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ABSTRACT 

 Locomotion of microorganisms is commonly observed in nature and some aspects 

of their motion can be replicated by synthetic motors. Synthetic motors rely on a variety 

of propulsion mechanisms including auto-diffusiophoresis, auto-electrophoresis, and 

bubble generation. Regardless of the source of the locomotion, the motion of any motor 

can be characterized by the translational and rotational velocity and effective diffusivity. 

In a uniform environment the long-time motion of a motor can be fully characterized by 

the effective diffusivity. In this work it is shown that when motors possess both 

translational and rotational velocity the motor transitions from a short-time diffusivity to 

a long-time diffusivity at a time of π/ω. The short-time diffusivities are two to three 

orders of magnitude larger than the diffusivity of a Brownian sphere of the same size, 

increase linearly with concentration, and scale as v
2
/2ω. The measured long-time 

diffusivities are five times lower than the short-time diffusivities, scale as 

v
2
/{2Dr [1 + (ω/Dr )2]}, and exhibit a maximum as a function of concentration. The 

variation of a colloid’s velocity and effective diffusivity to its local environment (e.g. fuel 

concentration) suggests that the motors can accumulate in a bounded system, analogous 

to biological chemokinesis. Chemokinesis of organisms is the non-uniform equilibrium 

concentration that arises from a bounded random walk of swimming organisms in a 

chemical concentration gradient. In non-swimming organisms we term this response 

diffusiokinesis. We show that particles that migrate only by Brownian thermal motion are 

capable of achieving non-uniform pseudo equilibrium distribution in a diffusivity 

gradient. The concentration is a result of a bounded random-walk process where at any 

given time a larger percentage of particles can be found in the regions of low diffusivity 
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than in regions of high diffusivity. Individual particles are not trapped in any given region 

but at equilibrium the net flux between regions is zero. For Brownian particles the 

gradient in diffusivity is achieved by creating a viscosity gradient in a microfluidic 

device. The distribution of the particles is described by the Fokker-Planck equation for 

variable diffusivity. The strength of the probe concentration gradient is proportional to 

the strength of the diffusivity gradient and inversely proportional to the mean probe 

diffusivity in the channel in accordance with the no flux condition at steady state. This 

suggests that Brownian colloids, natural or synthetic, will concentrate in a bounded 

system in response to a gradient in diffusivity and that the magnitude of the response is 

proportional to the magnitude of the gradient in diffusivity divided by the mean 

diffusivity in the channel. 
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CHAPTER 1 

INTRODUCTION 

This dissertation has two main parts: the first part focuses on the motion of 

particles with translational and rotational velocities and the quantification of their 

effective diffusivity; the second part focuses on diffusiokenesis, the evolution of a 

nonuniform accumulation of Brownian particles due to a particle diffusivity gradient.  

The particles concentrate in regions of low diffusivity through an enhanced random walk 

that requires the presence of bounding walls. 

1.1 Motivation 

Motion at the microscale is of particular interest because motion at low Reynolds 

number has some very different defining characteristics compared to the macroscale. As 

Purcell outlined in his seminal paper “Life at Low Reynolds Number” motion on the 

microscale is dominated by viscosity (1977). There is no such thing as momentum; or 

rather it is so small as to be negligible. Once an object quits performing work to propel 

itself it will instantaneously come to rest. Microorganisms and micromotors are terribly 

energy inefficient, but they don’t have to be. Energy tends to be plentifully available in 

the environment and the motors only need to move fast relative to their body length 

(~µm/s).  Diffusion becomes a very important effect because not only are length scales 

shortened but thermal motion can be large relative to the propulsion speed. Synthetic 

nanomotors have the potential ability to mimic biological motors and perform detailed 

and specific tasks. In nature this is often accomplished by organisms that are capable of 
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chemotaxis (the spatially or temporally resolved response to a concentration gradient). 

The nature of their chemotactic motion is that all properly functioning motors will 

invariably find their way to region of high or low concentration for chemoattractants and 

chemorepellents, respectively. Unfortunately no synthetic nanomotors have been 

developed that are capable of such a precise response to a concentration gradient. 

However, synthetic motors should be capable of chemokinetic responses.  

A chemokinetic response is where the motors concentrate as a result of a bounded 

random walk in a concentration gradient of some chemical that elicits either a change in 

the velocity or turning frequency from the motor. A chemokinetic response can be 

thought of as a bounded random walk in a diffusivity gradient, where the motors end up 

with a steady state distribution in which the more motors end up in the region of low 

diffusivity. The motors are not trapped or attracted to the region of low diffusivity but 

rather they move randomly and can escape the region of low diffusivity, but they on 

average spend more time in the region of low diffusivity. If the diffusivity gradient is the 

reason for the chemokinetic accumulation of motors then particles that only move 

through Brownian motion should also exhibit chemokinesis in a gradient. Chemokinesis 

is generally considered to be possible only for swimming motors, but the equations that 

govern their motion also suggest that it should be possible for objects moving only with 

Brownian thermal motion. Chemotaxis and chemokinesis are important responses for 

synthetic motors to be able to replicate because it allows for passive of control of a 

collection of motors. This is very important because in order to perform a significant 
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amount of work many motors are needed and it is not feasible to direct them individually 

to areas of need. Passive control is also a useful tool for non-motors for the same reason.  

1.2 Literature Review 

1.2.1 Chemotaxis and chemokinesis. 

Chemotaxis was first discovered as a means of guiding the direction of motion of 

biological systems by Engelmann (1881). Typically whether or not motors exhibit 

chemotaxis has been determined by the chemotactic index (CI). The CI is usually 

determined from an assay where the long-time response is defined as the number of 

motors in the region of high (low) concentration over the number of motors in the low 

(high) concentration region for a chemoattractant (chemorepellent). The problem with 

this type of assay is that it is possible that the global accumulation of the motors is a 

purely random diffusive type response (chemokinesis). This is a common mistake that 

people have attempted to correct many times including by Zigmond and Hirsch (1973). 

However, their method is crude and is only applicable for a specific type of assay. 

Part of the answer to how to properly distinguish between chemotaxis and 

chemokinesis lies in the swimming patterns of the motors. In general there are two 

distinct types of swimming behavior of synthetic motors, rotationally diffusive swimmers 

and circle swimmers. Rotationally diffusive swimmers are motors whose translational 

speed depends on fuel concentration but their rotational motion is governed by Brownian 

motion. The long-time behavior of these motors is studied in Howse et al. (2007). In this 

work the authors show that the diffusivity of rotationally diffusive swimmers is governed 

by their translational velocity squared over their rotational diffusivity. Circle swimmers 
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have been studied in a number of papers including Ebbens, Golestanian, and Howse 

(2010), van Teeffelen and Löwen (2008), and van Teeffelen, Zimmermann, Löwen 

(2009). In these works an initial study of how the nature of the swimming path of circle-

swimmers affects their long term behavior. Ebbens et al. created circle swimmers by 

coupling two individual half coated (in platinum) Janus microspheres, while both works 

by Teeffelen et al. are for motors with simulated circle swimming behavior. 

1.2.2 Chemotaxing biological motors. 

Some biological motors can exhibit chemotaxis. For example a human 

polymorphonuclear leukocyte (neutrophil) and E. coli are both designed so that they 

swim towards high concentration of given chemicals (chemoattractant) or away from a 

high concentration of a chemorepellent (Zigmond & Hirsch, 1973; Berg & Brown, 1972). 

The leukocyte will chase down a Staphylococcus aureus microorganism by spatially 

sensing the gradients in chemoattractant emitted by the microorganism (Keller, et al., 

1977). On the other hand E. coli uses temporal sensing to change its rotational and 

translational velocity (Berg & Brown, 1972). The behavior of E. coli is that of a 

runner/tumbler. As long as the bacteria senses an equal or increasing chemical 

concentration gradient it will continue to travel (run) in that direction. When the local 

concentration begins to decrease E. coli enters its’ tumble phase and stops moving. The 

E. coli then randomly reorients itself and travels in the new direction in the same manner 

(Berg, 1975). This is called chemotaxis because all working chemotaxing cells/bacteria 

will unfailingly find their way to the high concentration of their chemoattractant (Ahmed, 
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Shimizu, & Stocker, 2010).  One of the defining qualities of chemotaxis is that the 

organism can sense and react directionally to spatial or temporal gradients. 

1.2.3 Synthetic motors. 

Synthetic nanomotors are being developed to mimic nanoscale biomotors present 

in biological systems. Efforts in this area range from synthetic modifications on existing 

biomotors (Brunner, Wahnes, & Vogel, 2007; van den Heuvel & Dekker, 2007; Doot, 

Hess, and Vogel, 2007; Hess, Bachand, & Vogel, 2004; Goel & Vogel, 2008) to purely 

synthetic catalytic bimetallic nanomotors (Paxton et al., 2004; Paxton, Sen, & Mallouk, 

2005; Fournier-Bidoz, Arsenault, Manners, & Ozin, 2005). Motion of the synthetic 

motors has been achieved using a number of propulsion mechanisms including auto-

diffusiophoresis (Howse et al., 2007; Ebbens, Jones, Ryan, Golestanian, & Howse, 2010; 

Chaturvedi, Hong, Sen, & Velegol, 2010), auto-electrophoresis (Paxton et al., 2004; 

Paxton et al., 2005; Dhar et al, 2006; Paxton et al., 2006; Yang et al., 2006), and bubble 

generation (Manesh et al., 2010; Ismagilov, Schwartz, Bowden, & Whitesides, 2002). 

There are numerous reviews of motors like Ebbens and Howse (2010) for a general 

review of motors and to Paxton, Sen and Mallouk (2005) or Wang (2009) for reviews 

self-electrophoretic motors.   

Bimetallic nanomotors have been engineered to swim at 100 body lengths per 

second as well as pick up, haul, and release micrometer-scale cargo (Burdick, 

Laocharoensuk, Wheat, Posner, & Wang, 2008; Sundararajan, Lammert, Zudans, Crespi, 

& Sen, 2008). Their motion can be controlled using external magnetic fields (Burdick et 

al., 2008; Kline et al., 2006) as well as chemical (Calvo-Marzal et al., 2009; Ibele, 
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Mallouk, & Sen, 2009; Hong, Blackman, Kopp, Sen, & Velegol, 2007) and thermal 

(Balasubramanian et al., 2009) fields. Catalytic bimetallic nanomotors propel themselves 

by electrocatalytically decomposing hydrogen peroxide (H2O2) (Paxton et al., 2005; 

Wang et al., 2006; Moran, Wheat, & Posner, 2010; Moran & Posner, 2011) through a 

mechanism recently described as reaction induced charge auto-electrophoresis (RICA) 

(Moran et al., 2010; Moran & Posner, 2011). Bimetallic nanomotors in an aqueous 

hydrogen peroxide solution catalyze peroxide oxidation at one of the metal surfaces 

(anode), generating protons, electrons, and oxygen molecules. The electrons conduct 

through the motor to the other metal surface (cathode) and complete the reduction 

reaction by combining with protons, peroxide, and oxygen to generate water. The 

asymmetric reactions result in an excess and depletion of protons in the surrounding 

electrolyte at the anode and cathode ends, respectively. The proton imbalance results in 

asymmetric free charge density, which generates an electric dipole and field pointing 

from the anode to the cathode. In addition, the particle’s negative surface charge attracts 

cations from the bulk solution which form a positively charged diffuse screening layer 

surrounding the particle. The self-generated electric field couples with the charge density 

induced by both the reactions and the diffuse layer to produce an electrical body force 

that drives fluid from the anode to the cathode. The fluid motion results in locomotion of 

the motor in the direction of the anode. Net motion of the nanomotors requires some 

native charge, or zeta potential. The nanomotors velocity is linearly dependent on the 

reaction flux density and the native surface charge (Moran et al., 2010; Moran & Posner, 

2011). Most synthetic motors are rotationally diffusive, which means that although the 



7 
 

motors have an advective velocity controlled mainly by some chemical concentration, 

their orientation is dictated by Brownian fluctuations.  

Motors that are fabricated to swim with nonzero mean rotational velocity, ω, in 

addition to rotational Brownian motion, are capable of more complex motion than 

rotationally diffusive swimmers. Motors with nonzero mean translational and rotational 

velocities are classified as circle swimmers (Marine, Wheat, Ault, & Posner, 2013). 

Circle swimming motors can be fabricated by combining two individual motors (Ebbens 

et al., 2010) or by growing an additional segment (Gibbs & Zhao, 2009; Gibbs, Kothari, 

Saintillan, & Zhao, 2011) on the motor such that an asymmetric force profile is 

generated. Ebbens et al. studied the behavior of these diffusiophoretic Janus doublet 

particles and noted that the radius of curvature of the circle swimming doublets depends 

on the respective orientations of the particles within the doublet (Ebbens et al., 2010). 

1.2.4 Diffusiokinesis. 

The analogue to chemokinesis for non-swimming particles is diffusiokinesis. 

There is debate in the literature about what happens when particles are in the presence of 

a diffusivity gradient. Diffusiokinesis has been reported in polymer systems where the 

diffusivity gradient is generated by changes in polymer conformation (Squires, 2010). 

Grassia, Hinch, and Nitsche (1995) performed a study based on numerical simulations 

that suggested that concentrating particles using a diffusivity gradient was impossible. 

The simulations run with the standard Langevin equations in a variable diffusivity field 

showed that a concentration could occur but Grassia et al. (1995) determined that such a 

solution was impossible and the obvious fix was to account for the mass of the particles. 
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Accounting for the mass in the Langevin equation resulted in uniform distribution of 

particles at steady state in a diffusivity gradient. Other attempts have been made study the 

problem including those by Schnitzer (1993) and Visser (2008). In his work Schnitzer 

derives the Fokker-Planck equation for variable diffusivity in order to study the behavior 

of Escherichia coli (E. coli). His approach is based on calculating the flux in two adjacent 

boxes filled with particles where each box has different diffusivity characteristics. Based 

on the exact diffusive characteristics it can be determined whether accumulations should 

be seen in response to a diffusivity gradient. Visser has an alternative derivation that 

starts from the Langevin equation (2008). The system is then evaluated as a Weiner 

stochastic process where the diffusivity varies in space.  In both cases the Fokker-Planck 

equation for variable diffusivity contains a parameter α that varies from 0 to 1. The 

interpretation of this parameter is slightly different in the two cases but in both α serves 

as a method to account to different collision/turning frequency characteristics of the 

system and determine if accumulation is possible or not in the system. 

1.3 Research Goals and Impact 

Here, I present a detailed study of the relevant governing parameters of circle 

swimming spherical bimetallic catalytic micromotors. I show that there are two important 

diffusive time scales for these motors and that the relationship between these two 

diffusivities determines their time average behavior. The motors are fabricated using a 

technique developed and recently published in Langmuir  (Wheat, Marine, Moran, & 

Posner, 2010). I then demonstrate that passive colloids that migrate only by Brownian 

thermal motion are also capable of achieving non-uniform pseudo equilibrium 
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distributions. For Brownian particles the gradient in diffusivity is achieved by creating a 

viscosity gradient in a microfluidic device. The distribution is described by the Fokker-

Planck equation for variable diffusivity. This suggests that any Brownian colloids, natural 

or synthetic, will concentrate in a bounded system in response to a gradient in diffusivity 

and that the magnitude of the response is proportional to the magnitude of the gradient in 

diffusivity divided by the mean diffusivity in the channel. 
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CHAPTER 2 

DIFFUSIVE BEHAVIORS OF CIRCLE SWIMMING MOTORS 

2.1 Introduction 

 In this work, we study the diffusivity of 3 µm spherical catalytic bimetallic circle 

swimmers over short and long time scales as a function of hydrogen peroxide 

concentration. We fabricate the motors using multistep metal deposition process on 

polystyrene microspheres that we reported earlier (Wheat, Marine, Moran & Posner, 

2010). We compare the behavior of these motors to Brownian dynamics simulations, 

simple analytical theory, and to previously published work by Ebbens et al. (2010).  The 

motors exhibit both translational and mean rotational velocities that depend on H2O2 

concentration. We show that generic circle swimmer motors (not necessarily catalytic 

motors) exhibit short-time and long-time diffusivities that scale as v
2
/2ω and 

v
2
/[2Dr(1+(ω/Dr)

 2)] respectively. The experimental long-time diffusivities exhibit a 

maximum diffusivity as a function of concentration because the translational and angular 

velocities deviate from the linear trend as shown in Figure 5. The deviations are not 

systematic (i.e. not because the velocity as a function of concentration exhibit some 

significant nonlinearity). The deviation from the fit is due to natural variation of the 

swimmer’s velocity. We expect that with a larger sample volume or more uniform 

motors, we may not observe the asystematic variation in velocity that yields the 

maximum in effective diffusivity, however we provide some simple examples of the 

conditions under which maximums in effective diffusivities may be observed. Generally, 

we find that a maximum in long-time effective diffusivity can be achieved in a system 
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where either v and ω exhibit some nonlinear dependence on concentration (or any other 

driving potential). Another method by which a maximum in in diffusivity could be 

achieved is through the modulation of the rotational diffusivity. It is possible to modulate 

the rotational diffusivity through an unsteady swimming mechanism, as we show in 

work, or through the curvature of a swimming rod as is shown in Takagi et al. 2013 

(Takagi, Braunschweig, Zhang, & Shelley, 2013). 

2.2 Theory 

2.2.1 Effective diffusivities of swimmers. 

 The time-averaged displacement of particles with an advective component, such 

as swimming organisms and the motors described here, can be described by their 

effective diffusivity. The effective diffusivity combines the effects of rotational diffusion, 

translational diffusion, and advective motion of the motors. Experimentally, the effective 

diffusivity can be determined by assembling the mean squared displacement (MSD) of a 

set of particles and finding the slope. The MSD is determined by taking the ensemble 

average (to minimize errors due to variability between particles and of individual 

particles in time) of the squared displacement (SD) of individual particles. The shape of 

the MSD determines what region the slope is taken for the diffusivity. The MSD is 

always initially quadratic since the particle must initially move directly away from its 

origin. Typically the quadratic region transitions into a linear long-time region where the 

classical diffusivity is the slope divided by 2n, where n is the number of dimensions over 

which the displacement is tracked.  
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 The long-time behavior of rotationally diffusive motors was studied by Howse et 

al. for platinum Janus particles that swim by auto-diffusiophoresis in hydrogen peroxide 

(Howse et al., 2007). By calculating the MSD of the motors they were able to determine 

the effective diffusivity of the motors as a function of concentration and show that for 

rotationally diffusive swimmers the long-time effective diffusivity is (Howse et al., 2007) 

2

4
L o

r

v
D D

D
= +

 

(1)

 

where Do is the Brownian translational diffusivity, v is the velocity of the motor, and Dr 

is the Brownian rotational diffusivity. From Stokes-Einstein, the Brownian translational 

diffusivity of a sphere is Do=kBT/6πµa and the Brownian rotational diffusivity is 

Dr=kBT/8πµa
3, where kBT is the thermal energy, µ is the dynamic viscosity of water, and 

a is the radius of the sphere (Happel & Brenner, 1983).  This means that rotationally 

diffusive swimmers, like catalytic bimetallic nanorods, with considerable advective 

velocities are capable of achieving effective diffusivities approximately 4 orders of 

magnitude larger than that of a Brownian particle of the same size (Mirkovic, Zacharia, 

Scholes, & Ozin, 2010). 

 For circle swimmers the shape of the MSD can be determined by solving the 

appropriate Langevin equations. The standard Langevin equations are reduced to 2-D 

because the motors settle near the surface and are modified such that the displacement of 

the motors is the sum of its advective and Brownian components as shown in 

Equations (2)-(4 (Ebbens et al., 2010; van Teeffelen & Lowen, 2008). 
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, 
(2)

 

, 
(3) 

and  

. 
(4)

 

Where ω is the rotational velocity, x and y are the location of the center of mass, and θ is 

the orientation of the motors. The Brownian fluctuations terms, ξ and ζ, are Gaussian 

random variables with zero mean and whose magnitudes are determined from theoretical 

isotropic Brownian diffusivities. In Ebbens et al. (2010) and van Teeffelen and Löwen 

(2008) Equations (2-(4 are solved to determine the MSD, 

 

(5)

 

The MSD switches from a sinusoidal short-time region to a long-time region when 

t>π/ω. We term the sinusoidal region the short-time region and we define the short-time 

diffusivity, DS, from the slope of the linear region of the first rising wave. Everything that 

follows the first rising wave is considered the long-time region with a long-time 
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diffusivity, DL.  As is shown in Ebbens et al. (2010), Equation (5 can be used to solve for 

the long-time diffusivity of a circle swimmer (Ebbens et al., 2010), 

 

(6)

 

Equation (6 shows that the rotational thermal motion modulates the effective long-time 

diffusivity through the translational and angular velocities.  The translational thermal 

motion, Do, on the other hand is only additive. A circle swimmer with no rotational 

Brownian motion swims in a perfect circle with an origin that drifts with Do and thus will 

have a long-time effective diffusivity equal to the Brownian translational diffusivity.  For 

a detailed discussion of the interaction between the advective motion and Brownian 

motion see the Section 2.2.2 and for a detailed discussion of variable rotational 

diffusivity see Figure 12b. 

In order to find the short-time diffusivity we solve Equations (2-(4 assuming that 

the rotational diffusivity is small compared to the rotational velocity over short times, 

given as, 

.

 

(7)

 

This equation is similar to what we observe for the long-time behavior of rotationally 

diffusive swimmers (Equation (1) except that the rotational diffusivity is replaced by the 

rotational velocity. Equation (7 is also similar to Equation (6 except that it scales as v2
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instead of v2
/ω2 because we assumed the rotational diffusivity to be small in the short-

time region. Equation (7 is applicable when the motor has completed less than one half of 

a rotation or t<π/ω. For the range of rotational velocities in this paper the short-time 

region ranges from 2 s to 120 s.  

2.2.2 Circle swimmer MSD evolution. 

All Brownian Dynamics simulations shown in the Section 2.2.2 are steady and are 

performed on a circle swimmer with a mean translational velocity, v=5.32 µm/s and a 

mean rotational velocity of ω=0.3 rad/s. Error! Reference source not found. shows the 

mean squared displacement (MSD) for a perfect circle swimmer, i.e. a particle with 

constant translational and rotational velocity (no Brownian motion or other perturbations 

to particle motion).  

 
 

Figure 1. a) Trace of a perfect circle swimmer (no Brownian motion). b) MSD of a 
perfect circle swimmer  versus time. 
 



16 
 

The MSD in Error! Reference source not found. is a perfect sinusoid and the average 

slope of the long-time region is zero. Even though the motor has both translational and 

rotational velocity there is no long-time net motion and the motor swims the same circle 

repeatedly. The effective short-time diffusivity is given by Equation (7. Error! 

Reference source not found. shows MSD of a circle swimmer with Brownian 

translational motion but not Brownian rotational motion, i.e. the angular velocity does not 

vary with time. 

 
Figure 2. a) Trace of circle swimmer with Brownian translational motion but not 
Brownian rotational motion. b) MSD of a circle swimmer with Brownian translational 
motion but not Brownian rotational motion versus time. 
 

As Error! Reference source not found. shows the effective diffusivity, Deff, that is 

determined from the average slope of the long-time region is the Brownian translational 

diffusivity, Do, when a circle swimmer experiences Brownian translational motion but 

not Brownian rotational motion.  The effect is of introducing the Brownian translational 

diffusivity is that the center of the circle traced by the swimmer drifts over time at the 
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rate of a Brownian particle of the same size. The effective long-time diffusivity is always 

Do regardless of the exact values of the mean translational and rotational velocities. The 

effective short-time diffusivity is unchanged from the case of the pure circle swimmer. 

Error! Reference source not found. shows the mean squared displacement (MSD) for a 

circle swimmer that experiences both Brownian rotational and translational motion. 

 
 

Figure 3. a) Trace of circle swimmer with both Brownian rotational and translational 
motion. b) MSD of a circle swimmer with both Brownian rotational and translational 
motion versus time. 
 

The long-time effective diffusivity of a circle swimmer with both Brownian rotational 

and translational motion is given by Equation (6. By introducing both Brownian 

rotational and translational motion the circle changes in size and center of the circle it 

swims also changes with time. The combination of these effects results in a long-time 

diffusivity that is orders of magnitude larger than Do and depends on the mean 
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translational and rotational velocities of the swimmer. The effect of Brownian rotational 

motion on the short-time effective diffusivity is small and is shown in Figure 9a. 

2.2.3 Velocity and effective diffusivity dependence on concentration. 

For particles where the translational and rotational velocities both depend on a 

third parameter, here fuel concentration, we can rewrite the velocities in terms of that 

parameter, 

 (8a) 

and  

. ((8b) 

Where C is concentration, A (µm/s/Ma), B (rad/s/Mb), and a, b are constants. In this case 

the short-time diffusivity and long-time diffusivity scale as, 

 
(9a) 

and  

. (9b) 

Equation (9 predicts that if both the translational and rotational velocities depends 

linearly on fuel concentration then the short-time diffusivity scales linearly with fuel 

concentration while the long-time diffusivity increases with concentration and then 

asymptotes at higher concentrations. 

2.3 Experimental Methodology 

 We fabricate 3µm bimetallic gold and platinum spherical micromotors using a 

multistep metal deposition process on polystyrene microspheres that we reported earlier 

(Wheat et al., 2010).  In brief, a 1% volume fraction aqueous dispersion of 3 µm 
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fluorescent polystyrene spheres (ρ = 1.05 g/cm3, Duke Scientific Inc, Fremont, CA, 

USA) are deposited onto a 2.5 x 2.5 cm2 square glass substrate. The solvent evaporates at 

room temperature, forming a monolayer of spheres. The upper hemispheres are coated 

with 20 nm of gold using a sputter coater (Cressington 108 auto, Cressington Scientific 

Instruments, Watford WD19 4BX, England, UK). The half-coated spheres are re-

suspended in an aqueous solution and then deposited in random orientations into a 

monolayer on a clean glass slide.  This process is repeated until the spheres are fully 

coated. The fully Au coated spheres are re-deposited on a clean substrate and coated with 

20 nm platinum resulting in a Janus sphere that is half coated with gold and half 

platinum. 

 Transmission optical microscopy is used to observe the swimming nanomotors. 

We use an inverted microscope (Nikon TE2000, Japan) with a 20x objective (NA=0.6) 

and 100 W halogen illumination (Nikon TE2 PS 100W, Japan). The images are captured 

using a cooled CCD camera (Cascade Iib, Photometrics, Tucson, AZ). Hydrogen 

peroxide (Sigma-Aldrich, St. Louis, MO) is used at concentrations of 0.063%, 0.135%, 

0.253%, 0.5%, 0.75%, 1.0%, and 1.25% (vol). Experiments are performed in chambered 

glass wells with an area of 0.4 cm2 (cat. No. 12-565-110N, Thermo Fisher Scientific Inc., 

Waltham, MA). During the experiments, the chambers are sealed to prevent evaporation-

induced convection. Each motor is tracked for between 100-10,000 frames, and between 

20 and 80 different motors are tracked at each   concentration. The motors swim only in 

x-y plane because they settle near the surface and are only tracked when they are far from 

the sides of the glass well. The positions of the sphere centers are calculated in MATLAB 
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from the intensity weighted centers of the spheres in each frame. Particle centers at each 

time are paired using an enhanced PTV algorithm where an optical flow algorithm pairs 

the particle centers when two particles swim in close proximity. The optical flow 

algorithm uses the Horn-Schunck global smoothness constraint . Individual particle 

squared displacements are oversampled before they are averaged into a single mean 

square displacement. The time averaged velocity and the motor orientation are calculated 

from the sphere trajectory. The rotational velocity of the motors is calculated from the 

time averaged displacement of the motors orientation.    

 We compare the experiments with Brownian dynamics (BD) simulations of 

spherical circle swimmers in uniform fuel concentration. The simulations are carried out 

with the modified Langevin equations for 2-D shown in Equations (2-(4 and assume that 

the standard 2-D Langevin equations are modified such that the displacement of the 

motors is the sum of its advective and Brownian components (Ebbens et al., 2010; van 

Teeffelen & Lowen, 2008). The advective velocity of the motors is only in the direction 

of orientation of the motors and the orientation is governed by a sum of the Brownian and 

time-averaged rotational velocity. The translational and rotational velocities used in the 

simulations are from linear fits of the experimental data and the Brownian diffusivities 

are set to match their theoretical values.  
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2.4 Results and Discussion 

 We previously reported that spherical bimetallic motors swim in H2O2 in the same 

manner as bimetallic nanorods (Wheat et al., 2010). In addition to the translational 

velocities typical of bimetallic nanomotors, the spherical motors are also observed to 

possess a rotational velocity. Figure 4 shows representative traces of the 3 µm bimetallic 

nanomotors at H2O2 concentrations of 0.063%, 0.135%, 0.253%, 0.391%, 0.5%, 0.75%, 

1.0%, and 1.25% (vol). Each trajectory shows the particle motion for 75 s. These plots 

show that the motors swim in circular patterns with an advective velocity that increases 

with the peroxide concentration. The orientation of a motors circular pattern is consistent 

in time, i.e. a motor that has a clockwise rotational velocity will always trace a clockwise 

 

Figure 4. Representative traces of the 3 µm spherical bimetallic motors path over 75 s at 

each concentration. The hydrogen peroxide concentration increases from a) to h) [0.063 

0.135 0.253 0.391 0.5 0.75 1.0 1.25] (volume %). 
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circular pattern. As we increase concentration (from a to h) we see that the length of the 

path increases, denoting an increase in translational velocity, and the radius of curvature 

of the trajectory decreases, denoting an increase in rotational velocity. The motor 

translational swimming velocities are shown in Figure 5a as a function of the H2O2 

concentration along with a linear fit of the translational velocity. The translational 

velocity increases linearly with concentration, which is consistent with previously 

published data for bimetallic nanomotors in hydrogen peroxide (Paxton et al., 2004; 

Moran et al., 2010; Moran & Posner, 2011; Wheat et al., 2010; Laocharoensuk, Burdick, 

& Wang, 2008).  The motor angular velocities are shown in Figure 5b as a function of the 

H2O2 concentration along with a linear fit of the angular velocity. The rotational velocity 

varies linearly with concentration, which is what we would expect if the rotational 

component was a result of the asymmetric drag profile of the surface of the sphere. As 

seen in Figure 5 of Wheat et al. 2010 the fabrication method results in uneven distribution 

of mass on the surface of the motors and the extra mass on one side of the sphere results 

in an asymmetric drag profile of the sphere. The swimming motor would experience a 

slight spin towards the region of higher drag (the area with extra mass) and the magnitude 

of the spin would scale linearly with the translational velocity since the drag force scales 

with linearly with translational velocity at low Reynolds number (Happel & Brenner, 

1983).  In Figure 5 each error bar represents a single standard deviation. The large 

standard deviation for both the translational and rotational velocities is high due to the 

variability between motors. 
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Figure 5. a) Average bimetallic spherical micromotor velocity versus hydrogen peroxide 
concentration. The error bars represent one standard deviation of the ensemble of time 
averaged velocities. b) Average bimetallic spherical micromotor rotational velocity 
versus hydrogen peroxide concentration. Each individual motor velocity (●) is plotted 
along with, the mean value (□), and a linear fit of the velocity.  The error bars represent 
one standard deviation of the ensemble of time averaged velocities. 

 

 While the translational velocity and rotational velocity describe the motion of the 

motor at any instant, the effective diffusivity can be used to describe the time averaged 

behavior. In Figure 6 we show the SDs of three individual motors at H2O2 concentrations 

of 0.135%, 0.253%, and 0.5%. The circle swimmers’ SDs exhibit different behavior in 

short and long time scales (Ebbens et al., 2010; van Teeffelen & Lowen, 2008; van 

Teeffelen, Zimmermann, & Lowen, 2009).   For t<π/ω the SD increases from zero to a 

local maximum of approximately v2
/ω2.  At long times, t>π/ω,  the amplitude of the SD 

exhibits damped oscillations with a frequency that is roughly ω/2π. The oscillations at 

long times are due to the motors swimming in a circular pattern as the center of the circle 
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drifts away from the origin. The oscillations are damped because the displacement due to 

advection from the origin becomes large compared to the swimming radius. Each SD in 

Figure 6 has a different initial local maximum value and occurs at a different time.  

 

Figure 6.  Squared displacement of individual bimetallic spherical micromotors versus 

time for hydrogen peroxide concentrations of 0.135% (∆),0.253% (○), and 0.5% (□). For 
each concentration there is a short time (open symbols) and a long time (filled symbols) 
diffusivity region. The short time region is marked by the sharp increase of the SD and 
corresponds to the motor completing half of a rotation. The second region is marked by 
dampened oscillations that correspond to displacement of the circular motor trajectories. 

When the SD shown in Figure 6 is scaled by v2
/ω2

 the SD  and time is scaled by 

π/ω the SD for each concentration will collapse onto a single line for t<π/ω before 

diverging to their long-time behavior. The data collapse also holds for the MSD as we 

can see from the Figure 9 where the fit of Equation (7 and the measured short-time 

diffusivity are in agreement. 
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Figure 7. Squared displacement of individual bimetallic spherical micromotors scaled by 

v
2
/ω2 versus time scaled by π/ω for hydrogen peroxide concentrations of 0.135% 

(∆),0.253% (○), and 0.5% (□). For each concentration there is a short time (open 
symbols) and a long time (filled symbols) diffusivity region. The short time region is 
marked by the sharp increase of the SD and corresponds to the motor completing half of a 
rotation. The second region is marked by dampened oscillations that correspond to 
displacement of the circular motor trajectories. 
 

The SDs of individual motors are shown in Error! Reference source not found.7 for 

H2O2 concentrations of 0.5% (a) and 1.25% (b). We can only draw qualitative insights 

from the SD due to the variability between different motors and the variability of a single 

motor over a period of time. In order to determine the time averaged motion of these 

motors as a function of time we can examine the MSD of the ensemble of particles as a 

function of H2O2 concentration. 

 The MSDs are shown in Figure 8a and 8b at H2O2 concentrations of 0.063%, 

0.135%, 0.253%, 0.5%, 0.75%, 1.0%, and 1.25%. Each MSD represents an average of 

between 20 and 80 SDs at each concentration. Figure 8a shows the short-time region, 
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t<π/ω, of the MSD and Figure 8b shows the MSD at each concentration for 

approximately 150 s capturing both the short-time and long-time regions. In the short-

time region shown in Figure 8a, the MSD increases as the swimmers complete half a 

rotation, consistent with the first phase of a sinusoid. The slope of the linear portion of 

the short-time region is given by Equation (7) and, as we predict, the slope increases with 

concentration. The short-time behavior of a circle swimmer is driven by the translational 

velocity of the swimmer and dampened by the rotational velocity. The long-time 

behavior of a circle swimmer is shown in Figure 8b.  The slope of the long-time region in 

Figure 8b is described by Equation (6 and has a smaller slope than the short-time region 

because at long times both the rotational velocity and rotational diffusivity serve to limit 

net displacement from the origin. The distinct split between short and long time behavior 

is not observed at lower fuel concentrations because ω~Dr (for a 3 µm sphere in water 

Dr=0.048 rad2/s). The experimental MSDs can be compared to theory (using Equation (5 

or the BD simulations with the mean experimental velocities). We find that the shape of 

the MSDs qualitatively agree with Equation (5 in that they both exhibit a short-time 

behavior that transitions into a long-time region with a lower slope. The magnitude of the 

MSD slope at short-times (the short time diffusivity) agrees well with Equation (7 as is 

shown in Figure 9. At longer times, the experimentally measured slope is higher than 

predicted. The reason for the larger long-time slopes is discussed in detail during the 

presentation of Figure 10.  
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Figure 8.  a) MSD of bimetallic spherical micromotors versus time for all concentrations 

of hydrogen peroxide at short times (t < π/ω). b) MSD versus time at all times. The 

hydrogen peroxide concentrations shown are: 0.063% (◊), 0.135% (∆), 0.253% (○), 
0.5% (□), 0.756% (x), 1.0% (*), and 1.25% (●). The slope of the MSD gives the effective 

diffusivity. The slope of the MSD at short times (t < π/ω) is the short-time effective 

diffusivity. The slope of the MSD at long times (t > π/ω) is the long-time effective 
diffusivity. 

 

 The largest discrepancy between the Equation (5 and the measured MSD is the 

MSD magnitude and the time at which the transition between the short and long time 

behaviors. The theory predicts that this transitions should occur at t=π/ω, and have a 

magnitude of v
2
/ω2, where v and ω are the mean translational and rotational velocities 

from the average over all of the different motors at a given concentration. The theory and 

experiments differ in the transition stage of the MSD because the theory assumes all 

spheres have the mean translational and rotational velocities reported. In the experiments, 

motors, at any given concentration, exhibit large variations in the ratio of translational to 

rotational velocity (as revealed large error bars in Figure 10). These variations in 
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individually measured translational and rotational velocities combined with the relatively 

small sample size (20-80 separate motors at any given concentration) leads to the 

discrepancy in height and location of the transition. 

 From the MSDs shown in Figure 8, we can quantify the short, DS, and long time, 

DL, diffusivities for circle swimmers. In Figure 9 the experimental DS is plotted along 

with steady Brownian dynamics simulations with exact experimental velocities, steady 

Brownian dynamics simulations with velocities determined from linear fits of 

experimental values, Brownian dynamics simulations with amplified Brownian rotational 

diffusivities and velocities determined from linear fits of experimental values, and 

Equation (7 evaluated using fits of the experimentally measured translational and 

rotational motor velocities. The BD simulations with amplified Brownian rotational 

diffusivities are BD simulations where the effective rotational diffusivities are increased 

to 4.5Dr.  All of the plotted diffusivities are scaled by the theoretical Brownian diffusivity 

of a 3µm sphere in water (Do=0.145 µm2/s).  

 Figure 9a and 9b show plots of the short-time normalized effective diffusivity as a 

function of the controlling parameter v2
/2ω and the H2O2 concentration. Figure 9a shows 

that the short-time effective diffusivity increases linearly with a slope and intercept of 

unity with the controlling relationship given in Equation (7. In Figure 9a all of the 

simulations and the experiments agree very well together. The experimental data does 

show some variation from the theory due to uncertainty in the translational and rotational 

velocities as well as uncertainty in DS (due to the relatively small sample size of 20-80 
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motors at each concentration). From Figure 9a we also see that the theory presented in 

Equation (7 tends to slightly over-predict the short-time diffusivity because Equation (7 

assumes that the effect of the rotational diffusivity is negligible over short-times when the 

rotational diffusivity actually serves to slightly limit DS.   

 

Figure 9. a) Short-time effective diffusivity of bimetallic spherical micromotors scaled 

by Brownian diffusivity versus the controlling parameter, v2
/2ω, scaled by the Brownian 

diffusivity. b) Short-time effective diffusivity of bimetallic spherical micromotors scaled 
by the Brownian diffusivity versus hydrogen peroxide concentration. The experimental 
data (○) is plotted along with steady Brownian dynamics simulations  with exact 
experimental velocities(□), steady Brownian dynamics simulations  with velocities 
determined from fits of experimental values(+), unsteady Brownian dynamics simulations 

with velocities determined from fits of experimental values (∆), and the fit of 

Equation (7 (solid line). The short time effective diffusivity is the slope of the MSD at 

times less than π/ω shown in Figure 8a. 
 

 Figure 9b shows that the short-time effective diffusivity also varies linearly with 

concentration as predicted by Equation (9a since both v and ω vary linearly with H2O2 

concentration. DS measured in the experiments and BD simulations with exact 
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experimental velocities fluctuate about the theoretical solution, while the BD simulations 

with fits of the velocities agree well with the theory. Figure 9a suggests that the DS of the 

experiments and the BD simulations with exact experimental velocities fluctuate about 

the theoretical solution in Figure 9b due to the deviation of experimental velocity values 

from the linear dependence. The swimming motion of the motors results in short-time 

diffusivities that are between two hundred and one thousand times greater than the 

Brownian diffusivity. However, due to the circle swimming behavior of motors, the 

short-time diffusivity is smaller than the long-time diffusivity of a rotationally diffusive 

swimmer like a bimetallic nanorod or a platinum coated Janus particle in H2O2 with the 

same velocity.  
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Figure 10. a) Long-time effective diffusivity of bimetallic spherical micromotors scaled 

by the Brownian diffusivity versus the controlling parameter, v2
/[2Dr(1+(ω/Dr)

 2)], scaled 
by the Brownian diffusivity. b) Long-time effective diffusivity of bimetallic spherical 
micromotors scaled by the Brownian diffusivity versus hydrogen peroxide concentration. 
The experimental data (○) is plotted along with steady Brownian dynamics simulations  
with exact experimental velocities (□), steady Brownian dynamics simulations with 
velocities determined from fits of experimental values(+), unsteady Brownian dynamics 

simulations with velocities determined from fits of experimental values (∆), and  the 
scaling shown in Equation (6 (solid line). The long-time effective diffusivity is the slope 

of the MSD at times longer than π/ω shown in Figure 8b. 

 

 Figure 10a and Figure 10b respectively show the long-time diffusivity scaled by 

Do as a function of v2
/[2Dr(1+(ω/Dr)

 2)]  (from Equation (6) and the fuel concentration for 

the experimental data, Brownian dynamics simulations with exact experimental 

velocities, Brownian dynamics simulations with velocities determined from linear fits of 

experimental values, Brownian dynamics simulations with amplified Brownian rotational 

diffusivities and velocities determined from linear fits of experimental values, and the 

theoretical long-time diffusivity given by Equation (6. In Figure 10a the DL from 
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Equation (6 shows up as a line with a slope and a y-intercept of unity. The DL from all of 

the BD simulations follow the theory, while the experimental DL shows some scatter. The 

deviations of the experimentally determined DL originate from the uncertainty of the 

translational and rotational velocities. A sensitivity analysis of Equation (6 shows that an 

uncertainty in the measurement of the translational and rotational velocities of 10% can 

account for this deviation. It is important to note that in order to collapse all on the 

diffusivities onto the theory that the appropriate rotational diffusivities of the systems, i.e. 

for the experiments and for the unsteady BD simulations a rotational diffusivity of 4.5Dr 

was used.  Another source for the deviation is the fact that DL is determined from a 

heterogeneous population of motors each with their own v and ω that are aggregated into 

a single DL value.    

 In Figure 10b the theoretical solution given by Equation (6 and the steady BD 

simulations with velocities determined from linear fits of experimental values are in good 

agreement and suggest that DL should increase at low concentration before they 

asymptote to a DL of roughly a third of the measured DL at high H2O2 concentrations. The 

measured DL increases from 0.063% to a local maximum at 0.135% H2O2 concentration 

and then decreases and is relatively constant at high H2O2 concentrations, where ω is 

large compared to Dr. At high H2O2 concentrations, ω/Dr >10, DL is approximately 100 

times higher than Do but only an eighth of the short-time diffusivity because the long-

time diffusivity scales roughly as v2
/(1+ω2

) instead of v2
/ω. The measured DL dips at a 

H2O2 concentration of 1.25% due to the trends of the velocities shown in Figure 5, the 

variability of the motors over a relatively small sample size (47 individual motors at 
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1.25% compared to thousands for the simulations), and a selection bias in the 

experimental data. The rotational velocity is 27% higher than expected at a H2O2 

concentration of 1.25% based on the trend of the rotational velocity at the first six 

concentrations without a corresponding higher than expected translational velocity. From 

Equation (6 we can see that this results in a DL that is 50% lower than expected. The 

MSD is made up of the average of a group of motors SDs. The shape of the individual 

SDs is determined by its rotational and translational velocity pair. At 1.25% there is a 

higher percentage of motors with higher rotational velocities and lower translational 

velocities (compared to the mean values) than at the other concentrations (look at Error! 

Reference source not found. for individual SDs at 0.5% and 1.25%).  

 

Figure 11. Oversampled squared displacements of individual bimetallic spherical micromotors 

versus time for hydrogen peroxide concentrations of a) 0.5% and b) 1.25%. 
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There are 67 individual motors are 0.5% and 47 individual motors at 1.25%. By 

inspection we can see that 1.25% contains a higher percentage of motors with MSDs that 

have lower long-time diffusivities, which corresponds to velocity pairs with high 

rotational and low translational velocities, compared to 0.5%. 

 This issue is in part due to the relatively small sample size of our data and a small 

selection bias that is most prevalent at this concentration. The selection bias is due to the 

fact that motors with a high rotational velocity and low translational velocity tend to stay 

in the field of view of the microscope (and thus be tracked longer) than motors with high 

translational velocities and low rotational velocities. This bias becomes more prevalent 

when the motors, on average, have a high translational velocity. The steady BD 

simulations with exact experimental values predict a trend similar to that of the 

experimental data, except that the DL asymptotes to a value that is roughly a third of the 

experimentally measured DL at high H2O2 concentrations. The fact that the steady BD 

simulations and theory all agree on the asymptotic value of DL at high H2O2 

concentrations, but the experimental DL is three times higher suggests that there is an 

underlying physical mechanism influencing the experiments that is not captured by the 

steady BD simulations or Equation (6.   

 In order to understand the discrepancy between the measured and theoretical 

predictions of the long-time diffusivity in Figure 10b it is useful to examine what 

parameters contribute to the shape of the MSD (see section 2.2.2).  For a perfect circle 

swimmer, i.e. a particle with constant translational and rotational velocity (no Brownian 

motion or other perturbations to particle motion or orientations), the average slope of the 
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long-time region would be zero and the MSD would be a perfect sinusoid. If the circle 

swimmer were to experience Brownian translational motion but not Brownian rotational 

motion, i.e. the angular velocity is constant, then the average slope of the long-time 

region would be the Brownian translational diffusivity Do. This holds regardless of the 

translational and rotational velocity supplied by the motors. If the circle swimmer 

experiences Brownian rotational and translational motion then the slope of the diffusive 

region is given by Equation (6. For the range of experimental translational and rotational 

velocities in this paper the addition of rotational Brownian motion results in long-time 

diffusivities between 50 and 150 times greater than Do. The reason why the long-time 

diffusivity that we measure increases one to two orders of magnitude upon the addition of 

randomness to the orientation of the motors, in this case due to Brownian motion, is 

because the unsteadiness of the orientation allows for the translational and rotational 

velocities to take the motor further, on average, from its origin.  Therefore, we see that 

the long-time diffusivity of circle swimmers is strongly modulated by the unsteady 

orientation of the motors. 

 We believe that the measured long-time effective diffusivity is greater than the 

BD simulations and analytical predictions because the unsteadiness of the motors 

orientation is greater than predicted by the theoretical Brownian rotational diffusivity. 

This is significant because it illustrates that motors fabricated with unsteady swimming 

mechanisms will have higher long-time diffusivities than steady motors. For circle 

swimmers the experimental rotational diffusivity can be calculated from a quadratic fit of 

the experimental mean squared angular displacement (Ebbens et al., 2010). We observe a 



36 
 

weak linear dependence of the measured rotational diffusivity with concentration with a 

maximum measured rotational diffusivity of six times what is expected due to Brownian 

motion at a H2O2 concentration of 1.25%. We hypothesize that the increased long-time 

diffusivity measured in the experiments, as compared to the Brownian dynamics 

simulations and Equation (6, is due to some additional unsteadiness in the orientation of 

the motor above what is expected due to Brownian rotational motion. This unsteadiness is 

potentially driven by fluctuations in the RICA force experienced by the motors. The 

fluctuations may be due to non-uniform adsorption of anions or other species, 

intermittent occurrences of the O2 reduction reactions, or inhomogeneity of H2O2 

concentration. Regardless of their source, any perturbation to the RICA force (especially 

the rotational component) causes an increase in the long-time diffusivity. The unsteady 

perturbations of the RICA mechanism enhance the effective diffusivity in the same way 

that Brownian rotational diffusivity increases the long-time diffusivity of a perfect circle 

swimmer. The validity of this assertion can be seen in Figure 10a where we have 

collapsed the experimental long-time diffusivities around the theory by using an 

amplified rotational diffusivity. In Figure 10b we include the results of the unsteady 

simulations (the velocities are based on linear fits of the experimental data) to show that 

effectively increasing the rotational Brownian diffusivity causes an increase in the motors 

long-time diffusivity. We make the motor motion unsteady by increasing the magnitude 

of the Brownian rotational diffusivity to 4.5Dr based on our findings from the mean 

squared angular displacement and from Figure 10a. If the average fluctuation magnitude 

is held constant with H2O2 concentration we observe reasonable agreement of the long-
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time unsteady BD simulations diffusivity to the experimentally measured long-time 

diffusivity at high H2O2 concentrations.  

 Figure 10b shows a local maximum as a function of the concentration in the long-

time effective diffusivity for the experiments as well as the BD simulations with exact 

experimental velocities. This maximum is not predicted from Equation (9b nor observed 

in the BD simulations with linear fits of the experimental velocities. The observed 

maximums that occur around peroxide concentrations of 0.135% in Figure 10 are due to a 

high translational velocity and small angular velocity compared to linear behavior of the 

translational and rotational velocities at those concentrations. The translational and 

angular velocities deviate from the linear trend as shown in Figure 5. The deviations are 

not systematic (i.e. not because the velocity as a function of concentration exhibit some 

significant nonlinearity). The deviation from the fit is due to natural variation of the 

swimmer’s velocity. We expect that with a larger sample volume or more uniform 

motors, we may not observe the asystematic variation in velocity that yields the 

maximum in effective diffusivity.  We examine the conditions under which we expect to 

observe maximums in the long-time effective diffusivity in the next section.  
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2.5 Maximum of Effective Diffusivity 

 

Figure 12. a) Space-field map of the normalized long-time effective diffusivity calculated 
from Equation (6 as a function of hydrogen peroxide concentration, and order of power 

dependence of the rotational velocity on concentration (ω=K1C
b
). The long-time 

diffusivity is normalized by the maximum diffusivity within the sample space. The 
translational velocity is linearly dependent on concentration for all values of b. b) The 
long-time diffusivity calculated from Equation (6 vs. rotational diffusivity. The diffusivity 
is scaled by the maximum diffusivity within the sample space and the rotational 
diffusivity is scaled by the rotational velocity. 
 

 The maximum in effective diffusivity observed in the experiments and 

simulations is a result of asystematic variations in the translational and angular velocity, 

but we provide some discussion of the conditions under which we might expect to 

observe a local maximum in effective diffusivity due to systematic velocity dependence 

on a physical controlling parameter, in this case concentration.    

 It is instructive to consider a general case, Equation (8, for the dependence of the 

velocity on a physical controlling parameter, such as concentration, since non-linear 
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dependencies have been measured (Howse et al., 2007; Gibbs & Zhao, 2009; Kagan et 

al., 2009; Sabass & Seifert, 2012) and predicted (Howse et al., 2007; Moran et al., 2010; 

Moran & Posner, 2011; Gibbs & Zhao, 2009) for a variety of motor propulsion 

mechanisms.  Figure 12a shows the contour map of the normalized long-time effective 

diffusivity calculated from Equation (6 as a function of H2O2 concentration, and order of 

power dependence of the rotational velocity on H2O2 concentration, b, where the motor’s 

translational and angular velocities can have a nonlinear dependence on the fuel 

concentration ( av C∝ and bCω ∝  respectively). In Figure 12a, the translational velocity 

is held linearly dependent on H2O2 concentration, a=1, for all values of b. As is predicted 

by the scaling in Equation (9b, when b≤a Figure 12a shows that DL increases 

monotonically and asymptotes at high H2O2 concentrations. When b>a DL increases with 

concentration to a maximum and decays to an asymptote at high H2O2 concentrations. 

The magnitude of the peak diffusivity increases as the non-linearity of the rotational 

velocity, b, increases. The maximum occurs when ω increases at a faster rate than v and 

the rotational velocity dampens the long-time diffusivity at high translational velocities.  

 Another mechanism by which a maximum in DL could be achieved is by 

modulation of the rotational diffusivity. Figure 12b shows the long-time diffusivity as 

calculated from Equation (6, plotted against the rotational diffusivity scaled by the mean 

rotational velocity.  Modulation of rotational diffusivity has been shown in this work 

(Figure 10a) and by Takagi et al. (2013).  A maximum in DL is predicted by Equation (6 

when the rotational diffusivity equals the rotational velocity. This suggests that there is an 

optimal amount of randomness in a circle swimmers motion that can maximize its 
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effective diffusivity. Just enough randomness in the orientation allows the motor to break 

its’ circular trajectory, while too much makes it so that the motor is not able to advect 

away before reorienting and traveling in a different direction. 

2.6 Summary 

 Spherical catalytic bimetallic micromotors fabricated as described in Wheat et al. 

(2010) have both translational and rotational velocity that vary with H2O2 concentration. 

The rotational velocity is likely due to asymmetry of the drag profile of the sphere caused 

by uneven metal coatings in the motor fabrication steps.  We show that generic circle 

swimmer motors (not necessarily catalytic motors) exhibit short and long-time 

diffusivities that scale as v
2
/2ω and v

2
/[2Dr(1+(ω/Dr)

 2)] respectively. The short-time 

diffusivity is larger than the long-time diffusivity because the long-time diffusivity is 

proportional to v
2
/(1+ω2

) instead of v
2
/ω. DS>DL suggests that although a circle 

swimming motor has a reduced diffusivity at long-times compared to a rotationally 

diffusive swimmer it samples a much larger region of the space over which it diffuses. 

The motors transition from short-time to long-time behavior at a time of π/ω(C). 

Therefore, the governing diffusive time scale varies as a function of hydrogen peroxide 

concentration. This means that when observed over short-times, or when the motors are 

confined to small spaces, the motors will appear to have a different diffusivity than at 

long-times or in large spaces. This effect could result in interesting behavior when a large 

number of these motors are placed in close proximity because their swimming pattern 

would lead to a high collision probability.  
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 We also show that artificial swimmers can exhibit maxima in long-time effective 

diffusivities if the motors have nonlinear translational or rotational velocities, or if the 

rotational diffusivity is a function the physical controlling parameter, in this work fuel 

concentration. Here,  we do not observe significant nonlinear dependencies of v or ω, and 

owe the measured maximum in long-time diffusivity to measured translational and 

rotational velocities that deviate from the expected linear trend at low H2O2 

concentrations. The combination of diffusive time scales and non-monotonic diffusivity 

of circle swimming catalytic motors as a function of fuel concentration suggests that we 

can expect complex particle responses in confined geometries and in spatially dependent 

fuel concentration gradients.    
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CHAPTER 3 

DIFFUSIOKINESIS 

3.1 Introduction 

Locomotion of organisms is commonly observed in nature and a key aspect of 

their transport is the ability to sense and response to gradients of chemicals 

(chemoattractants and chemorepellents) in a process termed chemotaxis (Berg, 1975). 

Chemotaxis allows for the directed transport of organism in response to a passive 

chemical concentration gradient. A chemotactic organism can sense spatial or temporal 

gradients and uses a feedback to move up or down a chemical concentration gradient. 

The directional sensing allows chemotactic organisms to concentrate in unbounded 

systems. Chemokinesis is a similar process to chemotaxis but instead of all of the 

organisms actively moving towards (away from) the chemoattractant (chemorepellent) 

they can accumulate in a pseudo-equilibrium distribution where there are more organisms 

in regions of high chemoattractant or low chemorepellent concentration. The 

accumulation is a result of a bounded random walk in an imposed concentration gradient 

of a chemoattractant or chemorepellent that elicits either a change in the velocity or 

turning frequency from the motor. Organisms are not trapped or attracted to the region of 

low diffusivity but rather they move randomly and can escape regions of low diffusivity, 

but they on average spend more time in regions of low diffusivity (Zigmond & Hirsch, 

1973; Keller, et al., 1977). A chemokinetic response is often thought of as arising from a 

gradient in velocity or turning frequency but the most general statement would be that it 

arises from a gradient in effective diffusivity. Using the diffusivity as a means to describe 
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an objects motion allows the chemokinetic response to be described by the Fokker-Planck 

equation for variable diffusivity (Schnitzer, 1993; Visser, 2008). To date, chemokinesis 

has only been attributed to swimming organisms, but the Fokker-Planck equation for 

variable diffusivity suggests that it should be possible for any objects that exhibit a spatial 

diffusivity gradient, even those moving only with Brownian thermal motion.  

Grassia, Hinch, and Nitsche (1995) performed a study of particles moving only 

with Brownian thermal motion in a diffusivity gradient by performing numerical 

simulations of colloids in different diffusivity gradients using the Langevin equations. 

The Langevin equations track the displacements of an object based on a drift velocity and 

a stochastic thermal motion term and describe the underlying physics of the Fokker-

Planck equation. Grassia et al. found that the Langevin equations allowed for the 

concentration in a bounded system. However, when a correction term is added to the 

standard Langevin equations to account for mass of the particles the concentration 

gradient of the particles disappeared (Grassia et al., 1995).  

In this work we study the response of 2 MDa dextran tagged with Fluorescein (the 

probe) in a diffusivity gradient (due to a viscosity gradient) generated in a microfluidic 

device using 10kDa dextran with Texas Red-dextran conjugate tracer. The microfluidic 

device consisted of parallel top channels, one with water the other with sugar, above a 

bottom channel filled with the high molecular weight probe. The top layer control 

channels and the bottom test section channel were separated by a polycarbonate (PCTE) 

membrane which allowed for the diffusion of the low molecular weight sugar, but no the 
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high molecular weight probe. The concentrations of the sugar and probe in the bottom 

channel are measured directly using quantitative fluorescence microscopy. The 

diffusivity of the probe molecules in different concentrations of sugar is measured using 

fluorescence recovery after photobleaching (FRAP). The diffusivity of the probe at each 

point in the microchannel test section is determined empirically from the sugar 

concentration measured by quantitative epifluorescence the measured diffusivity using 

FRAP. The measured steady state probe concentration is compared to the Fokker-Planck 

predictions for variable diffusivity in the empirically extracted diffusivity gradient. The 

magnitude of the probe concentration gradient is proportional to the strength of the 

diffusivity gradient and inversely proportional to the mean probe diffusivity in the 

channel in accordance with the no flux condition at steady state. 

3.2 Theory 

Diffusiokinesis is a process that takes a gradient in diffusivity and translates it 

into a concentration gradient. In this work the diffusivity gradient is generated through a 

gradient in viscosity. The gradient in viscosity is a result of a concentration of sugar. For 

a gradient device where the control channels (one with sugar, one with water) are 

separated from a test channel (where the assay takes place) the sugar concentration 

gradient is determined from Fick’s Laws. The concentration of a probe in the test channel 

is described by the Fokker-Planck equation for variable diffusivity. Both prominent 

methods for deriving the Fokker-Planck equation for variable diffusivity are discussed 

here. 
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3.2.1 Symmetric membrane thickness. 

 The diffusion of a species through a gradient generating device like those 

described below is given by Fick’s Laws.  

 
Figure 13. Schematic of a viscosity gradient device with the concentrations at important junction 
labeled. 

 

The gradient across the center channel (denoted wcc in Figure 13) controls the equilibrium 

time for the chemokinetic response of the particles to the diffusivity gradient. The 

gradient across the center channel depends on the thickness of the center channel, the 

thickness of the membranes, wm, and the input and output concentrations (C1 and C4). 

The channel used here is approximated as a 1-D concentration problem for the purpose of 

finding the flux across the channel. 10kDa dextran is flowed in at concentration C1 

through the left channel and pure water through the right channel at C4=0. Here we are 

implicitly assuming that the concentration in the left and right channels are uniform 

despite the diffusion of molecules through the membranes. In order to for this assumption 
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to be accurate the Peclet number has to be high in the outer channels. This assumption is 

verified in Section 3.2.3. Fick’s First Law (1-D) requires that the flux, J, across the 

channels is constant at steady state 

C
J AD

x

∂
=

∂ ,
 (10) 

 

 

where A is the cross-sectional area of the membrane, D is the diffusivity of the dextran, 

and C is the concentration of the solute (dextran). If it is assumed that the concentration 

gradients are linear, the flux is 

( ) ( ) ( )1 2 2 3 3 4

m cc m

ADH AD ADH
C C C C C C

w w w
− = − = − . 

(11) 
 

 

In the terms for the flux across the membranes we have introduced the partitioning 

coefficient of the solute into the membrane, H. The partitioning coefficient is used to 

account for the affinity of the diffusing solute, in this case dextran, for the membrane 

(Cussler, 2009). A general solution can be attained by writing Equation 11 as a system of 

equations.  

( ) ( )1 2 2 3

m cc

ADH AD
C C C C

w w
− = − , 

 
(12) 

 
 

( ) ( )2 3 3 4

cc m

AD ADH
C C C C

w w
− = − , 

 
(13) 

 
 

and  

( ) ( )1 2 3 4

m m

ADH ADH
C C C C

w w
− = − . (14) 

 

Note that only two of these equations are unique (as can be proved by performing 

Gaussian row reduction). If the input and output concentrations are known, C1 and C4 
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respectively, then the system can be solved for C2 and C3. If C4=0, which is what is 

specified by the experimental conditions, the solution is given by Equations (15 and (16. 

2 1
2

m cc

m cc

w Hw
C C

w Hw

+
=

+
, (15) 

and  

3 11
2

m cc

m cc

w Hw
C C

w Hw

 +
= − 

+ 
. (16) 

Equations (15 and (16 show that even if the thickness of the membrane goes to infinity, at 

steady state C2 and C3 both approach 50% of C1. This case obviously would result in zero 

gradient across the center channel. Therefore, the maximum gradient across the center 

channel is achieved when the membrane thickness is small compared to the center 

channel width. In the limit of H→0 C2 and C3 both approach 50% of C1. This makes 

sense since making wm large or H small has the effect of hindering diffusion in the 

membrane. 

3.2.2 Asymmetric membrane thickness. 

It may be desirable to have membranes with two different thicknesses. Here we 

resolve the flux equations when the left membrane is wm1 and right membrane is wm2. 

Again we start with Fick’s First Law: 

( ) ( ) ( )1 2 2 3 3 4

1 2m cc m

ADH AD ADH
C C C C C C

w w w
− = − = − . (17) 

Equation 17 is the same as Equation 11 except that wm has been replaced with wm1 and 

wm2. For this system C1 is a known input and C4 is zero. Equation 17 is broken into 
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( ) ( )1 2 2 3

1m cc

ADH AD
C C C C

w w
− = − , (18) 

( ) ( )2 3 3 4

2cc m

AD ADH
C C C C

w w
− = − , 

 

(19) 

 

and  

( ) ( )1 2 3 4

1 2m m

ADH ADH
C C C C

w w
− = − . (20) 

Solving the system of equations C2 and C3 are determined to be: 

2
2 1

1 2

cc m

cc m m

Hw w
C C

Hw w w

+
=

+ +
 (21) 

and  

2 2
3 1

1 2 1

1 cc m m

cc m m m

Hw w w
C C

Hw w w w

 +
= − 

+ + 
. (22) 

When wm1=wm2 then the solution reduces to Equations 15 and 16. If the membrane 

thicknesses can be controlled independently the largest resolution, the largest drop in 

concentration across the channel, occurs when the thickness of the right membrane is 

small compared to the left. 

In the simplest sense the diffusion of a molecule through a membrane can be 

thought of as hindered diffusion where the expected diffusion is multiplied by some 

factor that is less than one. This is the approach used in Equation 11, when the 

partitioning coefficient is added to Fick’s First Law. If there was no hindrance factor for 

diffusing across the membrane the diffusion time across a membrane can be 

approximated as  where wm is the thickness of the membrane, t is the time 

required, and D is the diffusivity of the species of interest. The time given by this 

calculation would underestimate the time required to diffuse through the membrane. A 

2

2

mw
t

D
≈
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closer approximation of the time required would be to divide this time by the partitioning 

coefficient. 

3.2.3 Diffusion in the outer channels (Peclet number). 

The Peclet number in the outer channels is defined as 
UL

Pe
D

= . The Peclet 

number is the ratio between convective and diffusive transport. U is the velocity in the 

channel, L is the characteristic length scale (here wcc), and D is the diffusivity of the 

background dextran. When the Peclet number is much larger than unity, the convection 

of the fluid is so large compared to diffusion so the concentration of the species of 

interest in the fluid is relatively constant along the length, width, and height of the 

channel. When the Peclet number is much less than one, diffusion dominates and the 

concentration of the species of interest decreases along the length of the channel as the 

species diffuses out of the channel. For this experiment the species of interest is 10 kDa 

Dextran that has a diffusivity of approximately 115 µm2/s (Armstrong, Wenby, 

Meiseman, & Fisher, 2004). A syringe pump is used to maintain a flow of 5 µL/hr in the 

outer channels. The average velocity in the channel is calculated based on the flow rate 

and the cross sectional area of the top channels. Using the L=15 mm (the length of the 

channel) we see that this results in a Pe≈400. This suggests that our assumption that the 

concentration is uniform in the outer channels is valid. 

3.2.4 1-D Fokker-Planck equation for variable diffusivity. 

There are a number of derivations of the Fokker-Planck equation for variable 

diffusivity. Schnitzer (1993) derived the Fokker-Planck equation for variable diffusivity 
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in order to study the behavior of Escherichia coli. His approach is based on calculating 

the flux in two adjacent boxes filled with particles where each box has different 

diffusivity characteristics. The net flux in the system yields a modified form of Fick’s 

first law from which the Fokker-Planck equation can be derived. Visser has an alternative 

derivation that starts from the Langevin equation (2008). The system is then evaluated as 

a Weiner stochastic process where the diffusivity varies in space.  In both cases the 

Fokker-Planck equation for variable diffusivity contains a parameter α that varies from 0 

to 1. The interpretation of this parameter is slightly different in the two cases but in both 

α serves as a method to account for different collision/turning frequency characteristics 

and determine if accumulation is possible or not in the system. The Fokker-Planck 

equation for variable diffusivity using the Visser notation is  

( )1
D

D
t x x x x

ρ ρ
α ρ

∂ ∂ ∂ ∂ ∂   = − +   ∂ ∂ ∂ ∂ ∂   
 (23) 

where, ρ can be interpreted as either the probability density or the concentration and D is 

the diffusivity of the species at any point in space. When α is one there is no 

accumulation in response to diffusivity gradient. If α is any other value a species is 

expected to concentrate in response to a gradient in its diffusivity. The closer α is to unity 

the more strongly the species concentrates in response to the same diffusivity gradient. 

Typically the value of α is determined from the experimental data. The other important 

requirement for achieving a species concentration is the presence of bounding walls. 

Even with a nonzero α there is no steady state concentration without the no-flux 

conditions at the boundaries. This is because the concentration is not the result of directed 
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motion of the species but rather a response to the modified characteristics of the random 

walk. In an unbound system the particles would ultimately diffuse throughout the infinite 

domain resulting in a zero concentration everywhere at long times. The species are 

constantly undergoing a random walk but the average speed with which they move varies 

with space. Therefore, molecules tend to spend more time in regions of low diffusivity 

than they do in regions of high diffusivity. However, they are not trapped in any given 

region and move freely between the two. Steady state is reached when the net flux in the 

system is zero, i.e. for every molecule that enters the high diffusivity region another 

particle exits. The SS condition is reached when the net flux is zero, J=0, and can be 

written as, 

( )1
D

J D
x x

ρ
α ρ

∂ ∂
− = + −

∂ ∂
. (24) 

This condition also describes the strength of the concentration of molecules in response 

to a given diffusivity gradient. The first flux term is the standard form of Fick’s law, 

when α=0, and represents the tendency of the probe diffusivity to smooth the probe 

concentration. The second flux term represents the concentrating power of diffusivity 

gradient. 

3.2.5 Simulations of Brownian diffusion in a viscosity gradient. 

 We perform two simulations of Brownian particles in a viscosity gradient, namely 

Brownian dynamics and the solution of the modified Fokker-Plank equation. The 

Brownian dynamics simulations are based on the Langevin equations where the average 

magnitude of the Brownian kicks is a function of the location in the channel. The sample 
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space is bounded by elastic reflective walls. The input average diffusivities and shape of 

the diffusivity gradient are taken from fits of the experimental data. It is verified that the 

Brownian dynamics solutions give the same solutions as the Fokker-Planck equation for 

variable diffusivity. 

The Fokker-Planck equation for variable diffusivity, Equation (23), is solved 

numerically using a forward time center space (FTCS) scheme. For this condition a 1-D 

channel where 0 ≤ x ≤ L, the 1-D modified Fokker-Planck Equation becomes 

( ) ( )
2 2

2 2
2 1

D D
D

t x x x x

ρ ρ ρ
α α ρ

∂ ∂ ∂ ∂ ∂
= + − ⋅ + −

∂ ∂ ∂ ∂ ∂
 (25) 

where ρ is the probability density of the particles occurring at any location, D is the 

diffusivity of the particle at any location, x is the dimension across the channel, and t is 

time. The boundary conditions (BCs) for this system are that there is no flux of particles 

at the boundaries. The BCs are shown in Equation (26 

( )
0

1 0
x

D
J D

x x

ρ
α ρ

=

∂ ∂ = − − − = ∂ ∂ 
, (26a) 

and  

( )1 0
x L

D
J D

x x

ρ
α ρ

=

∂ ∂ = − − − = ∂ ∂ 
. (26a)b) 

                                                                                                   
The numerical discretization of Equation (25 after applying FTCS is 

( ) ( )

1 1

2
1

1 1 1 1 1 1

2

2
...

2
... 2 1

2 2

n n n

i i i
i

n n
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D
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D D D D D
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ρ ρ ρ

ρ ρ
ρ ρ
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+ −

+
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 − +
+ ∆ = + ∆

− − − + 
+ − + −  ∆ ∆ ∆

 (27) 
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where i=1:Nx and n=1:Nt. This method is first order accurate in time and second order 

accurate in space. For a FTCS scheme on the unmodified Fokker-Planck equation there is 

a stability condition such that        

2

1

2

D t

x

∆
≤

∆
. 

 

(28) 

Fokker-Planck equation for variable diffusivity does not possess a simple stability 

condition due to the extra terms in the PDE and the fact that the diffusivity varies with 

space. Here we choose the most stringent condition for ∆t based on ∆x to achieve stability 

(i.e. we choose the minimum diffusivity in the system). 

The BCs for Equation (27 require special attention because if applied improperly 

or without proper fidelity they will result in rapid mass loss from the solution when a 

gradient in diffusivity is present. Therefore, it is not recommended to use a first order 

method like a forward or backward space discretization at the boundaries. A second order 

centered difference scheme by utilizing ghost points can be used at the boundaries. 

However, since the BCs can also be solved analytically it makes sense to use the exact 

solution. Applying separation of variables to Equation (26a) we get 

( )
2

1 2

1 1

D
C C

D α
=

−
, (29a) 

and  

( )1

1 1

Nx
Nx Nx

Nx

D
C C

D α−
−

=
−

 (29b) 

at all time steps.  
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3.2.6 Diffusiophoresis in non-electrolyte gradients. 

 For chemokinetic experiments there is a concern that the observed response of the 

probes is not due to non-directed accumulation in a diffusivity gradient and instead is a 

diffusiophoretic drift velocity to the concentration gradient of the background molecules 

used to generate the diffusivity gradient. From Anderson (1989), we know that the 

diffusiophoretic velocity that arises from a concentration gradient for uncharged solutes 

is 

*kT
U KL C

µ
= ∇  (30) 

where, U is the diffusiophoretic velocity, kT is the thermal energy, µ is the dynamic 

viscosity, K is the Gibbs absorption length, and L* is the characteristic length of the 

particle-solute interaction. Due to limits in the theory for polymer-polymer interactions 

the exact diffusiophoretic velocity is unknown. However, from Anderson (1993) and 

Staffeld and Quinn (1988) the diffusiophoretic velocity can be minimized by choosing a 

solute (10 kDa dextran) that is small, with low polarizability, the channel width should be 

as large as feasible, and there should be a background buffer that minimizes the double 

layer thickness of solute molecule and probe molecules. 

3.3 Experimental Methodology 

A device in which diffusiokinesis can be measured has a variety of requirements. 

It has to be able to generate diffusivity gradient, the system has to be bounded in 

diffusivity gradient direction, there can be no pressure driven flow in test channel, the 

diffusivity gradient has to be strong enough to elicit a measureable response, and the 
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solutes must be chosen so that the potential sources of drift velocities (diffusiophoresis, 

gradients in potential) are minimized. 

3.3.1 Gradient generating devices. 

Chemotaxis of bacteria, cells, and other microorganisms is studied in a variety of 

different devices. Generally, the devices work by placing the microorganisms of interest 

in between a source (a chemoattractant or chemorepellent) and a sink (absence of the 

chemoattractant or repellent). One of the most basic devices utilizes a Y-shaped 

microchannel where the gradient is setup up by running the source and sink in parallel in 

the channel that also contains the microorganism  (Abhyankar, et al., 2008; Long & Ford, 

2009).  Another common method utilizes agarose gel as a membrane in between the 

source, the microorganisms and the sink (Ahmed, Shimizu, & Stocker, 2010).  Recently 

we have studied the chemokinetic response of synthetic bimetallic nanorods using a 

steady-linear-concentration gradient generator of the design first introduced by Diao et al. 

in 2006 (Palacci et al. 2010; Haessler et al. 2009; Wheat, Marine and Posner, 2013). The 

design requires channels to be cut into a nitrocellulose membrane with a laser. There are 

issues with using each type of device. The Y-shaped microchannel devices require the 

microorganism of interest to be able to stick to the channel so that they don’t advect away 

with the solutions or that the chemotactic response time is less than the time it takes the 

organisms to advect down the channel. The agarose gel membranes tend have limited 

pore size options and are therefore limited in what may diffuse through them. The 

nitrocellulose membrane thickness tends to be very large due to the thickness of the laser. 

As is shown in Section 3.2.1 this has the effects of reducing the gradient across the 
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channel compared to when the membrane thickness is small. The other issue is that when 

using larger molecules the tortuosity of the membranes results in a very low partitioning 

through a thick membrane.  

3.3.2 Device fabrication. 

The gradient generating device used in these experiments is shown in Error! 

Reference source not found.. It is a multilayered structure consisting of top control 

channels and a bottom test channel that are separated by a microporous membrane. Water 

is flown through one control channel while sugar is flown through the other. The sugar is 

free to diffuse through the membrane into the test-channel and across and out the other 

side to test-channel, through the membrane and out through the water filled control 

channel. The probe molecules, 2MDa dextran, are too large to diffuse through the 

membrane and the channel-wise flow is stopped by controlling the height of water in the 

inlet and outlet wells so that the probes only move through diffusion.  
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Figure 14. Schematic of the structure used to generate steady-linear chemical 

concentration gradients for the chemokinesis assays. The control (top) channels are 

50 µm wide and 30 µm deep and are separated by a gap of 150 µm. The test (bottom) 

channel is separated from the top by a polycarbonate membrane (with 30 nm cylindrical 

pores, thickness of 6-15 µm) and is 300 µm wide and 30 µm deep. Water is flown 

through one top channel while sugar is flown through the other. The sugar is free to 

diffuse through the membrane while the probe molecules are trapped in the bottom 

channel. a) Top view of the channels.  b) Side view of the device. c) The steady state 

sugar concentration gradient in between the control channels. 

The test channel is 300 µm wide and 30 µm deep and the control channels are 

50 µm wide and 30 µm deep. The distance between the inner edges of the top channels is 

150 µm which results in partial overlap of the control and test channels. This overlap was 

retained in order to facilitate the alignment of the top and bottom sections. Alignment is 

done by hand with the aid of a stereo microscope and without play in the alignment 

allowed by the overlap the device yield was too low. The top and bottom channels were 

fabricated using soft lithography of PDMS (Duffy, McDonald, Schueller, & Whitesides, 

1998). We use an SU8 (2025 MicroChem. Corp., Newton, MA) master template 

fabricated on a Si (100) wafer (University Wafer Corp., Boston, MA) using 

photolithography.  Sylgard 184 PDMS prepolymer (Dow Corning, Midland, MI) at 10:1 
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base polymer/curing agent (A:B) is then cast on a silanized master. The PDMS is then 

cured at 80° C in a convection oven for 30 min. The individual structures are bonded to 

the membrane using the process described by Aran, Sasso, Kamdar, and Zahn (2010). 

The membranes are made out of polycarbonate, have 30 nm diameter cylindrical pores, 

and are 6-15 µm thick (CAT# PCT00325100, Sterlitech Corp., Kent, WA). The 

membranes are first activated in an oxygen plasma chamber (600 mTorr, 100 W) for 

1 min and then immersed in a solution of 3-amino-propyltriethoxysilane (APTES) (CAT# 

A3648, Sigma-Aldrich, St. Louis, MO), diluted in water to 5% by volume, at 80° C for 

20 min. The APTES solution is heated on a hot plate and covered so that the water does 

not evaporate. The soaked membranes are removed with tweezers and placed on a 

cleanroom wipe to dry. The dried membrane is then brought into contact with PDMS 

structures that have been activated in the oxygen plasma chamber (600 mTorr, 100 W) 

for 30 s. 

3.3.3 Solution preparation. 

Sugar stock solutions of 10 kDa dextran (CAT# D9260, Sigma-Aldrich, St. Louis, 

MO) were prepared at concentrations of 0.045, 0.09, and 0.18 g/mL. The stock solutions 

are combined with 10kDa dextran conjugated with Texas Red (CAT# D1828, Invitrogen, 

Carlsbad, CA) such that the final total concentrations of 10kDa dextran are 0.032, 0.062, 

and 0.122 g/mL (~0.0122 M) and the concentration of Texas Red conjugated 10kDa 

dextran is 2.18 mg/mL for all three solutions. The probe solutions are 2MDa dextran 

conjugated with Fluorescein (CAT# FD2000S, Sigma-Aldrich, St. Louis, MO) at a 

concentration of 2 mg/mL. The FRAP solutions consist of the untagged 10 kDa dextran 
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at concentrations of 0.009375, 0.01875, 0.0375, 0.075, and 0.15 g/mL each with 2 MDa 

dextran conjugated with fluorescein at a concentration of 2 mg/mL. The approximate 

concentration of Fluorescein is 10 nM. 

3.3.4 Imaging and flow conditions. 

 We used quantitative epifluorescence microscopy on an inverted microscope (TE 

2000, Nikon, Melville, NY) with a 40 x objective (NA=0.5) to image the variable 

diffusivity experiments.  Images were recorded on a 12 bit, high speed CMOS camera 

(Phantom v12.1, Vision Research, NJ 07470, USA) at a resolution of 800 x 600 pixels 

and an exposure time of 10 ms. The fluorescence intensity of the Fluorescein tagged 

probe is imaged with a blue-green filter cube (Excitation 450-490nm, Emission 510-

570nm, XF100-2, Omega Optical, Brattleboro, VT), while the Texas Red tagged tracer is 

imaged with a green-orange filter cube (Excitation 508-545nm, Emission 573-633nm, 

XF108-2, Omega Optical, Brattleboro, VT). A syringe pump (KD Scientific Model 210, 

Holliston, MA) is used to drive the flow in the control channels at a speed of 5 µL/hr to 

provide constant inlet and outlet concentrations of the sugar and water (Pe≈400).  The 

solutions are driven in glass 50 µL syringes (Fisher Scientific, Waltham, MA) with 

fluidic connections made using Tygon tubing (1/16’’ ID, McMaster-Carr, Santa Fe 

Springs, CA) and stainless steel tubes (NE-1300-01, New England Small Tube Corp., 

Litchfield NH). The flow in the test channel is controlled by varying the water height in 

the well at each end of the channel. Before measuring concentration of the probe in the 

diffusivity gradient the solution in the bottom channel is flushed so that there is no initial 
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probe concentration gradient and sugar concentration gradient. After the fresh solution is 

flushed through the flow is again stopped. 

3.3.5 Imaging and data processing. 

 For each experiment the flatfield and dark-field images are recorded for each 

solution at the locations in the channel where data will be taken. For both of the dark-

field images the fluorescence intensity is measured with only buffer in the channels. For 

the probe flatfield the control channels are filled with water and the test channel is filled 

with the probe solution. For the 10 kDa dextran tracer flatfield, both of the control 

channels and the test channel are filled with 10 kDa dextran solution to be used in the 

experiment. The flatfield and dark-field images are then used to correct the images taken 

during the experiment to gain the scalar concentration using Equation (31 

( ) ( ) ( )
( ) ( )

, ,,

, ,

raw dark

o flat dark

I x y I x yC x y

C I x y I x y

−
=

−
. (31) 

Where C is the concentration of measured fluorescent molecule, Co is the input 

concentration, I, represents the temporal average of ten consecutive frames, and the 

subscripts raw, flat and dark denote the raw, flat, and dark-field images respectively. 

After the flatfield and dark-field corrections the corrected concentrations are averaged 

axially to form the line plots. 
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3.3.6 Concentration vs. fluorescence intensity for FITC dextran. 

 The linearity of the intensity of the different tagged dextran solutions have been 

verified for all of the solutions used in this dissertation. Figure 15 shows the 

concentration versus fluorescence intensity of 10kDa FITC tagged dextran. 

 

Figure 15. The concentration of 10kDa dextran tagged with FITC versus their normalized 
fluorescence intensities. 
Figure 16 shows the concentration versus fluorescence intensity of 2MDa FITC tagged 

dextran. 
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Figure 16.The concentration of 2MDa dextran tagged with FITC versus their normalized 
fluorescence intensities. 
 

3.3.7 Fluorescence recovery after photobleaching (FRAP) theory. 

 In 1976 Axelrod, Koppel, Schlessinger, Elson, and Webb demonstrated how 

photobleaching a molecule could be used to calculate its diffusivity. A laser scanning 

confocal system is used to bleach a small region of the field of view of a microscope. The 

region that is bleached is saturated with light until the area no longer fluoresces because 

all of the excitable electrons have moved to a lower energy state, leaving the region dark. 

The recovery of the intensity of the region as unbleached dye from elsewhere in the 

system diffuses in is then monitored. The intensity of the dye is correlated to the 

concentration of the dye. The theoretical recovery profile at any given time can be 

calculated from the advection-diffusion equation. The exact solution depends on the 

shape of the bleached region, which depends on the profile of the laser beam used for the 
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photobleaching. Axelrod et al. (1976) outlined a solution method for a circular region 

with a laser beam that has a Gaussian beam profile. In this work we instead bleach a 

rectangular section of the fluid in a microchannel such that the problem reduces to a 1-D 

diffusion problem where the initial dye concentration after bleaching is an inverse top 

hat. The solution to the advection diffusion equation for an inverse top hat profile is given 

by Equation 32 

( , ) erf erf
2 4 4

o
o

C h x h x
C x t C

Dt Dt

 − +   
= − +    

    
 (32) 

where C is the concentration of the dye (or the molecule the dye is attached to), Co is the 

initial concentration of the dye, h is the initial width of the bleach region, x is the spatial 

coordinate, D is the diffusivity of the dye and t is time. At each time the concentration 

profile at each time is fit to Equation 32 so that the diffusivity can be calculated. The 

mean diffusivity over the course of the recovery period is then used and the diffusivity 

coefficient of the dye.  

In order to fit the measured intensity profiles to this form it is required to 

renormalize the profile after the flatfield and backfield correct so that the bleached region 

is initially at zero concentration and the unbleached areas have a concentration equal to 

the input concentration. This is necessary because usually the bleaching is not complete 

and there is some unintended bleaching of the whole field of view while imaging the 

recovery. Figure 17 shows an example of the recovery profiles over time and includes the 

fits of Equation 32. The width of the initially bleached region is calculated based on the 

region where the first post-bleach image reaches 50% of the original concentration. 
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Figure 17. The concentration recovery of an inverse top hat profile after photobleaching. 
The experimentally measured concentrations (•) are plotted at each time along with the 
theoretical solutions from Equation 32 (solid lines). 
 

3.3.7 FRAP experimental procedure. 

The FRAP experiments are conducted on a Leica SP2 confocal system (Leica 

Microsystems, Buffalo Grove, IL) using a 20x objective and a 488nm Ar laser. The 

FRAP solutions are hand loaded into PDMS microchannels bonded to glass coverslips. 

The channels are 50 µm wide and 30 µm deep and several millimeters long. A region of 

interest that completely covered the width of the channel was bleached. This reduces the 
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diffusion to a 1-D problem where dye is in an inverse top-hat profile. Equation (31 is 

used to calculate the concentration inside the channel. The recovery of the bleached 

region is monitored for 90 frames at a frame rate of 0.513 Hz. The concentration profiles 

are fitted to the analytical solution of the advection-diffusion equation for an inverse top-

hat profile to obtain a least-squares fit of the diffusivity at each time. The diffusivity is 

then temporally averaged to get diffusivity of the 2 MDa probe at each sugar 

concentration. The early time diffusivities are excluded in this average to account for 

uncertain in between the bleach time and the start of the recovery time. The measured 

diffusivity of the probe, Dpr, as a function of the sugar concentration is shown in Figure 

18. The probe diffusivity is scaled by the diffusivity of the probe in water, Do. The 

diffusivity of the probe in the sugar solution is given by Equation (33 (Phillies, Gong, Li, 

Ran, Zhang, Yu and Rolling, 1989) 

( )exp s

o

D
C

D
β= −  (33) 

where β is a coefficient that depends the properties of the probe and the sugar and has 

units of mL/g of sugar. Equation (33 can also be derived from the Stokes-Einstein 

equation when the viscosity scales as exp(βCs) (Philliges, 2011). It is important to 

measure the diffusivity of the probe in the sugar so that any sugar-probe interactions are 

captured in the measurement. Figure 18 shows the measured probe diffusivity versus 

sugar concentration from FRAP.  For the probe and sugar combinations used in these 

experiments Do=5.9 (µm2/s) and β=29.09 (mL/g of sugar). 
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Figure 18. The diffusivity of the probe measured using FRAP scaled by the probe 

diffusivity in water vs. the concentration of sugar in (g/mL). The solid line is the fit data 

using Equation (33 which gives Do=5.9 (µm2/s) and β=29.09 (mL/g of sugar). 

3.4 Results and Discussion 

Figure 19a shows the measured sugar concentration in the channel for three 

different experiments. We classify the experiments by the maximum measured sugar 

concentration, here Cmax 0.006, 0.0275, and 0.031g/mL. This classification does not 

completely describe the results but it serves as a useful reference point to help order the 

outcomes of the experiments. We do not use input concentration of sugar into the top 

channel because the concentration in the bottom channel is not consistent between 

experiments or devices for a given input sugar concentration. The hindered transport of 

the sugar through the membrane results in only a fraction of the sugar diffusing through 

the membrane and can result in sugar building up near the outlet channel. Fick’s first law 

suggests that the sugar concentration should be linear in the center channel and that the 
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strength of concentration gradient is proportional to the difference between the inlet and 

outlet sugar concentrations, the partitioning coefficient of the sugar through the 

membrane, and inversely proportional to the total distance between the inlet and outlet 

channels. The measured sugar concentrations in Figure 19a are roughly linear. The sugar 

gradients are lower than expected based on the difference in sugar inlet and outlet 

concentrations and the Equations 15 and 16 due to the low partitioning coefficient of the 

membranes.  When imaging under and near the control channels the intensity of the sugar 

in the control channels affects the measurement of the sugar in the bottom channel and 

therefore the sugar concentration and diffusivity are cropped in these regions. Figure 19 

shows the empirically calculated diffusivity of the probe molecules in the measured sugar 

concentrations from Figure 19a. The diffusivity is calculated by plugging the measured 

sugar concentration into Equation (33 with the coefficients determined from Figure 18. 

The diffusivity is approximately linear and is highest in the region of low sugar 

concentration and lowest in the region of high sugar concentration.  
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Figure 19. a) The steady state sugar concentrations vs. the scaled channel width for Cmax 

0.006 (∆), 0.0275 (○), and 0.031g/mL (•). b) The steady state probe diffusivity scaled by 

the probe diffusivity in water vs. the scaled channel width for Cmax 0.006 (∆), 0.0275 (○), 

and 0.031g/mL (•). 

 

Figure 20a shows the temporal response of probe concentration across the channel 

for a maximum measured sugar concentration of 0.031 g/mL. Figure 20a shows that the 

probe concentration reaches steady state in approximately 15min. This time is much 

greater than the setup time for the sugar concentration which is ~1.5 min. Figure 20b 

shows the steady state probe concentration, Cpr, scaled by the input probe concentration, 

Cpr,o, versus the scaled channel width for the same three sugar concentrations shown in 

Figure 19. The probe concentrations are shown for the full channel gap since the probe is 

confined to the bottom channel. The measured responses for each maximum sugar 

concentration are linear. The probes reach a pseudo equilibrium distribution where there 

is a higher concentration of probe molecules in the low diffusivity region at any given 

time than are in the high diffusivity region. The strength of the probe concentration scales 
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with the maximum measured sugar concentration. Each experimental condition is 

accompanied by a theoretical solution from Equation (25) with α=0, shown in Figure 20b 

by solid lines. The diffusivity profile used in the theoretical solution is determined from 

linear fits of the diffusivity from Figure 19b. 

 

 
Figure 20. a) The temporal response of probe concentration across the channel for a 

maximum measured sugar concentration of 0.031 g/mL. b) The steady state probe 

concentrations scaled by the input probe concentration vs. the scaled channel width for 

Cmax 0.006 (∆), 0.0275 (○), and 0.031g/mL (•). The solid lines represent the theoretical 

probe concentration at steady state given the diffusivity gradients for each experiment in 

Figure 19b from the Fokker-Planck equation for variable diffusivity (Equation (25)). 

 

The strength of the probe concentration in response to the diffusivity is governed 

by the steady state condition for the probe. At steady state the net flux of the probes in the 

channel has to be zero as described by Equation (24. A good reference point for this 

calculation is the center of the channel. In these experiments the probe concentration to 

the left is lower than the input concentration while everything to the right of this point is 



70 
 

higher.  The no net flux condition is a balance of Fickian diffusion from right to left and 

diffusive flux (flux from gradients in diffusivity) from left to right. This balance is 

demonstrated in Figure 21 where the probe gradient is scaled by the probe input 

concentration and multiplied the channel gap is plotted versus the probe diffusivity 

gradient scaled by the mean diffusivity and multiplied by the channel gap. These terms 

represent the competing flux terms from Equation (24 after it has been rearranged and 

non-dimensionalized. Figure 21 shows the results from eight different experiments 

including the three shown in Figure 19 and Figure 20. The solid line represents the 

analytical solution from Equation (24. For these experiments it was determined that α=0 

which is consistent for the Ito convention for the Langevin equations for Brownian 

particles (Risken, 1989). The experimentally calculated net flux agrees well with the 

analytical solution. Figure 21 shows that the greater the magnitude of the gradient in 

diffusivity, the higher the gradient in probe concentration. Inversely the higher the mean 

diffusivity in the channel the lower probe concentration gradient. This highlights an 

important dichotomy of bounded variable diffusivity random walk. A gradient in 

diffusivity is a necessary but not a sufficient condition for achieving a gradient in 

concentration. As previously established (Grassia et al., 1995; Schitzner, 1993; Visser, 

2008) in addition to a diffusivity gradient the diffusion characteristics of the probe have 

to be such that α is nonzero and the system needs to be bounded. There can also some 

situations where these conditions are meet but no gradient is observed. In order to get a 

measurable probe concentration gradient the mean probe diffusivity has to small 

compared to the diffusivity gradient. This is because the process relies on the dwell time 
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for the particles being higher in some areas than others. This makes sense from a pure 

diffusion standpoint because the higher the mean diffusivity the more quickly and 

concentration gradients are smoothed out. 

 
Figure 21. The steady state scaled probe concentration gradient vs. steady state scaled 

diffusivity gradient. The concentration gradient is scaled by the gap between the input 

and output channels over the minimum probe gradient in the channel. The diffusivity 

gradient is scaled by the gap between the input and output channels over the minimum 

probe diffusivity in the channel times 1-α. The theoretical solution from Equation (24 is 

the solid line. 

 

3.5 Conclusions 

A variable diffusivity random walk system is created using a microfluidic 

gradient generating device. The diffusivity gradient is created by a viscosity gradient, 

which is generated through a concentration gradient of sugar (10 kDa dextran). The 

measured sugar concentration in the center channel is linear in accordance with 

expectations from Fick’s laws. The diffusivity is empirically calculated using the 
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measured sugar concentration and the measure diffusivity of the probe from FRAP. 

Despite the fact that the diffusivity depends nonlinearly on the sugar concentration the 

diffusivity in the center channel is approximately linear because the sugar concentration 

gradient is weak. This is due to the low partitioning of the sugar through the device 

membranes. The diffusivity gradient leads to a concentration gradient of probe molecules 

(2 MDa dextran). At steady state the probes possess a slightly higher concentration in 

regions of low diffusivity. The strength of the probe concentration gradient is 

proportional to the strength of the diffusivity gradient and inversely proportional to the 

mean probe diffusivity in the channel in accordance with the no flux condition at steady 

state. The measured probe concentration gradient agrees with the Fokker-Planck equation 

for variable diffusivity when α=0. The applicability of the Fokker-Planck equation our 

system suggests that any particle or microorganism can be concentrated in a diffusivity 

gradient as long as the system is bounded, the mean diffusivity is small compared to the 

magnitude of the diffusivity gradient, and α is not equal to 1. This means that the motion 

of any object is capable of being passively controlled using a diffusivity gradient. 
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CHAPTER 4 

SUMMARY 

 At low Reynolds number motile particles are classified by their effective 

diffusivity. Generic circle swimmer motors (not necessarily catalytic motors) exhibit 

short and long-time diffusivities that scale as v
2
/2ω and 

v
2
/[2Dr(1+(ω/Dr)

 2)]  respectively. These time scales arise due to the rotational velocity of 

the motors. When observed over short-times, or when the motors are confined to small 

spaces, the motors will appear to have a different diffusivity than at long-times or in large 

spaces. Artificial swimmers can exhibit maxima in long-time effective diffusivities if the 

motors have nonlinear translational or rotational velocities, or if the rotational diffusivity 

is a function the physical controlling parameter, in this work fuel concentration. This 

means that circle swimmers can exhibit chemokinesis in bounded fuel concentration 

gradients. The chemokinetic response of particles is a result of the response to a 

diffusivity gradient in a confined space. The Fokker-Planck equation for variable 

diffusivity describes the chemokinetic response in such a system. A variable diffusivity 

random walk system is created using a microfluidic gradient generating device. The 

diffusivity gradient is created by a viscosity gradient, which is generated through a 

concentration gradient of sugar (10 kDa dextran). The strength of the probe concentration 

gradient is proportional to the strength of the diffusivity gradient and inversely 

proportional to the mean probe diffusivity in the channel in accordance with the no flux 

condition at steady state. Our work suggests that any organism can be concentrated in a 
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diffusivity gradient as long as the system is bounded, the mean diffusivity is small 

compared to the magnitude of the diffusivity gradient, and α is not equal to 1.  
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APPENDIX A 

BROWNIAN DYNAMICS SIMULATIONS 
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%simulate behavior brownian particles in a 1-D diffusivity gradient due to viscosity 

cont =1; %are we working from previous data 0 for no, 1 for yes 

if cont == 0 

    clc, clear all,close all 

    cont=0; 

else 

    close all 

end 

 

dt=.1;%s timestep period 

numframes=2600;numrods=10000; 

t(:,1)=0:dt:(numframes-1)*dt; 

 

theta=zeros(numframes,numrods);%x=zeros(numframes,numrods);%y=zeros(numframes

,numrods); 

 

%particle setup - constants 

d=.5;%particle diameter in um 

a=d/2; 

%constants for Brownian Do for water 

k=1.38e-23;T=(23+273);mu=1e-3;%m^2*kg/(s^2*K), K, kg/m/s 

Do=k*T/(6*pi*mu*a*10^-6); 

%vscale library - 1D 

%vscale=1.70;wscale=2.50*pi/8;%3um spheres Deff 0.145um^2/s 
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% vscale=6.00;wscale=2.50*pi/8;%250nm spheres Deff 1.77um^2/s - wscale not set 

% vscale=2.93;wscale=2.50*pi/8;%1um spheres Deff 0.43873um^2/s - wscale not set 

vscale=4.2;wscale=2.50*pi/8;%500nm spheres Deff 0.86741um^2/s - wscale not set 

% vscale=6.00;wscale=2.50*pi/8;%vscale and wscale set to level to achieve brownian 

values of Deff~.144,Drot~.0447 for dt=0.1 

%choose channel geometry (ch=1 (triangular), ch=2 thinning 

ch=3; 

if ch==1 

    %linear visc gradient with mu_o on left and mu_w on right 

    w = 300;%width of channel in um 

    mu_o=1000e-3;%oil - dynamic visc in kg/(m*s) 

    mu_w=1e-3;%water - dynamic visc in kg/(m*s) 

    xL=0;xR=w; 

    if cont ==0 

        x(1,:)=linspace(xL,xR,numrods);%evenly distribute the motors 

    end 

elseif ch==2 

    %non-linear visc gradient with mu_o on left and mu_w on right 

    w = 300;%width of channel in um 

    mu_o=50e-3;%dextran - dynamic visc in kg/(m*s) 

%     cpR=.2;%the concentration in w/v% at the right boundary that gives mu_o 

%     mu_w=1e-3;%water - dynamic visc in kg/(m*s) 

%     C2=15.3;%fit non-linear so excel file dextran gives this fit 

    %new conditions that reflect SS soln to flux balance 



85 
 

    C2=.143;%the concentration in w/v% at the right boundary that gives mu_o 

    C3=.057; 

    mu_w=1e-3;%water - dynamic visc in kg/(m*s) 

    alpha=10.73;%fit non-linear so excel file dextran gives this fit 

    xL=0;xR=w; 

    if cont ==0 

        x(1,:)=linspace(xL,xR,numrods);%evenly distribute the motors 

    end 

elseif ch==3 

    %double layer non-linear visc gradient with mu_o on left and mu_w on right 

    w = 300;%distance in between edges of input channels in um 

    w_cL=50;%width of the high visc input channel in um 

    w_cR=50;%width of the low visc input channel in um 

    w_L=0;%length of excess channel to left(near high visc channel) 

    w_R=0;%length of excess channel to right (after low visc channel) 

    C2=.27;%the concentration in w/v% at the right boundary that gives mu_o 

    C3=.02;%concentrations determined by membrane thickness of ~15um 

%     C2=.5;%the concentration in w/v% at the right boundary that gives mu_o 

%     C3=0;%concentrations determined by membrane thickness of ~100um 

    mu_w=1e-3;%water - dynamic visc in kg/(m*s) 

    alpha=10.73;%fit non-linear so excel file dextran gives this fit 

    xL=0;xR=w_L+w_cL+w+w_cR+w_R;%beginning and end of beginning observation 

channel 

    if cont ==0 
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        x(1,:)=linspace(xL,xR,numrods);%evenly distribute the motors 

    end 

end 

 

if cont == 0 

    count=1; 

    for i =2:numframes 

        rx=vscale*randn(1,numrods); 

%         rw=wscale*randn(1,numrods); 

%         theta(i,:)= theta(i-1,:)+rw*dt; 

        F_h_x=zeros(1,numrods); 

        if ch==1 

            F_h_x(1,:)=(1-mu_w/mu_o)*x(i-1,:)/w + mu_w/mu_o;%assume linear gradient 

        elseif ch==2 

            F_h_x(1,:)=mu_w./(mu_w*exp(alpha*(C2-(C2-C3)*x(i-1,:)/w)));%assume 

nonlinear gradient 

        elseif ch==3 

             

            %in w_L or under w_cL (C=C2) 

            ind=find(x(i-1,:)<w_L+w_cL); 

            F_h_x(1,ind)=mu_w./(mu_w*exp(alpha*C2*ones(1,length(ind))));%assume 

uniform concentration 

            %in between channels linear C2 to C3 

            ind=find(x(i-1,:)>=w_L+w_cL & x(i-1,:)<=w_L+w_cL+w); 
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            F_h_x(1,ind)=mu_w./(mu_w*exp(alpha*(C2-(C2-C3)*(x(i-1,ind)-w_L-

w_cL)/w)));%assume nonlinear gradient 

            %under w_cR or in w_R (C=C3) 

            ind=find(x(i-1,:)>w_L+w_cL+w); 

            F_h_x(1,ind)=mu_w./(mu_w*exp(alpha*C3(ones(1,length(ind)))));%assume 

uniform concentration 

        end 

%             F_h_x=1;%this is for when we want to have normal diffusivity 

%             x(i,:)= x(i-1,:)+F_h_x.*rx*dt; 

        if ch ==1 || ch==2 || ch ==3 || ch==5 

            x(i,:)= x(i-1,:)+F_h_x.*rx*dt; 

            %test to see if any particles went out of bounds 

            ind_R_ob=find(x(i,:)>xR);%test right wall 

            if isempty(ind_R_ob) %if it's empty do nothing 

            else,x(i,ind_R_ob)=xR-(x(i,ind_R_ob)-xR);%reflect particle about wall 

%                 x(i,ind_R_ob)=x(i-1,ind_R_ob)-

F_h_x(ind_R_ob).*rx(ind_R_ob)*dt;%reflect particle about wall 

            end 

            ind_L_ob=find(x(i,:)<xL);%test left wall 

            if isempty(ind_L_ob) %if it's empty do nothing 

            else,x(i,ind_L_ob)=xL+(xL-x(i,ind_L_ob));%reflect particle about wall 

%                 x(i,ind_L_ob)=x(i-1,ind_L_ob)-

F_h_x(ind_L_ob).*rx(ind_L_ob)*dt;%reflect particle about wall 

            end 

        end 
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        [n,xout] = hist(x(i,:),50); 

        N(count,1:length(n))=n;count=count+1;Xout(count,1:length(n))=xout; 

    end 

else 

     

end 

%%%%%%%%% 

%to be able to do longer times 

for jj = 1:10 

    x_store=x(numframes,:);theta_store=theta(numframes,:); 

    theta=zeros(numframes,numrods);x=zeros(numframes,numrods); 

    x(1,:)=x_store;theta(1,:)=theta_store; 

    for i =2:numframes 

        rx=vscale*randn(1,numrods); 

%         rw=wscale*randn(1,numrods); 

%         theta(i,:)= theta(i-1,:)+rw*dt; 

        F_h_x=zeros(1,numrods); 

        if ch==1 

            F_h_x(1,:)=(1-mu_w/mu_o)*x(i-1,:)/w + mu_w/mu_o;%assume linear gradient 

        elseif ch==2 

            F_h_x(1,:)=mu_w./(mu_w*exp(alpha*(C2-(C2-C3)*x(i-1,:)/w)));%assume 

nonlinear gradient 

        elseif ch==3 

            %in w_L or under w_cL (C=C2) 
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            ind=find(x(i-1,:)<w_L+w_cL); 

            F_h_x(1,ind)=mu_w./(mu_w*exp(alpha*C2*ones(1,length(ind))));%assume 

uniform concentration 

            %in between channels linear C2 to C3 

            ind=find(x(i-1,:)>=w_L+w_cL & x(i-1,:)<=w_L+w_cL+w); 

            F_h_x(1,ind)=mu_w./(mu_w*exp(alpha*(C2-(C2-C3)*(x(i-1,ind)-w_L-

w_cL)/w)));%assume nonlinear gradient 

            %under w_cR or in w_R (C=C3) 

            ind=find(x(i-1,:)>w_L+w_cL+w); 

            F_h_x(1,ind)=mu_w./(mu_w*exp(alpha*C3(ones(1,length(ind)))));%assume 

uniform concentration 

        end 

        %     F_h_x=1;%this is for when we want to have normal diffusivity 

        %     x(i,:)= x(i-1,:)+F_h_x.*rx*dt; 

        if ch ==1 || ch==2 || ch ==3 || ch==5 

            x(i,:)= x(i-1,:)+F_h_x.*rx*dt; 

            %test to see if any particles went out of bounds 

            ind_R_ob=find(x(i,:)>xR);%test right wall 

            if isempty(ind_R_ob) %if it's empty do nothing 

            else,x(i,ind_R_ob)=xR-(x(i,ind_R_ob)-xR);%reflect particle about wall 

%                 x(i,ind_R_ob)=x(i-1,ind_R_ob)-

F_h_x(ind_R_ob).*rx(ind_R_ob)*dt;%reflect particle about wall 

            end 

            ind_L_ob=find(x(i,:)<xL);%test right wall 

            if isempty(ind_L_ob) %if it's empty do nothing 
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            else,x(i,ind_L_ob)=xL+(xL-x(i,ind_L_ob));%reflect particle about wall 

%                 x(i,ind_L_ob)=x(i-1,ind_L_ob)-

F_h_x(ind_L_ob).*rx(ind_L_ob)*dt;%reflect particle about wall 

            end 

        end 

        [n,xout] = hist(x(i,:),50); 

        N(count,1:length(n))=n;count=count+1;Xout(count,1:length(n))=xout; 

    end 

end 

%%%%%%%%% 

figure,plot(t,x(:,1),'k.'),%xlim([0 300]),ylim([0 300]) 

% figure,plot(t,x2(:,1),'k.'), 

% figure,hist(x(numframes,:),50)%look at final distribution 

% plotlabel('x (\mum)','N','Arial',24,0) 

[a b]=hist(x(2600,:),30); 

figure,bar(b,a/numrods,'k'),plotlabel('x (\mum)','N','Arial',24,0),ylim([0 .4]),ylabel('$\bar 

N$','interpreter','LaTex') 

% figure,plot((1:count-1)*dt,N(:,1)/numrods),plotlabel('t(s)','N','Arial',24,0) 

Nshift=N-circshift(N,[1,0]); 

Nbar(2:length(N),1)=mean(abs(Nshift(2:length(N),:)),2); 

figure,plot((2:count-1)*dt,Nbar(2:length(N),1)),plotlabel('t(s)','Nbar','Arial',24,0) 

figure,hist(x(numframes,:)-x(1,:),100),plotlabel('\Deltax (\mum)','N_p','Arial',24,0) 


