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ABSTRACT 

Human fingertips contain thousands of specialized mechanoreceptors that 

enable effortless physical interactions with the environment.  Haptic perception 

capabilities enable grasp and manipulation in the absence of visual feedback, as 

when reaching into one’s pocket or wrapping a belt around oneself.  

Unfortunately, state-of-the-art artificial tactile sensors and processing algorithms 

are no match for their biological counterparts.  Tactile sensors must not only meet 

stringent practical specifications for everyday use, but their signals must be 

processed and interpreted within hundreds of milliseconds.  Control of artificial 

manipulators, ranging from prosthetic hands to bomb defusal robots, requires a 

constant reliance on visual feedback that is not entirely practical.  To address this, 

we conducted three studies aimed at advancing artificial haptic intelligence.  First, 

we developed a novel, robust, microfluidic tactile sensor skin capable of 

measuring normal forces on flat or curved surfaces, such as a fingertip.  The 

sensor consists of microchannels in an elastomer filled with a liquid metal alloy.  

The fluid serves as both electrical interconnects and tunable capacitive sensing 

units, and enables functionality despite substantial deformation.  The second study 

investigated the use of a commercially-available, multimodal tactile sensor 

(BioTac sensor, SynTouch) to characterize edge orientation with respect to a body 

fixed reference frame, such as a fingertip.  Trained on data from a robot testbed, a 

support vector regression model was developed to relate haptic exploration 

actions to perception of edge orientation.  The model performed comparably to 

humans for estimating edge orientation.  Finally, the robot testbed was used to 
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perceive small, finger-sized geometric features.  The efficiency and accuracy of 

different haptic exploratory procedures and supervised learning models were 

assessed for estimating feature properties such as type (bump, pit), order of 

curvature (flat, conical, spherical), and size.  This study highlights the importance 

of tactile sensing in situations where other modalities fail, such as when the finger 

itself blocks line of sight.  Insights from this work could be used to advance tactile 

sensor technology and haptic intelligence for artificial manipulators that improve 

quality of life, such as prosthetic hands and wheelchair-mounted robotic hands. 
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CHAPTER 1 

INTRODUCTION 

In the clinical setting, the “haptic intelligence test” is a tactile performance 

test used to evaluate blind or visually impaired individuals’ abilities to accomplish 

tasks via touch rather than vision (Aiken, 2004).  Such clinical tasks include using 

the sense of touch to analyze patterns of dots, assemble puzzle parts, and 

identifying missing parts of an object.  In this dissertation, we use the phrase 

“haptic intelligence” to refer to the ability to relate actions of the fingertip to 

perception of objects through the sense of touch alone.  A necessary component of 

haptic intelligence, in this sense, is the ability to map finger-object interactions 

into low-level raw tactile signals and then into high-level abstractions about 

object properties that can inform future manipulations of the object.  While 

sensing involves the collection of raw data from interactions with the 

environment, perception involves the context-dependent interpretation of those 

tactile signals.  Just as humans store memories of experiences, a robot database of 

haptic experiences could be maintained and referenced when novel objects or 

situations are encountered. 

Tactile sensing in robotics is an area of rapid growth within the last few 

decades.  In contrast to sight and hearing, touch requires physical interaction with 

the environment in order to collect meaningful information.  For the sense of 

touch especially, action is tightly coupled with perception.  That is, different types 

of physical interactions with an object will yield specific information about 

different object properties.  Human studies on haptic object exploration have 
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shown that humans selectively perform hand movements based on the object 

property of interest (Lederman & Klatzky, 1987).  For instance, extracting surface 

roughness information requires a lateral motion of the fingertip while estimating 

object stiffness requires a squeezing or poking motion (Lederman & Klatzky, 

1987).  Roboticists who use these human exploratory procedures as inspiration 

must address the challenges of developing algorithms that can efficiently collect, 

interpret, and use tactile sensor data to develop models of objects that can be used 

to inform future actions.  Depending on a robot’s task, different exploratory 

actions and action-specific or sensor-specific post-processing of tactile sensor 

data may be necessary. 

Humans are constantly interacting physically with their environment with 

their fingertips as they perform different tasks, such as lightly holding a soda can 

or using a precision grasp for inserting a screw into a hole.  In cases where other 

senses such as vision cannot be used (e.g. in the dark, behind obstacles, or when 

the hand itself occludes line of sight), humans often rely on touch to accomplish 

tasks, such as grabbing an object that has fallen underneath a couch.  In order for 

robots to successfully and safely interact with humans or in an environment with 

objects designed for human hands, tactile sensing capabilities are critical.  For 

instance, lack of tactile feedback could result in preprogrammed grasps that 

erroneously crush or drop a grasped object.   Thus, human tactile sensing 

capabilities are typically viewed as the gold standard for robotic tactile sensing. 
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BRIEF OVERVIEW OF TACTILE SENSING IN HUMANS AND ROBOTS 

It is well known that a large part of the human brain is dedicated to 

sensations of the hand, as shown by the cortical sensory homunculus (Penfield & 

Rasmussen, 1950).  In particular, the fingertips contain thousands of tactile 

afferents which are neurons that send information from mechanoreceptors to the 

brain (Johansson & Flanagan, 2009).  There are four main types of 

mechanoreceptors, each being sensitive to mechanical stimuli of different natures.  

Fast-adapting type I Meissner endings can sense relatively high frequency (~5-50 

Hz) dynamic skin deformations. Slow-adapting type I Merkel endings measure 

static and low frequency (<5 Hz) forces.  Fast-adapting type II Pacini endings 

sense high frequency vibrations (~40-400 Hz) propagating through tissues.  Slow-

adapting type II Ruffini-like endings measure low dynamic stimuli such as skin 

stretch.  The human ability to carry out a variety of dexterous activities is enabled 

in part by the large number of tactile afferents which provide rich tactile 

information and the brain’s ability to extract high-level, abstract information for 

specific tasks.  In order to provide robots with human-like tactile capabilities, one 

must first have an adequate tactile sensor technology and then one must address 

the challenge of efficiently analyzing and interpreting large quantities of 

multimodal data. 

Several review papers have been published that summarize the artificial 

tactile sensing technologies for robotics applications (Tiwana, Redmond, & 

Lovell, 2012; Dargahi & Najarian, 2005; Dahiya, Metta, Valle, & Sandini, 2010; 

M. H. Lee & Nicholls, 1999).  The different types of transduction mechanisms 
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each have their strengths and weaknesses, and some of them are more appropriate 

for certain situations than others.  For instance, piezoelectric sensors are well 

suited for dynamic stimuli but less so for sustained applied forces. 

As known from studies of human tactile afferents, biological 

mechanoreceptors are specialized for particular types of stimuli and the human 

fingertip is equipped with multiple sensing modes.  A multimodal sensor capable 

of measuring object hardness, temperature, and contour has been developed (J. 

Engel, Chen, Fan, & Liu, 2005).  The sensor was fabricated using standard 

microelectromechanical systems (MEMS) techniques and included multiple 

components such as strain gauges and thermocouples, each dedicated to 

measuring specific types of stimuli.  Although the sensor is flexible, the sensor’s 

robustness to substantial deformations could be enhanced.  The HEX-O-SKIN is a 

tactile module consisting of a printed circuit board connected to various discrete 

sensors embedded within a transparent elastomer (Mittendorfer & Cheng, 2011).  

Proximity sensors measure light touch, MEMS accelerometer measure vibration 

and orientation, and thermistors measure temperature.  Hexagon shaped patches 

could be interconnected to cover large surface areas.  However, its low spatial 

resolution makes them unsuitable for use as fingertip sensors. 

To enhance the spatial resolution of artificial fingertip sensors, small 

electrical components are used which are typically thin, solid metal films 

encapsulated in a flexible, protective layer.  Repeated deformation causes these 

metal films to fracture, rendering the sensor unusable.  Since fluids do not suffer 

from fatigue or cracking issues, fluids have started to be incorporated into tactile 
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sensor designs. A eutectic liquid metal alloy has been used as electrical 

interconnects for LEDs (H.-J. Kim, Son, & Ziaie, 2008) and carbon nanotube 

sensing elements (Hu, Shaikh, & Liu, 2007a). A similar liquid metal alloy has 

been used in a sensor capable of measuring applied stress and multiaxial strain 

(Y.-L. Park, Chen, & Wood, 2012).  A different use of conductive fluid can be 

observed in the BioTac, a multimodal sensor that can simultaneously measure 

pressure, vibration, and temperature (Nicholas Wettels, Santos, Johansson, & 

Loeb, 2008).  A weakly conductive fluid is encapsulated between a deformable 

skin and sensing electronics embedded in a rigid core.  The fluid serves as the 

medium through which static and dynamic stimuli are transferred to sensing 

elements. 

 

BIOLOGICAL TACTILE SENSING AND HAPTIC PERCEPTION 

Tactile sensors are merely the tools for collection of raw signals.  Once 

low-level raw data have been collected, they must be post-processed and 

transformed into high-level abstractions in order for a robot to make inferences 

about its environment.  Thus, the development or acquisition of an adequate 

tactile sensing technology is only the first, albeit critical, step in the haptic 

perception process.  The use of capable artificial sensors must be coupled with 

appropriate processing algorithms.  In order for a robotic system to make 

decisions, the robot must either be preprogrammed or able to adapt to new 

situations from learned experiences (Duffy & Joue, 2000).  A more subtle point is 

that the robot must be able to relate its internal reference frame to countless other 
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external reference frames (e.g., gravity, other agents, objects in the environment).  

This provides, for example, the robot with knowledge about an object’s pose 

relative to that of its own end-effector (Driels, 1986; D. M. Siegel, 1991).  This is 

crucial information that could serve as the foundation for exploration and 

identification of objects (Lederman & Klatzky, 1987) and multifinger 

manipulation of objects by artificial hands.  As with many engineered systems, 

the biological hand is a source of inspiration for perception and dexterous 

capabilities. 

Haptic Perception of Object Shape.  A seminal study by Lederman and 

Klatzy established that humans use a variety of “exploratory procedures” (EP) 

(Lederman & Klatzky, 1987) in order to haptically acquire knowledge about 

object properties.  The properties can be related to the object’s substance (texture, 

hardness, temperature, weight), structure (weight, volume, global shape, local 

shape), or function. It was found that specific exploratory procedures were 

necessary, if not optimal, for extracting specific object properties. For instance, 

lateral motion of a fingertip against a surface is typically employed for acquiring 

information on texture.  

In a free sorting experiment, subjects placed objects into bins based on 

whether the objects were perceived as ‘similar’ with and without vision (Roberta 

L. Klatzky, Lederman, & Reed, 1987).  It was found that substance (“how an 

object feels”) was important for encoding the representation of an object through 

haptic means.  However, structure (“how an object looks”) was more important 

when vision was allowed.  Furthermore, “economical” hand movements that 
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provide accurate information with the least cost were observed (Roberta L. 

Klatzky et al., 1987).  Global shape and size were considered less economical for 

haptic exploration without vision.  Although contour following provides local 

shape information for fine discrimination it is not considered economical due to 

its slow execution time, complexity of movement, and ‘small view’ of an object. 

(R. L. Klatzky & Lederman, 1999; Roberta L. Klatzky et al., 1987; Roberta L. 

Klatzky & Lederman, 1992). 

A different study examined the sufficiency of different EPs for haptic 

object identification.  Typically, subjects performed a two-stage sequence.  The 

first stage would focus on coarse, global information through the application of 

enclosure and unsupported holding (Roberta L. Klatzky & Lederman, 1992).  In 

the second stage, finer information would be extracted via EPs such as lateral 

motion and contour following.  This behavior suggests that coarse information 

aids the subject in making initial hypothesis of the object identity, which in turn 

guides the selection of the subsequent EP (Roberta L. Klatzky & Lederman, 1992; 

Lederman & Klatzky, 1997).  In order to reach a 100% accuracy in object 

identification, multiple seconds were needed. 

A study on 3D haptic shape perception investigated the influence of object 

features such as curvature, aspect ratio, and edges on the ability of unimpaired 

subjects to quickly and accurately identify objects through touch alone (Plaisier, 

Bergmann Tiest, & Kappers, 2009). Free exploration of the objects was allowed 

such that subjects could employ any EPs with the dominant hand only. One 

conclusion of the study was that edges and vertices were the most salient local 
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features of 3D shape and that haptic searches were performed efficiently when the 

target object had edges (Lederman & Klatzky, 1997; Plaisier et al., 2009). 

Response of Tactile Afferents to Skin Deformation.  In spite of having a 

small size ranging between 7-12 mm in diameter, the fingertip provides rich 

tactile information.  (R. H. LaMotte & Srinivasan, 1987; Robert H. LaMotte & 

Srinivasan, 1993; M. A. Srinivasan & LaMotte, 1991).  The capability of 

perceiving shape at this small size could be attributed to skin conforming to the 

local shape, resembling a smaller version of whole-hand enclosure (R. L. Klatzky 

& Lederman, 1999).  

Human and non-human primate studies on local shape perception have 

focused on edges and curvature. Slowly adapting SA I afferent units (Merkel 

endings) that respond to low-frequency (< 5 Hz) skin deformations (Johansson & 

Flanagan, 2009) are highly sensitive to spatial discontinuities, especially edges, in 

humans (Johansson, Landstrom, & Lundstrom, 1982), non-human-primates 

(Phillips & Johnson, 1981).  This suggests that representations of local shape are 

actually encoded initially at the periphery by cutaneous mechanoreceptors (R. L. 

Klatzky & Lederman, 1999). 

Despite changes in orientation, object curvature and the subsequent effects 

on skin curvature appear to be encoded primarily by SA I afferent units (R. H. 

LaMotte & Srinivasan, 1987; Mandayam A. Srinivasan & LaMotte, 1987).  

Studies in humans and non-human primates have suggested that the following 

pairs of variables can be perceived independently: curvature and contact force 

(Goodwin, John, & Marceglia, 1991), shape and orientation (R. H. LaMotte, 



 

9 

Friedman, Lu, Khalsa, & Srinivasan, 1998), and shape and stroke speed (R. H. 

LaMotte & Srinivasan, 1987). 

In addition to SA I afferents, fast adapting FA I units respond to dynamic 

skin deformations, but for a higher frequency range (5-50 Hz) (Johansson & 

Flanagan, 2009).  The relative contributions of these two types of 

mechanoreceptors depend on the finger-object interaction.  In static-like shape 

indentations, SA I units seem to encode orientation (Dodson, Goodwin, 

Browning, & Gehring, 1998; Khalsa, Friedman, Srinivasan, & LaMotte, 1998).  

In dynamic shape indentation, both SA I and FA I units are helpful in orientation 

perception (R. H. LaMotte et al., 1998).  Although FA I only provides rough 

outlines of indentation and not fine 3D shape information (R. H. LaMotte et al., 

1998), they encode sharpness better than SA I units (Robert H. LaMotte & 

Srinivasan, 1987). 

Haptic Perception of Orientation 

Discrimination Thresholds.  The perception of orientation has been 

studied with stimuli such as narrow cylindrical and rectangular bars (S. J. 

Bensmaia, Hsiao, Denchev, Killebrew, & Craig, 2008; Sliman J. Bensmaia, 

Denchev, Dammann, Craig, & Hsiao, 2008; Dodson et al., 1998; Fearing & 

Binford, 1991; M. A. Srinivasan & LaMotte, 1991).  Passive indentation of 

cylinder into the finger pad could be perceived with discrimination threshold of 

5.4° for cylinders with radius of 1.92 mm and 4.2° for cylinders with radius of 

5.84 mm (Dodson et al., 1998).  Improvements in orientation thresholds could be 

related to a greater amount of tactile afferents being activated (Goodwin et al., 
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1991).  A study that used rectangular bars and edges reported orientation 

discrimination thresholds of 20° (S. J. Bensmaia et al., 2008). In that study, edges 

that were scanned across the passive fingerpad were more easily discriminated 

than those that were indented. 

Tactile Spatial Anisotropy.  The presence of a tactile spatial anisotropy 

has been hypothesized in the form of an “oblique effect” in which orientation 

discrimination is better along vertical and horizontal direction than along diagonal 

directions with respect to the fingertip (Lechelt, 1988, 1992). However, there is 

debate on the source of the anisotropy and on the more accurate orientations.  One 

study on line orientation with sighted, visually impaired, and blind subjects found 

that discrimination thresholds were 2.5°, 5°, and 15° for horizontal, vertical, and 

diagonal (right or left by 45°) stimuli, respectively, where horizontal refers to the 

radial-ulnar axis and vertical refers to the distal-proximal axis of the fingertip 

(Lechelt, 1988).  Another study also found horizontal lines to be more easily 

discriminated (threshold of 16°) than vertical lines (threshold of 31°) (S. J. 

Bensmaia et al., 2008).  In contrast, a different study using indented gratings 

reported sensitivities that were highest for vertical orientations, intermediate for 

diagonal orientations, and lowest for horizontal orientations (Essock, Krebs, & 

Prather, 1997). 

Effect of the Cylindrical Nature of the Fingertip.  The complexity of 

indenting rigid cylindrical bars on the deformable fingerpad is presented in a 

study on development of a cylindrical tactile sensor (Fearing & Binford, 1991).  

Contact area depended on the bar’s curvature and orientation relative to the 
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fingertip.  Interestingly, elliptical contact areas would not be aligned with the 

bar’s long axis.  The study predicts that orientation discriminability degrades as 

the bar’s curvature decreases and as the bar is rotated away from the short axis of 

the finger (Fearing & Binford, 1991). 

 

HAPTIC EXPLORATION IN ROBOTICS 

Haptic Exploration of Object Substance (“how an object feels”).  

Human inspired strategies for haptic exploration have been previously 

implemented on robotic systems.  One study employed tapping and squeezing EPs 

with a sensor composed of strain gauge and polyvinylidene fluoride (PVDF) films 

in order to determine hardness (Takamuku, Gomez, Hosoda, & Pfeifer, 2007).  

Mean strain gauge values from the squeezing procedure and patterns in the PVDF 

signals during tapping movements were used as inputs to self-organizing maps 

(SOM) that clustered objects based on hardness.  Another study sought to 

correctly identify twelve object surfaces based on dynamic tactile data (H. Liu, 

Song, Bimbo, Seneviratne, & Althoefer, 2012).  A 6DOF force/torque transducer 

attached to a BarrettHand served as a tactile sensor while sliding on surfaces of 

various objects.  Five physical properties, such as friction coefficient and mean 

squared error of vibration signals, were extracted and input to various supervised 

learning models.  The naïve Bayes classifier performed the best with an accuracy 

of 88.5% when identifying a material from a set of twelve. 

Object compliance of five different materials were estimated using the 

BioTac sensor (Su, Fishel, Yamamoto, & Loeb, 2012).  The finger-shaped sensor 
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was indented into samples of different stiffnesses.  Electrodes located on the 

sensor core capable of measuring skin deformation revealed that skin deformation 

near the fingertip, especially radial and ulnar aspects, could be related to object 

compliance. 

Another recent study used tactile feedback to label perceived objects with 

“haptic adjectives”, such as sticky and bumpy (McMahon et al., 2012).  In this 

study two BioTacs were used on a Willow Garage PR2 robot to explore objects.  

After performing five EPs, parameters were extracted and input to static and 

dynamic learning algorithms.  Robot predictions were compared to those from a 

human study.  It was concluded that meaningful sets of adjectives could be 

produced for novel objects when using all EPs and that specific EPs were more 

useful for labeling objects with certain haptic adjectives. 

Haptic Exploration of Object Structure (“how an object looks”).  A 

robotic hand with 45 piezoelectric sensors grasped objects in order to cluster them 

according to global shape using SOMs (Johnsson & Balkenius, 2007).  Input 

parameters for the SOM models were extracted from proprioceptive and tactile 

feedback in order to discriminate between blocks, spheres, and cylinders.  In a 

different study, a three axis tactile sensor was used to control a robotic arm as it 

performed contour-following on a curved surface (Abdullah, 2011).  The test 

object and its geometric features were larger than the tactile sensors, which were 

used primarily for force control.  Proprioceptive feedback, as opposed to tactile 

feedback, was used to determine object contour. 
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A 3-degree-of-freeedom Universal Robot Hand used resistive tactile 

sensors during a rotational manipulation task to determine the shape of small, 

symmetric objects (Nakamoto, Kobayashi, & Kojima, 2010)  As the objects were 

rotated by two digits, tactile patterns were recorded and matched to known, 

predefined patterns.  The robotic system could distinguish between a cylinder, 

hexagonal prism, and octagonal prism with accuracies of at least 90%.  Another 

study used a biomimetic tactile sensor to perform active contour following on four 

different 2D shapes (Martinez-Hernandez et al., 2013).  The control schematic 

employed a Baye’s classifier to guide the sensor movements around 90° corners.  

Once the shape’s full contour had been determined, the history of the fingertip 

positions was used to determine the objects’s global shape with a 100% 

classification accuracy.  In another study, a capacitive touch sensor was moved 

across 26 Braille alphabet characters to learn how to accurately distinguish them 

(Bologna, Pinoteau, Garrido, & Arleo, 2012).  The sequence of activation of the 

six sensing units in the robotic sensor were used to extract inputs for a naïve 

Bayes classifier with an 89% accuracy. 

Haptics-based Learning.  While the studies mentioned above are capable 

of accomplishing predefined tasks accurately, unstructured environments and 

novel objects would likely necessitate re-programming and re-training of the 

robot.  Recent work on haptics-based learning with robotic systems have led to 

the development of algorithms that can make predictions more efficiently.  A 

robotic system using the BioTac sensor employed Bayesian exploration to 

sequentially select from prescribed exploratory movements in order to achieve 
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certainty thresholds for predictions of texture more efficiently (J. A. Fishel & 

Loeb, 2012).  Predictions converged as more exploratory movements were 

performed.  Each new movement was selected to best discriminate between 

candidates that seemed similar based on all prior information.  A total of 117 

textures were discriminated with a classification success rate of 95.4%.  A related 

study applied a similar strategy on multiple tactile modalities to discriminate 

between ten objects (Xu, Loeb, & Fishel, 2013).  While the previous study on 

textures used primarily vibration signals and proprioceptive feedback, this study 

on objects used estimates of object compliance, texture, and thermal conductivity.  

New trials were added to a growing database (memory) to account for long-term 

changes in signals such as drift.  The success rate in identifying the objects was 

99%. 

In another study, robot movements were learned through curious 

exploration for a texture-classification task (Pape, Oddo, Controzzi, Förster, & 

Schmidhuber, 2012).  The robot learned to make exploratory movements based on 

the sensory feedback without any supervision.  Previously learned motor skills 

were further refined during learning.  A 92% accuracy was reached when 

classifying seven textures. 

Overall, there seems to be a consensus that emerging sensor technologies 

and their corresponding mathematical models continue to improve, but much 

work remains to accomplish the goal of enabling robots with intelligent grasp and 

manipulation capabilities (Tegin & Wikander, 2005).  Robots need to be able 

interact safely and adequately in dynamic, unstructured environments. 
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OVERVIEW OF EXPERIMENTS 

This dissertation is comprised of three separate studies that aim to advance 

haptic intelligence for artificial hands.  Chapter 2 describes the development and 

proof-of-concept evaluation of a novel, capacitive, microfluidic tactile sensor skin 

capable of measuring normal forces comparable to those from light touch.  The 

objective of this study was to create a robust, highly deformable sensor that could 

be used on artificial fingertips in real world environments. 

Chapter 3 investigates the use of a commercially-available multimodal 

tactile sensor to estimate the orientation of a salient geometric feature (an edge) 

with respect to a fingertip reference frame.  The aim of this study was to use bio-

inspired exploratory procedures and supervised learning regression models to 

estimate edge orientation for stimuli having various widths and stiffnesses.  

Estimating orientation of a feature (or object) relative to itself and its environment 

is an important first step for an artificial system to determine subsequent physical 

interactions with the object. 

Chapter 4 examines the use of the commercially-available multimodal 

tactile sensor for haptic exploration of finger-sized geometric features.  The 

objective of the study was to determine the efficiency and accuracy of different 

exploratory procedures for estimating properties of small geometric features such 

as bumps and pits.  Identification of small features could enable identification of 

an object and its pose within an artificial hand, particularly when visual feedback 

would not be helpful. 
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CHAPTER 2 

A FLEXIBLE MICROFLUIDIC NORMAL FORCE SENSOR SKIN FOR 

TACTILE FEEDBACK 

INTRODUCTION 

There are three primary sensing modalities employed in 

microelectromechanical systems (MEMS) force sensors: resistive, piezoelectric, 

and capacitive (Yousef, Boukallel, & Althoefer, 2011).  Resistive sensors detect 

mechanical stimuli by producing changes in resistance.  Traditional high 

sensitivity, resistive strain gauges typically have issues such as fragility and low 

flexibility.  Recently, some of the existing limitations have been addressed, for 

instance, with the development of conductive polymer composites (J. M. Engel et 

al., 2006; Dang et al., 2008; Ventrelli, Beccai, Mattoli, Menciassi, & Dario, 

2009).  Piezoelectric sensors generate voltage as applied forces are measured.  

Piezoelectric composites are flexible and chemically resistant but inappropriate 

for static loading and prone to output signal drift.  Capacitive sensors, the focus of 

the present work, typically consist of pairs of plates whose capacitance is 

increased as the distance between opposing plates decreases or the permittivity of 

the dielectric medium between the plates increases.  Capacitive sensors offer 

advantages such as high sensitivity, tunable spatial resolution when used in an 

array configuration (Yousef et al., 2011), and a simple, well-known governing 

equation.  Electrical capacitance depends on the geometry of and distance 

between the electrodes and dielectric properties of the material between the 

electrodes. 
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Capacitive Sensors.  For many applications, capacitive sensors are 

created by embedding conductive metal plates in flexible materials such as the 

polydimethyl siloxane (PDMS) polymer.  The conductive plates are typically 

created using metal deposition such as evaporation (Adrega & Lacour, 2010; 

Micolich, Bell, & Hamilton, 2007), electroplating (H.-K. Lee, Chang, & Yoon, 

2006), or sputtering (Feng & Zhao, 2007).  Although the polymeric packaging is 

relatively robust to mechanical deformations and chemical degradation, the 

conductive plates and interconnects are susceptible to failure due to fractures and 

fatigue.  Even a small crack in a plate or connect can result in the irreparable loss 

of electrical connectivity and failure of the sensor (Zhang & Wang, 2008).  

Fabrication of curved, doped nano-ribbons that can withstand significant 

deformation (D. H. Kim et al., 2008) and the deposition of spiral copper wire 

around a nylon wire that elongates when stretched (Cheng, Tsao, Lai, & Yang, 

2011) have been used to provide electrical connections in flexible substrates. 

Capacitive sensors have sensitivity and tunable spatial resolution (Yousef et al., 

2011).  Arrays of capacitors have been used for a wide range of applications.  

Capacitance-based micro tactile sensor arrays are capable of detecting mN forces 

with negligible cross-talk between sensing elements, although hysteresis can be 

an issue (Gray & Fearing, 1996).  A macro-scale pressure sensor made of fabric 

detected pressure fields with magnitudes of hundreds of fF capacitance spread 

around a 1 m
2
 area (Sergio, Manaresi, Tartagni, Canegallo, & Guerrieri, 2002).  A 

sensor capable of measuring phase fraction distribution of two-phase flows via 

permittivity variations was developed to distinguish between different types of 
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dielectric media between the capacitor plates (Da Silva, Schleicher, & Hampel, 

2007).  A tactile sensor capable of measuring normal and shear forces was created 

by depositing an array of gold thin films in PDMS and using 2x2 taxels as a single 

sensing unit (Hyung-Kew Lee, Jaehoon Chung, Sun-Il Chang, & Euisik Yoon, 

2008; H.-K. Lee et al., 2006). 

Fluids in MEMS Sensors.  Fluids have been integrated into a variety of 

MEMS sensors for different applications.  For instance, a vibration sensor was 

developed which had chambers filled with an NaCl solution (K. H. Kim & Seo, 

2008).  Mechanical vibrations induced motion of the electrolyte’s ions, allowing 

the measurement of vibrations over a wide range of frequencies.  For tactile 

sensing, a sensor was created by filling microchannels with an NaCl solution 

(Tseng et al., 2009).  Mechanical deformation applied pressure to the reservoirs, 

displaced fluid, and produced measurable changes in resistance.  A macroscale 

fluid-based tactile sensor called the BioTac (SynTouch, Los Angeles, CA) uses 

fluid as a transduction medium for both electric current and mechanical vibrations 

(Nicholas Wettels et al., 2008).  This multimodal sensor consists of an elastomeric 

skin that has been inflated away from a rigid, fingertip-shaped core by a weakly 

conductive fluid (N. Wettels, Smith, Santos, & Loeb, 2008).  An array of 

impedance electrodes embedded in the rigid core is used to measure changes in 

impedance as the fluid flowpath is altered by mechanical deformation.  A 

hydrophone is used to measure vibrations at the skin-object interface.  Each of 

these three sensing devices utilizes fluids encapsulated by elastic materials. 

Recently, fluids have been used as wires to connect sensing elements with 
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external circuitry.  A liquid metal alloy called Galinstan has been used in MEMS 

devices to create robust wire paths capable of being bent, twisted, and stretched.  

Galinstan-filled microchannels enabled the powering of LED lights despite the 

bending and twisting of the device (H.-J. Kim et al., 2008).  In another 

application, a stretchable force and temperature sensor was created with carbon 

nanotubes and Galinstan electrical connections embedded in PDMS (Hu, Shaikh, 

& Liu, 2007b).  Galinstan is a fairly conductive (0.435 Ωm electrical resistivity 

(Surmann & Zeyat, 2005)) fluid created by Geratherm (Geschwenda, Germany) 

for use in thermometers as a nontoxic substitute for mercury (“Galinstan MSDS,” 

2006).  Galinstan is a eutectic metal alloy composed of gallium, indium, and tin 

(Surmann & Zeyat, 2005).  The voltammetric (Surmann & Zeyat, 2005) and 

electromagnetic (Schulze, Karcher, Kocourek, & Mohring, 2006) properties of 

this relatively new compound have been recently established.  A eutectic metal 

alloy composed of only gallium and indium (eGaIn) has been used in the design 

of a pressure sensor (Y. L. Park, Majidi, Kramer, Bérard, & Wood, 2010), bend 

sensor (Kramer, Majidi, Sahai, & Wood, 2011; Majidi, Kramer, & Wood, 2011), 

and multi-axis strain sensor (Y. L. Park, Chen, & Wood, 2011).  A PDMS skin 

having microchannels filled with eGaIn was wrapped around a human finger.  

Deformation-induced changes in resistance of the fluidic electrical circuit allowed 

for the measurement of joint angles as the finger was bent. 

A Capacitive Microfluidic Normal Force Sensor.  Tactile sensing is a 

field of great interest due to its potential impact on robot-assisted surgery and 

robotic grasp and manipulation, among other applications.  In many cases, visual 
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and acoustic feedback alone does not provide the information necessary for 

decision making.  A classic case is that of an amputee who accidentally crushes or 

drops an object with his prosthetic hand due to inadequate tactile information 

about the hand-object interaction.  Many review articles have discussed the 

complexity of the sense of touch and the many challenges that remain for artificial 

touch sensors (Dahiya et al., 2010; Maheshwari & Ravi Saraf, 2008; Yousef et al., 

2011).  Some of the sensor design requirements for robotic applications include 

robustness, sensitivity, fine spatial resolution, fast dynamic response, and 

flexibility (Dahiya et al., 2010). 

PDMS-based capacitive tactile sensors have been developed to measure 

normal forces (J. M. Engel et al., 2006; Gray & Fearing, 1996; H.-K. Lee et al., 

2006) and shear forces (Hyung-Kew Lee et al., 2008), to determine the elasticity 

of a contacted object (Peng Peng, Rajamani, & Erdman, 2009), and to distinguish 

between different types of textures (Muhammad et al., 2011).  For MEMS and 

microfluidic applications, PDMS offers advantages such as non-toxicity, high 

degree of flexibility, chemically inert nature, simple processing techniques, low 

cost, and impermeability to liquids (Jo, Van Lerberghe, Motsegood, & Beebe, 

2000; C. Liu, 2007; Lotters, Olthuis, Veltink, & Bergveld, 1997; Schneider, 

Fellner, Wilde, & Wallrabe, 2008).  Thus, PDMS provides protection from the 

environment for the embedded sensor electronics.  The existing PDMS-based 

tactile sensors use embedded solid metal films (Gray & Fearing, 1996; Hyung-

Kew Lee et al., 2008; H.-K. Lee et al., 2006; Muhammad et al., 2011) or carbon 

nanotubes (J. M. Engel et al., 2006) in a protective PDMS material.  These 
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designs are prone to failure when deformed, for example around a robotic finger, 

and are therefore challenging to implement in robotic applications where 

conformal wrapping of curved surfaces or robustness to repetitive deformation is 

necessary. 

In this work, we present a flexible, capacitive, microfluidic sensor for 

normal force sensing with microchannels filled with Galinstan that serve as both 

the flexible wire paths and the conductive metal plates that make up the capacitive 

sensing units.  Novel features of the sensor include its deformable capacitive 

plates and heterogeneous, deformable dielectric medium.  The prototype has a 

5x5 array of individually addressable 0.5 mm x 0.5 mm taxels.  The liquid metal-

filled microfluidic channel design ensures the robustness of the sensor as there are 

no solid components that can crack and fail.  The multilayer design allows for 

nonlinear tuning of the sensor response to the desired load.  We present the 

sensor’s spatial resolution and quantify the response of the capacitive sensor on 

flat and curved surfaces.  Details of the sensor’s design, fabrication, calibration, 

validation, and overall functional assessment are presented in this work to show 

the potential of using conductive fluids for sensor electronics. 

 

METHODS 

Prototype Fabrication.  The capacitive, microfluidic sensor 

(Figure 2.1A) is fabricated using soft lithography and consists of two materials: a 

flexible elastomer to mimic the mechanical properties of human skin and a liquid 

metal to serve as flexible plates for the capacitive sensing units.  The sensor 
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consists of four layers of PDMS.  The two outermost PDMS layers contain 

microfluidic channels filled with Galinstan and the two inner layers seal the 

microfluidic layers and contain an array of square air pockets to tune the overall 

sensor’s mechanical and electrical properties.  The microchannels form a 5x5 

array of taxels connected by in-plane wire paths (lengthways for the top layer and 

transverse for the bottom layer).  The 125 μm thick microchannel wires pass 

through and connect five 0.5 mm x 0.5 mm taxel plates, each of which is 

separated from the next plate by 0.5 mm (Figure 2.1B).  The 5x5 array of square 

air pockets uses the same layout and dimensions as the 5x5 array of plates in the 

microchannel layer. 

 

Figure 2.1. Capacitive microfluidic normal force sensor skin.  A) A completed 

prototype shows the Galinstan embedded within the transparent PDMS.  The 2D 

schematics in correspond to the cross-sectional view at A-A’ (black line).  B) 

Wire paths from the top half of the sensor run horizontally (red) while those from 

other the bottom half run vertically (black).  The square capacitive taxels (yellow) 

represent the overlapping areas of the wire paths from both halves of the sensor. 
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Figure 2.2. The fabrication process for a sensor prototype having a 5x5 array of 

capacitive taxels.  The 2D schematics correspond to the cross-sectional view at A-

A’ in Figure 2.1A.  A) The PDMS layer (light blue) having microfluidic channels 

is created.  B) This layer is peeled from the wafer (black) containing the 

photoresist master (red) and hole-punched.  C) The PDMS layer having the air 
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pockets is created.  D) The patterned surface of the microchannel layer is O2 

plasma bonded to the exposed surface of the air pocket layer still on the wafer.  E) 

The bonded layers are peeled from the wafer and Galinstan (gray) is injected 

through the hole-punched inlet holes.  Rigid wires (yellow) are carefully placed 

inside the Galinstan-filled inlet and outlet holes.  The wires are sealed by pouring 

uncured PDMS over the holes and then curing the PDMS in an oven.  F) Two 

separate halves of the sensor are aligned and bonded to create a functional sensor.  

Wire connects for the bottom PDMS layer are outside the cross-sectional plane 

and not shown.  *Note: schematics not drawn to scale. 

 

Soft lithography is a mature microfabrication strategy but we provide 

some details specific to our sensor design here.  The PDMS masters for the 

microfluidic layers are fabricated by patterning 40 μm of SU-8 2015 photoresist 

(Microchem, Newton, MA) onto 4" silicon wafers (Figure 2.2A).  The air pocket 

layer masters have 18 μm thick SU-8 2010 photoresist (Figure 2.2C).  The 

masters are soft baked at 95
o
C for 5 minutes and then exposed to 22.5 mW/cm

2
 

UV light for 16 seconds using mylar masks.  After a 5 minute post-exposure bake 

on a hot plate at 95
o
C, the wafer is developed and then hard baked in an oven at 

140
o
C for 5 minutes.  The thicknesses of the masters are measured using a 

profilometer (Dektak IIA, Sloan, Scotia, NY). 

We use PDMS with a 10:1 A:B ratio (RTV615, Momentive, Columbus, 

OH).  Each of the two 300 μm thick microfluidic channel layers (Figure 2.2A) is 

fabricated by spin coating PDMS onto the microchannel mold at 500 rpm for 30 
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seconds, curing it in an oven at 80
o
C for an hour producing a 150 μm thick layer.  

This process is repeated a second time to produce 300 μm thick PDMS films (H.-

K. Lee et al., 2006).  The two ends of each wire-plate path are punched with a 700 

μm diameter stainless steel TiN-coated round punch (Technical Innovations, 

Angleton, TX) to create through-holes that serve as inlets and outlets 

(Figure 2.2B) for the injection of Galinstan.  The 25 μm thick air pocket layers 

are created by spinning PDMS onto the master at 3000 rpm for 30 seconds and 

curing it in an oven at 80
o
C for an hour (Figure 2.2C).  Each microchannel layer 

is bound to an air pocket layer (Figure 2.2D) after oxygen plasma treatment 

(PDC-001, Harrick Plasma, Ithaca, NY). We use isopropanol (IPA) to wet each 

layer and align the PDMS layers under a microscope to ensure accurate alignment 

of the 5x5 arrays of taxel plates and air gaps (Jo et al., 2000; Shifeng Li & 

Shaochen Chen, 2003).  Each of the two-layer sandwiches is placed on a hot plate 

at 80
o
C for one hour.  We inject the Galinstan into each arm of the five wire-plate 

paths using a syringe with a 700 μm diameter stainless steel tube attached.  Rigid, 

insulated 500 μm diameter wires are positioned in the inlet and outlet holes and 

uncured PDMS is poured over the holes.  The system is placed in an oven for 2 

hours at 80
o
C to cure the PDMS applied to the channels’ inlet and outlet holes.  

Electrical continuity and resistance of 1.5-2.5 Ω between the inlet and outlet of 

each wire-plate path are verified with a multimeter.  This completes the 

fabrication of one half of the sensor (Figure 2.2E).  O2 plasma-IPA alignment and 

bonding technique is used to position and bond two halves of a sensor 
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perpendicular to one another in order to obtain a functional sensor prototype 

(Figure 2.2F). 

Experimental Setup and Sensor Calibration.  All experiments were 

performed with the sensor and its electrical circuit inside a Faraday cage for 

shielding from external electromagnetic noise.  A single taxel was loaded by a 

uniaxial, point-load using a 1.5 mm x 1.5 mm rectangular-shaped tip (Figure 2.3).  

Double-sided sticky mylar tape was used to affix the sensor to a rigid, flat support 

plate affixed to a six degree-of-freedom force/torque transducer (Nano-17, ATI 

Industrial Automation, Apex, NC) having resolutions of 1/80 N and 1/16 N-mm 

for force and torque, respectively.  We validated the calibration of the transducer 

using known weights. 

 

Figure 2.3. Experimental setup for point-loading of the microfluidic normal force 

sensor.  The sensor is secured to a rigid, flat support plate that is attached to a load 

cell.  A frame provides support to the slender post of the load platform and allows 
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precise alignment of the tip of the load platform over a single taxel.  The flat 

support plate is replaced with a rigid, round support dowel for assessment of the 

sensor while wrapped around a curved surface.  *Note: components not drawn to 

scale. 

 

At the start of each experimental trial, sensor data were collected with the 

sensor at rest in an unloaded state.  The tip of the load platform was then carefully 

centered over a single taxel with no overlap of adjacent taxel units and placed 

over the target taxel.  Calibrated masses were added to the load platform to 

gradually achieve a total of 250 g (2.45 N).  The actual transmitted load was 

determined by the force transducer.  The masses and load platform were removed 

in reverse order (and with different load increments) until the sensor was 

completely unloaded.  The sensor was allowed to equilibrate after each change in 

external load before data were collected for a 0.1 sec interval.  A total of 20 

measurements were made for each of ten independent trials.  The sensitivity of 

two closest neighboring taxels to the loaded taxel was also assessed and is 

reported here.  Eight experimental trials were conducted to assess the effect of 

surface curvature on sensor performance.  Four trials were conducted for each of 

two sensor configurations:  secured to a rigid, flat support plate or secured to a 

rigid, round support dowel having a curvature similar to that of a human finger.  

A round wood dowel with a radius of 0.635 cm (curvature of 1.575 cm
-1

) was 

used as the curved surface. 
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Electrical Circuitry for Data Collection.  We use a standard charge 

amplifier circuit to measure the capacitance of individual taxels (Jung, 2005).  An 

AC input signal is sent through a capacitive sensing unit to the inverting input of 

an operational amplifier, and the non-inverting input is connected to ground.  An 

external feedback capacitor and resistor are connected across the op amp’s 

inverting input and output.  While the input voltage across the external feedback 

capacitor remains constant, changes in taxel capacitance produces changes in 

charge, which translates to changes in the op amp’s output voltage amplitude 

(Jung, 2005).  Thus, the gain in amplitude of the AC input signal depends solely 

on the ratio of capacitance between the constant external capacitor and the 

variable capacitive sensing unit.  Under the assumption of an ideal op amp, nodal 

analysis can be performed on the circuit to obtain, 

          (
         

            
)  (2.1) 

where Vout is the output voltage amplitude, Vin is the input voltage amplitude, ω is 

the excitation frequency of the input signal, Rout is the external feedback 

resistance, Cin is the capacitance of a single taxel (connected to the op amp’s 

inverting input), and Cout is the external feedback capacitance.  If ωRoutCout >> 1, 

then Eqn. 2.1 simplifies to 

          
   

    
 (2.2) 

By setting the input signal frequency f to 10 kHz, Rout to 200 MΩ, and Cout 

to 1 pF, the expression ωRoutCout has a value of 12.566 and allows the use of 

Eqn. 2.2.  In response to mechanical deformation under load, changes in taxel 
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capacitance Cin can be measured through changes in output voltage amplitude 

Vout.  Equation 2.2 was confirmed by experimentally measuring Vout using known 

Cin, Cout, and Vin.values.  This circuit is simple, has relatively fast response time, 

and filters the output signal to yield a high signal to noise ratio (Da Silva et al., 

2007; Hyung-Kew Lee et al., 2008; H.-K. Lee et al., 2006; Sergio et al., 2002) 

We used data acquisition boards (NI-6255 and NI-6211 National 

Instruments, Austin, TX) to collect data from the load cell at 1 kHz and a single 

sensor taxel at 200 kHz.  The amplifier circuit input signal was sinusoidal with a 

peak-to-peak voltage of 1.0 V and frequency of 10 kHz.  Sensor taxel data were 

collected at 20 times the input signal frequency in order to obtain accurate 

amplitudes from the output signal. 

Post-processing of the raw load cell and capacitive sensor signals was 

performed in Matlab (Mathworks, Natick, MA).  The amplitude of the capacitive 

sensor output voltage was determined for each cycle (using the maximum and 

minimum value for each wave).  The mean load cell readings and mean taxel 

output amplitudes were computed for each 0.1 sec interval of data.  Assuming 

constant Vin and Cout values, the changes in taxel capacitance Cin are directly 

reflected by changes in output voltage amplitude Vout (Eqn. 2.2).  The relative 

percent change in output voltage amplitude, %ΔV, was calculated as 

     
                         

             
       (2.3) 

where the output voltage amplitude Vout is a function of load. 
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RESULTS AND DISCUSSION 

Data were collected from individual taxels of a sensor prototype having a 

5x5 array of capacitive taxels as well as the independent force transducer.  The 

results from ten independent loading and unloading trials are shown first, starting 

with a brief description of the raw data for one trial.  The calibration of the sensor 

is then presented and fit to a nonlinear model.  We use the calibrated sensor to 

assess the reliability of the sensor’s force measurements by comparing them to 

those of a calibrated load cell.  Finally, a brief discussion details the sensor’s 

spatial resolution and robust performance when wrapped around a curved surface. 

 
Figure 2.4. Sensor output voltage amplitude for a single calibration trial.  The raw 

amplitudes for all cycles of the sinusoidal output signal (circles) and the mean for 

every 0.1 sec interval (line) are shown.  Sensor output increased and decreased 

with loading (0-1 sec) and unloading (1-2 sec) as expected. 
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Direct Point-loading of a Single Taxel.  Figure 2.4 shows the raw sensor 

output voltage amplitudes and mean values for each 0.1 sec data collection 

interval varied with the external load.  As expected, an increase in load force 

resulted in an increase in output voltage amplitude.  The spread of amplitude 

points around the mean is approximately ±7 mV and is due to the low capacitance 

values being measured (on the order of tenths of pF).  Figure 2.5 shows the force 

measured by the sensor as a function of the measured change in sensor output 

voltage for ten independent trials on a single taxel under direct point-loading.  We 

fit a power-law curve to the force values as a function of the calculated %ΔV 

using nonlinear regression analysis.  The final regression model is given by 

            (   )
            (   )                (2.4) 

where Ffit is the force calculated by the curve fit.  The regression model performs 

well at both high and low loads.  Two power terms were needed to properly fit the 

nonlinear relationship between load and %ΔV at low loads, and to accommodate 

the slight increase in the linear slope at higher loads (> approx. 1.2 N).  Using the 

power-law fit, the residual plot in Figure 2.5 shows that nine data points out of 

two hundred (4.5% of the data) fall outside the 95% confidence interval. 
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Figure 2.5. Sensitivity of taxels to direct and indirect loading.  Calibration curves 

for a directly point-loaded taxel (blue dots and curve fit, Eqn. 2.4), an adjacent 

taxel (red triangles and curve fit), and a taxel one unit away (green circles and 

curve fit) during direct loading of a single taxel.  The relative percent changes in 

output voltage amplitude (data points) were computed using Eqn. 2.3.  Regression 

analysis using the sum of two power functions model was performed to calculate 

the calibration curves (solid lines) and 95% confidence bounds (dashed lines).  

The residual plot corresponds to the directly loaded taxel and shows that only 9 of 

200 data points fell outside the 95% confidence bounds.  Taxel response 

decreased substantially as distance from the point of load application increased, 

which suggests that the sensor has a spatial resolution of approximately 0.5 mm. 

 

We only present data for loads under 2.5 N.  We experimentally 

determined that a single taxel saturates at roughly a 500 g (4.9 N) load.  At this 
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load, the innermost air pocket layers may have collapsed, causing the outermost 

microfluidic channel layers to touch.  At this point, the fluidic capacitive plates 

would no longer be able to move closer to one another, and the capacitance would 

achieve a steady state value.  It was noted that with masses of 350 grams or 

greater, the small tip of the load platform tended to become misaligned with 

respect to the target taxel thereby reducing the accuracy of the calibration between 

the load cell and taxel force readings.  Considering the limitations of the 

experimental setup and our interest in characterizing sensor performance for 

forces associated with manipulation (approx. 0.15-0.90 N (Dahiya et al., 2010)), 

we used an upper limit of 250 g for the uniaxial loading of a single taxel. 

Our sensor response to loading in the 0-2.5 N range is nonlinear at low 

loads, linear at moderate loads, and slightly nonlinear again at high loads.  This 

nonlinear response can be attributed to many factors associated with the complex 

mechanical and electrical nature of the device.  The primary sources of the 

nonlinear response are likely the curved deformations of the fluidic capacitance 

plates and the heterogeneous, deformable dielectric medium consisting of three 

sub-layers (i.e., two PDMS and one air).  This structure and the nonuniform 

deformation of the capacitor plates result in complex variations in capacitance as 

the sensor is deformed.  In addition, the viscoelastic nature of PDMS is 

characterized by highly nonlinear stress-strain curves (Goyal et al., 2009; 

Khanafer, Duprey, Schlicht, & Berguer, 2008; Mark, 2007; Schneider et al., 2008) 

which could also introduce some nonlinearity into the sensor output.  Overall, the 

nonlinear behavior is a confluence of several physical effects which are difficult 
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to predict with simple analytical models and so we are investigating these effects 

further with coupled physics finite element models.  Our multilayer sensor 

exhibits greater sensitivity at low loads, which can be exploited for robotic 

applications such as semi-autonomous haptic exploration in which light touch is 

important for the physical examination of objects.  The multilayer design enables 

nonlinear tuning of the sensitivity over a wide range of forces which can be used 

to tailor the sensor response to the application of interest. 

We evaluate the calibration curve fit (Eqn. 2.4) by directly comparing 

taxel force measurements to load cell force measurements as shown in Figure 2.6.  

This plot shows that there is nearly perfect agreement between the calibrated 

sensor and the independently measured load as demonstrated by the linear line 

having a slope near unity.  A linear regression of the taxel’s curve fit (Ffit) and 

load cell (FLC) data yielded the following equation 

                        
         (2.5) 

The slope and y-intercept had values near one and zero, respectively, 

indicating that the calibration curve based on the sum of two power functions 

(Eqn. 2.4) is effective and that the capacitive sensor can measure forces in the 0-

2.5 N range reliably.  The 95% confidence bounds (±0.184 N) and residuals were 

also calculated for the comparison of taxel and load cell force measurements. 

Due to the need for dynamic sensing in robotics and other applications, the 

experimental setup was modified slightly in order to apply a sinusoidal dynamic 

load to a single taxel.  Forces up to approximately 2.5 N were applied at 

frequencies ranging from 0.4 to 4 Hz.  Preliminary results show that sensor output 
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and load cell signals matched well in the loading and unloading phases since no 

significant lag could be perceived.  It is widely known that the fast-adapting type 

II (FA-II) afferents in the human hand are capable of detecting vibrations ranging 

from 40 to 400 Hz (Johansson & Flanagan, 2008).  Although, vibration detection 

is beyond the scope of the current prototype, the sensor appears to be capable of 

measuring low frequency dynamic loads and transient changes in loading, as 

when contact with an object is being made or released.  Such capabilities are 

similar to those of fast-adapting type I (FA-I) afferents in the human hand which 

are maximally sensitive to vibrations ranging from 3 to 40 Hz, although responses 

to frequencies as low as 0.5 Hz have been reported (Jones & Lederman, 2006). 

 
Figure 2.6. Comparison of force measurements for a directly loaded taxel as 

given by the sensor calibration curve and load cell.  The relative percent change in 

output voltage amplitudes was used to calculate curve fit forces Ffit (dots) using 

the calibration equation.  The linear regression (solid line; Eqn. 2.5) revealed a 

near one-to-one relationship between the microfluidic sensor and load cell 
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measurements.  The residual plot shows that only 6 of 200 data points fell outside 

the 95% confidence bounds (dashed lines). 

 

Spatial Resolution and Robustness to Bending.  The small tip of the 

load platform enabled the external load to be centered directly over a single taxel.  

However, force from the applied load is transmitted to neighboring taxels.  To 

assess the sensitivity of taxels to indirect loading, four experimental trials were 

conducted for each of the two neighboring taxels: a taxel immediately adjacent to 

the taxel under direct loading and another taxel one unit away (Figure 2.5).  As 

expected, the sensitivity to load for the unloaded taxels decreased with distance 

from the point of load application.  The change in capacitance for a given load is 

much smaller for the unloaded neighboring taxels than that for the taxel under 

direct loading (Figure 2.5).  At a load of 2.25 N, the directly loaded taxel had a 

%ΔV value of 20.26%.  The adjacent taxel and the taxel one unit away had %ΔV 

values of 5.59% and 2.15%, respectively, which represent reductions in the %ΔV 

values of 72.4% and 89% with respect to the directly loaded taxel.  Thus, the 

sensor prototype has a spatial resolution of approximately 0.5 mm, which would 

enable precise measurement of bounding areas and center of pressure locations of 

applied forces. 
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Figure 2.7. Assessment of a single taxel’s performance on surfaces with different 

curvatures.  Data collected with the sensor attached to a rigid, flat support plate 

(solid dots) and wrapped around a rigid, round support dowel (open circles) show 

similar responses.  A single calibration curve (Eqn. 2.6) was used to fit both data 

sets.  A linear regression (solid line, Eqn. 2.7) revealed a near one-to-one 

relationship between the microfluidic sensor and load cell measurements.  The 

residual plot shows that 10 of 200 data points fell outside the 95% confidence 

bounds (dashed lines). 

 

Figure 2.7 shows that the sensor performs similarly and reliably whether 

mounted to flat or cylindrical support surfaces, suggesting that a single calibration 

curve might suffice.  As with the flat surface condition, a sum of two power 

functions fit the data from the curved surface condition well.  The calibration 

curve for data pooled from the flat and curved surface conditions and the linear 
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regression of the taxel’s curve fit and load cell data are given by the following 

equations, respectively, 

            (   )
          (   )                (2.6) 

                        
         (2.7) 

The 95% confidence bounds (±0.165 N) show a force range similar to the one 

obtained from the previously calibrated taxel (Figure 2.6).  No major performance 

difference was observed, suggesting that this particular sensor prototype functions 

similarly regardless of surface curvature.  This finding is likely related to the 

dimensional relationships between the individual taxels, their spacing, and the 

curvature of the round support dowel.  If small enough, a taxel will act as if 

mounted to flat surface because even a curved surface will appear locally flat.  In 

addition to the presented results, testing was performed on surfaces with larger 

curvatures to see if any curvature limits could be detected.  The sensor was 

wrapped around four dowels with radii of 0.397 cm, 0.318 cm, 0.238 cm, and 

0.159 cm (curvatures of 2.519 cm
-1

, 3.145 cm
-1

, 4.202 cm
-1

, and 6.289 cm
-1

, 

respectively).  The sensor tolerated the increased curvature and remained 

functional as force was applied on a single taxel, further supporting the findings 

from the finger-sized dowel.  These results show that this multilayer microfluidic 

tactile sensor is flexible and functions well on surfaces having curvatures 

consistent with artificial fingers and much higher. 
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SUMMARY 

In this work, we have created a functional prototype of a microfluidic 

normal force sensor that uses a liquid metal alloy for its internal circuitry.  The 

novel use of conductive fluids as deformable capacitive plates and wire paths 

offers significant advantages over the use of standard solid components such as 

robustness to cracking and fatigue.  The multilayer design utilizing PDMS and air 

sub-layers allows for the tuning of mechanical and electrical properties, 

particularly for the heterogeneous, deformable dielectric medium. The sensor also 

offers advantages such as ease of fabrication, low cost and non-toxic components, 

large degree of flexibility, robustness, and repeatable measurements.  Our work 

expands the design space for flexible MEMS sensors by demonstrating that liquid 

metal alloys such as Galinstan can be used as both flexible capacitor plates and 

wire paths (Hu et al., 2007b; H.-J. Kim et al., 2008).  Our microfluidic PDMS 

sensor remained functional after being wrapped around a surface having a small 

curvature similar to that of a human finger and showed indications of being 

capable of measuring low frequency dynamic loads.  Additional testing is needed 

to determine whether the sensor remains functional despite twisting and 

stretching.  Our sensor performed reliably during static loading and unloading 

trials for forces up to 2.5 N and exhibited 0.5 mm spatial resolution.  A functional 

artificial sensor skin would consist of a larger sensor (eight inch wafers are state 

of the art) or several of these sensor prototypes covering a large area. Sensing 

units and sensor resolution can be modified according to the surface area and 

application of interest. 



 

40 

The primary motivation for this work is tactile sensing for robotics 

applications.  Our current experimental setup and prototype are not well suited for 

complete dynamic analysis and shear force measurements required for use on an 

artificial hand.  However, it reliably measures normal forces with a spatial 

resolution appropriate for artificial grasping, is robust, and is flexible in order to 

be conformally wrapped around curved objects such as artificial fingers.  The 

deformable elastomeric skin could enhance grip by cushioning impacts, 

increasing the effective contact area, and increasing friction at the hand-object 

interface during grasp.  The sensor’s nonlinear response, which can be attributed 

to its complex mechanical and electrical design, is advantageous for tactile 

sensing due to its greater sensitivity at low loads and ability to withstand large 

force ranges.  The multilayer design can be modified to tune the nonlinear sensor 

response according to application-specific design criteria.  In addition, MEMS 

applications that require sensors capable of withstanding elastic deformations, 

such as bending and stretching, could benefit from replacing rigid metal 

components with conductive fluids, as described in this work.  While the sensor 

skin was initially conceived for robotic hands, the sensor could easily be applied 

to other robotic and haptic applications.  For instance, the skin could be applied to 

large surface areas (e.g., wrapped around robot arms (Mukai, Onishi, Odashima, 

Hirano, & Zhiwei Luo, 2008)) for safe human-robot interactions, or applied to 

human-machine interfaces for haptic applications. 

Our future work will focus first on enhancing the experimental setup for 

complete dynamic characterization of the sensor skin.  We will also implement 



 

41 

multiplexing of the data collection circuitry to enable simultaneous measurement 

of signals from multiple taxels to identify features of loads such as center of 

pressure location.  A common challenge for capacitive sensors is noise due to 

proximity to external sources of electromagnetic interference.  One potential 

solution for ensuring acceptable signal to noise ratios is to use commercially 

available electromagnetic noise shielding films (e.g. SF PC5000 (Tatsuta Film)) 

used on printed circuit boards of cell phones and digital video cameras.   

In addition, coupled physics finite element models will be developed such 

that the sensor design (e.g., thickness of PDMS layers, dimensions and placement 

of air pockets, etc.) can be tuned for specific sensing design requirements (e.g., 

range, dynamic response).  Previous works (Hyung-Kew Lee et al., 2008; Koterba 

& Matsuoka, 2006) have demonstrated that arrays of normal force sensing units 

can be used to approximate shear by simply adding bumps or pillars on the 

exposed PDMS surface and looking at the relative signal response between 

adjacent sensing elements.  Similar strategies could be attempted with our 

microfluidic force sensor to expand the sensing capabilities to include shear 

forces. 
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CHAPTER 3 

HAPTIC EXPLORATION OF EDGES WITH RESPECT TO A 

FINGERTIP-FIXED REFERENCE FRAME USING A MULTIMODAL 

TACTILE SENSOR 

INRODUCTION 

The intimate connection between an amputee and his or her upper limb 

prosthesis brings together two complex systems that speak different languages at 

different timescales. Communication delays inherent to human-machine systems 

result from the necessary translation between the biological and artificial systems 

for both afferent and efferent signals (Cipriani et al., 2009). The cognitive burden 

on an amputee can be minimized by making the prosthesis more intuitive to use 

and minimizing the details that the amputee must consider in light of such delays. 

Subtle details of control include determining which of the multitude of joints to 

actuate, when and how hard to grasp an object, and how to adjust fingertip forces 

to maintain a stable grasp during object use. 

Invasive techniques such as targeted muscle reinnervation (Schultz, 

Marasco, & Kuiken, 2009), peripheral nerve stimulation (Dhillon & Horch, 

2005), and intracortical microstimulation (O’Doherty et al., 2011; Overstreet, 

Klein, & Helms Tillery, 2013; Romo, Hernández, Zainos, & Salinas, 1998) hold 

the promise of bringing a conscious perception of tactile feedback to the user and 

increasing the number of channels with which a user can intuitively control a high 

degree-of-freedom (DOF) prosthesis (see (Belter & Dollar, 2011) for a nice 

review of anthropomorphic prosthetic hands). Even when such techniques become 
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clinically viable and commonplace, amputees may still not be able to respond 

quickly enough through the human-machine interface to counter unexpected 

perturbations or perform tasks requiring quick dexterous adjustments. 

Amputees could benefit from the use of a “sense-think-act” circuit (M. 

Siegel, 2003) within the prosthesis itself that automatically addresses millisecond-

to-millisecond details of finger-object actions, and buys time for cognitive 

processing and generation of a voluntary response. Complex behaviors could also 

be semi-automated so that the user could focus on high level decisions so long as 

the semi-automation is context-appropriate, reliable, and does not alienate the 

user. 

Currently, amputees who use commercially available  upper extremity 

prostheses rely solely upon visual feedback when physically interacting with 

others or objects in their environment (Cipriani et al., 2009). Visual feedback can 

provide preliminary information about an object that can be used to pre-shape 

grasp (Ciocarlie & Allen, 2008) and plan digit placement (Miller & Allen, 2004). 

However, visual feedback alone cannot provide all essential information for 

successful physical hand-object interactions. This is especially true when object 

scenes are cluttered, pre-planned digit placement is erroneous when executed, 

digits are occluded by the grasped object itself, or when the hand-object 

interaction is completely out of view. Everyday examples include searching for a 

light switch in the dark, wrapping a belt around oneself, or reaching for a 

cellphone in one’s pocket. 
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Reliance upon visual feedback alone is also challenging for unimpaired 

individuals because many activities of daily living do not afford a complete line-

of-sight or require precise control of fingertip forces whose effects are unseen. 

Performance of activities of daily living with a prosthesis requires extensive 

concentration which can be mentally taxing, especially for a bilateral amputee 

who cannot compensate for a missing limb with an unimpaired limb. A survey of 

amputees who use transradial electric-powered prostheses reiterated that they 

would prefer that less visual attention be required to perform functions (Atkins, 

Heard, & Donovan, 1996). This desirable feature was ranked third out of 17 

choices, behind basic kinematic preferences for fingers that can bend and a thumb 

that can move out to the side. 

A study on three-dimensional (3D) haptic shape perception investigated 

the influence of object features such as curvature, aspect ratio, and edges on the 

ability of unimpaired subjects to quickly and accurately identify objects through 

touch alone (Plaisier et al., 2009). Subjects were allowed to use a variety of 

“exploratory procedures” (EP) (Lederman & Klatzky, 1987) in order to extract 

object properties. One conclusion of the study was that edges and vertices were 

the most salient local features of 3D shape and that haptic searches were 

performed efficiently when the target object had edges (Lederman & Klatzky, 

1997; Plaisier et al., 2009). 

Given the usefulness of edges in human studies on shape perception, it 

could be worthwhile to develop artificial capabilities for edge perception in 

artificial systems, such as prosthetic or robotic hands. While enclosure could be 
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used for estimating global shape, enclosure has yet not been used for edge 

perception by artificial hands, possibly due to limitations in tactile sensing 

technology. Rather, enclosure has been used to simplify the grasp planning 

problem, particularly with underactuated hand designs (e.g., (Ma, Odhner, & 

Dollar, 2013; Massa, Roccella, Carrozza, & Dario, 2002)). Contour-following has 

been demonstrated for industrial applications, but simultaneous force and vision 

sensing were required (Johan Baeten, Verdonck, Bruyninckx, & De Schutter, 

2000; Koch, Konig, Weigl-Seitz, Kleinmann, & Suchy, 2013). Edge detection has 

been demonstrated for artificial fingers, but the typical approach of using raster-

like patterns of static contact with the object to build a composite “tactile image” 

(Berger & Khosla, 1991; H.-K. Lee et al., 2006; Mei et al., 2000; Petriu, McMath, 

Yeung, & Trif, 1992) does not reflect strategies used by humans (Huynh, Stepp, 

White, Colgate, & Matsuoka, 2010; Plaisier et al., 2009). 

Whether conveying a sense of touch to an amputee or making a split-

second semi-autonomous decision on the amputee’s behalf, a prosthesis must 

have an ability to relate finger-object interactions to a hand-centric reference 

frame. The objective of this work was to use a multimodal tactile sensor to 

establish the orientation of a salient local feature of an object (an edge) with 

respect to a body-fixed reference frame in the artificial finger through haptic 

exploration. The ability to predict edge orientation with respect to the fingertip 

through active touch could enable task-appropriate manipulations of an object and 

complex exploratory procedures such as contour-following (Lederman & Klatzky, 

1987) in the absence of visual feedback. 
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METHODS 

Apparatus 

Robot testbed.  The robot testbed consists of a 7 degree-of-freedom Barrett 

Whole Arm Manipulator (WAM) and BarrettHand (Barrett Technology, 

Cambridge, MA) in which the middle digit has been outfitted with a BioTac 

sensor (SynTouch, Los Angeles, CA) (Figure 3.1). The BioTac enables 

simultaneous measurement of multiple tactile sensing modalities that mimic slow- 

and fast-adapting mechanoreceptors in the human fingertip and has been used to 

identify material type (Lin, Erickson, Fishel, Wettels, & Loeb, 2009), compliance 

(Su et al., 2012), and texture (J. A. Fishel & Loeb, 2012), to relate haptic 

adjectives to objects (McMahon et al., 2012), and to identify objects (Xu et al., 

2013). The multimodal tactile sensor consists of a fingertip-shaped rigid core that 

houses an array of 19 electrodes, a pressure sensor, and a thermistor (Nicholas 

Wettels et al., 2008). An elastomeric skin, patterned externally with fingerprint-

like ridges surrounds the rigid core (J. A. Fishel & Loeb, 2012). A weakly 

conductive fluid injected between the core and elastic skin serves as the fluidic 

mechanotransduction medium. 
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Figure 3.1. Experimental setup for the edge characterization study.  The Barrett 

WAM, BarrettHand, and BioTac were used to explore edge stimuli presented at 

random orientations with respect to the fingertip reference frame by a motor-

driven turntable. 

 

While the mechanotransduction mechanisms differ from those of the 

human fingertip, the electrodes of the BioTac serve as low spatial resolution 

proxies for SA I Merkel’s endings, slowly adapting cutaneous mechanoreceptors 

in the human finger that respond to local, low-frequency skin deformations 

(Johansson & Flanagan, 2009). At low sampling rates, the pressure sensor serves 

as a proxy for SA II Ruffini-like endings, slowly adapting mechanoreceptors that 

respond remotely to static forces. At high sampling rates, the pressure sensor 
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mimics the dynamic range (but not the spatial resolution) of FA I Meissner 

endings and FA II Pacini endings, fast-adapting mechanoreceptors in the human 

fingertip that respond to high frequency vibrations and mechanical transients (J. 

A. Fishel & Loeb, 2012; J. Fishel & Loeb, 2012). 

We recorded tactile signals related to elastomeric skin deformation 

relative to the rigid core (1 impedance sample from each of 19 electrodes), overall 

internal fluid pressure (1 sample), and fluid vibration (22 samples) for each 10 ms 

batch of data. The effective sampling rates are 100 Hz for electrode impedance 

and overall fluid pressure, and 2200 Hz for vibratory signals (J. Fishel, Lin, & 

Loeb, 2013). Temperature data were not used in this work. 
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Figure 3.2.  Tactile stimuli used during the study on characterization of edge 

orientation.  a) Study 1: Rigid edge stimuli of three different widths were 

presented at c) different orientation angles  with respect to a body-fixed fingertip 

reference frame. b) Study 2: Compliant edge stimuli shown (L-R) in order of 

increasing stiffness. 
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Figure 3.3.  The different exploratory procedures implemented to explore an 

edge.  . a) During each exploratory procedure, the WAM maintained a constant 

BioTac contact angle relative to the horizontal x-y plane. b) EP #1: static contact, 

c) EP #2: distal to proximal stroke with an approach normal to the stimulus 

surface, d) EP #3: distal to proximal stroke with an approach tangential to the 

stimulus surface, and e) EP #4: radial to ulnar stroke. 

Tactile stimuli.  We hypothesized that the multimodal tactile sensor would 

encode the orientation angle  of an edge with respect to a body-fixed reference 
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frame in the artificial finger. For instance, exploratory movements perpendicular 

to an edge might generate subtle vibrations at the skin-object interface with a 

different frequency “signature” than those generated by movements aligned with 

an edge, just as subtle vibrations associated with sharpness have been related to 

FA I responses (Robert H. LaMotte & Srinivasan, 1987). 

In order to develop a generalizable Support Vector Regression (SVR) 

model capable of estimating edge orientation regardless of surface width, we 

collected data for three different surface widths using rigid stimuli (Study 1). 

Three 2 cm-tall, 3D printed (ABS plastic), rigid edge stimuli were used: a 5 cm-

wide “broad surface,” a 1 cm-wide “thick rectangular bar,” and a 0.4 cm-wide 

“thin rectangular bar,” (Figure 3.2a). Each stimulus was rigidly attached to a 6 

DOF load cell (ATI Nano-17), which was attached to a steel turntable. In a brief 

follow-up experiment (Study 2), we collected data for two compliant broad 

surfaces: a polyurethane sponge and a foam block (Figure 3.2c). Velcro strips 

were used to affix the compliant stimuli to the steel turntable. 

A DC motor (Maxon Precision Motors, Inc., EC-max 30) and motor 

controller (Maxon EPOS2 24/5) were used to orient edges in the horizontal plane 

at angles ranging from -90° to 90° (quadrants I and IV) in 1° increments. Edge 

orientation was randomized in order to minimize possible effects of skin wear or 

other latent variables on the SVR model.  Experimental results with angles in 

quadrants II and III were presumed to be symmetric about the longitudinal axis of 

the artificial finger and were not investigated. Edge orientation angles were 
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measured relative to a positive x-axis (0°) pointing in the ulnar direction of a 

right-hand index finger (Figure 3.2c, Figure 3.3a). 

For each trial, the motor rotated the edge to a prescribed angle with a 

resolution of 1/2000 counts per revolution, or 0.18°. Just prior to BioTac contact 

with the stimulus, a pair of electromagnets were activated to lock the turntable 

position and trigger the temporary powering down of the DC motor. This was 

done to minimize electromagnetic noise pollution of the 6 DOF load cell data by 

the nearby DC motor. 

Exploratory procedures.  Joint space control of the WAM was used to 

prescribe the trajectory of the BioTac fingertip and its orientation using Barrett 

Technology’s internal C++ library (“libbarrett”). In Study 1, four exploratory 

procedures were used: 1) static contact with a normal contact force along the z-

axis, 2) distal to proximal linear stroke along the y-axis with an approach normal 

to the stimulus surface, 3) distal to proximal linear stroke along the y-axis with an 

approach tangential to the stimulus surface, and 4) radial to ulnar linear stroke 

along the x-axis (Figure 3.3). A fixed global reference frame was defined directly 

above the center of the turntable with its origin placed at the contact height of the 

stimulus and its x-y plane coincident with the stimulus surface. Axes were defined 

such that radial to ulnar and distal to proximal fingertip motions could be 

expressed in terms of x- and y-coordinates while fingertip height could be 

expressed in z-coordinates (Figure 3.3a). Note that this reference frame was 

adopted for position control of the fingertip because of the nonzero contact angle 

 of the finger (Figure 3.1). Otherwise, a literal distal to proximal movement of 
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the fingertip would simply result in the immediate loss of contact with the 

stimulus. 

For EP #1 (Figure 3.3b), the fingertip was pressed against the edge of the 

stimulus, at the origin of the global reference frame, at a constant nominal force in 

the -z direction for a “hold” period of 1.5 sec. For EP #2 (Figure 3.3c), the 

fingertip approached the edge along the z-axis (normal to the surface), made 

contact with the edge, and then swept across the edge in the -y direction. For EP 

#3 (Figure 3.3d), the fingertip approached the edge from a location distal to the 

edge along the y-axis (tangential to the surface), and then swept across the edge in 

the -y direction. For EP #4 (Figure 3.3e), the fingertip swept across the stimulus 

in the ulnar direction along the x-axis. However, the nature of the initial finger-

stimulus contact for this EP varied according to edge orientation and surface 

width. For example, relatively steep negative edge orientations (e.g., -75°) were 

such that, for thin and thick bars, initial contact was tangential to the stimulus 

surface while, for broad surfaces, initial contact was normal to the stimulus 

surface before eventually losing contact with the stimulus. For relatively steep 

positive edge orientations (e.g., +75°), initial contact with the broad surface was 

tangential to the stimulus surface and the trial ended with the fingertip still in 

contact with the stimulus. 

A linear stroke of constant speed was used to investigate the quality of 

tactile information gleaned from a simple motion, as opposed to complex fingertip 

trajectories or raster-like scanning patterns (Huynh et al., 2010). EP #2 and #3 

fingertip trajectories used velocities of vy = -2 cm/s or -4 cm/s. For EP #2, initial 
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contact always occurred at the origin of the global reference frame (Figure 3.3a) 

and was followed by a 4 cm stroke in the -y direction. Initial contact for EP #3 

occurred at different locations along the edge of the stimulus, depending on edge 

orientation. However, as with EP #2, the stroke trajectory of EP #3 ended at y = -

4 cm. EP #4 fingertip trajectories used velocities of vx = +2 cm/s or +4 cm/s and 

were 8 cm long (started at x = -4 cm and ended at x = +4 cm). Scanning speeds 

were inspired by non-human primate and human subject experiments on sensing 

and perception of stimulus orientation in which bars and edges were scanned 

linearly across a passive fingerpad at speeds of 1, 2, 4, and 8 cm/s (S. J. Bensmaia 

et al., 2008; Sliman J. Bensmaia et al., 2008). 

For all four exploratory procedures, the BioTac was oriented at either a 

20° or 30° contact angle  with respect to the horizontal x-y plane (Figure 3.1). A 

30° contact angle was prescribed such that the cluster of four electrodes on the flat 

face of the BioTac (Figure 3.4, Cluster 1) would be parallel to the surface to be 

explored (Figure 3.1, Figure 3.4). After a preliminary study, it was hypothesized 

that a shallower contact angle such as 20° might stimulate a wider range of 

electrodes, particularly on the proximal aspect of the BioTac. 

For the 30° contact angle, the sensor was swept across each stimulus for 

all four EPs at one of two constant commanded heights from the stimulus surface 

(z = -4 mm or -6 mm) in order to examine two different nominal contact forces. 

Fingertip displacements were selected to ensure that the BioTac skin would 

deform substantially as it swept over each stimulus. A commanded height of z = -

4 mm only was used for the 20° BioTac contact angle since a preliminary study 
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showed that SVR model performance was unaffected by the magnitude of the 

applied force. This also minimized potential, unnecessary wear of the BioTac 

skin. 

 

Figure 3.4. Clusters of BioTac electrodes based on their spatial location on the 

rigid core.  Considering the BioTac as a right-hand index finger, palmar views of 

two type of clusters are shown: a) clusters oriented along the distal-proximal axis 

and b) clusters oriented along the radial-ulnar axis.  
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For Study 2 with the compliant stimuli, only EP #1 and EP #3 were used. 

The contact angle  was 30°, stroke speed was 4 cm/s, and the commanded height 

was z = -6 mm. 

Processing of tactile sensor data.  Similar to the human fingertip, the 

BioTac is sensitive to both sustained (slow) and transient (fast) stimuli. We 

hypothesized that key information about finger-object interactions would be 

encoded in both slow and fast tactile signals during different phases of each 

contact. Thus, different “windows” of tactile data, specific to the exploratory 

procedure, were used to train the SVR model. 

Overall fluid pressure.  For each trial, a threshold of a 3% increase from 

baseline overall fluid pressure was used to determine initial contact and loss of 

contact. Since the SVR model was to be based on stimuli having different surface 

widths, contact time was normalized by converting each contact period into a 

percentage where 0% and 100% denoted initial contact and loss of contact, 

respectively. 

For EP #1 (static contact), the middle 30% of contact (“window 1” or W1) 

was used to calculate inputs to the SVR model (Figure 3.5). It was observed that 

EP #2 (normal approach, Figure 3.3c) generated tactile data that resembled the 

concatenation of a static contact (as with EP #1) followed by a stroking motion. 

As a result, data from the stroke with the normal approach were split into three 

windows: brief static contact (W2), first half of the remaining motion (W3), and 

second half of the remaining motion (W4). For EP #3 and #4, the data were split 

into two equal windows of contact (W5 and W6 for EP #3, W7 and W8 for EP 
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#4). Windows were selected in order to capture coarsely the trends during each 

contact period (sustained values during static contact, dynamics at the start and 

end of strokes). 

A mean overall pressure value was calculated for each window of time 

W1-W8 for use as inputs to the SVR model. In addition, rates of change were 

provided to the model. Fluid pressure data were low-pass filtered with a 2nd order 

Butterworth filter having a cut-off frequency of 10 Hz prior to numerical 

differentiation. Mean rates of change were calculated for the brief period of initial 

contact (first 25% of windows W2, W5, and W7). 

Skin deformation.  In an independent study, a cluster of four electrodes on 

the fingertip and a lateral electrode enabled estimation of material compliance (Su 

et al., 2012). Thus, although the BioTac provides independent impedance values 

for each of 19 electrodes, we used clusters of electrodes defined according to 

spatial location on the fingertip and either oriented along the distal-proximal axis 

(Figure 3.4a) or along the radial-ulnar axis (Figure 3.4b). 

Mean electrode impedances were calculated for each cluster (for windows 

W1-W8) in order to reduce the number of inputs of the SVR model, problem 

complexity, and computational expense. Rates of change for each cluster were 

also provided to the model using the methods previously described for 

determining the rates of change in overall fluid pressure. Ratios of electrode 

impedance values were considered, but preliminary analyses suggested that model 

performance did not improve despite the additional model inputs. Therefore, 

potentially redundant ratio data were not used in this work. 
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Fluid vibration.  With the exception of EP #1 (static contact), each 

window of fluid vibration data was analyzed using a Hilbert-Huang Transform 

(HHT) (Huang, 2005; Huang et al., 1998). Like the Fast Fourier Transform (FFT), 

the HHT converts data from the time domain to the frequency domain. While 

HHT is more computationally intensive than FFT, a major advantage is that HHT 

is applicable to data sets that do not satisfy assumptions of linearity and 

stationarity (Donnelly, 2006). The transient and discontinuous nature of the tactile 

data generated from a stroke across an edge, for example, makes the HHT a more 

appropriate frequency analysis technique for this work than FFT. 

The HHT process deconstructs the original signal into intrinsic mode 

functions (IMFs), each of which has its own energy content and frequency 

spectrum, by applying Empirical Mode Decomposition. The first IMF component 

contains the highest frequencies of the original signal, the second IMF contains 

the next highest frequencies, and so on (Huang et al., 1998; W. Liu, Yan, & 

Wang, 2011). 

Hypothesizing that information related to edge orientation might be 

encoded in the high frequency range, we selected the first IMF for extracting 

input parameters for the SVR model for EP #2, #3, and #4. For EP #2, an attempt 

was made to capture the dynamics at the start and end of the stroke by defining 

windows W9, W10, and W11 as the last 250 ms of W2, the first 250 ms of W3, 

and the last 250 ms of W4, respectively (Figure 3.5). For EP #3 and #4, the 

dynamics at initial contact and loss of contact were investigated. Windows W12 

and W13 were defined as the first 250 ms of W5 and the last 250 ms of W6, 



 

60 

respectively, for EP #3 while W14 and W15 were defined as the first 250 ms of 

W7 and the last 250 ms of W8, respectively, for EP #4. For those cases (e.g., thin 

bar) in which windows W9-W15 may have been shorter than 250 ms in duration, 

the entire window of data was used. For each of windows W9-W15, the mean 

instantaneous frequency of the first IMF was used as an input to the SVR model. 

Support vector regression model.  A support vector machine (SVM) is a 

well-established supervised learning technique for classification and regression, 

with advantages such as robustness to outliers and convergence to a global 

minimum, and great applicability to a wide range of types of data (Tan, Steinbach, 

& Kumar, 2006). To enhance the practical utility of our work, we elected to 

develop a support vector regression model that estimates a value from a 

continuous number line as opposed to a support vector classifier. While useful, a 

support vector classified is limited in that it will simply identify a single class 

from a limited set of discrete classes selected a priori which may not generalize to 

data on which the classifier was never trained. Cross-validation is used during the 

model-building process to evaluate the effects of learning parameters. Models can 

then be built with the selected learning parameters and user-specified input 

parameters. Model performance is assessed using an entirely novel test data set 

that was not used during the training or building of the model. 

For Study 1 with rigid stimuli, we collected two trials of tactile data for 

each of 181 randomized edge orientations and for each of 18 distinct block 

conditions (three stimuli surface widths, two contact angles, two stroke speeds, 

two commanded displacement heights for the 30° contact angle and one height for 
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the 20° contact angle). Each individual trial consisted of data resulting from all 

four exploratory procedures. For each block condition, data were split randomly 

into a training set (~90% of total trials) and test set (~10% of total trials). 

Ultimately, 5849 trials were used for training an SVR model while 648 trials were 

saved for testing of the final model. Cross-validation to select learning parameters 

(kernel function, complexity term) was performed on the training data only. 

For Study 2 with compliant stimuli, three distinct block conditions were 

evaluated (three materials having different compliance levels, one surface width 

(broad), one contact angle, one stroke speed, one commanded displacement 

height). The two compliant stimuli were a polyurethane sponge and a foam block 

(Figure 3.2). The third stimulus was the rigid, 3D printed (ABS plastic) “broad 

surface” from Study 1. Each individual trial consisted of tactile data resulting 

from EP #1 and EP #3. A total of 1301 trials were used for training an SVR model 

while 144 trials were saved for testing of the final model. 

When building the SVR models using Weka (Hall et al., 2009), we 

considered up to 85 input parameters (Table 3.1). Besides the tactile signals 

described previously, stroke speed was used as an input parameter because of the 

relationships that presumably exist between active fingertip motions (easily 

quantified for robotic systems) and sensations elicited at the fingertip. Normal 

contact forces and contact angles were left out of the SVR models as these 

parameters would depend on the compliance and shape of the object and would 

likely be unknown in practice. 
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Table 3.1 

SVR Model Input Parameters 

Type of info Input to SVR 

model 

EP #1 

(static 

contact) 

EP #2 

(distal to 

proximal 

stroke – 

normal) 

EP #3  

(distal to 

proximal 

stroke - 

tangential) 

EP #4 

(radial to 

ulnar 

stroke) 

Voluntary motion Stroke speed --- (1) 

Single value for entire trial 

Slow tactile 

signals 

Overall fluid 

pressure 

(1) 

W1 

(3) 

W2-W4 

(2) 

W5, W6 

(2) 

W7, W8 

Initial rates of 

change of overall 

fluid pressure 

--- (1) 

W2 

(1) 

W5 

(1) 

W7 

Electrode 

impedance 

(6) 

W1 for 

Clusters 1-6 

(18) 

W2-W4 for 

Clusters 1-6 

(12) 

W5, W6 for 

Clusters 1-6 

(12) 

W7, W8 for 

Clusters 1-6 

or 1,7-11 

Initial rates of 

change of 

electrode 

impedance 

--- (6) 

W2 for 

Clusters 1-6 

(6) 

W5 for 

Clusters 1-6 

(6) 

W7 for 

Clusters 1-6 

or 1,7-11 

Fast tactile signals Instant. freq. (of 1
st
 

IMF) of vibrations 

--- (3) 

W9-W11 

(2) 

W12, W13 

(2) 

W14, W15 

Note. Parenthetical values in red indicate the number of inputs for each type of 

parameter. 
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RESULTS 

Tactile data 

Study 1 with rigid stimuli.  Representative multimodal tactile sensor 

signals are shown in Figure 3.5 for all four exploratory procedures for two 

different edge orientations that are symmetric about the radial-ulnar x-axis: +55° 

and -55°. Baseline (pre-contact) values were subtracted for all tactile signals on a 

trial-by-trial basis. For each exploratory procedure, the overall fluid pressure 

(Figure 3.5, row 1, blue) and normal contact force (Figure 3.5, row 1, red) 

increase and decrease as would be expected with initial contact and loss of 

contact, respectively. The stroking motion of the fingertip results in lower overall 

fluid pressures (Figure 3.5, row 1, W3-W8) and increased fluid vibration 

amplitudes (Figure 3.5, row 3). Interestingly, despite their nearly identical distal 

to proximal fingertip motions, EP #2 and #3 generated qualitatively different 

tactile signals due to their different approaches to the stimulus surface (normal or 

tangential, respectively). 

Each of the clusters of electrodes measures skin deformation near a 

specific region of the BioTac’s 3D, curved core. For the distal-proximal clusters 

(Figure 3.4a) whose data are presented in Figure 3.5, clusters that were not 

located along the long axis of symmetry of the sensor (clusters 2-5) displayed an 

asymmetric response in electrode impedance values for EP #3. Compression of 

the skin against the rigid core resulted in an increase in impedance on one side of 

the finger, such as the radial aspect for a -55° orientation. This trend was mirrored 

by a simultaneous bulging of the skin away from the rigid core and resulted in a 
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decrease in impedance on the other side of the finger, such as the ulnar aspect for 

the -55° orientation (Figure 3.5, dashed lines in row 2). For EP #4 (radial to ulnar 

stroke), shear forces caused a compression of the skin against the rigid core on the 

ulnar aspect and a bulging of the skin on the radial aspect. 

Study 2 with compliant stimuli.  The stiffness of the two compliant 

stimuli (sponge, foam) and the BioTac (inflated with fluid according to the 

vendor’s specifications) were quantified using a custom setup. Shore 00 

durometers are typically used to measure the hardness of soft materials such as 

gels and rubbers. However, the stimuli in this study have hardness values that fall 

well below the Shore 00 durometer’s sensing range. In addition, the small 

measurement tip would penetrate the sponge and foam’s porous surfaces, 

resulting in erroneous indentation readings of zero. 

Our custom setup was constructed with a CNC mill dial indicator with a 

resolution of 0.001 inches (Part #2925, Little Machine Shop, Pasadena, CA) 

(Figure A.1). The flat face of the cylindrical 5.5 mm diameter dial indicator tip 

was indented into the sponge and foam samples with calibrated masses.  The 

indentation is allowed to stabilize for at least 5 minutes before the tip’s 

displacement from the unindented surface height was recorded. The mass of the 

indicator tip was 50 g, which served as the smallest mass that could be applied to 

the compliant samples. Additional calibrated masses of 20, 50, 100, 150, and 200 

g were used. The resulting displacement versus mass curves are shown in 

Figure 3.6. The BioTac skin was much stiffer than the sponge or foam. 
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Haptic exploration of the compliant stimuli (Figure 3.7) resulted in trends 

different from those for the rigid stimuli (Figure 3.5).  In addition, for both 

exploratory procedures (EP #1 and EP #3), the amplitudes of all tactile signals 

were much smaller for the compliant stimuli than for the rigid, broad surface 

stimulus.  In contrast with Study 1, the difference in stiffness between the edge 

stimuli and the BioTac skin was much less in Study 2.  In Study 2, both the 

BioTac and compliant edge stimuli deformed during loading, resulting in 

conformation of the compliant stimuli around the fingertip, less overall skin 

deformation, and electrode impedance values that were approximately an order of 

magnitude less than those for the rigid stimulus. 

 

Figure 3.6. Compliance curves for the soft stimuli.  The BioTac was stiffer than 

the sponge and foam, but was still compliant itself. 
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Figure 3.7.  Representative multimodal tactile data for edge orientations of +55° 

for the sponge and foam block. The contact angle was 30°, stroke speed was 4 

cm/s, and the commanded height was z = -6 mm. 

Model performance 

Study 1 with rigid stimuli.  From cross-validation observations, the kernel 

function and complexity term of the SVR model were set to a quadratic 

polynomial and a value of 1, respectively. The low model complexity term 

minimizes overfitting of the model to the training data. Despite the low 

complexity of the model, these learning parameter settings yielded accurate 

predictions (Table 3.2). 

An SVR model using all 85 inputs took approximately 20 hours and 5 min 

to be trained and built on a PC with two Intel Xeon 2 GHz quad core processors. 

Once the regression model was built, predictions on all 648 trials of test data set 

took approximately 4 sec total. 
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When all 85 inputs were used in the SVR model, a regression of the model 

predictions on the true edge orientations for the test data set yielded an R
2
 of 

0.991 (Table 3.2, Figure 3.8). The user can decide whether it is more important to 

have a complex regression model with many input parameters and a high level of 

accuracy or a simpler regression model with acceptable accuracy. Appealing 

model options, based on accuracy with respect to the number of input parameters, 

appear in red in Table 3.2. 
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Table 3.2 

Edge Characterization Study 1: SVR Model Performance Using Different Sets of 

Inputs 

Focus of Comparisons EP # # of 

Inputs 

R
2
 Mean 

abs. 

error (°) 

RMS 

error 

(°) 

Exploratory procedures 

(using all available input parameters for 

each EP) 

1-4 85 0.991 2.893 5.076 

1 7 0.441 30.719 39.685 

2 32 0.712 18.531 28.409 

3 24 0.960 5.177 10.668 

4 24 0.725 17.338 27.908 

3, 4 47 0.980 3.457 7.511 

Removal of scanning speed, overall fluid 

pressure, and vibration inputs 

1-4 66 0.987 3.205 6.114 

3 18 0.931 6.632 4.015 

4 18 0.686 19.258 29.800 

Removal of initial rates of change of 

overall fluid pressure and electrode 

impedance* 

1-4 48 0.858 12.720 19.904 

3 12 0.795 15.892 24.091 

Removal of specific distal-proximal 

clusters (Figure 3.4a)* 

     

- Centerline (Clusters 1, 6) removed 3 12 0.784 16.991 25.093 

- Ulnar aspect (Clusters 2, 4) removed 3 12 0.792 16.902 24.102 

- Radial aspect (Clusters 3, 5) removed 3 12 0.777 17.679 25.095 

Radial-ulnar clusters (Figure 3.4b)      

- All available input parameters 4 24 0.709 17.724 28.836 

- Electrode impedance values only* 4 18 0.500 26.157 37.353 

Note. Appealing models based on accuracy with respect to the number of input 

parameters are shown in red.  EP#3 and electrode impedance signals provided the 

most useful inputs for this edge orientation perception task. 

*With scanning speed, overall fluid pressure, and vibration inputs also removed. 
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Figure 3.8.  Study 1 edge orientation predictions from an SVR model using all 85 

inputs.  The model performed well on the test data set (648 trials, ~10% of total 

trials, R
2
 of 0.99, RMS error of 5.08°), which included various edge orientations, 

stimulus widths, normal contact forces, contact angles, and scanning speeds. 

Study 2 with compliant stimuli.  Training and building an SVR model 

using only inputs from EP #3 took approximately 37 seconds. Predictions on the 

test data set with the trained SVR model took less than 1 second for all 144 trials. 

Using all 24 EP #3 inputs, a regression on the prediction of the true orientations 

resulted in a resulted in an R
2
 of 0.958 (Table 3.3, Figure 3.11). 
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Table 3.3 

Edge Characterization Study 2: SVR Model Performance Using Different Sets of 

Inputs 

Data Set EP # Kernel 

Order 

# of 

Inputs 

R
2
 Mean abs. 

Error (°) 

RMS error 

(°) 

Sponge #1 1 1 7 0.974 6.402 8.547 

  1 2 7 0.980 5.306 7.624 

  3 1 24 0.984 4.215 6.561 

  3 2 24 0.980 3.526 7.484 

Foam Block 1 1 7 0.961 8.089 10.319 

  1 2 7 0.975 5.356 8.057 

  3 1 24 0.995 3.390 3.980 

  3 2 24 0.999 1.523 2.043 

ABS 1 1 7 0.803 16.964 23.287 

  1 2 7 0.885 13.065 17.720 

  3 1 24 0.991 3.106 4.924 

  3 2 24 0.994 2.127 4.002 

All three 1 1 7 0.539 27.114 37.600 

materials 1 2 7 0.891 13.543 17.814 

  3 1 24 0.719 20.091 27.630 

  3 2 24 0.954 5.683 11.299 
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Figure 3.9.  Study 2 edge orientation predictions from an SVR model using only 

the 24 inputs from EP #3 for all three materials with varying stiffness.  The model 

performed well on the test data set despite the differences in compliance. 

 

DISCUSSION 

Prediction of edge orientation.  We used support vector machines due to 

the desirable qualities that make them some of the most widely used classification 

algorithms today (Tan et al., 2006).  Given the high levels of accuracy of the 

developed SVR model, we did not attempt any other algorithms.  Nonetheless, 

other popular supervised learning techniques such as random forests, AdaBoost, 

and artificial neural networks could be implemented to directly compare trade-

offs between different types of models. 
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In Study 1, we trained a support vector regression model with data from 

thousands of interactions with edge stimuli having three different surface widths, 

at two different contact angles, at two different nominal contact forces, and with 

two different stroke speeds. Accurate predictions of edge orientation were 

possible even without providing the SVR model with information on stimulus 

width, fingertip displacement in the z-direction, or contact angle (Table 3.1, 

Table 3.2). In practice, the only movement-related information one to provide the 

SVR model is the known stroke speed of the artificial fingertip. 

As shown in Table 3.2, when comparing SVR models based on different 

exploratory procedures, most models having R
2
 values greater than approximately 

0.8 yielded mean absolute and RMS errors that fell within the [2.5°, 25°] range of 

human perception thresholds for tactile perception of edge and bar orientation (S. 

J. Bensmaia et al., 2008). This suggests that the accuracy of the SVR model for 

perception of edge orientation in a plane is comparable to that of humans, so long 

as appropriate inputs are provided to the regression model. 

Model performance was worst when predicting larger magnitude angles 

(namely, above 55°) regardless of their sense (+ or -) (Figure 3.8). One possibility 

is that there was increased variability in the stroking motions for larger magnitude 

angles, which would lead to variability in the training data and inaccuracy in 

model predictions for large angles.  For instance, when steep angles were 

encountered in which the edge was nearly aligned with the long axis of the finger, 

the BioTac would sometimes move alongside the edge during EP #3 before 

stroking the top surface of the stimulus. 
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Interestingly, our edge orientation predictions also featured a tactile spatial 

anisotropy similar to that observed in human subjects (described in Chapter 1).  

Our results, being the least accurate for edge orientations of higher magnitude 

(above +55° and below -55°), are consistent with the notion that prediction 

accuracy is better for horizontal orientations along the short axis of the fingertip 

(S. J. Bensmaia et al., 2008; Lechelt, 1988). 

In Study 2, we investigated SVR model performance for stimuli with 

various levels of compliance (sponge, foam, and rigid ABS plastic).  Similar to 

Study 1, model accuracy was lower for larger magnitude, steeper angles. One 

outlier degraded overall model performance (Figure 3.9). Nevertheless, prediction 

accuracy (R
2
 of 0.95 and RMS error of 11.3°) was still comparable to that of 

humans (S. J. Bensmaia et al., 2008), even though only input parameters from EP 

#3 were provided during training of the model. 

Effects of contact angle (Study 1).  The primary effect of reducing the 

contact angle from 30° to 20° was that the normal contact force dropped 

dramatically, resulting in smaller overall fluid pressure and electrode impedance 

values. For a commanded height of z = -4 mm, the normal contact forces (mean ± 

standard dev.) during the middle 30% of EP #1 (W1) dropped from 2.72 ± 0.58 N 

to 1.30 ± 0.46 N. For a commanded height of z = -6 mm (only for the 30° contact 

angle case), the normal contact forces were 3.48 ± 0.70 N. 

Our original hypothesis was that a shallower contact angle of 20° might 

stimulate a wider range of electrodes. However, all else being equal, the 30° 

contact angle produced larger skin deformations and, thus, larger changes in 
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electrode impedance values. Despite the drop in magnitudes across the different 

tactile data modes for the 20° contact angle case, information about edge 

orientation remained encoded in the tactile data, especially the electrode 

impedance time histories (Figure 3.10). 

 

Figure 3.10.  Representative multimodal tactile data for the 20° and 30° contact 

angles during EP #3 and #4 for a thick bar oriented at +75°, commanded 

displacement of z = -4 mm, and scanning speed of 4 cm/s.  Although the 20° 

contact angle resulted in lower normal contact forces than the 30° contact angle, 

the electrode impedance values still captured useful spatiotemporal information 

related to edge orientation. 
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Effects of the exploratory procedure (Study 1).  Figure 3.5 illustrates 

how the choice of exploratory procedure can affect qualitatively the multimodal 

tactile data. EP #1 (static contact) provides a sustained period of overall fluid 

pressure and electrode impedance data. A comparison of EP #2 and EP #3 quickly 

reveals how even a subtle difference in approach direction (normal or tangential, 

respectively) between the two otherwise identical stroking motions can affect the 

tactile data. For example, there are stark differences in electrode impedance trends 

for lateral clusters 2-5 between EP #2 (Figure 3.5, row 2, W2-W4) and EP #3 

(Figure 3.5, row 2, W5 and W6). It is hypothesized that the initial contact of the 

BioTac skin against the stimulus determines how the skin will deform for the 

remainder of the stroking motion. When the approach to the surface is along the 

normal direction as with EP #2, the fingertip makes static contact first, which 

compresses electrode cluster 1 and constrains radial-ulnar pairs of clusters (2-3 

and 4-5) to change in concert during initial contact. When the approach is 

tangential to the surface as with EP #3, the skin is free to deform according to the 

orientation of the leading edge of the stimulus. As a result, the radial-ulnar pairs 

of clusters reflect opposite trends in electrode impedance upon contact. Skin 

deformation during initial contact seems to play a predominant role on the trends 

of the sensor signals.  

In addition, EP #2 results in an overall fluid pressure that begins relatively 

high and then drops when fingertip motion is initiated. EP #3, in contrast, results 

in a gradual increase in overall fluid pressure as the fingertip is moved along its 

stroke trajectory and has completely traversed the edge. 
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When building a model using EP #1 (static contact) only, the R
2
 value was 

0.441 and mean absolute and RMS errors were 30.72° and 39.69°, respectively 

(Table 3.2). When a stroking motion was used, model performance increased 

substantially (R
2
 of 0.712, 0.960, and 0.725 for EP #2, #3, and #4, respectively). 

For the edge orientation task and SVR model input parameters considered in this 

work, EP #3 (distal to proximal stroke with a tangential approach) led to the most 

accurate model with an R
2
 value of 0.96 and mean absolute and RMS errors of 

5.18° and 10.67°, respectively (Table 3.2). 

For EP #3, the fingertip tangentially approached all stimuli, but this was 

not the case for EP #4. When exploring a broad surface at a negative edge 

orientation using EP #4, the physical interaction with the edge occurred during 

loss of contact as opposed to during initial contact. Thus, EP #4 was sometimes 

similar to EP #2 (normal approach) and sometimes similar to EP #3 (tangential 

approach) depending on the surface width and edge orientation. Exploration of an 

edge during initial contact produced more useful tactile data than exploration 

during loss of contact. During initial contact, the trends in skin deformation were 

more gradual and present for a longer percentage of the contact period 

(Figure 3.5, row 2, EP #3, W5) than for the abrupt transition at loss of contact 

(Figure 3.5, row 2, EP #4, end of W8). 

It was also observed that electrode impedance values were much larger for 

EP #4 than for EP #3 (rows 2 of Figure 3.5 and Figure 3.10). This may be due to 

an increase in skin contact area for the radial to ulnar stroke of EP #4 as compared 

to the distal to proximal stroke of EP #3. Another possibility is that the robot 
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testbed, specifically the basal joint of the fixed middle BarrettHand finger, was 

less compliant during collisions with edges when the fingertip moved along the x-

axis. 

When the two motions with tangential approaches are combined (distal to 

proximal EP #3 and radial to ulnar EP #4), the predictive power of the SVR 

model improves to an R
2
 value of 0.98 and mean absolute and RMS errors of 

3.46° and 7.51°, respectively. If one chooses to use all four exploratory 

procedures in practice, the R
2
 value can be as high as 0.99 and the mean absolute 

and RMS errors can be as low as 2.89° and 5.08°, respectively. However, the 

trade-off for such an accurate model is the need to collect tactile data for all 

exploratory procedures for each trial and the increased complexity of the SVR 

model (85 inputs). The system designer must assess whether the slight increase in 

predictive power is worth the additional exploratory procedures, computational 

expense of tactile data post-processing, and model complexity (beyond the 24 

inputs for EP #3 only). 

Efficient sets of model input parameters (Study 1).  We built multiple 

SVR models with different input parameters in order to gauge the importance of 

different inputs and find efficient sets of inputs. As stated previously, EP #3 was 

found to be the most useful single exploratory procedure (R
2
 value of 0.96 and 

RMS error of 10.67°). Interestingly, a model that used both EP #3 and EP #4 

outperformed models based on any single EP (R
2
 value of 0.98 and RMS error of 

7.51°). 
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After removing stroke speed, overall fluid pressure, and vibration input 

parameters, the R
2
 value only dropped from 0.991 to 0.987 when all four EPs 

were considered (removal of 19 input parameters) and from 0.960 to 0.931 when 

only EP #3 was considered (removal of 6 input parameters). This suggests that the 

electrode impedance data provide the most useful information for predicting edge 

orientation. Stroke speed does not seem to be critical since we have already 

normalized contact time to a percentage during post-processing. Although useful 

in detecting contact and delineating windows of time, overall fluid pressure does 

not seem to provide information that is not already included in the impedance 

signals. As in a preliminary study, the fluid vibration data provided some 

information about edge orientation magnitude, but not much about direction. 

Since they were not localized to any specific part of the fingertip, the vibration 

data were not critical to the prediction of both edge orientation magnitude and 

direction. 

The initial rates of change of the electrode impedance signals were found 

to be useful. When reducing the model inputs further, the R
2
 value dropped from 

0.987 to 0.858 when all four EPs were considered (removal of 18 more inputs) 

and from 0.931 to 0.795 when only EP #3 was considered (removal of 6 more 

inputs). In a preliminary study, we investigated the usefulness of initial rates of 

change of the electrode impedance signals for a contact angle of 30° only and 

concluded that these data only slightly improved model performance. The present 

study suggests that predicting edge orientation with the fingertip at two different 
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contact angles is more challenging and that initial rates of change of electrode 

impedance can be useful. 

We also investigated the relative importance of spatial location of 

electrode impedance data. First, distal-proximal clusters of electrodes were 

considered (Figure 3.4a). Focusing on EP #3, the R
2
 value for a model without 

stroke speed, overall fluid pressure, or vibration data dropped from 0.93 to 0.78, 

0.79, and 0.78 after removing electrode impedance data from clusters along the 

centerline (clusters 1 and 6), ulnar aspects (clusters 2 and 4), and radial aspects 

(clusters 3 and 5), respectively (Table 3.2). Thus, spatial asymmetry in the tactile 

data appears to be especially important for this task of predicting edge orientation. 

 

Figure 3.11. Representative electrode impedance data for distal-proximal clusters 

and radial-ulnar clusters.  Data are shown for EP #4, a broad surface oriented at 

+35°, a 30° contact angle, a commanded displacement of z = -4mm, and scanning 

speed of 4 cm/s. Distal-proximal clusters appear to better capture skin 

deformation towards  and away from the rigid core. 
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Notable trends in the tactile data 

Usefulness of spatial asymmetry in the tactile sensor signals.  For the 

edge orientation task of this work, it appears that the predictive power of the SVR 

model is owed primarily to the asymmetry of the slow tactile data (electrode 

impedance values) with respect to the long axis of the finger. Through both 

normal and shear forces, electrode impedance increased when the elastomeric 

skin was compressed against the rigid core of the sensor. Simultaneously, another 

part of the skin would bulge away from the core. The distal to proximal motion of 

EP #3 resulted in opposite trends in electrode impedance for clusters on the radial 

and ulnar aspects of the fingertip (Figure 3.4a; solid vs. dashed lines in Figure 3.5 

and Figure 3.10). 

Considering that the radial to ulnar motion of EP #4 might be better 

represented by clusters specific to the distal and proximal aspects of the fingertip 

(Figure 3.4), a direct comparison was made between the two different cluster 

scenarios (Figure 3.11). Distal-proximal clusters appear to better capture bulging 

of the skin away from the sensor core, as evidenced by relatively large negative 

electrode impedance values. Radial-ulnar clusters typically yield primarily 

positive impedance values (Figure 3.11). It appears as if the skin compression and 

bulging effects on the radial and ulnar aspects of the fingertip get nullified 

mathematically when radial-ulnar clusters are used. Without stroke speed, overall 

fluid pressure, and vibration input parameters, models with radial-ulnar clusters 

had an R
2
 value of 0.50 and RMS error of 37.4° for EP #4 as compared to models 

with distal-proximal clusters which had an R
2
 value of 0.69 and RMS error of 
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29.8° (Table 3.2). These results suggest that clusters that effectively capture skin 

deformation can be selected independently of the fingertip velocity vector. 

Effects of object compliance (Study 2).  Stark differences in the BioTac 

signals when exploring objects of different stiffnesses are evident when 

comparing Figure 3.5 (rigid broad surface) and Figure 3.7 (compliant broad 

surfaces). Even with a greater commanded displacement height for the compliant 

stimuli (z = -6 mm for compliant stimuli, z = -4 mm for rigid stimulus), the 

electrode impedance values were approximately an order of magnitude less for 

the compliant stimuli. Furthermore, the skin deformation trends were quite 

different.  The prominent opposing electrode impedance trends for the ulnar and 

radial clusters observed during haptic exploration of rigid stimuli with EP #3 were 

no longer evident during haptic exploration of the compliant stimuli.   

Table 3.3 indicates that EP #1 was more useful for compliant stimuli than 

for rigid stimuli.  In Study 1, the SVR model trained with EP #1 inputs predicted 

edge orientation on rigid stimuli having different widths with an R
2
 of 0.44 and 

RMS error of 40°.  In Study 2, an SVR model similarly trained with EP #1 inputs 

performed with an R
2
 of 0.89 and RMS error of 18°. The improved performance 

of EP #1 in Study 2 could be due to the compliant stimuli conforming more to the 

BioTac, thereby producing more informative, albeit smaller magnitude, patterns 

of tactile signals.  For both compliant stimuli, performance was similar for EP #1 

(R
2
 values of 0.98 each for the sponge and foam block) and EP #3 (R

2
 values of 

0.98 and 0.99 for the sponge and foam, respectively).  For the ABS plastic, 

performance with EP #3 inputs (R
2
 of 0.99, RMSE of 4.0°) was better than with 
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EP #1 inputs (R
2
 of 0.89, RMSE of 18°).  Our results suggest that edge orientation 

predictions are more sensitive to exploratory procedure for rigid stimuli than 

compliant stimuli. 

A single SVR model created using tactile data from materials with 

different stiffnesses (sponge, foam, and ABS plastic) performed well (R
2
 of 0.95 

and RMS error of 11.3° when providing EP #3 inputs) even though trends in the 

tactile signals were different for compliant and rigid stimuli (Figure 3.5 and 

Figure 3.7).    Independent SVR models created for a single sample (sponge, 

foam, or ABS plastic) performed even better (Table 3.3).  If such levels of 

accuracy are desired, it would be straightforward to first implement an EP to 

estimate stiffness (e.g., static contact EP #1 or the method presented in (Su et al., 

2012)), which could then be used to select a stiffness-specific SVR model. 

Models with linear kernels performed much better for the sponge and 

foam stimuli than for the ABS plastic (Table 3.3).  Conformation of the compliant 

stimuli around the BioTac sensor likely increased contact area and may have 

resulted in richer skin deformation information (R. L. Klatzky & Lederman, 1999; 

Su et al., 2012) .  Interestingly, the BioTac sensor was capable of estimating edge 

orientation for stimuli that were more stiff as well as less stiff than itself.  The 

deformable skin and bladder-type design of the BioTac likely contributed to this 

capability. 

Effects of a bladder-type tactile sensor construction.  The richness of the 

tactile data generated from EP #3 alone highlights the usefulness of simple finger-

object interactions and how tactile sensors that make use of deformable skins as 
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part of the mechanotransduction process (e.g., (De Maria, Natale, & Pirozzi, 

2012; Hristu, Ferrier, & Brockett, 2000; Ponce Wong, Posner, & Santos, 2012; 

Nicholas Wettels et al., 2008)) may yield advantages beyond shock absorption, 

increased contact area, and tackiness of the grip. A typical robotics approach of 

mounting rigid, 6 DOF force transducers on artificial fingertips might be 

straightforward from a traditional modeling and grasp planning perspective 

(Prattichizzo & Trinkle, 2008), but such an approach may be inappropriate for 

obtaining insight into human finger-object interactions with deformable skin and 

multimodal tactile sensing capabilities. 

An interesting finding is that the tactile data that enabled accurate 

prediction of edge orientation were generated by regions of the tactile sensor that 

were not in direct contact with the stimulus. For the fingertip orientation used in 

the experiments, electrode clusters 2-5 (Figure 3.4) were not always compressed 

by the finger-object interaction. Rather it was the free surface of the skin that was 

able to bulge away from the rigid core of the sensor. 

This finding has interesting consequences for the development of tactile 

sensing systems for artificial hands. Traditionally, for reasons of cost and 

simplicity, a designer might place tactile sensor arrays only on those surfaces of 

the artificial hand that might contact an object during grasp such as the palmar 

aspects of the digits and palm. However, if a bladder-like sensor system (e.g., 

(Hristu et al., 2000; Nicholas Wettels et al., 2008)) is implemented such that skin 

deformation at finger-object contacts can affect skin deformation at non-contact 

regions (radial or ulnar regions in this work), the non-contact regions can provide 
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a surprising wealth of information about finger-object contacts. While we and 

others have previously related electrode impedance data to contact forces (J. A. 

Fishel & Loeb, 2012; Lin et al., 2009; Nicholas Wettels et al., 2008), this work 

suggests that it may be useful to relate electrode impedance to skin deformation. 

For instance, compression of skin against the rigid core can occur even when a 

compressive force is not applied directly to that region of the skin because shear 

forces elsewhere can deform the continuous skin. 

Moving beyond tactile images generated by static contact with objects.  

The standard robotics approach to tactile sensing of shapes and edges is to create 

a “tactile image” (e.g., (Berger & Khosla, 1991; H.-K. Lee et al., 2006; Mei et al., 

2000; Petriu et al., 1992)) from a series of static contacts with an object. As such, 

tactile sensor designs have often focused on achieving fine spatial resolution so 

that accurate reconstructions of images can be built through static contacts alone 

(Dahiya et al., 2010). Despite the fact that biological fingertips have fine spatial 

resolution capabilities (Johansson & Flanagan, 2009), humans elect to use 

dynamic fingertip motions when identifying local features such as edges (Huynh 

et al., 2010; Lederman & Klatzky, 1987). Consider an example such as 

identifying the edge of your cellphone in your pocket. It is nearly impossible to 

force oneself to perform this task using a series of static contacts alone. While the 

completion of the task may be successful with static contacts, confirmation of 

edge orientation via contour-following is somehow more satisfying. 

By including different windows of contact phases in our regression model, 

both spatial and temporal changes in tactile signals were taken into account as 
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opposed to a single static “snapshot” of finger-object contact. Emphasis was 

placed on efficient use of tactile data from different windows of time as a function 

of exploratory procedure. 

While the results presented here are specific to the data provided by the 

BioTac sensor, the general approach to artificial perception is applicable to any 

robotic or prosthetic system that is designed to measure both slow and fast types 

of tactile data and to interact dynamically with the physical world. Interestingly, 

we purposely degraded the spatial resolution of the tactile data by taking means of 

electrode impedance values. Furthermore, for simplicity and proof-of-concept, we 

restricted exploratory motions to linear strokes with constant speeds, as opposed 

to raster-like, scanning procedures employed by some blindfolded human subjects 

when locating features on novel objects (Huynh et al., 2010). Despite these self-

imposed limitations, the SVR model performed well (Table 3.2). 

Limitations.  Prior to data collection, automated tendon re-tensioning and 

recalibration of the WAM was conducted. Nonetheless, due to its cable driven 

nature and lack of absolute position encoders at each joint, position and 

orientation control with the Barrett WAM can be imperfect, resulting in 

variability in the execution of the exploratory procedures. Variability in the 

training data may be slightly advantageous in that artificial systems will always 

have variability in practice, models trained on distributions of data will be robust 

to some small but nonzero variability, and Bayesian approaches to learning can 

use these distributions of sensory responses as prior distributions. Variability in 

motor actions (and subsequent variability in sensory feedback) may help to 
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facilitate motor learning, as it appears to do so in humans (Riley & Turvey, 2002; 

Sternad & Abe, 2010). Variability in sensory feedback could also be used to 

reweight the reliability of different tactile datastreams or affect subsequent motor 

actions during active sensing (Stamper, Roth, Cowan, & Fortune, 2012). 

 

FUTURE WORK 

If one desired to establish edge orientation of rigid stimuli more 

efficiently, it may be possible to modify the post-processing protocol for the static 

contact exploratory procedure (EP #1).  In a preliminary study performed without 

the benefit of a robot testbed, we manually performed the static contact procedure 

on thin blades having different orientations with respect to the fingertip.  Even 

when using all 19 electrode impedance signals separately, the sensor was unable 

to accurately predict edge orientation.  However, our manual setup lacked 

precision and repeatability.  It is possible that better model performance could be 

achieved with EP #1 if we used a robot testbed and did not reduce the spatial 

resolution of the sensor by creating clusters of electrodes during signal post-

processing.  In the presented work, we voluntarily decreased our spatial resolution 

to reduce computation time.  If we released this artificial constraint on spatial 

resolution, we may find that some electrodes could provide more useful 

information than others or that individual electrodes encode more useful 

information for predicting edge orientation than clusters of electrodes.  Finally, 

additional exploratory procedures such as “finger roll” (which will be introduced 
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in the Methods section of Chapter 4) could be attempted for predicting edge 

orientation. 

If additional model accuracy or alternate input parameters are desired, 

modifications to the SVR models can be considered. For instance, one could 

decompose tactile signals into smaller windows of time or consider differences in 

impedance across pairs of electrodes (Su et al., 2012). The delays imposed by 

tactile data post-processing, analysis of fast tactile signals via HHT, and 

extraction of SVR input parameters on online estimation of edge orientation and, 

eventually, contour-following require further investigation. 

For the purposes of establishing the orientation of a feature such as an 

edge with respect to a body-fixed reference frame, the models described in this 

work may suffice. Establishing a model of object orientation within the hand 

would be useful for designing artificial reflexes for the prevention of slip or 

planning the manipulation of the grasped object within one’s own hand, with the 

environment, or with another hand (bimanual manipulation or physical interaction 

through the object with another agent). 

For the purposes of a more advanced behavior such as contour-following, 

it may be necessary to develop models in which the fingertip trajectory length is 

shorter. This might better reflect a contour-following strategy in which the finger 

is never (or infrequently) lifted from the surface of the 3D object. In this case, the 

previous incremental movement of the fingertip and the estimated model of the 

object shape up to that timepoint would be used to inform the next incremental 

movement of the fingertip. It may be that an exploratory procedure that begins 
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with a static contact, such as EP #2, turns out to be particularly useful for contour-

following. 

Next steps include the use of an edge orientation model to inform a 

decision-making process for autonomous contour-following algorithms for 2D 

shapes, initially. It may be useful to build multiple SVR models and to invoke a 

specific one depending upon the exploratory procedure that was implemented. 

Further, it may be necessary to build a library of haptic experiences with vertices 

for contour-following of shapes with corners (J. Baeten & De Schutter, 2002). 
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CHAPTER 4 

HAPTIC EXPLORATION OF FINGERTIP-SIZED GEOMETRIC 

FEATURES USING A MULTIMODAL TACTILE SENSOR 

INTRODUCTION 

Tactile sensing is especially useful in scenarios where vision is inadequate 

such as in low lighting or when line of sight is obstructed.  For instance, reaching 

into backpacks or pockets typically involves exploring an unstructured 

environment with our hands until we identify, grasp, and manipulate the object of 

interest.  Objects typically have distinguishing geometric features that can be used 

to identify objects or their orientation with respect to the hand.  One everyday 

example is the use of a TV remote without vision.  After becoming familiar with 

the remote, one knows how to haptically identify the different buttons by 

recognizing their planar shape and location. 

A seminal psychophysics study identified haptic exploratory procedures 

that humans use when extracting object properties through touch (Lederman & 

Klatzky, 1987).  Whole-hand enclosure of the object and single-digit contour-

following along the object’s surface can be used to estimate global and local 

geometric properties, respectively. These actions combined with thousands of 

specialized mechanoreceptors (Johansson & Vallbo, 1983) give the human hand 

haptic perception capabilities that remain the gold standard to this day.  It remains 

a grand challenge for roboticists to develop artificial hands with similar levels of 

haptic intelligence. 
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Human Discrimination of Curvature.  Although the most salient 

geometric properties of a 3D object have been found to be edges and vertices 

(Plaisier et al., 2009), curvature plays an important role when exploring objects 

through contour-following.  Multiple human studies have focused on curvature 

discrimination of objects that span the length of the finger.  One study showed 

that regardless of whether a static or dynamic approach to estimate curvature was 

employed, haptic curvature discrimination was based on differences in attitude (or 

slope) (Pont, Kappers, & Koenderink, 1999).  The static condition tested various 

scenarios in which only the fingerpad of one to three fingers were placed on at 

specific locations on geometrically different stimuli.  In order to study how 

differences in curvature are perceived, stimuli were designed to be 0
th

 order, 1
st
 

order, and 2
nd

 order with corresponding changes in height, slope, and curvature, 

respectively.  For the dynamic condition, the index finger stroked along 2
nd

 order 

stimuli (moving along the short axis of the finger).  The subject had to report 

which of a presented pair was more convex. 

Another study investigated the discrimination of curvature of objects with 

Gaussian protrusions varying in height and width (Louw, Kappers, & Koenderink, 

2002).  Subjects had to determine which of a presented pair of stimuli was more 

like a reference stimulus.  Subject were allowed to scan stimuli by moving their 

fingers from one end to the other.  In general, subjects were better at 

discriminating sharp Gaussian surfaces (large height, small width) from smooth 

ones (small height, large width).  Worse performance resulted when 

discriminating small surfaces (small height and width) from large surfaces (large 
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height and width).  In other words, if the proportion of both variables of the 

Gaussian profile are similar, human discrimination of geometrical features is 

poor. 

One study investigated differences in human perception of curvature when 

tactile and visual means were used (Ittyerah & Marks, 2008).  Two concave 

objects were presented simultaneously, and subjects were asked to identify the 

objects as being the same or different.  During the haptic condition, subjects were 

instructed to move two fingers across the objects simultaneously.  The modalities 

had the following ranking of from highest to lowest accuracy: vision only, paired 

vision and touch, and touch alone.  At such large object dimensions relative to the 

human fingertip, the large overall size of the objects (radii of curvature ranging 

from 13.2 to 34.1 cm and from 3.81 and 10.16 mm) might have been better suited 

for vision than touch.  For accurate curvature perception, memory at the start and 

end locations of the linear movement is needed (Millar, 1994).  Thus, for large 

surfaces, vision has the advantage of having a global representation and touch has 

the disadvantage of need memory retention throughout the scanning motion. 

Another human study investigated the information necessary to identify a 

target object in a grid of cubes (Overvliet, Smeets, & Brenner, 2008).  

Blindfolded, subjects could accurately find a cylinder within the grid of cubes 

using a single digit due to curvature discriminability.   However, detecting a 

rotated cube or a rectangular bar (same as the cube but with one larger dimension) 

was more challenging as it required the use of proprioception.  In the case of the 

rotated cube, proprioceptive information such as hand and finger orientations 
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would be needed.  For the bar, the proprioceptive information of the distance 

traveled during dynamic touch or that of multiple fingers would be needed. 

Artificial Haptic Perception of Object Shape.  Previously, artificial 

tactile sensors with high spatial resolution have been used to track edges (Berger 

& Khosla, 1991) and estimate the shapes of alphabet characters inscribed in 

rubber stamps (H.-K. Lee et al., 2006), planar polyhedron faces (Petriu et al., 

1992) and keys (Mei et al., 2000) by creating static tactile images.  However, the 

objects typically explored were large relative to the tactile sensor and flat. 

Numerous works have sought to incorporate human haptic exploration 

strategies and capabilities into the robotics domain.  An active touch sensing 

framework involved a hierarchical approach in which coarse properties, such as 

overall dimension with respect to a robotic hand, were first determined via whole-

hand enclosure (Allen & Michelman, 1990).  This was followed by procedures 

referred to as “planar surface explorer” and surface contour following.  Artificial 

proprioceptive feedback (joint angles, tendon forces) and tactile feedback were 

used to model 3D object shape. 

A comprehensive study was done on the detection and characterization of 

curvature features from a robotic perspective (Okamura & Cutkosky, 2001).  

Geometric features were defined based on the two principal curvatures in their 

contour and were assumed to have dimensions comparable to that of the artificial 

fingertip.  Two algorithms for feature detection involving tactile feedback and two 

without tactile feedback were described.  An experiment was performed in which 

a rigid spherical fingertip moved over 0.5-1.5 mm diameter wires (representing 
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bumps).  The study showed that the algorithms incorporating tactile sensing 

performed worse than those who did not.  Poorer performance was attributed to 

the more noisy measurements of points of contact of the tactile sensor compared 

to the proprioceptive fingertip position.  Nevertheless, the authors recognized that 

the way their robotic system detected features most accurately was not similar to 

the way humans perform such tasks with their superior biological tactile sensors.  

The spherical, non-deformable nature of the robot fingertip likely limited the 

ability of the tactile sensor to provide rich information on curvature.  

Simultaneously, the rigidity of the fingertip may have contributed to reliable 

proprioceptive feedback since the robot testbed could be viewed as having 

digitizer-like functionality.   

Haptic Perception of Finger-sized Geometric Features.  Literature on 

haptic exploration of small, finger-sized geometric features is scarce.  The 

multimodal BioTac sensor has been used to estimate radius of curvature of finger-

sized spherical features via machine learning techniques (N. Wettels & Loeb, 

2011) and mathematical models (Su, Li, & Loeb, 2011).  However, only four 

discrete classes were used by the machine learning techniques. 

When vision and proprioception are inadequate for characterizing finger-

sized geometric features, tactile sensing becomes especially useful, especially 

with the small dimensions of the feature preclude the use of multiple digits to 

extract information such as order of curvature.  The objective of this work was to 

explore geometric features whose dimensions are on the same scale as the human 

fingertip in order to extract important properties such as type (bump, pit), order of 
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curvature (planar, conical, spherical), and overall width.  Different bio-inspired 

exploratory procedures were investigated in order to determine their efficiency 

and accuracy for extracting geometric properties.  The ability to determine local 

shape information with a single fingertip could be used to provide haptic feedback 

to a robot operator, a sense of touch to an amputee, or tactile feedback for semi-

autonomous grasp and manipulation controllers for teleoperated robots, such as 

wheelchair-mounted robot arms. 

 

METHODS 

Robot Testbed and Tactile Stimuli.  The robot testbed is the same one 

used in the edge orientation study (Chapter 3): a BioTac sensor was attached to 

the BarrettHand and WAM robotic system (Figure 4.1).  As before, while the 

BioTac’s overall fluid pressure signal and 19 impedance signals were sampled at 

100 Hz, the vibration signal was sampled at 2200 Hz.  Since we are primarily 

interested in mechanical stimuli for this study, the temperature measurements 

were not considered in the data analysis.  For greater detail, please refer to the 

Methods section in Chapter 3. 
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Figure 4.1. The experimental setup in which the Barrett WAM, BarrettHand, and 

BioTac were used to explore fingertip-sized geometric features.  a) The BioTac 

was held at either a contact angle  of 25° or 30°.  b) The test plate with tactile 

stimuli maintained a constant orientation with respect to the fingertip reference 

frame.  The largest feature has ‘footprint’ dimensions less than twice the width of 

the BioTac.  The global reference frame is shown in red. 

 

We hypothesized that properties of small geometric features, including 

order of curvature and footprint overall dimension, could be extracted from the 

tactile signals alone.  Three different 3D printed test objects, each of which had a 

face with bumps (protrusion in the (+) z-direction) and an opposing face with pits 

(depression in the (–) z-direction), were used (Figure 4.2).  The face of each test 

object contained eight distinct features with a specific degree of curvature: 0
th

 

order or planar features, 1
st
 order or conical features, and 2

nd
 order or spherical 

features.  Length for planar features and diameter for conical and spherical 
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features were 1.25, 2.5, 3.75, 5, 7.5, 10, 15, and 20 mm (see Figure B.1).  The five 

largest features had a constant height or depth of 2.5 mm.  The three smallest 

features had heights or depths equal to half their footprint dimension.  Note that in 

order to maintain consistent heights across features having different orders of 

curvature, the equators of the spherical features where not at z = 0, the datum of 

the test plate (Figure 4.2).  The tactile stimulus was rigidly attached on top of a 6 

DOF load cell (ATI Industrial Automation, Nano-17, Figure 4.1).  The plate was 

designed such that x- and y-axis spacing between features would allow for haptic 

exploration of a single feature with one haptic exploratory movement 

(Figure 4.2). 

 
Figure 4.2.Test plates containing small geometric features with varying orders of 

curvature and size.  A total of three plates were used, each of which contains a) 
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bumps on one face and b) pits on the opposing face.  Each plate had features with 

eight different footprint dimensions: 1.25, 2.5, 3.75, 5, 7.5, 10, 15, and 20 mm. 

Haptic Exploratory Procedures.  The WAM trajectories were 

commanded by prescribing joint angles through the internal “libbarrett” library.  

Similar exploratory procedures (EPs) to those introduced in Chapter 3 

(Figure 3.3) were implemented.  Namely, static contact (EP #1), distal-proximal 

stroke along the y-axis (EP #3), and radial-ulnar stroke along the x-axis (EP #4) 

were used.  An additional bio-inspired exploratory procedure was implemented in 

which the finger was rotated about its longitudinal axis in order to roll back and 

forth over the geometric feature (EP #5).  EP #5 was designed to approximate 

wrist supination and pronation, although actual implementation of the motion was 

more complex because the longitudinal axis of the BioTac sensor was not aligned 

with the wrist axis.  Snapshots of the different EPs are shown in Fig. 4.3, in which 

movements are indicated by red arrows.  A fixed global reference frame was 

defined with its origin at the (x, y) center of the plane and z = 0 such that the x-y 

plane was concident with the flat open area of the plate (Figure 4.1b).  As with 

the edge orientation study (Chapter 3), the x-axis was defined as the direction for 

the radial-ulnar stroke, and the y-axis as the direction for the distal-proximal 

stroke. 

For EP #1, the fingertip approached the feature directly from above along 

the z-axis, pressed statically against the feature for 1.5 seconds, and moved away 

along the z-axis to release contact (Figure 4.3a).  EP #3 consisted of the fingertip 

being aligned to the center of the feature along the y-axis at a location distal to the 
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feature (Figure 4.3b).  The fingertip would approach the test plate until a 

predefined z-position has been reached, making contact with the plate’s surface.  

The fingertip would then move along the negative y-direction, stroking along the 

whole length of the feature until it returns back to the plate’s bare surface.  

Similarly, for EP #4 the fingertip was aligned along the x-axis at a location radial 

to the center of the feature (Figure 4.3c).  The sensor would first make contact 

with the plate’s surface and then stoke along the positive x-direction until the 

entire feature has been explored.  For EP #5, the fingertip approached the feature 

directly from above along the z-axis (Figure 4.3d).  Wrist supination of 45° took 

place while maintaining the fingertip’s x- and y-positions centered on the feature.  

Wrist pronation pronated in order to return to the fingertip to its original 

orientation, and the fingertip was moved away along the z-axis to release contact. 
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Figure 4.3. Haptic exploratory procedures.  a) EP #1: static contact, b) EP #3: 

distal to proximal linear stroke along the y-axis, c) EP #4: radial to ulnar linear 

stroke along the x-axis, and d) EP #5: roll of the fingertip about its longitudinal 

axis.  Fingertip movements are indicated by the red arrows. Note that x-, y-, and 
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z-axis directions are accurately shown, but the origin of the global reference 

frame has been displaced for visualization purposes.  

 

As before, the contact angle  was defined as the orientation of the 

BioTac’s longitudinal axis with respect to the horizontal x-y plane (Figure 4.1a).  

A contact angle of 25° was chosen in order to maximize the contact area between 

the BioTac’s deformable skin and the tactile stimulus while simultaneously 

avoiding undesirable contact of the BarrettHand with the test plate for EP #1, EP 

#3, and EP #4.  A contact angle of 30° was used for EP #5.  Inspired by previous 

human studies (S. J. Bensmaia et al., 2008) and given the small dimensions of the 

geometric features, scanning speed was 1 cm/s for linear stroking motions.  Thus, 

the fingertip trajectory velocity for EP #3 was vy = -1 cm/s while that for EP #4 

was vx = +1 cm/s. 

For all four exploratory procedures, the commanded height for the 

fingertip was z = -5.5 mm such that contact was consistently made with the 

bottoms of large pits but did not get stuck on large bumps.  Given the low 

precision and large variability of the robot testbed at millimeter scales, the 

command height value was determined by trial and error prior to data collection. 

Features within each plate face were explored in a random order to 

minimize the introduction of any bias due to systematic variations, such as wear 

of the tactile sensor skin.  The test plates were presented in the following order: 

planar pits, planar bumps, spherical pits, spherical bumps, conical pits, and 

conical bumps.  A total of 20 replicate trials per feature on each test plate were 
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collected before changing the plate.  The BioTac skin was constantly monitored to 

ensure that the fingerprints had not worn out.  The skin only required replacement 

once due to noticeable wear of the tactile ridges. 

Processing of tactile signals.  As with the edge orientation study (Chapter 

3), it was hypothesized that various types of signals could provide insights into 

different properties of the geometric feature being explored.  For the edge 

characterization study, all tactile data between the start and loss of contact were 

used to extract input parameters for supervised learning models.  However, this 

approach could not be used for this study on geometric features.  In particular, 

linear stroking motions (EP #3 and #4) were such that initial contact and loss of 

contact with the plate occurred at the flat, open regions in between features of 

interest.  For the purposes of modeling specific geometric features, it was 

important to extract tactile signals that related directly to the geometric feature 

(bump or pit) as opposed to just any arbitrary contact with the test plate. 

Identifying initial contact and loss of contact with a geometric feature.  

For each trial, initial contact and loss of contact with the test plate were 

determined as the time points at which the sensor’s overall fluid pressure first 

exceeded and last fell below a threshold of 0.2% from baseline (non-contact 

state), respectively.  This threshold was smaller than that for the edge orientation 

study because haptic exploration of pits resulted in much smaller changes in 

overall fluid pressure. 

For EP #3 and #4, in particular, it was necessary to further differentiate 

tactile data associated with the geometric features from those during arbitrary 
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contact with the open test plate surface.  For EP #3, initial contact with the feature 

was defined as the time point at which electrode Cluster #1 (the most distal cluster 

at the fingertip, Figure 3.4a) changed after its initial rise and plateau (Figure 4.6).  

The sharp rise in this impedance signal occurred in all trials since the fingertip 

always contacted the plate’s surface first.  Once the desired commanded height of 

the fingertiphad been achieved, the impedance signal remained stable, even as the 

fingertip was stroked across the open, flat surface of the plate, until initial contact 

with a geometric feature was made.   For EP #4, initial contact with the feature 

was defined as the time point at which electrode Cluster #2 (the ulnar cluster on 

the distal aspect of the fingertip, Figure 3.4a) exceeded an impedance threshold of 

1 kΩ.  The rise in this impedance signal occurred in all trials since the fingertip 

was stroked in a radial to ulnar manner.  For both EP #3 and #4, loss of contact 

with the feature was defined as the time point at which electrode Clusters #1, #2, 

and #3 (the most distal clusters, Figure 3.4a) stabilized for the remainder of each 

trial.  This stabilization of impedance signals signified that the fingertip had 

completely traversed the geometric feature of interest and was simply stroking 

along the plate’s flat, open surface. 

For EP #5, the Barrett WAM proprioception data (joint angles) were used 

to estimate the angle of roll of the finger about its longitudinal axis.  To ensure 

that only data from the rolling motion were provided to the supervised learning 

models, a rotation threshold of 10° of supination was used to define the start and 

end time points of rolling contact with the feature.  Brief periods of static contact 
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with the feature at the start and end of the entire trial were not used, as they were 

not representative of tactile data generated during roll of the finger. 

It should be noted that the Barrett WAM proprioception data for fingertip 

z-position were not precise enough to establish the presence or properties of the 

small geometric features.  This suggests that tactile sensing is better suited for 

haptic exploration of small geometric features, especially when the robot testbed 

features deformable fingertips and a robot arm with gear lash and limited 

precision at millimeter scales. 

Establishing windows of interest within the feature contact period.  As in 

the edge orientation study, the contact period was subdivided into smaller 

windows of time in order to capture trends in the tactile signals at different stages 

of each exploratory procedure (Figure 4.7, Table 4.1).  “Window 1” (W1) was 

defined as the middle 30% of contact for EP #1.  For EP #3 and EP#4, the contact 

period with the geometric feature was split into two equal windows of time (W2 

and W3 for EP #3, W4 and W5 for EP #4).  Since EP #5 consisted of a symmetric 

rotation about the longitudinal axis of the fingertip, the contact period was also 

split into two equal windows (W6 and W7).  For each of these windows W1-W7, 

mean overall pressure values were used as inputs to the supervised learning 

models.  In addition, mean rates of change in overall pressure for the first 25% of 

windows W2, W4, and W6 were calculated. 

Sensor skin deformation was captured by changes in electrode impedance 

values.  Clusters of electrodes along the BioTac’s distal-proximal axis defined in 

the edge orientation study (Figure 3.4) were also used in this study in order to 
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minimize the number of model input parameters and computational expense.  For 

windows W1-W7, mean electrode impedances for each cluster were provided to 

the model.  Mean rates of change in electrode impedance for each cluster for the 

first 25% of windows W2, W4, and W6 were calculated. 

The contact dynamics at initial contact and loss of contact with the feature 

was captured by the fluid vibration data.  For EP #3, W8 and W9 were defined as 

the first 250 ms of W2 and final 250 ms of W3.  For EP #4, W10 and W11 were 

defined as the first 250 ms of W4 and final 250 ms of W5.  For EP #5, W12 and 

W13 were defined as the first 250 ms of W6 and final 250 ms of W7.  For 

features that resulted in windows W2-W7 being shorter than 250 ms, the entire 

window of data was used to extract the model inputs.  As in the edge orientation 

study, the Hilbert-Huang Transform (HHT) was used to determine the mean 

instantaneous frequency of the first intrinsic mode function for use as model 

inputs.  For more details, please refer to the Methods section of Chapter 3. 

Supervised Learning Models.  The small geometric features used in this 

study (Figure 4.2) have various properties that could be determined.  For instance, 

each feature could be simply identified as either a bump or a pit.  The feature’s 

order of curvature could also be classified into three possibilities (i.e. 0
th

, 1
st
, and 

2
nd

 order), which differentiates the feature’s shape as planar, conical, or spherical.  

In addition, the “footprint” (or x-y plane) dimension can be estimated.  The 

specific height or depth (z-dimension) of the feature was not estimated in this 

work, but could be incorporated into future modeling efforts. 
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Identification of order of curvature and footprint dimensions of the 

geometric features could be accomplished in a few different ways, including those 

shown via flow diagrams in Figure 4.4.  A support vector classifier (SVC) was 

used to identify one of three discrete classes of order of curvature (0
th

, 1
st
, 2

nd
).  A 

support vector regression (SVR) was used to estimate the footprint of the feature 

from a continuous number line.  Although only eight distinct footprint dimensions 

were tested due to practical reasons, we believe that regression models can be 

generalized to other feature dimensions while a classifier model would be limited 

to only those eight footprint dimensions.  We used the sign of the footprint 

dimension to embed information about whether the feature was a bump or a pit.  

A positive sign was used to indicate that the feature was a bump, while a negative 

sign was used to indicate that the feature was a pit. 

In flow diagram #1, a 3-class SVC model and an SVR model could be 

conducted in parallel and independently (Figure 4.4a).  The SVR model would 

have been trained on tactile data from all features.  In flow diagram #2, an SVC 

could be used to first identify the order of curvature, which could then be 

provided as an additional input to an SVR model (Figure 4.4b).  Again, the SVR 

model would have been trained on tactile data from all features.  In flow diagram 

#3, an SVC prediction could be used to select an SVR model that was trained on 

features with specific orders of curvature (Figure 4.4c).  The serial approach of 

Fig. 4.4c could also be conducted in parallel if independent computational threads 

were used.  In the presented work, we focused on the parallel configuration of 

Fig. 4.4a and the series configuration of Figure 4.4c. 



 

106 

 
Figure 4.4.  Alternative flow diagrams to determine the order of curvature and the 

feature’s footprint dimension.  a) Flow diagram #1: a 3-class SVC and an SVR 

are run in parallel and independently.  b) Flow diagram #2: an SVC is followed by 

an SVR using the classifier prediction as an input.  c) Flow diagram #3: an SVC 

prediction determines which of the SVR models, specific to the order of 

curvature, to implement in the next step. 

 

When building the models, the complexity term was set to 1 in order to 

compare results from the two modeling approaches (Figure 4.4a, Figure 4.4c).  

Two types of polynomial kernels were used: a linear kernel and a quadratic 

kernel.  The performance of each model was assessed using a novel test data set 

that was not used during training of the model.  WEKA was used to create these 

models using up to 76 input parameters (Table 4.1).  Although WAM 
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proprioception data were used to determine the initial contact and loss of contact 

with each feature, no proprioceptive data were provided as model inputs.  

Furthermore, no information about the exploratory procedure (EP # or fingertip 

scanning speed) was provided to the models.  For the SVC model, the prediction 

variable was the order of curvature of the feature.  For the SVR model, the 

prediction variable was the footprint dimension of the feature. 

In order to minimize time spent on reconfiguring the experimental set-up, 

trials were blocked by test plate surface.  Each of the six test plate surfaces 

contained one of three orders of curvature (0
th

, 1
st
, 2

nd
) and one of two types of 

features (bump or pit).  We collected 20 trials of tactile data for each of the eight 

features having different footprint dimensions.  For each of the six experimental 

blocks, the tactile data were randomly split into a training set (90% of total trials, 

or 144 trials) and into a testing set (10% of total trials, or 16 trials). For the 

parallel modeling approach of Figure 4.4a, the SVC and SVR models were 

trained with the training data sets and testing data sets from all six block 

conditions (i.e. 864 trials for training and 96 trials for testing).  For the serial 

modeling approach of Figure 4.4c, the SVC was trained as in the parallel 

modeling approach.  However, SVR models specific to the three different orders 

of curvature were each trained and tested with the appropriate subset of the data 

(288 training trials, 32 testing trials) since only two block conditions were used 

for each order of curvature case. 
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Table 4.1 

SVC and SVR Model Input Parameters for Haptic Exploration of Small 

Geometric Features 

Type of info Input to SVR 

model 

EP #1 

(static 

contact) 

EP #3  

(distal to 

proximal 

stroke) 

EP #4 

(radial to 

ulnar 

stroke) 

EP #5 

(finger roll) 

Slow tactile 

signals 

Overall fluid 

pressure 

(1) 

W1 

(2) 

W2, W3 

(2) 

W4, W5 

(2) 

W6, W7 

Initial rates of 

change of overall 

fluid pressure 

--- (1) 

W2 

(1) 

W4 

(1) 

W6 

Electrode 

impedance 

(6) 

W1 for 

Clusters 1-6 

(12) 

W2, W3 for 

Clusters 1-6 

(12) 

W4, W5 for 

Clusters 1-6 

(12) 

W6, W7 for 

Clusters 1-6 

Initial rates of 

change of 

electrode 

impedance 

--- (6) 

W2 for 

Clusters 1-6 

(6) 

W4 for 

Clusters 1-6 

(6) 

W6 for 

Clusters 1-6 

Fast tactile signals Instant. freq. (of 1
st
 

IMF) of vibrations 

--- (2) 

W8, W9 

(2) 

W10, W11 

(2) 

W12, W13 

Note. Parenthetical values in red indicate the number of inputs for each type of 

parameter. 

 

RESULTS 

Alignment of the fingertip frame and global reference frame in the 

test plate.  During set-up of the experiment, we found inaccuracies between the 

commanded and actual 3D Cartesian positions of the fingertip.  Given the small 

dimensions of the features and their fixed locations on the 3D printed test plates, 

it was important that the fingertip reference frame be aligned with the global 
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reference frame located on the test plate.  Since our proof-of-concept approach 

relied on centering the fingertip directly above each feature of interest for haptic 

exploration, an initial calibration was performed.  The alignment process used a 

3D printed BioTac proxy with a screw attached to its tip (Figure 4.5) and a test 

plate with conical bumps having much larger dimensions for calibration purposes 

(compare the plate in Figure 4.5 with that in Figure 4.2).  A heat shrink tubing 

was used to wrap the tip of the screw in order to avoid damage to the test plate. 

The aim of the calibration process was to determine a homogeneous 

transformation matrix to relate the robot’s command reference frame to the global 

reference frame fixed to the test plate such that a commanded movement along 

the robot’s y-axis would align with the test plate y-axis, for example.  The 

homogeneous transformation provided a rotation matrix and translation vector to 

relate the two reference frames.  The Cartesian positions of the peaks of the 

conical bumps were known from their SolidWorks drawings.  By trial and error, 

the commanded robot positions necessary to touch the tip of the screw to each 

peak (green dots in Figure 4.5) were recorded.  Both datasets of Cartesian points 

were then provided to an algorithm that finds the optimal homogeneous 

transformation from the dataset’s centroid (Besl & McKay, 1992).  The proxy was 

later replaced with a real BioTac for data collection, and the translation vector to 

the fingertip was adjusted accordingly. The resulting transformation resulted in 

commanded WAM trajectories that accurately explored the geometric features 

with the BioTac using the EPs previously described. 
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Figure 4.5. Calibration setup to determine the homogeneous transformation that 

relates the fingertip and test plate frames of reference.  A screw was attached to a 

3D printed BioTac proxy and made to touch the peak of each conical bump (green 

dots) as commanded Cartesian positions in the robot reference frame were 

recorded. 

Tactile Data.  Representative tactile sensor signals are shown in Fig. 4.6 

for all four exploratory procedures for features of all three orders of curvatures.  

Data correspond to bumps having a footprint dimension of 7.5 mm.  Baseline 

(pre-contact) values were subtracted for all signals on a trial-by-trial basis.  For 

EP #1, the green and red dots indicate the start and end of the middle 30% of 

contact (Figure 4.6).  For EP #3, #4, and #5, the green and red dots indicate the 

initial contact and loss of contact with the geometric feature.  Tactile data 

corresponding to contact with the plate’s flat, open surfaces (to the left of the 

green dot and to the right of the red dot in Figure 4.6) were truncated before 

model input parameters were extracted (Figure 4.7).  Tactile data for pits having a 

footprint dimension of 7.5 mm are shown in Appendix Figure B.2 and Figure B.3. 



 

111 

  
  

F
ig

u
re

 4
.6

. 
R

ep
re

se
n
ta

ti
v

e 
m

u
lt

im
o
d
al

 t
ac

ti
le

 d
at

a 
fo

r 
a 

p
la

n
ar

, 
co

n
ic

al
, 
an

d
 s

p
h
er

ic
al

 7
.5

 m
m

 

b
u
m

p
. 
 O

v
er

al
l 

fl
u
id

 p
re

ss
u
re

 (
ro

w
 1

) 
w

as
 u

se
d
 t

o
 d

et
er

m
in

e 
in

it
ia

l 
co

n
ta

ct
 a

n
d
 l

o
ss

 o
f 

co
n
ta

ct
 

w
it

h
 t

h
e 

te
st

 p
la

te
. 
 O

n
ly

 p
er

io
d
s 

o
f 

co
n
ta

ct
 w

it
h
 t

h
e 

g
eo

m
et

ri
c 

fe
at

u
re

s 
(b

et
w

ee
n
 t

h
e 

g
re

en
 a

n
d
 r

ed
 

d
o
ts

 i
n
 r

o
w

 1
) 

w
er

e 
u
se

d
 t

o
 e

x
tr

ac
t 

m
o
d

el
 i

n
p

u
t 

p
ar

am
et

er
s.

 



 

112 

 
 

 

  

F
ig

u
re

 4
.7

. 
T

ru
n
ca

te
d
 m

u
lt

im
o
d
al

 t
ac

ti
le

 d
at

a 
fo

r 
a 

p
la

n
ar

, 
co

n
ic

al
, 
an

d
 s

p
h

er
ic

al
 7

.5
 m

m
 b

u
m

p
. 
 

T
ac

ti
le

 s
ig

n
al

s 
w

er
e 

tr
u
n

ca
te

d
 (

fr
o
m

 F
ig

u
re

 4
.6

) 
su

ch
 t

h
at

 o
n
ly

 p
er

io
d
s 

o
f 

co
n
ta

ct
 w

it
h
 g

eo
m

et
ri

c 

fe
at

u
re

s 
w

er
e 

u
se

d
 f

o
r 

m
o
d
el

in
g
. 
 I

n
p
u
ts

 t
o
 t

h
e 

S
V

C
 a

n
d
 S

V
R

 m
o
d
el

s 
w

er
e 

ca
lc

u
la

te
d
 f

ro
m

 

w
in

d
o
w

s 
o
f 

ti
m

e 
(W

1
-W

1
3
) 

th
at

 w
er

e 
sp

ec
if

ic
 t

o
 e

ac
h
 e

x
p
lo

ra
to

ry
 p

ro
ce

d
u

re
. 



 

113 

Overall fluid pressure (row 1, Figure 4.7) increases as the fingertip makes 

greater contact with the feature.  The stroking exploratory procedures (EP #3, #4) 

show increases in the pressure signal as the fingertip traverses the bump.  

Interestingly, the direction of the fingertip trajectory directly affects the trends in 

the tactile data.  The distal-proximal strokes of EP #3 have similar pressure 

magnitudes with slightly different downward slopes for each order of curvature.  

The radial-ulnar strokes of EP #4 have different magnitudes and trends for each 

order of curvature.  The finger roll for all orders of curvature yielded similar 

trends for W6.  Fluid pressure dropped sharply at the beginning of W7 when the 

finger started to roll back to its original 0° orientation. 

The electrode impedance data (row 2, Figure 4.7) provide information of 

skin deformation.  While an increase in kΩ corresponds to skin compression 

towards the core, a decrease in kΩ indicates bulging of the skin away from the 

core.  The static contact of EP #1 produced different magnitudes of skin 

deformation for the different orders of curvature.  The linear strokes of EP #3 and 

#4, the electrode impedance values for the distal clusters differed based on the 

order of curvature.  For the finger roll of EP #5, electrode impedance values were 

not noticeably affected by order of curvature.  The vibration signals (row 3, 

Figure 4.7) were also not noticeably affected by order of curvature or footprint 

dimension (not shown). 

SVC and SVR Model Performance.  Table 4.2 consists of model 

performance results for flow diagram #1 (Figure 4.4a) in which SVC and SVR 

models are run in parallel with all tactile data pooled.  The SVC results also apply 
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to the first step of flow diagram #3 (Figure 4.4c).  When all 76 inputs are used, 

both models perform well with the classifier having no misclassification of order 

of curvature, and the regression model having an R
2
 greater than 0.98 and RMS 

errors smaller than 1.5 mm for footprint dimension. 

The SVC created with only EP #3 (distal to proximal linear stroke) 

performed very well (Table 4.2).  Only three trials were misclassified when using 

a linear kernel, and only two were misclassified when using a quadratic kernel 

(Table 4.3).  These misclassifications resulted from spherical features being 

predicted as conical features.  This was not too surprising given the similarity in 

the EP #3 tactile data for the conical and spherical bump (Figure 4.7).  More 

specifically, a 7.5 mm spherical bump, a 7.5 mm spherical pit, and a 5 mm 

spherical pit were misclassified in the SVC using a linear kernel.  The first two 

features were misclassified again when using the quadratic kernel.  The most 

accurate SVR model was built when providing input parameters from EP #4 

(radial to ulnar linear stroke).  When utilizing a linear kernel, the model 

performed fairly well (Figure 4.8a).  Using a quadratic kernel improved model 

performance substantially (Table 4.2). 
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Table 4.2 

SVC and SVR Model Performance for Flow Diagram #1 and Step 1 of Flow 

Diagram #3 

   Classification Regression 

   Order of Curvature 

Dimension (sign 

indicates bump 

or pit) 

EP # Polynomial 

Kernel 

Order 

# of 

Inputs 

Correctly 

Classified 

Accuracy R
2
 RMS 

error 

(mm) 

1 1 7 74/96 0.771 0.866 4.11 

1 2 7 80/96 0.833 0.923 3.12 

3 1 23 93/96 0.969 0.832 4.63 

3 2 23 94/96 0.979 0.958 2.33 

4 1 23 83/96 0.865 0.895 3.66 

4 2 23 93/96 0.969 0.982 1.49 

5 1 23 70/96 0.729 0.853 4.55 

5 2 23 83/96 0.865 0.973 1.91 

1,3,4,5 1 76 96/96 1.000 0.982 1.48 

1,3,4,5 2 76 96/96 1.000 0.997 0.60 

Note. Values in red indicate performance of the most accurate linear kernel 

models when using inputs from only one EP. 
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Table 4.3 

Confusion Matrices for an SVC Model Based on One EP and a Linear Kernel 

With inputs from EP #1  With inputs from EP #3 

0
th

 1
st
 2

nd
 Classified as  0

th
 1

st
 2

nd
 Classified as 

26 6 0 0
th

  32 0 0 0
th

 

0 24 8 1
st
   0 32 0 1

st
  

0 8 24 2
nd

   0 3 29 2
nd

  

         

With inputs from EP #4  With inputs from EP #5 

0
th

 1
st
 2

nd
 Classified as  0

th
 1

st
 2

nd
 Classified as 

32 0 0 0
th

  25 0 7 0
th

 

0 22 10 1
st
   3 24 5 1

st
  

0 3 29 2
nd

   10 1 21 2
nd

  

 

 

 

Figure 4.8. SVR model predictions of footprint dimension.  a) Predictions 

corresponding to flow diagram #1 (Figure 4.4a), created from a model using a 

linear kernel and inputs from EP #4 only (results shown in red in Table 4.2).  b) 

Predictions corresponding to flow diagram #3 in which results from three 

independent SVR models based on order of curvature and using a linear kernel 

were plotted simultaneously (rows shown in red in Table 4.4).  Blue, red, and 

-20 -10 0 10 20

-20

-10

0

10

20

True footprint dimension (mm)

P
re

d
ic

te
d

 d
im

e
n

s
io

n
 (

m
m

)

a)

 

 

PRED = 0.8361*TRUE + 0.1481

95% Confidence Bounds

-20 -10 0 10 20

-20

-10

0

10

20

True footprint dimension (mm)

P
re

d
ic

te
d

 d
im

e
n

s
io

n
 (

m
m

)

b)

 

 

PRED = 0.9636*TRUE + -0.4805

95% Confidence Bounds



 

117 

black data points correspond to planar, conical, and spherical features.  Data 

points marked with an ‘x’ had misclassified orders of curvature. 

 

Model performance for the second step of flow diagram #3 (Figure 4.4) 

are shown in Table 4.4.  As expected, Table 4.4 shows that curvature-specific 

SVR models were much more accurate.  Figure 4.8b compiles the predictions 

from all three models, which results in an R
2
 of 0.981, and an RMS error in 

footprint dimension of 1.2 mm.  The 95% confidence bounds were tighter for 

flow diagram #3 than flow diagram #1 (Figure 4.8), indicating that predictions 

were more accurate for the models developed for a specific order of curvature. 
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Table 4.4 

SVR Model Prediction for Data Pooled by Order of Curvature (Step 2 of Flow 

Diagram #3) 

   Regression -  Dimension (sign indicates bump or pit) 

   0
th

 Order 1
st
 Order 2

nd
 Order 

EP # Polynomial 

Kernel 

Order 

# of 

Inputs 

R
2
 RMS 

error 

(mm) 

R
2
 RMS 

error 

(mm) 

R
2
 RMS 

error 

(mm) 

1 1 7 0.895 3.75 0.951 2.42 0.963 2.29 

1 2 7 0.939 3.01 0.956 2.18 0.975 1.89 

3 1 23 0.868 4.56 0.920 3.00 0.910 3.76 

3 2 23 0.992 1.05 0.973 1.65 0.963 2.39 

4 1 23 0.988 1.32 0.929 2.81 0.956 2.57 

4 2 23 0.998 0.52 0.979 1.49 0.992 1.05 

5 1 23 0.926 3.51 0.953 2.29 0.985 2.11 

5 2 23 0.973 1.97 0.989 1.06 0.997 0.74 

1,3,4,5 1 76 0.995 0.86 0.987 1.15 0.995 0.87 

1,3,4,5 2 76 0.998 0.58 0.994 0.79 0.999 0.45 

Note. Values in red indicate performance of the most accurate linear kernel 

models when using inputs from only one EP. 
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Figure 4.9. Performance metrics for the SVR model predictions corresponding to 

flow diagram #1 (Figure 4.4a).  The magnitude of the percent relative error was 

largest for features (bumps and pits) with the smallest footprint dimensions, with 

bumps having a maximum underestimation of 300% and pits a maximum 

overestimation of 200%.  Residuals were the largest for features with the largest 

footprint dimensions with maximum underestimations of 12 mm for bumps and 

pits.  Trials whose order of curvature was misclassified are marked with an ‘x.’  
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Figure 4.10. Performance metrics for the SVR model predictions corresponding 

to flow diagram #3 (Figure 4.4c).  The magnitude of the percent relative error was 

largest for features (bumps and pits) with the smallest footprint dimensions, with 

bumps having a maximum underestimation of 200% and pits a maximum 

overestimation of 125%.  Residuals were the largest for features with the largest 

footprint dimensions with maximum underestimation of bumps of 5.8 mm.  Trials 

whose order of curvature was misclassified are marked with an ‘x.’ 

 

DISCUSSION 

Given the good model performance achieved with simple linear kernels 

and the fact that these could be used to derive simple equations for faster online 

predictions in the future, much of the discussion is focused on the results when 

using the linear kernel. 

SVC Prediction of Order of Curvature.  We trained 3-class support 

vector classifiers with tactile data from haptic interactions with features having 
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three levels of curvature and eight footprint dimensions.  The most accurate linear 

kernel classifiers of curvature were obtained when training the models with inputs 

from the stroking exploratory procedures, especially the distal-proximal stroke EP 

#3 (Table 4.2).  The two stroking exploratory procedures resulted in 

misclassifications between conical and spherical features while static contact and 

finger roll led to errors when classifying the planar features (Table 4.3).  This 

finding suggests that fingertip motion across features provides more information 

about geometry than keeping the fingertip in a fixed location.  It should be noted 

that, for the purposes of reducing model complexity, spatial resolution of the skin 

deformation data was purposely reduced by creating clusters of electrodes.  It may 

be possible that static contact could have performed better if all individual 

electrode impedance values had been provided to the model. 

Tactile data obtained from stroking motions were most noticeably affected 

by order of curvature (Figure 4.7).  For instance, with EP #3, electrode impedance 

magnitudes (whether (+) for compression of the skin or (-) for skin bulging) for 

clusters 1 and 6, along the long axis of the finger, were larger for planar bumps.  

Cluster 2 on the ulnar side of the finger seemed to be helpful for distinguishing 

between conical and spherical bumps.  Lower accuracies in predictions using EP 

#3 as compared to EP #4 could be due to the nature of the robot testbed and 

sensor.  Regardless of the feature being explored, a large amount of skin bulging 

could mask subtle changes in skin deformation associated with order of curvature 

(see EP #3, cluster 1, 1
st
 and 2

nd
 order curvature).  Tactile signals obtained from 

finger roll were very similar to one another, likely resulting in models with the 
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least accurate predictions of order of curvature.  In the case of static contact, 

differences in tactile data due to order of curvature became confounded by 

simultaneous changes in footprint dimension. 

SVR Prediction of Footprint Dimension 

Flow Diagram #1 (one model using pooled order of curvature data).  

When comparing SVR models with linear kernels based on pooled order of 

curvature data, all models had R
2
 values greater than 0.83 and RMS errors smaller 

than 4.6 mm (Table 4.2).  Although these models might be acceptable, there is 

room for improvement.  Figure 4.8a shows the predictions when using only inputs 

from EP #4.  When using all 76 inputs from all four exploratory procedures, a 

much greater accuracy is obtained.  However, in practice, this suggests that all the 

exploratory procedures would need to be performed on a feature and all their data 

post-processed accordingly, in order to achieve high accuracies with a linear 

model.  Thus, flow diagram #1 might not be recommendable. 

The percent relative error (Figure 4.9) for the footprint dimension 

predictions were the largest for the bumps and pits with the smallest footprint 

dimensions.  This was not surprising given that the small sizes of these footprint 

dimensions required accurate predictions in order to avoid large relative errors 

(due to division by a very small number).  The smaller the footprint dimension, 

the smaller the contact area of the feature with the fingertip, and the smaller the 

degree of stimulation of the tactile sensor.  As a result, trends in the electrode 

impedance signals were not as distinctive for features with smaller footprint 

dimensions, which likely resulted in greater relative errors. 
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Flow Diagram #3 (separate models that are specific to order of 

curvature).  Prediction accuracy for footprint dimension increased dramatically if 

we first use the SVC predictions to choose one of three curvature-specific SVR 

models (Table 4.4, Figure 4.8b).  For instance, if a sample was classified as 0
th

 

order, the sample would be sent to the SVR model specifically for predicting 

footprint dimensions of 0
th

 order of curvature features.  Not surprisingly, the 

largest prediction errors in footprint dimension occurred when samples were 

misclassified in the previous step of flow diagram #3 (see “x” markers in 

Figure 4.8b).  Nevertheless, the overall SVR prediction accuracy was much 

greater for flow diagram #1 than for flow diagram #3, as indicated by the near 

one-to-one relationship between the true and predicted footprint dimensions and 

the tighter 95% confidence bounds (Figure 4.8b).  

The independent SVR models performed as well, if not better, with model 

inputs from a single exploratory procedure as compared to the single SVR model 

created using all four exploratory procedures.  When curvature-specific models 

were created, EP #4 was most useful for predicting footprint dimensions for 0
th

 

order curvature while EP #5 was most useful for 1
st
 and 2

nd
 order curvatures.  

Apparently, finger roll can be used to estimate footprint dimension well, but not 

order of curvature (Table 4.2, Table 4.4).  Since acceptable curvature-specific 

models could be developed using inputs from a single exploratory procedure and 

a linear kernel function, computation time during online tasks should not be an 

issue.  A parallelized version of flow diagram #3 (Figure 4.4c) could also be used 

if parallel computing was incorporated into the robot system. 
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Similar to the flow diagram #1 predictions, the percent relative error of 

flow diagram #3 (Figure 4.10) for the footprint dimension predictions were 

largest for features with the smallest footprint dimensions and for those trials 

whose order of curvature were misclassified.  Nevertheless, no prediction 

exceeded a relative error of 200%, indicating that the curvature-specific SVR 

predictions of flow diagram #3 (Figure 4.4c) were more accurate than those from 

the flow diagram #1 (Figure 4.4a).  The residuals were no larger than 5.8 mm for 

the trials whose order of curvature were correctly classified. 

Effects of the Exploratory Procedure.  Figure 4.7 illustrates how each 

exploratory procedure affects the trends in the tactile data and, subsequently, the 

performance of the supervised learning models. EP #1 consists of the fingertip 

moving to a predefined z-position to apply a static force on the feature for a 

prescribed duration.  The slow-adapting overall fluid pressure and electrode 

impedance signals were affected by the amount of contact area with the feature.  

The stroking exploratory procedures resulted in wider ranges of tactile signals.  

The compliance of the BarrettHand combined with the shape of the deformable 

BioTac skin, allowed much smoother movements along the distal-proximal, y-

axis.  Due to the kinematics of the BarrettHand finger, the BioTac  did not get 

temporarily stuck against bumps or within pits for distal to proximal EP #3 as 

much as with radial to ulnar EP #4.  The increased resistance that the fingertip had 

to overcome during the radial to ulnar EP#4 did not allow a smooth exploration of 

the feature, resulting in errors when discriminating between conical and spherical 

features.  As the finger supinates about its longitudinal axis, the ulnar side of the 
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fingertip experiences skin compression and the radial side experiences bulging 

(row 2, Figure 4.7). 

The distal to proximal stroke (EP #3) was most efficient for predicting the 

order of curvature of a feature (red SVC results in Table 4.2).  Given that this 

exploratory procedure moved the fingertip across each feature with the least 

amount of resistance, the order of curvature might be more easily encoded in the 

BioTac signals compared to the other exploratory procedures.  The radial to ulnar 

stroke (EP #4) performed the second best with an accuracy of 83/96 (86%), with 

all misclassifications occurring between conical and spherical features.  The static 

contact (EP #1) and finger roll (EP #5) exploratory procedures performed the 

worst with classification accuracies lower than 78%.  Exploratory procedures 

involving stroking motions seemed better suited for estimation of order of 

curvature, although the distal to proximal stroke (EP #3) performed slightly better 

than the radial to ulnar stroke (EP #4).  

When no prior information was known about the feature’s order of 

curvature (flow diagram #1, Figure 4.4a), EP #4 was most efficient for predicting 

footprint dimension and whether the feature was a bump or a pit (red SVR results 

in Table 4.2).  This suggests that footprint dimension was encoded in the skin 

deformation experienced while stroking the feature in the radial to ulnar direction.  

For order of curvature classification, the distal to proximal stroke was highly 

preferred over the other three exploratory procedures. For footprint dimension 

estimation, selection of the exploratory procedure was not as critical.  The other 

three exploratory procedures yielded R
2
 values ranging from 0.83 to 0.87 and 
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RMS errors ranging from 4.1 to 4.6°, which were not very different from the 

performance metrics for EP #4 (R
2
 of 0.90 and RMS error of 3.7°). 

The three independent SVR models created for specific order of curvature 

(flow diagram #3, Figure 4.4c) returned some interesting results.  While footprint 

dimensions of planar features were better estimated using a radial to ulnar stroke 

(EP #4), the footprint dimensions of conical and spherical features were more 

accurately estimated with finger roll (EP #5).  The radial to ulnar stroke may have 

been most informative for planar features because planar bumps produced the 

most resistance to fingertip motion and resulted strong skin deformation 

trendsthat were distinct from those for conical and spherical features (Figure 4.7).  

On the other hand, planar pits produced the least resistance to fingertip movement 

out of all types of features, but still yielded useful skin deformation trends for 

planar pits (Figure B.2 and Figure B.3).  The amplitude and duration of these 

step-like changes in electrode impedance apparently encoded footprint dimension 

of planar features well.  The finding that finger roll was the most helpful for 

estimating footprint dimension for both conical and spherical features (Table 4.3) 

makes sense considering that the order of curvature of conical and spherical 

features might be perceived similarly at such small scales. 

In terms of the usefulness of each exploratory procedure, the SVR model 

for 0
th

 order features performed best with model inputs from EP #4.  Although the 

SVR model for 1
st
 order features performed best with model inputs from EP #5 

(finger roll), the model was not greatly affected by exploratory procedure.  For the 

2
nd

 order curvature model, the distal to proximal stroke (EP #3) performed the 
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worst.  Any of the other three exploratory procedures would provide useful inputs 

for predicting footprint dimensions of 2
nd

 order features, although finger roll (EP 

#5) was recommended due to its slightly superior performance. 

Our results highlight the importance of considering the information 

content of different exploratory procedures when characterizing small geometric 

features by touch alone.  Static contact alone was not sufficient to estimate order 

of curvature or footprint dimension while dynamic fingertip motions yielded 

tactile data that did encode such properties. 

WAM Proprioception Data.  WAM proprioception data on 3D fingertip 

position and orientation were recorded in the form of Cartesian positions and 

quaternion vectors.  While the quaternion vectors provided clean signals for finger 

roll, the z-position data was very noisy.  No clear trends were observed in the 

fingertip position data that could have provided information about footprint 

dimension or height/depth (z-dimension) of the features.  Cartesian position 

changes at small scales (tallest bumps were 2.5 mm high, and deepest pits were 

2.5 mm deep) could not be precisely detected by the WAM.  Resolution of the z-

position data appeared to be on the order of 2.5 mm.  This imprecision is likely 

due to a combination of factors.  The WAM/BarrettHand combination does not 

seem to be suited for precise characterization of the small geometric features used 

in this study.  In addition, the fingertip sensor was deformable and small features 

sensed by the BioTac skin would not cause noticeable changes in WAM end-

effector position, especially given the degree of gear lash in the BarrettHand.   
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Despite these limitations in the robot testbed, SVR models could be successfully 

trained to perform well on the feature characterization task.  

Limitations.  A main assumption in this proof-of-concept study was that 

the 3D location and orientation of each feature with respect to the fingertip were 

known a priori.  That is, the location of each feature on the test plate, whose 

global reference frame was aligned to the robot reference frame, was used to 

define the fingertip motion trajectories.  In real world situations with unstructured 

environments, the location of features would not be known a priori and would 

need to be estimated using visual feedback or by performing a raster-like scanning 

for patterns (Huynh et al., 2010).  The algorithms presented in this study could 

then be applied once a crude estimate of the position and orientation of the feature 

had been determined, and could even be used to update estimates of feature 

location and orientation with each new haptic experience. Regardless of whether 

visual feedback was used initially, the fact remains that finger-sized features 

would be occluded during touch and that real-time visual feedback would be 

rendered useless at that point. 

As with the edge orientation study, the WAM was calibrated and its 

tendons re-tensioned in order to reduce variability when performing the 

exploratory procedures.  The BarrettHand fingers are compliant due to gear lash 

in the worm gear mechanism, which results in inadequate precision for haptic 

exploration of such small geometric features.  In addition, the WAM wrist has a 

lot of lash, which became apparent when performing radial to ulnar strokes.  An 

interesting finding from this work is that the kinematics and compliance of the 
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actor (robot) itself can affect the implementation of exploratory procedures and, 

subsequently, the nature of the tactile data obtained via those exploratory 

procedures.  Nevertheless, supervised learning model performance was acceptable 

despite variability and imprecision in our robot testbed. 

While the post-processing methods presented here are admittedly ad hoc, 

it is not unreasonable to process data differently based on the type of exploratory 

procedure used.  For instance, it makes sense to use a fixed period of data for 

static contact EP #1 because tactile signals would not be expected to change.  

Rates of skin deformation, however, would be more useful for dynamic fingertip 

motions.  The important process of relating known voluntary actions to perception 

of tactile stimuli can happen at two different levels:  (i) selection of an exploratory 

procedure based on its efficiency and accuracy for predicting specific properties, 

and (ii) processing of signals specific to the exploratory procedure that generated 

them.  Such ad hoc approaches are used in biological systems all the time in the 

form of trial and error, model-building based on experience, and learning over 

one’s lifetime about which actions to take, which afferent feedback streams to pay 

attention to, and how those signals should be processed.  For practical reasons, the 

post-processing methods for this study on geometric features were designed to be 

identical, or closely related, to those from the study on edge orientation.  Thus, if 

one did not know a priori whether an edge or geometric feature would be 

encountered, the tactile data could be processed similarly for either type of model. 
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SUMMARY 

This study provides insights as to which exploratory procedures (actions) 

yield the most informative tactile and proprioceptive data for characterization of 

small, finger-sized geometric features.  Understanding the geometric properties of 

small features would be useful when vision is obstructed (such as when lighting is 

not appropriate or even when the finger itself blocks the line of vision) and when 

proprioceptive feedback is inadequate for the characterization task.  Haptic 

perception abilities that we take for granted (e.g., finding a USB port, power 

button, or screw hole without looking) remain grand challenges for artificial 

hands.  As in the edge orientation study, the use of a deformable, bladder-type 

sensor seems well-suited for advancing the haptic intelligence of robotic systems.  

Rigid, planar sensors might not be able to determine the curvature of small bumps 

or pits, for example.  The top surface of conical or spherical features would 

appear as point-like indentations on a rigid, planar sensor. 

Future work includes developing an analytical solution for footprint 

dimension using some of the input parameters fed into the supervised learning 

models.  Although models using quadratic kernels could provide more accurate 

predictions, models with linear kernels would allow us to derive linear equations 

to estimate footprint dimensions.  Furthermore, computation time could be 

decreased by reducing the number of input variables fed to the models.  Thus, 

algorithms could be implemented to find efficient sets of inputs.   

In this study, contact time was normalized by splitting the tactile data into 

separate windows.  However, actual contact duration in seconds, coupled with the 
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known stroking speed, could potentially be used as model inputs to for estimating 

footprint dimension.  Incorporating estimated contact duration into models might 

be challenging given that accurate predictions of initial contact and loss of contact 

with features, in particular, may be especially important.  Irrelevant tactile data 

from arbitrary object contact (e.g., flat surfaces in between features of interest) 

could confuse the models.  Thus, it would still be useful to understand the 

subtleties of the tactile data (especially skin deformation) in order to know when 

initial contact and loss of contact with a feature occurred. 

For implementation in robotics, learning and adaptation approaches are 

becoming increasingly popular.  As such, algorithms such as Bayesian learning (J. 

A. Fishel & Loeb, 2012) and reinforcement learning (Pape et al., 2012) could be 

implemented to enhance the presented work.  In addition, a wider range of 

features could be explored to develop more generalizable models.  The features 

used in this study were all symmetric and their heights were constrained to no 

greater than 2.5 mm.  Features with more complex 3D shapes such as elliptical 

bumps or trapezoidal pits could be explored to develop more general methods.  

Finally, estimates of height or depth could be used in conjunction with estimates 

of order of curvature and footprint dimension in order to calculate interior angle 

of conical features or radius of curvature of spherical features. 
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CHAPTER 5 

SUMMARY AND CONCLUSIONS 

We have shown that deformable, fluidic sensors have great potential for 

use as tactile sensors for artificial fingertips.  The microfluidic sensor skin and the 

multimodal BioTac sensor, had desirable characteristics such as robustness to 

substantial deformation and sensitivity to light touch.  By implementing multiple 

exploratory procedures with the BioTac, accurate predictions of edge orientation 

and characterization of finger-sized geometric features were achieved.  Enhancing 

the haptic intelligence of artificial hands would greatly increase their usefulness 

for quality of life applications such as prosthetics and wheelchair-mounted robots. 

The tight relationship between known voluntary actions and perception of 

tactile stimuli can occur at two different levels.  At one level, an exploratory 

procedure can be selected based on its efficiency and accuracy for predicting 

specific object properties of interest.  For instance, our work suggests that 

information about a small feature’s order of curvature is better estimated with a 

distal to proximal stroke.  At another level, tactile signals can be processed and 

interpreted as a function of the exploratory procedure that was selected. For 

example, if a static contact EP had been performed, it may not be worthwhile to 

interpret fast-adapting tactile signals or rates of change of slow-adapting tactile 

signals. 

Another interesting observation was that haptic perception could be 

affected by unplanned actions.  Our robot haptic perception studies suggest that 

special attention needs to be placed on the properties of the robot testbed itself.  



 

133 

Specifically for our setup, the kinematics and compliance of the robot coupled 

with the deformable nature of our tactile sensor affected the implementation of 

exploratory procedures and, subsequently, the nature of the tactile data obtained 

via those exploratory procedures.  For example, robot stroking motions that were 

commanded to be identical in terms of stroke speed and smoothness would be 

different when implemented because of differences in compliance of the 

BarrettHand finger and wrist for distal to proximal strokes as compared to radial 

to ulnar strokes.  Knowledge of the kinematic capabilities and limitations of one’s 

robot testbed could be used to better understand the usefulness of different 

exploratory procedures and to select the most efficient action for a given haptic 

perception task. 

 

BIO-INSPIRED VERSUS BIOMIMETIC APPROACHES 

While human capabilities are typically considered as the gold standard for 

many robotics applications, we recognize that a robot testbed and its sensors do 

not need to exactly mimic their biological counterparts.  Although multimodal, 

the BioTac is not comparable to the human fingertip with regards to 

mechanotransduction mechanisms, sensitivity, or range. These limitations are not 

specific to the BioTac; rather, they exist for all engineered tactile sensors. 

Nonetheless, we have shown that a multimodal tactile sensor such as the BioTac 

still provides tactile information (as proxies for biological tactile feedback) that 

can be used to haptically determine edge orientation and characterize small 

geometric features. 
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State-of-the-art artificial tactile sensors are inherently limited, but certain 

human capabilities can be mimicked with current technology and post-processing 

algorithms. One tactile sensor has been used to read Braille (Bologna et al., 2012).  

In an online experiment, 89% of the Braille characters were accurately identified.  

Firing patterns of a 6 x 4 flat array of capacitive taxels were used to make 

predictions.  Although the tactile sensor was not comparable to the biological 

mechanotransducers in human fingertips, a pattern recognition, Braille-reading 

capability was demonstrated.  

A general approach of providing human-like tactile capabilities to 

artificial hands consists of exploiting artificial sensing capabilities and relating 

them to physical phenomena and high-level abstractions used by humans for 

decision-making processes.  For instance, consider the compression of the BioTac 

skin towards the sensor core (indicated by an increase in electrode impedance) 

over an ulnar aspect of the sensor and simultaneous bulging of the skin away from 

the sensor core (indicated by a decrease in electrode impedance) over a radial 

aspect of the sensor. The spatiotemporal trends in electrode impedance signals 

could, as a proxy for skin deformation, indicate shear forces applied to the 

fingertip in the radial direction.  Although not exactly biomimetic, such bio-

inspired interpretations of artificial sensory feedback could facilitate inferences 

about the environment.  Other robot testbeds and sensors could implement the 

methods described in this dissertation as long as they can measure tactile signals 

that encode the characteristic features of interest.  Our experience suggests that 

signals that can be related to skin deformation and contact force could work well 
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for tasks such as edge orientation and characterization of small geometric 

features.  The tactile sensor and its raw signals need not be identical to those of 

the BioTac tactile sensor as long as they can be related to physical phenomena 

such as those described in our work. 

Applications for neuroprosthetics.  Neuroprosthetics seek to restore 

motor or sensory capabilities that have been lost or impaired due to injuries or 

disease.  A grand challenge in the field of neuroprosthetics is the restoration of a 

conscious perception of touch to amputees (Romo et al., 1998).  One technique 

that is currently being pursued is intracortical microstimulation (ICMS), which 

consists of repetitive application of electrical pulses via microelectrodes on the 

somatosensory cortex [Springer Encyclopedia of Neuroscience].  Studies suggest 

that amputees could benefit from ICMS-driven sensory feedback associated with 

robotic prostheses (O’Doherty et al., 2011).  However, the proper delivery of a 

meaningful sensor signal to the brain or nervous system remains a challenge.  

Raw artificial tactile signals, such as those provided by the BioTac sensor or any 

other engineered tactile sensor, are not equivalent to biological tactile signals.   

While humans excel at learning novel tasks, it is likely that artificial tactile 

signals will still need to be post-processed and interpreted before being sent to the 

human nervous system.  As our studies have shown, physical interpretations of 

properties such as edge orientation and a feature size could be successfully 

extracted.  Similarly, high-level abstractions could be extracted from raw artificial 

sensor signals to drive ICMS delivery for neuroprosthetic purposes.  There is 

currently no consensus as to the types of information that should be provided to 
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an amputee via ICMS, although contact force, contact location, and posture are 

commonly considered.  One study focused on the effectiveness of electrical 

stimulation in the proprioceptive region of the somatosensory cortex to deliver 

proprioceptive sensations to a monkey (London, Jordan, Jackson, & Miller, 

2008).  Although more work is needed for use in human neuroprostheses, the 

study showed that monkeys were capable of detecting brief stimulus trains and 

could discriminate between trains of varying frequency as proxies for hand 

position. 

Importance of proprioception in biological systems.  Although there is 

strong evidence that biological tactile sensors play critical roles in detecting local 

shape and curvature (R. L. Klatzky & Lederman, 1999; R. H. LaMotte & 

Srinivasan, 1987), it is also possible that biological proprioceptive sensors could 

contribute as well.  Proprioceptive feedback from the human finger is so sensitive 

that contact by a von Frey hair (with diameters ranging from 0.28 to 0.68 mm) 

can be detected.  One study evaluated the properties of finger contact and the 

contacted object for postural stabilization in humans (Lackner, Rabin, & DiZio, 

2001).  Fingertip force levels as low as 10 g contributed to postural stabilization.  

Tactile sensing, coupled with brachial proprioceptive information about finger 

position with respect to the torso, enabled subjects to stabilize their posture.   

One study found that the availability of receptors in the skin, muscles, and 

joints give proprioceptive acuity to the distal joint of the middle finger (Gandevia, 

Hall, McCloskey, & Potter, 1983).  A study on the proprioceptive ability of the 

proximal interphalangeal and metacarpophalangeal joints of the index finger 
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showed that even sensory input from skin regions that are not stretched or 

deformed by joint rotation can influence proprioceptive sensibility (Clark, 

Burgess, & Chapin, 1986).  Another study suggested that mechanoreceptors in 

non-glabrous skin provides information on joint configuration and may play a 

specific role in proprioception (Edin, 1992).  Given the robot testbed used in our 

studies, it is unlikely that artificial proprioception could have been as useful as 

biological proprioception for the haptic exploration tasks.  However, just because 

this particular robot testbed was limited in proprioceptive sensitivity for these 

tasks does not mean that proprioception should be discounted as a viable feedback 

source entirely. 

 

MAJOR CONTRIBUTIONS 

Novel approach for tactile sensor fabrication.  Although other sensors 

had incorporated fluids in various forms, the use of conductive fluids as both 

electrical interconnects and capacitive sensing units in microfluidic devices had 

not been attempted before.  The journal publication based on material presented in 

Chapter 2 (Ponce Wong et al., 2012), has been highly cited and highlighted in two 

recent journal publications (Nawaz, Mao, Stratton, & Huang, 2013; Zuidhoek, 

Dokmeci, Annabiab, & Khademhosseini, 2012).  These articles emphasize the 

sensor’s advantageous characteristics such as tunable sensitivity, flexibility, and 

robustness.  A non-provisional U.S. patent application was also filed earlier this 

year (Santos, Posner, & Ponce Wong, 2013). 
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Fluidic capacitive sensing units could also be exploited in other types of 

electronic devices.  With the boom in capacitive touch screen technology, 

conductive fluids embedded in elastomers could be used for chemically inert, 

highly flexible tactile displays, for example.  The novel use of the non-toxic liquid 

metal alloy Galinstan could inspire research on material properties of other fluids 

that might possess desirable characteristics at scales that rigid metals would not. 

Dynamic approach to artificial haptic perception.  The methods 

presented in the studies on edge orientation and characterization of finger-sized 

geometric features are applicable to any tactile sensor designed to measure slow- 

and fast-adapting stimuli.  We suggest that action and perception are so tightly 

coupled that (i) efficiency and accuracy of different exploratory procedures 

should be considered, and (ii) post-processing of tactile data can and should be 

specific to the exploratory action that generated the data.  For instance, tactile data 

generated by actions that are expected to be symmetric, such as roll of a finger to 

a specific angle and back, might be useful if split into two equal phases of contact 

with a feature of interest.  Instead of using “tactile images” based on a static 

snapshot of a tactile data stream, tactile data throughout a dynamic fingertip 

movement were used.  By knowing which exploratory procedure was 

implemented and the type of information sought about the object, we can partition 

the tactile data into appropriate subphases (windows) and extract haptic cues that 

are specific to the sensing mode.  Furthermore, the fingertip reference frame can 

be combined with knowledge of the exploratory procedure in order to determine 

which modes or channels of tactile data would be best suited to encode property 
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information.  For instance, impedance electrodes located on the distal, ulnar 

aspect of the fingertip are especially useful for radial to ulnar fingertip motions. 

One of the most interesting findings was that skin deformation resulting 

from bulging, especially far from the actual finger-object contact area, can also 

encode information about geometric features such as edges, bumps, and pits.   The 

kinematics and compliance of the hand itself can affect the quality of the tactile 

data.  Subtle differences in the exploratory procedure, even the nature of the 

initial finger-object contact, can affect trends in skin deformation signals. 

Haptic exploration of object shape.  The robotics literature on haptics-

based characterization of finger-sized geometric features is scarce.  We have 

shown that it is possible to use tactile data alone in order to accurately identify 

and characterize small features such as bumps and pits that would be occluded 

from computer vision systems by the robot finger itself.  It is not being suggested 

that tactile feedback be used in place of visual feedback altogether.  Rather, tactile 

feedback can be used to supplement information obtained visually and is 

especially effective when visual feedback is inadequate.  Proprioceptive feedback 

also provides alternative, temporally synchronous feedback on physical 

interactions with the environment and should be considered.  However, as shown 

in Chapter 4, proprioceptive data may be imprecise depending on the composition 

and capabilities of the robot testbed as well as the nature of the task.  Clearly, the 

combination of the tendon-driven Barrett WAM coupled with the deformable 

BioTac tactile sensor precluded the use of end-effector position as a means to 

characterize finger-sized geometric features.  We have shown that robotic systems 
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having deformable, multimodal tactile sensors can be used for haptic perception at 

levels of accuracy that are comparable to those of humans for edge orientation. 

Furthermore, the regression models developed enable estimation of feature 

properties from a continuous number line.  This approach is a methodological 

departure from the recent publications on classification models, which are used to 

separate items according to discrete classes and may not generalize to novel 

experiences that lie on a continuum between classes selected a priori.  As shown 

in Chapter 4, there is a time and place for discrete classification (e.g., for 0
th

, 1
st
, 

and 2
nd

 order curvature), but regression should be considered whenever possible. 

 

FUTURE WORK 

Expanding the capabilities of the microfluidic tactile sensor skin.  As 

robust and functional as our microfluidic tactile sensor skin is, the current 

prototype can only measure normal forces.  In order to enhance its usefulness as a 

fingertip sensor, additional modalities could be developed so that the skin can 

measure shear force, strain, and high frequency vibrations.  For instance, the 

addition of bumps to the sensor’s surface could be used for shear stress 

measurements (Hyung-Kew Lee et al., 2008).  While originally designed for 

normal forces only, by adding bumps to the sensing surface, relative changes in 

capacitance would quantify shear forces.  More complex microchannel patterns 

could also be designed to measure changes in resistance and capacitance of the 

fluidic wires that are associated with strain (Fassler & Majidi, 2013; Y.-L. Park et 

al., 2012). Taxels having different sensing modalities could be interlaced within a 
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single layer of skin or stacked via multiple modality-specific layers of skin. 

Although it is possible, we have not yet attempted to tune the sensor’s 

architecture or PDMS characteristics for improved normal force sensitivity and 

range.  With the presented fabrication protocol, our sensor was sensitive to forces 

ranging from 0 to 2.5 N.  Similar capacitance-based sensors, composed of PDMS 

and thin metal films, have been created.  One sensor designed for use as an 

artificial skin for robots had a sensitivity of 3%/mN and a sensing range of 0-250 

kPa (H.-K. Lee et al., 2006).  Another sensor developed for plantar pressure 

measurements had a sensitivity of 6.8%/N and a sensing range of 0-945 kPa (Lei, 

Lee, & Lee, 2012).  These studies demonstrate that the sensor skin design could 

be tuned for a wide range of applications and technical specifications.  We could 

attempt to increase normal force sensitivity, for instance, by increasing the height 

of the air pockets (Figure 2.2) to make the taxels even more compliant. 

Developing mathematical models of deformable, fluidic tactile 

sensors.  There are currently no finite element or multiphysics models for either 

the microfluidic tactile sensor skin (Chapter 2) or the BioTac sensor (SynTouch).  

The structural mechanics of the tactile sensor skin are different to simulate under 

loading conditions.  The complexity arises because an incompressible fluid is 

encapsulated within microchannels embedded in an elastomer.  Fluids are not 

typically simulated in structural deformation scenarios such as this one. 

A similar challenge arises with modeling of the BioTac sensor.  A 

complete analytical, multiphysics model of the BioTac sensor would have to 

address deformation of an elastic skin, incompressible fluid, electrostatics, and 
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fluid vibration.  Modeling the structural mechanics of the BioTac skin under load 

would be difficult on its own.  A standard approach would be to model how 

changes in the internal fluid pressure would affect skin deformation.  However, 

the compression and bulging of the skin would depend on contact area and forces 

associated with the the finger-object interaction.  As seen in Chapter 3, the 

difference in initial contact between the normal and tangential approaches of the 

fingertip to a stimulus surface greatly affects the subsequent trends in skin 

deformation.  A much simplified model of the BioTac fingerpad could be 

developed similar to the two-dimensional finite-element model of the non-human 

primate fingertip (M. A. Srinivasan & Dandekar, 1996).  The finite-element 

model predicted that shear strain sensors would be effective in robot tactile 

sensing systems if edge detection capabilities were desired. However, a 

mathematical model is still sought that can effectively relate fingerpad 

deformation to observed spatial response patterns of the embedded tactile 

afferents (M. A. Srinivasan & Dandekar, 1992, 1996). 

Fitting models based on experimental parameter conditions.  The 

models for the prediction of edge orientation and characterization of small 

geometric features were trained using only tactile sensor signals and stroke speed 

(in the case of the edge orientation studies).  The resulting models had high levels 

of accuracy despite the fact that information about experimental conditions, such 

as fingertip contact angle and contact force, were not provided to the models.  

This was viewed as a benefit given that less model inputs were required for 

training and testing, and predictions could be made accurately over a broad range 
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of experimental conditions without explicit specification of contact force, for 

example.  At least for our studies, features of interest were encoded sufficiently 

by the multimodal tactile data. 

One approach to achieve even greater accuracies would be to train models 

on specific experimental conditions.  This would require establishing an 

exhaustive library of models before analyzing new data.  There would have to be 

one model for every possible set of experimental conditions.  For instance, in the 

case of our edge orientation study, we would need to create 24 models (three 

stimulus widths, two contact angles, two stroke speeds, two commanded heights).  

However, trade-offs for the benefit of greater accuracy include the burden of 

having to develop a priori knowledge of all experimental conditions.  It is neither 

realistic to know all contact conditions for unstructured finger-object interactions 

a priori nor practical to build a multitude of models when one or two models 

would suffice.  Nevertheless, it would be interesting to assess potential 

improvements in performance attained with such specific models as compared to 

performance by the models developed in this work.  It is expected that 

performance would improve only slightly.  Experimental parameters such as the 

contact angle and commanded height could be treated as numerical input 

parameters given the continuum nature of their possible values. 

Haptic exploration of complex 3D objects.  For practical reasons, the 

tactile stimuli used in the haptic exploration studies were constrained in the sense 

that edges were straight, bars were rectangular, surfaces were flat, features were 

perfectly spherical, etc.  It would be interesting to see how the current support 



 

144 

vector models would perform if such constraints were released.  For instance, the 

effect of rounder edges on estimation of edge orientation could be explored.  The 

edge orientation models could also be used for studies on single digit contour-

following of straight and curved edges, as well as identification of vertices.  The 

models for finger-sized geometric features could be tested on non-ideal shapes 

such as buttons and heads of screws. 

Once a foundation for single digit haptic exploration is established, haptic 

information obtained simultaneously from multiple digits will need to be 

integrated and used to identify and characterize the object on which features such 

as edges and bumps are actually just subcomponents.  Eventually, the methods 

proposed here will need to be validated on real-world 3D objects used in activities 

of daily living for translation to applications that can improve quality of life. 

A more precise robot testbed could be used to further investigate the 

usefulness of proprioceptive feedback.  For instance, haptic exploration 

experiments on edge orientation and characterization of finger-sized geometric 

features could be repeated using a robot arm with direct drive motors at each 

joint.  While nonzero gear lash might still exist, control of end-effector position 

might be more precise and repeatable.  This could enable the use of 

proprioceptive signals in addition to tactile signals for characterizing geometric 

features. 

Using learning to update models.  In this work, we used supervised 

learning to estimate properties of different object features.  Support vector 

machine models built with training data were accurate, but the models remained 
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constant.  For long term and online implementation of haptic explorations, this is 

not ideal.  The use of incremental support vector machine learning could be 

implemented so that the model can learn with each new experience 

(Cauwenberghs & Poggio, 2001)  Switching from SVM modeling to a Bayesian 

approach is another alternative, as it would allow the database of prior 

information to be updated as in (Xu et al., 2013).  The database could be 

appended for long-term memory of haptic experiences or truncated to most recent 

trials for short-term memory.  
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APPENDIX A 

SUPPLEMENTAL MATERIAL FOR CHAPTER 3 
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Figure A.1. Custom durometer setup for measuring stiffness of compliant stimuli.  

The dial indicator’s measurement at the surface of the object is measured.  Mass 

is added to the top of the indicator.  The indentation in the compliant object is 

allowed to stabilize.   The setups for a) a BioTac oriented at 30° with respect to 

the flat tip of the indicator and b) a sponge are depicted. 
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APPENDIX B 

SUPPLEMENTAL MATERIAL FOR CHAPTER 4 

  



 

164 

 
Figure B.1. SolidWorks schematics of tactile stimuli for characterization of 

finger-sized geometric feature.  Different views of the planar bumps are shown.  

The footprint dimensions are given for the labeled features in red (numbered in 

descending size).  All dimensions are given in mm. 
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C++ code to control the Barrett WAM for haptic exploration of finger-sized 

geometric features 

 
/* 

 * Based on file “can_terminal.cpp” 

 *  Created on: Aug 19, 2010 

 *      Author: dc 

 * 

 *  Modified on: June 9, 2013 

 *      Modified originally by R. Hellman, 

 * Later modified by R. Ponce Wong and R. Hellman 

 * 

 */ 

 

#include <iostream> 

#include <fstream> 

#include <stdio.h> 

#include <vector> 

#include <string> 

#include <cstdio> 

#include <math.h> 

#include <cstdlib>  // For mkstmp() 

 

#include <boost/ref.hpp> 

#include <boost/bind.hpp> 

#include <boost/tuple/tuple.hpp> 

#include <unistd.h> 

#include <barrett/os.h>  // For btsleep() 

#include <boost/thread.hpp> 

#include <barrett/bus/can_socket.h> 

 

#include <barrett/detail/stl_utils.h>  // waitForEnter() 

#include <barrett/math.h> 

#include <barrett/units.h> 

#include <barrett/systems.h> 

#include <barrett/log.h> 

#include <barrett/products/product_manager.h> 

#include <barrett/standard_main_function.h> 

 

//Data logging 

 #define BARRETT_SMF_VALIDATE_ARGS 

 

//EPOS REQUIRED 

#include "EPOSInterface.h" 

 

//HAND REQUIRED 

#include "btserial.h" 

 

//BIOTAC REQUIRED 

#include "cheetah.h" 

#include "biotac.h" 

 

using namespace barrett; 

using detail::waitForEnter; 

using systems::connect; 

using systems::disconnect; 

using systems::reconnect; 

 

int MovementState = 0; 

bool BTrecord = false; 

char BTfilename[120]; 

char BHfilename[120]; 

char WAMfilename[120]; 

int BTn=0; 

int rec_duration; 

 

std::vector<int> DateVec; 

std::vector<int> BTdegVec; 
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std::vector<int> VelVec; 

std::vector<double> PushVec; 

std::vector<std::string> TypeVec; 

std::vector<double> OverallDimensionVec; 

std::vector<std::string> HeightVec; 

std::vector<int> TrialVec; 

 

 

 

 

//////////////////////////////////////////////////////////////////////////////////

//// 

//  FUNCTION:  Thread to Collect BioTac Data      

    // 

//////////////////////////////////////////////////////////////////////////////////

//// 

void BioTacThread(const bool* going) 

{ 

 int err = 0; 

 printf("Checking the BTHand & BTData dir exist if not will create\n"); 

 err = system("mkdir -p S_feat_BTData"); 

 err = system("mkdir -p S_feat_BTHand"); 

 err = system("mkdir -p S_feat_BTWAMdata"); 

 while(*going) 

 { 

  btsleep(0.1); 

  if(BTrecord) 

  {  

   printf("\n\nAbout to record\n\n"); 

   system(BTfilename); 

   BTrecord = false; 

   printf("\n\nCall made\n\n"); 

  }  

 } 

 return; 

} 

 

 

 

 

//////////////////////////////////////////////////////////////////////////////////

//// 

//  FUNCTION:  Thread to Communicate with EPOS Controller (Switch for Load Cell)

 // 

//////////////////////////////////////////////////////////////////////////////////

//// 

void readThread(const bus::CANSocket* bus, const bool* going) { 

 int ret; 

 int id; 

 unsigned char data[bus::CANSocket::MAX_MESSAGE_LEN]; 

 size_t len; 

 

 while (*going) { 

  ret  = bus->receiveRaw(id, data, len, false); 

  if (ret == 0) {  // success 

   //CHECKS for MovementState 

   if(id == 0x581 && data[0] == 0x4b && data[1] == 0x41 && 

data[2] == 0x60) 

   { 

    if(data[5] == 0x11){ 

     MovementState = 2; 

    } 

    else{ 

     MovementState = 0;  

    } 

   } 

  } else if (ret != 1) {  // error other than no data 

   printf("ERROR: bus::CANSocket::receive() returned %d.\n", 

ret); 
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  } 

  usleep(1000); 

 } 

 return; 

} 

 

 

 

 

//////////////////////////////////////////////////////////////////////////////////

//// 

//  FUNCTION:  Thread to Collect BarrettHand Strain Gage Data   

   // 

//////////////////////////////////////////////////////////////////////////////////

//// 

void BarrettHandSGThread(const bool* going) { 

   PORT p; 

   FILE *fp; 

 

   bool fileOpen = false; 

   char input[255]; 

   int err, len, SG3; 

   if(err = serialOpen(&p, "/dev/ttyS0")) { 

      printf("Error opening port: %d\n", err); 

      return; 

   } 

   serialSetBaud(&p,9600); 

   printf("BaudSet \n"); 

   btsleep(1); 

 

   while(*going) { 

     while(BTrecord) 

     { 

      if(!fileOpen){ 

       fp = fopen(BHfilename, "w"); 

       if (!fp) 

    { 

     printf("Error: Cannot open output file.\n"); 

    } 

    else 

       fileOpen = true;        

      } 

      /* Read chars from the port into the input buffer until 

         the termination character '>' is received or 30 seconds has 

         elapsed, whichever comes first. */ 

      serialWriteString(&p, "3FGET SG\r"); 

      serialReadLine(&p, input, &len, '>', 300000); 

        SG3 = atoi(strtok(input+10, "=")); 

        fprintf(fp,"%4.0d\n",SG3); 

     } 

     if(fileOpen) 

     { 

      fclose(fp); 

      fileOpen = false; 

     } 

 

     btsleep(0.1); 

 

   }  

   serialClose(&p); 

   return; 

} 

 

 

 

 

//////////////////////////////////////////////////////////////////////////////////

//// 
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//  FUNCTION:  Function to specify which small feature to explore (i.e. to define   

// 

//      which trajectory to load)     

      // 

//////////////////////////////////////////////////////////////////////////////////

//// 

void Small_Feature_to_Explore() { 

  

 using namespace std; 

  

 // Defining temporary string variables 

 string temp_date; 

 string temp_BTdeg; 

 string temp_vel; 

 string temp_push; 

 string temp_type; 

 string temp_dim; 

 string temp_height; 

 string temp_trial; 

  

 // Defining variables to hold data for vector variables 

 int date(0); 

 int BTdeg(0); 

 int vel(0); 

 double push(0); 

 double dim(0); 

 int trial(0); 

 

 // Defininng and opening the input data file 

 ifstream myfile ("FileInfo_S_feat.txt"); 

 if (myfile.is_open()) 

 { 

  while ( myfile.good() ) 

  { 

    // Assigning values of each column of the data file to the 

temp variables 

   myfile >> temp_date >> temp_BTdeg >> temp_vel >> temp_push 

>>  

       temp_type >> temp_dim >> temp_height >> 

temp_trial; 

       

   // Converting from string variable to int or floating 

variables 

      date  = atoi( temp_date.c_str()); 

      BTdeg = atoi(temp_BTdeg.c_str()); 

      vel   = atoi(  temp_vel.c_str()); 

      push  = atof( temp_push.c_str()); 

      dim   = atof(  temp_dim.c_str()); 

   trial = atoi(temp_trial.c_str()); 

 

   // Storing the values into vectors 

      DateVec.push_back(date); 

      BTdegVec.push_back(BTdeg); 

      VelVec.push_back(vel); 

      PushVec.push_back(push); 

   TypeVec.push_back(temp_type); 

      OverallDimensionVec.push_back(dim); 

   HeightVec.push_back(temp_height); 

      TrialVec.push_back(trial); 

  } 

  myfile.close(); 

  } 

  else cout << "Unable to open file";  

} 
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//////////////////////////////////////////////////////////////////////////////////

//// 

//  MAIN FUNCTION:  Runs the experiment      

      // 

//  1) Load the data file containing the randomized exploration order 

of features/ 

//  2) Move WAM to starting point (trajectory: 'firstmove_S_feat') 

   // 

//  3) Defining the trajectory movements of the different small 

features  // 

//  4) Loop that runs with the specified number of iterations  

   // 

//    a. Defining the output file names   

      // 

//    b. Turn on BioTac data collection   

      // 

//    c. Perform exploratory movement based on listed 

feature's dimension // 

//    d. Repeat until all rows of data file has been read 

    // 

//  5) Finishing the experiment and closing evertyhing   

    // 

//////////////////////////////////////////////////////////////////////////////////

//// 

template<size_t DOF> 

int wam_main(int argc, char** argv, ProductManager& pm, systems::Wam<DOF>& wam) { 

 

  

 // Initial commands needed for setup 

 BARRETT_UNITS_TEMPLATE_TYPEDEFS(DOF); 

 int port = 1; 

 printf("Using CAN bus port %d.\n", port); 

 bus::CANSocket bus(port); 

 EnableEPOS(&bus, 0x601); 

 wam.gravityCompensate(); 

 typedef boost::tuple<double, jp_type> jp_sample_type; 

 

 

 // Initializing the threads for BioTac data and BarrettHand strain gage 

collection 

 bool going = true; // flag to go into the main parts of the following 

threads 

 boost::thread thread(readThread, &bus, &going); 

 //boost::thread threadBarrettHand(BarrettHandSGThread, &going); 

 boost::thread threadBioTac(BioTacThread, &going); 

 

  

 // ??? 

 systems::Ramp time(pm.getExecutionManager()); 

 

 

 

 // ------ 1) Loading information from data file --> order of features to 

explore ------ 

 Small_Feature_to_Explore(); 

 

 

 

 // ------ 2) Move WAM to starting point (trajectory: 'firstmove_S_feat') -

----- 

  

 // Reading file "firstmove_S_feat" and saving the data into a vector 

 log::Reader<jp_sample_type> lr("firstmove_S_feat"); //_Roll 

 std::vector<jp_sample_type> vec; 

 for (size_t i = 0; i < lr.numRecords(); ++i) { 

  vec.push_back(lr.getRecord()); 

 } 
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 // Initialize the system with number of iteration and hold positions 

between iterations 

 int numOfRuns(1); 

 printf("\nHow many iteration (i.e. number of runs) would you like? __ "); 

 std::cin >> numOfRuns; 

 printf("\nHold points off? (y: no holding points) any other value is 

no..."); 

 char check = 'n'; 

 std::cin >> check; 

 waitForEnter(); 

 int holdPoint(1); 

  

 if( check == 'y' ){ 

  printf("\nHold points OFF! be careful!"); 

  holdPoint =0; 

 } 

 if(holdPoint){ 

  printf("\nCheck that firstmove vec makes sense... size = %4.0ld\n 

Press [Enter] to continue...",lr.numRecords()); 

  waitForEnter(); 

 } 

 

 math::Spline<jp_type> spline(vec); 

  

 // First, move to the starting position 

 wam.moveTo(spline.eval(spline.initialS())); 

  

 // Then play back the recorded motion 

 time.stop(); 

 time.setOutput(spline.initialS()); 

 

 systems::Callback<double, jp_type> trajectory(boost::ref(spline)); 

 connect(time.output, trajectory.input); 

 wam.trackReferenceSignal(trajectory.output); 

 time.start(); 

 while (trajectory.input.getValue() < spline.finalS()) { 

  usleep(100000); 

 } 

 

 

 

 // ------ 3) Defining the trajectory movements of the different small 

features ------ 

 

 // Exploratory trajectory of small feature #1 

 log::Reader<jp_sample_type> lr_S_feat_1("exp_S_feat_1"); //_Roll 

 std::vector<jp_sample_type> vec_S_feat_1; 

 for (size_t i = 0; i < lr_S_feat_1.numRecords(); ++i) { 

  vec_S_feat_1.push_back(lr_S_feat_1.getRecord()); 

 } 

 math::Spline<jp_type> spline_S_feat_1(vec_S_feat_1); 

 if(holdPoint){ 

  printf("\nTraj vector for small feature #1... numRecords = %4.0ld\n 

Press [Enter] to continue...", 

    lr_S_feat_1.numRecords()); 

  waitForEnter(); 

 } 

 //wam.moveTo(spline_S_feat_1.eval(spline_S_feat_1.initialS())); 

 //time.stop(); 

 //time.setOutput(spline_S_feat_1.initialS()); 

 systems::Callback<double, jp_type> 

trajectory_S_feat_1(boost::ref(spline_S_feat_1)); 

 connect(time.output, trajectory_S_feat_1.input); 

   

 

 // Exploratory trajectory of small feature #2 

 log::Reader<jp_sample_type> lr_S_feat_2("exp_S_feat_2"); //_Roll 

 std::vector<jp_sample_type> vec_S_feat_2; 

 for (size_t i = 0; i < lr_S_feat_2.numRecords(); ++i) { 



 

173 

  vec_S_feat_2.push_back(lr_S_feat_2.getRecord()); 

 } 

 math::Spline<jp_type> spline_S_feat_2(vec_S_feat_2); 

 if(holdPoint){ 

  printf("\nTraj vector for small feature #2... numRecords = %4.0ld\n 

Press [Enter] to continue...", 

    lr_S_feat_2.numRecords()); 

  waitForEnter(); 

 } 

 systems::Callback<double, jp_type> 

trajectory_S_feat_2(boost::ref(spline_S_feat_2)); 

 connect(time.output, trajectory_S_feat_2.input); 

   

 

 // Exploratory trajectory of small feature #3 

 log::Reader<jp_sample_type> lr_S_feat_3("exp_S_feat_3"); //_Roll 

 std::vector<jp_sample_type> vec_S_feat_3; 

 for (size_t i = 0; i < lr_S_feat_3.numRecords(); ++i) { 

  vec_S_feat_3.push_back(lr_S_feat_3.getRecord()); 

 } 

 math::Spline<jp_type> spline_S_feat_3(vec_S_feat_3); 

 if(holdPoint){ 

  printf("\nTraj vector for small feature #3... numRecords = %4.0ld\n 

Press [Enter] to continue...", 

    lr_S_feat_3.numRecords()); 

  waitForEnter(); 

 } 

 systems::Callback<double, jp_type> 

trajectory_S_feat_3(boost::ref(spline_S_feat_3)); 

 connect(time.output, trajectory_S_feat_3.input); 

 

 

 // Exploratory trajectory of small feature #4 

 log::Reader<jp_sample_type> lr_S_feat_4("exp_S_feat_4"); //_Roll 

 std::vector<jp_sample_type> vec_S_feat_4; 

 for (size_t i = 0; i < lr_S_feat_4.numRecords(); ++i) { 

  vec_S_feat_4.push_back(lr_S_feat_4.getRecord()); 

 } 

 math::Spline<jp_type> spline_S_feat_4(vec_S_feat_4); 

 if(holdPoint){ 

  printf("\nTraj vector for small feature #4... numRecords = %4.0ld\n 

Press [Enter] to continue...", 

    lr_S_feat_4.numRecords()); 

  waitForEnter(); 

 } 

 systems::Callback<double, jp_type> 

trajectory_S_feat_4(boost::ref(spline_S_feat_4)); 

 connect(time.output, trajectory_S_feat_4.input); 

 

 

 // Exploratory trajectory of small feature #5 

 log::Reader<jp_sample_type> lr_S_feat_5("exp_S_feat_5"); //_Roll 

 std::vector<jp_sample_type> vec_S_feat_5; 

 for (size_t i = 0; i < lr_S_feat_5.numRecords(); ++i) { 

  vec_S_feat_5.push_back(lr_S_feat_5.getRecord()); 

 } 

 math::Spline<jp_type> spline_S_feat_5(vec_S_feat_5); 

 if(holdPoint){ 

  printf("\nTraj vector for small feature #5... numRecords = %4.0ld\n 

Press [Enter] to continue...", 

    lr_S_feat_5.numRecords()); 

  waitForEnter(); 

 } 

 systems::Callback<double, jp_type> 

trajectory_S_feat_5(boost::ref(spline_S_feat_5)); 

 connect(time.output, trajectory_S_feat_5.input); 

 

 

 // Exploratory trajectory of small feature #6 
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 log::Reader<jp_sample_type> lr_S_feat_6("exp_S_feat_6"); //_Roll 

 std::vector<jp_sample_type> vec_S_feat_6; 

 for (size_t i = 0; i < lr_S_feat_6.numRecords(); ++i) { 

  vec_S_feat_6.push_back(lr_S_feat_6.getRecord()); 

 } 

 math::Spline<jp_type> spline_S_feat_6(vec_S_feat_6); 

 if(holdPoint){ 

  printf("\nTraj vector for small feature #6... numRecords = %4.0ld\n 

Press [Enter] to continue...", 

    lr_S_feat_6.numRecords()); 

  waitForEnter(); 

 } 

 systems::Callback<double, jp_type> 

trajectory_S_feat_6(boost::ref(spline_S_feat_6)); 

 connect(time.output, trajectory_S_feat_6.input); 

 

 

 // Exploratory trajectory of small feature #7 

 log::Reader<jp_sample_type> lr_S_feat_7("exp_S_feat_7"); //_Roll 

 std::vector<jp_sample_type> vec_S_feat_7; 

 for (size_t i = 0; i < lr_S_feat_7.numRecords(); ++i) { 

  vec_S_feat_7.push_back(lr_S_feat_7.getRecord()); 

 } 

 math::Spline<jp_type> spline_S_feat_7(vec_S_feat_7); 

 if(holdPoint){ 

  printf("\nTraj vector for small feature #7... numRecords = %4.0ld\n 

Press [Enter] to continue...", 

    lr_S_feat_7.numRecords()); 

  waitForEnter(); 

 } 

 systems::Callback<double, jp_type> 

trajectory_S_feat_7(boost::ref(spline_S_feat_7)); 

 connect(time.output, trajectory_S_feat_7.input); 

 

 

 // Exploratory trajectory of small feature #8 

 log::Reader<jp_sample_type> lr_S_feat_8("exp_S_feat_8"); //_Roll 

 std::vector<jp_sample_type> vec_S_feat_8; 

 for (size_t i = 0; i < lr_S_feat_8.numRecords(); ++i) { 

  vec_S_feat_8.push_back(lr_S_feat_8.getRecord()); 

 } 

 math::Spline<jp_type> spline_S_feat_8(vec_S_feat_8); 

 if(holdPoint){ 

  printf("\nTraj vector for small feature #8... numRecords = %4.0ld\n 

Press [Enter] to continue...", 

    lr_S_feat_8.numRecords()); 

  waitForEnter(); 

 } 

 systems::Callback<double, jp_type> 

trajectory_S_feat_8(boost::ref(spline_S_feat_8)); 

 connect(time.output, trajectory_S_feat_8.input); 

 

 

 

 

 //DATA LOGGER SETUP ------------------------------------------------------

-------------------------// 

 systems::TupleGrouper<double, jp_type, jv_type, jt_type, cp_type, 

Eigen::Quaterniond> tg; 

 connect(time.output, tg.template getInput<0>()); 

 connect(wam.jpOutput, tg.template getInput<1>()); 

 connect(wam.jvOutput, tg.template getInput<2>()); 

 connect(wam.jtSum.output, tg.template getInput<3>()); 

 connect(wam.toolPosition.output, tg.template getInput<4>()); 

 connect(wam.toolOrientation.output, tg.template getInput<5>()); 

 

 typedef boost::tuple<double, jp_type, jv_type, jt_type, cp_type, 

Eigen::Quaterniond> tuple_type; 

 const size_t PERIOD_MULTIPLIER = 5; 
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 //------------------------------------------------------------------------

-------------------------// 

 

 

 

 

 // ------ 4) Loop that runs with the specified number of iterations ------ 

 for(int j(0); j<numOfRuns; j++) 

 {  

  // Verification of read data file with small feature randomization 

  if(holdPoint) 

  { 

   printf("\nPress [ENTER] to start iteration # %4.0d\n    Num 

of angles %ld", j+1, OverallDimensionVec.size()); 

   waitForEnter(); 

  } 

 

  // Loop that runs the number of rows in the Trajectory Info data 

file 

  for(unsigned int i=0; i<OverallDimensionVec.size(); i++) 

  {  

    

   // --- a. Defining the output file names --- 

   switch( int(OverallDimensionVec[i]*1000) ) 

   { 

   case 2000: // Overall dimension of feature is 2 cm 

    rec_duration = 

(int)ceil((double)lr_S_feat_1.numRecords()/100);  break; 

   case 1500: // Overall dimension of feature is 1.5 cm 

    rec_duration = 

(int)ceil((double)lr_S_feat_2.numRecords()/100);  break; 

   case 1000: // Overall dimension of feature is 1.0 cm 

    rec_duration = 

(int)ceil((double)lr_S_feat_3.numRecords()/100);  break; 

   case 750: // Overall dimension of feature is 0.75 cm 

    rec_duration = 

(int)ceil((double)lr_S_feat_4.numRecords()/100);  break; 

   case 500: // Overall dimension of feature is 0.50 cm 

    rec_duration = 

(int)ceil((double)lr_S_feat_5.numRecords()/100);  break; 

   case 375: // Overall dimension of feature is 0.375 cm 

    rec_duration = 

(int)ceil((double)lr_S_feat_6.numRecords()/100);  break; 

   case 250: // Overall dimension of feature is 0.250 cm 

    rec_duration = 

(int)ceil((double)lr_S_feat_7.numRecords()/100);  break; 

   case 125: // Overall dimension of feature is 0.125 cm 

    rec_duration = 

(int)ceil((double)lr_S_feat_8.numRecords()/100);  break; 

   } 

   BTn = sprintf(BTfilename, "./BioTac 

S_feat_BTData/BT_%d_BT%ddeg_%dcmPERs_%.1fmm__%s_%.3fcm_%s_%d.txt %d", //_Roll 

       DateVec[i], BTdegVec[i], 

VelVec[i], (double)PushVec[i], TypeVec[i].c_str(),  

      

 (double)OverallDimensionVec[i], HeightVec[i].c_str(), TrialVec[i],  

       rec_duration); 

   BTn = sprintf(BHfilename,          

"S_feat_BTHand/SG_%d_BT%ddeg_%dcmPERs_%.1fmm__%s_%.3fcm_%s_%d.txt", //_Roll 

       DateVec[i], BTdegVec[i], 

VelVec[i], (double)PushVec[i], TypeVec[i].c_str(),  

      

 (double)OverallDimensionVec[i], HeightVec[i].c_str(), TrialVec[i]); 

   BTn = sprintf(WAMfilename,      

"S_feat_BTWAMdata/WAM_%d_BT%ddeg_%dcmPERs_%.1fmm__%s_%.3fcm_%s_%d.csv", //_Roll 

       DateVec[i], BTdegVec[i], 

VelVec[i], (double)PushVec[i], TypeVec[i].c_str(),  

      

 (double)OverallDimensionVec[i], HeightVec[i].c_str(), TrialVec[i]); 
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   printf("%s\n",BTfilename); 

   printf("%d\n",rec_duration); 

   btsleep(0.1); 

    

 

 

   // --- b. Turn on BioTac data collection --- 

   BTrecord = true; 

   btsleep(0.75); //Let the WAM reach its starting point 

 

   // Turning the switch ON (to control load cell data 

recording) 

   printf("\nTurning on Magnet\n"); 

   DigitalOutputOn(&bus, 0x601); 

   DisableState(&bus, 0x601); 

   btsleep(0.75); 

    

   // WAM Data Logging 

   char tmpFile[] = "/tmp/btXXXXXX"; 

   if (mkstemp(tmpFile) == -1) { 

    printf("ERROR: Couldn't create temporary file!\n"); 

    return 1; 

   } 

   systems::PeriodicDataLogger<tuple_type> 

logger(pm.getExecutionManager(), 

   new log::RealTimeWriter<tuple_type>(tmpFile, 

PERIOD_MULTIPLIER * pm.getExecutionManager()->getPeriod()), 

   PERIOD_MULTIPLIER); 

   printf("Logging Initialized.\n"); 

 

 

 

   // --- c. Perform exploratory movement based on listed 

feature's dimension --- 

   switch( int(OverallDimensionVec[i]*1000) ) 

   { 

   case 2000: // Overall dimension of feature is 2 cm 

   

 wam.moveTo(spline_S_feat_1.eval(spline_S_feat_1.initialS())); 

    time.stop(); 

    time.setOutput(spline_S_feat_1.initialS()); 

    

   

 wam.trackReferenceSignal(trajectory_S_feat_1.output); 

    time.stop(); 

    time.setOutput(spline_S_feat_1.initialS()); 

    connect(tg.output, logger.input);  // To connect 

to logger 

    time.start(); 

    while (trajectory_S_feat_1.input.getValue() < 

spline_S_feat_1.finalS()) { 

     usleep(50000); 

    } 

    break; 

 

   case 1500: // Overall dimension of feature is 1.5 cm 

   

 wam.moveTo(spline_S_feat_2.eval(spline_S_feat_2.initialS())); 

    time.stop(); 

    time.setOutput(spline_S_feat_2.initialS()); 

    

   

 wam.trackReferenceSignal(trajectory_S_feat_2.output); 

    time.stop(); 

    time.setOutput(spline_S_feat_2.initialS()); 

    connect(tg.output, logger.input);  // To connect 

to logger (NEEDED to start logging in every case) 

    time.start(); 
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    while (trajectory_S_feat_2.input.getValue() < 

spline_S_feat_2.finalS()) { 

     usleep(50000); 

    } 

    break; 

 

   case 1000: // Overall dimension of feature is 1.0 cm 

   

 wam.moveTo(spline_S_feat_3.eval(spline_S_feat_3.initialS())); 

    time.stop(); 

    time.setOutput(spline_S_feat_3.initialS()); 

    

   

 wam.trackReferenceSignal(trajectory_S_feat_3.output); 

    time.stop(); 

    time.setOutput(spline_S_feat_3.initialS()); 

    connect(tg.output, logger.input);  // To connect 

to logger (NEEDED to start logging in every case) 

    time.start(); 

    while (trajectory_S_feat_3.input.getValue() < 

spline_S_feat_3.finalS()) { 

     usleep(50000); 

    } 

    break; 

 

   case 750: // Overall dimension of feature is 0.75 cm 

   

 wam.moveTo(spline_S_feat_4.eval(spline_S_feat_4.initialS())); 

    time.stop(); 

    time.setOutput(spline_S_feat_4.initialS()); 

    

   

 wam.trackReferenceSignal(trajectory_S_feat_4.output); 

    time.stop(); 

    time.setOutput(spline_S_feat_4.initialS()); 

    connect(tg.output, logger.input);  // To connect 

to logger (NEEDED to start logging in every case) 

    time.start(); 

    while (trajectory_S_feat_4.input.getValue() < 

spline_S_feat_4.finalS()) { 

     usleep(50000); 

    } 

    break; 

 

   case 500: // Overall dimension of feature is 0.50 cm 

   

 wam.moveTo(spline_S_feat_5.eval(spline_S_feat_5.initialS())); 

    time.stop(); 

    time.setOutput(spline_S_feat_5.initialS()); 

    

   

 wam.trackReferenceSignal(trajectory_S_feat_5.output); 

    time.stop(); 

    time.setOutput(spline_S_feat_5.initialS()); 

    connect(tg.output, logger.input);  // To connect 

to logger (NEEDED to start logging in every case) 

    time.start(); 

    while (trajectory_S_feat_5.input.getValue() < 

spline_S_feat_5.finalS()) { 

     usleep(50000); 

    } 

    break; 

 

   case 375: // Overall dimension of feature is 0.375 cm 

   

 wam.moveTo(spline_S_feat_6.eval(spline_S_feat_6.initialS())); 

    time.stop(); 

    time.setOutput(spline_S_feat_6.initialS()); 
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 wam.trackReferenceSignal(trajectory_S_feat_6.output); 

    time.stop(); 

    time.setOutput(spline_S_feat_6.initialS()); 

    connect(tg.output, logger.input);  // To connect 

to logger (NEEDED to start logging in every case) 

    time.start(); 

    while (trajectory_S_feat_6.input.getValue() < 

spline_S_feat_6.finalS()) { 

     usleep(50000); 

    } 

    break; 

 

   case 250: // Overall dimension of feature is 0.25 cm 

   

 wam.moveTo(spline_S_feat_7.eval(spline_S_feat_7.initialS())); 

    time.stop(); 

    time.setOutput(spline_S_feat_7.initialS()); 

    

   

 wam.trackReferenceSignal(trajectory_S_feat_7.output); 

    time.stop(); 

    time.setOutput(spline_S_feat_7.initialS()); 

    connect(tg.output, logger.input);  // To connect 

to logger (NEEDED to start logging in every case) 

    time.start(); 

    while (trajectory_S_feat_7.input.getValue() < 

spline_S_feat_7.finalS()) { 

     usleep(50000); 

    } 

    break; 

 

   case 125: // Overall dimension of feature is 0.125 cm 

   

 wam.moveTo(spline_S_feat_8.eval(spline_S_feat_8.initialS())); 

    time.stop(); 

    time.setOutput(spline_S_feat_8.initialS()); 

    

   

 wam.trackReferenceSignal(trajectory_S_feat_8.output); 

    time.stop(); 

    time.setOutput(spline_S_feat_8.initialS()); 

    connect(tg.output, logger.input);  // To connect 

to logger (NEEDED to start logging in every case) 

    time.start(); 

    while (trajectory_S_feat_8.input.getValue() < 

spline_S_feat_8.finalS()) { 

     usleep(50000); 

    } 

    break; 

 

   } 

    

   //  Closing the data logger to prepare for next run 

   logger.closeLog(); 

   printf("Logging stopped.\n"); 

   log::Reader<tuple_type> lrr(tmpFile); 

   lrr.exportCSV(WAMfilename); 

   printf("Output written to %s.\n", WAMfilename); 

   std::remove(tmpFile); 

 

   btsleep(2); 

   DigitalOutputOff(&bus, 0x601); 

 

 

   if(holdPoint) 

   { 

   printf("\nPress [ENTER] to start the next movement"); 

   waitForEnter(); 
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   } 

  } 

   

 

 } 

  

  

  

 // ------ 5) Finishing the experiment and closing evertyhing ------ 

 if(holdPoint){ 

  printf("\nDone with iterations. Press [ENTER] to zero turn table 

and return WAM to home."); 

  waitForEnter(); 

 } 

 btsleep(1); 

  

  

 // Setting the WAM back to the starting/home positions and turning 

everything off 

 wam.moveHome(); 

 wam.idle(); 

    pm.getSafetyModule()->waitForMode(SafetyModule::IDLE); 

 going = false; 

 BTrecord = false;  //just to be safe 

  

 /* 

 // Turning the different threads off 

   thread.join(); 

   threadBarrettHand.join(); 

   threadBioTac.join(); 

 */ 

 

 return 0; 

} 
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APPENDIX C 

COPYRIGHT PERMISSIONS 
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