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ABSTRACT 

Most people are experts in some area of information; however, they may not be 

knowledgeable about other closely related areas.  How knowledge is generalized to 

hierarchically related categories was explored.  Past work has found little to no 

generalization to categories closely related to learned categories.  These results do not fit 

well with other work focusing on attention during and after category learning.  The 

current work attempted to merge these two areas of by creating a category structure with 

the best chance to detect generalization.  Participants learned order level bird categories 

and family level wading bird categories.  Then participants completed multiple measures 

to test generalization to old wading bird categories, new wading bird categories, owl and 

raptor categories, and lizard categories.  As expected, the generalization measures 

converged on a single overall pattern of generalization.  No generalization was found, 

except for already learned categories.  This pattern fits well with past work on 

generalization within a hierarchy, but do not fit well with theories of dimensional 

attention.  Reasons why these findings do not match are discussed, as well as directions 

for future research. 
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The Limitations and Extent of Category Generalization  

Within a Partially Learned Hierarchical Structure 

An expert is typically a person who has acquired remarkable skill or knowledge in 

a particular domain, usually acquired only following extensive training.  While most 

people tend to think of experts as rare individuals, the truth is that most people are 

experts in several areas.  For example, all humans become experts at identifying and 

recognizing human faces (Pascalis, de Haan, & Nelson, 2002; Richler, Wong, & 

Gauthier, 2011; Tanaka & Gauthier, 1997).  Most occupations also require some degree 

of expertise, having complex decision trees and requiring detailed knowledge (Schraagen, 

2006).  For example, contractors and construction workers must be knowledgeable about 

the nature of materials, methods of assembly, building fabrication, and delivery systems.  

Medical professionals become experts in diagnosing diseases or recognizing problems on 

radiological images (Brooks, Norman, & Allen, 1991; Patel, Kaufman, & Magder, 1996).  

Even domains like chick sexing require impressive amounts of expertise (Biederman & 

Shiffrar, 1987).  Expertise can also describe physical skills such as athletic performance, 

musical skill, or dancing (e.g. Hodges, Starkes, & MacMahon, 2006).  Despite these wide 

ranging domains of expertise, there is at least one common aspect to all areas of 

expertise.  Experts must make fine-grained distinctions between very similar stimuli that 

non-experts would not differentiate.  The ability to categorize at these lower levels of a 

hierarchy, instead of at the higher levels where non-experts typically categorize, is one of 

the key defining features of an expert. 

 We know an impressive amount of how expertise develops (e.g. Ericsson, 1996; 

Ericsson, 2006) and how experts differ from novices (e.g. Chi, Glaser, & Feltovitch, 



  
  

2 
 

1981; Tanaka & Taylor, 1991). For example, Ericsson (2006) notes that the best 

musicians had practiced for over 10,000 hours, and did not just practice, but deliberately 

practiced, using the best techniques for improving performance.  Chess experts differ 

from novices in a number of ways, one of which is that experts can remember the 

placement of more pieces on a chess board after a brief exposure (see Gobet & Charness, 

2006, for a review).  One of the primary conclusions about expertise is that it is domain 

limited (Chi, 2006), although the reasons behind strict domain limitations remain unclear.   

While there has been a large amount of research focusing on expertise, one aspect 

of expertise and category learning has been under explored.  This area is how much and 

how people extend their knowledge of learned categories to related, but unlearned 

categories.  Imagine a radiologist who has become an expert at identifying bone cancer 

tumors in x-rays.  Would that radiologist then be better, than a novice, at identifying or 

faster to learn to identify other types of cancer, e.g. lung cancer; or better at identifying 

other non cancerous growths such as ovarian cysts.   

The present work addresses the nature of expertise for natural categories and 

whether its knowledge can be applied to related areas that have not been previously 

learned.  Natural categories have typically been classified into a hierarchy where the 

basic level (e.g. trees or dogs) is the level where non-experts categorize.  Subordinate and 

superordinate categories are below and above the basic level (Rosch, Mervis, Gray, 

Johnson, & Boyes-Bream, 1976).   Most researchers (e.g. Tanaka & Taylor, 1991) have 

defined experts as masters of a basic level domain, e.g. dog experts know a great deal 

about dogs and about different kinds of dogs.  However, work by Tanaka, Curran, and 

Sheinberg (2005) has suggested that generalization is limited to within what is typically 
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considered a subordinate level category.  For example when learning about wading bird 

species, the knowledge attained is only applied to other wading bird species, but not other 

types of bird species, such as owl species.  The reason for this limitation is not known, 

nor is it known if other measures of generalization would converge to the same 

conclusion.  The current experiments attempt to answer these questions.   

The literature review below provides an overview of relevant research in three 

inter-related areas relevant to the current proposal - categorical expertise, hierarchical 

representation and perceptual categorization.  This is followed by a concise synthesis of 

relevant work and rationalization for the current study.    

Categorical Expertise 

 Hierarchical structure.  Most natural categories can be organized into 

hierarchical trees where smaller categorical distinctions are combined into larger and 

larger categories (see Figure 2 for an example).   Classically, levels in hierarchies have 

been labeled as basic, subordinate, or superordinate levels (Rosch et al., 1976; Corter & 

Gluck, 1992).  The basic level is usually defined as the entry level of a hierarchy for non-

experts, typically associated with a general shape, e.g., a generic bird or chair.  

Superordinate levels are more inclusive categories higher in a hierarchy.  Subordinate 

levels are subdivisions of basic categories and are lower in the hierarchy than the basic 

level.  However, as Coley, Hayes, Lawson, and Moloney (2004) note, the basic level of 

different hierarchies are not necessarily at the same taxonomic level.  For example, the 

dog and bird categories are considered basic categories, but they are at very different 

levels of scientific taxonomies (Coley, et al., 2004; Tanaka & Taylor, 1991).  Because of 
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this a number of researchers have explored why the basic level is the typical entry level 

for non-experts. 

Using a category verification task, Rosch et al. (1976) showed that people first 

classify items at the basic level.  In a category verification task, a category is named and 

then an item is shown.  The participant must respond as quickly as possible about 

whether the item is a member of the named category or not.  Rosch et al. (1976) found 

that the level they considered basic produced the fastest verification response times, 

suggesting that participants first classified items at the basic level.   

To explain why basic level categories are the entry level categories, Rosch et al. 

(1976) proposed the cue validity hypothesis.  According to Rosch et al., the basic level is 

the most inclusive level in a hierarchy that still maintains “the correlational nature of the 

environment” (pp. 385).  To provide evidence for this account they had participants list 

attributes of categories at different levels of different hierarchies.  For example, one 

nonbiological category used, was the superordinate group musical instruments with basic 

level categories like guitar, and subordinate level categories like folk guitar.  For 

nonbiological categories the basic and subordinate levels had approximately the same 

number of common features, but the superordinate group had fewer common attributes, 

an outcome consistent with the cue validity hypothesis, which states that the basic level is 

the most inclusive category maximizes the number of common features.  However, for 

the biological hierarchies, a similar number of common features were found for all the 

hierarchical levels.  Rosch et al. (1976) argued that this pattern was found because the 

level they listed as superordinate was, in fact, the actual basic level for those hierarchies.  

Evidence from Coley et al. (2004) and Tversky & Hemenway (1984) support this claim.  
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Murphy and Smith (1982) noted that in addition to containing the most distinctive 

attributes, basic level categories also are more common, learned earlier, and have shorter 

and more distinctive names than other level categories.  They taught people an artificial 

category hierarchy, and found that it was the distinctive attributes that drove the basic 

level distinction, not those other factors. 

One complication is that different types of categories may vary in the depth and 

size of the hierarchy.  For example furniture has relatively few levels, while, as Medin 

and colleagues (Bailenson, Shum, Atran, Medin, & Coley, 2002;, Medin, Lynch, Coley, 

& Atran, 1997) show, other categories such as birds or trees can have a high number of 

levels clearly divided into folk hierarchies. While folk taxonomies can vary in structure 

(e.g. see Bailenson et al. (2002) which are discussed in more detail in the hierarchical 

representation section below) even non-expert classifications roughly correspond to 

classic levels in taxonomies (e.g. genera, families, and orders). 

Corter and Gluck (1992) argue that cue validity is only part of the reason that 

determines the entry level of categorization.  They also argue that category validity plays 

an important role in determining the basic level.  Category validity states that people will 

use the hierarchical level that provides the highest confidence in feature inference.  For 

example given the feature, can fly, people would choose the category robin instead of 

bird because all robins can fly while some birds cannot.  Cue validity pushes category use 

towards higher levels of the hierarchy, because higher levels are inclusive of lower levels 

there are at least as many members of the higher level category with a feature as the 

lower level category (e.g. there are more animals that have wings than birds that have 

wings because animals include birds), while category validity encourages use of the 
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lowest levels of a hierarchy.  Corter and Gluck (1992) argue the basic category level is 

optimal compromise between these two opposing forces.  Coley et al. (2004) provide 

results that show that these two operations do, in fact, provide different best levels in a 

hierarchy.  When participants listed features, the largest gain in features was at the life 

form level (e.g. bird); however, when completing feature induction tasks, the largest 

increase in induction power was at the folk generic level (e.g. eagle).  Coley et al. (2004) 

argue that cue and category validity do not compete against each other to create a single 

basic level, but that the goal of the categorization plays a role in what hierarchical level is 

used.   

This idea, and, more generally, all the work focusing on categorization level, 

illuminates two questions about expertise.  The first is how do experts, and their goals in 

categorization, differ from non-experts?  The second is how do experts represent category 

hierarchies?  These two questions are addressed in each of the next three sections. 

 Categorization.  One of the primary distinctions between experts’ and non-

experts’ categorization, is the knowledge used in making category decisions.  Chi et al. 

(1981) analyzed the differences between physics experts and novices in how they classify 

physics problems.  In their first study, participants were asked to sort 24 physics 

problems into however many groups they thought were appropriate.  While experts took 

longer to make their sorting decisions, both novices and experts created an equal number 

of groups.  The important difference, however, was the groups there were created and 

why they were created.  Novices tended to group problems based on surface features (e.g. 

problems that included an inclined plane were grouped together), while experts tended to 

sort based on deeper structures to the problems, such as the physics principle necessary to 
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solve the problem.  A second study conducted by Chi et al. (1981), replicated this 

finding.  They created problems that specifically had similar surface features, but differed 

in the law that was to be used to solve the problem.  They found the same pattern of 

sorting found in the first study. 

 In another experiment, Chi et al. (1981) had experts and novices elaborate on 

category labels that were previously identified.  They found that when given a category 

label, novices described surface features that could be useful in solving the problem (e.g. 

given the label “inclined plane” novices might identify aspects such as length or incline 

angle).  When an expert is given the same label, they begin by identifying mechanical 

principles that may be useful in solving the problem.  They then continued on to identify 

surface features that may be important.    These studies indicate that experts’ knowledge 

is both greater and of a different kind than novices’ knowledge. 

 More evidence of this can be seen by exploring children who are becoming 

experts.  Johnson and Mervis (1994) taught young children about shorebirds over several 

sessions of playing a fun game.  They compared how children made grouping decisions 

before and after learning about the birds.  They found that even though the number of 

decisions based on attributional properties increased after learning, the vast majority of 

decisions were still based on morphological similarity.  While this differs from the work 

of Chi et al. (1981), there are several reasons this could be so.  First, the children in the 

Johnson and Mervis (1994) study had relatively little learning.  Second, as Gobbo and 

Chi (1986) note, morphological features and more abstract features are often highly 

correlated.  When looking at children who are more experienced in their expertise 

domain, a different picture emerges. 
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 Gobbo and Chi (1986) showed young children, who were either relative experts 

or novices about dinosaurs, dinosaur pictures and asked them to identify facts about the 

dinosaurs.  Novices and experts identified approximately the same number of explicit 

propositions (facts observable in the pictures), but experts identified many more implicit 

propositions (facts that were not directly observable from the pictures).  This held true 

even for the dinosaurs that were unfamiliar to the experts.  This shows that the experts 

could use explicit cues to infer implicit cues.  Gobbo and Chi’s (1986) analysis of the 

connections between the children’s propositions point to exactly this fact.  Novices’ often 

listed features with no transition between them, while experts often transitioned from 

perceptual features to explain what that feature’s purpose was.  Gobbo and Chi (1986) 

argue that these findings indicate that not only do the experts have more knowledge than 

the novices, but that the knowledge is also more integrated. 

 Chi and Koeske (1983) provide more evidence of this by having a young dinosaur 

expert play a game that elicited his knowledge about dinosaurs.  The researchers then 

used this knowledge to construct a representation of the child’s dinosaur knowledge.  

They made two mappings; one which consisted of dinosaurs the child experienced more 

often and a second mapping that consisted of dinosaurs the child experienced less often.  

The key difference between the two types of dinosaurs was not the number of knowledge 

nodes, but the number of links to those nodes and more importantly the number of links 

between dinosaurs.  There were more links in the mapping of the more experienced 

dinosaurs, indicating a more cohesive and integrated representation. 

 It appears clear that experts have more knowledge, more abstract knowledge, and 

a more integrated representation of that knowledge than do novices.  It is important to 
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discuss how these differences affect experts’ hierarchical categorization.  Tanaka and 

Taylor (1991) explored the question of whether experts categorize basic and subordinate 

level categories differently than novices.  They looked at dog and bird experts and had 

them classify both dogs and birds.  Thus, the bird experts acted as novices for dog 

categorization and vice versa.  In Tanaka and Taylor’s first study, they had the experts 

list features for the subordinate, basic, and superordinate levels of both their expert and 

novice domain.  Similar to Rosch et al.’s (1976) finding, the number of new features 

increased from the superordinate to basic level, however, the differences between the 

basic and subordinate level was based on the domain.  For the expert domain, there were 

approximately an equal number of new features at the subordinate level as there were at 

the basic level.  In the novice domain there was a drop in the number of new features 

identified at the subordinate level.  Johnson and Mervis (1997), using a similar 

methodology, found the same pattern of results, but also found that most of the new 

features at the basic level were physical, while most of the new features at the 

subordinate level were behavioral in nature.   

 In a second study by Johnson and Mervis (1997), bird experts typically name 

birds at a subordinate level rather than at the basic level.  Tanaka and Taylor (1991) also 

found the same pattern of results for bird experts, however, it is important to note that this 

pattern did not hold true for dog experts.  Tanaka and Taylor (1991) and Johnson and 

Mervis (1997) both found, using a category verification task similar to Rosch et al. 

(1976), that for the experts’ domain the subordinate level category was verified as 

quickly as the basic level category (although the superordinate level category was still 

slower).  These results indicate that the knowledge gained through expertise acquisition 
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shifts the entry level for categorization to a lower level on the hierarchical tree.  It also 

seems that the same does not hold true for moving up the hierarchical tree.  Despite these 

changes to hierarchical classification and enhancements of subordinate level categories, 

there are some limitations to how this increase in knowledge can be utilized. 

Hierarchical generalization.  There appears to be a limit to what the knowledge 

of expertise can be applied to.  Chi (1997) argued that learning should not generalize 

across an ontological barrier.  Most would also agree that learning would not generalize 

across superordinate categories (e.g. animals and artifacts), and transfer across basic level 

categories (e.g. birds and reptiles) may be unlikely.  However; there is evidence that 

generalization is even more limited than that.   

 Although Gobbo and Chi (1986) found that child dinosaur experts inferred 

properties about unknown dinosaurs from the knowledge they had about familiar 

dinosaurs, this was not strictly the case in the child studied by Chi and Koeske (1983).  

Despite forcing an equal number of knowledge nodes during analysis, the child’s 

conceptual map for the less well-known dinosaurs was less developed.  Memory for 

dinosaurs was also tested at the time of the conceptual mapping and a year later.  While 

memory for the less well known dinosaurs was lower at the first time of test, a year later 

the child had retained the memory for the well know dinosaurs, but memory for the 

unknown dinosaurs had decreased.   

 Diamond and Carey (1986) also found limited generalization for dog categories 

unfamiliar to dog experts.  To do this, they used effects found in facial recognition 

experts to explore dog expertise.  Recognition for faces is decremented when the faces 

are presented upside down, inverted.  They hypothesized that dog experts would show the 
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same effect for inverted pictures of dogs.  They failed to find an expected strong 

inversion effect for dog pictures.  However, when the experiment was replicated with the 

limitation that only breeds that the experts had personal experience with were used, the 

expected inversion effect was found; recognition was slower when the images were 

upside down.  In a similar finding, Johnson (2001) studied what affected bird experts 

ratings of category typicality.  For novices, the central tendency (the average values for 

the relevant dimensions) was key to identifying which birds were considered the best 

exemplars of the category.  For experts, subject familiarity was more important in 

determining category typicality.  However, when the experts were given unfamiliar 

species of birds, they acted in much the same way as novices, and central tendency 

played a more important role in how typicality was rated.   

Brooks, et al. (1991) were interested in medical experts’ ability to classify 

diseases that had a similar or different presentation than training.  Family practitioners 

and first year residents were shown skin lesions and diagnoses.  During a second phase, 

they were shown skin lesions that were the same as those shown before, similar to those 

shown before (and in the same category), different from the old exemplars (but in the 

same category), and unrelated lesions.  Participants were asked to categorize these.  

Brooks et al.’s (1991) key finding was that both experts and intermediate experts were 

worse at categorizing the different exemplars than the similar exemplars of the same 

category.  This indicates that the learning of those lesion categories did not transfer 

throughout the breadth of the group. 

 The work described above indicates that experts often fail at generalizing their 

knowledge to even closely related categories and instances.  Researchers have explored 
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this failure to generalize.  Tanaka et al. (2005) taught novices two levels of a bird 

hierarchy.  Using several training tasks over several sessions, participants learned to 

distinguish wading birds and owls (the family level) and learned to distinguish one of the 

families at the species level (e.g. eastern screech owl).  The training tasks included 

naming tasks, where a picture was presented and the correct response had to be entered, a 

category verification task, and an object classification task, where a label was given and 

the participant chose the correct bird from two choices.  Both before and after the training 

sessions, participants completed a species discrimination task where participants were 

shown exemplars sequentially and then asked if they were the same or different species.  

In the discrimination task there were three types of items: old exemplars seen during 

training, new exemplars from species that had been seen during training, and new 

exemplars from new species.  Sensitivity to species distinctions increased based on 

training type and item type.  Discrimination for new exemplars (regardless of species) 

increased with species training as compared to family training; however, the exemplars 

from old species had higher sensitivity than those from the new species.  Tanaka et al. 

(2005) also found that post training discrimination was more sensitive at the species level 

than pre-training discrimination, even for the species that were only trained at the family 

level (although sensitivity for the species trained level were much higher).  However, the 

pre-training discrimination test consisted only of exemplars that were used in training and 

not of any new species that were untrained, so it is unclear whether sensitivity would 

have increased for the new species tested during the post training discrimination test.  

 Scott, Tanaka, Sheinberg, and Curran (2008) conducted a conceptual replication 

of Tanaka et al. (2005), using modern and classic cars as the basic level and models as 
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the subordinate level categories.  They found that from pre- to post training there was a 

small increase in sensitivity for new exemplars from trained models, but no increase for 

exemplars from untrained models, even when the untrained models were from the basic 

category that had received subordinate training.  Using a similar procedure, except using 

experts, Bukach, Phillips, and Gauthier (2010) found that modern car experts do not 

generalize their knowledge to classic cars.  Novices who were the same age as the 

modern car experts were also more sensitive to modern cars; however, older novices did 

not show a difference between modern and classic cars.  The authors hypothesize that this 

is the case because older novices have had some experience with classic cars.   

 The work described above indicates that little of the knowledge gained through 

learning is transferred to new categories and that there must be some exposure to those 

categories prior to transfer.  However, Lancaster and Homa (2012) showed that at least 

some knowledge can be used to categorize related but unexperienced categories.  In one 

experiment subjects were taught to differentiate between bird families (e.g. herons and 

cranes).  They then tested categorization performance for trained exemplars, new 

exemplars from species that were used during training, and exemplars from new species 

that were still within the learned families (e.g. a blue crane).  They found that while 

performance for the new species was the lowest of the three types of items, participants 

were still well over chance in classifying the new species.  A second study taught 

participants to differentiate between three species of a single family (e.g. a sandhill crane 

and a whooping crane).  The participants were then tested using training exemplars, new 

exemplars of the training species, a new species within the learned family, and new 

species outside the learned family.  The relevant finding here is that for the new species 
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in the learned family items performance was poor, but better than chance.  It is also 

important to note that the errors made on those items tended to err toward the new family 

response.  This indicates that there was a strong representation of the learned species, but 

a weaker representation of the family level category; however, it is remarkable that there 

was any representation of the family category given that no family level categorization 

occurred. 

Quinn and Tanaka (2007) explored the development of subordinate level 

representations in infants.  Their procedure consisted of two phases; in the first phase 

infants were familiarized with a breed of dog (or cat); in the second phase the infants 

were familiarized with either another breed of dog or were switched to a breed of cat.  

This was followed by a looking preference test consisting of the breed just seen and the 

corresponding same basic category breed.  The results indicated that when the infants had 

been familiarized with both subordinate level categories from within the same basic level 

category, they differentiated the breeds.  This was not the case when the infants had been 

familiarized with both a breed of cat and dog.  The authors concluded that to have a firm 

representation of a subordinate level category, there must be a clear comparison group.  

This appears to be the case, since the infants that only learned one subordinate level 

category generalized that learning to a basic level category.  However, there is one 

question that this work does not clearly answer.  Since the preference test consisted of 

two breeds that had been experienced before, it is unclear if that was a condition for the 

differentiation or if a third breed had been used as a novelty preference would the 

preference had remained.  Or to put it more succinctly, was the differentiation dependent 

on a comparison to a previously learned category, or once a category had been 
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differentiated, would it remain so for any subordinate level comparison.  This question is 

key to the larger issue of whether specific experience is required for any learning to 

transfer. 

Given this work and the other research described in this section it seems clear that 

some limited knowledge is transferred to some closely related subordinate categories.  It 

is unclear what drives this generalization and what its limits are.  Understanding how 

experts represent hierarchical categories may give some insight into these questions. 

 Hierarchical representation. Despite the fact that aspects of expertise have been 

carefully investigated, relatively little research has been conducted explicitly exploring 

experts hierarchical representations.  Chi, Glaser, and Rees (1982) looked at the sorting 

solutions of physics experts and novices.  They found that experts had well defined 

hierarchical representations that consisted of multiple levels and clear reasoning for the 

experts’ grouping.  Novices did not have well defined levels, and some failed to define 

any levels, refusing to combine or separate any of the categories created during the initial 

sort.  Interestingly, the novices’ initial sorting appeared to conform to the subordinate 

level sorting of the experts.  There could be two possible explanations for this.  The first 

is that previous work (e.g. Rosch et al., 1976) is wrong that the entry level for novices 

would always be the basic level.  The alternative explanation is that as the physics experts 

became experts, their entry level for categorization went up a level in the hierarchy and 

was, in fact, a superordinate level.  Deneault and Richard (2005) provide evidence that 

children are more successful at class inclusion questions that involve superordinate level 

categories than problems that do not.  This implies that superordinate categories may play 

a more important role than previously thought.  However, this idea is in contrast to other 
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work (e.g. Tanaka & Taylor, 1991 and Johnson & Mervis, 1997) that indicates that the 

entry level for experts becomes a subordinate level.  Work conducted by Griffee and 

Dougher (2002) and Saiki (1998) seems to indicate that knowledge learned at higher 

levels of a hierarchy generalize down the hierarchy, but knowledge does not seem to 

generalize up the hierarchy.  However, the type of information used to make decisions 

may play a role in creating experts’ psychological representations.  As previously 

described, work by Chi and colleagues (Chi et al., 1981 and Gobbo & Chi, 1986) 

identified that novices use primarily surface or perceptual features, whereas, experts use 

both perceptual features and more abstract features. 

 Work by Medin and colleagues (Bailenson et al., 2002; Medin et al., 1997) have 

explored the differences in hierarchical representations between different types of 

experts.  Bailenson et al. (2002) explored the representation of bird hierarchies in 

American experts and novices and members of a Central American tribe (the Itza’ Maya).  

The authors tested the participants’ representations using a number of methods; sorting, 

“goodness of example” typicality ratings, and category based induction.  The results 

indicated that for the two types of experts, U.S. and Itza, the hierarchical representations 

largely conformed to bird taxonomies.  However, there were two key cultural differences.  

For U.S. participants, experts and novices, passerines (i.e. songbirds) were central to the 

category birds.  This was not true for the Itza, indicating that non-perceptual dimensions 

can change the organization of representations.  Bailenson et al. (2002) also found that 

while both types of experts’ representations resembled taxonomies, the reasons for the 

distinctions often differed.  For example, the U.S. experts often gave geographical range 

or evolutionary age reasons to justify decisions, while the Itza often gave ecological 



  
  

17 
 

reasons (e.g. diet) to justify the same decisions.  This finding is consistent with other 

research discussed above where features are often highly inter-correlated.   

Medin et al. (1997) also explored how the goals of expects influenced perceptual 

and non-perceptual similarity.  Three types of tree experts, taxonomists, landscapers, and 

maintenance workers, completed a sorting procedure.  Results showed that landscapers’ 

and maintenance workers’ hierarchies had moderate correlations with scientific 

taxonomic classifications.  The only moderate correlation indicates that they had other, 

non-taxonomic reasons for organizing categories.  This assertion is further supported by 

the justifications they gave for their initial sort.  Taxonomists’ reasons were almost 

exclusively taxonomic in nature, while landscapers and maintenance workers gave a wide 

variety of other reasons, such as its utility, its nativeness to the area, or a weed category.  

These differences led to differences in the overall hierarchical structure.  Maintenance 

workers had more categories in their initial sort with relatively fewer subordinate and 

superordinate categories, which is similar to the novices from Chi et al. (1982).  This may 

indicate that superordinate or subordinate grouping may not be particularly useful for 

maintenance workers goals.  For the landscapers, the folk distance between items in the 

lower scientific ranks (e.g. genus level) were similar to the taxonomists.  The 

taxonomists’ distances continue to increase at each higher level of scientific rank, while 

the landscapers’ distances leveled off midway through the scientific ranks.  This indicates 

that the more subordinate levels of scientific taxonomy were useful to the landscapers, 

but the higher subordinate levels stopped being of use and so were no further 

differentiated.  This work by Medin and colleagues indicates that both perceptual features 

and non-perceptual features play a role in the hierarchical representations of experts, and, 
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while often correlated, likely contribute their own unique variance to differences in 

organization.  If this is true, then it is also likely the case that they both also contribute to 

generalization within a hierarchy. 

Most of the works described here have used sorting procedures to identify 

hierarchical representations; however, there are other methods that may reveal this 

structure as well.  While not explicitly testing for this, Homa and Silver (1976) revealed 

that multidimensional scaling could reveal the organization of subordinate divisions 

within basic level categories.  They showed participants word triads and varied the 

psychological distance between the words; short within category distance, long within 

category distance, or between category distance.  Participants had to respond to whether 

all the words in the triad were in the same category or not.  Although not specifically 

analyzed, it appears that within a category subordinate level category members are 

clustered together; for example, in the birds category all the songbirds are grouped 

together and all the birds of prey are grouped together.  Thus, the multidimensional 

scaling reveals the hierarchical structure of the psychological space.  Homa and Silver’s 

(1976) results also corroborate this conclusion.  They found that responses to the trials 

where all the words were within the same subordinate category were faster than when the 

second word was in a different subordinate category, which were in turn faster than items 

where one of the words was from a second basic level category.  This indicates that when 

the first word occurred the basic and subordinate levels were activated.  If all the words 

were within that subordinate category, then no further activation was required; however, 

if the second word was in another subordinate category, then it needed to be activated, 
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which required more time; but not as much time as when a different basic level category 

had to be activated.  

In addition to being able to identify subordinate level categories, 

multidimensional scaling can show the changes in participants’ psychological structure 

due to learning.  Homa, Rhoads, and Chambliss (1979) showed that as more learning 

occurs, category representations changed in two ways.  First, categories become more 

differentiated, becoming further apart from each other in psychological space.  Second, 

members of each category clustered closely around the category’s centroid.  While Homa 

et al. (1979) explored perceptual categories that lacked hierarchical properties, the same 

changes should occur in hierarchical categories.  First, the basic categories should begin 

to differentiate, followed by the subordinate categories beginning to differentiate from 

each other within the basic level cluster. 

Perceptual Categorization 

Categorical variables.  There is not much work on what category variables lead 

to category learning and generalization in hierarchical structures (as mentioned in the 

sections above). There is, however, a large amount of research focusing on what aspects 

of categories lead to learning and abstraction of core essences of categories. 

While most research (e.g. Ashby & Gott, 1988; Minda & Smith, 2001) on 

categorization has used only two categories for learning, there is some work on the effect 

of learning a larger number of categories.  Homa and Chambliss (1975) explored the 

effect on transfer performance after learning two, four, or six different categories.  They 

found that performance for the exemplars shown during learning remained high, 

regardless of the number of categories learned, but absolute performance for the new 
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exemplars decreased as the number of categories learned.  However, it is clear that people 

know more than six categories.  It may be that both the number of categories learned and 

the timing of when the categories are learned affect generalization performance.  Some 

work has shown that people are able to alter their representation of a learned category, 

with no further exposure to that category (Homa & Rogers, 2011).  Thus, people 

modified their categorical representation without learning them at the same time.  Since 

the work here focuses on learning multiple categories within a hierarchy, the number of 

categories learned was a concern; however, the categories were learned a few at a time 

and there was never a time when there are six response options. 

One of the more obvious variables that affects category learning is the number of 

different exemplars that are shown during learning, often called category size.  As work 

by Homa and colleagues (Homa & Chambliss, 1975; Homa & Cultice, 1984) show, as 

the number of exemplars shown during learning increases, the ability to generalize 

learning to other category members increases.  While this seem like a rather uninteresting 

effect, it is important to factor the effect into designs involving hierarchical categories, 

because subordinate level categories have fewer possible exemplars by definition. 

A final key aspect of category structure that determines a person’s representation 

of a category is the variability of the exemplars seen during learning.  Homa and Cultice 

(1984) showed that the amount and type of variability of exemplars has a strong effect on 

a person’s ability to transfer that knowledge.  They found that if all of the learning stimuli 

were low distortions of a prototype, then that knowledge transferred to new low 

distortions, but it did not transfer to medium or high distortions.  Similarly, if a 

participant was exposed to only high level distortions during learning, then the participant 
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had poor transfer to all types of distortions.  The best transfer occurred when medium 

distortions or distortions of mixed levels were used during learning.  The level of 

exemplar variability is intimately tied to hierarchical structures.  Higher level categories 

inherently have more variability than lower level categories, and the lowest levels of a 

hierarchy may have very little variation in them. 

 It is important to note that the above research may not directly apply to the main 

focus of the current research, since the research here is focused on the transfer of learning 

from learned categories to new categories, while the above research discusses the transfer 

of learning to new exemplars within the learned categories.  However, these effects are 

important to consider, because they are the best evidence available on how the category 

structure may affect transfer. 

 Another key aspect of perceptual categorization is attention allocation.  A large 

amount of work (e.g. Minda & Smith, 2001; Nosofsky & Zaki, 2002) have shown that 

people selectively attend, or pay more attention, to some dimensions when learning 

categories.  This weighting, of course, helps people identify new members of already 

learned categories, but it may also help people learn new categories that share diagnostic 

dimensions.  Relatively little work has been done exploring how selective attention 

affects learning new categories.  Some work by Goldstone (Goldstone & Steyvers, 2001; 

Kersten, Goldstone, & Schaffert, 1998) has explored this issue.  Kersten et al. (1998) 

discuss an attentional mechanism they call attentional persistence.  Attentional 

persistence is the tendency to continue to pay attention to features or dimensions that 

have been predictive in the past.  Goldstone and Steyvers (2001) showed evidence that 

people do persist at attending dimensions that have been useful.  They had participants 
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learn two categories that varied on two dimensions, one was relevant and one was 

irrelevant.  Then participants learned a second set of categories that also had one relevant 

and one irrelevant dimension.  As predicted by attentional persistence, participants did 

best at learning the second category set when the relevant dimension was the same in the 

two category sets, and worst when the irrelevant dimension in the second set had been the 

relevant dimension in the first set.  Thus, when relevant dimensions overlap, 

generalization should be facilitated. 

Current Studies 

 The primary purpose of the proposed studies is to explore the learning and 

transfer within hierarchical categories, with a goal to assess the specificity and extent of 

generalization at increasing organizational distances.  It is clear that expertise is domain 

limited (Chi, 2006); however, the extent of a domain is still unclear.  The concept of 

domain specificity indicates that an expert’s knowledge will transfer to nearby categories, 

but at some distance from previously learned categories, likely where there is another 

step up the hierarchical tree, transfer will abruptly stop.  The evidence that is available 

points to a lack of or extremely limited transfer within a hierarchical structure (e.g. Scott 

et al., 2008; Tanaka et al., 2005).   This is despite the fact that experts have an abundance 

of knowledge about the relevant basic level categories and similar subordinate level 

categories (Chi et al., 1981; Chi et al., 1982; Gobbo & Chi, 1986).  However, those 

studies that show lack of generalization use the lowest subordinate levels (species and car 

models) and have very low variability of exemplars, which as Homa and Cultice (1984) 

show is not conducive to generalization or strong categorical representations.  Their 

results indicate that some degree of variability is necessary for robust category 
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representations.  Although experts often make species level distinctions, they also make 

distinctions on multiple subordinate levels that have higher degrees of variability than the 

species level (Bailenson et al., 2002; Medin et al., 1997).  These intermediate, 

subordinate levels may be key to experts’ generalization. 

Also, past work has focused on discriminability of categories, specifically the 

increase in sensitivity to differences after training; however, discriminability is not the 

only measure of generalization available.  While immediate differentiation may not be 

evident, previous learning may have primed future learning (Schwartz, Bransford, & 

Sears, 2005).  This would be the case if the to be generalized to categories were learned 

faster after previous learning than absent of previous learning.    Another way to measure 

potential generalization would be to look at the psychological representation of the 

related subordinate categories using multidimensional scaling.  Homa and Silver (1976) 

has shown that subordinate categories are evident within psychological space, and Homa 

et al. (1979) has shown that greater differentiation of categories occurs as increased 

learning occurs.  Thus, if unlearned subordinate categories have begun to be 

differentiated from other subordinate categories, then this would indicate that some 

previous learning has transferred.  These two measures, plus a potentially more sensitive 

discrimination test, due to a more robust category representation, should provide 

converging evidence for the extent of domain generalization. 

Thus, the current series of experiments attempted to determine the limits of 

subordinate level category generalization using naturally occurring hierarchical 

categories (see Figure 2); using category structures and transfer measures that create the 

best opportunity for generalization.  There are several theoretically interesting patterns of 
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generalization that could plausibly occur.  Figure 1 conceptually illustrates these 

outcomes based on the amount of generalization expected at different hierarchical 

distances from the learned categories.   

 

Figure 1.  Theoretically plausible outcomes of converging measures of generalization.  

Set number is distance from learned categories as indicated by Figure 2. 

 

The predicted outcome is a one of limited domain specificity.  Here, there is a 

large amount of generalization to new members of the learned categories, but also a large 

amount of generalization to unlearned categories within the basic category where 

subordinate categories were learned, but little to no generalization farther away from the 

learned categories in the hierarchy.  This is expected because the categories within the 

same basic level likely share some if not all relevant diagnostic dimensions; thus, 

attentional persistence theory predicts that having learned one set of categories in that 

0 

20 

40 

60 

80 

100 

120 

Learned 
Categories(Set 0) 

Within Basic Level of 
Learned Catories 

(Set 1) 

Within 
Superordinate Level 

of Learned 
Categories (Set 2) 

Outside 
Superordinate Level 

of Learned 
Categories (Set 3) 

A
m

o
u

n
t 

o
f 

G
e

n
e

ra
li

za
ti

o
n

 

Category Set 

Domain Specificty 

No Generalization 

Perceptual 
Similarity 



  
  

25 
 

basic level category will facilitate generalization to other categories within that higher 

order level, but not outside it where common relevant dimensions are rare.  While domain 

specificity is predicted, there are other plausible outcomes.  One is of no generalization 

where high performance on the transfer measures is only found in new members of the 

learned categories.  A third plausible outcome is where there is generalization, but it 

conforms only to perceptual similarity and not any function of hierarchical distance. 

Experiment 1 

The purpose of experiment 1 is to test the domain specificity, or the limits of 

generalization, within a partially learned hierarchy.  The key question is whether there is 

a distance from learned categories, where transfer will not occur; and if there is, what is 

the size of that specificity, or distance.  This experiment differs in several key ways from 

past research (e.g. Tanaka et al., 2005; Scott et al., 2008).  Tanaka et al. (2005) taught 

participants to differentiate at the order level (e.g. wading birds and owls) and at the 

species level of one type of order (e.g. Great Blue Herons).  One difference is that the 

subordinate level categories are not at the species level, but are instead at the family level 

of the hierarchy (e.g. cranes instead of blue cranes).  Making this change creates 

subordinate level categories that have more variability in them, which according to Homa 

and Cultice (1984) create stronger category representations.  Other work (Lancaster & 

Homa, 2012) has shown that species level learning creates asymptotic performance 

within a few blocks, which indicates little variability within categories.  A second key 

difference in the current study is how generalization will be measured.  In addition to 

measuring discrimination, generalization will also be measured by speed of learning of 

new categories within the hierarchy. The final key difference was two sets of control 
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categories, one at the same distance as the other learned order category but was not 

experienced before the transfer tests, and one where no generalization is expected to 

occur, to act as a baseline comparison condition.  Figure 2 shows the kind of hierarchy 

explored in the present study.  As can be seen in Figure 2, the baseline control categories 

(in this case, types of lizards) are only related to birds at two levels above the basic level.  
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Figure 2.  Hierarchical structure used for both experiments.  Levels are listed as 

hierarchical levels and taxonomic levels.  Sets are labeled based on hierarchical distance 

from learned group and previous experience with groups.  Set 0 is the learned pair, Set 1 

is within the same Order level group as the learned pair, Set 2e is within the same Class 

level group as the learned pair and had been experienced before, Set 2u is within the 

same Class level group as the learned pair and had not been experienced before, Set 3 is 

within the same Kingdom level group as the learned pair. 
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Method 

Participants.  One hundred eighty-five participants were recruited from the 

Introductory Psychology participant pool from Arizona State University.  They received 

partial course credit for participating.  Eight participants were removed from analyses 

because of experimenter or computer error, another 7 were removed from data analyses 

because they did not reach the learning criteria in phase 1 or phase 2, and 6 did not meet 

criteria in phase 4 and so were not included in analyses involving phase 4. 

 Design and materials.  This experiment consisted of 15 different conditions split 

along 2 factorial dimensions.  Table 1 illustrates those dimensions and the flow of 

experiment 1.   
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Table 1 

Experimental conditions organized by experimental phase experience. 

Learning Group 

Phase 1 

Order Level 

Learning 

Phase 2 

Family Level 

Learning 

Phase 3 

Discrimination 

Test 

(Completed all 

groups) 

Phase 4 

Learning Test 

(Completed 1 

group) 

Heron/Crane 

(H/C) 

Owls/Wading 

Birds 

Herons/Cranes Heron-Crane Heron/Crane 

Ibis-Stork Ibis/Stork 

True-Barn Owl True/Barn Owl 

Falcon-Hawk Falcon/Hawk 

Agamid-Anole Agamids/Anoles 

     

Ibis/Stork (I/S) Owls/Wading 

Birds 

Ibises/Storks Heron-Crane Heron/Crane 

Ibis-Stork Ibis/Stork 

True-Barn Owl True/Barn Owl 

Falcon-Hawk Falcon/Hawk 

Agamid-Anole Agamids/Anoles 

     

No Learning 

(NL) 

No Learning No Learning Heron-Crane Heron/Crane 

Ibis-Stork Ibis/Stork 

True-Barn Owl True/Barn Owl 

Falcon-Hawk Falcon/Hawk 

Agamid-Anole Agamids/Anoles 

 

The first dimension, learning group, was split into 3 groups.  One group, the No Learning 

(NL) group, acted as a control and did not complete Phase 1 or 2 of the experiment.  The 

other two groups, the Heron-Crane (H-C) Learning group and the Ibis-Stork (I-S) 

Learning group, both completed identical Phase 1’s.  Then, in Phase 2 they learned the 

appropriate set, e.g. the H-C group learned to distinguish herons and cranes.  Phase 3 was 

the same for all participants.  In Phase 4, the learning groups were further split into 5 

groups each.  Each of these groups participated in a learning test by learning 1 of the 5 

sets outlined in Figure 1.  For example, participants in one condition learned the H-C 

group in Phase 2 and then learned the Falcon-Hawk distinction in Phase 4. 
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All stimuli were shown on windows computers using e-prime software.  All the 

stimuli were colored photographs of bird (or lizard) species at various angles and in 

various poses (see Figure 4 for examples of stimuli).  The stimuli were grouped into a 

hierarchical structure as depicted in Figure 3.  Participants learned only two levels of the 

structure (Order and Family), and further only learned two categories (in the learning 

phase) at each level. 

 

Figure 3.  Partial hierarchy, showing 1 full branch.  Participants will only explicitly learn 

at the order and family level.  Species will never be distinguished, but will make up the 

family level stimuli. 

 

 The categories were constructed thusly: each wading bird, family level category 

(e.g. herons) consisted of 44 stimuli, split between 4 species in each group.  For an 

example and as can be seen in Figure 2, the crane category consisted of 11 pictures each 

of the Grey Crowned Crane, Whooping Crane, Sandhill Crane, and Blue Crane species.  

Of these, 1 image from each species was used for learning in Phase 1, 4 from each 

Species 

Family 

Order 

Class 

Kindom Animals 

Birds 

Wading 
Birds 

Cranes 

Whooping 
Cranes 

Grey 
Crowned 

Cranes 

Sandhill 
Cranes 

Blue Cranes 

Herons 

Owls 

Reptiles 
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appropriate species were used in Phase 2, 2 from each species were used in Phase 3, and 

4 from each species were used during appropriate conditions in Phase 4. 

 

   
Grey Crowned Crane   Great Blue Heron 

 

Figure 4. Two examples of stimuli to be used in Experiment 1.  Stimuli here are named at 

the species level, but will only be differentiated at the family level (e.g. cranes and 

herons). 

 

The owl groups consisted of 8 images from each of 4 species from each family level 

group.  Two images were used from each species in Phase 1 and Phase 3, and 4 from 

each species were used in the appropriate conditions for Phase 4.  The images for the 

raptor and lizard groups followed a similar pattern; 2 from each species were used in 

Phase 3 and 4 from each species were used in the appropriate conditions for Phase 4.  

Table 2 illustrates the number of images used in each phase of experiment 1. 

Table 2 

Number of unique stimuli used in each phase for each family level category as a function 

of bird species. 

  Number of Unique Images 

  Phase 1 Phase 2 Phase 3 Phase 4 

Family 

group (e.g. 

Heron) 

     

Species 1 1 (2 for Owls) 4 2 4 

Species 2 1 (2 for Owls) 4 2 4 

Species 3 1 (2 for Owls) 4 2 4 

Species 4 1 (2 for Owls) 4 2 4 

Note. Images only used where appropriate for experimental design (e.g. Falcon images 

were only used in phases 3 and 4 
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It is important to note that no images were reused in other phases of the 

experiment.  For example, for the Heron-Crane learning group, the images seen in Phase 

2 were of the same species seen in Phase 1, but were not the exact, same pictures.  All the 

images were collected from past research (e.g. Tanaka, et al., 2005) or from online image 

searches.  Images were present in color on a plain white background (as is shown in 

Figure 3, no extraneous background information was available). 

 During the experiment, category names were developed from the appropriate 

Latin name for the order or family (for example, the Crane family used the name: Gruid).  

This had the advantage of providing meaningful names (as opposed to group A, etc.) as 

well as using uncommon names that participants would not recognize.  Responses to the 

stimuli were keyboard presses of a prominent letter of the appropriate Latin name (with 

the condition that none of the groups used the same response letter).  Responses during 

the discrimination test were ‘z’ or ‘m’ for same or different group. 

 Procedure.  At the start of the experiment all participants received instructions 

describing the outline of the experiment and describing how animals can be grouped into 

multiple hierarchical groups.  Experiment 1 consisted of 4 phases.   

In Phase 1, all learning participants learned the basic (order) level categories of 

owls and wading birds.  Each category consisted of 18 images as outlined in the materials 

section above.  They did not learn the group raptors so that it could act as an 

unexperienced control group to the owl group.  Participants learned until they reach a 

93% or higher correct criteria on one block.  A block consisted of presenting all the 

stimuli from both categories once in a random order.   
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After the learning group participants reached criterion on the basic (order) level 

groups, they completed Phase 2, where they learned two subordinate (family) level 

groups of wading birds, which are the two categories indicated as set 0 from learned 

group in Figure 1.  The Heron-Crane group learned the set of herons and cranes, while 

the Ibis-Stork group learned the set of ibises and storks; thus, those respective sets were 

designated as set 0 for the two learning groups.  These were learned to the same criteria 

as the basic (order) level categories.  During these 2 learning phases, each trial consisted 

of presenting one stimuli in the center of the screen with the two response options listed 

below the image.  Once a participant responded, the response options disappeared and the 

correct answer appeared for one second.  After an inter-trial interval of 500 milliseconds 

the next trial started.  The No Learning group did not experience Phase 1 or 2. 

 Phase 3 consisted of a discrimination test at the subordinate (family) level.  Two 

stimuli were presented simultaneously with a category label between them.  Participants 

decided whether they belonged to the same or different subordinate (family) level groups.  

No feedback was provided.  Instructions before the phase began emphasized that at least 

one of the creatures always matched the given label, and it was the participant’s task to 

decide if both were or not.  Comparisons were always within a set.  For example, a 

participant saw a comparison between two True Owls or between one True Owl and one 

Barn Owl, but would have never seen a comparison between a True Owl and a Falcon.  

There were 20 same and 20 different pairs for each of the 5 sets depicted in Figure 1) for 

a total of 200 discrimination trials. 

Phase 4 was a learning test.  A subset of participants from each of the 3 learning 

groups learned each of the sets described in Figure 1.  For example, one group of 
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participants in the Heron-Crane Learning group relearned set 0, or the heron and crane 

groups.  Another group of participants in the Heron-Crane Learning group learned set 2u, 

the falcon and hawk groups. Phase 4 learning occurred in the same way as Phase 1 and 2 

learning, with feedback.  Participants learned to a criterion of 85% correct.  This criteria, 

while not as high as initial learning is high enough to show differences in speed of 

learning.  The number of blocks to criterion was the measure of the speed of learning.   

After participants finished the transfer learning test, they completed a short 

questionnaire.  The survey asked about the participants general knowledge of birds, then 

asked participants to list, for each of the categories in each phase where they learned one, 

the features they used to classify that category.  After completing the questionnaire, 

participants were debriefed, given credit, and thanked for their time. 

Results 

Analyses were conducted on the learning in phase 1 and 2 to test whether the 

Heron-Crane group and the Ibis-Stork group learned differently.  For Phases 1, 2 and 4, 

learning stopped when criteria was met.  For analyses involving multiple blocks, the 

accuracy the participant achieved on the block they reached criteria was inputted for all 

further blocks. 

Phase 1.  In a 5x2 (Learn Block x Phase 2 Learning Group) Mixed Model 

ANOVA, there was a significant effect of learning block, F(4, 416) = 28.478, p<.001, but 

no effect or interaction involving learning group, p’s >.05.  Because of the imputation of 

a participant’s final block score on blocks after he or she reached criteria, there was a 

concern that the assumption of sphericity was violated; so a 2x2 (first 2 learning blocks x 

Phase 2 Learning Group) Mixed Model ANOVA was conducted.  This analysis also 
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showed no main effect or interaction involving learning group, p’s >.05.  Figure 5 shows 

the learning across the 5 blocks of Phase 1. 

 

Figure 5. Proportion accuracy across the 5 learning blocks of Phase 1 for both learning 

groups. 

 

Phase 2.  In a 15x2 (Learn Block x Phase 2 Learning Group) Mixed Model 

ANOVA, there was a significant effect of learning block, F(14, 1456) = 216.813, p<.001, 

but no effect or interaction involving learning group, p’s > .05. An independent samples 

t-test also showed that there was no difference between the Heron/Crane learning group 

(M=6.963, s=2.946) and the Ibis/Stork learning group (M=6.192, s=3.320) in the number 

of blocks required to reach the criteria of 93% correct, t(104) = 1.265, p=.209.  Because 
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of the imputation of a participant’s final block score on blocks after he or she reached 

criteria, there was a concern that the assumption of sphericity was violated; so a 3x2 (first 

3 learning blocks x Phase 2 Learning Group) Mixed Model ANOVA was conducted.  

This analysis also showed no main effect or interaction involving learning group, p’s 

>.05.  Figure 6 shows learning across the 15 blocks of Phase 2. 

 
Figure 6. Proportion accuracy across the 15 learning blocks of Phase 1 for both learning 

groups. 

 

Phase3.  Analyses in phase 3 focused on accuracy of each creature set (hits plus 

correct rejections), sensitivity, and bias.  Sensitivity was analyzed using d’, which was 

calculated by subtracting the inverse of the cumulative normal distribution of false alarms 

from the cumulative normal distribution of hits.  Hits were participants correctly 
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responding yes, that images were members of the same family level group.  False alarms 

were participants incorrectly responding yes to the same situation.  Table 3 below 

displays the hit and false alarm rates for each category set. 

Table 3 

Mean hit and false alarm rates and standard deviations for each category set divided by 

learning conditions. 

  Learning Group 

Category Sets Heron/Crane Ibis/Stork No Learning 

Heron-Crane 
Hits (SD) .75(.14) .73(.19) .62(.17) 

False Alarms (SD) .37(.17) .48(.22) .40(.21) 

     

Ibis-Stork 
Hits (SD) .71(.22) .83(.10) .69(.18) 

False Alarms (SD) .53(.21) .35(.16) .53(.20) 

     

Owls 
Hits (SD) .76(.22) .77(.18) .76(.15) 

False Alarms (SD) .55(.31) .53(.29) .76(.15) 

     

Raptors 
Hits (SD) .74(.20) .71(.19) .68(.18) 

False Alarms (SD) .61(.21) .59(.21) .54(.21) 

     

Lizards 
Hits (SD) .59(.21) .62(.18) .59(.20) 

False Alarms (SD) .40(.22) .42(.19) .39(.22) 

 

Accuracy.  In a 3x5 (Learning Condition x Creature Set) Mixed Model ANOVA, 

there are main effects of Learning Condition, F(2, 166) = 4.274, p=.015 and Creature Set, 

F(4, 664) = 26.184, p<.001.  There is also an interaction between the two, F(8, 664) = 

17.930, p<.001.   

 A priori comparisons using LSD showed that, for the Heron-Crane learning 

group, the Heron-Crane set was more accurately discriminated than all the other sets, p’s 

< .001.  Likewise, for the Ibis-Stork learning group, their accuracy on the Ibis-Stork set 

was higher than any other set, p’s < .001.  For the Heron-Crane set, Heron-Crane learners 
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(M=.70, SE=.013) were significantly more accurate than non-learners (M=.612, SE=.012) 

or Ibis-Stork learners (M=.629, SE=.013).  For the Ibis-Stork set, Ibis-Stork learners 

(M=.751, SE=.013) were significantly more accurate than non-learners (M=.583, 

SE=.012) or Heron-Crane learners (M=.600, SE=.013).  There were no other significantly 

differences of learning groups within the different sets. 

 
Figure 7. Accuracy of discrimination of creature sets by the learning groups in Phase 3.  

The only significant differences involved the Heron/Crane and Ibis/Stork sets.  Distances 

from the learned set are described in Figure 2. 

 

 Sensitivity.  In a 3x5 (Learning Condition x Discrimination Set) Mixed Model 

ANOVA, there were main effects of Learning Condition, F(2, 166) = 4.759, p=.01 and 
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Discrimination Set, F(4, 664) = 23.392, p<.001.  There was also an interaction between 

the two, F(8, 664) = 15.198, p<.001.  

  A priori comparisons using LSD showed that the Heron-Crane learners 

(M=1.186, SE=.082) were better able to discriminate the groups of the Heron/Crane set 

than non-learners (M=.655, SE=.75) or Ibis-Stork learners (M=.794, SE=.083).  For the 

Ibis-Stork set, Ibis-Stork learners (M=1.532, SE=.086) had a significantly higher d’ than 

non-learners (M=.516, SE=.079) or Heron-Crane learners (M=.623, SE=.085).  There 

were no other significantly differences among the learning groups in the different sets.  

Figure 8 depicts these differences. 
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Figure 8. Sensitivity (d’) of discrimination of creature sets by the learning groups in 

Phase 3.  The only significant differences involved the Heron/Crane and Ibis/Stork sets.  

Distances from the learned set are described in Figure 2. 

 Bias.  In a 3x5 (Learning Condition x Discrimination Set) Mixed Model ANOVA, 

there was a main effect of discrimination set, F(4, 664) = 30.452, p<.001, but no effect or 

interaction involving learning condition, p’s > .05.  Responses to the lizard set were more 

conservative than all other sets, p’s < .001.  Responses to the Heron/Crane set were the 

next most conservative, p’s < .001.  Responses to the Ibis/Stork set were significantly 

more conservative than the owl set, p = .032, and the raptor set, p = .022.  The owl and 

raptor sets were not different from each other.  Figure 9 illustrates these effects. 
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Figure 9. Bias (C) of discrimination of creature sets by the learning groups in Phase 3.  

There were no significant differences between learning groups.  Distances from the 

learned set are described in Figure 2. 

 

Phase 4.  Two types of analyses were conducted on the learning in Phase 4.  It is 

important to realize that all pictures used in Phase 4 were novel and had not been seen in 

any of the previous phases.  The first analyses explored the impact of prior Phase 2 

learning, including the no learning control, on the learning across blocks of categories 

used in Phase 4.  The second set of analyses compared the number of blocks needed to 

reach the Phase 4 criteria of 85% correct. 

Overall learning.  A 3 condition x5 category type x15 learning blocks mixed 

model ANOVA was conducted on categorization accuracy.  There was a significant main 
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effects of Phase 2 learning group, F(2,154)=5.245, p=.006, and Phase 4 learning set, 

F(4,154)=7.859, p<.001, as well as, a significant interaction involving the two, 

F(8,154)=2.710, p=.008.  The main effect and interactions involving learning block were 

all significant, p’s < .01.  Figure 9 illustrates participants learning across the 5 different 

Phase 4 learning sets in each of the different Phase 2 learning groups.  Overall, the Phase 

2 Ibis/Stork learning group (M=.891, SE=.007) had a significantly higher level of 

learning than the Phase 2 no learning group (M=.859, SE=.007).  When looking at the 

effects of Phase 2 learning group on individual Phase 4 learning sets, the Phase 2 no 

learning group (M=.798, SE=.015) had a significant lower accuracy than the Phase 2 

Heron/Crane group (M=.887, SE=.016) and the Phase 2 Ibis/Stork group (M.878, 

SE=.016) when learning the Heron/Crane set in Phase 4, p’s <.001.  The Phase 2 no 

learning group (M=.834, SE=.015) also had lower accuracy than the Phase 2 Ibis/Stork 

learners (M=.886, SE=.016) when learning the Raptor set in Phase 4, p=.023.   

Because of the imputation of a participant’s final block score on blocks after he or 

she reached criteria, there was a concern that the assumption of sphericity was violated; 

so a 5x3x5 (first 5 learning blocks x Phase 2 Learning Group x Category Set) Mixed 

Model ANOVA was conducted.  The analysis also showed a significant interaction 

between learning phase 2 learning group and category set, F(8, 154) = 3.202, p=.002.  

Pairwise comparisons showed the same pattern of significant results as the full 15 block 

analysis with the following addition; The Ibis/Stork learning group (M=.898, SE=.026) 

had significantly higher accuracy than the Heron/Crane learning group (M=.811, 

SE=.025) when learning the Ibis-Stork category set during Phase 4, p=.016.  Figure 10 

shows the learning for all of the Phase 4 learning conditions separately for the no 
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learning, heron/crane, and ibis/stork training in phase 2.  Figure 11 focuses on 

highlighting the differences between the Phase 2 learning groups in the Phase 4 learning 

of the Heron/Crane and Ibis/Stork sets. 
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Figure 10. Accuracy across the 5 learning sets of Phase 4 for each of the 3 learning 

groups from Phase 2. 
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Figure 11. Phase 4 learning for the groups that learned the Heron/Crane and Ibis/Stork 

sets for each of the Phase 2 Learning Groups. 

 



  
  

46 
 

Blocks to criteria.  A 3x5 (Phase 2 learning group x Phase 4 learning group) 

between subjects ANOVA was conducted on the number of blocks required to reach the 

criteria of 85% correct in Phase 4.  Results showed a main effect of Phase 4 learning set, 

F(4,150)=7.021, p<.001, and a marginally significant interaction between the two factors, 

F(8,150)=1.780, p=.085.   

 However, the number of blocks to criterion is a relatively gross measure and has 

limited ability to reflect learning occurring within a block.  Because of this, a second 

analysis was conducted explored the effects of the same factors on the number of half 

blocks required to reach a criteria of 85% correct.  Each block of 32 trials was divided in 

half and the mean accuracy was calculated for each set of 16 items.  Analyses showed 

that there was a main effect of Phase 4 learning set, F(4,153)=5.766, p<.001, and a 

significant interaction between Phase 4 learning set and Phase 2 learning group, 

F(8,153)=2.489,p=.014.  Pairwise comparisons show that the Phase 2 no learning group 

(M=4.815, SE=.377) took a significantly higher number of half blocks to reach criterion 

than the Phase 2 Heron/Crane learning group (M=3.704, SI=.404) and the Phase 2 

Ibis/Stork learning group (M=3.658, SE=.412), p’s<.05.  Analyses also showed that, 

when learning the Heron/Crane set in Phase 4, the Heron/Crane learning group 

(M=2.727, SE=.894) took significantly fewer half blocks to reach criterion than the no 

learning group (M=7.500, SE=.856) and the Ibis/Stork learning group (M=6.455, 

SE=.894), p’s<.01.  The Ibis/Stork and no learning groups did not differ in learning the 

Heron/Crane set in Phase 4.  However, this pattern did not repeat for the Phase 4 

Ibis/Stork set.  While the Phase 2 Ibis/Stork learning group did reach criteria more 
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quickly than the Heron/Crane or no learning groups, it did not do so significantly faster.  

Effects based on half blocks to criteria are depicted in Figure 12. 

 
Figure 12. The number of half blocks required to reach the criteria of 85% accuracy in 

Phase 4.  Distances from the learned set are described in Figure 2. 

 

Discussion 

 The primary goal of experiment 1 was to test the ability of people to generalize 

their previous learning to new unlearned categories.  This was tested in two ways, 

through a discrimination test and a learning test.  Analyses from experiment 1 revealed 

lawful patterns of behavior in learning and converging measures of generalization in the 

discrimination and learning tests.  Below the results of the tests are concisely described.  



  
  

48 
 

The implications of these findings are then discussed with the findings of experiment 2 in 

the general discussion. 

Analyses conducted on learning at the order and family levels, revealed  no 

differences between the learning groups in how much or how quickly they learned either 

the Order level groups, Wading Birds/Owls, or the Family level groups, Herons/Cranes 

or Ibises/Storks.  They also revealed that most participants were able to learn both the 

order level categories, wading birds and owls, and the family level categories during both 

the family learning phase and during the learning test in a relatively short number of 

blocks and to a high level of accuracy.  This indicates that participants were learning the 

structure and essence of the categories and not just memorizing exemplars.  This is 

important because, generalization would not be expected if participants were just 

memorizing exemplars. 

The Heron/Crane and Ibis/Stork learning groups also generally followed the same 

pattern of transfer to other categories.  Both groups revealed similar learning.  In each 

group, the key comparison was between a learning group and the control no learning 

group. 

 Analyses showed that participants, who learned the Phase 2 family level 

categories at a high criterion of accuracy, also were more accurate at discriminating 

between the two learned categories than the no learning group during the discrimination 

test.  They also relearned or reached criteria much faster in the learning test than the no 

learning group did.  Both the learning test and discrimination used different images than 

were used during the initial learning of those categories.  This, again, indicates that the 
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categories were truly learned and that increased performance was not merely due to 

memorization of exemplars.   

 However, analyses showed that the family level learning did not generalize to 

other types of wading birds.  Specifically, Heron/Crane learners were not better at 

discriminating or learning the Ibis/Stork set than the no learning group.  Likewise, the 

Ibis/Stork learners were not better at discriminating or learning the Heron/Crane set than 

the no learning group.  There was also no generalization from learning to the owl or 

raptor categories.  Neither the Heron/Crane nor the Ibis/Stork learning group differed 

from the no learning group on the owl or raptor category sets.  Generalization also did not 

occur for the lizard group, the learning groups did not differ from the no learning group.  

These results indicate that generalization did not occur beyond the new exemplars from 

the learned categories.  Closely related categories (the other set of wading birds) that 

were within the same order (basic) level as the learned family level categories did not 

have better performance for learners than for non-learners in either the discrimination test 

or the learning test.  Likewise, learners were not better than non-learners, in the 

discrimination and learning tests, on categories that were within the same class 

(superordinate) level but not the same order (basic) level as the family level learned 

categories (the owls and raptors category sets).   Learners were also not able to generalize 

to categories that were outside the class (superordinate) level category as the family level 

learned categories.  Experiment 2 was designed to provide more converging evidence for 

the above pattern of generalization. 
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Experiment 2 

 The purpose of experiment 2 was to use multi-dimensional scaling to provide 

converging evidence for the pattern of hierarchical generalization found in experiment 1.  

It also provides an objective measure of the changes in participants’ categorical 

representations and organizational structure as learning levels of the hierarchy occurs. 

Method 

Participants.  Sixty-four participants were recruited from the Introductory 

Psychology participant pool from Arizona State University.  They received partial course 

credit for participating.  Two participants were removed from analyses because they did 

not reach the learning criteria in the learning phases, another 2 were removed from data 

analyses because their responses during scaling did not vary with respect to item 

differences, e.g. they issued the same response for almost all item comparisons. 

Design and materials.  The same materials used in experiment 1 were used in 

this experiment.  Specifically, the same learning stimuli for the Phase 1 learning and 

Phase 2 learning were used here for Phase 1 and Phase 2.  For the scaling stimuli, 24 

stimuli (3 from each of the 8 bird family level categories) from the discrimination task of 

Phase 3 in the first experiment were chosen at random.  No stimuli from the lizard groups 

were used in this experiment, since their inclusion would likely minimize any differences 

in the birds (and so grouping analysis of the birds would not be possible). 

Procedure.  Participants were split into three groups.  The first group did not 

complete any learning and simply scaled the scaling stimuli.  To scale the stimuli, each of 

the 24 stimuli was paired with every other stimulus and presented one pair at a time in 

random order.  As each pair was presented, participants rated on a 9 point scale the 
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similarity of the two stimuli.  Participants were instructed to use the whole scale to 

evaluate the bird pictures. 

The other two groups completed Phase 1 and Phase 2 in the same manner and to 

the same criterion as the participants in experiment 1.  One group learned the Heron-

Crane distinction in Phase 2 and the other group learned the Ibis-Stork distinction in 

Phase 2.  After which, they will scale the scaling stimuli in the same way as the other 

group.  

Results 

 Learning.  Learning analyses similar to analyses from Phase 1 and 2 from 

Experiment 1 were conducted.  A 2x5 (Learning Group x Block) mixed model ANOVA 

showed no significant effects or interactions involving learning group, p’s > .15, in Phase 

1.  The same was true for the 2x15 (Learning Group x Block) mixed model ANOVA 

conducted on the learning in Phase 2, p’s > .24.  There was also not a statistically 

significant difference between the Heron/Crane (M=7.89, s=3.234) and Ibis/Stork 

(M=.6.23, s=2.759) learning groups in the number of Phase 2 blocks required to reach the 

learning criteria, t(38)=1.754, p=.088. 

 Scaling.  Each participant rated the similarity of each item pair once.  From these 

ratings, dissimilarity matrices were constructed for each participant.  Then, using those 

matrices, the dissimilarities for each condition were multidimensionally scaled in SPSS 

using the PROXSCAL function.  Each condition was scaled separately in 2 to 8 

dimensions.  Figure 13 shows the Stress 1 values for each of the learning conditions.  The 

values were very similar among conditions. 
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Figure 13. The Stress 1 values for each of the scaling solutions of the different conditions 

in 1-8 dimensions. 

 

Based on the pattern of stress scores for each of the solutions, it was decided to use the 4 

dimensional solutions for further analyses.  The 4 dimensional stress 1 values were .2063, 

.2065, and .2076 for the Heron/Crane, Ibis/Stork, and No learning groups respectively.   

 Structure Analysis.  I performed a number of analyses on the multidimensional 

solution in 4 dimensions.  To anticipate, each MDS space contains 24 pictures, three 

examples from each of eight categories.  Furthermore, the eight categories were 

composed of three basic levels (the orders of wading birds, owls, raptors), which could be 

subdivided into their subordinate categories (e.g., the families of Cranes, Herons, Ibis’, 

and Storks).  The analyses reported here address whether the space of 24 birds 

increasingly conformed to their natural groups, e.g., following training at the family level 

of Ibis and Storks, were these two families better separated in MDS space relative to the 

no learning control.   
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The distances between items from each of the 4 dimensional solutions were used 

to analyze the structure of each of the learning groups.  Figure 14 shows a conceptual 

diagram that illustrates how structural values were calculated.  Basically, for each item, 

the mean of the distances to within category items were computed and then divided by 

the mean of the distances to other category items.  In these analyses, each item has its 

own structural ratio and acts as an individual entry for statistical tests.  Smaller 

numerators in the ratio indicate a closer grouping of within category items, and larger 

denominators in the ratio indicate larger distances to other category items; thus, a smaller 

ratio indicates a more highly structured space. 

 

Figure 14.  Conceptual diagram illustrating the general pattern for creating structural 

ratios from distances in multidimensional scaling solutions.  For item 1, solid lines 

indicate within category distances and dotted lines indicate between category distances.  

For each item the mean within category distance divided by the mean between category 

distance constitutes the structural ratio for that item. 

 

 Because of the complexity of the hierarchical structure used in this experiment, 

several different, meaningful structural ratios can be calculated.  The first ratio calculated 

and analyzed was at the order category level (e.g. wading birds).  It was possible that 
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learning a subset of wading birds, or learning to distinguish wading birds and owls could 

have differentially affected the participants’ psychological space in comparison to those 

who received no learning.  For this structural ratio (Order Ratio), the mean distance to 

other order level category items (e.g. for item Heron1 the mean distance to all other 

Herons, and all Cranes, Ibises, and Storks) was divided by the distance to all other items 

(e.g. for item Heron1 the mean distance to all True Owls, Barn Owls, Falcons, and 

Hawks).  A 3x3 (Learning Group x Order level category) ANOVA was conducted using 

the Order Ratio as the dependent variable.  The only significant effect was the main effect 

of order level category, F(2,63) = 18.82, p<.001.  Planned comparisons showed that the 

Owl group was the most structured (M=.558, se=.023), followed by the Raptor group 

(M=.635, se=.023), with the Wading bird group (M=.724.se=.016) the least structured, all 

p’s <.02.  Figure 15 illustrates this structural difference. 
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Figure 15.  Order Ratio structure of order level categories split by learning group.  Lower 

values indicate more structure. 

 

 A second structural ratio was calculated (family ratio).  This ratio was calculated 

by dividing the mean distance of an item to other family level category items (e.g. for 

Heron1, the mean distance to Heron2 and Heron3) by the mean distance to all other non-

family category items (e.g. for Heron1, the mean distance to all non Herons).  This ratio 

can be used to explore differences in the structure of family level categories or sets of 

family level categories.  These analyses were also conducted using a set ratio, which was 

calculated by dividing the mean of within family level category distances (e.g. the mean 

of the distance from Heron1 to Heron2 and Heron3) by the between group distances of its 

set pair from experiment 1 (e.g. the mean of the distances from Heron1 to Crane1 – 
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Crane3).  The overall patterns of these analyses are similar to the analyses using the 

family ratio, and so, will not be reported in detail here. 

 Using family ratio as the dependent measure, a 3x8 (Learning Group x Family 

level category) ANOVA was conducted.  Both main effects were significant, p’s<.001, as 

was the interaction between learning group and family level category, F(14,48)=4.837, 

p<.001.  Figure 16 illustrates the structure of each of the learning groups for each family 

level category.  Planned comparisons showed that there were no significant differences 

between learning groups for the Heron, True Owl, Barn Owl, Hawk, or Falcon family 

level categories.  For the Crane family level category, the no learning group (M=.527, 

SE=.048) was more structured than the Heron/Crane learning group (M=.708, SE=.048, 

p=.01) and the Ibis/Stork learning group (M=.696, SE=.048, p=.016), which were not 

different from each other.  For the Ibis family level category, the Heron/Crane learning 

group (M=.983, SE=.048) had a less structured category than the Ibis/Stork learning 

group (M=.597, SE=.048, p<.001) and the no learning group (M=.594, SE=.048, p<.001).  

The Ibis/Stork and no learning groups did not differ.  The Stork family level category 

follows the same pattern.  The Heron/Crane learning group (M=.866, SE=.048) had a less 

structured category than the Ibis/Stork learning group (M=.573, SE=.048, p<.001) and 

the no learning group (M=.525, SE=.048, p<.001).  The Ibis/Stork and no learning groups 

did not differ.   
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Figure 16. Family ratio values for each of the family level categories split by learning 

group. 

 

A second analysis using the family ratio was conducted exploring the differences 

of learning group and the learning sets (e.g. Heron-Crane) described in experiment 1.  

This analysis is more directly comparable to the analyses in experiment 1, where learning 

set was one of the key variables.  The 3x4 ANOVA showed main effects of learning 

group and learning set, p’s<.001, and a significant interaction between the two factors, 

F(6,60)=5.601, p<001.  Figure 17 shows the structure scores for each set of categories 

split by the learning groups.  Pairwise comparisons showed no differences in learning 

group for the Owl, Raptor, or Heron-Crane sets.  For the Ibis-Stork set, the Heron/Crane 
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learning group (M=.924, SE=.042) was significant less structured than the Ibis/Stork 

learning group (M=.585, SE=.042, p<.001) or the no learning group (M=.559, SE=.042, 

p<.001), which were not different from each other. 

 

Figure 17. Family ratio values for each of the learning sets from experiment 1 split by 

learning group.  Distances from the learned set are described in Figure 2. 

 

 Because these patterns of effects differed to some extent from the findings in 

experiment 1, analyses were conducted on the 2 and 3 dimensional solutions.  The 3 

dimensional solutions followed the same pattern as the 4 dimensional solutions; however, 

the 2 dimensional solutions differed in several significant ways.  As can be seen in Figure 
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18, the categories in the Ibis/Stork learning group were much more structured than in the 

no learning group.   

No Learning Group 

 
 

Ibis/Stork Learning Group 
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Heron/Crane Learning Group 

 

Figure 18. 2 dimensional solutions for the Ibis/Stork, Heron/Crane, and no learning 

groups.  Each family level category is circled. 

 

In a 3x4 (Learning Group x Set Name) ANOVA using the Family ratio calculated from 

the 2 dimensional solution distances, both main effects, p’s<.001, and the interaction was 

significant, F(6,60)=3.073, p=.011.  As can be seen in Figure 19, planned comparisons 

showed that for the Ibis-Stork set, the Ibis/Stork learning group (M=.309, SE=.061) was 

more structured than the Heron/Crane learning group (M=.610, SE=.061, p=.001) and the 

no learning group (M=.625, SE=.061, p<.001).  There was no difference between 

learning groups in the Heron-Crane set.  The key difference between the 2 dimensional 

and 4 dimensional solutions is that in 4 dimensions, the Heron/Crane learning group is 

worse than the Ibis/Stork and no learning groups, while in 2 dimensions, the Ibis/Stork 

learning group was more structured than the Heron/Crane and no learning groups.  It is 

unclear as to why this change occurred. 
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Figure 19.  Family ratio values for the 2 dimensional solution split by set name and 

learning group.  Distances from the learned set are described in Figure 2. 

 

Discussion 

The primary goal of experiment 2 was to determine if prior learning impacted, 

either selectively or globally, the psychological space containing these of learners.  

Because experiment 1 and 2 were designed to provide converging evidence for an overall 

pattern of generalization, the implications of the pattern of generalization found in 

experiment 2 will be discussed along side experiment 1 in the general discussion. 

As in experiment 1, there were no differences between the learning groups in 

learning the order level, Wading birds/Owls, or in learning the family level, 
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Herons/Cranes or Ibises/Storks.  Multidimensional scaling the rating data indicated that 

Stress 1 values for each of the three groups, Heron/Crane learning, Ibis/Stork learning, 

and no learning, was similar to each other.  This indicates that when comparing the 

structure of the categories for each of the three learning groups, differences were not due 

to a particular group having a different level of stress. 

 The two dimensional structure analyses revealed that the Ibis/Stork learning group 

had a stronger structure of the Ibis/Stork category set than the no learning group.  They 

did not have a more structured space for any of the other family level category sets.  

Unlike in experiment 1, the pattern of results from the Heron/Crane learning group did 

not mimic the Ibis/Stork learning group.  Here the Heron/Crane learning group did not 

differ from the no learning group on any of the family level category sets.  These results 

indicate that, at least for the Ibis/Stork learning group, the learning selectively modified 

the learners’ psychological space.  Participants were able to better structure the categories 

they learned; this is impressive, especially because the exemplars used to measure the 

categorical structure were never before seen by the participants. 

 Because of relatively high stress values in the two dimensional solutions, analyses 

were also completed on the four dimensional solution.  The pattern of results from the 

two dimensional solution did not reappear in the four dimensional solution.  In the four 

dimensional solution, the Ibis/Stork learning group did not differ in category structure 

from the no learning group for any of the family level category sets; however, the 

Heron/Crane learning group did differ from the no learning group on the Ibis/Stork 

family level category set.  The Heron/Crane learning group Ibis/Stork category set was 

less structured than the no learning group Ibis/Stork category set.  There were no other 
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differences between the Heron/Crane learning group and the no learning group.  While 

the effect is different, and not as easily interpretable, it still indicates that learning 

selectively altered the category structure of participants.  The effects also indicate that the 

category structure from the learners’ psychological space did not change for any 

categories that were not learned; thus, the learning did not generalize to any other 

category sets. 

 The implications, with regard to the ability to transfer knowledge from learned 

categories to unlearned categories, of these results and the results of experiment 1 will be 

discussed in the general discussion. 

General Discussion 

  The primary goal of these experiments was to mimic some aspects of 

perceptual expertise and then test the extent of generalization and transfer from one set of 

subordinate set of categories to other sets of subordinate level categories varying in 

relatedness from the learned categories.  Participants learned multiple levels of a 

hierarchy, including typically subordinate level categories.  They also learned them to a 

high degree of accuracy.  Participants learned to differentiate two order categories from 

each other and then learned one set of family level categories.  They were then tested on 

their ability to generalize to other family level categories. Those categories included the 

learned category set (either Heron/Crane or Ibis/Stork).  The second set was a family 

level category set that was within the same order as the learned set, in this case the other 

wading bird set.  The third and fourth family level sets were the owls and raptors.  These 

sets were within the same class level as the learned family level categories (i.e. Birds), 

but were not with the same order level category (i.e. wading birds).  The reason there 
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were two sets at this hierarchical distance was for one set, the raptors, to act as a control 

for the owls, which had been experienced during the order level learning.  The final 

family level category set, the lizards, was outside the class of the learned family level 

learned categories, and acted as a control or baseline for performance.  These category 

sets and the hierarchical organization can be seen in Figure 2. 

 There were several theoretically plausible patterns of behavior that could have 

occurred.  One possibility is that there would be no generalization to categories other than 

to new exemplars of the learned ones.  A second plausible result was the domain 

specificity hypothesis, the idea that there would be a limited influence, where learning 

would generalize within a domain, or boundary, and there would be very little 

generalization outside the domain.  The size of the domain could vary based on a number 

of factors, would be determined by the locus of learning within the hierarchy where 

learning occurred.  For example, one possible pattern of results was a large amount of 

generalization to the two wading bird sets, but no generalization to any of the other bird 

category sets or the lizard set.  This would suggest that learning can transfer to other 

categories within the same one level higher category, but not to categories outside of that 

higher-level category.  In this instance, the one level higher category is the order level 

category; so learning would transfer with the family level wading bird categories, 

because that is where the original learning occurred, but could not transfer to other family 

level categories in other orders, e.g. owls or raptors.  A final plausible pattern of results 

was for there to be generalization, but no specificity.  Here the degree of generalization 

that occurred would be based on the degree of perceptual similarity between the learned 

categories and the other categories.  So a large amount of transfer would occur for the 



  
  

65 
 

non-learned wading birds, less would occur for the non-wading bird birds, and little to no 

transfer would occur for the lizards.  Each of these patterns is illustrated in Figure 1. 

 Experiment 1 and 2 were designed to provide converging evidence of one of the 

patterns of behavior described above.  There were several measures of transfer providing 

converging evidence: the accuracy and sensitivity of the discrimination test in experiment 

1, the learning and number of blocks to criterion in the learning test of experiment 1, and 

the structure measurement from the scaling solutions of experiment 2.  Mostly, these 

measures did follow the same pattern of results.  In the accuracy and sensitivity (d`) 

analyses of the discrimination test, participants who learned a category set did much 

better than those who did not learn, in discriminating between that set.  The learning 

group did not do any better than the no learning group on any of the other category sets.  

Likewise the learning groups had higher overall learning than the no learning group on 

the corresponding category sets.  Similarly, the Heron/Crane learning group required 

fewer half blocks of learning to reach criteria than the no learning group, when the 

learning test consisted of the Heron-Crane set.  The Ibis/Stork learning group also took 

fewer half blocks to reach criteria on the corresponding category set, though not 

significantly so.  Also similar to other results, the Ibis-Stork category structure in the 

multidimensional scaling solutions for the Ibis/Stork group was greater than the no 

learning group.  The same was not true for the Heron/Crane learning group for the Heron-

Crane category set.  All of this evidence points to little or no generalization beyond new 

exemplars of the learned category, which is depicted in Figure 20. 
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Figure 20. General pattern of results across the discrimination test, learning test, and 

structure of categories during multidimensional scaling.  The set number is a function of 

hierarchical distance as outlined in Figure 2. 

 

 This result, no generalization beyond the learned categories, fits well with 

previous research.  Scott, et al. (2008) found that learning models of cars did not improve 

discrimination of other car models, nor did it improve performance in discriminating 

older car models, which had not been discriminated before.  The current results match 

Scott, et al.’s (2008) very well.  Participants did not generalize to new wading bird 

categories, nor did they generalize to owls or raptors, which are analogous to the older 

car models.  Tanaka, et al. (2005) found that when participants learned wading bird 

species, they were better at discriminating new wading bird species than at discriminating 

owl species.  The current results match their results fairly well.  Participants in both 
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studies were able to discriminate between new exemplars of learned categories.  Tanaka, 

et al. (2005) found a small, but significant improvement for unlearned wading bird 

species, while here there tended to be a small increase in ability to discriminate unlearned 

wading bird categories; however, the increase was not significant. 

 While the current results match past work in a number of ways, the current studies 

go beyond past work.  First, previous work has only used discrimination tests to assess 

generalization.  Here generalization was tested using a variety of methods.  These 

included a discrimination test, a prepared for future learning test, and a measure of the 

learners’ psychological space and organization of categories.  All of these measures 

showing a common trend of behavior provide strong support for the conclusion that 

transfer of perceptual knowledge between categories is extremely limited.   

Second, the current work used a category structure with more variability within a 

category than past work.  Scott, et al. (2008) used pictures of models of cars and Tanaka, 

et al. (2005) used bird species.  Both categories use images that are highly similar, 

meaning that discrimination between them was relatively easy, e.g. participants in Scott 

et al.’s (2008) work were over 70% accurate in discriminating between them even before 

learning.  The current work used bird families as categories, which consisted of several 

related bird species.  The families were more variable as indicated by the no learning 

group only reaching approximately 60% accuracy in discriminating between them.  

Previous work, e.g. Homa and Cultice (1984), has shown that having a more variable 

category structure improves generalization to new exemplars from the learned categories 

over just seeing highly similar exemplars during learning.  It was hypothesized that this 

more variable category structure would also improve generalization to unlearned 
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categories, in addition to learned categories.  This appears to not be the case, because 

there was no significant generalization outside of the learned categories.  One potential 

possibility for the unexpected lack of an effect of the increased variability is in the nature 

of the variability.  In Homa and Cultice (1984), the categories were artificial and the 

variability was spread out evenly around a centroid.  In the current work, the increased 

variability could not be evenly distributed.  Each family level category consisted of 4 

exemplars from each of 4 species.  While this is more variable than the subordinate 

categories that Tanaka et al. (2005) used, which were just exemplars of a single species, it 

is not evenly distributed.  The distribution of a subordinate (family) level category here 

consisted of several clusters of highly similar exemplars.  Thus, it may be functionally 

impossible to create evenly distributed categories, in the manner of Homa and Cultice 

(1984), using real world hierarchical categories. 

The third way that the current work goes beyond previous work, is that here a 

larger more complex hierarchy was used.  The hierarchy used here had two distinct 

differences from previous ones used.  First, the hierarchy used here included a set of 

control categories that were outside the class level category of the learned categories, i.e. 

the lizards were outside the bird category.  This group was specifically added to act as a 

baseline where no generalization was expected to occur.  The second primary difference 

between the current and previous hierarchies was the inclusion of 2 sets of categories that 

were within the class level category of the learned sets, but outside the order level 

category of the learned sets.  Previous work has used a single set of categories of this 

nature, e.g. the owl species from Tanaka et al. (2005).  The addition of the second 

category set of this type allowed for a test to explore if experiencing the category set, but 
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not differentiating within it improves generalization, e.g. the owls were seen during the 

order level learning, but participants did not learn to differentiate between True and Barn 

owls, while the raptor category set was never seen before the transfer tests.  These 

additions did not reveal key patterns of behavior here, because generalization did not 

extend beyond the learned categories; however, future work that intends to measure 

generalization within a partially learned hierarchy will need to for these factors, a true 

baseline category and experience, but not learning of the categories. 

There are several potential reasons why no generalization beyond the learned 

categories was found.  The domain specificity hypothesis, where there was a great deal of 

generalization within a certain hierarchical distance of the learned categories and none or 

very little beyond that distance, was predicated upon the idea that transfer would be 

facilitated by attention to particular features of the exemplars within that category.  

Previous work by Goldstone and colleagues (Goldstone & Steyvers, 2001; Kersten et al., 

1998; Schyns et al., 1998) has shown that learning categories draws attention to 

diagnostic features or sets of features.  The domain specificity hypothesis predicted that 

closely related categories would have the same or highly similar set of diagnostic features 

as the learned categories.  Thus, learners would already have their attention focused on 

the relevant dimensions for closely related categories, but not for less closely related 

categories.  Being focused on the appropriate dimensions would facilitate the 

discrimination of those categories.  However, as was discussed above, learning did not 

facilitate discrimination between unlearned categories, regardless of how closely related 

the categories were to the learned categories.  There is still a question about why the 

directed attention did not facilitate further learning.  One possibility is that such attention 
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never has an effect, that when people are cued to new categories, they start from scratch 

their search for relevant dimensions.  However, that possibility does not fit well with 

Kersten, et al.’s (1998) idea of attentional persistence, where more attention is allocated 

to dimensions or features that are predictive.  Another possibility is that, because real life 

categories were used, it cannot be guaranteed that the same dimensions useful in 

distinguishing between herons and cranes were also useful in distinguishing between 

ibises and storks.  Real world categories were used for several reasons, including the 

ability to construct large categories and a large hierarchy, both of which were highly 

externally valid; however, using real world categories did have some drawbacks.  One 

potential drawback was the inability to guarantee that some categories shared relevant 

dimensions. Another being that ideally each of the category sets would have an equal 

baseline from the no learning group; however, that was not the case, some categories 

were inherently easier to discriminate than other.  This impeded direct comparisons 

across category sets within a condition.  While there is no evidence to confirm that the 

closely related category sets of the wading birds had different diagnostic features, it is a 

possibility. 

Another potential issue was the lack of complete expertise.  While perceptual 

expertise was mimicked in several ways in this experiment, participants learned multiple 

levels of a hierarchy and learned to a high degree of accuracy, there are several other 

aspects of perceptual expertise that were not captured here.  One aspect is the extensive 

experience with the learned categories.  The learning in the current experiments did result 

in high accuracy, but was not prolonged and only lasted until participants were proficient 

in categorizing.  While some work, e.g. Tanaka et al. (2005), had more prolonged training 
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and still did not show much if any generalization beyond the learned categories, that 

work did not include the characteristics described above to enhance the ability to detect 

generalization.  It is possible that more aspects of expertise along with more sensitive 

measures are needed to detect generalization.   

The current work here indicates that people who learn one set of wading bird 

families are not able to generalize their knowledge to other wading bird, owl, raptor, or 

lizard categories.  This result does fit with some past work, e.g. Scott et al. (2008), but 

does not appear to fit with Kersten et al.’s (1998) concept of attentional persistence, 

where previous learning should improve future learning if the categories share diagnostic 

dimensions.  Thus, we can conclude that generalization beyond learned categories is not 

widespread, as in across a hierarchy, and does not provide large easily detectable 

differences, at least not in many cases, but it may be premature to conclude that no 

perceptual generalization ever occurs.  To provide more control over the learning 

situation, future work could focus on creating artificial hierarchies.  Doing this would 

create categories that are equal in structure and the degree of overlapping diagnostic 

dimensions can be closely controlled.  Future work should also include multiple measures 

of generalization and more direct measures of people’s attention to test whether previous 

learning does cue attention to focus on previously relevant dimensions.  Regardless, the 

results of the present study confirm that categorical training on detailed, pictorial stimuli 

can generate substantial generalization to that category but this generalization appears not 

to extend beyond the categories learned.   
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APPENDIX A 

FULL SPECIES LIST USED FOR STIMULI DEVELOPMENT LISTED BY ORDER 

AND FAMILY LEVEL CATEGORIES 
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Order 

Category 

Family 

Category 

Species 

1 2 3 4 

Wading 

Birds 

Herons Cattle Egret 
Great Blue 

Heron 

Reddish 

Egret 

Yellow-

Crowned 

Night Heron 

     

Cranes Blue Crane 

Grey-

Crowned 

Crane 

Sandhill 

Crane 

Whooping 

Crane 

     

Ibises 
African 

Sacred Ibis 
Glossy Ibis 

Madagascar 

Ibis 
White Ibis 

     

Storks Wood Stork 
Marabou 

Stork 

Black 

Necked Stork 
White Stork 

      

Owls 

True Elf Owl 
Northern 

Hawk Owl 

Northern 

Saw-whet 

Owl 

Eastern 

Screech Owl 

     

Barn Barn Owl 
Oriental Bay 

Owl 

Australian 

Masked Owl 

Ashy-faced 

Owl 

      

Raptors 

Falcons 
Collared 

Forest Falcon 

Common 

Kestral 

Falcon 

Pygmy 

Falcon 

American 

Kestral 

Falcon 

     

Hawks Barred Hawk 
African 

Harrier Hawk 

Steller’s Sea 

Hawk 

Short-toed 

Snake Hawk 

      

Lizards 

Agamids 

Australian 

Water 

Dragon 

Fan-throated 

Lizard 

Eastern 

Bearded 

Dragon 

Blanford’s 

Rock Agama 

     

Anoles 
Allison’s 

Anole 
Brown Anole 

Neotropical 

Green Anole 

Blue-lipped 

Forest Anole 
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APPENDIX B 

MEANS AND STANDARD DEVIATIONS OF REACTION TIMES OF DURING THE 

DISCRIMINATION TEST IN EXPERIMENT 1 
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Learning 

Group 

Trial 

Type 

Category Set Reaction Time Mean (Standard Deviation) 

Heron/Crane Ibis/Stork Owl Raptor Lizard 

Heron/Crane 

Correct 
2121.62 

(830.51) 

1788.08 

(895.18) 

1381.74 

(750.97) 

1837.57 

(784.21) 

1771.62 

(852.39) 

      

Incorrect 
2120.11 

(1262.82) 

1937.19 

(1044.76) 

1580.52 

(1212.52) 

1994.70 

(1045.22) 

1911.39 

(1352.93) 

       

Ibis/Stork 

Correct 
2194.88 

(993.25) 

2170.24 

(730.56) 

1777.87 

(1006.35) 

2275.89 

(1227.83) 

1958.69 

(1002.52) 

      

Incorrect 
2.352.72 

(1088.42) 

2420.38 

(1221.72) 

1988.39 

(1317.00) 

2256.32 

(1041.98) 

2080.40 

(1047.60) 

       

No Learning 

Correct 
2125.91 

(1172.23) 

2136.26 

(1194.26) 

1707.05 

(889.00) 

2131.23 

(976.92) 

1912.28 

(983.84) 

      

Incorrect 
2154.99 

(1333.88) 

2046.19 

(1159.22) 

2168.67 

(1410.87) 

2225.51 

(1128.69) 

2168.67 

(1410.87) 
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APPENDIX C 

APPROVAL FOR HUMAN SUBJECTS FROM INTERNAL REVIEW BOARD AT 

ARIZONA STATE UNIVERSITY 
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