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ABSTRACT 

 Understanding charge transport in single molecules covalently bonded to 

electrodes is a fundamental goal in the field of molecular electronics.  In the past decade, 

it has become possible to measure charge transport on the single-molecule level using the 

STM break junction method.  Measurements on the single-molecule level shed light on 

charge transport phenomena which would otherwise be obfuscated by ensemble 

measurements of groups of molecules.  This thesis will discuss three projects carried out 

using STM break junction.     

 In the first project, the transition between two different charge transport 

mechanisms is reported in a set of molecular wires.  The shortest wires show highly 

length dependent and temperature invariant conductance behavior, whereas the longer 

wires show weakly length dependent and temperature dependent behavior.  This trend is 

consistent with a model whereby conduction occurs by coherent tunneling in the shortest 

wires and by incoherent hopping in the longer wires.  Measurements are supported with 

calculations and the evolution of the molecular junction during the pulling process is 

investigated.   

 The second project reports controlling the formation of single-molecule junctions 

by means of electrochemically reducing two axial-diazonium terminal groups on a 

molecule, thereby producing direct Au-C covalent bonds in-situ between the molecule 

and gold electrodes.  Step length analysis shows that the molecular junction is 

significantly more stable, and can be pulled over a longer distance than a comparable 
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junction created with amine anchoring bonds.  The stability of the junction is explained 

by the calculated lower binding energy associated with the direct Au-C bond compared 

with the Au-N bond.   

 Finally, the third project investigates the role that molecular conformation plays in 

the conductance of oligothiophene single-molecule junctions.  Ethyl substituted 

oligothiophenes were measured and found to exhibit temperature dependent conductance 

and transition voltage for molecules with between two and six repeat units.  While the 

molecule with only one repeat unit shows temperature invariant behavior.  Density 

functional theory calculations show that at higher temperatures the oligomers with 

multiple repeat units assume a more planar conformation, which increases the 

conjugation length and decreases the effective energy barrier of the junction.   
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1.  INTRODUCTION 

1.1 Introduction and Motivation for Molecular Electronics 

 The ability to measure, control and understand charge transport through a single 

molecule covalently bonded to metallic electrodes is of paramount importance in the field 

of molecular electronics.  Although the field is still in its nascent stages, the development 

of functional devices made from single molecules or small numbers of molecules could 

have enormous impacts in many fields.  First, molecular based electronics could act as a 

new foundation by which micro- and nanoelectronic devices are fabricated by replacing 

the current complimentary metal-oxide-semiconductor (CMOS) fabrication platform.(1-

3)  Such a paradigm shift in micro and nanoelectronic fabrication techniques could help 

extend or accelerate the trend whereby the density of devices in microelectronic 

components increases exponentially, which is commonly known as Moore’s “Law”.  

Secondly, molecular based electronics could allow the development of a plethora of 

chemical and biological sensors based on the principle of electrically detecting molecular 

binding events of analytes with a known molecular signature.(4-8)  And finally, 

understanding charge transport in single molecules could help us understand charge 

transport in many biological systems, a phenomenon which is generally poorly 

understood.(4, 9)   

 The use of a single molecule as a functional electronic device was first proposed 

by Aviram and Ratner in 1974.(10)  In their seminal paper, the authors described a donor-

molecule-acceptor system that could achieve electronic rectification.  Since then, 

numerous advancements have been made in the field in both experiment(11-14) and 
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theory.(15-29)  Numerous experimental techniques have been developed to measure 

charge transport through molecules directly linked to electrodes.  These include 

electromigrated junctions,(30-32) mercury contact experiments,(33-36) cross wire 

techniques,(37-40) conducting atomic force microscope(41-44) and scanning tunneling 

microscope(45-49) based techniques, as well as other microfabrication based 

techniques.(50-52)  While these experiments provide tremendous insight into how charge 

propagates at the nanoscale, they are limited to measuring a small number of molecules 

in a monolayer where ensemble measurements obfuscate the individual behavior of a 

single molecule.(53, 54)  Only recently have techniques such as mechanically controlled 

break junction(55-57) and scanning tunneling microscope break junction(58-61) been 

developed whereby it is possible to measure the conductance of a single molecule.  These 

techniques will be discussed in greater detail in section 1.2. 

 Despite the advances made in the field of molecular electronics, there are still 

many obstacles which the field must overcome before devices made from single 

molecules or small numbers of molecules become widely implemented.  Particularly 

relevant is developing a greater understanding of charge transport in order to close the 

gap between theoretical simulations and experimental results.(62, 63)  For example, due 

to inherent shortcomings associated with density functional theory,(64-66) conductance 

values calculated by DFT-NEFG are often far greater than values obtained 

experimentally(67-69), often times by more than an order of magnitude.  Additionally, 

there are mismatches in simulated and measured current-voltage behavior(70, 71), 
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whereby first principles simulations often fail to reproduce the convex nature of current-

voltage characteristics as measured through experiments.   

 There are also many technical challenges which must be resolved before 

molecules can be used as functional devices.  It is particularly important to be able to 

control the contact geometry between a molecule and its electrodes because atomic scale 

variations in contact geometry can have profound impacts on a junction’s electrical 

characteristics.(72-75)  Furthermore, the local environment plays a key role in how a 

molecular junction behaves, and therefore must be controlled.  We will see in Chapters 2 

and 4 that temperature plays a role in conductance behavior;(52, 76-79) however other 

factors than can play a role include solvent molecules,(80) pH(81, 82) and ion 

concentration.(7, 83)   Finally, it is critically important to be able to reliably wire 

molecules together to form functional device architectures.  This task will likely require 

the use of self-assembly techniques, and may require integration of these techniques with 

conventional microfabrication techniques.(74)   

 While there are many challenges and issues that remain to be addressed in the 

field of molecular electronics, the field has shown remarkable progress, and developing a 

deeper understanding of electrical transport through single molecules has played a key 

role in this development.  To that end, this report will discuss several projects which have 

demonstrated a deeper understanding of how charge transport occurs through single 

molecules.  First, it will present a study on the length and temperature dependent 

transition between two charge transport mechanisms in a series of molecular wires.  It 

will then discuss the ability to electrochemically control the formation of a molecular 
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junction and will present of comparison vis-à-vis the same junction formed by 

conventional linkers.  Next, an interesting temperature dependent tunneling mechanism 

will be discussed in oligothiophenes whereby increasing the temperature induces a more 

planar conformation in the molecule which reduces the energy barrier of the junction and 

increases conductance.  Finally, a summary of experimental work and research outlook 

will be discussed. 

1.2 A Brief History of Molecular Electronics 

 Most journal articles on molecular electronics cite the seminal paper by Aviram 

and Ratner(10) in 1974 describing a molecular rectifier as the birth of the field.  While 

the importance of Aviram and Ratner’s work cannot be overlooked, there were in fact 

other noteworthy milestones that deserve mention as well.  For example, the advent of 

molecular monolayers was a key step in the early stages of the field in the late 1960’s and 

early 1970’s.  Particularly important was the Langmuir-Blodget film, which provided the 

first means of sandwiching molecules between metal electrodes and measuring the 

resultant conductivity.  Hans Kuhn and co-workers used this approach to measure the 

conductivity of fatty acids sandwiched between Aluminum and Mercury electrodes.(84)  

Their results showed an exponential decay in conductivity as the length of the molecules 

increased, which has been confirmed numerous times and is attributed to a non-resonant 

tunneling mechanism.   

 Ari Aviram and Mark Ratner published the first article which considered a 

molecule as a single electronic device.(10)  Their work described a molecular rectifier 

made of a donor-bridge-acceptor molecule.  Such a molecule could take advantage of the 
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electronic structure that resulted from a functional unit rich in electrons and another 

functional unit poor in electrons.  This same layout has allowed for rectification in solid 

state systems, via the use of a PN junction.  While largely cited today, Aviram and 

Ratner’s article did not attract a great deal of attention in 1974, due to the inability to 

measure a single molecule at the time.   

 Molecular electronics took a great step forward with the invention of the Scanning 

Tunneling Microscope (STM) by Gerd Binning and Heinrich Rohrer in 1981.(85, 86)  

The STM has acted as the basis for numerous investigation techniques, including STM-

Break Junction, which has been used in the studies presented in this thesis.  However as 

early as 1985, the STM was providing insights into the electrical conductivity of 

multilayers and monolayers.  In 1985, Fujihira and co-workers demonstrated a Langmuir-

Blodget monolayer photodiode using STM.(87)  And later in 1997, Robert Metzger and 

co-workers confirmed the Aviram and Ratner rectification mechanism in a monolayer of 

gamma-hexadecyl-quinolinium tricyanoquinomethanide using STM.(88)  Works by 

Fujihira and Metzger were both ground breaking in that they demonstrated unimolecular 

reactions, meaning that they occurred within single molecules; however the 

measurements themselves were not made at the single molecule level.   

 In 1997 Mark Reed and James Tour published the first study which claimed to 

measure electron transport at the single molecule level.(55)  The authors utilized a 

mechanically controlled break junction (MCBJ) in which gold electrodes were covered in 

a monolayer of benzenedithiol.  A piezoelectric actuator was employed to bring the two 

electrodes together until the onset of a measurable current, which was attributed to 
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transport through a metal-molecule-metal junction.  The results reported by Reed and 

Tour have since been questioned due to the unambiguous nature of the measurements.   

 The scanning tunneling microscope break junction technique (STM-BJ) was the 

first technique to provide unambiguous measurements of a single-molecule junction.  The 

technique was pioneered by Bingxian Xu and co-workers in 2003.(58)  This technique is 

similar to MCBJ, in that a piezoelectric actuator is employed to control the separation 

between two electrodes with atomic precision.  Unlike Tour and Reeds report though, Xu 

incorporated a clever trick whereby the electrodes were repeatedly brought into and out 

of contact, which allowed for the formation and breaking of many single-molecule 

junctions, and the subsequent analysis of statistics for molecular junctions, as illustrated 

in Figure 1.1  The accumulation of statistics has proven to be a valuable analysis tool in 

molecular electronics due to the many factors which can affect the conductance of a 

single-molecule junction, including contact geometry,(63, 89) conformations and 

defects,(90) and molecule-electrode coupling.(63, 91, 92)   
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Figure 1.1: Measurements taken with STM break junction taken from reference (58).  

The decay curves on top recorded during the tip pulling process can be compiled into 

conductance histograms on the bottom.  The rapid accumulation of measurements is one 

the key strengths of STM break junction 

 

 Since the first unambiguous demonstration of single-molecule conductance 

measurement, numerous effects have been reported, including switching,(93-95) 

rectification,(96, 97) negative differential resistance,(98, 99) orbital gating,(100) 

electrochemical gating,(101) thermal effects,(102) quantum interference,(103) 

thermoelectricity,(104) electron-phonon coupling,(8, 105, 106) and spin effects.(107)  If 

properly implemented, these effects could prove to be valuable in making circuits with 

single molecules acting as individual devices.  Of course, in order to truly understand the 
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origin of these effects, a more detailed description of the electron transport process is 

needed.      

1.3 Charge Transport Models 

 Generally speaking, charge transport in single molecule electronics is not well 

understood; however some models can be applied to help explain experimental findings 

in the field.  Those models will be discussed here.  First, a discussion of what happens as 

length scales decrease and Ohm’s Law no longer becomes relevant will be presented.  

Secondly, a derivation and justification for the Landauer Formula will be discussed.  

Then a discussion of the non-resonant tunneling mechanism, whereby an electron can 

traverse a bridge of molecular states will be presented, followed by a discussion of the 

hopping mechanism, whereby an electron can be thermally activated across molecular 

states will be discussed.  Then an intermediate mechanism known as the co-tunneling 

model will be discussed.  And finally, current-voltage characteristics will be discussed 

with respect to the Simmons Model.   

1.3.1 Mesoscopic Transport 

 The Ohmic description of conductance describes electron flow as response to an 

applied field according to the following: 

jiji Ej σ= (1.3.1) 

Where j i represents the current density, σij represents the sample conductivity and Ej 

represents the applied electrical field.  Under this formalism, the conductivity results 

from scattering events an electron experiences with impurities and lattice defects.  Thus, 

as a sample grows shorter in the direction of current flow, fewer scattering events will 
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occur and the resulting conductance will increase.  If we were to extrapolate this 

reciprocal relationship between conductance and length to an infinitely small sample, one 

would expect an infinitely large conductance; however experiments show us that this is 

not the case.   

 In order to understand, electron transport at the mesoscopic scale, it is important 

to first consider a few length scales determined by the scattering events in this region.  

The first characteristic length of importance is the mean free path, Lm, which 

characterizes the average distance a charge carrier can travel between scattering events.  

It is important to keep in mind that elastic scattering events may cause a phase shift in an 

electron’s coherency; however the wave itself is still coherent.  Coherency can only be 

lost due to inelastic scattering events, which are separated by a distance referred to as the 

phase-relaxation length, or coherency length of an electron, which is represented as Lφ.   

 Based on the characteristic lengths described above, one can break down transport 

into three general regimes: Classical, Diffusive and Ballistic.  Classical transport applies 

to length scales much greater than the phase-relaxation length and is described by Ohm’s 

Law.  But as we showed earlier this transport regime is not appropriate for very small 

length scales.  Diffusive transport applies to length scales greater than the mean free path, 

but less than the phase-relaxation length, these length scales are still greater than those 

which are applicable to single-molecule electronics.  For the length scales we are dealing 

with, we need to consider transport in the ballistic regime, which applies to lengths less 

than the mean free path of an electron.  The best method to understand transport in this 

regime is to consider the Landauer Formula, which is described below. 
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1.3.2  Landauer Formula 

 As discussed in the previous section, the Ohmic description of conductance 

breaks down when considering small constrictions that are shorter than the mean free 

path of an electron.  In order to describe conductance at these length scales, the Landauer 

Formula is needed.  The Landauer Formula was first introduced by Rolf Landauer(19, 

108) with additions later made by Markus Buttiker,(15) and it described conductance as a 

transmission process, rather than a reaction to applied electric field.  In this framework, 

transmission results from the scattering and reflection events a charge carrier encounters 

while traversing a constriction.   

 The Landauer Formula can be derived in its simplest form by considering a small 

constriction of length L connected to two leads.  In this case, the constriction is taken to 

be a single chain of metallic atoms which is assumed to have a single conduction mode 

that is completely open.  The density of states in this 1-dimentional constriction is given 

by: 

κ
π

κκ d
L

L
dn 















=
2

1
2)( (1.3.2) 

Where the factor of two is added to account for electron spin.  Assuming free electron 

like behavior, the derivative of the dispersion relation with respect to κ yields the group 

velocity, which is given by: 

m

h
v

π
κ

2
=  (1.3.3) 
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Where h is Plank’s constant and m is the electron mass.  We can then express the current 

by: 

nevI =  (1.3.4) 

Where n is the number of charge carriers, e is the electron charge and v is the group 

velocity of the charge carrier.  In this case, the number of charge carriers is found by 

multiplying the density of states of each electrode by its respective Fermi function, 

integrating over all possible states, and taking the difference:   

∫∫
∞∞

−=
0

2

0

1 )()()()()()( κκκκκκκκ dvfnedvfneI
 
(1.3.5) 

By plugging equations 1.3.1 and 1.3.2 into equation 1.3.4, one obtains: 
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(1.3.6) 

Converting the integration from momentum space to energy space gives: 
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(1.3.7) 

Which simplifies to:  
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(1.3.8) 

However, if we assume zero temperature, f1 and f2 become two step functions, and can be 

replaced by the electrochemical potentials of each lead.  This simplifies the situation to: 

( )21

2 µµ −=
h

e
I

 
(1.3.9) 

And if we define the voltage as V = (µ1-µ2)/e, the expression further simplifies to: 
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V
h

e
I

22=
 
(1.3.10) 

Where 2e2/h represents the quantum of conductance (G0 = 77.5 µS), that is the 

conductance of a single conductance channel that is completely open.  Quantized 

conductance can be observed in an STM-break junction system quite easily when a 

quantum point contact is formed between the gold substrate and tip.  When the contact 

first forms, it is usually thick enough to contain several channels; however pulling results 

in a stepwise decrease in conductance in integer multiples of the conductance quantum as 

the number of channels is reduced with the width of the constriction, illustrated in Figure 

1.2.  The final step in the conductance trace represents the conductance of a single 

channel.   

 

Figure 1.2:  Examples of quantum point contacts formed with gold.  Flat regions in the 

conductance trace are clearly visible at 1 G0, corresponding to formation of a contact with 

one channel that is completely open.  Figure taken from Klein et al.(109) 
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 In order to adapt the Landauer Formula for use in molecular electronics, we must 

account for the fact that there can be multiple conductance channels, and they usually 

have transmission probabilities far below 100%, meaning each channel is not completely 

open.  In this case, the conductance can then be found by summing the transmission over 

all available modes using the following expression: 

∑=
ji

Fij ET
h

e
G

,

2

)(
2

 
(1.3.11) 

It should be noted, that the Landauer Formula is generally only valid for low biases.  

High bias conditions will be discussed in section 1.3.6. 

 

1.3.3  Coherent Transport: Non-Resonant Tunneling 

 The Landauer Formula is useful in understanding general principles behind 

transmission through molecules; however a more detailed model must be employed to 

understand the factors which affect transmission through a molecular bridge.  We will 

thus consider a non-resonant tunneling model (otherwise known as a superexchange 

model), whereby we have a donor-bridge-acceptor system consisting of N+2 electronic 

states (N states on the bridge, plus the donor and acceptor).   The energy levels of the N 

sites will be energetically distant from the energy levels of the donor and acceptor.  We 

will use a tight binding approach whereby electronic states are localized in space and 

strong coupling results between adjacent bridge states, but coupling between non-

adjacent bridge states is non-existent.  Additionally, we will assume that that the 
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transmission time is less than the nuclear relaxation time of the states on the bridge, so 

that traversing charge carriers do not actually reside on the bridge.  These factors will 

ensure that transport through the donor-bridge-acceptor system is coherent. 

1 2 N
…

E
F

+ eV
E

F

∆E

 

Figure 1.3:  Energy diagram for the donor-bridge-acceptor system described in the non-

resonant tunneling model.  In this system a series of discrete states are localized on the 

bridge such that they is a large energetic difference between them and the 

electrochemical potentials of the donor and acceptor.  The result is that a traversing 

electron tunnels through the bridge.  

 

 In this description of electron transport, we first recall Fermi’s Golden Rule, 

which describes the transfer rate between states i and f, represented as: 



15 
 

( ) ( )Fifet EET
h

k ρπ 2
24

←=
 
(1.3.12) 

Where ρ(EF) represents the thermally averaged, Franck-Condon weighted density of 

states.  However in the case of our system in which we consider a molecule connected to 

leads with an applied voltage, we replace the Franck-Condon density of states with the 

Fermi functions of each electrode, which we represent as: 

( ) ( )( ) ( ) ( )∑ −−= ←
fi

fiiffiet EEETEfEf
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k
,

2
2
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4 δπ

 (1.3.13) 

Where ��←�represents the coupling between donor and acceptor states such that:   

( ) ( ) fETiET if =←  
(1.3.14) 

Here, the T operator is defined as:   

VEVGVET )()( +=  (1.3.15) 

Where G is the Green’s function of the bridge defined as: 

( )







 Γ+−
=

2

1
i

HE

EG

 

(1.3.16) 

And Γ represents the inverse lifetime matrix of bridge levels.  However for our Donor-

Bridge-Acceptor system, we are assuming only nearest neighbor coupling whereby D  

only couples to 1  and N  only couples to A .  Additionally, we assume that there is 

no through space transfer in our system, which causes the coupling between donor and 

acceptor term in 1.3.12 to drop out.  Invoking this condition reduces the T operator to  

NANDDA VEGVET )()( 11=←  (1.3.17) 
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Now it becomes necessary to describe the Green’s Function in greater detail.  If we 

assume that a small bias is applied to the bridge system relative to the difference in 

energies between donor and bridge sites, we can invoke the weak coupling limit in the 

tight binding approximation and express the Green’s Function as: 

( ) ∏
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+

−−
=

1
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1,
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n n

nn
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N EE
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EE
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(1.3.18) 

And if we assume that the energy levels of the bridge are identical, En and Vn,n+1 become 

constants, which simplifies the Green’s Function to  
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And defining V = E-Eb produces:  
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(1.3.20) 

Now we can recall Fermi’s Golden Rule introduced in 1.3.12, and represent the T 

operator as:  

( ) ( ) ( )∑ ∑ −−= ←←
fi

AD
AD

DAif EEEETET
, ,

δδ  (1.3.21) 

And plugging the expression for ��←� (1.3.17) into the expression for ��←� (1.3.21), we 

see the transmission is directly proportional to the square of the Green’s Function, such 

that 
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Rearranging we get: 
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And taking the natural log of an exponent, we can further rearrange to yield: 
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Where a is the length of each bridge state and d=Na is the length of the entire bridge.  

One can see from this relation that the transmission, and in turn the conductance, is 

exponentially dependent on the length of the bridge, where the decay constant β is 

defined as: 
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(1.3.25) 

This form fits with a non-resonant tunneling model, also referred to as a superexchange 

model.  Here, β is an indirect measure of the energy barrier a charge carrier encounters as 

it tunnels through the bridge states.  Typical values for β are approximately 1 Angstrom-1 

for saturated alkane systems and 0.2 to 0.6 Angstrom-1 for conjugated systems.  These 

values are much lower than for through solvent tunneling, which typically has a β value 

closer to 2 Angstrom-1.  

1.3.4  Incoherent Transport: Sequential Hopping 

 In contrast to the non-resonant tunneling mechanism presented in section 1.3.3, 

there exists an incoherent mechanism in the weak coupling limit whereby charge carriers 

are thermally populated onto states within the molecular bridge and hop from site to site 

across the bridge.  This mechanism is appropriately named the hopping mechanism.  The 

hopping mechanism begins to occur when the electron traversal time is greater than the 
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nuclear relaxation time of the molecular states, which ensures that an electron has enough 

time to reside on a site within the bridge.  In contrast to the exponential length 

dependence of the electron transfer rate found with the superexchange mechanism, the 

hopping mechanism only produces weakly length dependent electron transfer behavior.   

    We begin our description of the hopping mechanism by considering the single 

channel Landauer Formula(20) derived in section 1.3.2: 

( )FET
h

e
G

22=
 
(1.3.26) 

This can be represented in an equivalent form relating the steady state transition rate kss to 

the Transmission T according to the following: 

( ) ( )ET
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h
Ekss π
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=
 
(1.3.27) 

Where ℎ�/2�� is the incident momentum of a charge carrier and L is the normalization 

length in the metal.  Considering we can define the density of initial states with respect to 

the momentum as: 
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(1.3.28) 

We can relate conductance G to the transfer rate kss by: 

( ) ( )FiFss EEkeG ρ2=  (1.3.29) 

Where kss represents the contribution of not only the coherent component kss
tun, but also 

the incoherent component kss
hop: 

hop
ss

tun
ssss kkk +=  (1.3.30) 
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 From the previous section, we know that kss
tun will be exponential with respect to 

bridge length.  We make the assumption that electrons that tunnel through the bridge do 

so elastically or quasi-elastically.  With this in mind, we can assume no change in energy 

for the charge carriers traversing the bridge and represent the tunneling current for a 

given applied voltage V as: 

( ) ( ) ( ) ( )( ) ( ) ( )( )( )dEeVEfEfEfeVEfEkEej tun
ssi

tun

∫ +−−−+= 11ρ
 
(1.3.31) 

Integrating over E and dividing by voltage yields: 

( ) ( )F
tun
ssFi

tun EkEeg ρ2≈  (1.3.32) 

 When we consider the hopping component of conductance, we must account for 

the fact that transport in this regime is inelastic, so that charge carriers that enter the 

bridge with an energy Ef, subsequently leave the bridge with an energy Ef+∆E.  Taking 

this into account, we represent the hopping component to current as: 

( ) ( ) ( ) ( ) ( ) ( )( )( )( )dEeVEEfEfEEfeVEfEkEej FF
hop
ssi

hop

∫ +∆+−−∆+−+= 11ρ
(1.3.33) 

However in the limit of small bias and low temperature (kT<∆E), the Fermi distributions 

in the leads simplifies to: 

( ) ( )( ) ( )eVEfEEfeVEf F +≈∆+−+ 1  (1.3.34) 

( ) ( )( ) ( )EfeVEEfEf F ≈+∆+−1  (1.3.35) 

And as a result the hopping component of the conductance can be expressed as: 

( ) ( )FF
hop
ss EEkeG ρ2≈  (1.3.36) 

This expression shows us two things:  first that the Landauer Formula is still valid in the 

low bias limit, and second that the conductance due to hopping(1.3.36) has the same rate 
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dependence as that due to tunneling(1.3.29), except for the differing rate constants and 

densities of states.  

 It is important to consider that in the hopping mechanism, the charge transfer rate 

constant depends on thermally populating charge carriers into bridge states, and is thus a 

thermally activated process which follows an Arrhenius relation.  This stands in contrast 

to the tunneling mechanism, which is of course temperature independent.  Likewise, the 

hopping mechanism follows a weakly length dependent behavior.  Taking these two 

factors together, we can say that the hopping rate constant scales as: 

N

e
k

kTE
hop
ss

A

21 αα +
∝

−

 
(1.3.37) 

Where α1 represents the inverse rate for traversal between donor and acceptor and α2 

represents the inverse rate to hop between bridge sites. 

 The transition between tunneling and hopping mechanisms is of great interest and 

will be discussed in greater detail in Chapter 2.  Oligomeric series of molecules have 

proven to be popular test beds for measuring the transition between charge transport 

mechanisms, due to the ability to systematically vary the length of the molecule studied 

and the temperature at which the measurement is made.  A model of charge transfer rate 

vs. length for two different temperatures is reproduced from Segal et al.(20) in Figure 1.4.  

The figure clearly illustrates both length and temperature dependence of the transfer rate.  

However, specifics regarding the transfer rate behavior, including tunneling decay 

constant, hopping length dependence, transition length and activation energy for hopping 

are system dependent, and therefore must be measured experimentally.   
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Figure 1.4:  Charge transfer rate for a donor-bridge-acceptor system with N sites at 250 

K (bold) and 350 K (dotted).  Figure reproduced from Segal et al.(20)   

 

1.3.5 Coherent Inelastic Transport: The Cotunneling Model 

 Thus far descriptions of coherent elastic transport via the Superexchange 

mechanism and incoherent inelastic transport via the Hopping mechanism have been 

presented.  There is however an intermediate mechanism in the weak coupling regime 

known as the cotunneling mechanism.(110)   The cotunneling mechanism results from an 

electronic transition in the molecular bridge which is mediated by the self energies of the 

electrodes.  The electronic transition is most commonly achieved by application of a large 

bias or an electrochemical potential; however it can also occur in the weak coupling limit 

by heating processes in the junction, which is most commonly seen among quantum dots 
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that exhibit coulomb blockade.(111)  The cotunneling process does not occur at the 

expense of coherent tunneling, but rather occurs in conjunction with elastic tunneling, 

whereby electrons traverse the bridge along different potential energy surfaces.  The co-

tunneling mechanism has been used to explain switching in molecular wires,(50, 94) and 

the dissociation of acetylene by an STM tip.(112)  

  The mathematical description presented herein will not attempt to derive the 

cotunneling model step for step: for that the reader is referred to the original description 

published by Hansen et al.(110)  In this section only the highlights of the model will be 

presented which are most important for understanding the mechanism.  We begin by 

reiterating that the total current through the junction is the sum of an elastic component 

(tunneling) and an inelastic component (cotunneling). 

( ) ( ) )(tItItI ie += (1.3.38) 

The current is calculated using a scattering approach, in which the transition rate is 

approximated using a generalized form of Fermi’s Golden Rule. 

( )fififi EET
h

k −= δπ 2
24

 (1.3.39) 

The current then is simply given by 

fiekI −=  (1.3.40) 

The transition matrix for the scattering processes occurring in the junction is given by 

( ) ( )VEVGVET ret+= (1.3.41) 

Where G is the retarded Green’s Function of the full Hamiltonian given by 

( )
ηiHE

EGret

+−
= 1

 (1.3.42) 
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In our model though, there is a perturbation to the molecule which changes the charge, 

meaning that the Green’s Function can be expanded as a Dyson’s Equation  

GGGG Σ+= 00  (1.3.43) 

Where G and G0 are the Green’s Functions corresponding to the unperturbed and 

perturbed Hamiltonians respectively.  Additionally the self energy is defined as  

VVG0=Σ (1.3.44) 

When only the first order expansion of the Green’s Function is considered, the transition 

matrix reduces to  

( ) ( )EET retΣ=  (1.3.45) 

And the generalized Fermi’s Golden Rule becomes 

( )fi
ret

fi EE
h

k −Σ= δπ 2
24

 (1.3.46) 

This equation has important implications because it relates the electron transport through 

the bridge to the energy transfer required for a chemical reaction, which in our case is the 

charging of the molecular bridge.   

 A complex analysis of tunneling rates can be invoked to calculate the tunneling 

rates for both the cotunneling and tunneling processes.  When this is done, one finds the 

inelastic cotunneling is given by 
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Where A and B are the ionization potentials of states a and b given by A=En-1-Ea and 

B=En-1-Eb and W is the work function of the electrodes and ∆E = Eb – Ea.  We can obtain 

the transition rate for the elastic component by setting Ea = Eb, which gives 

( )
4

22
2 Ve

WA

eV

h
k

RL

fi

−−

ΓΓ=  (1.3.48) 

A comparison of the two tunneling rates shows that the elastic tunneling does not depend 

on a voltage threshold ∆V, whereas the inelastic cotunneling process does depend on a 

voltage threshold ∆V.  This is a defining feature of the cotunneling mechanism and is 

responsible for many effects observed experimentally, including conductance switching 

in molecular wires.(50, 94)    

1.3.6  Current-Voltage Behavior: The Simmons Model 

 The current-voltage behavior of molecular junctions is inherently non-linear in 

nature above small applied biases.  This non-linearity is very difficult to reproduce from 

first principles; however an approximation known as the Simmons Model(113) has 

proven quite effective in describing experimental results.  The Simmons Model is derived 

from the WKB approximation, and describes the current-voltage behavior by the 

following equation: 
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(1.3.49) 

Where A is the junction area, d is the barrier length, me is the effective mass of the 

electron, e is the electron charge and φ is the tunneling barrier height, approximated as 

the energy offset between the electrochemical potential of the electrode and the nearest 



25 
 

molecular orbital (EF-EHOMO).  It should also be noted that this equation was derived for a 

scenario in which the electrochemical potential of the donor and acceptor electrode are 

offset by eV/2 and –eV/2 from the Fermi level respectively.   

 The Simmons model is useful in illustrating two distinct tunneling regimes: the 

low bias tunneling regime (regime I), and the high bias field emission regime (regime II).  

In the low bias regime (eVbias < φ), the energy barrier is approximated as a trapezoid 

(Figure 1.5a), and the model simplifies to:  
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We see that in this regime there is an approximately linear relationship between voltage 

and current.  As higher biases are applied though, eV approaches the energy barrier in the 

junction, and as a result the barrier becomes triangular (Figure 1.5b).  In this case the 

current-voltage behavior can be approximated as: 
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 (1.3.51)  

Tunneling in this regime is also known as Fowler-Nordheim tunneling or field emission.   
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Figure 1.5:  Illustration of a trapezoidal energy barrier consistent with low bias tunneling 

(a) and a triangular energy barrier consistent with high bias field emission (b).  A Fowler-

Nordheim plot reproduced from Frisbie et al.(114) and illustrating the two tunneling 

regimes is presented in (c). 

 

 The transition between low bias tunneling and high bias field emission can be 

illustrated with the use of a Fowler-Nordheim plot whereby ln(I/V2) is plotted against 1/V.  

a b
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Such a plot can also be referred to as a transition voltage spectroscopy (TVS) plot.  The 

relevance of this plot can be illustrated by linearizing expression 1.3.51 such that 
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An example of a Fowler-Nordheim plot reproduced from Frisbie et. al(114) is given in 

Figure 1.5c.  One can see that the two tunneling regimes are indicated by two distinctly 

different slopes in the plot.  One can see by inspection of equation 1.3.52 that the slope of 

the line in the field emission regime (regime II) is determined by the barrier height φ.   

Another useful measure of the barrier height is obtained by finding the voltage associated 

with the minimum of the Fowler-Nordheim plot, which represents the voltage at which 

the energy barrier transitions from trapezoidal in shape to triangular in shape, otherwise 

known as the transition voltage.  Beebe et al. performed transition voltage spectroscopy 

on a series of conjugated molecules and compared their measured transition voltages to 

the relative energy barriers measured through ultraviolet photoelectron spectroscopy 

(UPS).(115)  The results, which are reproduced in Figure 1.6, show that transition voltage 

scales directly with EF-EHOMO, and is therefore a relative measure of the energy barrier of 

the molecular junction. 
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Figure 1.6:  Correlation of transition voltage measured by transition voltage spectroscopy 

with molecular energy barrier measured by ultraviolet photoelectron spectroscopy 

reproduced from Beebe et al.(115)  Results showed that the two measurements scale 

linearly.   

 

1.4 Contacts in Molecular Electronics 

 Investigations into the effects of molecule electrode bonding have become 

increasingly popular in the literature recently, in part because single-molecule 

measurements allow one to measure effects that would otherwise be obfuscated by 

ensemble measurements of large groups of molecules.  The most common anchoring 

groups used in molecular electronics include thiol,(116, 117) amino,(61, 118) and pyridyl 
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groups.(58, 119, 120)  However other anchoring groups reported in the literature include 

isocyano,(121) cyano,(122, 123) isothiocyanato,(124) methylselenide,(125) 

methylthiol,(125) fused thiophene,(125) demithylphosphine,(125) carboxylic acid,(116) 

dithiocarboxylic acid,(126) nitro,(123) and fullerenes.(127-130)  Different anchoring 

groups have different strengths; however ideally a contact should offer good coupling to 

the electrodes, well defined contact geometry, and low fluctuations during the pulling 

process leading to well defined conductance values. 

 One notorious problem with contacts in molecular electronics is that they can 

produce variation both during the junction pulling process and from junction to junction.  

However, two breakthroughs have been able to shed light on why this is the case.  The 

first was reported by Li et al. who investigate the effects of contact geometry on the 

conductance of alkanedithiol junctions.(131)  The authors reported that alkanedithiols 

bonded in a hollow configuration geometry, whereby the thiol anchoring group was 

coordinated to three gold atoms, produced a conductance five times greater than when the 

thiol group was bonded in a top configuration in which the thiol anchoring group was 

coordinated to a single gold atom.  This conclusion was supported by the fact that high 

conductance junctions frequently switched to low conductance junctions during the 

pulling process, which is consistent with the evolution of the anchoring group being 

pulled from hollow to top geometry.  A second breakthrough in molecular electronics 

was reported by Venkataraman et al. by forming molecular junctions by amine 

linkers.(61)  In this report, the authors compared alkane molecular junctions formed with 

amine anchoring groups to the same junctions formed with thiol and isonitrile groups.  
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The results showed that conductance histograms for amine terminated molecules had a 

better defined conductance peak.  This result was attributed to the high angular flexibility 

and stable electronic coupling associated with the lone pair of electrons donated from the 

amine group to the gold contact.   

 The role that different electrodes play in the behavior of molecular junctions was 

first investigated by Frisbie and colleagues.(132)  Frisbie performed AFM contact 

measurements of current-voltage characteristics in alkanedithiol and alkanethiol self 

assembled monolayers.  However, by changing the tip and substrate coating 

independently between Au, Pt, and Ag, he was able to investigate the role that electrode 

work function plays in the junction.  The results showed that contact resistance decreases 

approximately exponentially with the work function of the electrode material, as shown 

in Figure 1.7 reproduced from the original manuscript below.  This result is consistent 

with a model whereby conduction proceeds via a non-resonant tunneling mechanism 

through the HOMO level of the molecule in the junction.  In this description, the contact 

resistance scales with the exponential of the difference between the Fermi level of the 

contacts and the frontier orbital in the molecule.  Furthermore, the authors showed that 

contact resistance decreases by almost two orders of magnitude with thiol bonds at either 

end of the junction, as compared to a thiol bond at a single end of the junction.     
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Figure 1.7:  Contact resistance as a function of electrode work function reproduced from 

reference (132).  The results are consistent with a model whereby conduction occurs by 

non-resonant tunneling through the HOMO of the molecule.         

 

 A recent trend in molecular electronics has been to form molecular junctions by 

directly graphing the carbon backbone of the molecule to the gold electrodes using Au-C 

covalent bonds.  This was first demonstrated at the single molecule level by cleaving 

trimethyl-tin groups from an alkane backbone in situ;(133) however it has also been 

demonstrated by cleaving trimethyl-silyl groups.(134)  The first reports based on this 

method showed significantly lower contact resistance owing to the higher metal-molecule 

coupling of Au-C bonds compared to metal-thiolate bonds.  In fact, in a report by Chen et 

al. resonant tunneling is measured in methylene junctions formed by Au-C bonds.(135)  

However the hybridization state of the anchoring carbon atom plays a key role in the 
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behavior of junctions formed by Au-C bonds,(136) and as a result coupling is not always 

enhanced vis-à-vis metal-thiolate bonds.  We will see that this is the case in Chapters 3 

and 4, which will discuss the formation of Au-C bonds by electrochemical reduction of 

diazonium terminal groups, and cleaving iodine terminal groups in situ.   

1.5  Summary 

 The developing field of molecular electronics spans many disciplines from 

chemistry, physics and surface science, to electrical engineering.  All of the theoretical 

and technical factors that affect measurements at the single molecule level cannot be 

summarized in a single chapter.  Nor can all of the milestones that have been reported in 

the field.  However the experimental background and theoretical framework presented 

should provide context in understanding the projects discussed in the next chapters.   
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2. TRANSTION FROM TUNNELING TO HOPPPING IN SINGLE MOLECULE 

JUNCTIONS BY MEASURING LENGTH AND TEMPERATURE 

DEPENDENCE 

2.1  Introduction 

Understanding charge transport in a single molecule bridged between two electrodes is 

paramount to the goal of creating devices from single molecules, and directly relevant to 

electron transfer phenomena in many chemical and biological systems.(1, 2)  Two 

distinct charge transport mechanisms have been extensively discussed in literature: 

coherent transport via tunneling or superexchange, and incoherent thermally activated 

hopping.  Coherent tunneling or superexchange dominates through short molecules and 

the conductance is given by(137) 

 =  �����
 (2.1) 

where Gc is the contact conductance, β is the tunneling decay constant, and L is the length 

of the molecule. In addition to the exponential decay of the conductance with molecular 

length, this coherent process is characterized by temperature independence.  Incoherent 

hopping is believed to be responsible for charge transport along long molecular wires, 

and the conductance follows an Arrhenius relation given by 

 ∝  exp (���
���) (2.2) 



34 
 

where EA represents the hopping activation energy. Charge hopping is also characterized 

as a weakly length dependent process which gives rise to conductance that varies as the 

inverse of molecular length.   

 Wire-like molecules made of repeating units are ideal for understanding charge 

transport mechanisms because they allow one to study both coherent and incoherent 

transport, as well as the transition between the two by systematically changing the wire 

length.  The transition from tunneling to hopping was observed by measuring photo-

induced charge transfer kinetics in donor-bridge-acceptor systems with modulated 

molecular length(138) and in DNA molecules.(139)  Theoretical works by various 

groups(12, 20, 23, 140-143) have provided additional insights into the experimental 

results and charge transport mechanisms in general.   

 Few conductance measurements of molecules with modulated length bridged 

between electrodes have been carried out.  Xu et al. reported a hopping-like charge 

transport mechanism based on length dependence measurements in DNA molecules 

containing GC base pairs.(144)  However, further work did not observe a strong 

temperature dependence in these DNA molecules due to the narrow temperature window 

accessible for the experiment.(145)  Frisbie and colleagues first reported on the transition 

from tunneling to hopping by means of direct resistive measurements as a function of 

molecular length, temperature and applied bias in junctions made out of hundreds of 

molecules using conducting probe atomic force microscopy (CP-AFM).(77)  The 

experiment was carried out in molecular thin films in which short range intermolecular 

interactions prevent these results from being directly correlated with the behavior of a 
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single molecule.(146)  Wang and colleagues first reported on the mechanism transition at 

the single molecule level by characterizing the distance dependence of molecular 

conductance using scanning tunneling microscopy (STM) break junction and CP-

AFM;(147) however, the results were reported only in light of length dependence, not 

temperature dependence, which is necessary to be completely certain that a transition 

from tunneling to hopping has occurred.(148)   
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Figure 2.1:  Molecular structure of the wires used in this study.  The lengths measure 3.1 

nm, 5.2 nm, 7.3 nm, and 9.4 nm for the 1, 2, 3, and 4-mer wire respectively.   
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 Here, we report results that support a transition between tunneling and hopping in 

single molecule junctions by carrying out both length and temperature dependent 

measurements of conductance. The family of molecules investigated consisted of four 

molecular wires ranging from 3.1 to 9.4 nm in length, shown in Figure 1.  To the best of 

our knowledge, the last molecule in this family represents the longest molecular wire 

studied by direct conductance measurements with the molecule covalently bound to both 

electrodes.  At elevated temperatures one can observe higher conductance in the longer 

wires that conduct via hopping than in the shorter wires that conduct via tunneling.  The 

formation and evolution during pulling of these long molecular wire junctions with the 

STM break junction method was studied by analyzing the individual transient current 

decay curves.   

2.2  Methods 

2.2.1  Chemicals 

 The molecular wires used in this study were synthesized at the Max-Planck 

Institute for Polymer Research.   

2.2.2  Sample preparation 

 Gold substrates were prepared by thermally evaporating 130 nm of  99.9995% 

Alfa Aesar gold onto freshly cleaved mica slides in a UHV chamber (~5 x 10-8 Torr), and 

annealing for 3 hours at 360° C to ensure a flat Au (111) surface.  Each substrate was 

flame annealed with hydrogen for approximately 45 seconds before being placed in the 

STM cell with pure mesitylene.  STM tips were prepared by cutting 0.25 mm 99.998% 
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gold wire from Alfa Aesar.  Before adding molecules, the sample substrate was imaged in 

the STM to ensure that there was a clean surface that was free of contamination and that 

sharp terrace ledges were clearly visible, which is indicative of a sharp tip.  Once the 

surface was experimentally confirmed to be free of contamination, the cell was taken out 

of the STM chamber and a solution of approximately 100 µM of the protected molecules 

in mesitylene was added drop-wise to the cell.  The acetyl protecting group was self-

cleaved when the molecules were added to the STM cell because steps corresponding to 

formation of a molecular bridge were immediately observable when break junction 

measurements were carried out. 

2.2.3  Electrical Measurements  

 The STM break junction method was employed to repeatedly form molecular 

junctions between gold electrodes.(58)  The current was modulated using a homemade 

LabVIEW program with two feedback setpoints.  The setpoints were defined as 10 nA 

and 1 pA with a bin size of 0.7 pA for the 1-mer wire and 1 nA and 0.1 pA with a bin size 

of 0.07 pA for the 2, 3 and 4-mer wires.  The upper setpoints used for either amplifier 

were not high enough to form a metallic contact between electrodes; however a 

molecular junction was still able to form.  The LabVIEW program was used to engage 

the tip towards the surface until the upper setpoint current was reached.  When this 

occurred, the tip was retracted.  In the absence of molecules, a pure exponential decay in 

the current with respect to tip-sample distance is observed.  However, when molecules 

are present, a molecular bridge occasionally forms, which produces a plateau in the 

transient decay curve corresponding to the approximate current through the molecule.  
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The retraction of the probe continues until it reaches a distance of two to five nanometers 

beyond the distance corresponding to the low setpoint current.  The additional ramping 

beyond the minimum setpoint current was added to make sure that the molecular junction 

had been completely broken.  When the probe has finished retracting the tapping cycle is 

repeated so that thousands of decay curves can be recorded.     

 The STM setup consisted of a Molecular Imaging STM head controlled by a 

Digital Instruments IIIa signal access module integrated with a homemade LabVIEW 

feedback program.  A single stage 1 nA/V amplifier was used to measure the 1-mer wire, 

and an additional 10X second stage was employed to produce an overall gain of 0.1 nA/V 

for the 2, 3, and 4-mer wires.  Sample temperature was controlled using a Peltier stage for 

the 1-mer wire and a resistive heating stage for the 2, 3 and 4-mer wires.  For each 

temperature setting, the system was allowed to stabilize for approximately twenty to 

thirty minutes before measurements were taken to minimize thermally induced drift.    

 Approximately 5,000 to 15,000 decay curves were collected for each molecule at 

each temperature setting.  Typically, more curves needed to be measured for longer 

molecules because step yield was relatively low at these lengths. Of the recorded curves, 

approximately 200-400 decay curves showing step like features for each measurement 

setting were selected manually to construct a conductance histogram.   Curves with step 

like features were easily identified due to the long length of steps, typically close to a 

nanometer or more, and the generally clean drop in the step that results from breaking the 

molecular junction.  A full discussion of the selection criteria is given in Section 2 of the 

supporting information.  Experiments were repeated at two to three different temperatures 
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for each molecular wire to ensure reproducibility of results.  Peaks in the histograms were 

used to determine the conductance of the single molecule junctions.  The median and full 

width half maximum (FWHM) of peaks were found by fitting each conductance peak to a 

Gaussian distribution.   

 Step length data was extracted from transient decay curves showing step like 

features.  The ramping rate of the tip was fixed at 20 nm/sec for all experiments in order 

to avoid ramping rate changes from affecting the stability of the junction.(149)  When 

performing tapping experiments, noise from the use of high bias frequently caused dips in 

the current below the predetermined minimum setpoint current.  To prevent the tip from 

prematurely ramping toward the surface before the junction had been completely broken, 

the piezoelectric actuator was assigned to ramp an additional two to five nanometers after 

the minimum setpoint current had been reached.  Further distances were used for the 

longer molecular wires.  Step length was determined by measuring the distance between a 

predetermined high and low current in each transient decay curve that showed current 

plateaus corresponding to formation of a molecular junction.  Thus, both conductance and 

step length histograms were compiled from the same set of decay curves with current 

plateaus.  Typically, the high current was chosen to be approximately three times the 

value of the median step height, while the low current was chosen to be about 10% of the 

median step height.  Each transient decay curve was processed through a 1000 Hz low 

pass filter to minimize the presence of noise spikes, which can interfere with step length 

measurement.   

2.3  Experimental Results   
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2.3.1  Conductance of the Molecules 

 Figures 2a-d show conductance histograms for the four molecules at 40° C.  This 

temperature was chosen to compare all four wires because the yield of forming molecular 

junctions at lower temperatures is prohibitively low for the 3 and 4-mer wires.  The yield 

increases with temperature, an interesting observation that we will discuss later.  The 

conductance is 9.8x10-6 G0 for the 1-mer wire with a length of 3.1 nm, where G0 is the 

conductance quantum defined as 2e2/h (e is the electron charge and h the Planck 

constant).  The value drops to 4.6x10-8 G0, more than 200 times, for the 4-mer wire with a 

length of 9.4 nm.  To the best of our knowledge the 4-mer wire represents the longest 

molecule that has been measured with the STM break junction method.  The shapes of 

the peaks in histograms vary from experiment to experiment; however experiments taken 

at the same conditions show reproducible peak locations.  The distribution of values 

observed in conductance histograms is attributed to the statistical nature of the break 

junction system which can give rise to different molecule electrode contact 

geometries(63, 150, 151) and molecular configurations.(151)   
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Figure 2.2:  Conductance histograms of each molecular wire at 40° C.  This temperature 

represents the lowest in which all four wires could be measured.   

 

 In order to measure molecular conductance, relatively large bias voltages between 

200 to 1200 mV had to be employed to produce conductance steps that could be 

differentiated from the background.   These bias values are listed in Table 2.1, and most 

are at or below 400mV.  However, for the 3 and 4-mer, biases of 800 and 1200 mV had 

to be used to measure conductance at lower temperatures.  Ideally, low biases are used 

because at higher biases the current voltage behavior becomes non-linear in nature.(115, 
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152)  Thus, it is relevant to consider whether conductance measurements taken at higher 

biases still fall within the linear regime of the molecules.  Figure 2.3 shows that 

conductance histograms for the 4-mer wire taken at 40 degrees Celsius at three different 

biases all show similar conductance peaks.  This suggests that despite the high bias, 

conductance still falls within the linear regime.  We can be certain that measurements 

taken with the shorter 1, 2 and 3-mer wires were also in the linear regime of conductance 

due to the larger energy gaps of the molecules (Figure 2.7), and lower applied biases that 

were used compared to the 4-mer wire. 
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Figure 2.3  Conductance of the 4-mer wire at 40 degrees Celsius as a function of bias.  

Even though relatively large biases were applied, there is very little change in 

conductance due to the wider energy gap of the molecule. 

 

Temperature 1-mer 2-mer 3-mer 4-mer 
0° C 200 mV - - - 
10° C 200 mV - - - 
20° C 200 mV - - - 
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25° C - 400 mV 800 mV - 
30° C 200 mV - - - 
40° C 200 mV 400 mV 400 mV 1200 mV 
45° C - - - 800 mV 
50° C 200 mV 400 mV 400 mV 400 mV 
55° C - - - 400 mV 
60° C - 400 mV 400 mV - 

 

Table 2.1  Biases used during STM break junction experiments. 

 

2.3.2  Length dependence   

 A semi-log plot of conductance as a function of molecular wire length with error 

bars given by the FWHM of the conductance histograms is given in Figure 2.4.  Note that 

all except the 4-mer wire data were obtained at 25°C.  For the 1 and 2-mer wire, the 

conductance is highly length dependent, and an exponential fit of the curve gives a 

tunneling decay constant of 2.06 ± 0.09 nm-1, which is similar to the decay constant 

measured for other conjugated molecular wires(77, 114, 147, 153, 154), albeit with 

differing molecular structures.  The conductance becomes weakly length dependent for 

the 3-mer and 4-mer wires.  This trend suggests that electron transfer occurs via a non-

resonant tunneling process in the 1 and 2-mer wires, and transitions to a charge hopping 

mechanism for the 3 and 4-mer wires.  However, this statement cannot be verified by 

length dependence alone(148), and as a result the conductance values of the molecular 

wires were measured at different temperatures.   
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Figure 2.4:  Measured conductance as a function of wire length at T = 25° C, 40° C and 

50° C.  Conductance was invariant of temperature in the 1 and 2-mer wires, and varied 

systematically with temperature for the 3 and 4-mer wires.  Red lines are included as a 

guide to the eye. 

 

2.3.3  Temperature dependence 

 Figure 4c shows that the conductance of the 1 and 2-mer wires is independent of 

temperature, while Figures 4a and b show that the conductance of the 3 and 4-mer wires 

varies systematically with temperature.  This trend supports the hypothesis that charge 



45 
 

transport occurs by tunneling in the shortest two molecules and by thermally activated 

hopping in the longer molecules.  The transition occurs between the 2 and 3-mer wires 

for this molecular family, which represents a length of between 5.2 nm and 7.3 nm.  

Elsewhere, transitions in other conjugated systems have been approximately 2.5 nm(138), 

2.75 nm(147), 4 nm(77, 114), and from 5.6 nm to 6.8 nm(153).  Thus, compared to other 

systems, our set of molecular wires displays long range tunneling behavior.   
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Figure 2.5:  (a,b)  Conductance histograms for the 3-mer wire (a) and 4-mer wire (b) 

measured at different temperatures.  (c) Arrhenius plot of conductance for the 1, 2, 3 and 

4-mer wires.  The conductance values measured for the 3 and 4-mer wires show a 

systematic dependence on temperature suggesting that charge transport occurs via a 

thermally activated hopping process. The red square marks the transition where the 

conductance of the 3-mer wire intersects the conductance of the 2-mer wire. 

 

Charge hopping activation energies for the 3 and 4-mer wire were found by fitting 

Arrhenius curves to Figure 2.5c.  The activation energies for the 3 and 4-mer wires were 

measured to be 0.52 eV and 0.58 eV with r2 values of 0.947 and 0.997 respectively.  
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These values are reasonably consistent with measurements on molecular wires carried out 

using conducting probe AFM(77) and electrochemical impedance spectroscopy.(155)   

2.4 Transition from tunneling to hopping.   

 The transition from tunneling to hopping conduction mechanisms leads to a 

peculiar length dependent conductance for the 2-mer and 3-mer wires.  At low 

temperatures, the shorter 2-mer wire is more conductive than the longer 3-mer wire.  

However, the 3-mer wire conductance increases with temperature while the 2-mer wire 

conductance remains temperature invariant.  Consequently, the longer 3-mer wire 

becomes even more conductive than the shorter 2-mer wire when temperature is above 

40°C.  The crossover point is marked by a red square in Figure 4c.  Wasielewski and 

colleagues observed a similar behavior in the study of photoexcited electron transport in 

donor-bridge-acceptor molecular wires.(138, 156)  The authors attributed this 

phenomenon in context of the donor and bridge energy levels, and cite the decreasing 

energy mismatch between the lowest unoccupied molecular orbitals of the donor and 

bridge as bridge length increases as being responsible for the higher electron transfer rate 

in the hopping regime.(138)  Thus the phenomenon Wasielewski et al. observed was only 

made possible by the fact that the molecular energy gap changes significantly with bridge 

length.  This phenonemenon does not apply to our system of wires for reasons discussed 

in the next section.   

2.5  The Role of Coupling Between Repeat Units  
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 Whenever studying a series of molecular wires, it is important to consider 

whether the role of coupling between units on the bridge.  If the repeating units are 

coupled together, the energy barrier created by the orbital closest to the Fermi level can 

decrease, thereby affecting the conductance vs. length characteristics of the molecular 

system.  To address this question, electronic structure calculations were carried out for 

simplified structures of the molecules 1, 2 and 3 by H. Liu, Z.-S. Wang, and J. Zhao at 

the Key Laboratory of Analytical Chemistry for Life Science at Nanjing University.  

Calculations for molecule 4 were not carried out because it was prohibitively large for 

meaningful results to be acquired.   

 In order to perform electronic structure calculations, the molecular structures were 

simplified to remove the side alkyl chains from the molecular backbone and thiols from 

the terminal end of the molecules.  The resulting geometric structures were then 

optimized using Gaussian 03 software at the HF/6-31G(d) level.  After the optimization, 

two thiols were re-connected to the resulting structure.   

 Calculate structures are presented in Figure 2.6.  One can see that the repeat units 

are locked in place by fluorene groups, and that rotation can only occur between either 

two repeat units or between one repeat unit and the terminal end of the molecule.  This is 

illustrated in Figure 2.5 where arrows indicate where the molecules are free to rotate. 

Calculations show that the resulting dihedral twist between repeat units are all very close 

to either 45 or -45 degrees.  This angle is enough to impede substantial coupling between 

repeat units.   
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Figure 2.6:  Calculated dihedral angles between repeating units in Molecules 1, 2 and 3.  

The angle between repeating units prevents significant coupling between units.   

 

 Ultraviolet-visible spectroscopy (UV-Vis) data can also be a useful tool in 

evaluating the electronic structure of the molecules, because the absorption peak in the 

spectrum is a measure of the HOMO-LUMO gap in the molecule and scales with the 

energy barrier in the junction.   UV-Vis data for the four molecules used in this study are 

presented in Figure 2.6.  From the data, it is clear that the HOMO-LUMO gap is fairly 

constant across all four molecules.  In fact, the absorption peak only shifts from 413 nm 

for molecule 1 to 433 nm for molecule 4, which suggests that coupling between repeating 

units does not play a significant role in this series of molecules.   
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Figure 2.7  Ultraviolet-Visible Spectroscopy data for the wires used in this study.  The 

absorbance peaks are relatively consistent for all four molecules which suggests the 

HOMO-LUMO gap does not change significantly in this system.   

 

 In summary, the data presented in Figure 2.6 and 2.7 both support the conclusion 

that there is minimal coupling between repeating units in the series of molecules studied.  

This suggests that the energy barrier of the junction remains relatively constant across all 

four molecules, and that the conductance vs. length behavior observed in this system is in 

fact due to a transition from a tunneling mechanism to a hopping mechanism.   

2.6 Molecular junction formation.   
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 The yield of forming molecular junctions in the present system increases with 

temperature and decreases with molecular length.   The temperature dependence results 

from the thermal activation required to form a S-Au bond between the STM tip and the 

terminal thiol group of the molecule.  The molecular length dependence of junction yield 

results from the relative difficulty in forming a well ordered SAM with longer molecules.  

In decay curves where a junction is formed, the steps are frequently defined by 

fluctuations in current as the tip retracts (see Figure 5b).  This phenomenon has also been 

observed in other system(157), which has been attributed to the formation and breakdown 

of the molecule-electrode contacts.  In the present system, the sliding of the molecules on 

the electrode surfaces during pulling may also contribute to the fluctuations. This 

phenomenon is discussed in more detail later.   Another observation worth noting here is 

the large step length, the length a molecular junction can be stretched before breakdown.  

In the case of alkanedithiols, an extensively studied molecular system, the typical step 

length is a fraction of a nanometer.  The step length in the present system can be as large 

as several nanometers – comparable to the length of the molecules.   

  Step length information was extracted from transient decay curves collected at 

40°C.  Examples of steps collected for the 4-mer wire are given in Figure 2.8b.  This 

temperature was the lowest in which all four molecular wires could be measured.  Length 

histograms presented in Figure 2.8c show the step length distributions for all four of the 

molecular wires.  The figure shows a progressive decrease in the median step length as 

molecular wire length is increased.  This trend is accompanied by a corresponding 

increase in step length spread as wire length is increased.  Across all wires studied, there 
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were examples of steps approaching the theoretical length of the molecule, measured 

from sulfur atom to sulfur atom.  In fact, in the 3 and 4-mer wires, there were examples 

of steps exceeding 5 nm in length.  The tail end of the step length histogram for the 1-mer 

wire exceeds the theoretical length of the molecule by as much as 0.75 nm, illustrated in 

Figure 2.8a.  However, the theoretical length does not include the formation of Au-S 

bonds at either end of the junction, each of which measure 0.245 nm in length.  When 

these bonds are accounted for, the longest step is only about 0.26 nm longer than the 

theoretical length of the junction.  This length extension can be explained by the 

formation of a gold atom chain at either end of the junction.  This concept is illustrated in 

Figure 2.8a.  Previous studies have suggested that such a chain can form at each end of 

the contacts(90, 158, 159)  and can reach several atoms in length at room 

temperature.(90)  Given that the atomic distance between gold atoms is approximately 

0.236 nm, a gold chain of only a single atom at either end of the junction could easily 

explain the observed steps that exceed the theoretical length of the 1-mer wire.   
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Figure 2.8:  (a) Schematic illustration of 1-mer pulling which can form steps slightly 

longer than the molecular length when formation of gold chains at the electrodes is 

accounted for.  The measured length of the step is illustrated by vertical red lines.  (b)  

Transient decay curves of the 4-mer wire, where step length can exceed five nanometers 

in length.  (c) Histograms of measured step lengths for all four wires at 40° C.  The red 

lines denote the lengths of the molecular wires. 

 

 The histograms shown in Figure 2.8c all show a median step length significantly 

less than the theoretical length of the molecule.  We propose a “sliding model”, illustrated 

in Figure 2.8, to explain the evolution of the molecular junction.  The sliding model we 

describe here is similar to those proposed previously.(49, 160)  In this model, the 
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molecules are inhibited from standing upright on the surface due to their length; however 

their alkyl side chains also prevent them from lying flat on the surface of the substrate.  

As a result, the molecules form a monolayer at an angle to the substrate when the 

molecular junction first forms.  The retraction of the tip serves to pull the molecule in the 

junction into an upright position by sliding the Au-S bond on the surface so that it is 

positioned under the apex of the tip.  The fluctuations shown in the decay curves in 

Figures 2.8a and 2.8b can be partially attributed to the Au-S bond sliding along the 

surface of the substrate as the tip retracts.  Sliding is more difficult for longer molecules 

which inherently contain more degrees of freedom and are more likely to couple to the 

substrate.  These factors may explain why median step length in Figure 2.8c decreases for 

longer molecules.  While local heating in molecular junctions is known to affect junction 

stability(161), it is unlikely to have affected the junction stability of the longer molecules 

because heating is the result of current through the molecule and applied bias, and in our 

system of molecular wires current decreases substantially with molecular length even as 

bias is increased.   
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Figure 2.9:  Schematic illustration of proposed molecular junction evolution.  As the tip 

retracts, the molecule slides along the surface of the substrate so that it is pulled upright.     

 

2.7 Conclusion 

 The STM break junction technique was used to study the electrical properties of a 

family of molecular wires from 3.1 to 9.4 nm in length.  Results showed highly length 

dependent and temperature invariant behavior in the shortest two wires, and weakly 

length dependent and temperature variant behavior in the longer two wires.  This data is 

consistent with a model whereby conduction is dominated by a coherent tunneling 

process in the shortest two wires and transitions to an incoherent hopping process in the 
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longer two wires.  To the best of our knowledge, the last wire in the series represents the 

longest molecule measured by formation of a single molecule junction.   We found that 

the transition in charge transport behavior occurs between wires measuring 5.2 nm and 

7.3 nm in length, which represents relatively long range tunneling.  For the wires that 

conduct via hopping, the activation energy was measured to be between 0.52 eV and 0.58 

eV.  At elevated temperatures, charge hopping in the 3-mer wire can yield a higher 

conductance than by non-resonant tunneling in the 2-mer wire.  Analysis of the step 

length distribution showed that most steps were significantly shorter than the length of 

the molecule being measured.  We feel that this phenomenon is best explained by sliding 

of the Au-thiol bond across the substrate as the probe is retracted until either the bond 

stochastically breaks, or the junction is mechanically broken.    
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3.  CONTROLLING FORMATION OF A SINGLE MOLECULE JUNCITON BY 

ELECTROCHEMICAL REDUCTION OF DIAZONIUM TERMINAL GROUPS 

3.1 Introduction 

 The anchoring of a molecule to a metal surface is a key factor that affects both 

charge transport and stability in single-molecule junctions.(1)  Anchoring is usually 

achieved by using one of several linker groups that covalently bond the molecule to the 

electrodes.  Thiols(58, 116) and amines(61, 116) have been characterized extensively in 

the literature; while other reported linkers include pyridine,(158) isocyanide,(162) 

nitrile,(122) carbodithiolate,(126) and carboxyl(116) groups.  Additionally molecular 

junctions formed by direct Au-C covalent bonds were reported by cleaving trimethyltin 

terminal groups,(133, 135) trimethyl silyl groups,(134) and by bonding fullerenes directly 

to gold.(127, 130)   However, in all of these cases the energetics of bond formation is 

invariant to the surrounding environment.  Thus, the only way to control formation and 

rupture of the junction is by mechanically manipulating electrodes, either through a 

mechanically controlled break junction(55, 163) or scanning tunneling microscope 

(STM) break junction(58).     

 An alternative approach of binding molecules to electrodes utilizes the 

electrochemical reduction of a diazonium ion placed at the terminal end of a linear 

molecule.(164)  This process allows control over the binding energetics of deposition via 

manipulation of an externally controlled electrochemical gate.  Upon reduction, the 

terminal diazonium ion is cleaved from backbone of the molecule creating an aryl radical.  
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The radical then reacts with a carbon or metal electrode by forming a direct covalent 

bond with uninterrupted pi conjugation.(164-170)  The nature of this bond has been 

verified using Raman(171, 172) and XPS.(171, 173) McCreery et al. have employed this 

process to graft 1000’s of molecules to carbon electrodes so that they may be used as 

active components in hybrid devices fabricated by using conventional CMOS 

techniques.(174-178)  This diazonium reduction process produced a more compact and 

robust organic layer than was achievable using conventional covalent linker groups, 

which reduced diffusion of metallic species from top coats deposited by thermal 

evaporation.(175)   

 Here we apply the electrochemical reduction of diazonium groups to the STM 

break junction process, thereby allowing electrochemical control over the formation of a 

stable single molecule junction.  We use a biphenyl molecule with ortho placed methoxy 

groups and axially placed diazonium terminal groups on either end.  Calculations 

presented in Table S1 show that the methoxy groups do not have a significant effect on 

either the assembly process or the conductance of the molecule.  The structure of this 

molecule differs from molecules used in hybrid devices because in this case the 

diazonium ions are placed at both ends of the molecule.  As a result, setting the 

electrochemical potential to the reduction potential of the diazonium ion induces 

formation of a metal-molecule-metal junction directly connected by Au-C bonds.  By 

mechanically breaking the junction, the formation and breaking process may be repeated 

a finite number of times.  Furthermore, we show that the molecule electrode coupling 
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created by the direct Au-C bonding produces a significantly more robust junction than in 

the same molecule connected using amine linkers. 

3.2 Methods 

3.2.1. Sample Preparation 

 Gold substrates were prepared by thermally evaporating 130 nm of  99.9995% 

Alfa Aesar gold onto freshly cleaved mica slides in a UHV chamber (~5 x 10-8 Torr), and 

annealing for 3 hours at 300° C to ensure a flat Au (111) surface.  A solution of 

anhydrous acetonitrile with 25 mM tetrabutylammonium hexafluorophosphate (TBAPF6) 

was flushed with nitrogen gas to remove any dissolved oxygen prior to preparation of the 

substrate.  The substrate was then flame annealed with hydrogen for approximately 45 

seconds before being placed in the STM and filled with acetonitrile and TBAPF6 solution.  

The working electrode was prepared by cutting and wrapping a small piece of 0.25 mm 

platinum/iridium (80%/20%) wire in a tight coil and flame annealing and quenching the 

coil several times.  Upon the last cycle, the coil was flame annealed, allowed to cool in 

air for a few seconds, and then inserted into the STM cell.  The reference electrode was 

prepared by cutting a small piece of 0.25 mm silver wire, flame annealing one end to 

form a small ball free of any oxide layer and immediately inserting it into the STM cell.  

STM tips were prepared by cutting 0.25 mm 99.998% gold wire from Alfa Aesar.  Before 

adding molecules, the sample substrate was imaged in the STM to ensure that there was a 

clean surface that was free of contamination and that sharp terrace ledges were clearly 

visible, which is indicative of a sharp tip.  Once the surface was experimentally 
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confirmed to be free of contamination, the cell was taken out of the STM chamber and a 

solution of approximately 2 mM of 2,2’-dimethoxybiphenyl-4,4’-bis(diazonium) zinc 

tetrachloride (Sigma-Aldrich, 95% and referred to at bp1 from this point forward) was 

added dropwise to the STM cell at 0 mV applied electrochemical potential (vs. 

Ag/AgCl).   

3.2.2 Electrical Measurements 

 The STM used to carry out experiments was equipped with a bi-potentiostat that 

allowed electrochemical control of the diazonium reaction.  First, cyclic voltammograms 

were recorded in order to characterize the redox reactions of the bp1 molecule.  Next, 

molecular junctions were formed using the scanning tunneling microscope (STM) break 

junction technique.(58)  This process entailed repeatedly bringing a gold STM tip into 

and out of contact with the gold substrate with the sample-tip bias fixed at 20 mV and 

electrochemical potential applied to both electrodes.  When the tip was retracted in the 

absence of molecules binding to the electrodes, a clean exponential decay in the current 

was recorded within the conductance range below G0.  However when a molecular bridge 

was formed a plateau was recorded in the current decay curve, which corresponded to the 

approximate current measured through a single molecule junction.  Due to the 

irreversible nature of the diazonium electrochemical reduction, conductance traces were 

recorded starting 0 mV applied potential (vs. Ag/AgCl) and the electrochemical potential 

was successively decreased in intervals of 100 mV until reaching the potential of the 

diazonium reduction reaction.  The experiment was carried out on four separate 

occasions.     
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3.2.3 Data Processing 

 Conductance histograms were compiled by applying the same automated 

selection criteria to each set of recorded decay curves.  In this process, traces showing 

counts exceeding a defined threshold at conductance values within a given interval range 

were added to the conductance histogram.  This selection process made peaks in the 

conductance histograms more prominent above the tunneling background and also 

allowed a quantitative measure of the yield of molecular junction formation in all of the 

conductance traces.  This process also allowed all decay curves showing steps to be saved 

to a separate directory so that the pulling distance of each molecular junction could be 

measured.   

 Pulling distance histograms were compiled by processing all decay curves which 

had been identified as showing molecular steps while processing conductance 

histograms.  An automated LabVIEW program identified the point in the decay curve 

where the conductance dropped below approximately 5x the average conductance of the 

molecule (corresponding approximately to where the molecular step began) and the point 

where the conductance drops below one fifth the average conductance of the molecular 

junction (corresponding to the point where the junction ruptures).  The distance between 

these two points was measured to show the distance over which the junction had been 

pulled.  It should be noted that it is difficult to measure precisely at which point a 

junction forms and ruptures; however as long as the same criteria are applied to each 

molecule measured, the measured pulling distance can give a very good relative 

comparison over which two different molecular junctions can be pulled.   
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3.3 Experimental Results 

 The cyclic voltamogram shown in Figure 3.1 displays successive scans in green 

(1st cycle) and red (2nd cycle) showing a prominent reduction peak at approximately -650 

mV vs. Ag/AgCl.  As illustrated in the inset schematic, this potential corresponds to the 

reduction of the diazonium linker groups, and deposition of the bp1 molecule directly 

onto the gold electrode via a Au-C covalent bond.(165, 168)  Also noteworthy is the lack 

of any corresponding oxidation peak, and the surface passivation observed by the peak 

intensity decrease in successive cycles, showing that the reaction is irreversible and the 

backbone of the molecule is electrochemically inactive. 
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Figure 3.1:  Cyclic voltamogram of the bp1 molecule used in experiments.  The 

diazonium terminal groups were irreversibly reduced at approximately -650 mV vs. 

Ag/AgCl.   
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 The conductance histograms in Figure 2 show that between 0 and -200 mV vs. 

Ag/AgCl, a conductance peak is not noticeable above the tunneling background.  This is 

attributed to the relatively low yield of molecular junction formation at these 

electrochemical potentials compared to the inevitable “false counts” that result from 

employing automated selection criteria.  However, when the electrochemical potential is 

decreased to -300 mV vs. Ag/AgCl and below, conductance histograms show a 

prominent peak centered at approximately 2.3 x 10-3 G0.   
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Figure 3.2:  Conductance histograms in linear scale taken at electrochemical potentials 

ranging from 0 mV to -600 mV vs. Ag/AgCl.  Conductance peaks appeared at -300mV 

and below, indicating that single-molecule junction formation occurs near the reduction 

potential of the diazonium groups.    
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 A plot of measured conductance of bp1 as a function of applied electrochemical 

potential vs. Ag/AgCl is presented in Figure 3.3a.  Median and standard deviation of 

conductance were found by fitting each peak presented in Figure 3.2 to a Gaussian 

distribution.  Those histograms that did not show any prominent peaks were not fitted and 

thus are not represented in Figure 3.3a.  It is evident that once the two-diazonium linker 

groups are reduced to form a molecular junction, the measured conductance is relatively 

invariant to the applied electrochemical potential.  This is supported by the fact that the 

CV shown in Figure 3.1 does not show any electrochemical activity associated with the 

biphenyl backbone of the molecule. 
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Figure 3.3:  (a) Conductance peaks extracted from Figure 3.2 as a function of applied 

electrochemical potential.  (b)  Relative yield of forming a molecular junction as a 

function of applied electrochemical potential.     
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 The yield of molecular junction formation for bp1 was found by applying the 

same automated selection criteria to each set of conductance decay curves collected at 

different electrochemical potentials.  Yield is defined as the number of transient decay 

curves showing steps divided by the total number of decay curves collected.  Thus, the 

yield serves as a measure of the tendency of a molecular junction to form.  Figure 3.3b 

shows the weighted mean yield of molecular junction formation, along with standard 

deviation, recorded across four different experiments.  For applied electrochemical 

potentials between 0 and -200 mV vs. Ag/AgCl the data shows relatively low single-

molecule junction formation, on average below 1%, which correlates with the lack of any 

apparent peaks in the corresponding conductance histograms.  However when the applied 

electrochemical potential is set to -300 mV and below, step yield noticeably increases to 

between 1% and 5%.  This trend shows a direct correlation between the applied 

electrochemical potential and the formation of single-molecule junctions, which supports 

the conclusion that the molecular junction is forming by electrochemical reduction of the 

diazonium terminal groups. 

3.4 Control Experiments with an Amine Terminated Molecule 

 In order to determine the role that the Au-C covalent bond plays in the 

conductance and stability of the molecular junction, STM break junction measurements 

were also performed on 3,3′-dimethoxybenzidine (Sigma-Aldrich, and referred to as bp2 

from this point forward). Bp2 has the same backbone structure with ortho placed 

methoxy groups as bp1 but has axially placed amine linkers instead of diazonium 

terminal groups (see inset of Figure 3.4b for schematic).  Thus, the bp2 molecule acted as 
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a control to the measurements taken with bp1.  Previous reports of molecular junctions 

created by direct Au-C bonds by Venkataraman et al. reported up to a 100x increase in 

conductance compared to analogous molecular junctions bound by covalent amine 

bonds.(133, 135)  Conductance traces for bp2 were recorded under the same bias 

conditions and in the same electrolyte as bp1; however the electrochemical potential was 

fixed at 0mV vs. Ag/AgCl because neither the backbone nor the amine linker groups of 

bp2 are electrochemically active within the electrochemical working range.  The 

conductance histogram for bp2 (Figure 3.4b) shows a median conductance of 1.4x10-3 

G0, meaning that the bp1 junction is only 60% more conductive than bp2 (Figure 3.4a).  

Thus we see that despite previous reports of significantly higher conductance due to 

direct Au-C bonds, the measured conductances of the diazonium terminated bp1 and 

amine terminated bp2 molecules are fairly similar.  
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Figure 3.4:  Side by Side Comparison of bp1 and bp2.  The conductance of bp1 (3.4a) is 

only 60% greater than that of bp2 (3.4b).  However the bp1 junction can be pulled (3.4c) 

nearly twice as far as that of bp2 (3.4d). 

 

 The stretching distance of molecular junctions created with bp1 and bp2 was 

measured and plotted as step length histograms in Figure 3.4c and 3.4d.  Gaussian 

distributions were fitted to both histograms and show that the median pulling length for 

bp1 is 0.34nm, while for bp2 it is much shorter, only 0.18nm.  This is the case despite 

the fact that the bp1 junction measures 1.13 nm from Au apex to Au apex, compared to 



71 
 

1.34 nm for the bp2 junction, which is longer because it contains intermediate amines 

between the phenyl rings and gold contacts.  The longer pulling distance associated with 

the bp1 junction can be attributed to the direct Au-C bond, which created a stronger bond 

with the gold electrode than the amine bond used in the bp2 junction.   

3.5 Supporting Calculations. 

 In order to complement the measured conductance and step length data for both 

molecules, density functional theory (DFT) and non-equilibrium Green’s function 

(NEGF) transmission calculations were performed by H. Nakamura, T. Shimazaki, and 

Y. Asai at the Nanosystems Research Institute at the National Institute of Advanced 

Industrial Science and Technology in Japan.  The DFT calculations were carried out 

using SIESTA package(179), while the transport calculations were performed by the 

HiRUNE subroutines,(180) which is in-hose code interfaced with SIESTA.  Parameters 

calculated include molecule-electrode adsorption energy, conductance, highest occupied 

molecular orbital (HOMO) energy, and coupling energies between the HOMO and 

electrode.  The adsorption energy, Eads, is defined as  

( )ads tot mol ele mol eleE E E E E −= − + +  (3.1) 

where totE , molE , eleE  are the energy of the entire molecular junction, the bridge 

molecule, the right-side electrode, respectively.  The last term mol eleE +  is the energy of 

adsorbed molecule and the left-side electrode.  We define the conductance as the 

transmission at the Fermi Level, ( )fT E , which is arrived at using DFT-NEGF: 
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0 0 ( ) ( ) ( ) ( )( ) Tr
f f f f

r a
f L RE E E Eg g T E g G G = = Γ Γ   

(3.2)
 

where /r aG is retarded (advanced) Green’s function and /L RΓ  is defined by the retarded 

and advanced self-energy terms of left (right) electrode as / / /( )r a
L R L R L RiΓ = Σ − Σ . The 

constant 0g  is the quantum of conductance defined as 2e2/h (e is the electron charge and 

h the Planck constant).
 

 Calculations are summarized in Table 3.1.  Optimized junction geometries for 

both molecules showed that bp1 had a much lower binding energy to the gold electrode 

than bp2, specifically -2.695 eV for bp1 compared with -0.252 eV for bp2.  This trend 

fits well with the step length histograms given in Figure 3.4, because the more stable 

binding energetics of the Au-C bonding in bp1 will give rise to a junction that can be 

pulled over a longer distance compared to the bp2 counterpart.  The calculations also 

show that the coupling of the conducting pi-orbital to the contacts is far lower for bp1 

(0.057 eV) compared to bp2 (0.095 eV).  We believe that this difference accounts for the 

fact that there is a relatively small difference in measured conductance between bp1 and 

bp2 compared to other side by side comparisons of Au-C and Au-N bonding schemes.  

Venkataraman et al. reported large differences – up to 100x - in conductance values 

between Au-C bonds and Au-N bonds in sigma dominated alkanes(133) and pi 

dominated xylylenes.(135)  In both of these systems the direct Au-C bond resulted in 

strong coupling between the electrodes and the conducting orbital; however in the case of 

our system, the Au-C bond of bp1 results in relatively weak coupling between the 

electrode and pi-orbital compared to that seen in bp2.  This is also illustrated by the fact 
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that the HOMO orbital overlap with the electrode (illustrated in Table 3.2) is far greater 

for bp2 than for bp1.  Additionally, calculated conductance values confirm that bp1 has 

only marginally higher conductance than bp2.  In fact, the values in table 3.1 show that 

the calculated conductance of bp1 (1.6x10-2 G0) is only 60% greater than bp2 (1.0x10-2 

G0), which is the same ratio observed between measured values for bp1 and bp2.  Since 

DFT often underestimates the energy gap of the highest occupied molecular orbital 

(HOMO) and lowest unoccupied molecular orbital (LUMO), it is difficult to compare the 

absolute values of calculated and observed conductance.25  However the calculations are 

useful in illustrating a qualitative comparison between anchoring and conductance, which 

complements experimental measurements well.  

 The methoxy groups in bp1 likely play a role in stabilizing the diazonium ion; 

however in doing so it is important to consider whether they affect the conductance of the 

junction.  In order to evaluate this question, the same parameters that were calculated for 

bp1 and bp2 were also calculated for their analogs without ortho-placed methoxy groups.  

These results are also presented in Table 3.1.  One can see that methoxy groups have 

nearly no affect on the calculated binding energies of the junction.  That is the difference 

in binding energies between bp1 and its analog without methoxy groups (-2.695 eV to -

2.631 eV) is negligible compared to the difference between bp1 and bp2 (-2.695 eV to 

0.252 eV).   The calculations also show that the presence of the methoxy groups slightly 

increases the conductance and HOMO-electrode coupling in the bp1 junction.  This 

observation, while interesting, does not have implications for the conclusion that in our 
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experiments we did not observe substantially higher coupling energies or conductance 

values associated with the junctions formed with direct Au-C bonds.    

 Eads T(E f) EHOMO γL γR 

H3CO

OCH3

N NN N

 

(bp1) 

-2.695 eV 0.016 G0 -0.24 eV 0.057 eV 0.057 eV 

N NN N
 

-2.631 eV 0.007 G0 -0.61 eV 0.078 eV 0.078 eV 

H3CO

OCH3

H2N NH2

 

(bp2) 

-0.252 eV 0.010 G0 -1.26 eV 0.095 eV 0.095 eV 

H2N NH2 
-0.303 eV 0.008 G0 -1.47 eV 0.094 eV 0.094 eV 

 

Table 3.1:  Binding energies (Eads), conductance (T(EF)), HOMO energies (EHOMO , 

EHOMO-1), and coupling energies (γL, γR ) calculated for bp1, and bp2, and their analogs 

without methoxy groups using DFT-NEGF transport.  In all four molecules the HOMO 

acted as the main conducting orbital.   
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H3CO

OCH3

N NN N

 

(bp1) 

 

N NN N
 

 

H3CO

OCH3

H2N NH2

 

(bp2)  

H2N NH2 

 

 

Table 3.2: Conducting orbital mappings of bp1 and bp2, and their analogs without 

methoxy groups.  The orbital mappings show greater overlap of the HOMO over the gold 
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contact for bp2 compared to bp1.  This is reflected in the higher orbital-electrode 

coupling for bp2 compared to bp1 given in Table 3.1.   

 

3.6 Summary 

 In summary, we have demonstrated a method of controlling the formation of a 

single molecule junction by electrochemically reducing diazonium terminal groups to 

form direct Au-C bonds between the molecule and gold electrodes.  The relative yield of 

junction formation increased as the electrochemical potential was lowered close to the 

reduction potential of the diazonium groups.  Side-by-side comparison of the molecular 

junction formed by diazonium reduction (bp1) with a control junction formed by amine 

linkers (bp2) shows that bp1 can be stretched significantly farther than bp2; but only has 

marginally higher conductance.  This is explained in light of the fact that while bp1 

creates a stronger bond with the electrode, it has relatively weak coupling between the 

conducting orbital and electrodes compared to that seen in bp2.  
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4.  THERMALLY INDUCED CONFORMATION CHANGES IN 

OLIGOTHIOPHENE SINGLE MOLECULE JUNCTIONS 

4.1  Introduction 

 A paramount goal in molecular electronics is to understand the mechanism by 

which charge transport occurs through a single molecule covalently bonded to metal 

electrodes.(1, 2)  In small molecules of a few nanometers or less, charge transport occurs 

via a non-resonant tunneling mechanism, whereby conductance varies exponentially with 

the length of the junction according to  

( )LGG β−= exp0 (4.1) 

Here the decay constant beta scales with the square root of the effective energy barrier 

created by the lowest lying frontier orbital in the junction.  Most reports cite that the 

tunneling mechanism is temperature independent, because any change in temperature 

does not have an appreciable effect on the alignment of the frontier orbital relative to the 

electrodes.   

 Oligothiophene structures are well known for displaying thermochromic and 

solvatochromic affects.(181, 182)  While the specific mechanism behind this property has 

been widely debated, it is generally claimed that the effect is due to conformational 

changes in the planar form of the backbone of the molecule.(183)  A shift towards a more 

planar conformer increases the conjugation length, which then results in a red shift in the 

UV-Vis absorption peak, while a shift away from planarity results in a blue shift in the 
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peak.  This mechanism is made possible by the relatively small energy barrier for rotation 

in oligo and polythiophene systems.(184-187)   

 Numerous studies on thermochromism in thiophene systems have been reported 

in the literature.  The structures of these systems vary widely and can vary in length from 

two unit oligomers in solution phase to very long polymers in thin films.  Additionally, 

many reports cite different substituted side groups, which can vary in structure, length 

and regioregularity.  Many reports cite a blue shift with temperature, whereby the 

backbone shifts away from planarity with increasing temperature.(183, 188-191)  

However, reports of red shift with increasing temperature have been reported as well.  

For example, Kurokawa et al. reported a small red shift with increasing temperature in 

poly(substituted thiophene) nanoparticles.(192)  Additionally, Wang et al. reported a 

small red shift in some polythiophenes at temperatures between about 25 and 90 

Celsius,(193) with a blue shift occurring subsequently after the red shift.  And finally, 

Lukes et al. predicted a slight red shift with temperature in unsubstituted 

bithiophenes.(194)  Also noteworthy is that Elmaci et al. report nearly no thermal affect 

on UV-vis energy gap by performing DFT on various oligothiophene structures.(195) 

 Here we report modulating the conductance through alkyl substituted 

oligothiophene single-molecule junctions by thermally shifting the planarity of the 

molecule.  The result is that the energy gap of the junction red shifts with increasing 

temperature.  We support our argument with fixed bias measurements of conductance at 

temperature intervals of 10° C for oligomers with 1 to 6 thiophene units.  We show that 

the oligomer with a single thiophene unit shows no temperature dependence, whereas 
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oligomers with between 2 and 6 thiophene units show various degrees of increasing 

conductance with temperature.  We also measure the energy barrier of junctions created 

with the 1, 3, and 5-mer, and show that for the 3 and 5-mer there is a decrease in energy 

barrier with temperature which coincides with the conformational shift towards planarity.  

Finally, we supplement our measurements with density functional theory calculations, 

which confirm the shift towards planarity at higher temperature.   

4.2  Methods 

4.2.1 Chemicals.   

 The oligothiophene molecules used in this study were synthesized at the 

Laboratory of Advanced Materials at Fudan University.   

4.2.2  Sample Preparation.   

 Gold substrates were prepared in a home-built thermal evaporation chamber.  

Mica slides were cleaved and placed into the chamber.  When the vacuum level reached 

5x10-8
 torr, 130 nm of 99.9995% Alfa Aesar gold was evaporated onto the mica and 

allowed to anneal at 360 degrees Centigrade for 3 hours.  The annealing process ensured 

that a flat (111) surface was present on the substrates.  Before preparing the STM cell, the 

substrate was flame annealed for approximately 45 seconds using a hydrogen flame to 

ensure a clean surface.  The cell was then assembled and filled with pure mesitylene 

without any molecules.  Mesitylene was chosen as a solvent due to its relatively low 

vapor pressure which allows it to withstand elevated temperatures without evaporating.  

STM tips were prepared by cutting 0.25mm 99.998% gold wire from Alfa Aesar.  Before 
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adding molecules to the STM cell, the substrate was imaged to ensure that the gold 

surface was clean and that there were well defined ledges indicative of a sharp tip.  

Molecules were added to the STM cell by adding one to two drops of approximately 1 

µM solution of the molecules in mesitylene to the STM cell.  The iodine terminal groups 

were immediately cleaved from the backbone of the molecule creating a direct Au-C 

bond between the molecules and the substrate.  This is supported by the fact that steps 

appeared immediately after commencing the STM break junction cycle.   

4.2.3  Electrical Measurements.   

 The STM break junction process was used to repeatedly form single molecule 

junctions between gold electrodes.(58)  A custom written LabVIEW program modulated 

the tip into and out of the surface at a speed of 40 nanometers per second using a two 

setpoint feedback system.  In this setup, the two setpoints were separated by four orders 

of magnitude (the exact setpoints depended on the gain of the current amplifier used for 

each experiment).  To extend the modulation range of the tip, the piezo was instructed to 

engage an additional 0.3 nm after the high current setpoint had been reached.  When 

molecules bridged the gap between tip and substrate, a molecular bridge would 

occasionally form manifesting itself as a plateau in the recorded current transient.  Under 

fixed bias measurements, the tip continued to pull until the molecular junction was 

broken so that the break junction cycle could be repeated.  However if current-voltage 

statistics were being recorded, the LabVIEW program would build a histogram of the 

current transient in real time in order to detect steps before they broke.  If a step was 

detected, the piezo modulation was paused and the bias was swept over a range of +/- 1.2 
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Volts.  Once the bias sweep was completed, the peizo continued to ramp away from the 

substrate and the break junction cycle was repeated.   

 Our STM break junction system consisted of a Molecular Imaging STM head and 

a Digital Instruments Nanoscope E controller.  Homebuilt amplifiers with gains ranging 

from 1 µA/V volt to 10 nA/V were used depending on the conductance of the molecule 

and the bias range used for each particular measurement.  The temperature was controlled 

using a resistive heating stage controlled by a Lakeshore 331 temperature controller.  For 

each temperature measurement, the stage was allowed to stabilize for approximately 

fifteen minutes before measurements were recorded to reduce thermally induced drift. 

4.2.4 Data Processing.   

 Conductance histograms were constructed by collecting approximately 5000 

current traces for each molecule and temperature setting and processing them using a 

custom written LabVIEW program.  The LabVIEW program used an automated process 

whereby current traces of molecular junctions were identified by looking for a plateau in 

the trace, and a clean break in the plateau corresponding to rupture of the junction.  In 

this fashion, approximately 10-15% off all current traces recorded showed plateaus 

corresponding to formation of a molecular junction.   

 Transition Voltage Spectroscopy statistics were acquired using the same method 

pioneered by Guo et al.  In this method, approximately 2000 current-voltage curves were 

measured for each molecule and temperature setting.  They were then processed using a 

custom written LabView program that rejected IV curves by comparing the consistency 



82 
 

of the forward and backward sweep, and the antisymmetry of the positive and negative 

bias sweep.  In this manner, approximately two thirds of the recorded current voltage 

curves were rejected due to drift, or dropped junctions, whereas the remaining one third 

corresponded to current voltage characteristics through a molecular junction. 

4.3  Conductance vs. Length.   

 Figure 4.1a shows the structure of the oligothiophenes measured in this study, 

along with its accompanying conductance histograms measured at 25° C.  The thiophenes 

range from between 1 and 6 repeat units and length and contain ethyl substituted groups 

on each thiophene ring arranged in a heat to tail manner.  Red arrows are included with 

the conductance histograms to indicate the peak associated with the conductance of the 

molecule.  Each peak was fitted to a Gaussian distribution in order to extract the median 

conductance and standard deviation of conductance.  These values are plotted in Figure 

4.1b and Figure 4.1c respectively.  The most apparent aspect of figure 1b is that the 

conductance values for all six oligomers at 25° C do not fit an exponential decay that is 

expected for a non-resonant tunneling mechanism.  Instead, the conductace values 

increase slightly between oligomers 1 to 3, and subsequently decay exponentially for 

oligomers 3-6.  While unusual, conductance has been reported to increase with length in 

other thiophene systems.(196, 197)  This phenomenon will be discussed in greater detail 

in section 4.6.  A least squares fit of the exponential decay in oligomers 3 to 6 shows a 

beta decay constant of 3.3 nm-1, which is slightly higher than other reported values, 

which typically range between 1 and 2 nm-1.(159, 198)  
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Figure 4.1: (a) Conductance histograms for oligomers 1 through 6 at 25° C with 

accompanying insets of the molecular structures.  (b)  Median conductance values of each 

molecule at 25° C and 55° C extracted by Gaussian fitting.  (c) Standard deviation of 

conductance histogram fittings.   
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4.4  Conductance vs. Temperature.   

 In order to gain insight into the peculiar conductance vs. length behavior 

measured in Figure 1, the conductance of each oligomer was also measured as a function 

of temperature.  Measurements were taken at 25°, 35°, 45° and 55° C.  This data is 

presented in Figure 4.2a.  One can see that oligomer 1 shows temperature invariant 

behavior, whereas oligomers 2 to 6 all show some degree of increase in conductance with 

temperature.  Normally, temperature dependence is associated with a hopping 

mechanism; however the thiophenes used in this study range between 0.61 and 2.51 nm, 

which is far shorter than is necessary for hopping to play a significant role in charge 

transport.  For example, Lee et al. measured tunneling in thiophenes up to 14 thiophenes 

in length at temperatures of 77 C°.(196) 

 The relative affect of temperature, which is measured as the ratio of conductance 

at 55° C to conductance at 25° C and plotted in Figure 4.2b, is highest for oligomers 3 

and 4.  Temperature data measured at 55° C has also been plotted on Figure 4.1b and 

Figure 4.1c to illustrate the relative increase in temperature as function of length.  One 

aspect that becomes noticeable when the data is plotted is this manner is that a least 

squares fit of oligomers 3 to 6 produces a different slope at 55° C than the fit at 25° C.  

Specifically, the extracted beta value at 55 Celsius is 3.8 /nm compared to 3.3 /nm at 25° 

C.  If one were to extrapolate this temperature dependent behavior observed in Figure 1b 

to lower temperatures, one can see that there may be a temperature in which the 
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conductance values of all the oligomers align in an exponential decay with a beta value of 

less than 3.3 nm-1.  Moreover, the two different beta values measured at 25° and 55° C 

suggests that the energy barrier of the junction is changing with temperature.  However, 

in order to confirm this, transition voltage spectroscopy is needed.   
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Figure 4.2:  (a) Conductance vs. temperature for oligomers 1 through 6.  (b) Relative 

increase in conductance as measured by the ratio (GT=55 C / GT=25 C) 

 

4.5  TVS Statistics.   

 TVS statistics were compiled by rapid measurement of current voltage 

characteristics using the method first reported by Guo et al.  Figure 4.3a shows a 

representative IV curve collected using this method.  Each measured IV curve was 

subsequently replotted as a GV curve (where G is defined as the total conductance, I/V), 

broken into four regions (corresponding to forward/backward sweep and 

positive/negative bias) and each region was fitted to a second order polynomial.  This is 

shown in figure 4.3b.  The fitted polynomials of each GV curve were then mapped onto a 
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Fowler-Nordheim plot (ln(G/V) vs. 1/V) where the minima represent the transition 

voltages of the junction, which is a relative measure of the energy barrier of the 

molecular junction.  This is shown in Figure 4.3c.  The GV fitting process was used 

because it provided an effective means of removing fluctuations from recorded 

measurements and therefore provided a better estimate of the transition voltage.  The 

transition voltages for each junction were then compiled into a histogram shown in figure 

4.3d.  The analysis presented in Figure 4.3 represents data for only the 1-mer at 25C.   

 

Figure 4.3:  Illustration of how transition voltage statistics are compiled.  A current-

voltage trace is recorded when a step is detected in real time (a).  The IV sweep is then 

replotted as a GV sweep (G=I/V) and fitted to a second order polynomial (b).  The 
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polynomial fit is then plotted in a Fowler Nordheim plot (ln(G/V) vs. 1/V) (c).  Finally, a 

histogram of transition voltages from all IV sweeps is compiled (d).   

 

 Figure 4.4a shows TVS histograms for oligomers 1 through 6 at 25° C.  Each of 

the histograms shown in Figure 4.4a was fitted to a Gaussian distribution in order to 

extract the median and standard deviation of the transition voltage.  These values are 

plotted in Figure 4.4b.  One can see that the transition voltage decreases from 0.81 V for 

oligomer 1 to 0.50 V for oligomer 6 in a roughly steady manner.  This is expected due to 

the increasing degree of π-conjugation along the backbone of the molecule, which 

effectively lowers the energy gap of the molecule (Figure 4.4c) and in turn the energy 

barrier of the molecular junction.   
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Figure 4.4:  (a) Transition voltage histograms for oligomers 1 through 6 at 25° C.  (b) 

Median transition voltage values and standard deviations for oligomers 1 through 6 at 25° 

C.  (c) UV-Vis absorption spectra measured at approximately 25° C for oligomers 1 

through 6. 
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 Recall however that the conductance data presented in Figure 4.1b showed 

temperature dependences for oligomers 2 through 6, suggesting that the energy barrier 

may be changing with temperature.  In order to test this hypothesis, we performed TVS 

measurements for oligomers 1, 3 and 5 at 55° C.  We chose to perform measurements on 

only three molecules due to the difficult nature of acquiring current-voltage statistics at 

higher temperatures where drift and telegraphic switching play a more prominent role in 

the junction.  A side-by-side comparison of TVS histograms for oligomers 1, 3 and 5 at 

both 25° C and 55° C is presented in Figure 4.5.  It should be noted that the histograms in 

Figure 4.5 at 25° C are the same histograms also presented in Figure 4.4a.  The TVS 

histograms in Figure 4.5 show that the transition voltage shifts by 20mV, 120 mV and 40 

mV for the 1, 3 and 5-mer respectively when raising the temperature from 25° C to 55° 

C.  The 120 mV in the 3-mer and the 40 mV shift in the 5-mer confirm that the energy 

barrier decreases with increasing temperature.  While there is a small 20 mV shift in 

transition voltage for the 1-mer, we believe that this is due to statistical variance in the 

measurement.   
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Figure 4.5:  Comparison of transition voltage histograms for the 1, 3 and 5-mer at 25° 

and 55° C (top and bottom).  The shift in transition voltage is 20 mV, 120 mV, and 40 

mV for the 1, 3, and 5-mer respectively.  The 20 mV shift for the 1-mer is due to 

statistical variance.   

 

4.6  Discussion of Experimental Results 

 Thus far we have shown that conductance increases and transition voltage 

decreases at elevated temperatures for our oligothiophenes.  These two observations 

suggest that the energy barrier of the junction decreases at higher temperatures.  We 

explain this effect by a temperature induced conformation shift in the molecular junction 

towards planarity.  As the molecule becomes more planar, the degree of π-conjugation 
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throughout the molecule increases, and the energy gap subsequently decreases.  This so 

called red shift in energy gap has been reported in other oligo and polythiophene systems 

as well.(192-194)  We believe that the approximately 2X to 2.5X increase in conductance 

found for oligomers 3 and 4 is reasonable under this model, given that the conductance 

through biphenyl metal-molecule-metal junctions can vary by over one order of 

magnitude depending on the conformational planarity of the phenyl rings.(199, 200) 

 It now becomes relevant to consider why the temperature dependence of both 

change in conductance and change in transition voltage increases and subsequently 

decreases across the set of oligomers measured.  First, we consider that the 1-mer has a 

fixed energy barrier due to its fixed planarity, and thus shows no significant change in 

conductance or transition voltage.  Next, consider that for molecules such as the 2-mer 

and 3-mer, there are a limited number of rotational angles between thiophene rings which 

can affect the degree of π-conjugation throughout the molecule.  As a result, by 

increasing temperature it is fairly likely that the rings will align in a planar conformation, 

thereby reducing the tunneling barrier and affecting the measured conductance and 

transition voltage.  However when we consider molecules such as the 4, 5, and 6-mer, 

there are an increasing number of rotational angles that must be properly aligned in order 

to achieve a planar conformation throughout the molecule.  Stochastic processes are 

therefore more likely to break the conjugation, and as a result there is diminishing 

temperature dependence for measured conductance and transition voltage as the length of 

the molecule increases.   As a result, we see a trend whereby the change in conductance 

and change in transition voltage is highest for oligomers with 3 and 4 units.  This effect 
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explains the length dependence in Figure 1b, whereby conductance initially increases, 

and subsequently decreases with length.   

4.7  Comparing Change in Conductance with Change in Transition Voltage 

 At this point, it is useful to consider whether the amount of shift in transition 

voltage as measured in Figure 5 is what one would expect based on the amount of change 

in conductance measured in Figure 2.  For this analysis, we consider two simple models.  

First is the non-resonant tunneling model which describes conductance as an exponential 

function of length. 

( )LGG β−= exp0  (4.1) 

Second, we consider that beta scales as the square root of the transition voltage, which is 

an outcome of the Simmons Model.  In principle, β and the transition voltage can be 

related using the constant 
4�!2�" ℎ# ; however this relation becomes invalid when we 

consider that the voltage does not drop evenly across the junction, and as a result we 

relate β and transition voltage by a constant C.   

tVC=β
(4.2) 

By simple substitution we can say that  

( )LVCGG t−= exp0  (4.3)
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Consider that we have an estimate of the beta decay constant at 25° C based on the results 

presented in Figure 1b.  Using simple arithmetic, we can solve for C in equation 4.2 for 

each oligomer.  Using this constant, and assuming the contact resistance G0 does not 

change with temperature, we can then solve for the expected transition voltage at 55° C 

according to the following. 

( )
( )LVCG

LVCG

G

G

Tt

Tt

T

T

)55(0

)25(0

55

25

exp

exp

=

=

=

=

−

−
=

 (4.4) 

Values used in this calculation are summarized in Table 4.1 below. 

 3-mer 5-mer 
GT=25° C 8.71x10-3 G0 1.17x10-3 G0 
GT=25° C 1.91x10-2 G0 1.51x10-3 G0 
β 3.3 nm-1 3.3 nm-1 

C 3.97 nm-1V-0.5 4.62 nm-1V-0.5 
L 1.37 nm 2.13 nm 
Vt (T=25° C) 0.65 V 0.48 V 

Table 4.1: Values used in Equation 4.4 

 

And the calculated transition voltages are given in Table 4.2 

 3-mer 5-mer 
Vt (T=55° C) calculated 0.45 V 0.44 V 
Vt (T=55°C) measured 0.53 V 0.44 V 
Table 4.2:  Comparison of calculated transition voltages using Eq 4.4, and measured 

transition voltages. 
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 Carrying out this analysis results in expected transition voltages of 0.45 V and 

0.44 V for the 3-mer and 5-mer respectively at 55° C.  Comparing these values to the 

measured values, we see that the measured shift in transition voltage is less than expected 

for the 3-mer and exactly what is expected for the 5-mer.  Overall, we believe these 

results are quite reasonable.  Some discrepancy between predicted and measured values is 

expected, given the spread in transition voltages measured at both temperatures; however 

the results of this simple model show that the temperature dependence of conductance 

and transition voltage can be explained by a temperature dependent modulation in the 

energy barrier of the molecular junction.   

4.8  Density Functional Theory and Statistical Mechanics Calculations   

 To further support our argument that increasing temperature induces a red shift in 

our thiophene oligomers, we performed density functional theory (DFT) and molecular 

dynamics (MD) calculations for the 3-mer.  We chose this molecule because it shows one 

of the highest degrees of temperature dependence.  Figure 6 shows the energy barrier for 

rotation of a single thiophene ring in this molecule.  In the figure, zero degrees 

corresponds to cis-rotamer in which the thiophene rings lie in a planar orientation with 

adjacent ethyl chains side by side.  Steric hindrance caused by neighboring ethyl chains 

and conjugated π-orbitals causes local and absolute maxima that lie at orientations of 

approximately  -90, 0, 90, and 180 degrees.  Likewise, local and absolute minima lie at 

orientations approximately halfway between the maxima.  The absolute minimum in the 

energy diagram, corresponding to the optimized dihedral angle between thiophene rings 

is calculated to be -135°.  One can see that each of the four minima lie below kT (26 
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meV), which is illustrated by the horizontal red line in the figure.  Additionally, 

conformations close to +/-135 degrees contain a significant range of angles below kT, 

spanning from approximately +/- 100 to +/- 160 degrees.  Thus we see that the energy 

barrier for rotation is sufficiently low for an individual thiophene ring to have a 

considerable range of motion about its dihedral axis at room temperature. 

 

Figure 4.6: Torsion angle energy profile for the 3-mer thiophene.  Zero degrees is 

defined as the planar cis formation.  The optimized angle between thiophene rings is -

135°.  The red horizontal like represents kBT at 25° C. 
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 The energy diagram presented in Figure 4.6 is useful in illustrating the 

conformations of the 3-mer available at room temperature; however in order to obtain a 

quantitative description of population densities, the partition function was calculated.  For 

our analysis, we considered three conformers of the 3-mer and calculated the relative 

population densities of each with respect to temperature.  First, the optimized geometric 

structure with rotational angles of -135° between thiophenes was considered.  Second, the 

optimized geometry was modified so that one thiophene ring was completely planar in a 

trans formation with the middle thiophene unit, while the remaining thiophene ring 

retained the optimized angle of -135° with the middle thiophene unit.  Finally, we 

considered a conformer in which all thiophene rings lie in a completely planar trans 

formation.  These structures are illustrated in Figure 4.7, and will be referred to as the 

optimized structure, conformer 1, and conformer 2 from this point forward.  As one 

would expect, the increasing degree of conjugation results in a decreasing energy gap, 

which falls from 4.36 eV for the optimized structure, to 3.85 eV for conformer 1, and 

finally to 3.42 eV for conformer 2.  Relative population densities of the three conformers 

at 25° C and 55° C were also calculated and are provided in Table 4.3.  The population 

densities at both temperatures were normalized relative to the population density of the 

optimized structure.  The results show that at both 25° C and 55° C the optimized 

structure is the most common conformer of the three.  However, when the temperature is 

increased from 25° C to 55° C the relative population densities of both conformer 1 and 

conformer 2 increase, meaning that that conformers 1 and 2 are statistically more likely 

to occur at higher temperatures.  We believe that the higher relative population densities 
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of conformers 1 and 2 explains the resulting temperature dependence of both conductance 

and transition voltage of the thiophene oligomers that we measured. 

 

Figure 4.7:  Illustration of 3 different conformations of the 3-mer analyzed with DFT: the 

optimized structure (top), conformer 1 with left angle fixed at 0 degress and the other 

optimized (middle), and conformer 2 with both angles fixed at 0 degrees (bottom).   
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 Optimized Conformer 1 Conformer 2 
Relative Population 
 (T = 25° C) 

1 Popt 0.27 Popt 0.17 Popt 

Relative Population 
(T = 55° C) 

1 Popt 0.33 Popt 0.19 Popt 

Table 4.3:  Relative population of each conformer compared to the population of the 

optimized structure at 25° and 55° C.  One can see that the relative populations of both 

conformers increase with temperature.   

 

4.9  Summary   

 Here we have demonstrated a unique temperature dependent tunneling 

mechanism in a set of oligothiophenes whereby increasing temperature induces a 

conformational shift towards planarity which increases the conjugation length and 

decreases the energy barrier of the junction.  This effect is measured for oligomers with 2 

to 6 thiophene units and is supported by temperature dependent fixed bias measurements 

of conductance, and temperature dependent current-voltage measurements to extract the 

transition voltage of the junction.  Temperature dependence is seen to increase from 

oligomers 1 through 3, and decrease for oligomers 4 through 6.  We attribute this 

phenomenon to the increasing difficulty of aligning all thiophene rings in the molecule as 

the number of thiophene rings increases.     
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5.  CONCLUSION AND OUTLOOK  

 The field of molecular electronics still needs to make considerable advances 

before single molecules can be used as functional components in electronic devices.  

However the steady advancement of knowledge and insight gained by performing 

measurements on the single-molecule level is key to achieving that end.  Measurements 

taken can provide a framework for advancing the theoretical understanding of charge 

transport phenomena from a first principles perspective.  In that spirit, three research 

projects exploring interesting contact and length dependent effects in single molecule 

electronics have been the subject of this thesis. 

 In the first, the transition between charge tunneling and charge hopping is 

documented in a set of long conjugated molecular wires.  This transition process is in 

general poorly understood from a first principles perspective, and thus experimental 

measurements provide valuable insight.  Measurements show that the transition occurs 

between 5.2 and 7.3 nm and thus the charge carrier is able to maintain coherency over a 

considerable length in the junction.  Furthermore, measurements show that at elevated 

temperatures the longer molecules that conduct by hopping can be more conductive than 

shorter molecules that conduct by tunneling.  This effect provides valuable insight into 

the nature of the hopping mechanism.   

 In the second project, the formation of a single-molecule junction by 

electrochemical reduction of diazonium terminal groups is reported.  This is interesting in 

that it not only allows one to control the energetics of formation by an applied 
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electrochemical potential, but it also creates a junction in which the carbon backbone is 

covalently bonded to the electrodes without any intermediate linker group.  In this case, 

there is weak coupling between the electrodes and π-orbital system of the junction, and 

the conductance is not significantly increased compared to the same junction created by 

amine-gold bonds.  This effect has also been reported for benzene junctions created with 

gold-carbon bonds;(133) however many other publications in the literature report that 

gold carbon bonds produce higher conductance values resulting from stronger coupling.  

Gold-carbon bonds are thus a hot topic for debate in the field of molecular electronics 

and future work should explore other systems until a greater consensus is reached.   

 Finally, in the third project modulation of the energy barrier in molecular 

junctions is reported by thermally changing the planar form of oligothiophenes.  Upon 

increasing temperature, oligomers with multiple thiophene rings assume a more planar 

form, which induces a red shift in the energy gap, and makes the molecular junction more 

conductive and have a lower transition voltage.  This shift is not observed for the 

molecule with a single thiophene ring, due to the fixed planar form of the molecule.  The 

measured shift in conductance values are in good agreement with the measured shifts in 

transition voltage.  It would be interesting to explore the electron-vibronic coupling 

between charge carriers and the rotational mode of the thiophene ring by inelastic 

electron tunneling spectroscopy.  However certain practical considerations such as the 

low energy of the mode, and the fact that it would not be activated at low temperatures 

where IETS measurements are traditionally performed would make this measurement 

difficult.    
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