and Ji denote the transmission power allocated to channel i by

the user and the jammer, respectively. Let P=(P1,P2, . . . ,Pn) and J =(J1,J2, . . . ,Jn) denote

the transmission power vectors of the user and the jammer, respectively. P is feasible if

∑
n
i=1 Pi ≤ P̂, and J is feasible if ∑

n
i=1 Ji ≤ Ĵ. Let P = {(P1,P2, . . . ,Pn)|Pi ≥ 0,∑n

i=1 Pi ≤ P̂}

and J = {(J1,J2, . . . ,Jn)|Ji ≥ 0,∑n
i=1 Ji ≤ Ĵ} denote the sets of feasible power vectors of

the user and the jammer, respectively. Similarly to the single-channel model, we assume

that the user and the jammer transmit with cost E and C per unit power. The utility of the

user is

um(P,J) =
n

∑
i=1

αiPi

Ni +βiJi
−E

n

∑
i=1

Pi. (7.3)

The utility of the jammer is

vm(P,J) =−
n

∑
i=1

αiPi

Ni +βiJi
−C

n

∑
i=1

Ji. (7.4)

In this paper, we deal with a smart jammer, who can quickly learn the user’s trans-

mission power and adjust its transmission power accordingly to maximize its utility. The

user’s transmission power can be accurately learned using physical carrier sensing and lo-

cation knowledge. We are interested in determining the transmission power of the user

such that its utility is maximized, in the presence of a smart jammer. We call this problem

the power control problem with a smart jammer.

7.4 Stackelberg Game Formulation

In our model, the jammer is smart and can adjust its transmission power based on

the user’s transmission power. Based on this fact, we model the power control problem in

the presence of a smart jammer as a Stackelberg game, called Power Control with Smart
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Jammer (PCSJ) game. In this game, both the user and the jammer are players, of which

the user is the leader, and the jammer is the follower. The strategy of each player is its

transmission power. The utility of the user (resp. the jammer) is defined in (7.1) (resp.

(7.2)) for the single-channel model and (7.3) (resp. (7.4)) for the multi-channel model.

7.5 PCSJ Game

7.5.1 PCSJ under Single-Channel Model

In this section, we study the PCSJ game under the single-channel model. First, we compute

the best response strategy of the jammer, for a given strategy of the user. Then we compute

the optimal strategy of the user, based on the knowledge of the best response strategy of

the jammer.

Jammer’s Best Response Strategy

Assume that the user’s strategy P is given. Then the jammer’s best response strategy

can be computed by solving the following optimization problem.

max
J≥0

vs(P,J) =−
αP

N +βJ
−CJ. (7.5)

Thus we have the following lemma.

Lemma 7.1. Let P be a given strategy of the user. Then the corresponding optimal strategy

of the jammer is

J(P) =


0, P≤ CN2

αβ
,√

αβP
C −N
β

, P > CN2

αβ
.

(7.6)

Proof. To find the maximum value of vs(P,J), we differentiate vs(P,J) with respect to J
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and set the resulting derivative equal to 0,

0 =
∂vs(P,J)

∂J
=

αβP
(N +βJ)2 −C. (7.7)

Considering the constraint J ≥ 0, we have jammer’s optimal strategy in (7.6).

User’s Optimal Strategy

The user is aware of the existence of the jammer and knows that the jammer will

play its best response strategy to maximize its own utility. Therefore, the user can derive

the jammer’s strategy based on Lemma 7.1. To compute the user’s optimal strategy, we

solve the following optimization problem.

max
P≥0

us(P,J(P)) =
αP

N +βJ(P)
−EP, (7.8)

where J(P) is given in (7.6).

The optimal strategy of the user is given in the following Lemma.

Lemma 7.2. The optimal strategy of the user is

PSE =



αC
4βE2 , E ≤ α

2N ,

CN2

αβ
, α

2N < E ≤ α

N ,

0, E > α

N .

(7.9)

Proof. Plugging (7.6) into the objective function (7.8), we have

us(P,J(P)) =


(α

N −E)P, P≤ CN2

αβ
,√

αCP
β
−EP, P > CN2

αβ
.

(7.10)

Hence us(P,J(P)) is a linear function in P for 0≤P≤ CN2

αβ
, and is a strictly concave function

in P for P > CN2

αβ
. Note that the derivative of us(P,J(P)) with respect to P in the range
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P > CN2

αβ
is given by

∂us(P,J(P))
∂P

=
1
2

√
αC
βP
−E. (7.11)

Setting equation (7.11) to 0, we obtain P = αC
4βE2 .

To compute the maximum value of (7.10), we consider three disjoint cases.

Case-1: E ≤ α

2N . We can verify that CN2

αβ
≤ αC

4βE2 . As illustrated in Figure 7.2(a),

us(P,J(P)) achieves its maximum value of αC
4βE when P = αC

4βE2 .

Case-2: α

2N < E ≤ α

N . We can verify that CN2

αβ
> αC

4βE2 . As illustrated in Fig-

ure 7.2(b), us(P,J(P)) achieves its maximum value of (α−EN)CN
αβ

when P = CN2

αβ
.

Case-3: E > α

N . In this case, we also have CN2

αβ
> αC

4βE2 . As illustrated in Fig-

ure 7.2(c), us(P,J(P)) achieves its maximum value of 0 when P = 0.

This proves the lemma.
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Figure 7.2: User’s utility function for different values of E
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Lemmas 7.1 and 7.2 lead to the following theorem.

Theorem 7.1. The strategy pair (PSE ,JSE) is the Stackelberg Equilibrium of the PCSJ

game, where

PSE =



αC
4βE2 , E ≤ α

2N ,

CN2

αβ
, α

2N < E ≤ α

N ,

0, E > α

N ,

and

JSE =


α

2E−N
β

, E ≤ α

2N ,

0, E > α

2N .

Remark. Note that the user needs to have the knowledge of β to compute PSE .

This can be achieved as follows: The user randomly selects its initial transmission power

P[0] > 0. It then keeps increasing its transmission power to P[i] until the received jamming

signal is non-zero. For example, it can set P[i] = 2i×P[0] for i > 0. The received jamming

signal can be measured by taking advantage of the delay in jamming’s decision making.

According to (7.6), we have βJ(P[i]) =

√
αβP[i]

C −N. Hence we have β =
C(βJ(P[i])+N)

2

αP[i] ,

where βJ(P[i]) is the received jamming signal.

Comparison with Nash Equilibrium

Now we study the impact of the jammer’s intelligence on the utility values of both

players.

We show that the utility values of both the user and the jammer at the SE of the

PCSJ game are at least as high as those at the NE of the PCRJ game.
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Lemma 7.3. There exists a unique NE (PNE ,JNE) in the PCRJ game when the jammer

does not have intelligence to learn the user’s strategy. In addition,

(PNE ,JNE) =


( αC

βE2 ,
α/E−N

β
), E ≤ α

N ,

(0,0), E > α

N ,

(7.12)

us(PNE ,JNE) = 0, (7.13)

and

vs(PNE ,JNE) =


C
β

(
N− 2α

E

)
, E ≤ α

N ,

0, E > α

N .

(7.14)

Proof. We consider two disjoint cases:

Case-1: E ≤ α

N . If J = α/E−N
β

, the value of (7.1) is 0, for any P. However, in

order to have J = α/E−N
β

, we must have P = αC
βE2 according to (7.7). Thus the NE is

(PNE ,JNE) = ( αC
βE2 ,

α/E−N
β

).

We now prove the uniqueness of NE in this case. Assume to the contrary that there

exists another NE (P′,J′). We first use contradiction to prove that J′ = JNE . If J′ > JNE ,

P′ = 0 according to (7.1). However, if P′ = 0, we must have J′ = 0 according to (7.2),

contradicting to the assumption that J′ > JNE > 0. If J′ < JNE , (7.1) becomes a strictly

increasing function of P. Hence the user can increase its utility by unilaterally increase its

transmission power, contradicting the NE assumption (P′,J′). Thus we have proved that

J′ = JNE . Since J′ is a function of P′ according to (7.7), we have P′ = PNE .

Case-2: E > α

N . The derivative of (7.1) with respect to P is

α

N +βJ
−E < 0,
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for any J≥ 0. Hence P= 0 is the unique optimal strategy for the user. Since vs(0,J)=−CJ,

J = 0 is the unique optimal strategy for the jammer. The NE is then (PNE ,JNE) = (0,0).

Combining (7.12), (7.1) and (7.2), we get (7.13) and (7.14).

Lemma 7.3 leads to the following important theorem, as stated in the 3rd paragraph

of this section.

Theorem 7.2. Let (PSE ,JSE) be the SE of the PCSJ game, and (PNE ,JNE) be the NE of the

PCRJ game. Then we have

us(PSE ,JSE) ≥ us(PNE ,JNE), (7.15)

vs(PSE ,JSE) ≥ vs(PNE ,JNE). (7.16)

Proof. It is clear that us(PSE ,JSE)≥ us(PNE ,JNE). For the jammer, it suffices to prove that

vs(PSE ,JSE)≥ vs(PNE ,JNE) when α

2N < E ≤ α

N . According to (7.14), we have

vs(PNE ,JNE) =
C
β

(
N− 2α

E

)
≤ C

β
(N−2N)

= −CN
β

= vs(PSE ,JSE)

The theorem is proved.

7.5.2 PCSJ under Multi-Channel Model

In this section, we study the PCSJ game under the multi-channel model.

Jammer’s Best Response Strategy

Given the user’s strategy P, the problem of power allocation for the jammer can be

formulated as a convex optimization problem as follows.
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max
J∈J

vm(P,J) =−
n

∑
i=1

αiPi

Ni +βiJi
−C

n

∑
i=1

Ji. (7.17)

In the following, Theorem 7.3 guarantees the existence of the jammer’s best re-

sponse strategy, and Theorem 7.4 computes the jammer’s best response strategy, when the

user’s strategy is given.

Theorem 7.3. Let P be user’s strategy. There exists a unique J(P) such that vm(P,J(P)) is

maximized.

Proof. Since vm(P, ·) is a continuous function on the compact set J , it can achieve its

maximum value at some J ∈J [140].

Without loss of generality, we assume that Pi > 0 for 1 ≤ i ≤ k and Pi = 0 for

k < i≤ n. It is obvious that, in any optimal solution of the optimization problem (7.17), we

have Ji(P) = 0 for k < i ≤ n. Otherwise, we can increase the value of vm(P,J) by setting

Ji(P) = 0, contradicting the optimality of J. The optimization problem then becomes

max
J

vm(P,J) =−
k

∑
i=1

αiPi

Ni +βiJi
−C

k

∑
i=1

Ji (7.18)

s.t.

k

∑
i=1

Ji ≤ Ĵ,Ji ≥ 0, for all i ∈ [1,k].

The first order partial derivative of vm(P,J) with respective to Ji, for i ∈ [1,k], is

∂vm(P,J)
∂Ji

=
αiβiPi

(Ni +βiJi)
2 −C, (7.19)

and the second order partial derivatives of vm(P,J) are

∂ 2vm(P,J)
∂Ji∂J j

=


− 2αiβ

2
i Pi

(Ni+βiJi)
3 , i = j,

0, i 6= j.
(7.20)
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The Hessian matrix is negative definite [14]: 52vm(P,J) ≺ 0, implying that the objec-

tive function (7.18) is strictly concave, and there is a unique solution to the optimization

problem.

Theorem 7.4. Let P be user’s strategy. We define π(λ ) = ∑
k
i=1

[√
αiβiPi
C+λ

−Ni

βi

]+
for λ ∈

[0,∞), where [x]+ = max{x,0}. Then the best response strategy of the jammer is J(P) =

(J1(P), J2(P), . . . ,Jn(P)), where

Ji(P) =




√

αiβiPi
C+λ0

−Ni

βi

+ , 1≤ i≤ k,

0, k+1≤ i≤ n,

(7.21)

and

λ0 =


0, π(0)< Ĵ,

the unique root of π(λ ) = Ĵ, otherwise.
(7.22)

In addition, J(P) can be computed in O(n logn) time. �

Proof. We convert the optimization problem (7.18) into a standard form of convex opti-

mization problem [14]:

min
J

f (J) =
k

∑
i=1

αiPi

Ni +βiJi
+C

k

∑
i=1

Ji (7.23)

s.t.

k

∑
i=1

Ji− Ĵ ≤ 0,

−Ji ≤ 0,∀i ∈ [1,k].

The first order partial derivative of f (J) with respective to Ji, for i ∈ [1,k], is

∂ f (J)
∂Ji

=− αiβiPi

(Ni +βiJi)
2 +C, (7.24)
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and the second order partial derivatives of f (J) are

∂ 2 f (J)
∂Ji∂J j

=


2αiβ

2
i Pi

(Ni+βiJi)
3 , i = j,

0, i 6= j.
(7.25)

The Hessian matrix is positive definite [14]: 52 f (J)� 0, implying that the objective func-

tion (7.23) is strictly convex.

Since the constraints of the optimization problem are also convex, we know that the

Karush-Kuhn-Tucker (KKT) conditions [14] are necessary and sufficient for optimality.

We define the Lagrangian as

LJ(J,λ ) = vm(P,J)+λ0

(
k

∑
i=1

Ji− Ĵ

)
+

k

∑
i=1

λiJi, (7.26)

where λi ≥ 0, 0≤ i≤ k, are the Lagrange multipliers. The KKT conditions for the optimal

solution of (7.23) are given by

∂LJ(J,λ )
∂Ji

= 0,∀i ∈ [1,k], (7.27)

k

∑
i=1

Ji− Ĵ ≤ 0, (7.28)

−Ji ≤ 0,∀i ∈ [1,k], (7.29)

λi ≥ 0,∀i ∈ [0,k], (7.30)

λ0

(
k

∑
i=1

Ji− Ĵ

)
= 0, (7.31)

−λiJi = 0,∀i ∈ [1,k]. (7.32)

Combining (7.27), (7.28), and (7.32), we have (7.21) and (7.22).

Our algorithm for computing J(P) is given in Algorithm 11. Lines 1–8 compute the

value of λ0 satisfying (7.22). Line 9 computes J(P) according to (7.21). When π(0) < Ĵ,

Line 2 of Algorithm 11 computes λ0 = 0, which is consistent with the first case in (7.22).
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Algorithm 11: Computation of J(P)
input : The power vector P of the user

1 if π(0)< Ĵ then
2 λ0← 0;
3 else
4 λ i

0←
αiβiPi

N2
i
−C, for i← 1 to k ;

5 Sort {λ i
0}k

i=1 such that λ
i1
0 ≤ λ

i2
0 ≤ ·· · ≤ λ

ik
0 ;

6 Find r ∈ [1,k] such that π(λ
ir−1
0 )≥ Ĵ > π(λ ir

0 ), where λ
i0
0 = 0;

7 λ0←
(

∑
k
j=r

√
αi j Pi j

βi j

/(
Ĵ+∑

k
j=r

Ni j
βi j

))2

−C;

8 end

9 Ji(P)←



√

αiβiPi
C+λ0

−Ni

βi

+ , 1≤ i≤ k,

0, k+1≤ i≤ n,

;

10 return J(P);

When π(0)≥ Ĵ > 0, we have

[√
αiβiPi
C+λ

−Ni

βi

]+
> 0 for at least one i ∈ [1,k]. Line 4 computes

the values {λ i
0}k

i=1, such that

√
αiβiPi
C+λ

−Ni

βi
> 0 if and only if λ < λ i

0. Line 5 sorts these values

such that λ
i1
0 ≤ λ

i2
0 ≤ ·· · ≤ λ

ik
0 . Hence π(λ ) = ∑

k
j=l

√
αi j

βi j
Pi j

C+λ
−Ni j

βi j
for λ ∈ [λ

il−1
0 ,λ il

0 ). This

also implies that π(λ ik
0 ) = 0, and π(λ ) is strictly decreasing for λ ∈ [0,λ ik

0 ]. Hence there is

a unique λ0 ∈ (0,λ ik
0 ) such that π(λ0) = Ĵ. Lines 6 and 7 compute this value.

Line 5 in Algorithm 11 takes O(k logk) time. The rest of the algorithm takes O(k)

time. Since k ≤ n, the running time of Algorithm 11 is O(n logn).

User’s Optimal Strategy

We first rigorously prove the existence of the user’s optimal strategy, which implies

the existence of SEs of the PCSJ game, and then design algorithms for approximating the

user’s optimal strategy.
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Lemma 7.4. Let {P[κ]} be a sequence in P converging to a point P̄ in P . Then the

sequence {J(P[κ])} converges to J(P̄).

Proof. To the contrary, assume that {J(P[κ])} does not converge to J(P̄). Since {J(P[κ])}

is contained in the compact set P , it must have a sub-sequence {J(P[sκ ])} converging

to a point J′ 6= J(P̄). Clearly {P[sκ ]} converges to P̄ since {P[κ]} converges to P̄. Hence

{(P[sκ ],J(P[sκ ]))} converges to (P̄,J′). Without loss of generality, we assume that {(P[κ],J(P[κ]))}

converges to (P̄,J′).

Since J(P̄) is the unique optimal strategy of the jammer for the strategy P̄ of the

user, we have

vm(P̄,J(P̄))− vm(P̄,J′)> 0. (7.33)

Define

3ε = vm(P̄,J(P̄))− vm(P̄,J′). (7.34)

Since vm(P,J) is a continuous function on P ×J , it is continuous at points

(P̄,J(P̄)) and (P̄,J′). Since {(P[κ],J(P̄))} converges to (P̄,J(P̄)), and {(P[κ],J(P[κ]))}

converges to (P̄,J′), there exists an integer K such that

|vm(P[κ],J(P̄))− vm(P̄,J(P̄))|< ε, when κ ≥ K, (7.35)

and

|vm(P[κ],J(P[κ]))− vm(P̄,J′)|< ε, when κ ≥ K. (7.36)
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Therefore, for all κ ≥ K, we have (using (7.35), (7.34), and (7.36))

vm(P[κ],J(P̄)) > vm(P̄,J(P̄))− ε (7.37)

= (vm(P̄,J′)+3ε)− ε (7.38)

> vm(P[κ],J(P[κ]))− ε +3ε− ε (7.39)

= vm(P[κ],J(P[κ]))+ ε. (7.40)

This is in contradiction with the assumption that J(P[κ]) is the best response strategy of the

jammer. This proves the lemma.

Lemma 7.5. um(P,J(P)) is a continuous function in P.

Proof. By (7.3), um(P,J) is continuous in the variables (P,J). From Lemma 7.4, J(P) is

continuous in P. Hence um(P,J(P)) is continuous in P.

Theorem 7.5. There exists PSE ∈P such that (PSE ,J(PSE)) is a Stackelberg Equilibrium

of the PCSJ game.

Proof. We know that um(P,J(P)) is a continuous function in P. Since the set P is compact,

um(P,J(P)) achieves its maximum at some point PSE ∈P [140]. This proves the theorem.

Based on the analytical results of the jammer’s best response strategy given user’s

strategy, the user can optimize its strategy P to maximize its utility um(P,J), being aware

that its decision will affect the jammer’s strategy. From the user’s prospective, its objective

is to solve the following optimization problem.

max
P∈P

um(P,J(P)) =
n

∑
i=1

αiPi

Ni +βiJi(P)
−E

n

∑
i=1

Pi, (7.41)

where Ji(P) is derived from Theorem 7.4.
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Although Theorem 7.5 proves the existence of an SE of PCSJ, computing an SE is

challenging. The reason is that the objective function in (7.41) is not concave.

Non-Concavity of um(P,J(P)): Define g(P) = um(P,J(P)). We use an example to

show that there exists P[1] and P[2] such that

g(P[1])+g(P[2])

2
> g

(
P[1]+P[2]

2

)
.

In this example, n= 2, α1 =α2 = 0.6, β1 = 0.5, β2 = 0.2, N1 =N2 = 0.2, P̂= 10, Ĵ = 4, E =

0.1, and C = 1. We set P[1] = (4,3) and P[2] = (5,4). Using Algorithm 11 and the definition

of um(P,J(P)), we have g(P[1]) = 4.49089, g(P[2]) = 5.57603, and g
(

P[1]+P[2]

2

)
= 4.93331.

Hence we show that g(P[1])+g(P[2])
2 > g

(
P[1]+P[2]

2

)
.

Algorithm 12: SE-SA
input : Algorithm parameters I, T , σ , and δ

1 Randomly initialize P, Pbest ← P;
2 repeat
3 for i← 1 to I do
4 Pnew← neighbor(P);
5 Randomly select r from (0,1);
6 if um(Pnew,J(Pnew))≥ um(P,J(P)) or r ≤ e(um(Pnew,J(Pnew))−um(P,J(P)))/T then
7 P← Pnew;
8 if um(Pnew,J(Pnew))> um(Pbest ,J(Pbest)) then
9 Pbest ← Pnew;

10 end
11 end
12 end
13 T ← σT ;
14 until T ≤ 1;

We propose two algorithms to approximate the optimal strategy of the user. The

first is simulated annealing [73], denoted by SE-SA and presented in Algorithm 12. The

second is a mesh-based hill-climbing algorithm, denoted by SE-MESH and presented in

Algorithm 13.
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Since simulated annealing has been widely used in the literature, we do not give

detailed description of SE-SA, and refer the readers to [57]. The algorithm finds a global

optimal solution with probability 1 when the number of iterations goes to infinity [57].

The algorithm parameters are as follows. T > 0 is the initial temperature. σ ∈ (0,1) is the

annealing parameter. I is the number of iterations to be performed at each temperature. δ is

the parameter used for generating perturbations. For any feasible power vector P ∈P , the

function neighbor(P) generates a perturbation P′ ∈P in the following way. For each i, let

P′i = [Pi+δi]
+, where δi is a random number uniformly drawn from [−δ ,δ ]. If ∑

n
i=1 P′i > P̂,

set P′i =
P̂P′i

∑
n
i=1 P′i

.

In SE-MESH, we first narrow down the searching space P to the points (δ1ε,δ2ε, . . . ,δnε)

on a mesh with space ε between lines. We then select the top t points that have highest

values of u(P,J(P)). Starting from each of these t points, we apply a searching strategy

similar to that used in SE-SA (Lines 3–12) except that only the point resulting in a higher

u(P,J(P)) is accepted in SE-MESH. In addition, for each point P, the searching process

terminates if we could not find a neighbor yielding higher u(P,J(P)) after I iterations.

Remark 1. The value of βi for 1≤ i≤ n to compute PSE can be computed similarly

using the method in Section 7.5.1 for each channel and compute βi.

Remark 2. Since P is compact and um(P,J(P)) is a continuous function on P by

Lemma 7.5, um(P,J(P)) is uniformly continuous on P . Therefore, there exists a Lipschitz

constant L > 0, such that |um(P,J(P))− um(P′,J(P′))| ≤ L||P−P′|| [140]. Therefore, as

ε approaches zero, the solution computed by SE-MESH converges to the optimal solution.

More importantly, we have um(Pε ,J(Pε))≥ um(Popt ,J(Popt))−εnL, where Pε is the trans-

mit power computed by SE-MESH, Popt is optimal transmission power of the user, and n

is the dimension of P vector.
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Algorithm 13: SE-MESH
input : Algorithm parameters ε , t, I, and δ

1 Pbest ← 0;
2 Let P ′←{(δ1ε,δ2ε, . . . ,δnε)|δi ∈ Z∗,1≤ i≤ n}∩P , where Z∗ is the set of

nonnegative integers;
3 Compute u(P,J(P)) for each P ∈P ′;
4 Let P ′[1],P ′[2], . . . ,P ′[t] denote the top t power transmission vectors with highest

u(P,J(P));
5 for i← 1 to t do
6 P←P ′[i];
7 if um(P,J(P))> um(Pbest ,J(Pbest)) then
8 Pbest ← P;
9 end

10 cnt← 0;
11 while cnt < I do
12 Pnew← neighbor(P);
13 if um(Pnew,J(Pnew))≥ um(P,J(P)) then
14 P← Pnew;
15 cnt← 0;
16 if um(Pnew,J(Pnew))> um(Pbest ,J(Pbest)) then
17 Pbest ← Pnew;
18 end
19 else
20 cnt← cnt +1;
21 end
22 end
23 end

7.6 Performance Evaluation

In this section, we validate the theoretical insights of the PCSJ game through exten-

sive simulations.

Simulation Setup

For the single-channel model, five variables determine the players’ strategies and

their utility values, which are N, α , β , C, and E. Among these five variables, only α and
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β , i.e., fading channel gains of the user and the jammer, may vary significantly due to the

change of players’ physical locations. Hence, we explore the relations of user and jammer’s

utility values with respect to different values of α and β . We set α and β to be in the range

of [0.1,0.9]. Moreover, let C = E = 1 (as in [2]), and N = 0.2.

For the multi-channel model, we have n ∈ [2,12] and P̂ = Ĵ = 10. We assume that

αi is randomly distributed over (0,1] and βi is randomly distributed over (0,0.5], for all

1 ≤ i ≤ n. Same as the single-channel model, we have C = E = 1 and Ni = 0.2 for all

1≤ i≤ n. For the parameters of SE-SA, we set I = 1000, T = 100, σ = 0.6, and δ = 0.25.

For the parameters of SE-MESH, we set ε = 1, t = 100, I = 1000, and δ = 0.25.

We compare the SE of the PCSJ game with the following scenarios:

• Power Control with Standard Jammer (NE) [165]: The jammer set its power without

knowing the user’s. Thus both the user and the jammer set their power simultane-

ously.

• Random Power Control (RAND): Both the user and the jammer randomly set their

power, regardless of the existence of the other, as long as the power allocation is

feasible.

• Power Control While Being Unaware of Jammer’s Existence (UNAWARE): The user

maximizes its utility, without the knowledge of the smart jammer’s existence. The

smart jammer still maximizes it utility with its intelligence.

• Power Control with Misjudgement (MISJUDGE): The user assumes the intelligence

of the jammer, while the jammer is just a regular one using random transmission

power.

Result Analysis
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Figs. 7.3 and 7.4 show the results of the single-channel model. Specifically, Figs. 7.3(a)

and 7.3(b) show the impact of α on the players’ utility values with β = 0.5, for different

scenarios. We observe that SE leads to the highest utility values for the user. The fact

that the utility at SE is higher than that at NE is consistent with the results in [165]. Re-

call that α is the fading channel gain of the user. Therefore the larger α is, the closer the

transmitter is from the receiver. Hence, as α increases, user’s utility increases, as shown

in Figure 7.3(a), while jammer’s utility decreases, as shown in Figure 7.3(b). For the user,

both NE and MISJUDGE result in higher utility than both RAND and UNAWARE. It is

because the user prepares for the worst case where the jammer has intelligence. In RAND,

the user randomly sets its power, which results in a negative utility when α = 0.1,0.2 even

without the jammer. Therefore, the utility of the user in RAND is lower than that in UN-

AWARE when α = 0.1,0.2. However, when α > 0.2, the user’s utility in RAND is always

higher than that in UNAWARE, due to the unawareness of the jammer’s existence in UN-

AWARE. For the jammer, SE leads to the highest utility. Again, the higher utility in SE

compared to NE is consistent with the results in [165]. Compare to RAND, jammer’s utility

is higher in UNAWARE where jammer has intelligence. In addition, MISJUDGE is higher

than RAND, because the user assumes the existence of the jammer in MISJUDGE, but sets

power randomly in RAND. Another observation is that MISJUDGE results in higher utility

than UNAWARE when α ≥ 0.4. It is because good channel condition (i.e. large value of

α) makes the user transmit with the maximum power in UNAWARE.

Figs. 7.4(a) and 7.4(b) show the impact of β on the players’ utility values with

α = 0.5, for different scenarios. Again, SE leads to the highest utility values for the user.

Note that the jammer’s SE utility increases while the user’s SE utility decreases due to the

fact that the jammer’s influence on the receiver gets stronger as β increases. We also have

the similar observations about the relationship among different scenarios as in Figs. 7.3 and
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Figure 7.3: Impact of α on players’ utility values
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Figure 7.4: Impact of β on players’ utility values

Figs. 7.5 through 7.8 show the results of the multi-channel model. For SE-SA, three

parameters I, T , and σ need to be decided. Figure 7.5 shows um(P,J(P)) as a function of

the number of iterations with our parameter settings. Plugging I, T , and σ into Algo-

rithm 12, we know that there are dlogσ
1
T e ∗ I = 10000 iterations in total. We observe that

the algorithm stops making improvement after 3000 iterations.

Figure 7.6 shows the comparison between SE-SA and SE-MESH. In particular,

Figure 7.6(a) shows the user’s utility and Figure 7.6(b) shows the running time. Although

SE-MESH performs a little better than SE-SA, the running time of SE-MESH grows ex-

ponentially in 1/ε . Actually, the running time of SE-MESH is dominated by the number
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of mesh points we evaluate in Line 3 in Algorithm 13, which is Θ((n+ 1)P̂/ε). To have

a better idea on how this scales, we plot it as a function of n and ε in Figure 7.7. As we

can see, when n = 12, the number of mesh points is more than 10100 for ε = 0.1, which

is beyond the computability of current PC machines. Hence SE-SA is the recommended

approach.
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Figure 7.6: Comparison between SE-SA and SE-MESH

Figure 7.8 shows the impact of n on players’ utility values under the multi-channel

model. We observe that SE has the best performance for the user, followed by RAND at

the second and UNAWARE at the bottom. In general, the user’s utility increases when

there are more channels. The reason is that the user has a better chance to allocate power

to channels with better channel gains, i.e., αi. Another observation is that the jammer has

lower utility values in UNAWARE than SE when there are less than 7 channels, while
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Figure 7.7: Scalability of SE-MESH in log-scale

higher utility values when there are more than 7 channels. This is because the number of

channel does not affect the jammer’s utility as much in UNAWARE as it does in SE. The

user will always only use the channel(s) with the best channel gain(s) if it is unaware of

the smart jammer’s existence. In contrast, the user has more flexible where there are more

channels in SE, with the knowledge of the jammer’s intelligence. Regarding the user’s

utility in MISJUDGE compared to other scenarios, we have the similar observations as in

the single-channel model. For the jammer, it has higher utility in UNAWARE than it does

in MISJUDGE. It is because unlike the single-channel model, where the user can transmit

with the maximum power at one channel, the user allocates power equally to channels with

the same condition under the multi-channel in UNAWARE. The even power distribution

allows the jammer to attack the channels with better channel conditions for the jammer and

thus to improve its utility. This advantage of the jammer is enhanced when the number of

channels increases.

7.7 Conclusion

In this paper, we have studied the problem of optimal power control in the presence

of a smart jammer, who can quickly learn the transmission power of the user and adjust its

transmission power to maximize the damaging effect. We have considered both the single-

180



2 3 4 5 6 7 8 9 10 11 12
−5

0

5

10

n

u
m

(P
, 
J
)

 

 

SE−SA
RAND
UNAWARE
MISJUDGE

(a) User’s utility

2 3 4 5 6 7 8 9 10 11 12
−30

−20

−10

0

n

v
m

(P
, 

J
)

 

 

SE−SA
RAND
UNAWARE
MISJUDGE

(b) Jammer’s utility

Figure 7.8: Impact of n on players’ utility values

channel and the multi-channel models. We modeled the problem as a Stackelberg game,

called PCSJ game. For the single-channel model, we proved the existence and the unique-

ness by giving the closed-form expressions for the Stackelberg Equilibrium (SE). For the

multi-channel model, we proved the existence and designed algorithms for approximating

an SE.
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Chapter 8

Motivating Mobile Users for K-Anonymity Location Privacy

The past few years have witnessed a surge of location-based services (LBSs), including

Foursquare [43], Google Latitude [56], and Where [147]. LBS is an information and enter-

tainment service based on the geographical position of mobile devices. Take Foursquare,

one of the most popular LBSs, as an example. Users can check in at the participating

businesses in exchange for coupons or gaming rewards such as badges and mayorships. A

recent report finds that 74% of smartphone owners use LBSs as of February 2012, up from

55% in May 2011 [112]. With this proliferation comes a serious concern about location

privacy of mobile users. Beresford and Stajano [10] defined location privacy as the ability

to prevent other parties from learning one’s current or past location. LBS providers collect

information not only about where we go but what we do, who we know, and who we are.

As the Electronic Privacy Information Center reports [39], a third party may have access to

users’ location history without their explicit consents.

Several approaches have been proposed to protect the location privacy of mobile

users [81]. One of the most widely adopted approaches is k-anonymity [61]. The basic

idea of k-anonymity is to have a trusted proxy relay the communication between mobile

users and LBS providers. After receiving the location information from a mobile user, the

proxy adjusts the resolution of the location by returning a cloaking area containing at least

k−1 other mobile users. As a result, the adversary cannot distinguish one mobile user from

any other mobile user in the same cloaking area. Meanwhile, Beresford and Stajano [10]

proposed to frequently change pseudonyms for each user to protect its location privacy.

To prevent the adversary from linking the old and new pseudonyms of a mobile user, they

also introduced a new concept, called mix zone. A mix zone is a spatiotemporal region,
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inside which the mobile users change their pseudonyms and do not communicate with LBS

providers. Since a pseudonym change by an isolated mobile user can be trivially traced by

the adversary, the pseudonym change should occur with other mobile users.

To achieve k-anonymity, there must be at least k mobile users in the anonymity

set. However, not all mobile users are seriously concerned about their location privacy

[47, 71, 81]. Iachello et al. found through a survey [47] that privacy concerns were quite

light for people with a mobile, location-sensitive message service. In an interview with 55

people, Kassinen was surprised by the fact that the interviewees were not worried about

privacy issues with location-aware services [71]. In [81], Krumm easily convinced over

250 people from their institution to give up their GPS data and learnt that only 20% out of

97 do not want to share their location data outside their institution.

One way to supplement k-anonymity is to introduce dummy users [72]. But this

approach has many side effects including waste of resources, significant communication

overhead, and difficulty in constructing dummy users’ movement [10]. Another solution

is to make other mobile users inside the mix zone join the anonymity set. However, mix

zones induce a cost for mobile users in the anonymity set, because mobile users in a mix

zone cannot communicate [45]. In addition, they need to consume their own resource, in-

cluding CPU computation, memory, and batter power. Therefore it is necessary to provide

incentives for the mobile users to participate.

8.1 Introduction

In this work, we design auction-based incentive mechanisms for k-anonymity lo-

cation privacy. It is desirable for an auction to satisfy the following critical properties: 1)

Computational Efficiency: the auction can determine the winners and payments in polyno-

mial time; 2) Individual Rationality: each mobile user can expect a non-negative utility by
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participating in the auction; 3) Budget Balance: the auctioneer can run the auction with-

out deficit, i.e., the payment collected from the winning buyers is at least as large as the

payment paid to the winning sellers; and 4) Truthfulness: no mobile user can benefit from

cheating about its true valuation on the k-anonymity protection or its cost of participation.

The main contributions of this work are as follows:

• We are the first to design incentive mechanisms for motivating mobile users to assist

others achieving k-anonymity location privacy.

• We first consider the case where all mobile users have the same privacy degree re-

quirement and design an auction-based incentive mechanism.

• We then generalize the problem to the case where users’ degree requirements are

different and design a corresponding incentive mechanism.

• We also design an incentive mechanism for a more challenging case where mobile

users can also cheat about their requirements.

• We rigorously prove that these incentive mechanisms are computationally efficient,

individually rational, budget-balanced, and truthful.

The remainder of this work is organized as follows. In Section 8.2, we briefly re-

view the literature on location privacy protection, with the focus on the anonymity-based

approaches. In Section 8.3, we introduce k-anonymity and mix-zone location privacy pro-

tection techniques, formulate the incentive mechanism design as an auction, and present

the desirable properties that an auction should possess. In Section 8.4, we design an in-

centive mechanism for users with the same privacy degree requirement and an incentive

mechanism for users with different requirements and then another incentive mechanism to
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cope with the scenario where users can cheat about their requirements. In Section 8.5, we

evaluate the designed incentive mechanisms through extensive simulations. We conclude

this work in Section 8.6.

8.2 Related Work

Location privacy concerns arise as more and more people give away their location

information to location-based service providers, without being aware of the risks if location

data leaks to an unscrupulous third party. There are many countermeasures proposed to

enhance location privacy. They can be generally classified into four categories: regulatory

strategies, privacy policies, anonymity, and obfuscation [81]. Since the objective of this

work is to design incentive mechanisms for anonymity-based approaches, we mainly focus

on the related work on anonymity-based location privacy protection.

Inspired by the concept of k-anonymity for data privacy, Gruteser and Grunwald

[61] introduced k-anonymity for location privacy. Instead of its real location, each mobile

user reports a cloaking area, which includes the mobile user itself and at least k−1 other

mobile users. To prevent the adversary from inferring the identity by learning the pattern of

a user’s activity, Beresford and Stajano [10] proposed to frequently change the pseudonyms

assigned to each user. They further introduced the concept of mix zone to make the old and

new pseudonyms unlinkable. In [72], Kido et al. proposed a new anonymous communi-

cation technique to protect the location privacy of users. The idea is that each mobile user

generates dummy users and sends them along with its true location to the LBS provider.

This approach introduces significant communication overhead. In addition, it is difficult

and costly for users to construct dummies with realistic behaviors. In [53], Gedik and Liu

designed a framework and algorithms to allow mobile users to specify their degree require-

ments. Chow et al. [22] developed the first distributed algorithm for k-anonymity location
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privacy. Xu and Cai [153] extended k-anonymity to continuous LBS and proposed to use

entropy to measure the anonymity degree.

Since the size, shape, and location of the mix zone or the cloaking area directly

affect the size of the anonymity set and thus the degree of anonymity, there have been

considerable efforts on developing techniques and algorithms to enhance location privacy

[45, 88, 139, 144]. In [45], Freudiger et al. studied the mix zone placement problem to

maximize the achieved location privacy, under cost constraint. In [88], Liu et al. proposed

a new metric to quantify the system’s resilience to privacy attacks and designed heuristic

algorithms to deploy mix zones to maximize the new metric. In [139], Vu et al. designed

a mechanism based on locality-sensitive hashing to compute the cloaking areas, which pre-

serves both locality and k-anonymity. In [144], Wang et al. introduced the concept of

Location-aware Location Privacy Protection and developed algorithms to compute cloak-

ing areas with minimum sizes such that the privacy requirements of users are satisfied.

Incentive mechanisms have been adopted to provide incentives for mobile users to

participate in different protocols and schemes at the cost of their own resources, includ-

ing P2P networks [55], routing [143, 148], cooperative communication [157], and mobile

sensing [38, 163]. To the best of our knowledge, this work is the first to design incentive

mechanisms for k-anonymity-based location privacy protection.

8.3 System Model

K-Anonymity and Mix Zone: A straightforward method to protect location pri-

vacy is to hide the real identity and associate the location data with a pseudonym. To further

reduce the probability of being identified by an adversary, Beresford and Stajano [10] pro-

posed to have each user frequently change its pseudonyms. However they also pointed

out that if the spatial and temporal information is sufficient, an adversary can still link the
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old and new pseudonyms, which defeats the purpose of the frequent pseudonym change.

Meanwhile, inspired by the concept of k-anonymity for data privacy, Gruteser and Grun-

wald [61] considered k-anonymity for location privacy. The location information is called

k-anonymous, if and only if it is indistinguishable from the location information of at least

k− 1 other users. Instead of its real location, the mobile user reports a two-dimensional

area, called cloaking area, which contains the mobile user itself and at least k− 1 other

mobile users.

a

b

c

de

f Mix 
Zone

Figure 8.1: Mix zone: after entering mix zone, a, b, and e change their pseudonyms such
that an adversary can observe only c, d, and f existing the mix zone.

Combining the ideas of frequently changing pseudonyms and k-anonymity, Beres-

ford and Stajano [10] introduced the concept of mix zone, as shown in Figure 8.1. In a

mix zone, users receive new, unused pseudonyms and do not report their location infor-

mation. These users together form an anonymity set. In this case an adversary cannot

distinguish a user from any other user, and thus cannot link users entering the mix zone

with those exiting. There are several techniques to create such a mix zone: 1) Turning off

the transceivers of mobile nodes; 2) Encryption; 3) Using a proxy to relay communication;

and 4) Exploiting regions that are out of the adversary’s coverage [45].

Auction Formulation: Assume that there are a set U b = {Ub
1 ,U

b
2 , . . . ,U

b
n } of n≥ 1 mobile
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users concerned about their location privacy and a set U s = {U s
1,U

s
2, . . . ,U

s
m} of m ≥ 1

mobile users interested in joining the anonymity set. Each mobile user Ub
i ∈ U b desires

ki-anonymity and has a valuation vi ≥ 0 on the location privacy protection. Here ki is the

location privacy degree requirement of Ub
i , which is the requirement of Ub

i on the size of

the anonymity set. Each seller U s
j ∈U s has a cost c j ≥ 0 of participating in the anonymity

set, which is for example related to the energy consumption, data usage, and temporary

service connection lost inside the mix-zone.

We model the k-anonymity auction as a single-round sealed-bid double auction. In

this auction, users in U b are buyers, users in U s are sellers, and the central authority is

the auctioneer, e.g., the middleware proposed in [10] and the wireless carrier in cellular

networks. For ease of exposition, we refer both buyers and sellers as agents when we do

not distinguish them specifically. Buyers offer prices for the desired k-anonymity privacy,

while sellers offer prices for participating in the anonymity set. Following the terminology

in auction theory, the price offered by a buyer is referred as bid, and the price offered by a

seller is referred as ask. Since the auction is sealed-bid, the price offered by each agent is

private to the agent itself, and no agent is aware of the prices offered by others. Let bi ≥ 0

denote the bid of Ub
i . Note that bi is not necessarily equal to vi. Let a j ≥ 0 denote the ask

of U s
j . Similarly, a j is not necessarily equal to c j. At the beginning of the auction, buyers

submit their bids and sellers submit their asks to the auctioneer. Given as input the bids

from the buyers and the asks from the sellers, the auctioneer determines the winning buyer

set W b and the winning seller set W s, such that |W b|+ |W s| ≥ ki for each Ub
i ∈ W b. In

addition, the auctioneer decides the payment pb
i charged to each buyer Ub

i ∈ U b and the

payment ps
j paid to each seller U s

j ∈ U s. Obviously, pb
i = 0 for each Ub

i ∈ U b \W b and
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ps
j = 0 for each U s

j ∈U s \W s. The utility of buyer Ub
i is defined as

ub
i =


vi− pb

i , if Ub
i ∈W b,

0, otherwise.

Similarly, the utility of seller U s
j is defined as

us
j =


ps

j− c j, if U s
j ∈W s,

0, otherwise.

We assume that agents are rational and try to maximize their own utilities.

8.4 Auction Design

Auction with Same Degree Requirement

In this section, we assume that the privacy degree requirements of all the buyers are

the same, i.e., ki = k for all Ub
i ∈U b. We design an auction, called KASD (K-Anonymity

Auction with Same Degree Requirement).

Algorithm 14: KASD
1 pb

i ← 0 for i← 1 to n; ps
j← 0 for j← 1 to m;

2 if n+m≥ k+2 then
3 if n≥ k+1 then
4 W b←

{
Ub

1 ,U
b
2 , . . . ,U

b
n−1
}

;
5 pb

i ← bn for i← 1 to n−1;
6 else if ak−n+2 ≤ (n−1)bn

k−n+1 then
7 W b←

{
Ub

1 ,U
b
2 , . . . ,U

b
n−1
}

;
8 pb

i ← bn for i← 1 to n−1;
9 W s←

{
U s

1,U
s
2, . . . ,U

s
k−n+1

}
;

10 ps
j← ak−n+2 for j← 1 to k−n+1;

11 end
12 end

The pseudocode of KASD is illustrated in Algorithm 14. For ease of exposition,

we assume that b1 ≥ b2 ≥ ·· · ≥ bn and a1 ≤ a2 ≤ ·· · ≤ am. The auctioneer first checks
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whether the total number of buyers and sellers is at least k+ 2. Here we need two more

agents than the degree requirement, because one of the buyers and one of the sellers need

to be sacrificed to guarantee the truthfulness. If the number of buyers is more than k, the

buyers themselves can achieve k-anonymity without the help of the sellers. Otherwise, the

auctioneer checks whether it is possible to find k−n+1 sellers as winners. In either case,

the first n− 1 buyers become the winning buyers and each of them pays a payment of bn.

In the latter case, the first k− n+ 1 sellers become the winning sellers and each of them

receives a payment of ak−n+2.

We now prove that KASD satisfies four properties mentioned in Section 1.1. Specif-

ically, we prove that KASD is computationally efficient (Lemma 8.1), individually rational

(Lemma 8.2), budget-balanced (Lemma 8.3), and truthful (Lemmas 8.4 and 8.5).

Lemma 8.1. KASD is computationally efficient. �

Proof. To ease the exposition, we have assumed that buyers are sorted in a nonincreasing

order according to their bids and sellers are sorted in a nondecreasing order according to

their asks. Sorting the buyers and the sellers takes O(n logn+m logm) time. The rest of

KASD takes linear time. Hence KASD takes O(n logn+m logm) time.

Lemma 8.2. KASD is individually rational. �

Proof. Each winning buyer Ub
i ∈ W b pays pb

i = bmin(U b). When it bids truthfully, i.e.,

bi = vi, its utility is ub
i = vi− pb

i ≥ vi− bi = 0. Each winning seller U s
j ∈ W s receives

ps
j = ak−n+2. When it asks truthfully, i.e., a j = c j, its utility is us

j = ps
j− c j ≥ a j− c j = 0.

Therefore KASD is individually rational for both buyers and sellers.

Lemma 8.3. KASD is budget-balanced. �
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Proof. If no winner is selected, the auctioneer does not need to pay any seller. If n≥ k+1,

the total payment collected from the winning buyers is pb = ∑
n−1
i=1 pb

i = (n− 1)bn ≥ 0.

Since there is no winning seller, the profit of the auction is nonnegative. If n < k + 1,

the total payment collected from the winning buyers is still pb = (n− 1)bn. The total

payment paid to the winning sellers is ps = (k−n+1)ak−n+2. The profit of the auctioneer

is pb− ps = (n−1)bn− (k−n+1)ak−n+2 ≥ (n−1)bn− (k−n+1) (n−1)bn
k−n+1 = 0.

Lemma 8.4. KASD is truthful for the buyers. �

Proof. For any buyer Ub
i , let pb

i and ub
i be its payment and utility, respectively, when it

bids truthfully, i.e., bi = vi. Let p̃b
i and ũb

i be its payment and utility, respectively, when

it cheats, i.e., bi 6= vi. Throughout the proof, we assume that Ub
i is in front of others after

the tie-breaking to simplify the description. We prove that ub
i ≥ ũb

i for any bi 6= vi. Due

to the assumption that the buyers are sorted, we have bmin(U b) = bn and Ub
min(U

b) =Ub
n .

Assume that n+m≥ k+2. Consider the following two cases:

• Case 1: n≥ k+1

There are two possible outcomes when Ub
i bids truthfully, winning or losing. If it

wins, we have pb
i = bmin(U b) and ub

i = vi− pb
i ≥ 0 by Lemma 8.2. Note that bidding

bi > vi will not affect the outcome of the auction and thus result in ũb
i = vi− p̃b

i = vi−

pb
i = ub

i . We have the same conclusion when Ub
i bids bmin(U b \{Ub

i })≤ bi < vi. By

bidding bi < bmin(U b\{Ub
i }), Ub

i will become the only loser, which makes its utility

ũb
i = 0≤ ub

i . If it loses by bidding truthfully, its utility is ub
i = 0. This also implies that

vi < bmin(U b\{Ub
i }). It is obvious that bidding bi < vi or vi < bi < bmin(U b\{Ub

i })

will not affect the outcome of the auction. By bidding bi ≥ bmin(U b \ {Ub
i }), Ub

i

can become a winner. However, its utility becomes ũb
i = vi− pb

i = vi− bmin(U b \

{Ub
i })< 0 = ub

i .
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• Case 2: n < k+1

If Ub
i wins by bidding its true valuation, we have a similar argument as in Case

1. If it loses by bidding its true valuation, there could be two subcases. Subcase 1:

vi < bmin(U b\{Ub
i }). We then have a similar argument as in Case 1. Subcase 2: vi≥

bmin(U b \{Ub
i }), but ak−n+2 >

(n−1)bn
k−n+1 . In this case, bidding bi ≥ bmin(U b \{Ub

i })

will not affect the outcome of the auction. If it bids bi < bmin(U b \ {Ub
i }), the

condition (Line 6) will not hold either. It still loses the auction, and its utility is

ũb
i = 0.

Based on the analyses of Cases 1 and 2, we conclude that Ub
i maximizes its utility

by bidding truthfully.

Lemma 8.5. KASD is truthful for the sellers. �

Proof. For any seller U s
j , let ps

j and us
j be its payment and utility, respectively, when it

asks truthfully, i.e., a j = c j. Let p̃s
j and ũs

j be its payment and utility, respectively, when it

cheats, i.e., a j 6= c j. Throughout the proof, we assume that U s
j is in front of others after the

tie-breaking to simplify the description. We prove that us
j ≥ ũs

j for any a j 6= c j. Note that

sellers will be involved in the auction only when n < k+1.

If U s
j wins by asking its true cost, we have ps

j = ak−n+2 and us
j = ps

j− c j ≥ 0 by

Lemma 8.2. It is obvious that asking a j < c j or c≤ a j ≤ ak−n+2 will not affect the outcome

of the auction. By asking a j > ak−n+2, U s
j will become a loser, and its utility is ũs

j = 0≤ us
j.

If U s
j loses by asking its true cost, its utility is us

j = 0. There could be two subcases.

Subcase 1: c j > ak−n+2. In this case, it is obvious that asking a j > c j or ak−n+2 < a j < c j

will not affect the outcome of the auction. By asking a j ≤ ak−n+2, U s
j may become a

winner, but its utility is ũs
j = p̃s

j − c j = ak−n+2− c j < 0 = us
j. Subcase 2: c j ≤ ak−n+2,
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but ak−n+2 >
(n−1)bn
k−n+1 . In this case, asking a j ≤ ak−n+2 will not affect the outcome of the

auction. If it asks a j > ak−n+2, the condition (Line 6) will not hold either. It still loses the

auction, and its utility is ũs
i = 0 = us

j.

We are ready to give the main theorem in this section.

Theorem 8.1. KASD is computationally efficient, individually rational, budget balanced,

and truthful. �

Proof. Lemmas 8.1–8.5 together prove this theorem.

At first sight of KASD, one may argue that two possible changes can improve the

outcome of the auction, in terms of the auctioneer’s profit and the number of total winners.

First, instead of only checking whether ak−n+2 ≤ (n−1)bn
k−n+1 is satisfied, we keep searching

for the value of l, 0 ≤ l ≤ min{n− 2,m− k+ n− 2}, such that the auctioneer’s profit is

maximized under the constraint ak−n+l+2 ≤ (n−l−1)bn−l
k−n+l+1 . Second, if the condition (Line 6)

is not satisfied, we should keep searching for the value of l until ak−n+l+2 ≤ (n−l−1)bn−l
k−n+l+1 .

Unfortunately, making any of these two changes to KASD can devastate its truthfulness, as

shown in the following examples.

Assume we make the first change. An example is given in Figure 8.2. In this

example, there are 3 buyers {1,2,3} and 3 sellers {a,b,c}. In addition, v1 = 12, v2 = 11,

v3 = 2, ca = 1, cb = 2, and cc = 5. Assume that k = 3. When all agents report truthfully, as

shown in Figure 8.2(a), we compare two pairs (3,b) and (2,c). We choose the pair (3,b),

since it results in a profit of 2 compared to a profit of 1 by choosing pair (2,c). Thus seller

b is one of the losers, and its utility is 0. Now assume that seller b asks 4 instead of 2, as

shown in Figure 8.2(b). In this case, we will choose the pair (2,c), since it results in a profit

of 1 compared to a profit of 0 by choosing pair (3,b). Seller b now becomes a winner and
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1 2 3 

a b c 

12 11 2 

1 2 5 

(a) Agents report truthfully

 

1 2 3 

a b c 

12 11 2 

1 4 5 

(b) Seller b asks 4 instead of 2

Figure 8.2: Profit maximization may devastate the truthfulness

receives a payment of 5. Thus its utility is 5−2 = 3. Seller 2 increases its utility from 0 to

3 by cheating about its ask. This shows that the change we made to KASD allows agents to

manipulate the outcome of the auction.

 

1 2 3 

a b c 

9 8 1 

1 2 4 

(a) Agents report truthfully

 

1 2 3 

b a c 

9 8 1 

2 3 4 

(b) Seller a asks 3 instead of 1

Figure 8.3: Increasing the number of winners may devastate the truthfulness

We then examine the second change. A corresponding example is shown in Fig-

ure 8.3. In this example, there are 3 buyers {1,2,3} and 3 sellers {a,b,c}. In addition,

v1 = 9, v2 = 8, v3 = 1, ca = 1, cb = 2, and cc = 4. Assume that k = 3. When all agents

report truthfully, as shown in Figure 8.3(a), the pair (3,b) already satisfies the condition

(Line 6). As a result, seller a is the only winner and receives a payment of 2. Thus its
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utility is 2−1 = 1. Now assume that seller a asks 3 instead of 1, as shown in Figure 8.3(b).

The condition (Line 6) does not hold for the pair (3,a). We thus move on to the pair (2,c),

which satisfies the condition. As a result, seller a is still a winner, but receives a payment

of 4. Its utility becomes 4− 1 = 3. Seller a increases its utility from 1 to 3 by cheating

about its ask. This shows that KASD with the above change is not truthful.

The above two examples show that our incentive mechanism KASD cannot be triv-

ially improved along the lines discussed above. While it is impossible to satisfy the system

efficiency without sacrificing the four properties [104], the design of incentive mechanisms

satisfying these four properties but with larger total valuations of the agents remains an

important future research topic.

Auction with Different Degree Requirements

In this section, we design an auction for the case where the privacy degree require-

ments of buyers are different. We call this auction KADD (K-Anonymity Auction with

Different Degree Requirements).

The pseudocode of KADD is illustrated in Algorithm 15. For ease of exposition,

we assume that a1 ≤ a2 ≤ ·· · ≤ am. The auctioneer divides the buyers into q groups,

U b
λ1
,U b

λ2
, . . . ,U b

λq
, according to their degree requirements, such that λg < λg′ for any 1 ≤

g < g′ ≤ q. For any buyer Ub
i ∈ U b

λg
, ki = λg. The auctioneer first checks how many

groups can be self-supporting without the help of sellers. It computes the maximum value

of x, 1 ≤ x ≤ q, such that | ∪x
g=1 U b

λg
| ≥ λx + 1. These self-supporting buyers are always

winning buyers, and each of them needs to pay a payment of bmin(∪x
g=1U

b
λg
). With the

value of x computed, the auctioneer then decides which of the remaining groups should

be considered potential winning buyers. The intuition is to select the groups such that

the possible payment to each necessary seller is maximized. This selection maximizes the

195



probability of the auction’s success. If the payment satisfies the sellers, who are necessary

to achieve ki-anonymity for each potential winning buyer, these potential winning buyers

win the auction. Each winning buyer Ub
i pays a payment of bmin(U b

ki
).

If the payment could not satisfy the sellers, they become losers.

If there is a tie while determining Ub
ix , the buyer with the minimum ID would be

chosen.

We now prove that KADD satisfies four properties mentioned in Section 1.1: com-

putational efficiency (Lemma 8.6), individual rationality (Lemma 8.7), budget balance

(Lemma 8.8), and truthfulness (Lemmas 8.9 and 8.10).

Lemma 8.6. KADD is computationally efficient. �

Proof. The initialization phase (Line 1) can be finished in O(n+m) time. Dividing the

buyers into groups and sorting the groups take O(n logn) time. Sorting the sellers takes

O(m logm) time. Finding the largest x in Line 3 takes O(n) time. If x does not exist, finding

y (Line 5) takes O(n) time if we keep track of bmin(U b
λg
) for 1≤ g≤ q while grouping the

buyers. Similarly, determining the winning buyers (Line 8) can be done in O(n) time if we

keep track of Ub
min(U

b
λg
) while grouping the buyers. It is obvious that Lines 10 and 11 can

be finished in O(m) time once aπ+1 is known. If x < q, the analysis is similar as above.

Therefore KADD takes O(n logn+m logm) time.

Lemma 8.7. KADD is individually rational. �

Proof. Each winning buyer Ub
i ∈W b pays pb

i = bmin(U b
ki
) or pb

i = bmin(∪x
g=1U

b
λg
) if it is in

the self-supporting groups. When it bids truthfully, i.e., bi = vi, its utility is ub
i = vi− pb

i ≥

vi−bi = 0. Each winning seller U s
j ∈W s receives ps

j = aπ+1. When it asks truthfully, i.e.,
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Algorithm 15: KADD
1 pb

i ← 0 for i← 1 to n; ps
j← 0 for j← 1 to m;

2 Group U b into U b
λ1
,U b

λ2
, . . .U b

λq
, such that λg < λg′ for any 1≤ g < g′ ≤ q, and let

nλg ← |U
b

λg
| for 1≤ g≤ q;

3 Find the largest x such that ∑
x
g=1 nλg ≥ λx +1;

4 if x does not exist then

5 y← arg max
1≤y≤q

∑
y
g=1

(
nλg−1

)
bmin(U b

λg
)

λy−∑
y
g=1(nλg−1)

;

6 π ← λy−∑
y
g=1(nλg−1); τ ←

∑
y
g=1

(
nλg−1

)
bmin(U

b
λg
)

π
;

7 if π +1≤ m and aπ+1 ≤ τ then
8 W b←∪y

g=1

{
U b

λg
\{Ub

min(U
b

λg
)}
}

;

9 pb
i ← bmin(U b

λg
) for Ub

i ∈U b
λg
\{Ub

min(U
b

λg
)} and 1≤ g≤ y;

10 W s←
{

U s
1,U

s
2, . . . ,U

s
π

}
;

11 ps
j← aπ+1 for j← 1 to π;

12 end
13 else
14 W b←

{
∪x

g=1U
b

λg

}
\
{

Ub
min(∪x

g=1U
b

λg
)
}

;

15 pb
i ← bmin(∪x

g=1U
b

λg
) for Ub

i ∈W b;

16 if x < q then
17 y← argmaxx+1≤y≤q

X+Y
λy−

(
∑

y
g=1 nλg−y+x−1

) , where

X = bmin(∪x
g=1U

b
λg
)
(

∑
x
g=1 nλg−1

)
and Y = ∑

y
g=x+1

(
nλg−1

)
bmin(U b

λg
);

18 π ← λy−
(

∑
y
g=1 nλg− y+ x−1

)
; τ ← X+Y

π
;

19 if π +1≤ m and aπ+1 ≤ τ then
20 W b←W b∪

{
∪y

g=x+1U
b

λg
\{Ub

min(U
b

λg
)}
}

;

21 pb
i ← bmin(U b

λg
) for Ub

i ∈U b
λg
\{Ub

min(U
b

λg
)} and x+1≤ g≤ y;

22 W s←
{

U s
1,U

s
2, . . . ,U

s
π

}
;

23 ps
j← aπ+1 for j← 1 to π;

24 end
25 end
26 end
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a j = c j, its utility is us
j = ps

j− c j ≥ a j− c j = 0. Therefore KADD is individually rational

for both buyers and sellers.

Lemma 8.8. KADD is budget-balanced. �

Proof. When no winner is selected, the proof is trivial. If x = q or x < q but the con-

dition in Line 19 does not hold, the total payment collected from the winning buyers is

pb = ∑Ub
i ∈W b pb

i =
(
|∪x

g=1 U b
λg
|−1

)
bmin(∪x

g=1U
b

λg
)≥ 0. Since there is no winning seller,

the profit of the auction is nonnegative. Otherwise, the total payment collected from the

winning buyers is pb = πτ . The total payment paid to the winning sellers is ps = πaπ+1.

The profit of the auctioneer is pb− ps = π(τ−aπ+1)≥ 0.

Lemma 8.9. KADD is truthful for the buyers. �

Proof. For any buyer Ub
i , let pb

i and ub
i be its payment and utility, respectively, when it

bids truthfully, i.e., bi = vi. Let p̃b
i and ũb

i be its payment and utility, respectively, when it

cheats, i.e., bi 6= vi. Throughout the proof, we assume that Ub
i is in front of others after the

tie-breaking to simplify the description. We prove that ub
i ≥ ũb

i for any bi 6= vi.

We first prove the case where Ub
i is not in any of the self-supporting groups. Assume

that Ub
i wins by bidding bi = vi. By Lemma 8.7, we have ub

i ≥ 0. It implies that vi ≥

bmin(U b
ki
\ {Ub

i }). It is clear that bidding bi > vi or bmin(U b
ki
\ {Ub

i }) ≤ bi < vi will not

affect the outcome of the auction. Thus we have ũb
i = ub

i . If Ub
i bids bi < bmin(U b

ki
\{Ub

i }),

it will lose the auction, which makes its utility ũb
i = 0≤ ub

i .

Assume that Ub
i loses by bidding bi = vi and its utility ub

i = 0. We consider two

cases vi < bmin(U b
ki
\{Ub

i }) and vi ≥ bmin(U b
ki
\{Ub

i }). For the former case, it is clear that

bidding bi < vi or vi < bi < bmin(U b
ki
\ {Ub

i }) will not affect the outcome of the auction.

Thus we have ũb
i = ub

i . Even if Ub
i wins the auction by bidding bi ≥ bmin(U b

ki
\{Ub

i }), its
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utility is ũb
i = vi− p̃b

i = vi−bmin(U b
ki
\{Ub

i })< 0 = ub
i . For the latter case, it is clear that

bidding bi > vi or bmin(U b
ki
\ {Ub

i }) ≤ bi < vi will not affect the outcome of the auction.

Thus we have ũb
i = ub

i . If Ub
i bids bi < bmin(U b

ki
\{Ub

i }), it will certainly lose the auction.

Thus we have ũb
i = ub

i as well.

The case where Ub
i is in one of the self-supporting groups can be proved similarly by

replacing U b
ki

with ∪x
g=1U

b
λg

. Therefore Ub
i maximizes its utility by bidding truthfully.

Lemma 8.10. KADD is truthful for the sellers. �

Proof. For any seller U s
j , let ps

j and us
j be its payment and utility, respectively, when it

asks truthfully, i.e., a j = c j. Let p̃s
j and ũs

j be its payment and utility, respectively, when it

cheats, i.e., a j 6= c j. Throughout the proof, we assume that U s
j is in front of others after the

tie-breaking to simplify the description. We prove that us
j ≥ ũs

j for any a j 6= c j. Note that

sellers will be involved in the auction only when π + 1 < m and aπ+1 ≤ τ . Since the first

condition is independent of sellers’ asks, we focus only on the case where it always holds.

Assume that U s
j wins the auction by asking a j = c j. It implies that c j ≤ aπ+1 and

us
j ≥ 0 by Lemma 8.7. It is clear that asking a j < c j or c j < a j ≤ aπ+1 will not affect the

outcome of the auction. Thus we have ũs
j = us

j. If U s
j asks a j > aπ+1, then U s

j will be placed

at the position after π , which makes U s
j one of the losers. Thus we have ũs

j = 0≤ us
j.

Assume that U s
j loses the auction by asking a j = c j. One of two possible reasons

is that aπ+1 > τ . If c j ≤ aπ+1, U s
j cannot win the auction no matter how much its ask is.

If c j > aπ+1, U s
j may win the auction by asking a j < aπ+1. However, its payment will be

p̃s
j ≤ aπ+1 and utility will be ũs

j = p̃s
j−c j ≤ aπ+1−c j < 0 = us

j. The other reason for U s
j ’s

lost is that aπ+1 ≤ τ and c j > aπ+1. In this case, we have a similar argument as in the

second case for the first reason.
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Theorem 8.2. KADD is computationally efficient, individually rational, budget balanced,

and truthful. �

Proof. Lemmas 8.6–8.10 together prove this theorem.

We next consider a more challenging scenario, where buyers can also cheat about

their privacy degree requirements. This type of auction is called multidimensional private

type auction in auction theory [111]. The multidimensional private type gives the buyers

more possibilities to manipulate the outcome of the auction. There are few papers concern-

ing about multidimensional private type auction design [40, 93], and they are all essentially

single-sided auctions. To the best of our knowledge, there is no related work on the de-

sign of multidimensional private type double auction. The fact that our auction has the

constraint on the total number of winning buyers and sellers makes the design even more

difficult.

Algorithm 16: KADD+

1 pb
i ← 0 for i← 1 to n; ps

j← 0 for j← 1 to m;
2 kmax←maxUb

i ∈U b ki;
3 if n+m≥ kmax +2 then
4 if n≥ kmax +1 then
5 W b←

{
Ub

1 ,U
b
2 , . . . ,U

b
n−1
}

;
6 pb

i ← bn for i← 1 to n−1;
7 else if ak−n+2 ≤ (n−1)bn

kmax−n+1 then
8 W b←

{
Ub

1 ,U
b
2 , . . . ,U

b
n−1
}

;
9 pb

i ← bn for i← 1 to n−1;

10 W s←
{

U s
1,U

s
2, . . . ,U

s
kmax−n+1

}
;

11 ps
j← akmax−n+2 for j← 1 to kmax−n+1;

12 end
13 end

To overcome these difficulties, we need to decouple buyers’ degree requirements
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and bids as much as possible. In addition, we also need to make buyers have little control

over the degree requirement considered by the auctioneer. We illustrate our auction de-

signed specifically for this scenario in Algorithm 16, which is called KADD+. In order to

weaken the buyers’ control over the privacy degree requirement considered by the auction-

eer, we select the maximum ki among the buyers and proceed the auction in a way similar

to KASD. We assume that buyers are single-minded. For any Ub
i ∈W b, if |W b|+ |W s|< ki,

its utility is ub
i = 0.

We now prove the properties of KADD+.

Theorem 8.3. KADD+ is computationally efficient, individually rational, budget balanced,

and truthful. �

Proof. The computational efficiency, individual rationality, and budget balance of KADD+

can be proved similarly as in Lemmas 8.1 to 8.3. We focus on truthfulness.

For any buyer Ub
i , let pb

i and ub
i be its payment and utility, respectively, when it

bids truthfully, i.e., bi = vi. Let p̃b
i and ũb

i be its payment and utility, respectively, when it

cheats, i.e., bi 6= vi. Throughout the proof, we assume that Ub
i is in front of others after the

tie-breaking to simplify the description. We prove that ub
i ≥ ũb

i for any bi 6= vi and k′i 6= ki.

Assume that Ub
i wins by bidding bi = vi. We then have ub

i ≥ 0, since KADD+ is

individually rational. It also implies that vi ≥ bmin(U b \ {Ub
i }). Obviously, if Ub

i bids

bi > vi or bmin(U b \{Ub
i })≤ bi < vi, the outcome of the auction will not be affected. Thus

we have ũb
i = ub

i in this case. If Ub
i bids bi < bmin(U b \{Ub

i }), it will lose the auction and

have utility ũb
i = 0≤ ub

i . If Ub
i reports k′i < ki or ki < k′i ≤ kmax, the outcome of the auction

will not change. If Ub
i reports k′i > kmax and the condition in Line 7 still holds, then p̃b

i = pb
i

and thus ũb
i = ub

i . If the condition does not hold, then ũb
i = 0≤ ub

i .
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Assume that Ub
i loses by bidding bi = vi. We then have ub

i = 0. There are two

possible cases: vi < bmin(U b \ {Ub
i }) and the condition in Line 7 does not hold. For the

former case, bidding bi < vi or vi < bi < bmin(U b \ {Ub
i }) will not affect the outcome of

the auction. By bidding bi ≥ bmin(U b \ {Ub
i }), Ub

i may win the auction, but its utility is

ũb
i = vi− p̃b

i < 0 = ub
i . In addition, reporting any value of ki cannot make Ub

i a winner in

this case. For the latter case, the only possible way that Ub
i can make the condition hold

is to report k′i < kmax, under the condition that Ub
i is the only player for whom ki = kmax.

However, even Ub
i wins the auction, the total winners will be k′i < ki, which makes ũb

i =

0 = ub
i .

Therefore each buyer maximizes its utility by bidding and reporting degree require-

ment truthfully. The truthfulness for sellers can be proved similarly as in Lemma 8.5.

8.5 Performance Evaluation

Simulation Setup

In the simulations, we varied both n and m from 50 to 150 with an increment of 10.

The valuation vi of buyer Ub
i and the cost c j of seller U s

j were uniformly distributed over

(0,1]. For KASD, k was varied from 20 to 120 with an increment of 20. For KADD and

KADD+, ki was uniformly distributed over [2,k], where k was varied from 20 to 120 with

an increment of 20. For each setting we randomly generated 10000 instances and averaged

the results. All the simulations were run on a Linux machine with 3.2 GHz CPU and 16

GB memory.

The performance metrics include running time, number of winning buyers, and

profit of the auctioneer. The reason we picked the number of winning buyers as a per-

formance metric is that winning buyers are the agents who really desire location privacy

after all. For each of these performance metrics, we evaluated the impact of n, m, and k.
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Figure 8.4: Running time of KASD

While evaluating the impact of n (resp. m), we fixed m = 100 (resp. n = 100) and chose k

to be 20 and 120. While evaluating the impact of k, we fixed n = 50 and m = 100.

Simulation Results

Running Time: Figure 8.4 and Figure 8.5 plot the running time of KASD and

KADD, respectively. Since KADD+ has very similar curves as KASD, we omit the il-

lustration to save space. Specifically, Figure 8.4(a) and Figure 8.5(a) show the impact of n,

and Figure 8.4(b) and Figure 8.5(b) show the impact of m. For KASD, we observe that the

running time of k = 120 drops dramatically to the level of k = 20 when n > 120. This is

because the auctioneer needs not consider the sellers to satisfy the winning buyers’ degree

requirements. Thus the two cases where k = 20 and k = 120 are essentially equivalent

when n > 120. When k = 20, the auctioneer needs only to spend time determining win-

ning buyers, since n is always greater than k. Thus the auction finishes extremely fast. For

KADD, we observe that the running time of k = 120 starts to drop down when n = 120. The

reason is that the auctioneer needs not consider the sellers to satisfy all the buyers in some

instances. Comparing KADD to KASD, we note that KADD takes more time than KASD.

This is as expected, because KADD has more calculations than KASD, although both of

them have the same theoretical time complexity.
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Figure 8.5: Running time of KADD

Number of Winning Buyers: Figure 8.6 and Figure 8.7 show the number of win-

ning buyers returned by KASD and KADD, respectively. One obvious observation is that

when n > k the number of winning buyers is always n− 1. This is consistent with our

theoretical analysis. Another observation is that the number of winning buyers increases

when there are more sellers participating in the auction. This is because the probability that

the conditions (Line 6 in Algorithm 14 and Lines 7 or 19 in Algorithm 15) are satisfied

becomes higher. The last observation is that the curves for the impact of k have an upside

down S shape. The reason is that the probability that the conditions are satisfied drops

dramatically when k ≥ n.

Profit: Figure 8.8 and Figure 8.9 show the profit of different auctions. In particular,

Figure 8.8 shows the profit of KASD, and Figure 8.9 shows the profit of KADD and KADD+

side by side. For KASD, we first observe that the results of the impact of m and the impact

of k are consistent with the results in Figure 8.6(b) and Figure 8.6(c). However, the results

of the impact of n are quite different from the results in Figure 8.6(a), especially when

k = 20. The reason is that when n grows, the value of bn becomes smaller on average, since

all the values of bi are randomly distributed in a fixed range (0,1]. The rate of the decrease

in the value of bn outweighs the increase in the value of n− 1. For k = 120, the profit is
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Figure 8.6: Number of winning buyers of KASD
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Figure 8.7: Number of winning buyers of KADD
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Figure 8.8: Profit of KASD

close to 0 when n ≤ 100, dramatically increases when 100 < n ≤ k, and then decreases

when n > k. The reason for the first segment is that the condition (Line 6 in Algorithm 14)

can hardly be satisfied. When 100 < n ≤ k, fewer and fewer sellers are needed, but more

and more buyers pay their payments. However, when n > k, the situation is equivalent to

that of k = 20.

For the case where buyers have different degree requirements, we compared the

profit returned by KADD and KADD+. We aimed to evaluate how much profit will be

sacrificed in order to guarantee that buyers have no incentives to cheat on ki. As shown in

Figure 8.9, KADD and KADD+ almost generate the same profit as long as n≥ k. However,

when n < k, KADD+ barely generates any profit while the profit generated by KADD is

relatively large and increases with the number of sellers. The reason for this difference is

that we consider buyers in a finer granularity for KADD.
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Figure 8.9: Profit comparison of KADD and KADD+

8.6 Conclusion

In this work, we have designed incentive mechanisms for motivating mobile users

to assist others achieving k-anonymity location privacy. As the first step, we have con-

sidered the case where mobile users have the same privacy degree requirement. We have

further generalized it to the case where the degree requirements are different. We have

also studied a more challenging case where mobile users can cheat about not only their

valuations but also their degree requirements. We have designed an auction-based incen-

tive mechanism for each of these cases and proved that all the auctions are computational

efficient, individually rational, budget-balanced, and truthful.
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Chapter 9

Conclusion

Game theory provides a fruitful set of tools for examining strategic interactions among two

or more entities. Network problems can be well modeled and addressed using game theory.

Devices in networks, for instance, computers and mobile phones, usually belong to differ-

ent individuals, who make their decisions independently and selfishly. In this dissertation,

we applied game theory to coping with selfish behavior in networks. In general, we studied

three problem domains: 1) resource allocation, 2) incentive mechanism, and 3) security.

Specifically, for the domain of resource allocation, we first studied the selfish rout-

ing problem in networks with fair queuing on links. We modeled the problem as a game,

and proved the existence of Nash Equilibria. In addition, we designed an algorithm follow-

ing the nature of game course, and rigorously bounded the converge speed to a Nash Equi-

librium. The second problem we studied is the relay assignment problem in cooperative

networks. We designed an integrated scheme for optimally assigning relays to maximize

the total capacity. To avoid system performance degradation due to the selfish relay selec-

tions by the source nodes, we propose a payment mechanism for charging the source nodes

to induce them to converge to the optimal assignment. To prevent relay nodes from manip-

ulating the relay assignment by reporting transmission power untruthfully, we propose a

payment mechanism to pay them for providing relaying service. We also show that HERA

is budget-balanced, meaning that the payment collected from source nodes is no smaller

than the payment paid to relay nodes. The last problem studied in this domain is the channel

allocation problem in non-cooperative networks. We first observed that the network may

result in an oscillation, where nodes keep changing their channel allocations back and force

trying to improve their utilities. To avoid the possible oscillation, we designed a charging
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scheme to influence players’ behavior. We proved that, under the charging scheme, the

network is guaranteed to converge to an NE. We also proved that the system performance

in an NE is at least (1− r̄
h) of the system performance in the optimal solution, where r̄ is the

maximum number of radios equipped on wireless devices and h is the number of available

channels. Finally, we designed a localized algorithm for players to find an NE.

For the domain of incentive mechanism design, we designed incentive mechanisms

for encouraging wireless devices to serve as relays in cooperative networks, and recruiting

smartphones for crowdsourcing. For the former problem, we designed an auction-based

scheme, which is proved to be efficient, individual-rational, budget-balanced, and, most

importantly, truthful. For the latter problem, we considered two system models from two

different perspectives: the platform-centric model where the platform provides a fixed re-

ward to participating users, and the user-centric model where users can have their reserve

prices for the sensing service. For the platform-centric model, we designed an incentive

mechanism using a Stackelberg game. We presented an efficient algorithm to compute

the unique Stackelberg Equilibrium, at which the utility of the platform is maximized, and

none of the users can improve its utility by unilaterally deviating from its current strategy.

For the user-centric model, we designed an auction-based incentive mechanism, which is

computationally efficient, individually-rational, profitable and, more importantly, truthful.

For the domain of security, we analyzed how a user can defend against a smart jam-

mer, who can quickly learn about the user’s transmission power and adaptively adjust its

own transmission to maximize the damage. We considered both the single-channel model

and the multi-channel model. For the single-channel model, we derived closed-form ex-

pressions for the jammer’s best response strategy and the user’s optimal strategy, which

together constitute the unique Stackelberg Equilibrium (SE). For the multi-channel model,

we designed an algorithm for computing the jammer’s best response strategy, given the
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user’s strategy. We also developed two algorithms to approximate the user’s optimal strat-

egy and thus the SE strategies. Another problem we studied is motivating mobile users

to participate in k-anonymity location privacy protection. We first considered different

cases, including the case where all mobile users have the same privacy degree requirement,

the case where users’ degree requirements are different, and the case where mobile users

can also cheat about their requirements. We carefully design an auction-based incentive

mechanism for each case and rigorously proved that these incentive mechanisms are com-

putationally efficient, individually rational, budget-balanced, and truthful.
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