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ABSTRACT

In 1959, Iwasawa proved that the size of the p-part of the class groups of a Z,-extension
grows as a power of p with exponent up™ 4+ Am + v for m sufficiently large. Broadly, I

construct conditions to verify if a given m is indeed sufficiently large.

More precisely, let CG?, (class group) be the €;-eigenspace component of the
p-Sylow subgroup of the class group of the field at the m-th level in a Z,-extension; and
let TACG?, (Iwasawa analytic class group) be Z,[[T]]/((1 +T)?" — 1, f(T,w*™*)), where
f is the associated Iwasawa power series. It is expected that CG?, and TACG!, be

isomorphic, providing us with a powerful connection between algebraic and analytic

techniques; however, as of yet, this isomorphism is unestablished in general.

I consider the existence and the properties of an exact sequence
0 — ker — CG! — TACG", — coker — 0.

In the case of a Z,-extension where the Main Conjecture is established, there exists a
pseudo-isomorphism between the respective inverse limits of CG?, and TACG?,. 1
consider conditions for when such a pseudo-isomorphism immediately gives the existence
of the desired exact sequence, and I also consider work-around methods that preserve
cardinality for otherwise. However, I primarily focus on constructing conditions to verify
if a given m is sufficiently large that the kernel and cokernel of the above exact sequence
have become well-behaved, providing similarity of growth both in the size and in the

structure of CGY, and TACG? ; as well as conditions to determine if any such m exists.

The primary motivating idea is that if TACG!, is relatively easy to work with,
and if the relationship between CG?, and TACG!, is understood; then CG?, becomes

easier to work with.

Moreover, while the motivating framework is stated concretely in terms of the
cyclotomic Zjy-extension of p-power roots of unity, all results are generally applicable to
arbitrary Z,-extensions as they are developed in terms of Iwasawa-Theory-inspired, yet

abstracted, algebraic results on maps between inverse limits.
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PREFACE

I present an organization of the chapters, some notational conventions, and some fairly

pervasive literature references.

This dissertation can be divided into two parts: the first part, Chapters 1, 2, and
3; and the second part, Chapters 4, 5, 6, and 7. The first part uses the language of
Iwasawa Theory, while the second the language of algebra. The two parts are logically

independent; however, the first part motivates the second.

Chapter 1 is a concrete introduction to the objects that we consider and why

they are of interest.

In Chapter 2 we develop several background results necessary to fluidly discuss
Iwasawa Theory. We also present the Kummer-Vandiver Conjecture and some of its
consequences, which then serve as motivation for many of the results below, as well as
heuristic confidence that these results will be of use and interest to the research

community.

Chapter 3 exhibits all the maps between all the inverse systems to which I think
the results of this dissertation may be applicable; that is, we do not restrict ourselves

solely to the map CGi, — TACG!,.

It is also important to note that the first three chapters are specialized to the
cyclotomic Z,-extension of p-power roots of unity; however, all of the subsequence results
are applicable to arbitrary Z,-extensions. I have chosen not to generalize the motivating
development of the first three chapters to arbitrary Z,-extensions to avoid unnecessary
complications, and since the cyclotomic Z,-extensions of p-power roots of unity has a
richness of interesting maps to explore. The Greenberg Conjecture is the generalization of

the Kummer-Vandiver Conjecture to arbitrary Z,-extensions.

Chapter 4 produces lemmas of use throughout the remainder of this dissertation.
Some of these lemmas present fairly simple, and perhaps standard, results in order to
facilitate later results. However, one lemma in particular, Lemma 4.0.2, is of singular

importance.
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Chapter 5 defines the notion of minimal levels that is the central idea of this
dissertation, and develops our understanding thereof. This chapter represents the primary
development of the work presented in this dissertation. Also, the methods of minimal
levels, as presented in this chapter, are of use only when given a transformation between

two inverse systems; and we address precisely this issue in the following two chapters.

Chapter 6 develops a method by which we modify an inverse system, while
attempting to preserve as much of its structure as possible. This chapter may be viewed

as lemmas to facilitate the techniques of the next chapter.

Chapter 7 develops a method by which we may apply the techniques of minimal
levels when given only a map between the inverse limits, whether the map is or is not
induced from a transformation. Chapter 7 represents a quick continuation of the primary

development of Chapter 5.

Chapter 8 is a quick summary of the results and their applicability within the

Zp-extensions that inspired their existence.

Chapters 1, 2, and 3 are notationally cumulative; however, Chapters 4, 5, 6, and
7 are pair-wise notationally independent as well as independent from all other chapters.
For example, the connecting morphisms a? of the inverse system {A4,, ozg } are assumed
surjective in Chapter 6, but not necessarily so throughout Chapter 4. Much of the
notation of Chapters 5 and 7 corresponds as a memory aide; however, they are ultimately
independent. Similarly, the notation of Chapters 4 and 6 have been made similar as they
both serve the same functional purpose of developing lemmas to streamline the main
development of Chapters 5 and 7; however again, they are ultimately independent.
Chapter 8 has no notation excepting references to Chapters 1, 2, and 3; which it does

using their notation.

Also, while every effort has been made to avoid reusing notation, some exceptions
have been forced by tradition, the Pigeonhole Principle, and the desire to achieve

comprehensibility. Particularly important examples include the letters f, i, §, u, and 6.

It is also worth mentioning that the indexing of the €;-eigenspaces in Chapters 2

and 3 below varies greatly among the literature. We chose to index the ¢;-eigenspaces

xxii



consistently throughout this dissertation; however as a result, the indexing here often
does not correspond to that of the literature, even in the cases where the indexing has

become fairly standard.

The three primary references for Chapters 1, 2, and 3 as well as for Iwasawa
Theory in general are Washington (1997); Lang (1990); and Neukirch, Schmidt, and
Wingberg (2008). The algebraic terminology and notational trends used throughout, but

primarily in the four algebraic chapters, originate from Rotman (2002).
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Chapter 1

BERNOULLI NUMBERS AND CLASS GROUPS OF CYCLOTOMIC FIELDS

'Let p be an odd prime.

We define the Bernoulli numbers via the exponential generating function

L _Np -
et—l_z ok
E>0

giving

1 1 1 1
By=1, Bi=-3 By=g, Bi=0, Bi=—g5 Bs=0, Bs=.....

Since By = 0 for all odd k > 3, this is sometimes referred to as even index notation. It is
not uncommon to remove negatives or re-index giving B = %, B3 = 3—10, B3 = 57 R

Generally, even index notation became popular somewhere around 1970. (It is also not

uncommon to change the left-hand-side to fej rendering B = —|—%, which is often more

et—1

convenient in combinatorics.)

An odd prime p is called regular if it does not divide the numerator of any
Bernoulli number By, for k =2,4,6,...,p — 3; and p is called irregular otherwise (3 is
considered regular and 2 is ignored). As such, we say that (p, k) is an irregular pair if p
divides the numerator of By, for k = 2,4,6,...,p — 3. E.g., (691,12) is an irregular pair
since Byy = —%. The irregularity index i(p) is the number of irregular pairs (p, k). So

i(p) > 1 if and only if p is irregular. There are infinitely many irregular primes; see the

original Jensen (1915), or the simple Carlitz (1954). The first few irregular primes are

37, 59, 67, 101, 103, 131, 149, 157,....

For a positive integer r, let (. denote a primitive r-th root of unity. For
consistency and ease of notation below, we assume ¢, € C,. For m > 0, let
Fp = Q(Gm+1), let F'=,,50 Fin, let CGy, be the p-Sylow subgroup of the class group
of F,,, let CG = liin CG,, (with respect to the ideal norm), let h,, be the p-part of the

class number, and let e,, = ord, hy,,. So

|CGr| = b =D

I'Washington (1997); Lang (1990); and Neukirch, Schmidt, and Wingberg (2008) are general references
for most results, definitions, and notation.
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It is known that p is regular if and only if hg = 1; see the original Kummer
(1850); or Herbrand (1932) for the forward direction decomposed by eigenspaces as in
§2.4 below; or Ribet (1976) for the converse decomposed by eigenspaces; or Washington
(1997), pages 101-102, Theorems 6.17 and 6.18. It is also known that if hg = 1, then
hm =1 for all m > 0; see the original Furtwéngler (1911); or Iwasawa (1956) for an
alternate proof that relates the p-divisibility of the class numbers of two number fields
that form a Galois extension that is cyclic of p-power degree, fully ramified at some
prime, and unramified elsewhere.? It is also known that there exist integers A > 0 and v

independent of m such that
em = Am+v, forall m>ng,

for ng > 0 some integer; see Iwasawa (1959a) or Iwasawa (1959b) for the general formula,
and Ferrero and Washington (1979) for i = 0. So, for a regular prime A = v =ng =0. It
has been numerically verified for all odd primes p < 163 577 856 that A = v = i(p) and

ng =0, so e, = (m + 1)i(p); and moreover that CG,, is the direct product of i(p) cyclic

groups of order p™t!

. The string of references that gives this is Iwasawa and Sims (1966);
Johnson (1973); Johnson (1974); Johnson (1975); Wagstaff (1978); Tanner and Wagstaff
(1987); Ernvall and Metsdnkyla (1991); Ernvall and Metsénkyla (1992); Buhler, Crandall,
and Sompolski (1992); Buhler, Crandall, Ernvall, and Metsinkyld (1993); Buhler,

Crandall, Ernvall, Metsénkyld, and Shokrollahi (2001); and Buhler and Harvey (2011).

Broadly speaking, we will be investigating the minimal ng where e,, = Am + v
for all m > ng; but more specifically, the minimal ng where the structure of CG,, grows

in a regular fashion for all m > ny.

2Twasawa (1956) is an accessible article that contains the simple fundamental ideas that would later
grow into Iwasawa Theory, and in my opinion, marks its beginning.
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Chapter 2

BACKGROUND RESULTS

'We state several background results and establish notation.

2.1 Generalized Bernoulli Numbers and p-adic L-Functions
Let
Wiy — pp1

be the Teichmiiller character, where p,_1 is the (p — 1)-th roots of unity in C,, so

pp—1 C Zy . Also, define

a
():Zy; — 1+ pZy to be (a) = (@)
This gives a multiplicative isomorphism
Zy — (1 +pZp) X pip—1 by a— ((a) , w(a))

or a non-canonical isomorphism

Ly — Lp X pip—1 by

( logp<a>
log,,(1+p)

where here we take Z, as an additive group.

Let
X (Z]FZ) — po(y)
be a p-adic Dirichlet character of conductor f, where ¢ is the Euler totient function and

Koy is the ¢(f)-th roots of unity in C,. Then we define the (p-adic) generalized

Bernoulli number By, , via the exponential generating function

/

x(a)te tk
eft—1 ZBk’Xﬁ'
a=1 k>0

Since w(a) depends only on a mod pZ,, we may consider the Teichmiiller

character to be a p-adic Dirichlet character of conductor p

W (Zyp/pZy)™ — pp—1;

I'Washington (1997); Lang (1990); and Neukirch, Schmidt, and Wingberg (2008) are general references
for most results, definitions, and notation.
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whence it has order p — 1, and it generates all p-adic Dirichlet characters of conductor

dividing p (all characters are assumed primitive).

The salient result is that the p-adic L-functions can be interpolated from the
values at the non-positive integers

Buxrn 5,

) b

Ly(1=n,x) = =(L = xw "(p)p" ) —

see the original Kubota and Leopoldt (1964), or the modern Washington (1997), page 57,
Theorem 5.11.

2.2 Galois Groups and Character Decompositions

Let a € ZN[1,p?) be a primitive root modulo p? so that a + pmHZp generates the
multiplicative group (Z,/p™'Z,)* for all m > 0, which is cyclic of order (p — 1)p™. Let
B =aP~t e (14 pZ)N[L,p*~2) so that B(1+p™+1Z,) generates the multiplicative group
(1+ pZ,)/(1 + p™+1Z,) for all m > 0, which is (canonically isomorphic to) a cyclic
subgroup of order p™ inside of (Z,/p™'Z,)*. Note that it is unnecessary to restrict the

2p—2

size of & < p? and B < p as I have done here; this restriction is solely to establish

concreteness.

For

a= Zaipi € Z;,
i>0

define o, € Gal(F/Q) by
Oq : Gpmtt = (omi1 = H C;,"'np;l for any m,
i>0
and extending by linearity. (o, is well-defined independent of choice of m.) This product
is finite since Cgff; = 1 whenever i > m + 1. In particular, for any m, we may also
consider o, € Gal(F,,/Q) by restricting to F,,, since o, would be determined by a

mod p™*1Z,. Let
G = Gal(F,/Q) = {04 : a € (Z,/p™ ' Z,) "},

which is cyclic of order (p — 1)p™ generated by o,, let Resl, : G,, — G, be the

restriction map, then {G,,, Res? } is an inverse system, and let

G= liinGm =Gal(F/Q) ={0,:a € Z,},
4



for which o, is a topological generator.

Let
L, = Gal(F,,/Fy) = {0, : a € (1 + pZ,)/(1 +pm+1Zp)},

n
m

which is cyclic of order p™ generated by og, let Res], : I;, — I}, be the restriction map,

then {I},, Res},} is an inverse system, and let
r= li<£n1"m = Gal(F/Fy) = {04 :a €1+ pZ,},

for which o is a topological generator. So, I' = Z,, non-canonically by
o4+ log,a/log,(1+ p). It is often convenient to instead choose a topological generator

op with 8 =1+ p, so that it would be represented by 1 € Z,,.
If we define A = Gy = Gal(Fy/Q), then we can decompose G, and G as
Gm 2 A XTI, and G=2AxT.

Note that the elements of I" that fix F;,, are those in T‘pm, so that I, = F/Fpm. Here are

the Galois groups heretofore defined.

F (2.1)
p> re”
F,, I
G p‘m Fm
Gm
Fy
p—1 ‘ } A

For o, € G,,,, we may decompose
00 = 6(a)ym(a), with é(a) € A, ypm(a) € T,.

If x is a p-adic Dirichlet character with conductor a power of p, then we may take x to be
a Galois character
X Gm — Hp-1)pm

for some m > 0; and hence may decompose

X=0¢, with0: A — pp_1, ¥: L, — ppm,
5



and 6 is of the first kind with conductor p — 1, and % is of the second kind with conductor
p™. The character 1) must be even. (If B,, is the unique subfield of Q({,m+1) of degree
p™ over Q, then ¢ could also be considered a Galois character of Gal(B,,/Q); whence v
must be even since B, is a real field.) Since L,(s, x) is identically zero for odd yx, we will

only need to consider even x; in which case § must also be even.

2.3 Z,[[I')]-Modules

Let A =Z,[I'] = liin Z, L] be the pro-finite completion of Z,[I']. Assume that
{Vin, kb } is an inverse systems of Z,[I,,]-modules such that ]}, commutes with the

I,,-action; that is

n _ n
Ky Oa = Og K.
~N =~
EF'L er?’n

Since k7, is a Z,-module homomorphism, it must also commute with the Z,,[I,]-action.
First, we can form the inverse limit V = liin Vi as a Zy-module. If y = (ym)men € Zy[[T]
and v = (U )men € V, then yv = (YmVm )men € V since

B (Ynvn) = (K5, yn) (Vn) = (Umki,) (Un) = Ym (K5 0n) = Ymom; whence V' is a

Z,|[I']]-module. See Washington (1997), page 199; or Lang (1990), page 125.

2.4 Eigenspace Decompositions and the Kummer-Vandiver Conjecture

We have that CG,, is a Zy-module via

(b)) la] =TT,

320 coG. 920
€Z,
which is a finite product since CG,,, has p-power order. Together with the Galois action
we have that CG,, is a Z,[[I']]-module, which is the module structure of primary interest;
see §3.2.1 below. However, evidenced by Herbrand (1932) and Ribet (1976), it is well to

decompose CG,, by viewing it as a Z,[A]-module.

For 0 < i <p— 2, define



L l+o = l—o
-1 —0-1
et = 2 € 5 Z,lA], and € = ;21 € =—5— € Z,[A].
i even i odd

The ¢; form a system of orthogonal idempotents for Z,[A], as do e*. Thus we may
decompose CG,, into
p—2
CGn =Eca, =ca) e ca,

i=0
where CG!, = ¢,CG,, and CGi = e*CG,,. Recall that A = Gy, and note that
equivalently we could have also viewed ¢; € Z,[G,,] and decomposed CG,, as a
Zp|Gm]-module, or viewed €; € Zy[G] and decomposed CG,, as a Z,[G]-module. To

establish notation, we take

|CGr| = by, = pom with e, =Am+v, for all m sufficiently large;
|ICGL| = i =p°™* with e, ;=X m+v;, forall m sufficiently large;

|CGL| = hiy, = Pei with et = A*m 4+ v*, for all m sufficiently large;

m

that is, A and v are the Iwasawa invariants. Note that we have the relations

p—2 p—3 p—2
_ — + 75— —_ _
i = lhmi = bhhe, wh = I s W = T s
i=0 =0 i=1
i even i odd
p—2 p—3 p—2
_ § — 7t - _ E _ E
€m — em,i - em + ema ei,rz - em,ia 6; - em,ia
=0 =0 i=1
i even i odd
p—2 p—3 p—2
A YN o= AT o= Y o= ST,
i=0 =0 i=1
i even i odd
p—2 p—3 p—2
v = E Vi = vt +v, vt = E Vi, vt = E Vj.
=0 =0 i=1
i even i odd

Also note that CG,, 0 = CGyy,1 = 0; see Washington (1997), page 101, Proposition 6.16.

F,, is a CM field with maximal real subfield F,; = Q({pm+1 + C;,,%H), also
F* =U,,50 Fif; and CGY, is the p-Sylow subgroup of the class group of b (01 is
complex conjugation). The Kummer-Vandiver Conjecture conjectures that pJ(hg . If the
Kummer-Vandiver Conjecture were true, it would follow that p } A, for all m > 0; and

the CG!, for even i would all be trivial. The Kummer-Vandiver Conjecture has been

numerically verified for all primes p < 163 577 856; see Lehmer, Lehmer, and Vandiver
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(1954); Vandiver (1954); Selfridge, Nicol, and Vandiver (1955); and the string of

references at the end of Chapter 1 on page 2 above.

(Greenberg has also conjectured that A = p = 0 for any totally real number field

and any p; see Greenberg (1976).)

2.5 The Iwasawa Power Series

Let Z,[[T]] be the power series ring over Z,, in the indeterminant 7. Then we have the

Iwasawa isomorphism (which depends on the choice of topological generator)
Z,[[T)] = Z,[[T]] determined by o5 1+T.

As such we take A = Z,[[T']] or A = Z,[[T] to be whichever is more convenient at the

time, and we refer to A-modules as Iwasawa modules. For even 6, define

6n(0) = —r X oo™ (@n(0) ! € QI €(0) = lm§n(8) € Q[T
bra

Tm = (L = (1 +p)ym(1 +p)_1) € Zp[rm]v T= lgnTm € Zp[[r]L
Nm(0) = T Em(0) € Zp[rm]v n(0) = 1i£177m(9) € Zp[[rH'

(€,,(0) is derived from the Stickelberger element and the idempotent of wf~1.) By the

Iwasawa isomorphism, define

7= h(T,0),

Now we have the following result. If x = 6 is an even Dirichlet character and

Cp =91 +p)~t =x(1+p)~! (which is a root of unity of p-power order); then

Ly(s,x) = f(Cp(1+p)° = 1,0);

see Twasawa (1969); Iwasawa (1972); and Washington (1997), page 123, Theorem 7.10.



2.6 The Structure of the p-Class Group Assuming the Kummer-Vandiver Conjecture

If pt A, then, for i =3,5,...,p— 2,
CG,, = Z [T/ (1 + TP =1, f(T,w' ™))

and

CG" = Z,[[T))/(f(T,w' ™))

as A-modules, where f(T,w!'™") satisfies L,(s,w!™%) = f((1+ p)* — 1,w!~%) as above; see

Washington (1997), pages 199-201, Theorem 10.16.

With some additional assumptions, we get the decomposition into cyclic groups.

Let p be an irregular prime, for j =1,...,i(p) let (p,;) be an irregular pair, and suppose
pthd. If
B, ;-1 # 0 mod P (2.2)
and
B;; Bz',-erfl 2 . .
— —2—— mod forall 7 =1,...,i(p); 2.3
i % Fpr— p J (p) (2.3)
then

i(p)
=P Gy, = @ (Z)p™ T = (Z)p™ T Z)' P Ym > 0;

see Iwasawa and Sims (1966); or Washlngton (1997), pages 202-203, Corollary 10.17.
Conditions (2.2) and (2.3) have been numerically verified for all odd primes

p < 163 577 856; see the string of references at the end of Chapter 1 on page 2 above.

Note that we will not be assuming the Kummer-Vandiver Conjecture anywhere
below; that is, we will not be using the results of §2.6 directly. However §2.6 does
motivate the analytic class group definitions made below in §§3.2.9, 3.2.11, 3.2.12. More

specifically, in §3.2.9 below we define the Iwasawa analytic class group to be
TACG: = A/(1+T)P" -1, f(T,w' ™) for odd i € Z N [3,p — 2).

So it is expected that CG?, and TACGY, be isomorphic, providing us with a powerful

connection between algebraic and analytic techniques; however, as of yet, this
9



isomorphism is unestablished in general. As such, below we consider exact sequences of

the form
0 — ker — CG!, — TACG!, — coker — 0, (2.4)

and we thereby hope to gain similarity between CG?, and IACG?, by constraining the

kernel and cokernel.

The primary motivating idea is that if TACG?, is relatively easy to work with,
and if the relationship between CG!, and IACG!, is understood; then CG?, becomes
easier to work with. Via the methods referenced above, it has been numerically verified
for all odd primes p < 163 577 856 that the Weierstrass degree of f is either 0 or 1; and in

the first case TACG", is trivial, and in the second case TACG?, is cyclic of order p™*!.

10



Chapter 3

THE PSEUDO-ISOMORPHISMS OF IWASAWA THEORY

IThis is a development of the inverse system, transformation, and pseudo-isomorphism
perspective of Iwasawa Theory that motivates the algebraic development of the remaining
chapters. It is important to note that in the literature, most of the limits below are
constructed directly; however, for our purposes, we opt to construct via inverse and direct
systems. This approach is messier and requires a substantial attention to detail; and as
such, we have made every effort to explicitly give all the module structures. The most
complete references for the module structures are Washington (1997) and Coates (1977).
Since there is a dizzying array of A-modules, and since notations vary so greatly, as a
memory aide we opt to name everything after somebody or something, and then use
(pseudo-)acronyms; e.g., we have already seen C'G for the class group. I would
recommend taking a glance at Diagram (3.2) on page 28 below for an orientating preview

of what is about to happen in this chapter.

The inverse and direct systems and their maps will all be indexed over N; that is,
let m,n € N and assume m < n. Also, we will be abusing notation severally by using N,
Res, Lrg, and ¢ to respectively denote multiple different norm maps, restriction maps,

coset, enlargement maps, and injection maps.

3.1 Some Fields and Rings

We begin with some fields and rings.

3.1.1 F, the Field

Recall Fy,, = Q((pm+1), the tower of fields that is our focus; and also F' = J,,5¢ Fim,
Fl = Q({pm+r + Cz;"l'“)’ and F* =J,,5o Fy- (For convenience, all fields are contained

m

in C,.)

IWashington (1997); Lang (1990); and Neukirch, Schmidt, and Wingberg (2008) are general references
for most results, definitions, and notation.
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3.1.2 0, the Ring of Integers

Define 0,,, = Z[(pm+1], the ring of algebraic integers of F,,,; and also define
0 =,,>0 Om, the ring of algebraic integers of F' (1.b., 0 is not a Dedekind domain).
We also define 0 = Z[(pm+1 + Cp_,,hl], the ring of algebraic integers of Fi}; and also

m)

define 07 =J,,~ 0., the ring of algebraic integers of F'*.

3.1.3 H, the p-Hilbert Class Field

Define H,, to be the p-Hilbert class field of F;,; that is, the maximal unramified abelian
p-extension (all contained in the algebraically closed C,); and also define H = UmZO H,,,
the p-Hilbert class field of F’; see the original Furtwéingler (1906); or the modern
Childress (2009), page 153, Proposition 4.1. Note that H,, N Fy,+1 = F,,. (If p is a prime
O,,-ideal lying above pZ, then p is totally ramified in 0,,+1; and there are no proper,

non-trivial, intermediate fields between F,11/F,.)

3.1.4 M, the Maximal Abelian p-Extension Unramified Outside of p

Define M,, to be the maximal abelian p-extension of F,, unramified outside of p (all
contained in the algebraically closed C,); and also define M = UmZO M,,, the maximal

abelian p-extension of F' unramified outside of p. Note that F' C M,,.

12



38.1.5 A Field Diagram

Here are the fields heretofore defined.

This field diagram is not intended to be complete; that is, there may be additional subset
relationships not represented, and neither does it give information about intersections or

composites.

3.2 Inverse Systems

We now define the inverse systems of interest, as well as two direct systems.

3.2.1 CG, the p-Ideal Class Group

Recall that CG,, is the p-Sylow subgroup of the ideal class group of 0},, and that we
decompose CG,, into eigenspaces by defining CG?, = ¢;CG,,. Then {CG,,, N} is an
inverse system of Z,[[I']]-modules where N : CG,, — CG,, is the (ideal) norm map

(which is surjective); whence we define CG = lim CG,, and also
—
13



CG' = ¢,CG,, =1lim CG!, . For the surjectivity of N, see Washington (1997), page 185,
—

Theorem 10.1. We can recover the finite levels from the infinite since
CG,, =CG/CG™s ~1,
see Lang (1990), page 140, Corollary.

We will also have occasion for another perspective. For n > m, the natural
injective map from the ideal group of G, into the ideal group of @,, gives a map
CG,, — CGy,; see Iwasawa (1973), page 259 and pages 263-264. Then, for odd

i € ZN[3,p— 2] we have an injection .7, : CG!, — CG" ; see Washington (1997), page

m

288, Proposition 13.26, page 294. Note that NmHL:';;H is the p-power map; in particular,

m

note that N and ¢ are not inverses. Thus {CG,,,:™ } and {CG?,, .} are direct systems,

so we take

CC =lmCG, L | CG
—

m>0

and

C@i:hLHCGin; U cqi, forodd i € ZN[3,p— 2],

m>0

where 1 requires that we associate CG,,, € CG,,41; see Rotman (2002), page 509,
Example 7.99. The rudiments of why we consider both the direct and inverse limit can be
seen in Iwasawa (1973), page 259; Mazur and Wiles (1984), page 192; and Rotman (2002)

page 506, Proposition 7.96.

3.2.2 HCG, the p-Hilbert Class Group

Define HCG,,, = Gal(H,,/F,,), the Galois group of the p-Hilbert class field. We have

that HCG,, is a Zp-module via

(Sor) o T

J=0 €HCG,, J20

€Z,
which is a finite product since HCG,, has p-power order. Note that H,,/F, is Galois and
HCG,, is a normal subgroup. The I;,-action on HCG,, is inner-automorphism

(conjugation)

o T =77 :ﬁT(a)_lv
N , N~
€L, eHCG,,

14



where 7 € Gal(H,,/F) is some extension of v, which gives a well-defined action since
H,,/F,, is abelian. Thus HCG,, is a Z,[I};,]-module. Thus we also define
HCG!, = ¢, HCGp,.

We define the restriction map Res™ ™ : HCG,11 — HCG,,. If 1 € HCG i1,
then 7 : Hyp1 — Hppq leaving Fip, 1 fixed; but if we restrict 7 to Hy,, then it will leave
H,, N F,,.1 = F,, fixed, and hence Res™ ™17 € HCG,,. Composing as necessary, we may
define Res”, : HCG,, — HCG,, for n > m. Then { HCG,,, Res}, } is an inverse system;
whence we define HCG = 1i<£11 HCG,, = Gal(H/F). Also define

HCG' = lim HCG! = ¢;HCG.

Note that we have HCG,,, = Gal(H,,,F/F). We can recover the finite levels from
the infinite since

HCG,, = HOG/HCG: —'.

See Lang (1990), page 140, Corollary; and Washington (1997), page 285, Proposition
13.22.

3.2.3 MCG, the Galois Group of the Maximal Abelian p-Extension Unramified Qutside

of p

Consider Gal(M,,/F,,), the Galois group of the maximal abelian p-extension of F,,
unramified outside of p. Noting that F,, C F C M,,, we are interested the in the
subgroup that fixes F. Define MCG,, = Gal(M,,/F). As with the p-Hilbert class group,
we have that M CG,, is a Z,-module via

(Sor) o T

j=0 eEMCG,, J20
€7,

which is a finite product since MCG,, is p-power torsion. Note that M,,/Fy is Galois
and MCG,, is a normal subgroup. Similar to the p-Hilbert class group, the I;,-action is

inner-automorphism (conjugation)

vy oo T, =T =791(%)",
v \/'/
er,, €MCG,

where 7 € Gal(M,,,/Fy) is some extension of 7, which gives a well-defined action since

Gal(M,,/ Fy,) is abelian. (This Galois action can be placed on all of Gal(M,,,/Fy;,).) Thus
15



MCG,, is a Z,[I};,]-module. Then {MCG,,, Res],} is an inverse system where
Res}, : MCG,, — MCG,, is the restriction map; whence we define

MCG = lim MCG,, = Gal(M/F).

We now want to examine the eigenspace decomposition,

p—1 p—1 p—1
MCG,, = @ e,Cal(M,,/F) = ( D «Gal(M,, /F)) @( @B «Cal(M,, /F)).
= 'oven odd
Gal(M* /F)

The Z,-rank of the eigenspace €;Gal(M,,/F') is

o p™  for odd 1,
S(w')p™ =

0 for even i;
so the odd eigenspaces are really big; however, we will be using the wP*-eigenspace for
odd i. See Washington (1997), pages 292-297; Mazur and Wiles (1984), page 194; Coates
(1977), page 279, Theorem 1.8; Iwasawa (1973); Greenberg (1976). So we define

MCG!, = ¢, ;MCG,, = ¢,_;Gal(M,,/F) for odd i € ZN[3,p — 2]

(which is finite), and also MCG® = lim MCG?, = ¢, ;MCG. Note that
“—
MCG,, = MCG/MCGUg _1, so we can recover the finite levels from the limit.

3.2.4 MCG(-1), the Tate Twist of the Galois Group of the Mazimal Abelian

p-Extension Unramified Outside of p

m+1

Let ppm+1 be the p™ ™ -th roots of unity in C,, which is a cyclic multiplicative group of

m—+1.

order p ; and also the torsion subgroup of F},. Let pm+!

m

D pmt2 — [lym+1 be the
p-power map 7 — nP; which is equivalent to the restriction of the norm map

N+ Fp1 — Fy,. Composing as necessary, define p?, : piyn+1 — pym+1 for n > m.

The group p,m+1 should be multiplicative, but we’re going to write it additively.
It still has the Z,[I},]-module structure. So we have that {,m+1, plt, } is an inverse system
of Zy[I},]-modules; and thus we define T = liin ppm+1. So T =T,(0) is the p-adic Tate
module of 0. Note that T = Z, as additive abelian groups. We write the Galois action

on T additively; that is, o,(t) = at (which is really exponentiation ¢*) for t € T', a € Z;.
16



Then we define 7(-1) = Homgz, (T, Zy), the twisted Tate module. So we have a
I-action on TV given by 0,¥ = a~ 'Y for T € 7=V since
(0. X)(t) = 0a(Y(o, 1)) L Y(o,1t) = Y(a='t) = a=1Y(t), where { follows since I is

trivial on Z,,.

Now, for odd i € Z N [3,p — 2] we define
MCG: (-1) = MCG!, @z, TV,
which as a Z,-module is the same as MCG?,, but the Galois action has changed
0a(T@Y) =0,(r)@a 'Y =ato, () ® Y.

(So basically, the effect that we want is that, if o,(7) is what results when o, € I" acts on
7 € MCG,y,, then a~'o,(7) is what would result if o, € I' acted on 7 were 7 an element
of MCG,,(—1), but the tensor-product-with-the-Tate-Module method is a convenient
way to not need to keep track of two different I'-actions on the same module. From a
certain perspective, this is nothing more than a different perspective.) We also define
MCG (—1) = MCG' @z, TV = lim MCG: (1) for odd i € ZN [3,p — 2]. See
Washington (1997), page 295.

3.2.5 IKCG, Iwasawa’s Kummer Pairing Class Group

Consider F* ®z (Q,/Z,), the elements of which can be written in the form z ® p~¢ for
x € F* and ¢ € N; see Iwasawa (1973), page 271-277; or Coates (1977), pages 283-284; or

Washington (1997), pages 294-295. Then, for each m > 0, there is a subgroup
IKCG,, C F* ®z (Qp/Z,)

such that

M, = F({z'/?" : 2@ p~¢ € IKCG,,}).

We have IKCG,, C IKCG,, for n > m, giving inclusion ¢}}, : IKCG,, — IKCGy;

giving the direct system {IKCG,,,:" }; and also the direct limit

IKCG =lim IKCG,, = | J IKCGy;
—

m>0

17



which also gives

M =F({z*? .z @p~ e IKCG}).
We have that I" acts on IKCG diagonally, but trivially on Q,/Z,; that is, for o € T,

c C

olz®@p ‘)=0cxRop “=o0cx@p °.
Now we define
IKCG! = ¢ IKCG,, for odd i € Z N [3,p — 2J;
and then we similarly define
IKCG' =lim IKCG), = U 1xcai, for odd i € ZN[3,p —2].

m>0

8.2.6 DCG, the Dual Class Group

Define
DCGjn = Homg, (IKC’Gﬁn, Q,/Z,) forodd i € ZN[3,p — 2],

the Pontryagin dual group. (Since IKCG?, is p-power-torsion, a Z,-module
homomorphism is nothing more than a Z-module homomorphism). DCG?, is a

Zp-module under the trivial action, and I" acts via
(M) (@ @p~) =o(T(e™ (z@p ),

for Y € DCG!,. Then {DCG!,, Res™ } is an inverse system where Res?, is restriction,

and thus we define

DCG' = lim DCG!, = Homy, (IKCG',Q,/Z,) for odd i € ZN[3,p — 2].
—

3.2.7 TDCG, the Twisted Dual Class Group

Let pp~ be the p-power roots of unity in C,, which is a multiplicative pro-p-group; and

also the torsion subgroup of F', and as such it has a I'-action. Define
TDCG!, = Homgz, (IKCGY,, jip~) for odd i € ZN[3,p —2].
Then {TDCG!,, Res™} is an inverse system where Res”, is restriction, and thus we define

TDCG' =1limTDCG!, = Homy, (IKCG', i) for odd i € ZN[3,p — 2.
—
18



Note that DCG and TDCG are equivalent as Z,-modules; that is, as groups they are

just two incarnations of the Pontryagin dual group. Moreover, I still acts via
(0Y) (@ ®@p~) = o(L(e™ (z®@p))),

for Y € DCG!,. Ultimately, the difference between DCG and TDCG lies in that I acts
trivially on Q,/Zy, but non-trivially on ppe, which is why we define the Pontryagin dual
in two equivalent, but different ways following Coates (1977), pages 283-284; or
Washington (1997), pages 294-296. (Again, from a certain perspective, this is nothing

more than a different perspective.)

3.2.8 ICG, the Iwasawa Class Group

2Recall the definition of ¢ from §2.5 above on page 8. Define

m

ICG,, = Ly[[T]]/ (€' ™), 0f —1) for odd i € Z N [3,p — 2.

m

Then {ICG!,, Lrgn} is an inverse system of Z,[[[']]-modules, where

Lrgr : ICG:, — ICG, is coset enlargement. Then we define

I1CG' = imICG), = Z,[[II/(€w'™)  foroddicZn[3,p—2]

3.2.9 TACG, the Iwasawa Analytic Class Group
Recall the definition of f from §2.5 above on page 8. Define
TACG: = A/(A+T)P" —1, f(T,w' ™) for odd i € ZN[3,p —2].

Then {IACG!,, Lrgm} is an inverse system of Z,[[T]]-modules, where

Lrgr : TACG!, — TACG",, is coset enlargement. Then we define

m

[ACG' =lim IACG,, = A/(f(T,w' ™)) for odd i € ZN[3,p — 2.

3.2.10 ICG’, the Iwasawa Class Group Under Construction
Recall the definition of &, from §2.5 above on page 8. Define

ICG] = Z,[Tin]/ (Em(w™) for odd i € ZN[3,p — 2].

20wing to Iwasawa (1969) and Iwasawa (1972), T have decided to designate this module as the Iwasawa
class group; and the associated elementary Iwasawa module as the Iwasawa analytic class group as in §3.2.9.
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Under the restriction map Res], : I, — I},,, which can be thought of as coset
enlargement Lrg? : T/T?" — T/T?" we have &, (w'™%) = &, (w™%); see Washington
(1997), page 119, Proposition 7.6¢c. This gives us the connecting morphism

kP ICG!" — ICG/; and thus the inverse system {ICG/? k™ }, whence also the
inverse limit

ICG’izlgnICG;,f for odd i € ZN[3,p — 2].

3.2.11 MACG, the Analytic Class Group of the Galois Group of the Mazximal Abelian
p-Extension Unramified Outside of p
Define
MACG:, = A/(1+T)P" —1, f(EL —1,0'7)) for odd i € ZN[3,p — 2.

14T

Then {MACG!,, Lrg?} is an inverse system of Z,[[T]]-modules, where

Lrgt : MACG:, — MACG:, is coset enlargement. Then

MACG" =1lim MACG,, = A/(f(E — 1,w' %) for odd i € ZN[3,p — 2].
—

3.2.12 DACG, the Dual Analytic Class Group
Define
DACG., = A((1+T)"" — 1, f(125 — Lw'™) foroddi € ZN[3,p—2].

Then {DACG:,, Lrg™} is an inverse system of Z,[[T]]-modules, where

m?

Lrg? : DACG!, — DACG!, is coset enlargement. Then

DACG' =1im DACG;, = A/(f (7 — Lw'™) for odd i € ZN[3,p — 2.
—

3.2.18 SCG, the Stickelberger Class Group

Let

1
Om = — aaa_l € Q[G]

3

be the Stickelberger element, and define

SCG, = € Z[Gom]/ (OmZ[Gom] N €~ Z[Gom)]).-
20



See Iwasawa (1962); Washington (1997), page 102, Theorem 6.19, and also pages 106-107.
The restriction map Res], : G, — G, may induce a connecting morphism; however,

this has not been established.

3.2.14 UCG, the Unit Class Group

Let CU,, C O, be the p-power-torsion cyclotomic units of F,; that is, if V,,, C F,} is the
multiplicative subgroup generated by {£(pm+1,1 — §§m+1 11 <k < pmtl} then CU, is
the p-Sylow subgroup of V,,, N 0.%. Let CU,}, C (0,})* be the p-power-torsion cyclotomic

units of F,}; that is, CU,; = CU,, N (0,})*. Now we define
UCG! =€,(0)/CU,,) for even i € ZN[2,p — 3|

and also UCG}}, = (0,})*/CU,F. See Washington (1997), page 145, Theorem 8.2, and
also page 146; and also page 342, Theorem 15.7. Establishing a limit UCG? is also
problematic here as above since no connecting morphism has been established. The
inclusion map @, C 0. would be indicative of a direct limit, however the inclusion

CU,, C CU, would be indicative of a coset enlargement type map of an inverse limit.

3.2.15 LUCG, the Local Unit Class Group

Let

L1U,, = {x € Zp[Cpm+1]* :x =1 mod ({pm+r — 1)}
be the local 1-units of Q,((,m+1), which is a Zy[Gal(Q,((pm+1)/Qp)]-module, and also a
Zyp|L)-module. Then the restriction of the norm map N7t : Qp((pm+z) — Qp(Cpm+1)

gives a map N™*! : L1U,,.1 — L1U,,. Define LC1U,, = CU,, N L1U,,, the closure of

m

CU,, N L1U,, in L1U,,, which is a Z,[Gal(Q,({ym+1)/Qp)]-module, and also a
Z, L, )-module. Define
LUCG,, = L1U,,/LC1U,,,

which is a Z,[Gal(Q,({pm+1)/Qp)]-module, and also a Z, I}, ]-module. Define
LUCG = li<£n LUCG,,
with respect to the norm map. We also define

LUCG!, = ¢,_;,LUCG,,
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and

LUCG" = lim LUCG!, = ¢, ;LUCG for odd i € ZN[3,p — 2].

See Washington (1997), pages 312-318.

3.3 Maps

Generally, the references that apply to the objects also apply to the maps between.

3.3.1 Artin: CG — HCG

The Artin map

o1 (el

a

gives an isomorphism CG,, = HCG,,, and hence CG! = HCG! follows; but it also
gives a transformation of inverse systems giving an isomorphism CG = HCG, and hence
CG' = HCG'. See Iwasawa (1973), pages 259-260 for a proof that the Artin map

commutes with the connecting morphism.

3.3.2 Kummer: IKCG — CG

We have a surjective map IKCG — C@ given by z @ p~¢ — | ”i/@ ] as in Iwasawa
(1973), page 275 (n.b., A not A’); or Washington (1997), page 295. Decomposing on
idempotents gives IKCG* — CC for odd i € Z.N [3,p — 2]. The ¢;-eigenspace
component of ker(IKCG — C@) is trivial, giving us an isomorphism IKCGi —» e
(We do not necessarily have an isomorphism for the even eigenspaces.) Since this map is
an isomorphism, and since IKCG is a direct limit to boot, we concern ourselves only

with the map between the limits.

3.8.8 Dual: IKCG — DCG, IKCG — TDCG

By Pontryagin duality, we immediately have the non-canonical abelian group

isomorphisms ITKCG? — DCG' and IKCG? —= TDCG' : but we also have A-module

m m?

isomorphism under the given I' actions. As above, we concern ourselves only with the

maps between the limits.
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3.3.4 Pairing: MCG — TDCG, MCG(—1) — DCG

We have a non-degenerate pairing
MCG x IKCG — ppes
given by
(e@p ) = (re@p ) = ==,
which additionally satisfies
olrz@p )= (o -1,0(x@p °)) = (oro oz @p °) for all o € T.

We in fact also have a non-degenerate pairing

MCOG" x IKCG" — jip for odd i € ZN[3,p — 2],
which gives

MCG' =5 TDCG! for odd i € ZN[3,p — 2.
Note that IKCG3: = Gal(M/M,,) = MCG/MCG,, is the annihilator of IKCG,, in
MCG with respect to the above pairing; which gives us the induced pairing
MCG,, x IKCGy, — ipeo.
Combining we have
MCG: =5 TDCG!, for odd i € ZN[3,p — 2.

The map MCG!(—1) — DCG" is an alternate, but equivalent formulation. Note that
these maps are non-canonical; and as such, they a priori need not commute with the
connecting morphisms. This raises the question, under what conditions can such maps be
constructed that commute with the connecting morphisms, and under what conditions

would the induced map be equivalent to the map on the limits?

3.8.5 Iwasawa: ICG — TACG

Recall from §2.5, that the Iwasawa isomorphism given by og — 1+ T maps

£(0) — f(T,0). Thus under the Iwasawa isomorphism we have

ICGE =5 TACG!, and 1CGT 25 TACG! for odd i € Z N [3,p — 2.
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3.3.6 ICG — ICG’

I would like to construct the “obvious” map ICG — ICG’ given by

()men mod (6" .05 —1) > (ym mod ()

for (Ym)men € Zp[[I']]; however, there is no immediate reason why this should even be
well-defined, let alone commute with the connecting morphisms. Regardless, should these
conditions be met, it would indeed be very interesting to understand the minimal m

where this map began to behave in a regular fashion and what that would mean.

3.3.7 Mazur-Wiles: HCG — IACG, HCG — ICG, DCG — DACG,
TDCG — DACG, MCG — MACG, MCG(-1) — MACG

3Mazur and Wiles (1984) proves the Main Conjecture of Iwasawa Theory for cyclotomic
Zy-extensions over totally real number fields establishing the existence all the

pseudo-isomorphisms

HCG' — TACG'
HCG' — ICG!
MCG' — MACG'
MCGH(-1) — MACG"
DCG' — DACG"
TDCG' — DACG!

for odd i € Z N [3,p — 2] by justifying, in simplistic terms, that the characteristic
polynomials of HCG, MCG, and DCG are respectively f(T,w!~%), f(% —1,wl™),
remains a fundamental question as to whether these maps can be induced from
transformations on the inverse systems, and if so, for which m do these transformations

become well-behaved. It is important to recall that if the Kummer-Vandiver Conjecture

30wing to Wiles (1980), and Mazur and Wiles (1984), T have decided to designate the maps constituting
the Main Conjecture as the Mazur-Wiles map.
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holds, then such a transformation does exist, and it is an isomorphisms for all m > 0, and
it induces an isomorphism. However, the gap between what we expect to be true and
what we can prove remains significant. A primary motivation of the work of the

subsequent chapters is to provide some understanding to the task of bridging this gap.

3.8.8 Transform: IACG — DACG

We already have a pseudo-isomorphism

TACG* — DACG! given by T — H%;
however, for all the complications it is reassuring to see it verified directly. If

(1) = ag+ arT + axT? + asT? + - - - € Zy[[T]], then a; € pZy, for 0 < i < X and ay € Z
if and only if

f(T)=axT*#0 mod (p, TM1).

Since
1
— =1-T+T?-T3+...
14T + *
and
1 1 1 2 1 3
f(m*].) = a0+a1(ﬁ71>+02<m71> +a3(1+7T71> +

1 A
o (e - 1)
A
- a,\(—T+T2—T3+-~-)

(—1) a1

(=DM(T) mod (p, T*),

we have that f(7') and f(H%T — 1) have the same Weierstrass degree; and thus TACG®

and DACG" are pseudo-isomorphic.

3.8.9 Transform: IACG — MACG

Similar to the above, we already have a pseudo-isomorphism

1+p.

TACG' — MACG! given by T — T
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which we verify directly. Since
— =(1+p) -1 +p)T+ A +p)T* - (A +p)T3+ -
and
1+
r(i-1)
1+p 14p 2 14p 3

= GO+CL1<1+7T— )"‘ag(m_ ) +G3(H7T_ ) + -

1+p A
ay 1T —

A
= aA(p_(1+p)T—|—(1+p)T2—(1+p)T3_|_...)

ay (p -1 +P)T)/\
= a (pA YA )T+ (DM 4 )M I (—1) +p)’\T)‘)

(=1 ax(1 +p)* T

= (=1 ay (1 +Ap A+ Apr ! +10A>TA

(—1))\0,,\TA

(=DM(T) mod (p, ),

we have that f(T') and f (% — 1) have the same Weierstrass degree; and thus TACG"®

and M ACG" are pseudo-isomorphic.

3.83.10 Iwasawa: SCG — CG

Iwasawa has shown that SCG;,, and C'G,, have the same size, and it was conjectured for
a time that they might be isomorphic, but it is now known that they are not isomorphic
in general. However, if there is indeed a connecting morphism that allows for the
construction of a limit SCG ™, then it seems reasonable to conjecture that SCG~ and

CG~ may well be pseudo-isomorphic.

3.8.11 Kummer: UCG — CG

Originally due to Kummer in 1851, it is known for nonzero even ¢ € Z N [2,p — 3] that
UCG!, and CG!, have the same order, however both are conjectured to be zero by the

Kummer-Vandiver Conjecture. Although, without assuming the Kummer-Vandiver
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Conjecture, if there is a limit UCG?, then it seems reasonable to conjecture that UCG?

and CG* may well be pseudo-isomorphic.

3.3.12 Iwasawa: LUCG — TACG

In this case we do have well-defined limits, as well as an isomorphism
LUCG' — TACG" for odd i € ZN[3,p — 2]

established by Iwasawa in 1964; see Washington (1997), page 316, Theorem 13.56; and
Neukirch, Schmidt, and Wingberg (2008), page 782, Theorem 11.6.18. However, as with
the Mazur-Wiles Main Conjecture Map, it remains a fundamental question as to whether
these maps can be induced from transformations on the inverse systems, and if so, for
which m do these transformations become well-behaved. Fortunately, in this case the

map can be explicitly constructed.
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3.4 A Graph of the Maps

Here is a graph of all the maps heretofore considered.

A~
LUQGJ* — Kummer — > CG (32)

7/

— Kummer —> 2
Q ¢ Ql

N\

<9
%

/

[ &
SCG, <
HCG

-]
Q <—— Dual

N

DCG

7

&Q"

\ .
%’é" @%
\ N \
7 7 @/ MCG(-1) MCG
S S| N2
i 8 | e
% & & p AP
% ¥ = &
: / 22 W
jfole: DACG MACG
| )
! \ £ /
\ 4 S s
‘ h»%@ % &%t
|

Z

7

\
I1CG’ TACG <— Twasawa LucaG
I have dropped the ;’s. The dashed box around UCG and SCG remind us that the

existence of these limits is not established. A double shafted solid arrow indicates a
known isomorphism, a single shafted solid arrow indicates a known pseudo-isomorphism,
a dashed arrow indicates a conjectured pseudo-isomorphism, and a dotted line indicates
two objects that are direct and inverse limits of similar objects. Several of the maps are a
transformation between two systems, however several maps are defined only on the limit.
Most of the maps known to exist are only defined for odd 7 € Z N [3,p — 2]; however, one

is defined for all 4. Of the three conjectured maps, one is only for odd ¢ € Z N [3,p — 2],
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one is only for even ¢ € Z N [2,p — 3], and one is only for the entire odd eigenspace. The

primary map currently under considerations is Mazur-Wiles o Artin : CG* — TACG".
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Chapter 4

LEMMATA

"'We now initiate our Iwasawa-Theory-inspired development of inverse systems from a

removed algebraic perspective.

Lemmas 4.0.1 and 4.0.3 are fairly standard results included for clarity sake—so
they can be referenced—and moreover they illustrate well several issues of primary

concern.

Lemma 4.0.2 expounds a phenomenon that unexpectedly is a deciding factor in

later results.

Lastly, we finish the chapter with Lemma 4.0.4, which serves only to facilitate a
proof in §5.5 below. It seems like it should be a standard result, but I’ve never seen it
before, which is why we prove it; moreover, while it is simple enough as presented in

Lemma 4.0.4, it is not so simple in §5.5.
The notation of Chapter 4 is independent of all other chapters.
Let R be a commutative ring (assumed unitary).

Lemma 4.0.1. Let z € Z; let I = Z N [z,00); let {A;, )} be an inverse system of
R-modules over I; let A = 1131 A; be the inverse limit; and let o : A — A; be the
natural maps o : (a;)ier = a;. If we have that the o are all surjective (for i sufficiently
large), then we have that the o} are all surjective (for all j > i). If we have that the o
are all injective (for 7 sufficiently large), then we have that the a; are all injective (for all
j >1). If we have that the ozg are all bijective (for ¢ sufficiently large), then we have that

the o are all bijective (for all j > ).

Lemma 4.0.2. Let z € Z; let I = Z N [z,00); let {A4;, )} be an inverse system of
R-modules over I, without assuming that the ozg are either injective or surjective; let
A= liin A; be the inverse limit; and let aj : A — Aj; be the natural maps

aj: (@i)ier > a;, which are not necessarily surjective since we have not assumed the a{

to be surjective. If we have that the A; are all eventually finite with bounded cardinality,

then we have that o is an injection for all j sufficiently large.

IRotman (2002) is a general reference for definitions and notational trends.
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Proof. Let B; = afA. For j > i, we have o aj = o;; and hence the restricted map

ol : Bj — B, is well-defined and surjective. Note that A = liin B;. Since the A; are all
eventually finite with bounded cardinality, so are the B;. Then, the sequence {|B;|}icr is
a bounded non-decreasing sequence of natural numbers, and thus must stabilize (the
Bounded Monotonic Sequence Convergence Theorem and discrete sets lack accumulation
points). Once it stabilizes, say by ng, we have |B;| = |B;| for all j > i > ng; whence the
already surjective ozg : B; — B; must now be injective. Thus, by Lemma 4.0.1, we have

that the restriction o} : A — B, is an isomorphism for all ¢ > ng; and thus o maps A

isomorphically onto a subset of A;, thither o : A — A; is injective. O

Lemma 4.0.3. For r € Z N [2,00), let

0 Aq Ao e A, 0

be a finite length exact sequence of R-modules. Then

1114l =TT 14l

odd 1 even 1

Proof. If r = 2, then

0 Ay Ao 0

gives A1 = Ay, and thus |A;| = |A4s].

If r = 3, then

together with the First Isomorphism Theorem, gives us As/fA; = As/kerg = gAs = As
and A; = fA;. If we assume |A4;] - |Az| - |A3] < 00, then

|As|

|A1| - |As| = [fAL] - |Az/fAL] = [fAd] - [FAq] =

|Aal.

If |A1| = oo, then |A2| = oo since f is injective; and the equality holds. If | 43| = oo, then
|A2| = oo since g is surjective; and the equality holds. Thus, we may assume that
|A1] - |As| < oco; but this gives |As] < oo since otherwise we would have the contradiction

|As| = |A2/ fA1| = 0.
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We now induct on r using r = 3 as the base case, which is done. So we assume

r > 3 and that the result holds for all s € ZN[2,7). Then we can split the exact sequence

0 Ay A, e Ao A, A, 0
into the two exact sequences
f
0 Al Ag s A»,‘,Q 1m f 0
0 ker g A,_q g A, 0

where ker g — A,_1 is inclusion; whence the induction hypothesis gives

H |A;| = |im f| - H |A;l for odd r,

odd even ¢
i<r—2 i<r—3
[im f] - H |Ai| = H |A;l for even r,
odd @ even ¢
i<r—3 i<r—2
and
lim f| - |A.| = | kerg| - |A,| = |Ar—1].
Thus
IT 14l = 1Ar - TT 14il = [Ac|-fim £-TT 1Al = 1A - T 14l = T 14l for odd r;
odd i odd i even 1 even 1 even ¢
i<r—2 i<r—3 i<r—3
and
IT 14l = 1A al-TT 14il = [A]-fim £1-TT 143l = [A-T] 1A4il = ] 14:l  for even r.
odd i odd i odd i even ¢ even 1
1<r—3 i<r—3 i<r—2

Lemma 4.0.4. If Ay, As, By, B>,C1,C5, D1, Dy are R-modules and the cube

A1 = A2
fl/ ‘ 5 fz/
Bl B2
91 92
hl h2
Cy il — (s
/k1 /kz

D, Do
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commutes, then the lattice

ker o Aq @ Ag > coker o
fl/‘ hy ‘ ; 2 ‘ Pyd

ker 8 By By coker 3

g1 g1 g2 92
h1 h1 hao ha

kery —— | —= (4 il — (Cy ————— > cokery

£k Zr s ks Z %

ker & D, Do coker 0

commutes with the natural induced maps: ker o — A; is inclusion, Ay — coker «v is
projection, the induced kernel map ker Ay er [ is the restriction of fi, the induced
cokernel map coker « Q) coker (3 is given by a + ima — fsa 4+ im 3, and similarly for all

other maps.

Proof. Note that a diagram commutes if and only if each minimal polygon commutes. All
maps are well-defined and the induced kernel and cokernel maps commute with their
inducing maps. It remains only to verify that the kernel and cokernel squares on the ends
commute. The kernel square commutes since the A; — By — C7; — Dq square commutes,

and the cokernel square commutes since the Ay — By — Cy — D5 square commutes. O
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Chapter 5

THE MINIMAL LEVELS OF A TRANSFORMATION BETWEEN INVERSE
SYSTEMS

!The notation of Chapter 5 is independent of all other chapters.

Let R be a commutative ring (assumed unitary); let z € Z; let I = Z N [z, 00); let
{M;, q&i} and {N;, 1/){ } be inverse systems of R-modules over I; assume that gzﬁz and zbg
are both surjective for all ¢ < j; let M = 1131 M; and N = liin N; be the inverse limits; let
¢f : M — M; and ¢} : N — N; be the natural (projection) maps ¢} : (m;),er — m;
and ¥} : (n;)jer — ni, which are surjective by Lemma 4.0.1; let
{0; : M; — N;} : {M;, ¢f} — {Ni,wg} be a transformation, so that 6; : M; — N; are
R-homomorphisms such that

@7

7

Nj — - Nl
commutes for all ¢ < j; and let § : M — N be the induced R-homomorphism, so that
0 : (mi)iej — (Himi)iej, where (Gimi)iej € N since d)fﬂjmj = Hngfmj = szz For 1 < j,

we have that

IRotman (2002) is a general reference for definitions and notational trends.
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. : ¢! : - -
commutes and is exact vertically, where ker §; — ker ; is the restriction of ¢] and
3

coker 0 4, coker 6; is the induced map Eﬁ :n +imb; — ¢¥/n +im6;. We have that

{ker 8;, ¢!} and {coker 6;, @Z} are inverse systems.

Remark 5.0.5. It would be nice if the 8; of interest were all isomorphisms, however this
may be too high of an aim; so rather we seek to control the 6; by regulating the inverse
systems {ker 0;, qﬁg } and {coker 6;, EZ}, ideally by forcing the induced maps qﬁg and @z to
eventually be isomorphisms, but secondarily by forcing the ker 6; and coker 8; to have an

eventually fixed size.

For ¢ < j, the Snake Lemma gives us that

0 — —=ker ¢/ N; N; 0
N/ coker §; ——— coker §; ——— 0
0 0 0

commutes and is exact horizontally and vertically (and snake-ishly), where

M = ker ¢g Nker 0; = ker(ker ¢g — ker 1/)5) = ker(ker §; — ker0;)

]\73 = coker (ker gbg — ker wf)
and
ker 91 I sz

is the connecting homomorphism given by m; — Gj(qﬁg )"tm; + 6, ker (bf . Since the wf are

surjective, so are the EZ, whence the natural (projection) maps
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E: : lim coker #; — coker 6; given by @: :(nj +imé;),er — n; +1im6; are also surjective.
—
. ¢! -
However, since the maps ker §; — ker 6; need not be surjective, the natural maps
or liin ker §; — ker 0; given by ¢} : (m;);er — m; need not be surjective. Since inverse

limits are left exact, we have

ker 8 = lim ker 6;;
“—

and since the cokernel maps are surjective, we have an R-epimorphism
coker § —» lim coker 6;.
—

Remark 5.0.6. So the kernels are well-behaved since the inverse limits are left exact, but
ill-behaved since they are not necessarily surjective; and the cokernels are well-behaved
since they are surjective, but ill-behaved since inverse limits are not necessarily right

exact.

Proof. We justify the surjectivity of the cokernel map
coker & —» lim coker 6;
—

which we define by mapping n + 0M = (n;);er + 0M € coker 6 to

(ni + 01M1)16[ € lim coker 01
—

Let (n; + 0;M;);cs € lim coker 8;. We may not have wfnj . n;, that is we may
—
?
not have (n;);c; € N. So, we construct n’ = (n});e; € N such that
(TL; + Gle)lel = (nz + onz)lEI € 1131 coker 0; and also n + 0M — (nz + 91M1)1€I So we

must show for all j € I, that n; +0;M; =n; 4+ 0;M; € cokerf; and @Z;fn; =nl Vi <j.

We induct on j. Let j = min /, and define nj; = n;. Then

n; +0;M; = n; + 0;M; € coker §; and wfn; =n Vi <j.

Let 5 > min I and assume true for all indices less than j. Then
1/);:_171]' + Gj_le_l = w;_l(nj + 0ij) =nNj-1 + Gj_le_l = n;;l + Gj_le_l. So
1/’;.71”]' - n}fl € 0;_1M;_1, so there exists m;_; € M;_; such that
Oj_1mj_1 = wg?lnj —nj_,. Since gb;f1 is surjective, there exists m; € M; such that

qﬁjflm]’ =mj;—1. Then ¢;719jmj = j_1¢;71mj = Gj_lmj_l = ¢J

. m!
Gy — Mg

36



Define n/; = n; — 6;m;, then

n +0;M; =n; — 0;m; + 0;M; =n; + 0;M; € coker6;. We also have

J _oJ N/ J _ ] J _
jfln} = wjﬂ(”j —0;m;) = Vi_qn; — wgfl‘gjmj L (wjflnj - n;’—l) = n;‘—l'

Ifi < j—1, then ¢}nf = o]~ '] ynj =] "nj_, = nj. Thus

zpfn;:n’ing. O

5.1 Definitions and Basic Facts

We define three notions of the minimal level of # and give some basic facts.
Define the strong minimal level of 8 to be

s-minf = min ieI:kerG-ikerGiandcoker@-icoker@iVjZi U {oo
J J

— min ({i €1 :kerf,1 > ker6); and coker8;,1 = coker; Vj > i} U {oo}>;

the common minimal level of 6 to be

cminfd = min ({z € I:|kerf;| = |kerd;| and coker6; 5 coker 6; Vj > itu {oo})

= min ({z €1I:|kerfjt1] = |kerd;| and coker ;4 3 coker 0; Vj>i} U {oo});
and the weak minimal level of 6 to be
w-minf = min ({z € I : cokerd; 5 coker6; Vj > iU {oo})
= min ({z € I:cokerfjq 3 cokerf; Vj > i} U {oo})
So
w-min # < c-min 6 < s-min 6.
Note that the minimal levels here are defined in terms of a transformation between
inverse limits.

Fact 5.1.1. If w-min 6 < oo, then we have

lim coker 6; = coker 0; for all 7 > w-min 6.
—

Proof. If we assume w-minf < oo, and let ¢ > w-min 6, then the natural map
¥y : lim coker 0; —> coker §; given by ¥y (nj +60;M;)jer — n; + 6;M; is an isomorphism
—

by Lemma 4.0.1. O
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Fact 5.1.2. If ss-min # < oo, then we have

ker = limker6; = kerf; and coker = lim coker §; = coker¢;  for all ¢ > s-min6.
“— “—

Proof. We assume s-min < oo, and let ¢ > s-min . Then the natural map

oF ligl ker §; — ker §; given by ¢7 : (m;);jer — m; is an isomorphism by Lemma 4.0.1.
We already had ker 6 = li({n ker 6; by left exactness; and we have liin coker 0; = coker 0; by
Fact 5.1.1 above or by Lemma 4.0.1. Thus it remains to show coker 6 = liln coker 0, the

which we do by showing that the well-defined and surjective cokernel map
coker 0 —» li<I_n coker 0;

given by (nj)jer +6M — (n; + 0;M;) er is injective. Note that we will use the
oF
surjectivity of the induced kernel maps ker 6, — ker 6, to show the injectivity of the

cokernel map coker @ — lim coker 6;.
“—

If n+60M = (nj)jer + M € coker 6, maps to
(nj +0;M;)jer = (04 0;M;)jer € liglcokerej, 80 ny € O M, for all k; then we want to
show that n € OM so that n +0M = 0+ OM. Since ny € 0, M, for all k, there exists
my € My, such that 0pmjy = ng; however we may not have qﬁ?mk z m; for all j < k, that
is we may not have (m;);er é M. So we want to construct mj, € M}, such that

Ormj, = ng and ¢Emj = m/; for all j <k so that m’ = (m);)jer € M and Om’ = n.

We first consider k < i. Define m} = m; (= ¢im}) and mj, = ¢im/ for all k < i.
Then Om/), = Oxdim} = i;m} = i0;m; = in; = ny for all k < i; and for j < k <4,

we have ¢¥mj, = ¢pFpim); = ¢imj = m/;. So we're done for k < i.

For k > ¢, we induct on k. The base case k = i is done.

Let k > i and assume true for all indices less than k (but at least as large as i,
however those cases are true because we just proved it so). Then
Hk_1¢’,:71mk = ¢;’§,19kmk = 7/1;@,1711@ = ng_1 = O,_1mj,_,, where the last equality is by
the induction hypothesis. So Hk_1(¢’,§71mk —mj_,) = Hk_1¢£71mk —Og—1mj)._, =0 and
¢§71mk —mj,_, € kerf;_q. Thus, by the surjectivity of the induced map
ker 0y, d)]]:—ﬁl ker 0,1, there exists m} € ker 0y, such that ¢F  m} = ¢¥_,my —m/)_,. Define

A "
my, = my —my, so that we have
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Opm), = O, (my, — m})) = Opmy, — Opmy = Opmy, — 0 = Oymy, = ny, and also
k ! ik m _ gk k " __ /
Gy, = by (m, — my) = ¢p_ymy — dr_ymy =my_ .

Let j < k. If j = k, then ¢?m§€ = m/, otherwise j < k. If j > 4, then
kot _ k=1 Kk /o ak—1_ 1 o 3 : .
oimy, = ¢ Pi_ymy, = i my._y = mj, where the last equality is by the induction
hypothesis. If j < 7, then we have (b?m;c = (b;-(éfm; = ¢;m; = m/;, where the penultimate

equality is by the previous sentence. O

Remark 5.1.3. Note that since we used the surjectivity of the induced kernel maps
oF
ker 0, — ker 0; to show the injectivity of the cokernel map coker § —» lim coker 6;,
—
there is no immediate version of Facts 5.1.1 or 5.1.2 for the common minimal level. In the

case where the ker 6; are all eventually finite, if the common minimal level is finite, then

we do eventually get injections

ker § = lim ker 6; — ker 0;
“—

by Lemma 4.0.2; but these injections would be surjective if and only if the strong minimal

level were also finite. Moreover, this bespeaks nothing of when the surjective cokernel map
coker § —» lim coker 0,
“—

might be injective. These kernel and cokernel maps will be explored in greater detail in

§5.5 below.

Fact 5.1.4. If sminf < oo, and if the M; and N; are finite for all ¢ > s-min ; then

|Ni|  |coker®;| |cokerd)
‘Ml| N |ker91| N \ker9|

= constant for all 4 > s-min 6,

so the M; and N; grow at the same rate for all ¢ > s-min6.

Proof. Since the M; and N; are finite; so must also ker 6; and coker 6; be finite; whence

| ker 0] = | ker 6;| < oo and |coker 8| = |coker ;| < oo by Fact 5.1.2. Since the sequences

0;

0 ker 91' Mi Ni coker 91' —0

are exact, we have

| ker 6;] - |N;| = | M;| - |coker 6]

by Lemma 4.0.3. O
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Fact 5.1.5. If c-min 6 < oo, and if the M; and N; are finite for all ¢ > c-min 6; then

|N;|  |coker §;] ) .
| = Teer 6] = constant for all 4 > c-min 6;
i er0;

so the M; and N; grow at the same rate for all ¢ > c¢-min 6.

Remark 5.1.6. So basically, a finite strong minimal level, s-min 6§ < oo, is what we hope
for; a finite common minimal level, c-min § < oo, is good enough; and a finite weak
minimal level, w-min # < oo, is a convenience so that we can get the cokernel maps out of

the way.

5.2 Finiteness Conditions

Proposition 5.2.1. If either coker @ is finite, or lim coker §; is finite; then the weak minimal
—

level is also finite.

Proof. Since the cokernel maps coker § —» liin coker §; and @: : 1i<£n coker ; —» coker 0;
are surjective; if coker @ is finite, then so is liin coker 6;; and if liin coker 0, is finite, then
so are the coker 6;. Then, the sequence {|coker 6;|};cs is a non-decreasing sequence of
natural numbers bounded above by |1£n coker 0|, and thus must stabilize (the Bounded
Monotonic Sequence Convergence Theorem and discrete sets lack accumulation points).
Once it stabilizes, say by ng, we have |coker §;| = |coker 6;| for all j > i > ng; whence the
already surjective coker #; — coker f; must now be injective. Thus

w-min 6 < ng < co. O

Proposition 5.2.2. Let p be a prime; and let pu, A\, v, w € Z. If we have that w-min < oo,

that the M; and N; are both (eventually) finite for all ¢ € I, and also that
|M;| = pro it and |N;| = prp'Hitw for i sufficiently large;

then it follows that c-min 8 < oco.

Proof. Let ng € I be large enough that for all ¢ > ng we have |M;| = phP HAI+Y and
IN;| = pHP' +Xi+w | Let nly = max{ng, w-min 8}, and define I’ = I N [n)), 00). For the

remainder of the proof, we assume 4,5 € I'.
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Since M; is a finite p-group, so must be ker 6;; and since N; is a finite p-group, so
must be coker ;. Since coker 8; = coker 0;, they must be same size, say
|coker 0;| = |coker 0;| = p?, for some d € N. Let |ker 6;| = p®, for some ¢; € N. Then
| ker 6;] - |N;| = | M;]| - |coker 6;] gives us, p® CpHP AW Xty pd o

ei + (up' + Ni +w) = (up' + Ni +v) +d, or e; = v — w + d, which is constant for all i € I".
Thus ¢-minf < nf < co. O

Remark 5.2.3. Proposition 5.2.2 above represents one of the original motivating ideas for

the study of minimal levels.

Theorem 5.2.4. If ker 6 is finite, then we have s-miné < oo if and only if c-min# < oo and

| ker 6] > | ker 6;| for some (or all) i > c-min 6.

Remark 5.2.5. Theorem 5.2.4 above was the original motivating reason behind Lemma
4.0.2. Basically, at least from the perspective of Iwasawa-Theory-inspired algebra, what
we have is that a finite strong minimal level is indeed a high aim for which to hope, and
we should be content with a finite common minimal level; that is, Iwasawa theoretically
we will get nothing for free from the algebra theoretical perspective beyond a clear
understand of precisely which algebraic properties with which we must contend (though
we have indeed shown that we rust contend with these issues). I had hoped this to be
otherwise, but what’s true is true and you can’t prove something that’s false. Corollary

5.2.6 below serves to illustrates this point a bit more clearly.

Corollary 5.2.6. If € is injective, then we have s-minf < oo if and only if c-minf < co and
0; is injective for some (or all) ¢ > c-min 6; which is when and only when w-minf < co

and 6; is injective for all ¢ sufficiently large.

5.3 The Minimal Levels Under Composition

We additionally let {Q;, pf} be an inverse systems of R-modules over I; assume that p{ is

surjective for all ¢ < j; let {7, : N; — Q;} : {Ni,wf} — {Qi,pg} be a transformation, so
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that 7, : N; — @Q; are R-homomorphisms such that

&7
Nj — Nl
le Til
ol
Qj Qi

commutes for all 7 < j; let @ = lim @; be the inverse limit; and let 7: N — @ be the
“—

induced R-homomorphism, so we have that

comimutes.
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Then, applying the Snake Lemma, severally gives us that the triangular prism?

Vi N (5.2)
v
ij
v
kTi
A
Q] ko;
¥
N/
v
Ck@j
v
ck&i

kt; / \\ kT;0;
v
I Q]’

W

ckr; CkT
W \i
ckT; ckt;0;

commutes and is exact in straight lines, where we dropped the zero maps for visibility

sake, we abbreviated ker and coker to k and ck, we set

MZ = ker¢! Nker; = ker(ker ¢} — kert)!) = ker(ker6; — ker6;)

N/ = coker (ker ¢/ —> kert)?)

NZ = ker 1/)17 Nker 7; = ker(ker 1/}{ — ker pf) = ker(ker 7; — ker ;)

@Z = coker (ker )} — ker p?)
Mz/ = ker ¢! Nker7;6; = ker(ker ¢) — ker p!) = ker(ker 7;0; — ker 7,0;)
Qv]-' " = coker (ker ¢! —s kerp?),

2Note that the various snake maps have been indicated by placing the map in two different places, with
the intension that these places be identified. E.g., consider the map k8; — N]7 which appears in two
different places in the vertical plane that moves left-to-right across the page. This is meant to indicate the
connecting map produced from the Snake Lemma in that plane, which is precisely Diagram (5.1) on page
35 above. If you remove the middle-most triangular prism and its connecting maps, then what remains
seems best visualized as in Split Ladder (5.3) on page 44 below.
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we have that
kerf; —— = N

ker7; ———— > @{

~,
ker 7,0, ——— Q]

are the connecting morphisms of the Snake Lemma, and the top three rungs of the split

ladder
0 0 0 (5.3)
v \ v
e o s
0 M, M, N
0 ker 6; ker 7;0; ker 7;
\ \ v
0 ker 6; ker 7;6; ker 1;
v \ v
N ol o
coker 0 coker 7;0; ——— coker 7; ——— 0
\ \ v
coker 0; coker 7,0, ——— coker; ———— 0
v \ v
0 0 0

are inclusions and the bottom three are coset enlargement.

Proof. Note that a diagram commutes if and only if each minimal polygon commutes.
Most everything is a direct application of the Snake Lemma in Diagram (5.1) on page 35
and similar. The middle horizontal triangles are composition; the horizontal triangles of
kernels are inclusion; and the horizontal triangles of cokernels are coset enlargement. It
remains only to verify that Split Ladder (5.3) commutes and is exact horizontally;
however, these follow since the top three rungs are inclusion, and the bottom three rungs
are coset enlargement. Well-definedness is a non-issue established by the Snake

Lemma. O

From the above, we get the following

Theorem 5.3.1.

s-min 76 < max{s-min @, s-min 7}.
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Proof. If either s-min 6 = co or s-min7 = 0o, then we’re done. Otherwise, assume
s-min 6 - ssmin 7 < co. Let j > ¢ > max{s-min#,s-min7}. Then we have

MZ =N/ = NZ = @7 = 0, whence the top slice of Triangular Prism (5.2) becomes

0 ker ¢{ ker 1/){ — 0

N [/

ker pg

N

~i/
@;

giving us Mf/ = @f/ = 0; that is ker (ﬂ =5 ker p{ O

Remark 5.3.2. There is, a priori, no immediate version of Theorem 5.3.1 for the common

minimal level; however see Corollary 5.5.9 on page 58 below.

5.4 Inducing a Transformation from a Map on the Limits

For all i € I, we have that 0(ker ¢}) C ker )}, and that

0—— > ker ¢! M 0 (5.4)
‘/0 GJ/ Git
v;
0—— ker¢* N N; 0

commutes and is exact horizontally, where ker ¢ 5 ker ¥y is the restriction of 8. We

can also see

M; =2 M/ ker ¢} and Ni = N/ker .
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Now let’s consider this from the opposite direction. Assume that we have an
R-module homomorphism 6’ : M — N such that 6’ (ker ¢F) C ker ¢ for all ¢ € I. Then

we can define a well-defined map 6, : M; — N; given by 0} = ¢*0'(¢;)~* such that

0— > ker g M, 0
v
0 ———kery; N N; 0

commutes and is exact horizontally; {8 : M; — N;} : {M;, ¢!} — {N;, ¢!} is a
transformation; and the induced R-homomorphism M — N agrees with the original

0 : M — N.

Proof. First, 6} is well-defined. Let m; € M;, and let m = (m;);er € M such that
¢;m = m;. Assume we also have m' = (m/);er € M such that ¢;m’ = mj = m;. Then
¢f(m—m') =m; —m} =0, so that m —m’ € ker ¢}. Thus ¢'(m —m') € ker}, and

hence }0'm — ¢ 0'm’ = 10 (m —m') = 0. Thus ¢0'm = ¢;0'm’ and 0] is well-defined.

The left square commutes since the horizontal maps are inclusion and one of the

vertical maps is the restriction of the other. The right square commutes since
Oi; =50/ (97) 167 = 0.
Since
Oi¢] = 470 (67) 0] = 07 0'(65) " = wluj0'(8)) 7 = w6,
we have a transformation.

For the moment, let " : M — N be the induced map 6" (m;)icr = (0im;)icr.

Let m = (m;)ier € M. Then
O'm=n= (ni)icr = (Yin)icr = (V7 0'm)icr L (10 (¢7) ' mi)ier = (0im;)ier = 0"'m,

where n = (n;)jer € N such that ¢'m = n, and 1 follows for the same reason that 6, is
well-defined; or rather, since well-definedness is established, we may take

m= (QSf)_lmi. O

As such, an R-homomorphism ¢’ such that ¢’ (ker ¢) C ker} for all i € I, will

be referred to as inducible, and the resulting transformation
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{0, = 20" (¢1)~ 1 My — Ni} : {M;, 6]} — {Ni, 4!} will be referred to as the inducing
transformation.
Remark 5.4.1. It would be great if all R-homomorphisms of interest were inducible;

however, this a high hope. In Chapters 6 and 7 we develop techniques for the case when a

non-inducible homomorphism is given.

5.5 Verifying Criteria for the Minimal Levels

Considering the diagram

ker ¢} / ker ¢7 ———0 0

we can see

ker ¢} / ker ¢% = ker ¢,

where the map is given by m +— (gb;)’lm + ker ¢3; and similarly
ker 17 / ker 17 = ker wg ,

where the map is given by n (w;)’ln + ker 7.
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Putting our three perspectives together, we get that the rectangular prism

k6 (5.6)
s
4
M,
] ko) k] N
M, ke /k: ey /K N k6
., Y/
M, ko ks N
. . . e
ko — M — N —cko
e A N
J J J J
4
Nj* ko,
s Y/
M, —||—= ko7 — = kv — N}
e ‘ ¥ ‘ ¥ ‘ e
/ S /] /
_/ . _ _ _
N} M; k¢! k! N
7*J/ V4 /4 \V4
M ke /gy —————kefj/ky); N7/
N
4
N
N

J
commutes and is exact in straight lines, where we dropped the zero maps for visibility

sake, a double shafted arrow indicates isomorphism (or equality), we abbreviated ker and

3Note that the various snake maps have been indicated by placing the map in at least two different
places, with the intension that these places be identified. E.g., consider the map k(j)g = ko7 /k(j);, which
appears in two different places in the plane {y = 1}. This is meant to indicate the connecting map produced
from the Snake Lemma in that plane, which is precisely Diagram (5.5) on page 47 above. If you consider
the “outside” shell of Rectangular Prism (5.6) by removing the middle-most square and its connecting
maps, so remove {0 < z < 2 and 0 < y < 3 and 2 < z < 3}, then what remains seems best visualized as
an immersion with a double point into a subset of the 3-torus T3 = S x S x S'. If you instead remove
{0 < y < 3} entirely, then Snake Tessellation (5.7) on page 54 below seems the best visualization.
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coker to k and ck, we set

MZ = ker rj)g Nker 0; = ker(ker qﬁf — ker wf) = ker(ker §; — ker 6;)
N/ = coker (ker ¢! — kery?)

M; = ker¢; Nker = ker(ker ¢; — kerv}) = ker(ker § — ker0;)
N © = coker (ker ¢; — kert})

M, = ker¢! Nker6 = ker(ker ¢} —s kerv}) = ker(ker § — ker 6;)
N} = coker (ker ¢} — kerip?)

M:Z = ker(ker ¢; / ker ¢; — ker ¢b; / ker ¢7)

NI = coker (ker ¢}/ ker ¢ — kertp}/ ker ),

we have that
ker; —— N 4
ker ——— Ni*
ker —— J\N/'f
MK

o

ker ¢] ——— ker ¢ / ker ¢

ker 4] —— > ker ¢} / ker ¢’

are the connecting morphisms of the Snake Lemma, and the induced maps connecting the

bottom two connecting isomorphisms have

=] = =]
M; M.
NI = N

S — /
Nz N*z

for induced kernel and cokernel maps.
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Proof. We orient ourselves on Rectangular Prism (5.6) per

J
with the origin at the lowest point in the back-left-bottom corner, and the highest point
is (2,3,5). Every square lies in at least one of ten planes, as does every exact sequence,
including the ones that snake around. The plane {y = 1} is Diagram (5.5) on page 47, and
the plane {y = 2} is similar. The plane {z = 2} is Diagram (5.1) on page 35. The plane
{z = 1} is clear with the vertical maps being equality. The plane {z = 2} is Diagram

(5.4) on page 45 together with the Snake Lemma, and the plane {z = 3} is similar.

It remains to verify the commutativity of the five planes {x = 0}, {y = 0},
{y =3}, {# =4}, and {z = 1}, noting that the second and third and also the fourth and
fifth are pairwise equivalent; and it also remains to verify the exactness and
well-definedness of the two equivalent planes {z = 4} and {z = 1}, and of the two lines

{z =y =0} and {z = 0 and y = 3} which snake into each other.

Since the cube {1 <2 <2and 1 <y <2 and 2 < z < 3} commutes, Lemma 4.0.4
on page 32 give that the cubes {1 <2z <2and 0 <y <1and 2 <z <3},
{1<z<2and2<y<3and2<z<3}hand{0<z<landl<y<2and2<z<3}
commute. Then, similarly, the cubes {0 <2 <land 0 <y <1and 2 <z <3},
{0<z<land2<y<3and2<z<3}hand{0<z<landl<y<2and1<z<2}
commute (recall the undrawn zero maps). Then, again similarly, the cubes
{0<z<land0<y<landl<z<2}land {0<z<land2<y<3and1l<z<2}

comimute.
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Now that the plane {x = 0} commutes, and the kernel and cokernel maps are the
natural induced maps, the Snake Lemma gives the exactness and well-definedness of the

two lines {x = y = 0} and {z = 0 and y = 3} as snaked together.

The square {2 <z <3 and 1 <y <2 and z = 4} has the maps

ker ¢} ——— ker ¢} / ker ¢

| |

ker 1)) ——— ker 17 / ker 1)}

given by
mj —— (¢5) " my + ker ¢ m + ker ¢}
0;m; Om + ker 7
njt (¥3)~'n; + ker

where m; € M;, n; € Nj, and m € M (subsets thereof that is). The well-definedness of
these maps has already been established above, as well as the bijectivity of the horizontal
maps. If we let m; € ker qbg, then down-then-right maps to (zb}‘)*lejmj + ker¢7, and
right-then-down maps to H(Qb;)’lmj + ker ¢¥; whence commutativity follows by Diagram

(5.4) on page 45. Thus the plane {z = 4}, or {z = 1}, follows since the Snake Lemma now
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gives us that

0 0
0 v Vi 0
0 ker ¢/ ker ¢7 / ker ¢f ———=0
/
0 ——==kery] — > ker v/ ker ¢ ———0
N/ N 0
0 0

commutes and is exact.

Thus it now remains only to show that

Evii vl

ker 0; —— ]Tf]fk

ker ; —— ]VZ*

~j

Nz
Ni *
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commutes. The maps are all well-defined and given by

m; > (¢3)~'m; + ker ¢ m + ker ¢
Om + 0 ker ¢
mj ————>0(¢%)"'m; + O ker ¢ n + 0 ker ¢
lm;
m; ———— 0(¢7) " m; + O ker ¢} n + O ker ¢}
Gj((ﬁg)_lmi + 0, ker (bz (n +kery¥) + 0 (ker ¢ / ker ?5)

Wn + 0 ker ¢ é/j

n; +0; ker ¢ ———— ((¥})"'n; +ker v} + O(ker ¢} / ker ¢%)

where m; € Mj, m; € M;, nj € Nj, m € M, n € N (subsets thereof that is);
ker ¢ / ker oM s ker ¥/ ker 7 is the induced cokernel map whose image we use; and

noting that the bottom map is an isomorphism.

If we let m; € MZ7 then down-then-right maps to 9(¢;)_1mj + O ker ¢}, as does

right-then-down; whence the commutativity of the upper square follows.

If we let m; € ker 05, then down-then-right maps to 9(q§f)_1¢zmj + Oker ¢7, and
right-then-down maps to 9(¢;)_1mj + O ker ¢;. Since well-definedness has been
established, we may choose m € M such that ¢jm = m; for m = ((b;)_lmj. By the
commutativity of the square {1 <2 <2 and y =1 and 2 < z < 3}, we have
(;5{ m; = qﬁf ®;m = ¢;m. Since well-definedness has been established, we may also choose

m for m = (¢F )_1¢z m;. This gives the equality, and thus the commutativity of the

middle square.

If we let m; € ker 6;, then down maps to Hj(qﬁg)_lmi + 0, ker ¢f7 and
right-then-down-then-left maps to 7 6(¢; )" m; + 6, ker (b{ . Since well-definedness has
been established, choose m € M such that ¢;m = m,; for m = (¢})~'m;; and let

m; = ¢im. Again by the commutativity of the square

{1<z<2andy=1and2<z<3}, we have gbgmj :¢g¢jm:¢>;‘m:mi, SO we may
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also choose m; = (¢7) " m,. If Om = (ng)rer, then 6;m; = n;, and Y7 (ng)rer = nj. This

gives the equality, and thus the commutativity of the bottom square. O
Putting together four of the connecting maps, and the induced kernel and
cokernel maps of the other two, we get that the snake tessellation
0 (5.7)
\
0 —> M;‘ o
v
0— > MZ‘ .
A
0 0——s Mi — M:Z ——0
R N A
0 M; ko) ko) N
AR I A
0 M; ko ko, N;
L A
0 0 — M, — M,] 0 N} N 0
L T A A N
0 M; ko ko; Nx ckf ckf; 0
T A R
0 M, k6 ko; N} ckf cko; 0
T T
0—— Mz — HI? 0 N, lj N, :l] 0 0
A
ko, N7 ckd ckd; 0
oo
k@l Ni* ckd ck91 0
| K | |
0 N} N/ 0 0

--—ckf; —=0

cor—>ckf; —=0

v
0

commutes and is exact, where we abbreviated ker and coker to k and ck.

This motivates another minimal level definition comparable in function to the
weak minimal level; that is, a convenience to get an underlying portion of the kernel

maps out of the way; more specifically, to regulate the kernel of the map ker § — ker 6;.
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Define the co-weak minimal level of 6 to be

co-w-minf = min ({z el: M: =M, Vj>i}u {oo})

- min({ieI:MjH:Mj VjZi}U{oo}>.

Proposition 5.5.1. If ker 0 is finite, then the co-weak minimal level is also finite.

Proof. Similar to Proposition 5.2.1. Since M: C ker 6, we have that the sequence

{|M;k |}icr is a non-increasing sequence of natural numbers bounded below by 1, and thus
must stabilize (the Bounded Monotonic Sequence Convergence Theorem and discrete sets
lack accumulation points). Once it stabilizes, say by ng, we have [M;| = |M;k| for all

J > 1 > ng; whence the subset M; C M;k must now be equality. Thus

co-w-min @ < ng < co. O

Proposition 5.5.2. We have

co-w-min @ < s-min 6;

and if moreover s-min f < oo, then M: =0 for all 7 > co-w-min 6.

Proof. If s-min # = oo, then we're done. Otherwise, assume s-min 6 < oo, and let
i > s-min 6. Then ker  — ker 0; is an isomorphism by Fact 5.1.2; but M: is the kernel
of precisely that map; and hence M;k = 0. For j > i, we have Hj - M: = 0, which must

then be equality. O

Proposition 5.5.3. If c-min § < oo with the ker §; all (eventually) finite, then

co-w-min 6 < oo and Mr =0 for all 7 > co-w-min 6.
Proof. Lemma 4.0.2 gives us that ker § — ker 6, is an injection for 7 sufficiently large,
and hence M: = 0 for 7 sufficiently large since it is the kernel of precisely that map. O

Remark 5.5.4. Note that in general the co-weak minimal level may be smaller than both

the weak and common minimal levels, larger than both, or in between the two.

Proposition 5.5.5. If ker # and coker 6 are both finite, and the ker §; are all (eventually)

finite (e.g., if the M; are all (eventually) finite); then everything in Snake Tessellation
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(5.7) is (eventually) finite, and both the weak and the co-weak minimal levels are finite.

Moreover, for all j > i > max{w-min 6, co-w-min 6}, we have that

0 (5.8)

0 M M 0 0

Lo YT

*

0 —— M; —=ker — ker); —= N} —= coker > coker 6; —= 0

! | ¢ } !

OHM: —— ker 6 — ker 0, ‘>N;‘ — coker 8 = coker §; —= 0

| oo }

0 0 N/ N 0 0
v v
0 0

commutes and is exact. Moreover again, if the ker 6; are all (eventually) bounded in size
(e.g., if c-min# < oo); then everything in Snake Tessellation (5.7) is (eventually) bounded

in size.

Proof. Since coker § and ker 6 are both finite, we have that the weak and the co-weak

minimal levels must both be finite by Propositions 5.2.1 and 5.5.1.

Since ker 6 is finite, M; must be finite for all i. Since coker @ is finite, coker 6;
must be finite for all i. Then ]\72* must be finite for all 4 (sufficiently large) since there
cannot be only one infinite thing in an exact sequence. Since MZ C ker 6;, it must also be
finite for all j (sufficiently large); and hence also its isomorphic copy Miz Now sz and
N:f must be finite for all j (sufficiently large) since there cannot be only one infinite

thing in an exact sequence. Thus everything in Snake Tessellation (5.7) is finite for all

j > (with ¢ sufficiently large).

If j > i > max{w-min 6, co-w-min #}, then M; — M? and coker 6; =, coker 0;
are isomorphisms; and thence M: SN M:z and Kff 25 coker 0; are zero maps, and thus

Snake Tessellation (5.7) reduces to Diagram (5.8).

Since ker 0 is finite, M, is bounded for all i. Since coker @ is finite, coker 6; is
bounded for all 7. Since MZ C ker 6}, it must be (eventually) bounded for all j
(sufficiently large); and hence also its isomorphic copy M:Z Similarly, 1\723 and ]\7:2] must
be (eventually) bounded for all j (sufficiently large) since the first is a quotient of
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something (eventually) bounded. By Diagram (5.8) and Lemma 4.0.3, we have
|M;| - | ker ;| - |coker ] = |ker 6] - [N;| - |coker 6],

and since all the terms are finite, we may rearrange to get

~ . IM;| |ker6; - |cokerd| | ker 6;| - |coker 6|
|N7| = : <1
| ker 6] |coker 6| 1

= | ker 6;] - |coker 6|,

which is (eventually) bounded since the ker 6; are. Thus everything in Snake Tessellation

(5.7) is (eventually) bounded for all j > ¢ (with ¢ sufficiently large). O

Remark 5.5.6. So for the applications that we have in mind, even though M and N are
infinite, and the M; and N; grow unboundedly; their relative behaviors may be described
well by modules that are known to be finite, bounded, and eventually fixed in size (and in

many cases, expected to be trivial or cyclic).

Lemma 5.5.7. Assume ker # and coker § are both finite, and the M; and N; are all
(eventually) finite, so that Proposition 5.5.5 applies. Then, for ¢ € I, the following are

equivalent:

1. || = |NY| for all j > i;

2. |M: = |N| for all j > i;

3. |ker ¢!| = |kerep!| for all j > 4;

4. |ker ¢ / ker ¢} | = | ker ¢} / ker 7] for all j > i.
Proof. By Snake Tessellation (5.7) we have Mﬁ = MIZ and NZJ = N:f, whence 5.5.7.1
and 5.5.7.2 are equivalent. Since ker ¢g C M; and ker Q/Jg C Nj, we have that ker gb{ and
ker 1)) must be finite, whence the line { = 2 and z = 4} of Rectangular Prism (5.6) and
Lemma 4.0.3 give

[AF;] - | ker o] = | ker ¢]] - [N

and thus 5.5.7.1 and 5.5.7.3 are equivalent. Finally, Diagram (5.5) and similarly for v, or
the plane {z = 1} of Rectangular Prism (5.6), gives that 5.5.7.3 and 5.5.7.4 are

equivalent. O

Theorem 5.5.8. Assume ker # and coker 8 are both finite, and the M; and N; are all
(eventually) finite, so that Proposition 5.5.5 applies. Then, for ¢ > w-min 6, the following

are equivalent:
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1. 4 > c-min#;

2. |ker ;| = | ker ;] for all j > i;
3. |MZ| = |NZJ| for all j > 4;

4. [MZ]| = N7 for all j > is

5. |ker¢g| = |kerwg| for all j > ¢;

6. |ker ¢/ ker ¢7| = | ker o} / ker 7| for all j > i.

Proof. First, 5.5.8.1 implies 5.5.8.2 by definition, and the reverse implication follows since
i > w-min 6; whence 5.5.8.1 and 5.5.8.2 are equivalent. By Snake Tessellation (5.7) and
Lemma 4.0.3, we have
\Mﬂ | ker ;] - |coker 6;] = | ker ;] - |N7| - |coker 6],
and since ¢ > w-min 6, we have |coker ;| = |coker 0;]; and thus
(M2} - | ker 6] = | ker 6] - [N ;
whence 5.5.8.2 and 5.5.8.3 are equivalent. The remaining equivalences follow from Lemma

9.5.7. O

Corollary 5.5.9. Recall the notation of §5.3 on page 41; specifically, the inverse system
{Qi,pz} and the map 7: N — Q. Assume ker 6, coker 6, ker 7, coker 7, ker 76, and
coker 76 are all finite; and the M;, N;, and Q; are all (eventually) finite; so that

Proposition 5.5.5 applies to all three. Then,

c-min 70 < max{c-min @, c-min 7, w-min 76}.

Proof. If either c-minf = oo or c-min 7 = 0o, then we’re done. Otherwise, assume
c-min @ - c-min 7 < oo. Note that everything else is finite. Let

i > max{c-min @, c-min 7, w-min 76}. Then, by Theorem 5.5.8, we have
| ker ¢7| = | ker ! | = | ker p!| for all j > i,
and thus also 7 > c-min 76. O

Theorem 5.5.10. Assume ker 8 and coker # are both finite, and the M; and N; are all
(eventually) finite, so that Proposition 5.5.5 applies. Then, for ¢ > co-w-min 6, the

following are equivalent:
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1. |NF| = |N7| for all j > i;

2. M| = |N/| for all j > i

3. [MZ]| = N7 for all j > is

4. |ker¢{| = |kerwg| for all j > ¢;

5. | ker ¢} / ker | = | ker ¥} / ker 5| for all j > i.

Proof. By Snake Tessellation (5.7) and Lemma 4.0.3, we have
(M| [N - NG| = [N | |7 N,
and since i > co-w-min #, we have [M;| = |M:|, and thus
L1 IN7 | = N7 | 1N,

whence 5.5.10.1 and 5.5.10.3 are equivalent. The remaining equivalences follow from

Lemma 5.5.7.

Corollary 5.5.11. Assume ker 6 and coker 8 are both finite, and the M; and N; are all
(eventually) finite, so that Proposition 5.5.5 applies. Then, for

i > max{w-min , co-w-min 6}, the following are equivalent:

1. i > c-min#,

2. 4 > c-min# and M; =0 for all j > i;

3. |ker§;| = | ker6;| for all j > i;

4. |N7| = |Nj| for all j > i;

5. |MZ| = |Nf| for all j > 4;

6. [M2]| = [N for all j > i;

7. |ker ¢!| = | kere)?| for all j > i;

8. |ker ¢}/ ker ¢ | = | ker o} / ker ¢ for all j > i.

Proof. First, 5.5.11.2 clearly implies 5.5.11.1, and the reverse implication follows from
Proposition 5.5.3; and thus 5.5.11.1 and 5.5.11.2 are all equivalent. The remaining

equivalences follow from Theorems 5.5.8 and 5.5.10.

Theorem 5.5.12. Assume ker 8 and coker # are both finite, and the M; and N; are all
(eventually) finite, so that Proposition 5.5.5 applies. Then, for

i > max{w-min #, co-w-min 6}, the following are equivalent:
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1 > s-min#;

ker 0 =5 ker 0; for all j > i;

4. N7 =5 Ny forall j > i;

10.

11.

12.
13.
14.

Proof. First, 5.5.12.2 clearly implies 5.5.12.1, and the reverse implication follows from
Proposition 5.5.3; and thus 5.5.12.1 and 5.5.12.2 are all equivalent. Next, 5.5.12.1 implies
5.5.12.3 by definition, and the reverse implication follows since ¢ > w-min 6; and thus
5.5.12.1 and 5.5.12.3 are all equivalent. By Diagram (5.8), we have that 5.5.12.3 is
equivalent to 5.5.12.5 is equivalent to 5.5.12.6 is equivalent to 5.5.12.4. Next, the line

{z =2 and z = 4} of Rectangular Prism (5.6) gives that 5.5.12.5 and 5.5.12.7 are

equivalent. Next, Diagram (5.5) and similarly for ¢, or the plane {z = 1} of Rectangular

© ® N &

Mf:ﬁg:OforalljZi;

M:g:ﬁ:g:OforalljZi;

ker QSZ =5 ker ’L/J‘Z] for all j > 4;

. 4> s-minf and M: =0 for all j > 4;

ker ¢} / ker ¢% —> ker 97/ ker 9% for all j > i;

the map

is the zero map for all j > i;

the sequence

ker ; ——= N*

is exact for all j > i;

the sequence

is exact for all j > 1;
N: =0 for all j > i;
N: =M, =0 for all j >

ker ¢% — ker % for all j > .

ker 6

ker0; ——0

coker § —— cokerj ———0

Prism (5.6), gives that 5.5.12.7 and 5.5.12.8 are equivalent.
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We next show that 5.5.12.9, 5.5.12.10, and 5.5.12.11 are equivalent. We have that

*

0 M. ker 6 ker 6; N ;‘ coker § —— coker; ——=0

J

is exact. If 5.5.12.10 holds, then ker f; = im (ker § — ker 6,) = ker(ker 6, — 1\71*) gives
5.5.12.9. If 5.5.12.11 holds, then 0 = ker(Kf;k — coker 0) = im (ker 6; — NJ’-‘) gives 5.5.12.9.
If 5.5.12.9 holds, then im (ker § — ker ;) = ker(ker6; — ZVJ*) = ker §; gives 5.5.12.10. If

5.5.12.9 holds, then ker(]\~fj7“ — coker 0) = im (ker 6; — ﬁ;‘) = 0 gives 5.5.12.11.

If 5.5.12.10 holds, then Diagram (5.8) gives that

0
v
0 0 M)
0 M p ker 6 ker 6; 0
| |
0 M, ker 0 ker 6; 0
J ) I
0 0 N/
v
0

commutes and is exact; whence the Snake Lemma gives 5.5.12.5. Again considering
Diagram (5.8), if 5.5.12.2 holds, then Lemma 4.0.1 gives that ker 6 — ker6; is an

isomorphism, whence ker(ker 6 — kerf;) =0 = M;, and thus 5.5.12.10 follows.

Next, by Fact 5.1.2, 5.5.12.2 and 5.5.12.11 imply 5.5.12.13. Then 5.5.12.13 clearly
implies 5.5.12.12; and 5.5.12.12 implies 5.5.12.6 by Diagram (5.8) on page 56.

Lastly, 5.5.12.13 and 5.5.12.14 are equivalent by the line {x = 0 and z = 3} of

Rectangular Prism (5.6). O

Remark 5.5.13. As we can see, a finite strong minimal level is indeed a rather strong

condition. This can also be seen in that Rectangular Prism (5.6) for j > i > s-min 6

61



becomes

k! kep!
Z V4
koi/kd; kefy/kay
ks =——= ket
- £
ko — M — N cké
e Ve I N g I
J J ‘/ J ‘ J
M k¢ —— H;* ky;
- a
Ko —~ M —~N — ck6
/ /] /] /
l ke)! ke
V4 4

k@j/kgy =—= kij/ky;

62



Chapter 6

INVERSE SYSTEM EXPANSION

!The notation of Chapter 6 is independent of all other chapters.

Let R be a commutative ring (assumed unitary); let z € Z; let I = Z N [z, 00); let
{4, af} be an inverse system of R-modules over I; assume that the a{ are surjective for
all i < j; let A =1lim A; be the inverse limit; and let af : A — A; be the natural
—

(projection) maps o : (a;)icr = a;, which are necessarily surjective by Lemma 4.0.1.

6.1 The Sequence of the Kernels of the Projection Maps

Considering the diagram

ker a; / ker af ———0 0

0

we can see A; = A/ker o and ker o] = ker o / ker af, where the second map is given by
a; — () 'a; + ker of. (This is the same as Diagram (5.5) on page 47.) We have that
{A;}ier forms a sequence of modules of non-decreasing size, but not (necessarily) nested

inside each other. However, {ker o };c; forms a non-increasing sequence of submodules of

A such that ﬂ keraf = 0.
iel

IRotman (2002) is a general reference for definitions and notational trends.
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Proof. It a = (aj),er € ﬂ ker a;, then aja =a; =0 for all j € I. O
iel
As such, these two sequences contain the same basic information, but from
different perspectives. It will be convenient for us to consider an enlargement of

A; = A/ ker of by substituting something smaller for ker o}

In the case where the A; are all finite, we have that the ker o} all have finite

index in A.

6.2 Definitions and Basic Facts
Assume for each i € I that we are given B; C ker a] such that B; C B; for all j > 4.
Then we define
A; = A/B;,

the surjective map ; : A — A\l to be projection v; : a — a + B;, and the surjective map

0; ¢ A\Z — A; given by §; = af(;) "' :a+ B; > a; for a = (aj)jer € A. Moreover,

kerd; = keraf /B; by a + B; — a + B;.

Proof. ~; is a well-defined surjection.

We first show that §; is well-defined. Let a + B; = (a;)jer + B; € Ei and also let
o' +B; = (a;)jg +B; € A\Z such that a+ B; = o’ + B;, so that a —a’ € B; C ker of. Then

afa—ofd =of(a—a)=0and ofa = afd’; that is a; = a}; whence 0; is well-defined.

We next show that d; is surjective. Let a; € A;. Let a = (a;);jer € A such that

afa = a; by Lemma 4.0.1. Then §;(a + B;) = a;.
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So we have

0 (6.2)
0 0 ker d;
0 B; A Rk A, 0

0 ———=——kera] A - A; 0
ker o} /B; 0 0
0
whence we get ker §; = kera/B; by a + B; — a + B;. O

Now we have the surjective maps 623 : Ej — & given by coset enlargement; and
thus {ﬁi, 62{ } is an inverse system, so we define A = lim Ei; and we also have the natural
+—
(projection) maps & : A—s A\i, which are necessarily surjective by Lemma 4.0.1. We

also have that {J; : El — A} {A\i, &g} — {A,, ag} is a transformation.

Proof. We need only verify that we have a transformation. Let a + B; € ﬁj where
a = (ar)rer € A. Then &;a’(a + B;) = di(a + B;) = a;, and o2d;(a + Bj) = ada; = a;.

Thus §;&7 = o/ §;, and hence we have that

2
=)

5

-
-

N
aL
.t
04
(0%
k2
Tt

'
e

J %

commutes. O

Solet §: A —s A be the induced R-homomorphism. Note that a typical element

of Ais of the form (a() + B;);c; € A where the a() = (a,(f))kez € A form a sequence of
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elements in A such that @f(a(j) + B;) = a? + B; =a® + B;, or ) — a() ¢ B; for all
j > 1. It follows that az(-j) = agi) for all j > i; in fact, if follows that al(-k) = agj) for all
1 < j <k. Thus

§: (@ + By)ier = (6:(a'Y + B;))ier = (az('i))iela

J

which gives a well-defined element of A since, as we have shown, ) = ¢ @)

(4 _
a; a;’ =a,;’ for

all j > 1.

Fact 6.2.1. § is surjective.

Proof. Let a € A, then (a + B;)ics € A since ag (a+ Bj) = (a+ B;) for all j > 4. Then

d(a+ Bi)ier = (0i(a+ By))icr = (ai)ier = a. O

Proposition 6.2.2. We have

A\i >~ A, ®kerd; and A= A kers.

If (af)~'a; € B;, then

7

Proof. Given a; € A;, map a; — ((af)’lai + Bi)iel'

(af

#)7a; € ker o}, and hence o} (o)) 'a; = a; = 0; whence the map is injective. Next,

a; = ((af)a; + Bi)ie] % a;. Thus

K3

0

ker 61

=
=
o

splits.

Given a € A, map a— (a+ B;)ics. lf a € B; for all i € I, then

a€ ﬂ B; C ﬂ ker @] = 0; whence the map is injective. Next, a — (a + B;)ier % a. Thus
icl icl
A/_\

0——=kerd A 5 A 0

splits. O

Proposition 6.2.3. We have that f/l\l is finite if and only if A; and ker §; are both finite,

which is when and only when A; is finite and B; has finite index in ker .

Proof. This follows from Diagram (6.2) or Proposition 6.2.2 above. O
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We call the inverse system {;1\1-, 623}, or its limit A, the expansion of {4;, ozg}, or
of A, by {B;}icr; and the transformation {0; : A; —> A} {Ei,&g} — {Ai,ozg}, or its
induced map ¢, will be referred to as the {B;}-expansion transformation, and the

ker 0; = ker af / B; will be referred to as the expansion quotients.

Note that the expansion of A by {ker a;};c; gives isomorphisms §; : El =, A;

with trivial expansion quotients.

6.3 The Minimal Levels of an Expansion Transformation

We now consider the minimal levels of the expansion transformation § given above.

Proposition 6.3.1.

w-min d = min I.

Proof. The ¢; are all surjective. O

Proposition 6.3.2.

c-mind = min({ie]:\ker5j|:|ker5i|Vj2i}U{oo})

= min ({z €1l:[keraj: Bj] = [kera; : B;] Vj > i} U {oo})
Proof. From Diagram (6.2), we have the set equality
{iel:|kerd;| = |kerd;| Vj>i} ={i€l:[keraj: Bj] = [kera; : B;] Vj > i}.

Then, given Proposition 6.3.1 above, the results follows. O

For ease of reference and to avoid confusion later, we record Rectangular Prism
(5.6) and Snake Tessellation (5.7) applied to the expansion transformation 6§ : A —s A.

Recall that § and the §; are surjective so that their cokernels are trivial. This gives us
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that the rectangular prism

ké;
Z“f ka! ka Al
s V4 4 s
A% ka7 k@ kej/kal i
a ka! ka?
Ve ‘ 4 ‘ Vs
S I S v I N
j j j
e
Aj
4 —|—|xa — || ke
Ve ‘ v \ e
/ Vo %
kéi Al Ai
e —i _
A7 A\; ko] ka
A / v
i kay/kar kaoj/kaj
Al
7
A
A*

J

commutes and is exact in straight lines, where we dropped the zero maps for visibility

A%

*7

sake, a double shafted arrow indicates isomorphism (or equality), we abbreviated ker and
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coker to k and ck, and we set

A, = keral Nkerd; = ker(kera? — kera?) = ker(ker §; —» ker &)
Ef = coker (ker 62{ — ker ozg )

ZAj = keraj Nkerd = ker(ker &} — keraj) = ker(ker § — kerd;)
Z;‘ = coker (kera; — keraj)

ﬁj = keral Nkerd = ker(ker & — ker o] ) = ker(ker § — ker §;)
A* = coker (ker@f — kera)

A:Z = ker(kera;/keraj — ker o]/ ker aj)

A = coker (ker &/ ker a; — ker o [ ker of);
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and we also have that the snake tessellation

0 (6.4)
i
04>A\j—>
i
0*>121\i —_—
| |
—=J —=*]
0 0 A, A, 0
i} ¢
0 A; ké kd; A 0
j* |
3 A, ko kd; Ax 0
v
L) [
0 0 A, 0 Al AY 0
i) .. I
0 A ko ké; A 0 0 0
i L
0 A, ko k; Az 0
Y o
—=J —=*] ~ .
0 A, A, 0 Al A¥ 0
. |
ké; A 0 0 0
oo
ko; Ax 0
oo
0 Al —~ A 0

O =<—
O =<—

commutes and is exact, where we abbreviated ker and coker to k and ck.

It would be nice if we could integrate Diagram (6.2) into Rectangular Prism

(6.3); however, since it can often be difficult to typeset a four-dimensional lattice, we will
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be satisfied with the below. That is, we have that the rectangular prism

kd; (6.5)
/W
X
W kav! kol Y
L Z 4 Va

X Bi/B; kaj/kak Z ko,

4

B; kats kas/B;
e ¥
A = A

— = ko] ————— ka;‘/Bi

Kk, A; A;
4 )
ka?/B; W ka? ko Y
a 7 Z 7
X By/B; L/
/Y
A
ka’/B;

commutes and is exact in straight lines, where we dropped the zero maps for visibility

sake, a double shafted arrow indicates isomorphism (or equality), we abbreviated ker to

k, we set
W = ker a{ Nker d; = ker(ker a{ — ker o) = ker(ker §; — ker d;)
Y = coker (kera) — kera?)
X = ker(B;/Bj — kera;/keraj)
Z = coker (B;/Bj — kera;/keraj),
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we have that

ker §; —————kera/B;

ker §; ——— ker o} / B;

ker ¢; Y

X 4>kera;‘f/3j
ker&g g4>BZ/B]

*

i = .
. .
ker o] ker o / ker o

are the connecting morphisms of the Snake Lemma, and the induced maps connecting the

bottom two connecting isomorphisms have
w = . X
Y —— =7

for induced kernel and cokernel maps. Putting together four of the connecting maps, and

the induced kernel and cokernel maps of the other two, we get that

0 0 (6.6)
0 W X 0
0 ker §; keraj/Bj —=0
0 ker §; keraf/B; —=0
0 Y A 0
0 0

is exact.

Proof. The justification here is similar to that for Rectangular Prism (5.6) on page 48
above. However, note the important differences between Rectangular Prism (6.5) and

Rectangular Prism (6.3); e.g., A (and 0) entirely occupies the plane {x = 1}. That being
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said, all the maps are the, perhaps iteratively, induced kernel, cokernel, and snake maps
of the middle cube {1 <z <2 and 1 <y <2and 2 < z < 3}; only more are known to
become zero maps in this case. At this point, all that would remain would be to show
that the square {2 <z <3 and 1 <y <2 and z = 4} commutes and that Diagram (6.6)
commutes; however, we need only the exactness of the latter, which we have, and so we

leave commutativity unjustified. O

Proposition 6.3.3. Assume ker § is finite, and the El and A; are all (eventually) finite, so

that Proposition 5.5.5 applies. Then

c-mind = min ({i € 1:|kerd;| = |kerd;| Vj > i} U {oo})

= min ({z €1 :[keraj: Bj] = [keraj : B;] Vj > i} U {oo})

= i ({i € 12 ]| = 7] vj > i} U {oc})

= min ({i € 1+ |4 = |42] ¥ > i} U {00}

= min({ie]:\ker&{\:\kera{\VjZi}U{oo})

- min({iel:\ker&f/keraﬂ:|keroz2‘/kera;|Vj2i}U{oo})
= min({ie]:\BZ—/Bj|:|keraf/kera;\Vj2i}U{oo}).

Proof. Given Proposition 6.3.1 above, this is a combination of Proposition 6.3.2, Theorem

5.5.8, and Rectangular Prism (6.5). O

Proposition 6.3.4.

s-mind = min ({z € 1 :kerd; = keré; Vj > it U {oo})

= min ({z €1 :keraj/B, 5 keraf/B; Vj > i} U {oo}),

where the map ker a;f/Bj — kera/B; is given by a + Bj — a + B;, which is not coset
enlargement even though it is determined by enlarging the cosets. That is,

kerai/Bj — ker o /B; is the induced kernel map of the induced kernel map

ker o — ker o given by inclusion, which is induced from equality A — A; so while the
cosets B; are (possibly) getting larger, their containing modules ker a;f are (possibly)

getting larger too.
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Proof. Given Proposition 6.3.1 above, this follows from Diagram (6.6). That is, we have
j >t >s-mind if and only if ker §; 5 ker d;, if and only if W =Y =0, if and only if

X =7 =0, if and only ifkera;/Bjikeraj/Bi. O
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Chapter 7

FORCING A TRANSFORMATION FROM A MAP ON THE LIMITS

!The notation of Chapter 7 is independent of all other chapters.

Let R be a commutative ring (assumed unitary); let z € Z; let I = Z N [z, 00); let
{M;, qbg } and {NV;, 1/)17 } be inverse systems of R-modules over I; assume that gbz and 1/%7'
are both surjective for all ¢ < j; let M = liin M; and N = liin N; be the inverse limits; and
let ¢7 : M — M, and ¢} : N — N; be the natural (projection) maps

@F : (mj)jer = my and ¥ : (n;)er — n;, which are surjective by Lemma 4.0.1.

Let k : M — N be an arbitrary R-module homomorphism (not necessarily
?
inducible). We may not have x ker ¢ C ker ¢}; however, we may consider the restriction

of k

ker ¢F Nk~ ker b — ker 7.
So it may be well to consider expanding the inverse systems a la Chapter 6.

Let B; be a subset of M such that
B; C ker ¢ N k™ ker 4} and B; C B; for all j > i.

If convenient, we could take ker ¢7 N x~! ker ¢} for B;.

Proof. We have ker @5 N k1 ker ¢ Ckergp N x~Lker 1} since ker @5 C ker ¢7 and

kL ker (e x~Lker 1, where the latter follows since ker Y7 C ker ). O

Let C; be a submodule on N such that
kB; C C; C ker ¢} and C; C C;forall j > .
If convenient, we could take any of the three kB; C ker ] N kker ¢f C ker)! for C;.
Proof. Bj C B; gives £B;j C kB;. We already have ker ¢y} C ker 7. We have

ker ¢ Nk ker ¢7 C ker ¢ N K ker ¢ since ker 7 C ker¢; and rker ¢ C rker ¢}, where

the latter follows since ker ¢} C ker ¢;. Note also that we indeed have the relation

IRotman (2002) is a general reference for definitions and notational trends.
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kB; C kerf N kker ¢f C kerv, where the latter is clear and the prior follows since

kB; C ker} and since B; C ker ¢} gives kB; C kker ¢}. O

‘We now consider the restriction of s

and the respective expansions of M and N by {B;}icr and {C;}ier,

M= lim]\/J\i and N = lim J/\]'Z-7
— —

where

J/\Z’L:M/Bl and ]/\EZJV/C'Z
Let

&; ]\Z — M; and € ]v, — N;
given by
8 :m+ Bi — ¢im and € :n+C;—Pin

be the expansion transformations; and define

ki M; — N; by Ri :m+ B; = km + Cjy;

which gives a transformation.

Proof. We first show that &; is well-defined. Let m + B; € ]\/4\z and assume m’ + B; € ]\/4\2
with m + B; = m/ + By, so m —m’ € B;. Thus km — km’ = k(m —m') € C;.

We now verify that we indeed have a transformation. Let m + B; € Z\/l\j where
m = (mg)ker € M. Then %;¢! (m + B;) = Ri(m + B;) = km + C;, and

@ff%j(m + Bj) = @(ﬁm + Cj) = km + C;. Thus k\lqu = @fﬁj, and hence we have that

commutes. O



Then we have the maps

where M; =% N; exists for all i precisely when « is inducible; in which case the diagram

commutes.

Proof. Assume k is inducible; that is, we have a well-defined map k; : M; — N; given by

ki = V¥rr(oF) 7L, see §5.4 on page 45. Let m + B; € M; for m = (mi)rer € M. Then
€iki(m + B;) = €;(km + C;) = ¥ km

and

Ki0i(m + B;) = kidim = ¢ km.

O
Let 4, €, and & be the induced maps. Then we have that
M—2 oM (7.1)
;L nl commutes if and only if Kkerd C kere.
N—° oN

Proof. Let m € M, and consider (m + B;)icr € M. Tf we let n = (nk)ker € N such that

Kkm = n, then
er(m + B;)ier = €(Ri(m + Bi))iel =e(km+ Cy)ier

= (Q‘(ﬁm + Ci))iel = (YiEm)ier = (¥in)ier = (Ni)ier =n
and
KO(m + By)icr = Ks(éi(m + Bi))iel = k(pim)icr = k(My)icr = KM = n.

So if § were an isomorphism, we would have commutativity.
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However, by Proposition 6.2.2 on page 66 above, we have that an arbitrary
clement of M may be decomposed as (m + B;)icr + (m® 4+ B)ier € M where m € M
and (m(“ + B;)icr € ker §. We have seen that the first part of the decomposition
commutes just fine. So it remains to consider the second part; which, when mapped
right-then-down, gives zero. Thus, the diagram commutes if and only if, when the second
part is mapped down-then-right, we still get zero; which happens when and only when we

have Kkerd C kere. O

We say that the transformation {%; : M, — KQ} : {]\/4\1, (Z{} — {]\Afi,wg}, or its
induced map &, is the {B;, C;}-forced transformation; we call the {B;, C;} a sequence of
forcing submodules; and we say that k is almost inducible if there exists a forced

transformation kK where k kerd C kere.

We now define a notion of the minimal level of an arbitrary R-homomorphism.
Since these techniques will be of interest primarily when we have no direct map
M; — N;, and since the weak minimal level of an extension transformation is trivial, we
expect only one of the four notions of minimal level to be of primary concern; although

the other three are entirely analogous.

Define the {B;, C;}-generalized common minimal level of k to be
{B;,C;}-g-cmink = max{c-mind,c-mine,c-mink}.

Proposition 7.0.5. If {B;, C;}-g-c-min k < oo; and if M;, Ny, [ker ¢ : B;], and [ker ¢} : Cy]

are finite for all ¢ > {B;, C;}-g-c-min x; then

|N;| _ |coker&;| - | ker d;
|M;|  |kerR;| - |kere

= constant for all i > {B;, C;}-g-c-min k;
so the M; and N; grow at the same rate for all i > {B;, C; }-g-c-min k.
Proof. Let i > {B;, C;}-g-c-min k. Since M;, N;, [ker ¢} : B;], and [ker ¢} : Cy] are finite,

we have that ]\//E and ]\Afl are also finite by Proposition 6.2.3 on page 66 above. Then, by

Fact 5.1.5 on page 40 above, we have

IN:|  |coker | ,
= —— = constant’,
| M| | ker R;|
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|M;|  |cokerd;| 1

il _ _ tant”
| M| | ker ;] | ker &;] constatt,
N; coker ¢; 1
|AZ| = | €| = = constant”’;
|V | | ker €;] | ker €|
whence
|N;|  |cokerR;|-|kerd;|]  constant’” - constant’
— _ = 7 = constant.
| M;] | ker R;| - | ker ¢ constant

However, finding well-chosen {B;, C;} remains entirely to be seen.
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Chapter 8

RETURN TO IWASAWA THEORY

Even after a century and a half of investigation, the Kummer-Vandiver Conjecture
remains one of the largest unsolved problems in cyclotomic fields, or perhaps one of the
largest impediments toward advancement in certain areas of the study of cyclotomic
fields. It stands to argue that a proof would be complicated or a counterexample
enormous. If the Kummer-Vandiver conjecture holds, then CG — IACG is an inducible
isomorphism with trivial strong minimal level. However, if the Kummer-Vandiver
conjecture does not hold, then CG — TACG may not be inducible, may not be an
isomorphism, or may have non-trivial minimal levels. In particular, to disprove the
Kummer-Vandiver Conjecture, it would suffice to show for a given prime that there are no
inducible pseudo-isomorphisms CG — I ACG, or that any inducible pseudo-isomorphism
has a non-trivial minimal level, or to construct an inducible pseudo-isomorphism where at
any finite level the kernel and cokernel had different size. These criteria may produce
easier, or numerically faster, methods to verify if the Kummer-Vandiver Conjecture does
or does not hold for a given prime. Also, if the Kummer-Vandiver Conjecture does hold,
then understanding why the pseudo-isomorphism must be inducible, or why the minimal
levels must be trivial, may aid in the understanding of why the conjecture also would
hold. Therefore, if our goal is to disprove the Kummer-Vandiver Conjecture, then we
have another tool available; and if our goal is to prove the Kummer-Vandiver Conjecture,
then we have detailed what may well be several intermediate step towards a proof, or
perhaps steps towards understanding the underlying phenomena that will later lead
towards a proof. Or also interestingly, what if the Kummer-Vandiver Conjecture were

false, but some or all of the minimal levels were still trivial?

I have framed the above discussion in terms of the Kummer-Vandiver Conjecture
only as an example. Beyond the Kummer-Vandiver Conjecture, there is still much to be
gleaned from understanding the minimal levels in other settings. The development given
herein is generally applicable to arbitrary Z,-extension for which the Main Conjecture
has been proven. I would not be surprised to find non-trivial minimal levels among
arbitrary Zp-extensions. What would it mean were a minimal level non-trivial? Having

detailed the algebraic aspects of this search, it remains only to understand how these
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concepts translate to Iwasawa Theory in general; that is, what are the underlying
Galois-Theoretic properties of a Z,-extension that would produce a situation where the

lower levels behaved fundamentally differently than the higher levels?

Moreover, most of the results here are stated in terms of biconditionals; that is, if
we are to understand at what level the limiting Iwasawa behaviors begin, then we must
grapple with these issues, whether sooner or later. Having developed them in an
abstracted algebra theoretical setting, provides us with an understanding of the minimal
properties that need to be understood or proven. Moreover, this development would have
been quite cumbersome had we chosen to do so in the thick of Iwasawa Theory. Rather,
this Iwasawa-Theory-inspired algebraic development seems to be a far cleaner and more

readily comprehensible setting.
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