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ABSTRACT 

 

 Schennach (2007) has shown that the Empirical Likelihood (EL) estimator may 

not be asymptotically normal when a misspecified model is estimated. This problem 

occurs because the empirical probabilities of individual observations are restricted to be 

positive. I find that even the EL estimator computed without the restriction can fail to be 

asymptotically normal for misspecified models if the sample moments weighted by 

unrestricted empirical probabilities do not have finite population moments. As a remedy 

for this problem, I propose a group of alternative estimators which I refer to as modified 

EL (MEL) estimators. For correctly specified models, these estimators have the same 

higher order asymptotic properties as the EL estimator. The MEL estimators are obtained 

by the Generalized Method of Moments (GMM) applied to an exactly identified model. 

The simulation results provide promising evidence for these estimators.      

 In the second chapter, I introduce an alternative group of estimators to the 

Generalized Empirical Likelihood (GEL) family. The new group is constructed by 

employing demeaned moment functions in the objective function while using the original 

moment functions in the constraints. This designation modifies the higher-order 

properties of estimators. I refer to these new estimators as Demeaned Generalized 

Empirical Likelihood (DGEL) estimators. Although Newey and Smith (2004) show that 

the EL estimator in the GEL family has fewer sources of bias and is higher-order efficient 

after bias-correction, the demeaned exponential tilting (DET) estimator in the DGEL 

group has those superior properties. In addition, if data are symmetrically distributed, 

every estimator in the DGEL family shares the same higher-order properties as the best 

member.   
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CHAPTER 1
1
 

MODIFIED EMPIRICAL LIKELIHOOD ESTIMATORS 

 

1.1 Introduction 

 Since the seminal paper of Hansen (1982), the Generalized Method of Moments 

(GMM) has been widely used in the economic and finance literature.  An asymptotically 

efficient GMM estimator can be computed by two steps.  At the first step, an initial 

consistent estimator is computed by minimizing a quadratic function of some sample 

moment functions weighted by an arbitrary weighting matrix.  The initial estimator is 

then used to estimate the optimal weighting matrix.  At the second step, an asymptotically 

more efficient estimator is computed by redoing GMM with the estimated optimal 

weighting matrix.  The estimator from the second step is called two-step GMM estimator, 

which I simply refer to as the GMM estimator from now on.  Despite its popularity, there 

is mounting evidence that the GMM estimator could have poor finite-sample properties. 

See for example, Hansen (1996), Christiano and Haan (1996), Altonji and Segal (1996), 

Clark (1996), and Andersen and Sorensen (1996), amongst others.  The common 

conclusion presented by these papers is that the GMM estimator can have a large finite-

sample bias. 

 Recently, Generalized Empirical Likelihood (GEL) estimators have been 

proposed as alternatives to the GMM estimator.  The three well known members of the 

GEL family are the Empirical Likelihood (EL), Exponential Tilting (ET), and Continuous 

Updating (CU) estimators.  Newey and Smith (2004) show that the GMM estimator 

                                                           
1
 This chapter is written with Seung Ahn. 
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suffers from biases due to four sources: the first caused by using sample moment 

functions in estimation instead of their population moments, the second caused by the 

correlation between sample moments and their Jacobians, the third caused by the use of 

an estimated optimal weighting matrix, and the last caused by using an arbitrary initial 

estimator to estimate the weighting matrix.  They show that the GEL estimators remove 

the second and fourth bias terms while the EL estimator removes the third.  Imbens (1997) 

and Newey and Smith (2004) also find that the bias in the EL estimator does not increase 

with the number of moment functions used, and that the estimator is invariant to linear 

transformations of the moment functions.  The bias-corrected EL estimator is higher-

order efficient among the GEL estimators in the sense that the 
2( )O n

 component of its 

mean square error (MSE) is the smallest. 

 Despite these desirable properties, some studies have found that the finite-sample 

properties of the EL estimator are not always promising.  Two problems related to the EL 

estimator have been documented.  Simulations by Mittelhammer, Judge and Schoenberg 

(2003), Guggenberger and Hahn (2005) and Guggenberger (2008) show that the EL 

estimator can have large MSE (RMSE) depending on the model, and that its finite-sample 

distribution often has a heavy tail. The second problem of the EL estimator, which is 

identified by Schennach (2007), is that it may fail to be root-n consistent when a 

misspecified model is estimated, where n denotes sample size.  This problem can occur 

even if the model is only slightly misspecified.  If so, the model specification tests based 

on the EL estimator may not have power.  

 This paper is motivated by my observations from simulations that the EL 

estimator’s finite-sample distribution crucially depends on how it is computed.  As Smith 
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(1997) and Newey and Smith (2004) show, the EL estimator can be computed by finding 

a saddle point solution of a minmax problem.  This estimator is the one that is used by 

Guggenberger and Hahn (2005), Guggenberger and Smith (2007) and Guggenberger 

(2008).  Alternatively, some studies (e.g., Imbens, 2002; Newey and Smith, 2004) 

suggest computing the EL estimator by solving the first-order conditions for the minmax 

problem.  Since this estimator is computed by the Method of Moments (MM), I refer to 

the estimator as the EL-MM estimator. The EL and EL-MM estimators are not 

necessarily asymptotically identical because the EL estimator is computed with the 

empirical probabilities of individual observations restricted to be non-negative, while the 

EL-MM estimator is not. The EL-MM estimator is easier to compute, and furthermore, 

the theoretical results of Newey and Smith (2004) are for the EL-MM estimator, not 

necessarily for the EL estimator. 

 However, the EL-MM estimator has problems as well. I find that the estimator is 

very sensitive to the initial parameter values used to compute the solution.  I also find that 

the EL-MM estimator’s finite-sample variance can increase with sample size, n, for some 

misspecified models. This result indicates that, similar to the EL estimator, the EL-MM 

estimator can fail to be root-n consistent for some misspecified models. This problem 

occurs when the sample moment functions used for the EL-MM estimator do not have 

finite population moments. One example is the case in which sample moment functions 

are normally distributed. 

 Based upon these observations, I propose a group of estimators which I refer to as 

modified EL (MEL) estimators. These estimators are obtained by the Generalized 

Method of Moments (GMM) applied to exactly identifying first-order conditions. The 
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sample first-order conditions used are modified versions of the functions used for the EL-

MM estimator. 

 It is generally assumed in the literature that for the cases with exact identification, 

the GMM estimator is numerically identical to the Method of Moments (MM) estimator.  

As I show later, however, this is not necessarily true for misspecified models.  For the 

exactly identifying but misspecified moment functions, the population moments of the 

functions are not equal to zeros at any parameter value.  For this case, the MM estimator 

has no point to converge in probability, and consequently, it cannot be root-n consistent.  

In addition, the MM estimator may not exist in finite samples.  In contrast, for the same 

case, the GMM estimator can be root-n consistent.  Thus, the GMM estimator is not 

necessarily numerically identical to the MM estimator for misspecified models. 

 Following Hall and Inoue (2003), I derive the asymptotic distributions of the 

MEL estimators for both correctly specified and misspecified models.  While their 

approach is mainly for overidentified models, it can be easily extended to exactly 

identified cases.  For correctly specified models, the MEL estimators have the same 

higher-order asymptotic properties as the EL-MM estimator.  For misspecified models, 

the MEL estimators are root-n consistent as long as data have finite (population) 

moments up to sufficiently high order.  My simulation results show that the MEL 

estimators have much better finite sample properties than the EL-MM estimator. 

 The rest of this Chapter is organized as follows.  Section 1.2 briefly reviews the 

GEL and EL estimators.  Section 1.3 introduces the MEL estimators and their asymptotic 

properties.  Section 1.4 presents my Monte Carlo simulation results.  Some concluding 

remarks follow in Section 1.5. 
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1.2 GEL and EL Estimators 

 Let iz  (i = 1, ... , n) be the independently and identically distributed (i.i.d.) 

observations on a random vector z; let   be a 1q  parameter vector in a compact set 

q ; and ( ) ( , )i ig g z   is a 1p vector of functions with p > q.  I begin by 

assuming that [ ( )] 0iE g    if and only if o  .  From now on, whenever this condition 

holds, I will say the model is “correctly specified.”  If the condition does not hold, that is, 

if [ ( )] 0iE g    for all   , I will say the model is “misspecified.”  I also use the 

following notation: 

  1

1

( ) ˆ( ) ; ( ) ( ); ( )ni
i i i i o

g
G G n G G E G


   








   


; 

  1

1
ˆ( ) ( ) ( ) ; ( ) ( ); ( )n

i i i i i i og g n E     


         . 

 The GEL estimators are defined as follows.  Let ( )v  be a strictly concave 

function on an open interval V  containing zero.  Let   be a 1p  vector of parameters 

depending on   such that for a given  , ( ) { | ( ) , 1,..., }n ig V i n        .
2
  Then, 

a GEL estimator is the solution of the following saddle point problem: 

 
1

( ) 1
ˆ arg min sup ( ( ))

n

n

GEL i in g     

  
  . (1.1) 

The Empirical likelihood (EL), Exponential Tilting (ET), and Continuous Updating (CU) 

estimators all belong to the GEL family, with the objective functions ( ) ln(1 )v v   , 

( ) vv e    and 
2( ) (1 ) / 2v v    , respectively.  Let ( )j v  denote the j

th
 derivative of

( )v .  For the GEL estimator, the function   is chosen such that 1 2(0) (0) 1    . 

                                                           
2
 The parameter   is the Lagrangean multiplier in the power-divergence dual of GEL. 
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 The duality of the EL estimator developed by Qin and Lawless (1994) and Owen 

(2001) is the solution to the problem: 

  
1, ...

ˆ arg max ln
nEL i    , (1.2) 

subject to  

  1 ( ) 0n

i i ig    and 1 1n

i i  . (1.3) 

Newey and Smith (2004) have shown that the GEL estimator solving (1.1) with 

( ) ln(1 )v v    is the same as the solution for (1.2) and (1.3).  The empirical probability 

of the observation i is  

  

1

ˆ ˆ1/ (1 ( ))

ˆ ˆ1/ (1 ( ))

EL i EL

n

i EL i EL

g

g

 

 



  
 

. 

Because the   function of the EL estimator is logarithmic, it should be that 

ˆ1 ( ) 0EL i ELg   , for any i .  Thus, the empirical probabilities from the EL estimation 

should be all positive. 

 The GMM estimator is the solution to the following problem: 

  
1 1ˆ ˆ ˆargmin ( ) ( ) ( )GMM n g g    


  , (1.4) 

where   is any initial consistent estimator.  If an interior solution exists for (1.4), the 

GMM estimator satisfies: 

  
1ˆ ˆ ˆˆ ˆ( ) [ ( )] ( ) 0GMM GMMG g     . (1.5) 

For correctly specified models, Newey and Smith (2004) show that the GMM estimator 

has four bias terms of 
1( )O n

: 

  ˆ( )GMM I G WBias B B B B     , 



7 

where IB  is the bias by using ˆ ( )g   for (1.5) instead of ( ( ))iE g  ; GB , by using ˆ ( )G   

instead of G ; B , by using ˆ ( )o  instead of  ; and WB  by using ˆ ( )  instead of 

ˆ ( )o .  In contrast, the GEL estimators have only two bias terms: 

   3
ˆ( ) 1 (0) / 2GEL IBias B B     . 

Specifically, 

  
1

( )
( ( ) ( )) / / (2 )q i o

I i o i o j j

j

G
B HE G Hg n H E e n


 




 
      

, 

  [ ( ) ( ) ( )] /i o i o i oB E g g Pg n  
 ,  

where je  is the j
th

 unit vector, and   

  
1 1( )G G    ; 

1H G    ; and 
1 1 1P G G       . (1.6) 

For the EL estimator, 3(0) 2   .  Thus, the EL estimator has only one bias term: 

  ˆ( )EL IBias B  . 

 New and Smith (2004) and Schennach (2007) also find that 

  2

2
ˆ( ) ( )k
kVar o n

n n
 

   , (1.7) 

where   is the asymptotic variance matrix of ˆ[ ( )]k oVar n   , and k  = GEL or GMM 

or EL.  They also find that k EL   is positive semi-definite.  In this sense, the EL 

estimator is said to be higher-order efficient.   

 However, it is important to note that the EL estimator may not be higher order-

efficient in terms of mean square error (MSE).  All of the GEL and GMM estimators 

have 
1( )O n

 biases.  If the biases are not corrected, the EL estimator can have greater 
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MSE than some other GEL estimators.  In terms of MSE, only the bias-corrected EL 

estimator is higher-order efficient.    

 Despite its desirable higher-order asymptotic properties, the EL estimator is likely 

to suffer from some numerical problems.  First, as Grendar and Judge (2009) show, even 

if the model is correctly specified (that is, ( ( )) 0iE g    if and only if o  ), the EL 

estimator which solves the problem (1.1) may not exist, depending on the model and data.  

For small samples, the probability of no solution may not be negligible.  If so, the 

estimator’s finite-sample properties could be quite different from its asymptotic 

counterparts.   

 Second, as Schennach (2007) shows, when the model is misspecified and the 

moment function ( )ig   is unbounded for any  , the EL estimator could not be root-n 

consistent.  The reason is as follows.  Let 
* * *( , )      be the solution for the population 

version of the problem (1.1): 

 
*

( )argmin sup [ ( ( , ))], ( ) { | ( , ) 1, }zE g z g z z R          
      , (1.8) 

where ( ) ln(1 )v v   , and zR  is the range of the random vector z.  When the function 

(., )g   is not bounded for any   , the only possible value of   is zero.  That is, 

( ) {0}  , and consequently, 
* 0  .  But, the first-order condition for 

*  to minimize 

the objective function (1.8) is 
*( ( , )) 0E g z   .  However, such 

*  does not exist for 

misspecified models.  That is, for misspecified models there is no solution for the 

problem (1.8).  Therefore, the EL estimator ˆ
EL  has no point to converge in probability.  
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Based on this result, Schennach (2007) shows that the EL estimator is not root-n 

consistent.   

 In response to this problem, Schennach (2007) proposes an alternative estimator 

named Exponentially Tilting Empirical Likelihood (ETEL), which has the same 

asymptotic properties as the EL estimator if the moment function ( )ig   is correctly 

specified, and which is still root-n consistent for the cases with misspecified moment 

functions.  The ETEL estimator is the solution to the following problem: 

   1
ˆ ˆ ˆarg min exp ( ) ( ( ) ( ))n

ETEL i ig g     
   , (1.9) 

subject to  

  1
ˆexp( ( ) ( )) ( ) 0n

i i ig g   
  . (1.10) 

An important advantage of using this estimator is that the range of ˆ( )   is not restricted 

by data.  In addition, the empirical probabilities 1
ˆ ˆexp( ( ) ( )) / exp( ( ) ( ))n

i i ig g     
   

are positive for any .  

 While the ETEL estimator has promising asymptotic properties, its computation 

requires an optimization procedure with multiple constraints (1.10), which could be 

complicated when p or q are large. 

 I can expect that when the range of   given  , ( )n  , is restricted by the data, 

any GEL estimator would have similar problems.  One way to avoid this problem is to 

find the solution of the first-order conditions for the problem (1.1):  

  
1

1 ( ) 0n

i in f 

  ,  (1.11) 

where ( , )      and  



10 

  
1

1 ( ) 1

( ( )) ( )
( )

( ( )) ( )

i i

i

i i p q

g g
f

g G

   


    
 

 
    

. 

Imbens (2002) suggests computing the GEL or EL estimators by solving the equation 

(1.11).  The resulting GEL estimators are MM estimators, as they are computed by the 

method of moments. In fact, Newey and Smith (2004) have derived the asymptotic 

distributions and higher-order biases of the GEL estimators computed by MM.  I refer to 

the MM estimator computed with ( ) ln(1 )v v    as EL-MM estimator.  Different from 

the EL estimator, the EL-MM estimator does not restrict the range of the parameter 

vector   depending on data.  Thus, the EL-MM estimator of   by solving (1.8) does not 

converge to zero in probability if a misspecified model is estimated. 

 While the EL-MM estimator can avoid the problem found by Schennach (2007), 

it may not be root-n consistent for some misspecified models.  There are two important 

conditions for the EL-MM estimator to be root-n consistent for either correctly specified 

or misspecified models.  The first is that [ ( )]iE f   is finite for ( , )      in a compact 

set  .  The second condition is that [ ( )]iE f   0 if and only if 
*   and 

*  is 

unique.  The first condition can be violated if the functions in ( )if   do not have finite 

moments.  For the EL-MM estimator, the first condition implies that 

[ ( ) / (1 ( ))]i iE g g    should exist for some 0   for misspecified models.  However, 

if ( )ig   is normal, [ ( ) / (1 ( ))]i iE g g    does not exist if 0  .  This is because any 

ratio of normal random variables does not have finite moments (see Marsaglia, 1965; 

Marsaglia, 2006).  For this case, there is no guarantee that the EL-MM estimator would 

be root-n consistent.  Even if ( ( ))iE f   exists, the second condition may not hold for 
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some misspecified models, since the function ( )if   is nonlinear.  Thus, although the 

number of functions in ( ( ))iE f   with ( ) ln(1 )v v    equals the number of parameters 

in   (p+q), there is no guarantee that a solution exists for [ ( )] 0iE f   . 

 In summary, the EL and EL-MM estimators may not have well-defined 

asymptotic distributions for misspecified models.  Two adjustments seem to be desirable.  

The first is to transform the function ( )if   so that it does not have ratio forms, and the 

second is to use an alternative estimation procedure that produces an estimator with well-

defined asymptotic distribution.  I consider such adjustments in the next section.  

 

1.3 Modified Empirical Likelihood Estimators 

1.3.1. Definition 

 One important reason for the problems of the EL and EL-MM estimators 

identified in the previous section is that the estimators use the logarithmic function 

( ) ln(1 )v   .  A simple way to avoid the problem is to use the Taylor approximations 

of the logarithmic function.  Some studies, e.g., Owen (2001) and Schennach (2007), 

discussed this alternative method.  However, in my knowledge, no study has explored the 

advantages of using a Taylor-approximated function.  In this section, I examine the 

higher-order asymptotic properties of the estimators based on this approximation.  

Define: 

  
1 1

2 1

( ) ( ( )) ( )
( )

( ) ( ( )) ( )

A
i i i

i B
i i i

m g g
m

m g G

    


     

  
    

    
, (1.12) 
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where ( )A v  and ( )B v  are scalar functions and 
A

j  and 
B

j  denotes their j
th

 

derivatives.  The functions 
A  and 

B need not be the same, but I impose the following 

restriction: 

 

Restriction 1:  (i)  The 
A  and 

B  functions are four times and three times 

differentiable, respectively.  (ii) 1 2(0) (0) 1A A    , 3 (0) 2A   .  (iii) 

1 2(0) (0) 1B B    .  

 

 This restriction is necessary to derive an estimator which preserves the higher-

order asymptotic properties of the EL-MM estimator. 

 I refer to the solution of the following problem with Restriction 1 as modified EL 

(MEL) estimator: 

  ˆ ˆ ˆarg min ( ) ( )MEL m m  
 , (1.13) 

where 
1

1
ˆ ( ) ( )n

i im n m 

  , and 
p q  is a compact set.  Because both ( )im   and   

are ( ) 1p q   vectors, the MEL estimator can be numerically identical to the MM 

estimator which solves ˆ ( ) 0m    if the solution exists.  If I choose 

( ) ( ) ln(1 )A Bv v v    , the MM estimator equals the EL-MM estimator.  

 There are many possible choices for 
A  and 

B .  Among them, I consider five 

possible combinations that are listed in Table 1.  The 
A  functions are simply the third-

order Taylor approximations.  I have tried the fourth-order approximations in my 
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simulations, but the MEL estimators with the third-order approximations outperform 

them, thus I consider only the third-order approximations.  The 
B  functions are the 

functions used for some GEL estimators.  For example, the 
B  functions of the MEL1 

and MEL2 estimators are the  functions of the ET and CU estimators.  The 
B

functions of the MEL4 and MEL5 estimators are the fourth- and third- order Taylor 

approximations of ln(1 )v  at 0v  .  The 
B  function chosen for the MEL3 estimator is 

an ad hoc choice, but it satisfies Restriction 1.   

  

Table 1 

The MEL Estimators and Their Higher-order Properties 

 ( )A v  ( )B v  1( )O n  

Bias 

Higher-Order Efficiency 

after Bias-correction 

     

MEL1 
2 3

1
2 3

v v
v     ve  IB  Yes 

MEL2 
2 3

1
2 3

v v
v     

2( 1)

2

v 
  IB  Yes 

MEL3 
2 3

1
2 3

v v
v     v vv e ve    IB  Yes 

MEL4 
2 3

1
2 3

v v
v     

2 3 4

1
2 3 4

v v v
v      IB  Yes 

MEL5 
2 3

1
2 3

v v
v     

2 3

1
2 3

v v
v     IB  Yes 

 

 When two different functions are used for 
A  and 

B , the MEL estimator 

produces two different sets of empirical probabilities: one by 1

A  and the other by 1

B .  

Thus, one may wish to use the same function for 
A  and 

B .  However, I find from 
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simulations that the MEL estimators with two different functions generally perform better 

than the MEL estimator with the same function.  I do not explore which of the functions 

A and 
B  should be used in practice in this paper.  However, for either case, I can 

obtain non-negative empirical probabilities imposing the following optional restrictions. 

 

Restriction 2:  (i) 1 ( ) 0A v   for all v .  (ii) 1 ( ) 0B v   for all v . 

  

 The MEL1 and MEL5 estimators satisfy both Restriction 2(i) and 2(ii), while the 

MEL2, MEL3 and MEL4 estimators satisfy Restriction 2(i) only.   

 

1.3.2 Asymptotic Normality of MEL Estimators 

 In this section, I show that the MEL estimators are root-n consistent whether the 

model is correctly specified or misspecified.  Hall and Inoue (2003) show that the GMM 

estimators are asymptotically normal even for misspecified models.  They consider 

general cases in which the model is over-identified and data are autocorrelated.  While 

their focus was on over-identified models, their results can be used for exactly identified 

models.  The MEL estimators can be viewed as GMM estimators applied to an exactly 

identified model.  In this view, the MEL estimation is a special case in which data are 

i.i.d..  

  I begin by listing the assumptions which subsume misspecified models. 
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Assumption 1.1:  (i) The function ( )im   is continuous and twice differentiable for each 

  , where 
p q  is a compact set.  (ii)  The moment ( ) [ ( )]im E m   exists for 

every Int( )  .    (iii) Let ( )iM   = ( ) /im     and ( ( )) /i iD vec M     .  Then, 

( ) ( ( ))iM E M   and ( )D   = ( ( ))iE D   exist for every Int( )   .  (iv) There exists a 

function ( )i ib b z  such that in a neighborhood of 
* , 

*( )N  , ( )im   and all of its partial 

derivatives (with respect to  ) up to order two are bounded by ib , and 
2( )iE b  is a finite 

constant.  (v) *( )
sup ( )iN

E M
 




   
 

and  sup ( )iE m


    , for some   > 2.  

 

Assumption 1.2:  (i) 
* * *( , )      is the unique minimizer of ( ) ( )m m   in Int( ) . (ii) A 

matrix *S  = * * * *( )qM M I D    is nonsingular, where 
*

* ( )M M  , 
*

* ( )D D  , and 

*

* ( )m  .  (iii) 
*

1( ( ))iVar m   is a positive definite matrix and 
*[ ( )]iVar m   is a positive 

semi-definite matrix.  (iv)  If 
* 0  , 

*( ) 0m   .  

 

 Assumption 1.1 states the general regularity conditions for GMM or MM.  

Several things are noteworthy regarding Assumption 1.2.  First, I do not assume that 

*( ) 0m   .  Instead, I assume that 
* *( ) ( ) 0M m    (Assumptions 1.2(i)).  Thus, my 

result can apply even if there is no   that solves ( ) 0m   .  For misspecified models, 

*( )m   could be equal to either a zero vector or non-zero vector.  For the cases in which 

*( ) 0m   , Assumption 1.2(ii) restricts *M  to be nonsingular.  For the cases in which 
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*( ) 0m   , 
*

* ( )M M   cannot be a full-column matrix because 
*

* ( ) 0M m    for 

nonzero 
*( )m  .  Nonetheless, as long as the matrix *S  is invertible, I can derive the 

asymptotic distribution of the MEL estimator.  Third, I do not assume that 
*[ ( )]iVar m   is 

positive definite (Assumption 1.2 (iii)).
 3

  I do not do so because the variance matrix is 

not invertible for correctly specified models.  If *

1(0 , )p o 
  , 

*

2 ( ) 0im    for any i.  

Thus, the rank of 
*( ( ))iVar m   becomes p .  Fourth and finally, Assumptions 1.2(i) and 

1.2(iv) imply that for a correctly specified model, a unique o  exists such that 

[ ( )] 0i oE g   . 

 In order to see why the possibility of 
*( ) 0m    can be allowed, consider a simple 

case.   Suppose that  

  ( )
i

i

i

x
g

y






 
  

 
, (1.14) 

where  

  
0 1 0

~ ,
1 0 1

i

i

x
N

y

      
      
      

. (1.15) 

Because ( ) ( )i iE x E y , the model is misspecified with p = 2 and q = 1.  Consider the 

moment function ( )im   of the MEL1 estimator (
2

1 ( ) 1A v v v      and 1 ( )B vv e   ).    

 Suppose that some   solves ( ) 0m   .  Because ( ( ( )) 0B

iE g    , 

2[ ( )] 0iE m    implies that 1 2 0   .  However, with such 1  and 2 , there is no   that 

                                                           
3
 Hall and Inoue (2003) assume that the moment function used for GMM has a positive-definite 

matrix (Assumption 4, p. 368.).  However, the assumption is never used to derive the asymptotic 

distribution of the GMM estimator.   
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solves 1[ ( )] 0iE m   .  That is, ( ) 0m    for any  .  Proposition 1 of Hall and Inoue 

(2003) implies that the MM version of the MEL1 estimator may not exist even in finite 

samples.  Thus, I can expect that computation of the MM version of the MEL1 estimator 

may suffer from some numerical problems.  However, using software (Matlab and Gauss, 

Version 11), I found that the function ( ) ( )m m   is minimized a point near 
*  = 

(0.214, 0.214,0.5) .  At this point, 
*( )m   = ( 0.339,0.339,0) , 

*

* ( )M m   = 0, 

*( )rank M  = 2, and *( )rank S  = 3.  Thus, the moment function of the MEL1 estimator 

satisfies Assumption 1.2.   

 Theorem 1 of Hall and Inoue (2003) immediately follows under Assumption 1.1 

and 1.2.  I state the result without proof:  

 

Theorem 1.1:  Let  

  
*

11 12*

*
21 22* *

( )

( ( ) )

i

i

m
Var

M M

 

 

      
             

. 

Then, under Assumptions 1.1 – 1.2 and Restriction 1,  

  
*ˆ( ) (0, )MEL dn N    , 

where, 

   
* *11 121 1

* *

( ) ( )21 22

( )
p q p q

M M
S S

I I

 

 

      
      

     
. (1.16) 
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 Theorem 1 applies whether or not the model is correctly specified.  The solution 

of [ ( )] 0iE m    does not have to exist.  When 
*

*[ ( )] 0iE m    , the variance matrix   

reduces  

  
1 1

* 11 *M M    , (1.17) 

which is the asymptotic variance matrix of the MM-counterpart of the MEL estimator.  A 

novelty of Theorem 1 is that for misspecified models, the MEL estimators can be root-n 

consistent even if their MM-counterparts are not.  

 For correctly specified models, 
*

1(0 , )o p o  
    and * 0  .  Thus, the 

asymptotic variance matrices of the MEL estimators have the form of (1.17).  In addition,  

  * 0 p p

G
M M

G 

 
    

; 
1

P H
M

H


 

  
 

; 11

0
,

0 0

q p

p q p p



 

 
   

 
 (1.18) 

where P , H and   are defined in (1.6).  Using these results, I can show that for correctly 

specified models, 

  
ˆ 0 0

ˆ( ) ,
ˆ 0 0( )

MEL

MEL o d

MEL o

n P
n N

n


 

 

      
                

. 

Thus, the MEL estimators of   are asymptotically identical to the GMM estimator. 

 

1.3.3 Higher-Order Properties of MEL Estimator for Correctly Specified Models 

 In this section, I show that the MEL estimators share the same higher-order 

asymptotic properties as the EL-MM estimator for correctly specified models. To do so, I 

need to impose stronger assumptions on the moment function ( )ig  .  Assumptions 1.1 

and 1.2 are made for ( )im  , not directly for ( )ig  .  For convenience, I list the 
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assumptions on the functions ( )ig  , 
A  and 

B , which are the same as those of Newey 

and Smith (2004) and Schennach (2007).  Many of them are in fact implied by 

Assumptions 1.1 and 1.2.     

 

Assumption 1.3:  (i)  For a compact set 
q , ( )o Int    is the unique solution to 

[ ( )]iE g   = 0.  (ii) The moment function ( )ig   is four times continuously differentiable 

in a neighborhood of o , ( )oN  , with probability 1.  (iii) There exists a function 

( )i ib b z  such that in ( )oN  , ( )ig   and all of its partial derivatives up to order four are 

bounded by ib and 
2( )iE b  is a finite constant.  (iv) For some   > 2, 

 sup ( )iE g


    , and  sup ( )iE G    . (v)  is nonsingular and finite, and 

rank(G) = p.  (vi) The functions 
A  and 

B  are four times and three times continuously 

differentiable in a neighborhood of zero, respectively. 

 

 Newey and Smith (2004) derived the higher-order bias and variance of the EL-

MM estimator under Assumption 1.3.  An implicit assumption they made is that the EL-

MM estimator exists for any given sample.  This assumption can be relaxed. 

 

Assumption 1.4:  Let ˆ ( )MM n  be the MM estimator using the moment function ( )im   

and a sample of n.  There is a sequence 1
ˆ{ ( )}MEL nn 

  such that ˆˆ ( ( )) 0MMm n  , almost 

surely. 
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 Assumption 1.4 states that the MM estimator using the moment function of the 

MEL estimator exists for sufficiently large samples.  Whenever the MM estimator exists, 

it is equal to the MEL estimator.  Thus, under Assumption 1.4, the higher-order bias and 

variance of the MEL estimator are equal to those of the MM estimator, almost surely.  As 

I discussed in the previous sections, misspecified models would not have solution for 

[ ( )] 0iE m   .  For such cases, Assumption 1.4 is violated (see Proposition 1 of Hall and 

Inoue (2003)).  For correctly specified models, however, [ ( )] 0i oE m   , where 

1(0 , )o p o 
  .  Thus, the probability of the MM estimator’s existence increases with 

sample size n.  Thus, Assumption 1.4 is likely to hold for correctly specified models.   

 Under Assumptions 1.3 and 1.4, the appendix shows that  

    2

0 1, 2,
ˆ / / ( )MEL pn Q n Q n O n          , (1.19) 

where  , 1,Q   and 2,Q   are (1)pO , and ( ) 0E    and ( )Var    .  What I mean by 

“higher-order bias” is the bias of 
1( )pO n

.  For any estimator of the form (1.13), its 

higher-order bias is 1,( / )E Q n  because ( ) 0E   . 

 

Theorem 1.2 (Higher-Order Bias):  Under Assumptions 1.3 – 1.4 and with Restriction 1, 

any MEL estimator of   has  

 1,
ˆBias( ) /MEL IE Q n B   . 
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 Every MEL estimator has only one bias term IB  that results from the use of 

sample means of moment functions 
1 1

1 ( )i in g 

  instead of [ ( )]iE g  .  The higher-order 

bias of any MEL estimator is the same as that of the EL-MM estimator. 

I now derive the higher-order variance of the MEL estimator.  The equation (1.19) 

implies that  

  /2

2
ˆ( ) ( )MEL
MELVar o n

n n
 

   , 

where 
1, 2, 2,( ) ( ) ( )MEL Var Q E Q E Q          .  The appendix shows that EL-MM and 

MEL estimators have the same   and 1Q , but different forms of 2Q .  However, it turns 

out that the difference between the 2Q  terms of the EL-MM estimator and a MEL 

estimator is uncorrelated with  .  Accordingly, the difference does not influence the 

2( )pO n
 parts of the variance matrices.  Thus, I obtain the following result: 

 

Theorem 1.3 (Higher-Order Efficiency): Under Assumptions 1.3 – 1.4, MEL EL   . 

 

 As Newey and Smith (2004) note, the EL-MM estimator may not be higher-order 

efficient among GEL-MM estimators in terms of mean score error (MSE).  Only the bias-

corrected EL-MM estimator is efficient among bias-corrected GEL-MM estimators.  

Similarly, only the bias-corrected MEL estimator can be said to be more efficient than the 

biased-corrected GEL estimators.   
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1.4 Finite-Sample Properties of MEL Estimators 

 I conduct three different experiments for the Monte Carlo studies.  For each case, 

I generate 10,000 different random samples.  For each sample, I compute the GMM, EL-

GMM, ETEL, and MEL estimators given in Table 1.  Using the estimates from 10,000 

simulated samples, I compute the median, mean, root mean-square-error (RMSE) and 

standard error of each estimator. 

 For my simulations, the EL-GMM estimator is computed by the MEL procedure. 

I do not compute the EL-MM estimator because of the following reasons. I often 

experience convergence problems while computing the EL-MM estimator.  In addition, 

the EL-MM estimate is quite sensitive to the initial parameter values.  These problems 

occur more often for misspecified models.  The estimate from the MEL procedure is 

much less sensitive to the initial values.  For the same reason, I also compute the ETEL 

estimator by the MEL procedure using the first-order conditions for the problem given in 

(1.9) and (1.10). 

 The first experiment is based on the misspecified model given in (1.14) and (1.15).  

The simulation results are reported in Table 2. The starting value of   is 1 and that of   

is a vector of zeros.
4
   Interestingly, for each sample size (n = 100 and 500) all of the 

MEL estimators have the same medians, means and standard errors.  The EL-GMM 

estimator has the largest standard errors for either n = 100 or n = 500.  The estimator’s 

standard error increases with sample size.  This is an unexpected result if the EL-GMM 

estimator is root-n consistent.  The ETEL estimator has smaller standard error than the 

EL-GMM estimator.  The standard error of the ETEL estimator decreases as n increases 

                                                           
4
 I tried many different starting values but the results were similar to those reported here. 
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from 100 to 500 but by a smaller factor than the expected factor of  5  if the ETEL 

estimator is root-n consistent.  In contrast, the standard errors of the MEL estimators fall 

nearly by the factor of 5 .  

 

Table 2 

Results from Misspecified Linear Moment Functions 

 The moment function used is ( ) ( , )i i ig x y      , where 
ix  and 

iy  are 

independent normal random variables from (0,1)N  and (1,1)N , respectively.  

 Median Mean Std Median Mean Std 

 n = 100 n = 500 

GMM 0.5007 0.5005 0.0577 0.5002 0.5002 0.0257 

EL-GMM 0.4965 0.4408 1.2852 0.4899 -0.082 3.2061 

ETEL 0.4977 0.5031 0.3831 0.5011 0.5042 0.2337 

MEL1 0.5004 0.4993 0.0733 0.5006 0.5003 0.0333 

MEL2 0.5004 0.4993 0.0733 0.5006 0.5003 0.0333 

MEL3 0.5004 0.4993 0.0733 0.5006 0.5003 0.0333 

MEL4 0.5004 0.4993 0.0733 0.5006 0.5003 0.0333 

MEL5 0.5004 0.4993 0.0733 0.5006 0.5003 0.0333 

 

 For the second experiment, I use the following model: 

  2
( )

( ) 1

i

i

i

x
g

x






 
  

  
, 

where ~ (0, )ix N c .  I try 0.8c   and 1.  The model is misspecified if 0.8c   and 

correctly specified if 1c  .  Table 3 reports the simulation results from the data generated 

with 0.8c  .  The median and mean biases and RMSEs are computed using 0o  .  The 

starting value of   is 1 and that of   is a vector of zeros.  The main results from Table 3 



24 

are as follows.  First, the MEL estimators have smaller standard errors than the GMM, 

EL-GMM, and ETEL estimators.  Second, the EL-GMM estimator has larger standard 

error than the GMM estimator for large sample size 500n  .  Third, differently from 

Table 2, the standard error of the EL-GMM estimator now decreases with n.  Comparing 

the results from Tables 2 and 3, I can see that for misspecified models, the finite-sample 

performance of the EL-GMM estimator crucially depends on estimated models.  

 

Table 3 

Results from Misspecified Nonlinear Moment Functions 

 The moment function used is 
2( ) ( , ( ) 1)i i ig x x      , where the 

ix  follow 

(0, )N c  and 0.8c  .  The biases and RMSEs are computed using 0o  .  

 Median Bias Mean Bias RMSE Std 

 n = 100 

GMM 0.0026 0.0013 0.1195 0.1195 

EL-GMM 0.0009 0.0010 0.1077 0.1077 

ETEL 0.0008 -0.0086 0.1648 0.1646 

MEL1 0.0019 0.0006 0.0948 0.0948 

MEL2 0.0014 0.0005 0.1050 0.1050 

MEL3 0.0020 0.0007 0.0892 0.0892 

MEL4 0.0028 0.0013 0.0886 0.0886 

MEL5 0.0021 0.0011 0.0955 0.0955 

 n = 500 

GMM 0.0004 0.0005 0.0549 0.0549 

EL-GMM 0.0003 0.0013 0.0666 0.0666 

ETEL 0.0006 -0.0008 0.0631 0.0631 

MEL1 0.0003 0.0004 0.0431 0.0431 

MEL2 0.0005 0.0004 0.0474 0.0474 

MEL3 0.0008 0.0003 0.0396 0.0396 

MEL4 0.0007 0.0004 0.0394 0.0394 

MEL5 0.0005 0.0004 0.0432 0.0432 
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 Table 4 reports the results from the data generated with 1c   (correctly specified 

model).  All of the estimators show similar performances.  They have very small biases 

even if sample size is small (e.g., n = 100).   

 

Table 4 

Results from Correctly Specified Nonlinear Moment Functions 

 The moment function used is 
2( ) ( , ( ) 1)i i ig x x      , where the 

ix  follow 

(0, )N c  and 1c  .  The biases and RMSEs are computed using 0o  .  

 Median Bias Mean Bias RMSE Std 

 n =100 

GMM -0.0006 0.0003 0.1015 0.1015 

EL-GMM -0.0004 0.0003 0.1012 0.1012 

ETEL -0.0005 0.0001 0.1020 0.1020 

MEL1 -0.0004 0.0001 0.1006 0.1006 

MEL2 -0.0005 0.0001 0.1008 0.1008 

MEL3 -0.0005 0.0001 0.1005 0.1005 

MEL4 -0.0006 0.0001 0.1005 0.1005 

MEL5 -0.0005 0.0001 0.1005 0.1005 

 n = 500 

GMM -0.0011 -0.0006 0.0448 0.0448 

EL-GMM -0.0011 -0.0006 0.0448 0.0448 

ETEL -0.0011 -0.0006 0.0448 0.0448 

MEL1 -0.0012 -0.0006 0.0448 0.0448 

MEL2 -0.0011 -0.0006 0.0448 0.0448 

MEL3 -0.0012 -0.0006 0.0448 0.0447 

MEL4 -0.0012 -0.0006 0.0448 0.0448 

MEL5 -0.0012 -0.0006 0.0448 0.0448 

 

 The foundation of my third and final experiment is the linear regression model 

that Donald and Newey (2001) used for their simulations studies: 

  i i o iy x   ; i i ix w u  , (1.20) 
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where i  = 1, 2, ... , n, 0o  , the ix  and i  are correlated through iu , and 

( , )i i ucorr u   .  The iw  = ( ), ,( , )K i K iw w   is a 1K    vector of instrumental variables.  

The data are drawn from a multivariate normal distribution: 
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, (1.21) 

where I fix u  at 0.5.  The coefficient vector   = 1( ,..., )K    is determined by    

 

4

2 ( ) 1  
1

j

j
c K

K


 
  

 
,     (1.22) 

for j = 1, ... , K.  The value of ( )c K  is chosen given the value of the population 
2R  from 

the regression of x on w (
2 / (1 )R       ), such that 

2 2/ (1 )R R    .  

 If 0w  , the instrument ,K iw  is an endogenous variable in the first equation of 

(1.20)  and the model is misspecified.  For my experiment I try 0.4w   and 0.  For the 

case in which 0w  , the correlation u  controls the degree of the endogeneity of the 

regressor ix  in the first equation in (1.20). 

 The results from the estimation of the misspecified model ( w = 0.4) are reported 

in Table 5.  The starting value of   is 1 and that of   is a vector of zeros. Since only one 

out of five instruments is endogenous, all of the estimators have only small biases.  In 

terms of standard errors and RMSEs, the GMM estimator performs the best.  Both the 

EL-GMM and ETEL estimators have larger standard errors and RMSEs than the GMM 

estimator, especially when n = 100.  The MEL estimators have much smaller standard 
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errors and RMSEs than the EL-GMM and ETEL estimators.  The GMM estimator 

outperforms the MEL estimators but only marginally so.  The standard errors of all of the 

eight estimators fall as n increases.  The GMM and MEL estimators have smaller RMSEs 

than the EL-GMM and ETEL estimators regardless of sample size.    

 

Table 5 

Results from Misspecified Linear Regression Model 

 The data are generated following model (1.20) and 0o  . The random vectors 

( ), ,( , , , )K i K i i iw w u   are drawn from the multivariate normal distribution given in (1.21) 

with 0.4w  .  The coefficient vector   = 
1( ,..., )K    is determined by (1.22).  The 

value of ( )c K  is chosen given the value of the population R-square from the regression 

of x on z ( 2 / (1 )R       ), such that 2 2/ (1 )R R    .  The 
u is fixed at 0.5.  

 Median Bias Mean Bias RMSE Std 

 n = 100, K = 5, R
2
 = 0.5, 0.5u   

GMM 0.0208 0.0159 0.1190 0.1180 

EL-GMM 0.0247 0.0245 0.2323 0.2310 

ETEL 0.1397 0.1500 0.3386 0.3035 

MEL1 0.0079 0.0029 0.1374 0.1373 

MEL2 0.0080 0.0027 0.1379 0.1379 

MEL3 0.0091 0.0029 0.1374 0.1374 

MEL4 0.0078 0.0021 0.1378 0.1378 

MEL5 0.0088 0.0029 0.1371 0.1371 

 n = 500, K = 5, 
2 0.5R  , 0.5u   

GMM 0.0038 0.0025 0.0531 0.0530 

EL-GMM 0.0181 0.0112 0.1205 0.1200 

ETEL 0.0899 0.1160 0.2655 0.2389 

MEL1 -0.0044 -0.0054 0.0665 0.0663 

MEL2 -0.0043 -0.0057 0.0669 0.0667 

MEL3 -0.0042 -0.0054 0.0661 0.0659 

MEL4 -0.0040 -0.0055 0.0666 0.0663 

MEL5 -0.0042 -0.0052 0.0654 0.0652 
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 Tables 6 – 10 report the estimation results from correctly specified models 

( 0w  ).  Table 6 reports the results from the cases in which the instrumental variables 

are weakly correlated with the regressor (
2 0.1R  ).  The results are from the estimation 

with two different sample sizes (n = 100 and 500).  For all of the two cases, the MEL 

estimators outperform the EL-GMM and ETEL estimators in terms of median bias, mean 

bias, standard deviation and RMSE.  Among the MEL estimators, the MEL1 estimator is 

the best one that has the smallest median bias, RMSE and standard error.  The MEL 

estimators have smaller median and mean biases than the GMM estimator, but greater 

RMSEs.   

 Somewhat unexpectedly, Table 6 does not provide clear evidence that any of the 

MEL and ETEL estimators outperform the GMM estimator. Guggenberger (2008) reports 

similar results.  Using a slightly different simulation setup from my model, he compares 

the EL estimator and the Two-Stage Least Squares (2SLS) estimator.  He computes the 

EL estimator using a grid search method and finds that the 2SLS estimator often 

outperforms the EL estimator.  Although not reported here, I also examine the 

performances of the GMM, EL-GMM, ETEL and MEL estimators with data generated 

from his model.  The performance of the GMM estimator is similar to the performance of 

the 2SLS estimator reported in Guggenberger (2008).  In contrast, the performance of the 

EL-GMM estimator is much better than the performance of the EL estimator reported in 

Guggenberger (2008).  I also find that the MEL estimators outperform the EL-GMM 

estimators.  However, the RMSEs of the MEL estimators are greater than the RMSE of 

the GMM estimator, although they have smaller biases.   
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Table 6 

Results from Correctly Specified Linear Regression Model (Weak Identification with 

Different Sample Size) 

 The data are generated following model (1.20) and 0o  . The random vectors 

( ), ,( , , , )K i K i i iw w u   are drawn from the multivariate normal distribution given in (1.21) 

with 0w  .  The coefficient vector   = 
1( ,..., )K    is determined by (1.22).  The value 

of ( )c K  is chosen given the value of the population R-square from the regression of x on 

z ( 2 / (1 )R       ), such that 2 2/ (1 )R R    .  The 
u is fixed at 0.5. 

 Median Bias Mean Bias RMSE Std 

 n = 100, K = 5, R
2
 = 0.1 

GMM 0.1422 0.1219 0.3045 0.2791 

EL-GMM 0.1134 0.0566 0.5750 0.5722 

ETEL 0.1468 0.0868 0.6064 0.6002 

MEL1 0.0900 0.0469 0.4241 0.4216 

MEL2 0.1003 0.0451 0.4589 0.4567 

MEL3 0.1015 0.0474 0.4676 0.4652 

MEL4 0.1006 0.0496 0.4600 0.4573 

MEL5 0.1056 0.0462 0.4683 0.4661 

 n = 500, K = 5, R
2
 = 0.1 

GMM 0.0334 0.0266 0.1337 0.1310 

EL-GMM 0.0349 0.0050 0.2385 0.2384 

ETEL 0.0439 0.0217 0.2655 0.2646 

MEL1 0.0193 0.0030 0.1749 0.1749 

MEL2 0.0322 0.0017 0.2184 0.2184 

MEL3 0.0324 0.0008 0.2163 0.2163 

MEL4 0.0301 -0.0007 0.2193 0.2193 

MEL5 0.0307 0.0022 0.2151 0.2151 

 

 The performance of the estimators would depend on the degree of correlations 

between the instruments and regressor.  Table 7 reports the estimation results from the 

cases of weak and strong instruments (
2 0.1R   and 0.5).  For both cases, the MEL 

estimators outperform the EL-GMM and ETEL estimators.  Among the MEL estimators, 
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the MEL1 estimator is the best.  The MEL estimators have smaller biases but larger 

RMSEs or standard errors than the GMM estimator. 

 

Table 7 

Results from Correctly Specified Linear Regression Model (Weak and Strong 

Identification) 

 The data are generated following model (1.20) and 0o  . The random vectors 

( ), ,( , , , )K i K i i iw w u   are drawn from the multivariate normal distribution given in (1.21) 

with 0w  .  The coefficient vector   = 
1( ,..., )K    is determined by (1.22).  The value 

of ( )c K  is chosen given the value of the population R-square from the regression of x on 

z ( 2 / (1 )R       ), such that 2 2/ (1 )R R    .  The 
u is fixed at 0.5. 

 Median Bias Mean Bias RMSE Std 

 R
2
 = 0.1 (Weak Identification), n = 500 and K = 5  

GMM 0.0334 0.0266 0.1337 0.1310 

EL-GMM 0.0349 0.0050 0.2385 0.2384 

ETEL 0.0439 0.0217 0.2655 0.2646 

MEL1 0.0193 0.0030 0.1749 0.1749 

MEL2 0.0322 0.0017 0.2184 0.2184 

MEL3 0.0324 0.0008 0.2163 0.2163 

MEL4 0.0301 -0.0007 0.2193 0.2193 

MEL5 0.0307 0.0022 0.2151 0.2151 

 R
2
 = 0.5 (Strong Identification), n = 500 and K = 5  

GMM 0.0044 0.0036 0.0455 0.0453 

EL-GMM 0.0058 0.0034 0.0504 0.0503 

ETEL 0.0084 0.0063 0.0627 0.0623 

MEL1 0.0038 0.0024 0.0470 0.0470 

MEL2 0.0053 0.0033 0.0496 0.0495 

MEL3 0.0055 0.0034 0.0495 0.0494 

MEL4 0.0051 0.0033 0.0496 0.0495 

MEL5 0.0054 0.0035 0.0494 0.0493 
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 I now examine how the number of instruments can influence the performances of 

the estimators.  The results are reported in Table 8.  For both the cases with K = 5 and 20, 

the MEL estimators again outperform the EL-GMM and ETEL estimators.  The 

theoretical results of Newey and Smith (2004) predict that the EL-GMM estimator would 

have smaller mean bias than the GMM estimator, and my simulation results are 

consistent with this prediction.  The MEL estimators also have smaller mean biases than 

the GMM estimators.  Newey and Smith (2004) have shown that the bias-corrected EL-

GMM estimator has smaller variance than the GMM estimator.  My simulation results are 

not inconsistent with their finding because I do not make bias-corrections for the MEL 

estimators.  Newey and Smith (2004) also predict that the bias in the EL-GMM estimator 

would not be sensitive to the number of instruments, but my results show that the bias in 

the EL-GMM estimator increases with K.  The MEL estimators show the same pattern.  

However, as K increases, the RMSEs of the MEL estimators decrease faster than that of 

the GMM estimator.  In terms of both bias and RMSE, the MEL estimators are better 

alternatives to the GMM estimator when a large number of instrumental variables are 

used.  
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Table 8 

Results from Correctly Specified Linear Regression Model (Different Numbers of 

Instruments) 

 The data are generated following model (1.20) and 0o  . The random vectors 

( ), ,( , , , )K i K i i iw w u   are drawn from the multivariate normal distribution given in (1.21) 

with 0w  .  The coefficient vector   = 
1( ,..., )K    is determined by (1.22).  The value 

of ( )c K  is chosen given the value of the population R-square from the regression of x on 

z ( 2 / (1 )R       ), such that 2 2/ (1 )R R    .  The value of 
2R  is fixed at 0.1. The 

u is fixed at 0.5. 

 Median Bias Mean Bias RMSE Std 

 K = 5, n = 500 and R
2
 = 0.1 

GMM 0.0334 0.0266 0.1337 0.1310 

EL-GMM 0.0349 0.0050 0.2385 0.2384 

ETEL 0.0439 0.0217 0.2655 0.2646 

MEL1 0.0193 0.0030 0.1749 0.1749 

MEL2 0.0322 0.0017 0.2184 0.2184 

MEL3 0.0324 0.0008 0.2163 0.2163 

MEL4 0.0301 -0.0007 0.2193 0.2193 

MEL5 0.0307 0.0022 0.2151 0.2151 

 K = 20,  n = 500 and R
2
 = 0.1 

GMM 0.1309 0.1262 0.1707 0.1149 

EL-GMM 0.1159 0.1070 0.1753 0.1388 

ETEL 0.1212 0.1110 0.1802 0.1420 

MEL1 0.1102 0.1039 0.1629 0.1255 

MEL2 0.1134 0.1034 0.1702 0.1352 

MEL3 0.1131 0.1042 0.1701 0.1344 

MEL4 0.1134 0.1033 0.1701 0.1351 

MEL5 0.1125 0.1035 0.1702 0.1351 
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 Table 9 reports the estimation results from the data with two different sample 

sizes and with strong instruments.  For the case with n = 1000, all estimators show 

similar performances. 

 

Table 9 

Results from Correctly Specified Linear Regression Model (Different Sample Sizes) 

 The data are generated following model (1.20) and 0o  . The random vectors 

( ), ,( , , , )K i K i i iw w u   are drawn from the multivariate normal distribution given in (1.21) 

with 0w  .  The coefficient vector   = 
1( ,..., )K    is determined by (1.22).   The 

value of ( )c K  is chosen given the value of the population R-square from the regression 

of x on z ( 2 / (1 )R       ), such that 2 2/ (1 )R R    .  The 
u is fixed at 0.5. 

 Median Bias Mean Bias RMSE Std 

 n = 500, K =5, R
2
 = 0.5 

GMM 0.0334 0.0266 0.1337 0.1310 

EL-GMM 0.0349 0.0050 0.2385 0.2384 

ETEL 0.0439 0.0217 0.2655 0.2646 

MEL1 0.0193 0.0030 0.1749 0.1749 

MEL2 0.0322 0.0017 0.2184 0.2184 

MEL3 0.0324 0.0008 0.2163 0.2163 

MEL4 0.0301 -0.0007 0.2193 0.2193 

MEL5 0.0307 0.0022 0.2151 0.2151 

 n = 1000, K = 5, R
2
 = 0.5 

GMM 0.0020 0.0018 0.0314 0.0313 

EL-GMM 0.0036 0.0027 0.0344 0.0343 

ETEL 0.0056 0.0048 0.0419 0.0417 

MEL1 0.0018 0.0015 0.0325 0.0325 

MEL2 0.0038 0.0026 0.0342 0.0341 

MEL3 0.0037 0.0027 0.0341 0.0340 

MEL4 0.0038 0.0027 0.0340 0.0339 

MEL5 0.0038 0.0027 0.0342 0.0341 
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 Finally, I consider the cases in which the error terms 
i  and 

iu  are conditionally 

heteroskedastic or non- normal.   The estimation results reported in Table 10 indicate that 

my simulation results from the cases with normal errors are robust to error distributions.  

The MEL estimators outperform the EL-GMM and ETEL estimators.  The MEL 

estimators have smaller biases and higher RMSEs than the GMM estimator.  Among the 

MEL estimators, the MEL1 estimator is the best.  

 My simulation results can be summarized as follows.  First, the MEL estimators 

are better alternatives to the EL-GMM and ETEL estimators.  For misspecified models, 

the finite-sample performances of the MEL estimators are consistent with the prediction 

that they are root-n consistent, and for both misspecified and correctly specified models, 

they outperform the EL-GMM and ETEL estimators in terms of both bias and RMSE.  

Among the MEL estimators, the MEL1 estimator is the best.  Second, I do not find 

decisive evidence that the MEL estimators, as well as the EL-GMM and ETEL estimators, 

outperform the GMM estimator.  Consistent with the theoretical result of Newey and 

Smith (2004), the MEL estimators have smaller biases than the GMM estimators.  

However, they often have larger standard errors than the GMM estimator, and their 

biases may need to be corrected to have smaller standard errors.  Third, there is some 

evidence that the MEL estimators would be good alternatives to the GMM estimators for 

nonlinear models or linear regression models with a large number of instrumental 

variables.    
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Table 10 

Results from Correctly Specified Linear Regression Model (Different Error Distributions) 

 The data are generated with 
i i o iy x    and 

ix  = 
iw  +  

iu , where i  = 1, 2, ... , 

n,and 0o  .  The instruments 
iw  are drawn from the a multivariate normal distribution 

(0, )KN I  and independent of the error vectors ( , )i iu .  Heteroskedastic errors are drawn 

in the following way: generate random errors from a bivariate normal distribution with 

u  = 0.5, multiply the i
th

 error vector by / var( )i iw w   .  For the case with 2 (3)   

errors, the error vectors ( , )i iu   are standardized with ( , ) 0.5i icorr u   .  The coefficient 

vector   = 
1( ,..., )K    is determined by   

42 ( ) 1 / ( 1)  j c K j K    ,  for j = 1, ... , K.  

The value of ( )c K  is chosen given the value of the population R-square from the 

regression of x on z ( 2 / (1 )R       ), such that 2 2/ (1 )R R    .   

 Median Bias Mean Bias RMSE Std 

 Normal but Heteroskedastic Errors, n = 500 and K = 5 

2GMM 0.1333 0.1141 0.2893 0.2658 

EL-GMM 0.1816 0.1355 0.7373 0.7247 

ETEL 0.1945 0.1449 0.7874 0.7740 

MEL1 0.1116 0.0549 0.5135 0.5106 

MEL2 0.1466 0.0689 0.6456 0.6420 

MEL3 0.1473 0.0660 0.6605 0.6573 

MEL4 0.1480 0.0764 0.6354 0.6308 

MEL5 0.1454 0.0619 0.6508 0.6479 

 2 (3)  Errors, n = 500 and K =5 

2GMM 0.0342 0.0273 0.1329 0.1301 

EL-GMM 0.0341 0.0031 0.2411 0.2411 

ETEL 0.0420 0.0191 0.2775 0.2769 

MEL1 0.0216 0.0073 0.1769 0.1768 

MEL2 0.0303 0.0032 0.2076 0.2075 

MEL3 0.0310 0.0044 0.2084 0.2083 

MEL4 0.0299 0.0030 0.2083 0.2083 

MEL5 0.0312 0.0064 0.2058 0.2057 
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1.5 Conclusion 

 This paper proposed a group of alternative estimators to the Empirical Likelihood 

(EL) estimator, which I refer to as Modified Empirical Likelihood (MEL) estimators.  

The estimators are obtained by GMM applied to exactly identifying moment functions.  

For correctly specified models, the estimators share the same higher-order asymptotic 

properties as the EL estimator.  My simulation results also show that the MEL estimators 

outperform the EL estimator.   

 They are infinitely many possible MEL estimators, and although I tried many in 

my simulations, I only report the results from five.  I found from the reported and 

unreported simulations that use of higher than the third order Taylor approximation of the 

EL estimator does not improve the finite sample properties of the MEL estimators.  The 

MEL estimators are obtained by using two sets of nonlinear moment functions using two 

different weights. My simulation results indicate that the MEL estimators using different 

weights for the two sets generally perform better than those which use the same weights. 
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CHAPTER 2 

DEMEANED GENERALIZED EMPIRICAL LIKELIHOOD ESTIMATORS 

 

2.1 Introduction 

 In this chapter, I introduce an alternative group of estimators to the family of 

Generalized Empirical Likelihood (GEL) estimators. The new estimators are obtained 

from a constrained maximization problem. Different from the GEL estimators, the new 

group employs demeaned moment functions in the objective function. Demeaned 

moment functions are those with means subtracted from the original moment functions. 

However, in the constraints, the original moment functions rather than the demeaned 

moment functions are used. I refer to these new estimators as Demeaned Generalized 

Empirical Likelihood (DGEL) estimators. With this designation, there are more terms in 

the first-order conditions of the maximization problem with respect to the parameters of 

interest, relative to the GEL estimators.  These additional terms modify the higher-order 

properties of the estimated parameters.   

 Although use of demeaned moment functions for the objective function plays an 

important role in determining the estimators’ higher-order properties, it is important to 

keep the original moment functions in the constraints. If demeaned moment functions 

were used in the constraints, the optimal problem would have every moment function 

demeaned.  Such a ”double-demeaned” estimator would not converge to the true values 

of parameters because expected values of demeaned moment functions are always zeros 
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for any value of the model’s parameters.
5
 Thus, parameters are not identifiable, and there 

are infinitely many parameter values that satisfy the double-demeaned maximization 

problem. As a result, demeaned moment functions should not be used in the constraints.   

 The DGEL estimators can be considered as the GEL versions of the Exponential 

Tilting Empirical Likelihood (ETEL) estimator. The ETEL estimator, which is proposed 

by Schennach (2007), is a combination of Empirical Likelihood (EL) estimator and 

Exponential Tilting (ET) estimator. The ETEL estimator can be written as a constrained 

maximization problem with demeaned moment functions in the objective function, which 

coincides with the Demeaned Exponential Tilting (DET) estimator in the DGEL group. 

In order to document these DGEL estimators, I investigate their asymptotic normality, 

higher-order biases and efficiency. 

 If data are symmetrically distributed (i.e., drawn from normal distribution), all 

estimators in the DGEL family have only one source of bias, and they are higher-order 

efficient after bias-correction. However, in a more general setting, the DET estimator is 

the unique member that has these superior higher-order properties. In addition, the DET 

estimator does not suffer from the same problem that Schennach (2007) has pointed out 

regarding the EL estimator in a misspecified model with unbounded moment functions. 

 The DET estimator coincides with the empirical exponential likelihood (EEL) 

estimator, which belongs to the empirical exponential family (Corcoran, 1998), as well as 

the ETEL estimator proposed by Schennach (2007), because they share the same first-

order-conditions. I refer to the empirical exponential family in Corcoran (1998) as the 

Generalized EEL family, or GEEL family. The DET estimator is a transformation of 

                                                           
5
 The true values of parameter are those satisfying the correctly-specified non-demeaned moment 

functions. 
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Corcoran’s EEL estimator from the power-divergence version to the GEL version, which 

involves fewer parameters. Lee and Young (1999) find the EEL estimator has the same 

higher-order properties as the EL estimator; Schennach (2007) also finds the ETEL 

estimator has the same higher-order properties as the EL estimator. In addition, I find that 

the EEL estimator is the best among the Generalized EEL family. Other members in this 

family either suffer from the misspecification problem pointed out by Schennach (2007), 

or they are computationally complicated. Thus, not only is the DET estimator the best 

estimator in the DGEL group, but also its power-divergence counterpart - the EEL 

estimator - is the best estimator in the GEEL family. 

 Overall, this paper shows that demeaning the moment functions plays an 

important role in determining the higher-order properties of estimators. Demeaning 

reduces the bias and increases the efficiency of the empirical tilting (ET) estimator, while 

it increases the bias and reduces the efficiency of the EL estimator. 

 The rest of the chapter is organized as follows. Section 2.2 discusses the DGEL 

estimators and their higher-order properties; section 2.3 compares the DGEL and GEL 

estimators; section 2.4 focuses on the DET estimator; and section 2.5 concludes. 

 

2.2 Demeaned Generalized Empirical Likelihood Estimators 

2.2.1 Review of Related Estimators 

 Let iz  (i = 1, ... , n) be the independently and identically distributed (i.i.d.) 

observations on a random vector z; let   be a 1q  parameter vector in a set 
q ; 
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and ( ) ( , )i ig g z   is a 1p vector of functions with p > q.  I begin by assuming that 

[ ( )] 0iE g    if and only if 
o  .  I also use the following notation: 

  1

1

( ) ˆ( ) ; ( ) ( ); ( )ni
i i i i o

g
G G n G G E G


   








   


; 

  1

1
ˆ( ) ( ) ( ) ; ( ) ( ); ( )n

i i i i i i og g n E     


         . 

Let ( )v  be a strictly concave function on an open interval V  containing zero, and   be 

a 1p  vector of parameters. 

 The Generalized Empirical Likelihood (GEL) estimator proposed by Newey and 

Smith (2004) and the Exponential Tilting Empirical Likelihood estimators (ETEL) 

proposed by Schennach (2007) are reviewed. A GEL estimator is the solution to the 

following saddle point problem: 

 
1

( ) 1
ˆ arg min sup ( ( ))

n

n

GEL i in g     

  
  ,  

where ( 1) /( ) (1 ) / ( 1)v v        with ( , )    , and

( ) { | ( ) , 1,..., }n ig V i n       .
6
  The Empirical likelihood (EL), Exponential Tilting 

(ET), and Continuous Updating (CU) have the objective functions ( ) ln(1 )v v   , 

( ) vv e    and 2( ) (1 ) / 2v v    , respectively. The GEL estimators can also be written 

as a constrained minimization problem (Imbens, Spady and Johnson, 1998; Schennach, 

2007), 

 1

1min ( ) ,n

i in g


  


  

with  a function of  satisfying 

                                                           
6
 The parameter   is the Lagrangean multiplier in the power-divergence dual of the GEL 

estimators. 
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1 1( ( )) ( ) 0.n

i i ig g   
      (2.1) 

 The ETEL estimator (Schennach, 2007) or the EEL estimator (Corcoran, 1998) is 

a combination of the EL and ET estimators in the Cressie-Read power-divergence form, 

  1

1
ˆ ˆarg  max ln( ( )) ,n

ETEL i in n


  

    

where  ̂   is the solution to  

 
1

1

1

1 1

 min ln( ),

. . ( ) 0 and 0.

n

i i

n

i i i

n n

i i i i i

n n n

s t g



 

  







 



   

 

The ETEL estimator can also be written as a constrained maximization problem in the 

GEL version (Schennach, 2007), 

   1
ˆ ˆ ˆargmax exp ( ) ( ( ) ( ))n

ETEL i ig g     
    ,  

with  a function of  satisfying 

1 exp( ( )) ( ) 0n

i i ig g  
  . 

Comparing the ETEL estimator and the ET estimator in the GEL family, the ETEL 

estimator is obtained from a maximization rather than a minimization problem. In 

addition, the ETEL estimator has moment functions demeaned in the objective function. 

These differences improve the higher-order properties of the ET estimator. Thus, in the 

next section, I propose a group of alternative estimators that have demeaned moment 

functions in the objective function. 
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2.2.2 Definition of DGEL Estimators 

  The proposed DGEL estimators, which are obtained by maximizing the objective 

functions with demeaned moment functions over a set of constraints with un-demeaned 

original moment functions, can be thought of as the GEL versions of the Exponential 

Tilting Empirical Likelihood estimators (ETEL). A DGEL estimator is a solution to the 

following problem:  

   1

1
ˆ max ( ) ( ) ,n

i in g g


   


   (2.2) 

where 1

1
ˆ( ) ( , )n

i ig n g z 

  , and is a function of  such that 

 
1 1( ( )) ( ) 0.n

i i ig g   
   (2.3) 

The DGEL estimators can take any form of  ( 1)/( ) (1 ) / 1v v        with

( , )    . The demeaned empirical likelihood estimator (DEL), the demeaned 

exponential tilting estimator (DET), and the demeaned continuous updating estimator 

(DCU) have ( ) ln(1 )v v   , ( ) vv e    and 2( ) (1 ) / 2v v    , respectively.   

 Using demeaned moment functions in the objective function and transferring the 

minimization problem into a maximization problem make the DGEL estimators different 

from the GEL estimators. The GEL optimization problem (2.1) is a minimization 

problem, because after transfer it into an unconstrained problem by replacing ( )   that is 

solved from the constraint into (2.1), the objective function in (2.1) is convex in  . 

Similar, after replacing ( )   which is solved from the constraint (2.3) into the 

minimization problem (2.2), the objective function in (2.2) is concave in  . Therefore, 

the DGEL estimators are the maximum point of the maximization problems. In the 
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following section I will show that demeaning plays a very important role in determining 

estimators’ higher-order properties.  

 

2.2.3 Higher-Order Properties of DGEL Estimators 

 In this section, I show the asymptotic normality of the DGEL estimators as well 

as their higher-order bias and efficiency. Assumption 2.1a is listed for the existence of a 

unique solution for the maximization problem (2.2) and (2.3). 

 

Assumption 2.1a: (i)    is the unique solution to ( ( , )) 0E g z   , and  is compact. 

(ii) ( , )g z  is continuous at each    with probability 1. (iii) ( , )g z  is continuous 

differentiable in   in a neighborhood N of 
0 . (iv) ( )   is twice continuous differentiable 

in a neighborhood of zero. 

 

 Assumption 2.1a (i) is a necessary condition for the optimization problem (2.2) 

and (2.3) to have a unique solution. The continuous and differentiation properties of 

( , )g z   and ( )   functions are required for deriving the first order conditions. 

 For simplicity, let ( ),i ig g   and ( )i iG G  . The FOCs of the DGEL estimator 

are 

 

1

1 1

1

1 1

ˆˆ ˆ( ( )) ( ) ( ) 0
,

( ) 0

n

i i i i

n

i i i

n g g g g G G

n g g


  



 









  
        

 
  

 (2.4) 

where 1 2 1 1

1 2

( ) ( )

( )

n n

i i i i i i i

n

i i i i

g G g g G

g g g

     

  
 



      
 

  
 and it is derived from (2.3). 
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 Since ( )   is twice continuous and differentiable and ( , )g z   is continuous 

differentiable in  , ˆ( )   derived from (2.3) is also continuous and differentiable in  . 

Replacing ˆ( )   into the objective function (2.2) transforms the constrained maximization 

problem into an unconstrained one. It is easy to show that the objective function of the 

unconstrained problem is continuous in  . Moreover, Assumption 2.1a (i) states that

  and   is compact. Therefore, by the Weierstrass Theorem, there exists a unique 

global solution to this unconstrained maximization problem.  

 Next, I would like to show that the solution to the FOCs is the maximum point. 

The second-order conditions (SOCs) of the unconstrained maximization problem with 

respect to   are checked.  Replacing ˆ( )   into the objective function of (2.2), the 

unconstrained optimization problem over  is: 

  1

1
ˆ ˆ max ( ) ( ) ( ) .n

i in g g


    


   

In the Appendix, I show that at
0 =0, the SOC of the above unconstrained maximization 

problem with respect to  is negative definite for any   . Therefore, at
0 0  , 

0  is 

the unique globe maximizer for the optimization problem (2.2) and (2.3). Thus, I have the 

following theorem. 

 

Theorem 2.1 (Unique Solution): If Assumption 2.1a is satisfied, there exists a unique 

DGEL estimator that maximizes the objective function.    
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 Theorem 2.1 shows that the maximizing problem is well-defined and the DGEL 

estimator is well-designed. It is now safe to discuss the higher-order properties of the 

DGEL estimators based on the Taylor expansion of the first-order conditions.  

 In order to facilitate the description and comparison of the higher-order properties 

of the DGEL estimators, I follow Schennach (2007) to introduce two groups of auxiliary 

parameters to eliminate the nonlinear elements in the FOCs. 

 For simplicity, let 
1

ˆ( ( ))ig g    . The two auxiliary parameters are and  , 

where 
1 /n

i n    and  
1

1 2 1( ) ( )n n

i i i i i ig g g g    


 
       . 

 

Lemma 2.1: The two auxiliary conditions for parameters  and   are 

1 / 0,n

i n    

 1 2( ) ( ) 0 .n

i i i i ig g g g    
      

Thus, the augmented FOCs of the DGEL estimator are 1

1 ( ) 0n

i in m 

  , where 

( , , , )      and ( )im  is  

 

 

1

2

2 1

( )
( ) .

( ) ( )

( ) ( ) ( )

i i

i

i i i i

i i i i i i

g g
m

g g g g

g G g g G G

 

 


    

        

 
 
 

   
 

        

 (2.5) 

 

 Some regular assumptions are needed to drive the asymptotic normality of the 

DGEL estimators. First, the solution to the augmented FOCs should be unique. Second, 

( , )iG z   and the higher-order moment of ( , )ig z   should be bounded. Otherwise, the 

estimators would not converge to the true value. Third, should be invertible.  
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Assumption 2.1b:  (i)  sup ( , )iE g z


    for some 2  , and 

 sup ( , )iE G z    .  (ii)   is nonsingular and finite, and rank(G)=p.  (iii)  

* * * * *( , , , )         is the unique solution to ( ) 0m    in Int( ) .   

 

 With these assumptions, the asymptotic normality can be derived from a mean-

value expansion of the FOCs. I have proved the following theorem in the Appendix. 

 

Theorem 2.2 (Asymptotic Normality): Under Assumptions 2.1a and 2.1b, the DGEL 

estimators have the limiting distribution, 

   0
ˆ 0, ,dn N     

where 1( ' )G G    and ( ( ) ( ) )i iE g g    .  

 

 Theorem 2.2 implies that every DGEL member has the same asymptotic 

distribution as those of the GEL and GMM estimators. Thus, in a correctly specified 

model, when sample size is very large, all estimators, including the GMM, GEL and 

DGEL estimators, should exhibit similar performance. The following theorem presents 

the higher-order biases of the DGEL estimators when sample size is finite. First, I list the 

assumptions needed for sketching the higher-order properties.  

 

Assumption 2.2:  (i)  ( , )g z   is three times continuously differentiable in   in a 

neighborhood N of 
0 .  (ii)  There is b(z) with 

6( )iE b z      such that in a 
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neighborhood of N of 
0 , all partial derivatives of ( , )g z  with respect to   up to order 

four exist, are bonded by ( )ib z for all z, and are Lipschitz in  with prefactor ( )ib z .  (iii)  

( )   is four times continuously differentiable in a neighborhood of zero. 

 

 Since the higher-order bias and variance terms involve the third derivative of 

( , )g z   and up to the fourth derivative of ( )  , the differentiable properties (i) and (iii) 

are required.  The bounded assumption (ii) is for terms with up to six moment of ( , )g z   

and its derivatives.  

 If Assumptions 2.1a, 2.1b and 2.2 are satisfied, the augmented FOCs can be used 

to derive the higher-order expansion for the DGEL estimators as the following,  

   2

0 1 2
ˆ / / ( ).DGEL pn Q n Q n O n         (2.6) 

Here  , 
1Q  and 

2Q  are (1)PO . The higher-order bias is the bias of order 1( )PO n .  For any 

estimator ̂  that can be expanded as (2.6), the higher order bias is  0
ˆ
DGELE  

 1, /E Q n , as the expectation of  is zero.  

 

Theorem 2.3 (Higher-order Bias): Under Assumptions 2.1a, 2.1b and 2.2, the DGEL 

estimator of  has 

  1, 3
ˆ( ) / (1 (0))DGEL IBias E Q n B B       (2.7) 
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where   1( ) ( ) / / / 2 ,n

I i i i j jB HE G Hg n H E G e n  
           / ,i i iB HE g g Pg n

  

and
 

1 1 1, .H G P GH         Any estimator with 
3(0) 1    in the DGEL group 

has one source of bias IB . 

 

 Similar to the GEL estimators, the DGEL estimators have the bias terms 
IB  and

B
 only.  The DGEL estimators do not have the term 

GB  because they use estimated 

efficient weights for the Jacobian matrix of the moment conditions. Therefore, they 

remove the bias arising from the correlation between the moment conditions and their 

Jacobian matrix. 

 The precisions of different estimators can be compared based on their higher-

order mean square error (MSE). Since I focus on the higher-order efficiencies of the bias-

corrected estimators, I say one estimator is relative efficient to the other if its variance is 

smaller than that of the other.  I now derive the higher-order variance of the DGEL 

estimators. The equation (2.6) implies that 

/ 2

2
ˆ( ) ( )DGEL
DGELVar o n

n n
  

   , 

where 
1, 2, 2,( ) ( ) ( )DGEL Var Q E Q E Q          .   

 The appendix shows that the DET estimator or any estimator with 
3(0) 1    has 

a   term within an 
1( )pO n

 difference from that of EL. This 
1( )pO n

difference can only 

contribute to the 
1( )po n

difference in bias and the 
2( )po n

 difference in variance. Thus, 

it will not influence the higher-order bias and efficiency of the estimator. The 1Q  and 2Q
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terms for the DET estimator or any estimator with 
3(0) 1    are also different from 

those for the EL estimator. However, these differences in 1Q  and 2Q  are uncorrelated to 

 .  Therefore, the DET estimator or any estimator with 
3(0) 1    shares the same 

1( )pO n
bias and 

2( )pO n
variance with the EL estimators. I obtain the following result: 

 

Theorem 2.4 (Higher-order Efficiency): Any estimator with 
3(0) 1    in the DGEL 

group is higher-order efficient after bias-correction. 

 

 As Newey and Smith (2004) note, the EL estimator may not be higher-order 

efficient among the GEL estimators in terms of mean square error (MSE). Only the bias-

corrected EL estimator is efficient among the bias-corrected GEL estimators. Similarly, 

only the bias-corrected DET estimator is more efficient than other biased-corrected 

DGEL estimators.   

 Demeaning plays a key role in changing the higher-order bias and efficiency. In 

the GEL group, any estimator with 
3(0) 2    has one single bias term IB , while in the 

DGEL group, any estimator with 
3(0) 1    does. Without demeaning in the objective 

function, the maximization problem of DGEL reduced to the GEL problem (2.1). 

Therefore, demeaning is the major difference between the DGEL and GEL estimators. 

Comparing the results in Theorem 2.3 and 2.4 and that in Newey and Smith (2004), I can 

conclude that demeaning modifies the higher-order properties of the GEL estimators.  
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Corollary 2.1: If data are symmetrically distributed, every DGEL estimator has one 

source of bias 
IB , and every bias-corrected DGEL estimator is higher-order efficient. If 

data are not symmetric, only the DET estimator has one source of bias and the bias-

corrected DET estimator is higher-order efficient. 

 

 If data are symmetric, 0jE g gg    . The appendix shows that the differences in 

1Q  and 2Q  between the DGEL and EL estimators are in terms of jE g gg    or 

uncorrelated to  . Therefore, all of the DGEL estimators share the same higher-order 

properties as the EL estimator when data are symmetric.  

 

Corollary 2.2: Using different ( )v functions in the objective function and constraint: 

( )B v in the objective function and ( )A v in the constraint. Any DGEL estimator using 

the ( )v  functions satisfying 
3 32 (0) 3 (0) 0B A     has only one source of bias IB . 

 

 Similar to the MEL estimators, having different ( )v function in the objective 

function and constraints creates new estimators in the DGEL group. With the choice of 

A and B satisfies
3 32 (0) 3 (0) 0B A    , the higher-order bias in   is IB . 
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2.3 DGEL and GEL Estimators 

2.3.1 Comparison of DGEL and GEL estimators 

 Table 11 compares the higher-order properties of the DGEL and GEL estimators. 

Although they have the same bias terms 
IB  and B

, the coefficients for the bias term 

B
 are different. In the DGEL group, the estimator with the fewest sources of bias is the 

DET estimator, while in the GEL group it is the EL estimator. For the CU estimator, 

since it has 
3(0) 0  , the CU and DCU estimators share the same higher-order bias.  

 The bias-corrected DET estimator is the most efficient one among the DGEL 

group, while the bias-corrected DEL estimator is not. However, in the GEL group, the 

bias-corrected EL estimator is higher-order efficient but not the ET estimator. Even 

though the best one in the DGEL group and the best one in the GEL family have the same 

higher-order properties, the DET estimator is better than the EL estimator when model is 

misspecified. Schennach (2007) shows the ETEL estimator is root-n consistent when 

model is misspecified. Since the DET estimator shares the same FOCs with the ETEL 

estimator, the DET estimator is also better than the EL estimator in the misspecified 

models.  
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Table 11 

The Higher-order Properties of the DGEL and GEL Families 

( )v  

DGEL GEL 

Higher-order Higher-order 

Bias                 Efficiency* Bias                    Efficiency* 

EL (1 )Ln v  IB B
  IB

 Yes 

ET exp( )v  IB
 Yes / 2IB B

  

CUE 2(1 ) / 2v   IB B
  IB B

  

( )v   ( 1)/(1 ) / 1v        31 (0)IB B     3(0)
1

2
IB B




 
  
 

  

 

* Higher-order efficient is the higher-order efficiency after bias-correction.  

 

2.3.2 Other Groups of Demeaned Estimators 

 The group of the Demeaned Generalized Empirical Likelihood estimators 

involves demeaning in the objective function but not in the constraints. However, there 

are other groups of estimators that apply demeaned moment functions. The second group 

can be defined by the following optimization problem: 

  1

1
ˆ max ( ) ( ) ,n

i in g g


   


   

s.t.  satisfies    1 1
ˆ( ) ( ) ( ) 0n

i i ig g g    
   . 

Since ˆ ( )g   and ˆ ( )G  only contribute to the 
3/2( )pO n

 terms in the bias and 
2( )po n

terms 

in the variance, the additional demeaning term in the constraints does not change the 

higher-order properties of the estimators. In other words, the estimators in the second 

group share the same higher-order properties as the DGEL estimators. 

 Two other groups of demeaned estimators are defined as the following. The third 

group is defined as: 
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  1

1
ˆ max ( ) ( ) ,n

i in g g


   


   

s.t.  satisfies   1 1
ˆ( ( )) ( ) ( ) 0n

i i ig g g    
   . 

The fourth group has an additional part of demeaning in the constraints. Thus, I refer to 

them as double-demeaned estimators, 

  1

1
ˆmax ( ) ( ) ,n

i in g g


   


   

s.t.  satisfies     1 1
ˆ ˆ( ) ( ) ( ) ( ) 0n

i i ig g g g     
    . 

 Let ˆ( ) ( ) ( )i ih g g    . The FOCs of the fourth group are 

1

1

1
( ) 0

1 ( )
,

1
( ) 0

1 ( )

n

i i

i

n

i i

i

H
h

h
h

 
 


 






  


  
 

 

where ( ) ( ) /i iH h     . In a correctly specified model, any value of   satisfies 

( ( )) 0iE h   , while only 
0  satisfies  0( ) 0iE g   . Therefore, there are infinitely many 

parameter values at which the demeaned moment functions are satisfied.  As a result, this 

optimization problem cannot identify the parameters of interest. Moreover, in a 

misspecified model, ˆ 0   can be a solution even if the moment functions are bounded.  

With ˆ 0  , any value of ̂  satisfies the optimization problem. Thus, the double-

demeaned estimator ̂  does not converge to its pseudo-true value 
* that satisfies 

 *( ) 0iE g   . Furthermore, there is no solution for ̂  in the minimum distance model, 

because   disappears from the optimization problem. Thus, the double-demeaned 

estimators are not desirable. 
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 The same intuition of comparing the DGEL and the second demeaned groups 

applies to the comparison of the third and fourth groups. The demeaning part 

 1
ˆ( ( ) ( )ig g      in the constraints does not influence the higher-order properties. 

Thus, the third and fourth groups share the same higher-order properties, and these two 

groups are not desirable because the interested parameters are not identifiable.  

 

2.4 Demeaned ET Estimator 

 The DET estimator coincides with the Empirical Exponential Likelihood (EEL) 

estimator (Corcoran (2000)) and the Exponential Tilting Empirical Likelihood (ETEL) 

estimator (Schennach (2007)), in the sense that they share the same FOCs. The EEL 

estimator is a member in the Generalized EEL (GEEL) family, and a GEEL estimator is a 

combination of the Empirical Likelihood estimator and any other estimator in the 

Cressie-Read power-divergence family (Cressie and Read (1984)). The GEEL estimator 

is a solution to the following optimization problem: 

  1

1max log ( ) ,n

i in n


 

  (2.8)  

where  ̂   is the solution to 

  
1

1

1

1 1

 min ( ),

. . ( ) 0, 0,

n

i i

n

i i

n n

i i i i i

n h

s t g





  







 



   

 (2.9)  
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and     1( ) ( ) 1 / 1h n        with ( , )    .
7
 The EL representation is at 

1    and ( ) ln( )h n   , and the ET representation is at 0   and ( ) ln( )h n n   . 

Any member in the power-divergence family can be applied to solve for  ̂  . The EEL 

estimator is with ET representation in the first step to solve for  ̂  . While the EL 

estimator minimizes the forward Kullback-Leibler discrepancy between distributions 
i

and 
1n
, the EEL estimator minimizes the backward Kullback-Leibler discrepancy 

between them.  In addition, the objective functions of the GEEL estimators are 

corresponding to different likelihood ratio statistics (Corcoran, 1998).  

  The FOCs of the GEEL estimators are provided in Appendix 2. Here are some 

remarks on the FOCs. First, all of the GEEL members have the same bias as the EL 

estimator (see Schennach and Spady (2003))
8
. Second, only if the representation of  ̂ 

takes the form of those which are for the ET, EL, and CU estimators, the FOCs of the 

corresponding GEEL estimators can be presented in a simple form similar to those of the  

DET, DEL and DCU estimators in the DGEL family. Other members in the GEEL family 

have very complicated FOCs. Thus, the computation of other estimators using FOCs is 

very difficult. Moreover, solving the original constrained optimization problem rather 

than solving the FOCs is also difficult. Thus, members with  ̂   solved from ET, EL 

and CU representations in the first step are computationally much simpler than others.   

                                                           
7
The Cressie-Read power-divergence estimators are obtained from the optimization problem (2.9), 

which is a minimize problem. However, since the EL estimator has ( ) ln( )h n   , the 

optimization problem for the EL estimator is  1

1max log ( ) ,
n

i in n


 


1. . ( ) 0,n

i i is t g  

1 0n

i i  . 
8
 A more detailed proof of bias for CU-GEEL estimator is provided in the appendix. 
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 Third, the GEEL estimators with the EL and CU representations suffer from the 

same inconsistency problem as the EL estimator in the misspecified model. The GEEL 

estimator with  ̂  solved from EL is identical to the EL estimator in the GEL family. 

The GEEL estimator with CU representation is a solution to: 

 1

1max log ( )n

i in n


 

  

where  ̂   is the solution to 

 
1

1 2

1

1 1

 min ( )

. . ( ) 0, 0.

n

i i

n

i i

n n

i i i i i

n n

s t g





  







 



   

 

Since the solution of ˆ
i  is  ˆ ( ) 1 ( ) /i ig n     , the optimization problem becomes 

 1max log 1 ( )n

i ig


 
   

with  ̂   from  1 1 ( ) ( ) 0n

i i ig g  
   . 

 It suffers from the same inconsistency problem as the EL estimator when model is 

misspecified. With unbounded moment functions, the estimated ̂ converges to zero. 

Accordingly, there is no ̂  that would satisfy  ( ) 0iE g   . Therefore, the best one in 

this GEEL group has the ET representation of  ̂  , and it shares the same FOCs of the 

DET estimator. Not only the DET estimator is the best in the DGEL group, but also its 

power-divergence counterpart - the EEL estimator - is the best among the GEEL family, 

in the sense that they have the same superior higher-order properties as the EL estimator 

in a correctly specified model and are root-n consistent in a misspecified model. 
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2.5 Conclusion 

 This chapter provides a new group of estimators named Demeaned Generalized 

Empirical Likelihood (DGEL) estimators. A DGEL estimator is obtained by solving the 

constrained maximization problem with demeaned moment conditions in the objective 

function.  

 I investigate the higher-order bias and efficiency of the DGEL estimators. All 

members have two sources of bias: the bias from using sample moment functions in the 

estimation instead of their population moments, and the bias by using an estimated 

optimal weighting matrix. If data are symmetrically distributed, for example if the sample 

follows a normal distribution, all members in the DGEL family have only one source of 

bias, and they are also higher-order efficient after bias-correction. However, in a more 

general setting, only the Demeaned ET estimator has the same superior higher-order 

properties as the EL estimator.  

 Demeaning plays a very important role in determining the higher-order properties 

of estimators. The best estimator in the GEL group is the EL estimator, which is better 

than the ET estimator in terms of higher-order bias and efficiency. After demeaning, the 

higher-order bias and efficiency of the ET estimator improve. The Demeaned ET 

estimator becomes the best estimator in the DGEL family, and shares the same higher-

order bias and efficiency as the EL estimator in the GEL family. Moreover, the DET 

estimator performs better than the EL estimator when the model is misspecified.  

  The DET estimator coincides with the Empirical Exponential Likelihood 

estimator which belongs to the Empirical Exponential family (Corcoran (1998)). My 

version of it reduces the dimension of the parameters and makes computation easier. In 
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addition, I find that the EEL estimator is the best among the Generalized EEL family--

other members in this family either suffer from the misspecification problem pointed out 

by Schennach (2007), or they are computationally difficult. Thus, the DET estimator is 

the best in the DGEL group, and its power-divergence counterpart - the EEL estimator - 

is also the best in the GEEL group. 

 I also discuss other groups of demeaned estimators and their high-order properties. 

Those discussions illustrate how the demeaning in the objective function and the 

constraint changes the higher-order properties of the estimators. Results in this chapter 

support wider application of demeaned estimators and offer econometric guidance to the 

empiricists who use this method.  
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APPENDIX I 

 

PROOF FOR CHAPTER 1 
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 I use the following notations to advance the proofs.  For 
1(0 , )o p o 

  , let 

( )i i og g  , ( )i i oG G   and 

 
2 3( ) ( ) ( )

; ; ;i o i o i o
s st

s s t

m m m
M E M E M E

  

     

      
                  

 

 

2
1

,

( ) ( )
; ; ( );i o i o

i i s s i i o

s

m m
A M B M M m

 
 

  

 
     

   
 

 ; ;i i i i iK g g R G G     

 1/2 1/2 1/2 1/2

1 1 1 , 1; ; ; ;n n n n

i i i i s i i s i in A n A B n B g n g    

            

 1/2 1/2

1 1; .n n

i i i iK n K R n R 

    
  

The following facts are also useful: 

 0; ; ; ; 0; ; .PG P P P P P HG I P H H H P GH I               

 

 

Proof of Theorem 1.2 

 

 Here I derive the higher-order bias on a MEL estimator without the condition 

3 (0) 2B   .  Let (0)l l

j j   , where l = A, B and j  = 1, 2, 3, 4.  Using the Taylor 

expansion of ˆˆ ( ) 0m    at o , I can show 

  
3/2 2

1 2
ˆ / / / ( )o pn Q n Q n O n        , (A1.1) 

where 

 
1

1 1 / 2p q

s s sQ M A M   


      ;  (A1.2) 

 
 1

2 1 1 1 1 1 1/ 2 / 6p q p q p q

s s s s s s s s k s k skQ M AQ M Q Q M B M         

  
        
 

, 

   (A1.3) 

and M is defined in (1.18).   

 

 Under Assumption 1.3, Newey and Smith (2004) show that  , 1Q  and 2Q  have 

finite first- and second-order moments.  My goal here is to find 1( )E Q  .  By the form of 

M  and because 0o  ,   

 1

1 0

A
ii

i B
ii

PgP H g

HgH G






     
       

    
. 

Thus, I have 

  
0

( ) .
0

i

i i i i

i

Pg P P P H P
E E g P g H

Hg H P H H


         
                    

 

Using these results I can show: 
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 
0 0

,

i i i i

i i

i i

i i i i i i i

i i i

i i i i i

i i

g g G PgG
E A E

G HgG

g g Pg G Hg Pg GHg
E E

G Pg G Pg

g g Pg G Hg
E

G Pg


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         

  
    

 

because   0i iE Pg GHg    and 0G P  .  Also, 

  1 / 2p q

s s sE M 

  
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1 ( ) / 2p q

s s i i sM E e
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i j i i j
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e
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E E
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where 
,i jg  is the j

th
 moment function in 

ig  (j = 1, ... , p), /i jG    ( ) /i o jG     (j = 

1, ... , q) , 
, ,i jG  is the j
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 Since  1

1 1( ) / 2p q

i i s s sE Q M E A M   


       and partition 1 1, 1,( , )Q Q Q 

     

corresponding to the dimensions of    and  , 
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 
   = 

 

1 3 ,

11

,

1

/ 2

/ 20

/ 2

p A

j i j i i j

q i
j ji i i i i

j

i i

i j ip

j j

E g g g Pe

G
E eg g Pg G Hg

M E E
G PgI

g g
E Pe













         
    

                           
   

    
      

 

  =    1 3/ 2 (1 / 2)q Ai
i i j j i i i

j

G
H E G Hg E e E g g Pg




  
        

    

 

         1 , ,( ) ( ) / 2 .p

i i j i j i i j jE G Pg E E G g E G g Pe
         

  
 

As 1 ,( ) ( )p

j i j i i j i i iE g g g Pe E g g Pg
    and  1 , , , / 2 ( )p

j i j i i i j j i iE G g E G g Pe E G Pg
            , 

I have 

 1, /E Q n
 
   

     = 
 

 

1

1 3

/ / 2
/

(1 / 2)

q

i i j i j j

q A

j i i i

E G Hg E G e
H n

E g g Pg









        
 

   

 

     = 
3(1 / 2) .A

IB B    

All MEL members have 
3

A =2, thus  1,
ˆBias( ) /MEL IE Q n B   . 

 

 

Proof of Theorem 1.3 

 

 By (A1.1), the variance matrix of a MEL estimator ( ̂ ) is given: 

 1 2 2

2 2

( ) ( ) ( ) ( )ˆ( ) (1).
Var Var Q E Q E Q

Var o
n n n

  


 
   

 Partition 2 2, 2,( , )Q Q Q 
   and ( , ) ( , )g P g H             similarly to 1Q .  Then, 

 

1, 2, 2,

2 2

( ) ( ) ( )( )ˆ( ) (1),
Var Q E Q E QVar

Var o
n n n

    
 


 

     

where ( )Var    . Under Assumption 1.4, the EL-MM estimator is a MEL estimator 

using ( )A v = ( )B v = ln(1 )v .  Thus, I will complete the proof by showing that all of 

the MEL estimators have the same 1,Q   and 2,Q  functions. 

 

 Define ; 0 ;P Pg g P Pg g H Hgg H         . By definition, 

 
1/2

1
0

n

i i

K R
A n A

R





 
    

 
. 
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Also, 

 

 

 

 ,

3 ,

, , ,

;

0

i h iA i i i
i h i i

l l

h p l

ii h i i h

l

g g g g GE g g g E E E

M M
Gg g G

EE E


  

 



                          
    

         
                

;

 

 
   

   

, ,

3 , ,

1/2

1

, , , , , ,

i h i i h iA

i h i i i h i i

n

h i

i h i i h i i h i h

g g g g
g g g E g g g E

B n
g g g g G G

E E


 

   





   
             

   
        

             

; 

 

   

1/2

1 ,

0

i i i i i i

l l l ln

p l i

i i

l l

g g g g G G
E E

B n
G G

E

   

 



 

       
     

      
 

 
      

    

 

where h = 1, ... , p, l = 1, ... , q.  

 

 I now derive the detailed form of 1Q   given in (A1.2).  Notice that,  

 
0

PgK R KPg RHg
A

HgR R Hg


    
       

     
, 

and 

 
1 / 2p q

s s sM 

  

  1 / 2p q

s s sM e


   

 

,

1 3 , 1

, , ,

1 1

1 1

1

/ 2 0 / 2

/ 2 0 / 2

0 / 2 / 2

i j ip A p

j i j i i j j j

i j i i jp p

j j j j

q qi i i
j j j j

j j

q i
j

j

g g
E g g g Pe E e

g g G
E Pe E e

g g G
E e E e

G
E




 

 



 

 

 



   
         

      
      

      

    
      

       


 
 

  

.

0 / 2je

 
 
 
 
 

 
 

 

Thus, I have  

 

1 / 2p q

j j jA M  

   
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  =

,

1 3 , 1

1 1

, , ,

1 1

( )
/ 2 0 / 2

( )
0 / 2 / 2

( )
/ 2 0 / 2

i j ip A p

j i j i i j j j

q qi i i
j j j j

j j

i j i i jp p

j j j j

g g
E g g g Pe E e

g g G
E e E e KPg RHg

g g G
E Pe E e




 

 

 

 

 

   
         

              
         

    
     

     

 1

,

0 / 2q i
j j

j

G
E e RHg




 
 
 
 
 
 
 
  
  
  
            

 

which is the same for all of the MEL estimators including the EL-MM estimator.  Also, 

 1,Q   = 
1

1

0
/ 2p q

s s sM A M
I

   



 
      

 
 

  =   1 / 2p q

s s sH A M  


      

  = 

 

 

 

,

1 3 , 1

1 1

, , ,

1 1

/ 2 0 / 2

0 / 2 / 2

/ 2 0

i j ip A p

j i j i i j j j

i iq q i
j j j j

j j

i j i i jp p

j j j

g g
E g g g Pe E e

H

g g G
E e E e KPg RHg

g g G
E Pe E e




 

 

 

 

 

  
            
 
     
         
         


   

           

1

.

/ 2

0 / 2

j

q i
j j

j

G
E e RHg




 
 
 
 
 
 
 
 

  
  
  
  
   
          

 

Therefore, the 1,Q   is the same for all of the MEL estimators and EL estimator. 

 

 I now consider the form of 2Q : 

 2Q    = 
 1 1 1 1,1

1 1

/ 2

/ 6

p q

s s s s s s s

p q p q

s l s k sk

AQ M Q Q M B
M

M

   

  





 

 

    
 
   

 

  =  1 .M I II III IV V          (A1.4) 

First,  

 

1, 1, 1,

1

1, 1,0

Q KQ RQK R
I AQ

Q R QR

  

 

     
        

         

. 

Second, because 
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1, 1,

1

1, 1,

Q g P Q g H
Q

Q g P Q g H

 

 


  

   
   

, 

I have 

 II  = 1 1 1 1/ 2 / 2p q p q

s s s s s sM Q M Q e  

 
    

     = 

 

 

,

3 ,

1,

1

1,, , ,

/ 2

i j iA

i j i i

p

j j

i j i i j

g g
E g g g E

Q g P
e

Q g Pg g G
E E








 



  
           
   

         
           

 

     

 

1,

1

1,

/ 2

0

i i i

j jq

j j

i

j

g g G
E E

Q g H
e

Q g HG
E





 





     
    

          
   

      
       

                

 

 

 

,

1 3 , 1, 1 1,

1 1, 1 1,

,

1 1,

/ 2 / 2

/ 2 / 2

/ 2

i j ip p

j i j i i j j j

i iq q i
j j j j

j j

i j ip

j j

g g
E g g g Q g Pe E Q g Pe

g g G
E Q g He E Q g He

g g
E Q g Pe

 

 






 



 

 



  
             
 
     

       
         

 
 

   
  

, ,

1 1,

1 1,

/ 2

/ 2

i jp

j j

q i
j j

j

G
E Q g Pe

G
E Q g He













 
 
 
 
 
 
 
 
   
   

   
  
   

         

 

 

Third, because 

 

1, 1,1/2

1 1 1, 1,

1, 1,

,
in

i

i

Pg PgQ PgQ
Q n Q Q

Hg HgQ HgQ

 

 

 

 



   
                  

 

I have 

 III  = 1 1, 1 1/ 2 / 2p q p q

s s s s s sQ M M Q e  

 
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 
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1
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e
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






 



  
           
   

         
    

       
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 
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1

1,
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i

j

g g G
E E
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e

HgQG
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Thus, the terms I, II, III and IV are the same for all of the MEL estimators and EL 

estimator.   

 

 Finally, I derive the detailed form of V in (A1.4).  For 
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Thus, 
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Because Pg   and Hg  , I have  
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 The first term of V depends on 
4

A  and 
3

B , which are not restricted for the MEL 

estimators.  Thus, the first term can different for different MEL estimators.  However, 

observe that the first term of V  is a function of Pg   which is uncorrelated with 
 .  

Thus, the first term does not influence 2( )E Q  .  The rest of the terms in V  are the same 

for all of the MEL estimators.  Consequently, all of the MEL estimators have the same 

2,( )E Q   .  
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Proof of Theorem 2.1: 

 

 The FOCs of the DGEL estimators are 
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From the second FOC, I can solve   as a function of  . Replacing ( )   into the 
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Since not all ig with i=1,…,n, equal ĝ , the SOC for the maximization problem with 

respect to   is negative definite. Thus, at 0 =0, this SOC is globally negative definite 

for any   . 

 

 

Proof of Lemma 2.1:  

  

 The FOCs of the DGEL estimators are 
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Let 1
ˆ( ( ))ig g    . Introduce two auxiliary parameters  and  , where 
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

 
       . Use (A2.1) and the definition of  and  , 

/    can be rewritten as   
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  

 



    
 

  
.    (A2.2) 

Replace (A2.2) into the first FOC, after several steps of algebra, the first FOC becomes 

  2 1( ) ( ) ( ) 0i i i i i ig G g g G G                 . 

Next, I introduce two additional FOCs to make the system exactly identified,  
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Therefore, the augmented FOCs are 
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, 

and ( , , , )        . 

 

 

Proof of Theorem 2.2:  

 

 Using the mean value expansion of the FOCs at 
0 0(1,0,0, )  ,  

0

0

0
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. 

Let ˆˆ ( )i ig g  , ˆ ˆ( )i iG G  , ( )i ig g   and ( )i iG G   then 
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   

 

where   and   are mean values.  

 

 I will ignore the 
1( )pO n

 
terms, since it only contributes to 

3/2( )pO n
 terms to the 

bias and 
2( )po n

terms to the variance of parameters. Ignoring the 
1( )pO n

 
terms in M,  
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,

 

1

1
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0

P P H
M
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

 
 
 
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 

 

.

 

Since M M , I have 

  
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where 
1 1( )G G    , 

1 1 1P G G       and 
1H G    .  Using these results, I 

can show that for correctly specified models, 
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. 

Thus,
 

   0 0,DGEL dn N    .
  

 

 

Proof of Theorem 2.3:  

 

 Using the Taylor expansion of ˆˆ ( ) 0m    at 
o , I can show 

  
3/2 2

1 2
ˆ / / / ( )o pn Q n Q n O n        , (A2.3) 

where 
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   (A2.5) 

 By definition of M and 
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I will ignore the 
1( )pO n

 
terms, since it only contributes to 

3/2( )pO n
 terms to the bias 

and 
2( )po n

terms to the variance of parameters. Therefore,  
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Let (0)j j   . I have 
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Using these results I can show: 

 

 

 

01 0 0 0ˆ1 0 0

0 00 0

0 0ˆ 0

0 0 00 0 0

0ˆ

0

i

ii i i
i i

ii i i i i

ii

i i

i i i i i

i i

g g

PgGg g G
E A E

Pgg g g g g g g

HgGG

g g Pg

Pg g Pg G Hg
E E

G Pg



              
                        

          

 
 

 
   

 
  

,
0 0

i i

i i i i i i i

i i

g Pg

g GHg g g Pg G Hg
E

G Pg G Pg

   
    
    
   
   

    

 

because   0i iE Pg GHg    and 0G P  .  
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where h = 1, ... , p, l = 1, ... , q. Thus, 
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where 
,i jg  is the j

th
 moment function in 

ig  (j = 1, ... , p), /i jG    ( ) /i o jG     (j = 

1, ... , q) , 
, ,i jG  is the j

th
 row of 

iG  (j = 1, ... , p), and  
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which completes the proof. 

 

 

Proof of Theorem 2.4:  

 

 By (A2.3), the variance matrix of a DGEL estimator (̂ ) is given: 
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0 0

0

0 0 0

g Qg Q

KQ RQK R Q
AQ

g K K K Q Q gQQ

R Q R Q



 

  

 

   
              
   

         

. 

Then the difference of 1AQ between DGEL and EL is  

    

 

 

1

1

1 1
1

1,

DGEL EL

EL

g P Q

K P Q RHQ
AQ AQ

gQ K Q

R PQ









   
 
         

  
  

. 
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    

 

 

1

1

1 1
1

1,

1,

1 3 ,
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p

j i j i j

g P Q

H H K P Q RHQ
I I AQ AQ

H H gQ K Q

R PQ

H KPQ RHQ gQ R PQ

H KPQ RHQ g E g g Pe g















      
                      

     
        

     

        ) .g Pg R PQ  

 

 If 3 1  ,  1 , / 2 .DGEL EL p

j i j i jI I Hg E g g Pe g Pg
         Since ( )E P P ,

 ( ) ( ) ( ) ( ) * ( ) 0DGEL EL

i iE I I E g H Hg E g Pg E g H Hg E g Pg            . 

 If , 0i j i iE g g g     ,  1, 1 3 , / 2 .DGEL EL EL p

j i j i jI I HgQ Hg E g g Pe g Pg 
           

This difference will be canceled out with the first term in II and the remaining term in III.  

 

Second, because 

 

1, 1, 1, 1,

1, 1, 1, 1,

1

1, 1, 1, 1,

1, 1, 1, 1,

0 0

0

0

0

Q Q g P Q g P Q g H

PgQ Q g P Q g P Q g H
Q

PgQ Q g P Q g P Q g H

HgQ Q g P Q g P Q g H

   

   

   

   



       
                
        
    

          

, 

I have  

1 2

1 1 / 2p q

s s sM Q 

 =
1 2

1 1 / 2p q

s s sM Q e 


  

 

1,

, 1,
3 ,1

1,

1,, , ,

0 0 0 0

0 0 0 0
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0 0 / 2
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i j ip
i j i ij j

i j i i j

Q g P

g g Q g P
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Q g Pg g G
E E












 



 
 

  
                
            

         

 

   

3 ,

,

3 , 1,
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, ,
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0 0 0
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( )
0

( ) ( )
0

i j i

i j i

i j i i

p

j i j i

i j i i i j i i

i j i i j i

i j

E g g

g g
E g g g E Q g P

Q
g g

E g g g E g g g E

g g g g
E G E E








 


 



   
 
  

        
   
              
 

                  

1,

1,

1,

2

jeg P

Q g P

Q g P







 
 

 
 
 

  
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1,

1,

1

1,

, ,
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0 0 0 0
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2( ) ( )
0

0 / 0 0

i i i
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jq

j
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g g G Q g HE E

eQ g H

Q g Hg g g g
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







 

 





 
 

                                     
                      
 

     

 

1 3 , 1,

,

1 3 , 1, 1,

1 1, 1 1,

1 3 ,

/ 2

/ 2

/ 2 / 2

p

j i j i j

i j ip

j i j i i j

q qi i i
j j j j
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p

j i j

E g g Q g Pe

g g
E g g g Q g P E Q g P e
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E Q g H e E Q g H e

E g



 

 






 







 



    

    
            

 
                      


 

 

 

 

1, 1 , , 1,

1 1, 1,

, ,

1 1, 1 , , 1,

,

1

/ 2 / 2

/ 2

/ 2 / 2

q

i i j j i j j

q i i
j j

j

i jp p

j j j i j j

i j ip

j

g g Q g Pe E G Q g H e

g g
E Q Q g H e

G
E Q g Pe E G Q g P e

g g
E

 

 

 











 



            
  

    
    

 
        

 
  

  
1, 1 1,

.

/ 2 / 2q i
j j j

j

G
Q g Pe E Q g H e 




 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
  
  
  

               

 

Therefore, the difference of 
1 2

1 1 / 2p q

s s sM Q 

 between DGEL and EL is  

   1 2 1 2

1 1 1 1/ 2 / 2
DGEL EL

p q p q

s s s s s sM Q M Q    

    
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 
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
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             

 
      

                   
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

1, 1 3 1,
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1

1
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1
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/ 2 / 2
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EL p EL
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j

j
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j
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 
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
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





 
 

            
 

           
 

  
      

 
  

 

 

,

1

1 1 , , 1,

.
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/ 2 / 2
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j j j
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j j j i j j

j
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G
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





 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

    
    

   
                   

 

If 3 1  or 0jE g gg    , then 0.Q   Thus, 

     1 2 1 2

1 1 1 1
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H
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    
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 
 
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H
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
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




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

 
 
                                    
     

. 

Furthermore, if 3 1  , 

 DGEL ELII II  



87 

 1 , 1 ,

1 , , 1,

1 , , 1,

0

00

/ 2 / 2

/ 2

/ 2

p p

s i j i i s i j i i j j

q EL

j i j

p EL

j i j j

H E g g g E g g g Pe g Pe

H
E G Q g H

E G Q g Pe





 





 
    

                                
 

    

 

 

1 , 1 ,

1 , , 1,

1 , , 1,

1 , 1 ,

1 , ,

/ 2 / 2

/ 2

/ 2

/ 2 / 2

p p

s i j i i s i j i i j j
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     
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           


  1,

.
/ 2ELQ g H

 
 
  

 

The last step is derived from  1 , , 1, / 2 0p EL

j i j jE G Q g P e
    . Since Hg  , Hg is 

uncorrelated with Pg , I get

 

 

 
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               

           

 

The last step is derived upon the facts HG=I, Hg is uncorrelated with Pg , and

1,( ) 0ELE Q    at 3 1  . 

 

Furthermore, if data are symmetric with , 0i j i iE g g g    ,  

 DGEL ELII II 1 , , 1, 1 , , 1,/ 2 / 2q EL p EL

j i j j j i j jH E G Q g He E G Q g Pe  
           . 

Since HG=I, the first term here together with the remaining term in III cancels out with 

term in DGEL ELI I .  Because Hg is uncorrelated with Pg  and 1,

ELQ  

 1 3 , / 2p

j i j i jE g g Pe g Pg
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 If data are symmetric with , 0i j i iE g g g    , 
1, / 2DGEL EL ELIII III HgQ 
  . This 

term together with the first term in II cancels out the remaining term in I.  

 Thus, if 3 1   or when data are symmetric, the sum of difference in I, II, III 

between the DGEL estimator and the EL estimator does not contribute to the difference 

in variance.  

 

Fourth, calculate 1 2

1 / 2p q

s s sB  

 . 
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Thus,  
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 If 3 1  , then 0DGEL ELIV IV  .  

 If data are symmetric, I get  ( ) 0DGEL ELE IV IV    . 
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Since
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 
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 
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(1 / 3 / 3)
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


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
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 

 
 
 
 
  
      

     
   
    
       

   
,( )

( ) ( )
i h i i

h l

l

g g g
Pg Hg HE Pg



 
 
 
 
 
 
 
 
 
 
 
 
  
     

. 

If 3 1  , then 

    1 1 4 , ,/ 2 1DGEL EL p p

h l l h i l i h i iV V H E g g g g Pg      
     . 

Observe that V  is a function of Pg   which is uncorrelated with 
 .  Thus, the 

difference in V does not influence 2( )E Q  . 

 If data are symmetric, because Pg  is uncorrelated with 
 and 0PG  ,

 

  

 , ,

3 1 1

,

3 1 1

(2 2) ( ) ( )

0.
( )

(4 4) ( ) ( )

DGEL EL

i l i h ip p

h l h l

i h i ip q

h l h l

l

E g H V V

g g g
Pg Pg HE Hg

E g H
g g g

Pg Hg HE Pg







 

 

 

   
      

       
    

           

 

 

 To sum up, any estimator with 3 1   has a   term with an 
1( )pO n

 difference 

from that of the EL estimator. This 
1( )pO n

difference only contributes to the 
1( )po n

difference in bias and 
2( )po n

difference in variance. The 1Q  and 2Q terms for any 

estimator with 3 1   are also different from that of the EL estimator. However, these 

differences in 1Q  and 2Q  are uncorrelated to  .  Therefore, the DET estimator or any 

estimator with 3 1   shares the same 
2( )pO n

variance with the EL estimators. Similarly, 

if data are symmetrically distributed, all DGEL estimators share the same 
2( )pO n

variance with the EL estimators. 
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Proof of Corollary 2.1 

  

 Higher-order Bias: from Theorem 2.2, the bias of the DGEL estimators are 

 
   1 1 3

3

/ 2 (1 )

(1 ) .

DGEL q i
i i j j i i i

j

I

G
E Q H E G Hg E e HE g g Pg

B B

 








  
              

  

 

If data are symmetric ( 0jE g gg     ), then 1

DGEL

IE Q B
    .  

 Higher-order Efficiency: from Theorem 2.3 and its proof, the difference between 

1,

DGELQ  and 
1,

ELQ 
is  

 
1/ 2

1, 1, 1 3(1 ) ( )DGEL EL n

i j j pQ Q H E g gg Pe o n   


       ,  

where P Pgg P . This difference is 1/2( )Po n  if , 0i j i iE g g g    . Similarly, the 

difference between
2,

DGELQ 
and 2,

ELQ  are in terms of ,i j i iE g g g   . When , 0i j i iE g g g    , 

this difference becomes 1/2( )Po n . Thus, the difference in variance between ˆGDEL and ˆEL  

is 2( )Po n when data are symmetrically distributed. 

 

 

Proof of Corollary 2.2 

 

 With ( )B v  in the objective function and ( )A v in the constraint, the augmented 

FOCs of the DGEL estimators are 1

1 ( ) 0n

i in m 

  , where ( , , , )        , ( )im   is 
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 
        

, 

and 
1

ˆ( ( )),B

ig g    1 / ,n

i n   and 
1

1 2 1( ) .n A n

i i i i ig g g   


 
           

 Following the same procedure as in proving Theorem 2.2, 
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Since    1 , / 2 ,n

i j j j i iE G g E G g Pe E G Pg
            

3 3
1,

2 3

2

B A

IE Q B B

 


 
     . 
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FOCs of the GEEL estimators 

 

 The first step of estimating the GEEL estimators is to solve ( )i  . Transform the 

power-divergence form into GEL form, and obtain 1

1 1

( ( ))
( )

( ( ))

i
i n

i i

g

g

  
 

  





, where the 

( ) is in the GEL form, i.e., EL with ( ) ln(1 )v v   , ET with ( ) vv e    and CUE with
2( ) (1 ) / 2v v    . Replace ( )i   in the second step, and the FOCs w.r.t  becomes 

2 2
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





  
is derived from 

1 1( ( )) ( ) 0n

i i ig g   
  . Therefore, the FOCs of the GEEL 

estimators are 
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 Specifically, with ( )i  derived from the EL problem, the FOCs of the 

corresponding GEEL estimators are 

1

1

1
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which is the same as the EL estimator in the GEL group. 

 With ( )i  derived from the CUE problem, the FOCs of the corresponding GEEL 

estimators are 
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 With ( )i  derived from the ET problem, the FOCs of the corresponding GEEL 

estimators are 
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1
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Bias of the GEEL estimators-example of CU-GEEL estimator 

  

 The augmented FOCs of CU-GEEL estimators are 1

1 ( ) 0n

i in m 

  , where 
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 Following the same procedure as in proving Theorem 2.2,    
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since    1 , / 2 ,n
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