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ABSTRACT

In this thesis, we present the study of several physical properties of relativistic mat-

ters under extreme conditions. We start by deriving the rate of the nonleptonic weak

processes and the bulk viscosity in several spin-one color superconducting phases of

quark matter. We also calculate the bulk viscosity in the nonlinear and anharmonic

regime in the normal phase of strange quark matter. We point out several qualitative

effects due to the anharmonicity, although quantitatively they appear to be relatively

small. In the corresponding study, we take into account the interplay between the non-

leptonic and semileptonic weak processes. The results can be important in order to

relate accessible observables of compact stars to their internal composition. We also

use quantum field theoretical methods to study the transport properties in monolayer

graphene in a strong magnetic field. The corresponding quasi-relativistic system re-

veals an anomalous quantum Hall effect, whose features are directly connected with

the spontaneous flavor symmetry breaking. We study the microscopic origin of Fara-

day rotation and magneto-optical transmission in graphene and show that their main

features are in agreement with the experimental data.
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CHAPTER 1

INTRODUCTION

Three of the most important theories in early 20th century physics are electrodynamics,

relativity and quantum mechanics. Quantum field theory (QFT) was constructed from

combining the key ideas of these theories. At the beginning, the objective of QFT was

to study the elementary particle physics, but later, it found many applications to many

other fields of physics (e.g., nuclear, atomic and condensed matter physics).

In this thesis, we use the methods of QFT to investigate the properties and

dynamics of relativistic matter. By definition, relativistic matter is composed of rela-

tivistic particles, i.e., particles whose momenta p are greater than, or comparable to mc

(here, m is the mass of the particle). Examples of relativistic matter include electron

plasma inside compact stars, nuclear matter in the interior of neutron stars, quark-gluon

plasma that existed in the Early Universe and can be created in heavy ion collisions,

and possible quark matter inside the inner most parts of compact stars. Another inter-

esting example of a quasi-relativistic matter is found in graphene, whose quasiparticles

are Dirac fermions with zero rest mass.

Very often relativistic matter is subject to extreme environments, such as very

high temperature, high density and/or the presence of strong external fields. It is of

interest, therefore, to study such matter in order to understand its implications on the

physical properties of compact starts, the Early Universe and other systems. The corre-

sponding investigations can also improve and enrich our understanding of other fields

of physics (e.g., astrophysics, condense matter and atomic physics).

In the rest of this thesis, we will discuss several physics properties of a few

kinds of relativistic matter under extreme conditions (i.e., high magnetic fields or high

density). For convenience, we use the units with kB = c = h̄ = 1.
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1.1 Neutron stars

As we know, the interior of neutron stars have the highest density in the Universe

(except for the black holes). The corresponding state of matter is necessarily in the

relativistic regime. Here we give a brief introduction to such stars.

Neutron stars are compact stellar objects that originate from supernova explo-

sions. They were theoretically predicted by Landau in 1932 after the discovery of the

neutron. In 1934, Baade and Zwicky suggested that the supernova process was the re-

sult of the transition from a normal star to a neutron star. Later in 1939, Zwicky pointed

out that the energy release in supernova is comparable to the gravitational potential en-

ergy change due to the stellar collapse from its original size (radius ⇡ 106 km) down to

the size of a neutron star (radius ⇡ 10 km). The first pulsar was observed on November

28, 1967 by Jocelyn Bell Burnell and Antony Hewish [1, 2].1 By the end of 1968,

over 100 pulsar articles were published. There were strong arguments that the pulsar is

either a white dwarf, or an oscillating neutron star. It was Gold’s idea that pulsars are

rotating magnetized neutron stars that eventually prevailed [3]. In 1969, the discovery

of the Crab pulsar gave important evidence. The spin period of Crab pulsar is 33 ms,

which is too short to be the rotation period of a white dwarf.

While the structure of the outer layers of neutron stars are understood to a cer-

tain degree, the inner cores are a great puzzle. This is directly related to the gaps in the

current knowledge regarding the equation of state of QCD at the densities of relevance.

In literature, there exist numerous models of the equation of state. By making

use of such models, the internal structure of neutron stars can be theoretically predicted

by considering the condition of hydrostatic equilibrium. This is equivalent to solving
1 Hewish was awarded the Nobel Prize in physics in 1974. Bell, who made the initial discovery

while she was Hewish’s Ph.D student, was not.
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the Tolman-Oppenheimer-Volkov (TOV) equations [4, 5], i.e.,

d p
dr

= �Ge(r)M (r)
c2r2



1+
p(r)
e(r)

�

1+
4pr3 p(r)
M (r)c2

�

1� 2GM (r)
c2r

��1
, (1.1)

dM

dr
= 4pr2

r(r) =
4pr2

e(r)
c2 , (1.2)

M (r) = 4p

Z r

0
r02dr0r(r0) = 4p

Z r

0
r02dr0e(r0)/c2 . (1.3)

Here, G = 6.673⇥ 10�8 dyne · cm2/g2 is Newton’s gravitational constant, r(r) and

p(r) are the mass density and pressure at the distance r from the center of the star, and

e is the corresponding energy density. The quantity M (r) is the total mass inside the

sphere of radius r.

The solutions to the TOV equations for commonly used model equations of

state show that neutron stars have typical radii of about a dozen kilometers and the

maximum values of the masses ranging from about 1.5M� to 2.5M� [6], where M� is

the Solar mass. The density of matter increases from the surface to the center of the

star. The values of the density at the inner cores can be as high as 5 to 10 times the

normal nuclear density. The temperatures of (proto-)neutron stars are around 10 MeV

when they are just created. After the deleptonization process, the stars cool down and

their temperatures drop below 1 MeV in a matter of a day, and then several orders of

magnitude over the next million years. Therefore, it is possible that the central regions

of old neutron stars are dense and sufficiently cold to support color superconductivity.

Magnetars are a special class of stars. A magnetar is a type of a neutron star with

an extremely strong magnetic field, which emits high-energy electromagnetic radiation

(i.e., X-rays and gamma rays). The rotation periods of magnetars (period ⇠ 1 - 10 s)

are generally larger than those of other neutron stars. They are the stellar objects with

the strongest magnetic fields in the Universe. The surface magnetic fields of the stars

can reach up to about 1015 Gauss [7, 8]. The strong fields of magnetars come as a

result of a magnetohydrodynamic dynamo mechanism inside turbulent hot plasma of a
3



collapsing star [9, 10]. This can be compared with the magnetic field of the Sun’s core,

which is around 102 Gauss (the field on the surface of the Sun is much smaller and is

about a few Gauss). The big difference in the magnetic field of the Sun and a neutron

star can be understood by doing a simple toy model calculation. The magnetic field of

a neutron star originates from the seed field of the collapsing core of a progenitor star.

Because of its high conductivity, the magnetic flux fB is conserved during the collapse.

Then the magnetic field of a newly created neutron star can be estimated by

Bnew = B�
r2
�

r2
new

, (1.4)

where r� and rnew are the radii of the Sun and a neutron star, respectively, and B� is the

magnetic field of the solar core. This corresponds to fields in a range from about 109 to

about 1012 Gauss, which are typical for normal neutron stars. In order to get the fields

as large as in magnetars, an additional enhancement is necessary. It can be provided,

for example, by the dynamo mechanism mentioned above [9, 10].

1.2 Color superconductivity

As mentioned in Sec. 1.1, the interior of neutron stars are made of very dense matter.

The knowledge regarding the actual states of such dense matter is incomplete. One of

the common hypotheses states that the densest regions inside neutron stars are made of

quark matter, which may even be a color superconductor. So, what is a color supercon-

ductor? In this section we will discuss the subtleties of color superconductivity.

1.2.1 Superconductivity

The concept of color superconductivity is analogous to usual superconductivity in solid

states physics. It is natural, therefore, to start our discussion in this subsection by

introducing the key ideas of ordinary superconductivity.

In 1911 Heike Kamerlingh Onnes was using the earlier discovered liquid he-

lium as a refrigerant to measure the resistance of solid mercury at cryogenic temper-
4



atures [11]. He observed that the resistance disappeared when the temperature was

below 4.3 Kelvin. This phenomenon was called superconductivity. Later, supercon-

ductivity was found in other materials. In 1913, lead was found to superconduct below

7 K, and in 1941 niobium nitride was found to be superconducting below 16 K. The

Bardeen-Cooper-Schrieffer (BCS) theory [12] gave a successful explanation of super-

conductivity in 1957. But for a long time, the critical temperature of superconductors

remained very low ( Tc < 30 K). In 1986, the first high-Tc superconductor was found

by Bednorz and Müller [13, 14], who succeeded in inducing superconductivity in a

barium lanthanum copper oxide (BaLaCuO, also known as LBCO). The oxide’s crit-

ical temperature was 35 K, which was 12 K higher than the previous record [13, 14].

Later, thousands of high-temperature superconductors have been found. Currently, the

highest temperature superconductors are made of a ceramic material consisting of thal-

lium, mercury, copper, barium, calcium, strontium and oxygen, with Tc = 138 K. Also,

we should mention that the critical temperature of HgBa2Ca2Cu3O8+d

(Hg-1223) can

increase to 150 K under high pressure. This shows that the critical temperature is very

sensitive to the structure of a compound [15]. One of the most important properties

of the high Tc superconductors is the value of their critical temperature being above

the boiling point of liquid nitrogen. Unfortunately we still could not find a successful

theoretical explanation of high Tc superconductivity.

In general, a superconductor is a material that is characterized by the following

properties: (1) vanishingly small electrical resistance; (2) the expulsion of the mag-

netic field (known as the Meissner-Ochsenfeld effect [16]); (3) the discontinuity of the

electronic specific heat at Tc, which increases at Tc and vanishes exponentially near

T = 0.

In most cases, superconductivity appears only when the temperature T is below

the critical temperature Tc and the magnetic field H is smaller than the critical magnetic

5



superconducting

ΕF

kF
normal

k

Εk

Figure 1.1: Fermionic quasiparticle dispersion relations in the normal and supercon-
ducting phases, i.e., ek =

p

(e0,k �µ)2 +f

2 with f = 0 in the normal phase (dashed
line) and f 6= 0 in the superconducting phase (solid line).

field Hc. The values of the critical temperature and magnetic field vary from material

to material.

Superconductivity in metals or alloys is a quantum property of the many-body

electron system. Electrons themselves interact repulsively with each other because of

the Coulomb force. In the normal phase (i.e., without superconductivity), the electrons

occupy all states within the Fermi sphere, but do not behave coherently. The lowest

energy excitations in such a state have arbitrarily small energies. In a superconducting

phase, the electrons well below the Fermi surface are nearly the same as in the normal

phase. As for the electrons in the vicinity of the Fermi surface, they tend to form the

so-called Cooper pairs, i.e., pairs of electrons with opposite momenta and spins. Each

Cooper pair has spin S = 0 and angular momentum L = 0. Such pairs become possible

because of the phonon attractive interaction that may dominate over the screened repul-

sive Coulomb interaction [17]. Also, when the electrons form Cooper pairs, the Fermi

sphere becomes unstable. The ground state of a superconductor will be composed of

the state of Cooper pairs, and the distribution of electrons will be no longer the normal

6



Fermi distribution. The corresponding state has an energy gap in its spectrum of quasi-

particle excitations, see Fig. 1.1, and is superconducting. The energy of the gap Egap

equals 2f , which is the energy needed to break a single Cooper pair into the electron

type quasiparticles.

The value of the gap parameter f is an important characteristics of a supercon-

ductor. It is usually found by using a variational approach. The corresponding equation

for f is called the gap equation. The gap equation in the BCS theory reads

1 = g
Z d3k

(2p)3
1

2ek
tanh

⇣

ek

2T

⌘

, (1.5)

where, by definition, ek =
p

(e0,k �µ)2 +f

2 is the quasiparticle excitation energy, see

Fig 1.1, e0,k is the single particle energy, µ is the chemical potential, and T is the

temperature. The coupling constant of the attractive electron-electron interaction is

given by g.
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In Eq. (1.5) we assume that the interaction is a constant when electrons are

around the Fermi surface, and is zero when electrons are elsewhere in the momentum

space. The BCS solution to the gap equation is given by the following approximate

relation:

f(0) = 2wD exp
✓

� 1
N(E f )g

◆

, (1.6)

where wD is the Debye frequency that limits the maximum phonon energy and N(E f )

is the density of states at the Fermi surface. As seen from Eq. (1.6), the value of the gap

grows with increasing N(E f ) and g. This is expected because the attraction between

the electrons gets stronger. One of the predictions of the BCS theory that follows from

the above gap equation is as follows: the energy gap at T = 0 K is proportional to the

critical temperature Tc, namely 2f(0) = 3.53Tc, where the constant of proportionality is

unambiguously given by the BCS theory. This relation also agrees well with the exper-

imental data, the fact that together with other numerous predictions strongly supports

the validity of the BSC theory of low temperature superconductivity.

The following remark is in order here. Because of a very weak attractive force

between electrons, the Cooper pair does not resemble a bound state of two electrons

localized in coordinate space. To elaborate on this, let us use the Heisenberg’s uncer-

tainty principle to estimate the spatial size of a Cooper pair (denoted by x below). Let

the uncertainty in the electron’s momentum be 4p ' 1/x , then the uncertainty in the

kinetic energy of the electron inside a Cooper pair is

4
✓

p2

2m

◆

' p
m
4 p ' pF

mx

(1.7)

The two electrons are paired if the uncertainty in their kinetic energy is compa-

rable or less than the binding energy, which is of order f(0). This translates into

x & pF

f(0)m
⌘ x0 (1.8)
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Figure 1.2: Critical magnetic field as a function of temperature for type I superconduc-
tors and type II superconductors.

where x0 is called the coherent length. We can estimate that x0 ' 10�4 cm in a typical

low temperature superconductor. This estimate shows that the Cooper pairs are very

large compared to the average distance between atoms (as well as electrons) in a metal

or an alloy. In other words, there exist many electrons within the typical spatial size

of a Cooper pair. Therefore, such a pair cannot be interpreted as a “usual” bound state

localized in coordinate space. Instead, it is localized in the reciprocal (momentum)

space.

All superconductors are divided into two different types that are determined by

the value of the Ginzburg-Landau parameter [18],

k ⌘ lH

x0
, (1.9)

where lH is the magnetic field penetration depth. The type I superconductors corre-

spond to k < k0 ⌘ 1/
p

2, while the type II superconductors correspond to k > k0. The

type I superconductors, also called “soft” superconductors, are mainly comprised of

metals and metalloids that show some conductivity at room temperature. They require

very low temperatures in order to slow down molecular vibrations sufficiently to facil-

itate unimpeded electron flow in accordance with the BCS theory. The type II super-

conductors are also known as “hard” superconductors. They are comprised of metallic
9



compounds and alloys. All high-Tc superconductors belong to this type [19, 20, 21].

Magnetic properties also distinguish these two types of superconductors. As shown

in figure 1.2, type I superconductors have only one critical magnetic field. When the

exterior magnetic field H is less than the critical magnetic field Hc, the Meissner effect

is observed and the interior magnetic field vanishes. However, type II superconductors

have two critical magnetic fields. Interior magnetic field vanishes when H < Hc1 and

penetrates the system when H is changing in the range from Hc1 to Hc2. The supercon-

ducting state transits to a normal state after H reaches Hc2.

1.2.2 Helium-3 superfluidity

While spin-zero color superconductors resemble usual electronic superconductors, spin-

one color superconductors, which are of our main interest in this thesis, have a lot in

common also with superfluidity in helium-3. This is briefly outlined here.

It is well known that helium is the second lightest element after hydrogen. It be-

comes liquid when cooled to a very low temperature. Helium is the only substance that

remains liquid at absolute 0 K. There are two stable isotopes of helium, 3He and 4He,

which behave very differently at temperatures below a few Kelvin. The superfluidity in

helium was first observed for helium-4 at T < Tc ' 2.17 K [22]. Later, the superfluid-

ity of the 3He isotope was also observed, but at much lower temperatures below about

Tc = 2.5 mK [23]. It turns out, in fact, that there are several non-equivalent phases of

superfluid 3He, which appear under different conditions. The theoretical explanation

of the phase structure of superfluid 3He was proposed by Leggett in 1975 [24].

The main reason for the different behavior of 4He and 3He is quantum me-

chanics. While 4He atoms are bosons (composed of 4 nucleons and 2 electrons), the

appearance of the superfluid phase in 4He is related to the Bose condensation, in which

a macroscopic fraction of the atoms is in the lowest energy one-particle state. In con-

trast, the nucleus of a helium-3 atom consists of two protons and one neutron which
10



means the 3He atoms are fermion particles which cannot occupy the same quantum

state because of the Pauli exclusion principle. Therefore, superfluidity in 3He can arise

only if the analogs of the Cooper pairs made of 3He atoms are formed. This indeed

happens at sufficiently low temperature. Such pairs behave as bosons and can form a

coherent quantum state with a macroscopic occupation in the lowest energy state.

There are two different superfluid phases in 3He, called phases A and B. While

the A phase is anisotropic, the B phase is isotropic. The phase transition between the

superfluid and the normal fluid is a continuous, second-order phase transition. The

transition between phases A and B is a first-order phase transition.

The differences between phases A and B can be also understood in terms of the

internal symmetries of their ground states. The normal fluid 3He is characterized by the

following symmetry group

G = SO(3)L ⇥SO(3)S ⇥U(1)N , (1.10)

where SO(3)L and SO(3)S describe rotations in the space of the angular momentum

and the spin space, respectively; U(1)N accounts for the particle number conservation.

In a superfluid state, some symmetries are broken. In the two superfluid phases of 3He,

the symmetry group is lowered down to

U(1)s ⇥U(1) in A phase, (1.11)

SO(3)L+S in B phase, (1.12)

respectively. As we will see, somewhat similar symmetry breaking patterns are realized

also in spin-one color superconductors discussed in Subsec. 1.2.5 below.

1.2.3 The origin of color superconductivity

In general, the concept of color superconductivity [25, 26, 27, 28, 29, 30, 31, 32, 33, 34]

is very similar to ordinary superconductivity, see Subsec. 1.2.1, but realized in quark

matter.
11



In the ground state of non-interacting quark matter at zero temperature, the

quark distribution function is given by

fF(k)|T=0 = Q(µ �Ek) , (1.13)

where µ is the quark chemical potential, Q is the Heaviside step function and Ek ⌘
p

k2 +m2 is the energy of a free quark (with rest mass m) in the quantum state with

the momentum k (by definition, k ⌘ |k|). As one can see, fF(k) = 1 for the states

with k < kF ⌘
p

µ

2 �m2, indicating that all states with the momenta less than the

Fermi momentum kF are occupied. The states with the momenta greater than the Fermi

momentum kF are empty, i.e., fF(k) = 0 for k > kF .

Because of the property of asymptotic freedom in QCD [35, 36, 37], quarks

are weakly interacting at sufficiently high density and low temperature of matter. At

the same time, the non-interacting ground state described by Eq. (1.13), is not an ap-

proximate ground state of interacting quark matter, even if the interaction is arbitrarily

weak. Quarks near the Fermi surface form Cooper pairs just like the electrons do in

usual superconductors. This then results in color superconductivity because the quark

Cooper pairs are bosons and, at zero temperature, they occupy the same lowest energy

quantum state.

In QFT language, the quark (Cooper) pair condensate can be identified with

the expectation value of the one-particle-irreducible quark-quark two-point function

(anomalous self-energy), i.e.,

< y

a

iay

b

jb >µ Pab

i jabD. (1.14)

Here y is the quark field operator, a and b are the color indices, i, j and a,b are the

flavor indices and the spinor Dirac indices. The color-flavor-spin matrix P represents

a particular pairing channel and D is the gap parameter. From here we see that we
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Figure 1.3: Schematic view of the QCD phase diagram, based on the results of Rüster
et al. [38].

need to know the color-flavor-spin structure for different patterns of pairing and the

gap parameters in order to understand the properties of color superconductivity.

An example of a phase diagram of QCD, obtained within a Nambu-Jona-Lasinio

(NJL) model [39], is given in Fig. 1.3. This diagram, based on the results of Ref. [38],

displays several regions that are relevant for the dynamics of the Early Universe, heavy

ion collisions, and stars. One should mention here that the NJL model provides a very

crude description of the QCD matter in the regime of large values of the chemical po-

tential. However, in absence of a better model, it can provide some qualitative guidance

to the possible phases of matter based on their symmetry properties. (Note that there

exist no reliable schemes to study QCD in this nonperturbative regime from first prin-

ciples because of a strong interaction. Also, one cannot simulate QCD with nonzero

chemical potential on a lattice because of the sign problem [40].) The phase diagram in

Fig. 1.3, therefore, could be used as a schematic representation of a possible phase di-

agram. As we see, in accordance with general expectations, at sufficiently high baryon
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chemical potential and low temperature, there may exist some color superconducting

phases.

As present, many phases of quark matter have been studied. From the perspec-

tive of spin, we can classify these phases into two kinds: spin-0 color superconductivity

and spin-1 color superconductivity which we will discuss in next two subsections.

1.2.4 Spin-0 color superconductivity

In spin-0 color superconductor, the quarks in the Cooper pairs have opposite spin.

There are 2 important color superconducting phases, the color-flavor locked (CFL)

phase and the two-flavor color superconducting (2SC) phase.

The CFL phase is the color superconducting phase at the highest densities. In

this phase, up, down and strange quarks are treated on equal footing and the disruptive

effects of the strange quark mass are negligible. The three quark flavors have the same

Fermi energies. Around the Fermi surface, all quarks (3 colors times 3 flavors) form

Cooper pairs with the zero total momentum and zero total spin. As a result, all quark

quasiparticles are gapped, with the estimated value of the gap parameter D0 ⇠ 10�

100 MeV [41, 42, 43].

The pairing pattern of the CFL phase is given by

< y

a

i Cg

5
y

b

j >µ DCFLe

abA
ei jA. (1.15)

Color indices a,b and flavor indices i, j run from 1 to 3. C is the Dirac charge-

conjugation matrix, DCFL is the CFL gap parameter. This is the only possible pattern

with all three colors and three flavors participating on equal footing in conventional

zero-momentum spinless Cooper pairs at high densities. The masses of all the quarks

can be neglected.
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In the ground state with such a condensate, the color and flavor symmetries are

broken down to the diagonal subgroup as follows:

SU(3)c ⇥SU(3)L ⇥SU(3)R ⇥U(1)B ! SU(3)c+L+R ⇥Z2. (1.16)

In the 2SC phase, up and down quarks, which are (approximately) massless

and have the same chemical potential, form Cooper pairs with each other. The pairing

pattern of the 2SC phase is given by

< y

a

i Cg

5
y

b

j >µ D2SCei j3e

ab3. (1.17)

From the structure in Eq. (1.17), we can find that only quarks with two (red and green)

out of three colors participate in the Copper pairing of the 2SC phase, while quarks with

the third (blue) color are unpaired. In other words, the original six quark states give rise

to two doublets of gapped quasiparticles and two unpaired quasiparticles (singlets with

respect to the SU(2)c unbroken gauge group). The Copper pair condensates involve

the combinations of ur-dg and ug-dr only. It should be noted that the color indices in

Eq. (1.17) may have an arbitrary orientation in the color space, since it can be changed

by the global color transformations. We choose the condensate to point into the third

(blue) color direction by convention. Based on the color-flavor structure for the 2SC

phase, the corresponding symmetry breaking pattern is

SU(3)c ⇥U(1)B ! SU(2)c ⇥U(1)B̃. (1.18)

If the masses of up and down quarks are neglected, the global SU(2)L ⇥SU(2)R chiral

symmetry present in two-flavor QCD is not broken in the 2SC phase. As a conse-

quence of the condensate pointing in the antiblue color direction, see Eq. (1.17), the

color SU(3)c gauge symmetry is broken down to the SU(2)c color gauge subgroup.

Therefore, five out of total eight gluons of SU(3)c gauge group become massive due

to the Meissner effect, while the other three gluons, corresponding to the unbroken
15



SU(2)c gauge group, remain massless. Although the original U(1)B baryon number

symmetry in vacuum is broken in the 2SC phase, a new “rotated” U(1)B̃ baryon num-

ber symmetry in medium remains unbroken. This means that the quark matter in the

2SC phase, unlike in the CFL phase, is not superfluid.

1.2.5 Spin-1 color superconductors

In realistic neutral quark matter in b equilibrium, a mismatch between the Fermi mo-

menta of different quark flavors becomes almost inevitable because of the effect of

non-equal quark masses [44]. If the strength of diquark pairing is not strong enough to

overcome the mismatch, spin-0 color superconductivity cannot occur. In this case, one

should consider the possibility of spin-one, same-flavor Cooper pairing [45, 46, 47, 48,

49, 50, 51]. The Pauli principle does not allow the construction of spin-0 Cooper pairs

from quarks of the same flavor. Indeed, while same-flavor pairing may formally cor-

respond to a spin-zero, color-symmetric state, this cannot be realized because there is

no attractive interaction in the corresponding channel. The color antisymmetric wave

function of a pair can only be spin symmetric. This corresponds to a spin-1 state.

Cooper pairs in spin-one color superconducting phases are given by diquarks in a color

antitriplet (antisymmetric) and spin triplet (symmetric) state. Depending on a specific

color-spin structure, which is determined by the alignments of the antitriplet in color

space and the triplet in spin (coordinate) space, many inequivalent color superconduct-

ing phases may form.

Each phase is unambiguously specified by the structure of the gap matrix, which

is commonly written in the following form [52]:

F(P)+ = Â
e=±

f

e(P)MpLe
p, (1.19)

where f

e(P) is the gap function. The Dirac matrices Le
p ⌘ (1+eg0� · p̂)/2, with e =±,

are the projectors onto the positive and negative energy states. The color structure of
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F(P)+ is determined by

Mp =
3

Â
i, j=1

JiDi j

h

p̂ j cosq + g

j
? sinq

i

. (1.20)

where (Ji) jk =�ie i jk are the antisymmetric matrices in color space, p̂ ⌘ p/p is the unit

vector in the direction of the quasiparticle three-momentum p, and g

j
? ⌘ g

j � p̂ j(� · p̂).

The explicit form of the 3⇥ 3 matrix Di j and the value of the angular parameter q

determine specific phases of superconducting matter. Among them, there is a number

of inert and noninert spin-one phases [53, 54], which are naturally characterized by the

continuous and discrete symmetries preserved in the ground state.

In the two special cases, q = 0 and q = p/2, the corresponding phases are

called longitudinal and transverse, respectively. In this thesis we focus on the transverse

phases (q = p/2), in which only quarks of the opposite chiralities pair and which have

lower free energies than the longitudinal phases [52]. To further constrain the large

number of possibilities, we concentrate only on the following four most popular ones:

the color-spin locked phase (CSL), the A-phase, the polar phase and the planar phase.

The A phase and the CSL phase are analogous to the A and B phases in superfluid 3He,

which were discussed in Subsec. 1.2.2.

The structure of the matrices Di j and Mp for the mentioned four phases are

quoted in the first two rows of Tab. 1.1 (for more details see Refs. [52]). In the corre-

sponding ground states, the original symmetry SU(3)c⇥SO(3)J⇥U(1)em of one-flavor

quark matter breaks down to [49, 51, 52, 53, 54, 55]

fSO(3)J (CSL),

SU(2)c ⇥fSO(2)J ⇥Ũ(1)em (A-phase),

SU(2)c ⇥SO(2)J ⇥Ũ(1)em (polar),

fSO(2)J ⇥Ũ(1)em (planar),

respectively. The rotation symmetry is partially broken in the last three cases. In polar
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phase, the superconducting phase is invariant under rotations around one fixed axis

in real space. In planar phase, the superconducting state is invariant under a special

joint rotation in color and real space. And in CSL phase, any rotation in real space

leaves the system invariant as long as one simultaneously performs the same rotation

in fundamental color space. It is also easy to see that in none of the cases the full

color symmetry is preserved. The residual color subgroup SU(2)c remains unbroken

in two of these (A phase and polar phase). This means that only red and green quarks

form Cooper pairs. The spontaneously broken symmetry gives rise to massive gauge

bosons. For most cases (except CSL phase), there is a Meissner effect for five of the

eight gluons. The other three of the gluons do not attain Meissner masses. This proves

that no Cooper pairs carry blue color charge. In CSL phase, all eight gluons attain

Meissner masses.

It has been argued that the lowest free energy phase is the transverse CSL phase

[52]. The value of the spin-1 gap is estimated to be about two or three orders of mag-

nitude smaller than a typical spin-0 gap. It can realistically be about 1MeV, but may

well be less than 0.1MeV. However, even a very small gap like this can substantially

affect the cooling rate of a quark star [56]. Also, as discussed in Ref [51], the electro-

magnetic Meissner effect present in spin-1 superconductors (in contrast to the case of

spin-0 2SC and CFL phases) have observable effects on the magnetic field relaxation

in pulsars. The non-zero gaps can also strongly modify the rates of the weak processes

in quark matter. As we discuss in the next subsection, such processes affect the viscous

properties of matter, which are responsible for the rotational slowdown of stars under

certain conditions.

In spin-one color superconductors, there is no cross-flavor pairing and, there-

fore, the quark propagator is diagonal in flavor space, i.e.,

S(P) = diag[Su(P),Sd(P),Ss(P)]. (1.21)
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CSL phase planar phase polar phase A-phase
Di j di j di1d j1 +di2d j2 di3d j3 di3(d j1 + id j2)
Mp J ·�?(p̂) J1g?,1(p̂)+ J2g?,2(p̂) J3g?,3(p̂) J3[g?,1(p̂)+ ig?,2(p̂)]

lp,1 (n1) 2 (8) 1+ cos2
qp (8) sin2

qp (8) (1+ |cosqp|)2 (4)
lp,2 (n2) 0 (4) 0 (4) 0 (4) (1� |cosqp|)2 (4)
lp,3 (n3) — — — 0 (4)

Table 1.1: Matrices Di j and Mp as well as the eigenvalues lp,r with the corresponding
degeneracies nr in four spin-one color superconducting phases. The angle between p
and the z-axis is denoted by qp.

The Nambu-Gorkov structure of each flavor-diagonal element is given by

S<,>
f (P) =

0

B

@

G<,>
f ,+ (P) F<,>

f ,� (P)

F<,>
f ,+ (P) G<,>

f ,� (P)

1

C

A

, (1.22)

where f = u,d,s. The normal (diagonal) and anomalous (off-diagonal) components of

the Nambu-Gorkov propagator have the following structure [52]:

G<,>
f ,± (P) = g0L⌥

p Â
r

P±
p,rG

<,>
±,r, f (P) , (1.23)

F<,>
f ,+ (P) = �g0Mpg0 Â

e,r
P+

p,rL�e
p F<,>

+,r, f (P) , (1.24)

F<,>
f ,� (P) = �M †

p Â
e,r

P�
p,rLe

pF<,>
�,r, f (P) . (1.25)

Here, r labels different quasiparticle excitations in color-superconducting quark mat-

ter. The matrices P�
p,r and P+

p,r are the projectors onto the subspaces spanned by the

eigenvectors of MpM
†
p and g

0M †
p Mpg

0, respectively. The explicit form of the pro-

jectors for each phase can be found in Ref. [56]. It should be noted that both matrices

MpM
†
p and g

0M †
p Mpg

0 have the same set of eigenvalues lp,r,

MpM
†
p ⌘ Â

r
lp,rP

�
p,r , (1.26)

g

0M †
p Mpg

0 ⌘ Â
r

lp,rP
+
p,r . (1.27)

The list of all eigenvalues as well as their degeneracies are given in the last three rows

of Tab. 1.1. Each of the eigenvalues determines a quark quasiparticle with the following
19



dispersion relation:

ep,r, f =
q

(p�µ f )2 + |f |2lp,r, f . (1.28)

The separate components of the propagators in subspaces spanned by the eigenvectors,

see Eqs. (1.23), (1.24) and (1.25), can be conveniently rewritten in terms of the corre-

sponding distribution functions f (ep,r, f ) and the Bogoliubov coefficients B±
p,r, f , i.e.,

G>
±,r, f (P) =�2pi Â

e=±
B±e

p,r, f f (eep,r, f )d (p0 ±µ f � eep,r, f ), (1.29)

G<
±,r, f (P) =�2pi Â

e=±
B±e

p,r, f f (�eep,r, f )d (p0 ±µ f � eep,r, f ), (1.30)

F>
±,r, f (P) = 2pi

f

2ep,r, f
Â

e=±
e f (eep,r, f )d (p0 ⌥µ f � eep,r, f ), (1.31)

F<
±,r, f (P) = 2pi

f

2ep,r, f
Â

e=±
e f (�eep,r, f )d (p0 ±µ f � eep,r, f ). (1.32)

The Bogoliubov coefficients and the fermion distribution function are defined as fol-

lows:

Be
p,r, f =

1
2
� e

p�µ f

2ep,r, f
, (1.33)

f (e) =
1

exp( e

T )+1
. (1.34)

1.3 Weak processes and viscosity in neutron stars

As we know, there are four fundamental interactions in nature: strong, weak, electro-

magnetic and gravitational. In the 1960s, Glashow, Weinberg and Salam showed that

the electromagnetic and weak interactions can be combined in a unified framework of

the electro-weak theory. The weak interaction acts between left-handed leptons and

quarks and is due to an exchange of heavy W± and Z bosons. The weak interactions

have several unique attributes: (i) they are the only types of interaction that affect neu-

trinos; (ii) they are the only interactions that are capable of changing the quark flavors;

(iii) they are the only interactions that violate the parity symmetry P and the CP sym-

metry [57]; (iv) they are mediated by heavy gauge bosons, which come as an outcome

of the so-called Higgs mechanism in the Standard Model [58].
20



ss

(b)(a)

u

W

ud

u

u d

W

eν

ss

(c) (d)

u

W e

u

ee ν

W

νe

(f)

u

W

d

e

u d

ee ν

W

(e)

Figure 1.4: Weak processes in dense quark matter.

In the neutron stars, we have two types of weak processes: nonleptonic pro-

cesses (u+ s $ u+ d) and semileptonic processes (Urca), see Fig. 1.4. They provide

the microscopic mechanism for the viscosity of Stellar matter.

When the viscosity of stellar matter is not very high, a star has a tendency to

spontaneously develop instabilities by emitting gravitational waves [59, 60, 61, 62] (for

reviews on this topic see, e.g., Refs. [63, 64]). Among various types of instabilities,

the so-called rotation-dominated (r-mode) instabilities might be the most important to

consider. They can develop at a relatively low angular velocity, and therefore may be

relevant for a large number of compact stars.

This observation makes it particularly important to study the bulk and shear

viscosity of color superconducting matter [65, 66, 67, 68, 69]. The bulk viscosity is

a measure of the energy density dissipation during the expansion and compression of

a fluid. When the expansion or the compression drives the system out of chemical

equilibrium, microscopic (weak) processes will attempt to re-equilibrate the system.

As an outcome, the kinetic energy of the macroscopic motion of the fluid is partially

converted into the thermal kinetic motion. In essence, this is the mechanism responsible

for the bulk viscosity in stellar quark matter at not very low temperatures. It is the shear

viscosity that damps the instabilities at low temperatures [70].

The Urca processes are the main weak processes that determine the bulk viscos-

ity in non-strange quark stars. This was analyzed in Ref. [65] in detail. It is commonly
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argued that the bulk viscosity in the normal phase of three-flavor quark matter is dom-

inated by the nonleptonic weak processes [71, 72, 73, 74, 75, 76]. Recently it was

shown [77] that the interplay between the Urca and the nonleptonic processes may be

rather involved. Indeed, because of the resonance-type dynamics that determines the

bulk viscosity and because of a subtle interference between the two types of the weak

processes, the Urca processes under certain conditions may still contribute a lot to the

bulk viscosity [77].

Also we should mention that the common feature of the Urca processes is the

emission of neutrinos. Because of this neutrino emission, the Urca processes are of

prime importance for cooling of neutron stars during the first million years of their

evolution [78, 79, 80, 81].
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1.4 Graphene

The first application of carbon materials can be traced back to 3750 BC. Egyptians

and Sumerians used charcoal to reduct copper, zinc and tin ores in the manufacture of

bronze. The first recorded application of charcoal for medicinal purposes was cited in

Egyptian papyri in 1500 BC. The principle use appears to have been the application

of charcoal to adsorb odorous vapours from putrefying wounds and from within the

intestinal tract. One of the most important carbon materials, graphite was named by

Abraham Gottlob Werner in 1789.2 Since 1940’s, carbon materials have been attract-

ing interest from researchers all over the world. In 1946, Wallace started the study of

the band structure in graphite [82]. His starting point in the analysis was a single layer

of graphite. In 1950s, McClure and his colleagues developed the Slonczewski-Weiss-

McClure (SWM) band structure [83]. In 1968, Schroeder determined the position of the

current electron and hole pockets in the band structure [84]. In 1984, Semenoff [85],

DeVincenzo and Mele [86] pointed out the massless Dirac equation for the 1-layer sys-

tem (i.e., graphene). But it was not until 2004 when the first graphene sample was

made in a lab [87]. After that numerous experiments were performed to verify theo-

retical predictions of its properties [88]. Among them, one important discovery is that

in 2005. Novoselov and Geim found the anomalous integer quantum Hall effect of

graphene in their experiment [89]. Since then, graphene research exploded. The prop-

erty of interest for us is its unusual electronic structure that can be described in terms of

massless two-dimensional Dirac particles. As stated earlier, we know that matter made

of massless Dirac particles is relativistic matter. Now let us give a brief introduction to

graphene and its properties.

Graphene is a single two-dimensional layer of carbon atoms bound in a hexago-

nal lattice structure. It is one of the strongest materials in nature because of the strength
2Graphite is the word from the Ancient Greek, means ”to draw/write” for its use in pencils.
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and specificity of its covalent bonds. The structure of graphene can be treated as a

triangular lattice with a basis of two atoms per unit cell. Each carbon atom has a dis-

tance a = 1.42 Å with its three neighbors. The electronic configuration of carbon

atom is 1s22s22p2. The 1s electrons do not contribute to the chemical bond. So, the

properties of graphene can be described in terms of 2s and 2px, 2py and 2pz orbitals,

they hybridize to form three new planar orbitals sp2. Each of the orbitals contains one

electron. These sp2 orbitals of different atoms combine to s bonds. The properties of

graphene are determined by these bonds. Also there is a fourth orbital pz. This is the

orbital perpendicular to the plane in which the atoms sit. pz orbitals covalently with

neighboring atoms leading to the formation of a p band.

The lattice vectors of graphene are:

a1 =
a
2
(3,

p
3), a2 =

a
2
(3,�

p
3), (1.35)

and the nearest neighbor vectors are

d1 = a(1,0), d2 =
a
2
(�1,

p
3), d3 =

a
2
(�1,�

p
3). (1.36)

The tight-binding Hamiltonian for electrons in graphene can be defined as:

H =�tS<i, j>,s (a†
s ,ibs , j +h.c.)� t 0S<i, j>,s (a†

s ,ias , j +b†
s ,ibs , j +h.c.). (1.37)

Here a
s ,i (a†

s ,i) is the annihilation (creation) operator for an electron with spin s (the

same for b). t is the nearest neighbor hopping energy and t 0 is the next nearest neighbor

hopping energy. The energy bands derived from this Hamiltonian can be represented

as

E±(k) =±t
p

3+ f (k)� t 0 f (k),

f (k) = 2cos(
p

3)+4cos

 p
3

2
kya

!

cos
✓

3
2

kxa
◆

. (1.38)

The first Brillouin zone can be represented by the vectors

b1 =
2p

3a
(1,

p
3), b2 =

2p

3a
(1,�

p
3). (1.39)
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The Dirac points are located on

K =

✓

2p

3a
, ± 2p

3
p

3a

◆

(1.40)

in momentum space. Then, it can be easily shown that near the Dirac points, the dis-

persion relation can be approximated as

E±(q)⇡±vF |q|+O((q/K)2), (1.41)

where q is the momentum relative to the Dirac points and the Fermi velocity is given

by vF = 3ta/2 ⇡ 106 m/s. The linear structure is not sufficient to give Dirac fermions,

but in graphene the full structure can be proved [85, 86].

1.4.1 Quantum Hall Effect in graphene

The classical Hall effect was discovered by Hall in 1879. He showed that the traverse

resistance of a thin metallic plate varies linearly with the strength B of the perpendicular

magnetic field,

RH =
B

qnel
. (1.42)

Here q is the carrier charge and nel is the two-dimensional carrier density.

The discovery of the integer quantum Hall effect was awarded with a Nobel

prize in 1985 to V. Klitzing. In addition, the discovery and theory of the fractal quan-

tum Hall effect was awarded a Nobel prize in 1998 to Tsui, Stormer and Laughlin. The

quantum Hall effect is observed in two-dimensional electron systems at low tempera-

tures and in strong magnetic fields. The Hall conductivity is

s =
ne2

h
. (1.43)

Here, n is the filling factor which can take integer or fractional values.

Graphene has an anomalous quantum Hall effect in the presence of a magnetic

field. In weak magnetic fields, experimental observation [89, 90] finds that the Hall
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conductivity is

sxy =±4
✓

n+
1
2

◆

e2

h
. (1.44)

Here, n is the Landau level index. The factor of 4 corresponds to the double valley

and double spin degeneracies. The shift of 1/2 in the Hall conductivity reveals the

relativistic-like character of electron motion in graphene [91, 92, 93].

It is also interesting to show the quantum Hall effect in graphene in strong

magnetic fields (above 10 Teslas), the Hall conductivity at sxy = ne2/h with n =

0,±1,±3,±4 and the fractional quantum Hall effect with n = 1/3 were observed by

several groups [94, 95, 96]. For example, the integer quantum Hall effect at n = 0,±4

can be explained by a dynamical enhancement of Zeeman splitting (or dynamical Dirac

mass generation), when the U(4) flavor group is reduced down to a U"(2)⇥U#(2).

Here U",#(2) is the sublattice-valley symmetry at a fixed spin (up or down). The states

at n =±1,±3 can appear only when there are both dynamical enhancement of Zeeman

splitting and Dirac mass generation.

When there is no enhancement of Zeeman splitting and no Dirac mass genera-

tion, however, the U(4) flavor group is a good symmetry at all realistic fields, and then

the Hall conductivity Eq. (1.44) appears. The anomalous quantization of Hall con-

ductivity played a key role to empirically confirm that charge carriers in graphene are

described by massless Dirac quasiparticles [85].

1.4.2 Optical conductivity of graphene

The double Dirac cone band structure in graphene affects the optical transmission.

While photons are absorbed, a quasiparticle is promoted from an occupied valence state

below the Fermi energy to an empty state above Fermi energy. The optical conductivity

tensor is given by the Kubo formula [97]

si j(q,w) =
1

wn

Z t

�•
dt 0eiw(t�t 0) < y|[ j†

i (q, t), j j(q, t 0)]|y >+i
n0e2

mw

di j. (1.45)
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Here js is the current operator, n is the overall volume, n0 is the density of particle, m

is the mass of particle and w is the energy of particle.

The current-current correlation function is defined as

Pi j(q, t � t 0) =� i
n

Q(t � t 0)< y|[ j†
i (q, t), j j(q, t 0)]|y > . (1.46)

The Fourier transform is

Pi j(q, t � t 0) =� i
n

Z �•

•
dteiw(t�t 0)Q(t � t 0)< y|[ j†

i (q, t), j j(q, t 0)]|y > . (1.47)

Then one can find

si j(q,w) =
i
w



Pi j(q,w)+
n0e2

m
di j

�

. (1.48)
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CHAPTER 2

NON-LEPTONIC WEAK PROCESSES IN SPIN-ONE COLOR

SUPERCONDUCTING QUARK MATTER

As we discussed in the previous chapter, the bulk viscosity in quark matter is deter-

mined by the rates of weak (Urca and non-leptonic) processes. The rates of Urca pro-

cesses in spin-one color superconducting quark matter have been calculated in Ref. [65].

In this chapter we will discuss the rates of non-leptonic processes in spin-one color su-

perconducting matter.

2.1 Formalism

In order to calculate the rates of the non-leptonic processes, see Fig. 1.4 (a) and (b), we

use the same approach as in Refs. [56, 65, 77, 98, 101]. It is based on the Kadanoff-

Baym formalism [102]. The starting point of the analysis is the general Kadanoff-

Baym equation for the Green functions (propagators) of the down (or strange) quarks.

After applying the conventional gradient expansion close to equilibrium, we derive the

following kinetic equation for the d-quark Green function:

i
∂

∂ t
Tr[g0S<d (P1)] = �Tr[S>d (P1)S<(P1)�S>(P1)S<d (P1)] . (2.1)

Here we denote the quark four-momenta by capital letters, e.g., P = (p0,p), where p0

is the energy and p is the three-momentum. The structure of the quark Green’s func-

tions S<(P1) and S>(P1) in spin-one color superconducting phases will be discussed in

the next subsection. To leading order, the quark self-energies S<(P1) and S>(P1) are

given by the Feynman diagram in Fig. 2.1. This translates into the following explicit

expression:

S<,>(P1) =
i

M4
W

Z d4P4

(2p)4 Gµ

ud,�S<,>
u (P4)Gn

ud,+P>,<
µn

(Q), (2.2)

where, by definition, MW and Q = P1 �P4 are the mass and the four-momentum of

the W -boson, respectively. (Note that the large hierarchy between the W -boson mass
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Figure 2.1: Feynman diagram for the d-quark self-energy. The particle four-momenta
are shown in parenthesis next to the particle names.

and a typical momentum transfer Q . 1 MeV justifies the approximation in which the

W -boson propagator is replaced by 1/M2
W .) As seen from the diagram in Fig. 2.1, the

expression for the polarization tensor of the W -boson is given by

P<,>
µn

(Q) =�i
Z d4P2

(2p)4 Tr
h

Gµ

us,+ S>,<
s (P2 +Q)Gn

us,� S<,>
u (P2)

i

. (2.3)

In the Nambu-Gorkov notation used here, the explicit form of the (tree-level) vertices

for the weak processes d $ u+W� and s $ u+W� reads [101]

Gµ

ud/us,± =
eVud/us

2
p

2sinqW

0

B

@

g

µ(1� g

5)tud/us,± 0

0 �g

µ(1+ g

5)tud/us,⌥

1

C

A

. (2.4)

These are given in terms of the elements of the Cabibbo-Kobayashi-Maskawa matrix

Vud and Vus, and the weak mixing angle qW . By construction, the t-matrices operate in

flavor space (u,d,s) and have the following form:

tud,+ ⌘

0

B

B

B

B

@

0 1 0

0 0 0

0 0 0

1

C

C

C

C

A

, tud,� ⌘

0

B

B

B

B

@

0 0 0

1 0 0

0 0 0

1

C

C

C

C

A

,

tus,+ ⌘

0

B

B

B

B

@

0 0 1

0 0 0

0 0 0

1

C

C

C

C

A

, tus,� ⌘

0

B

B

B

B

@

0 0 0

0 0 0

1 0 0

1

C

C

C

C

A

. (2.5)
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By making use of Eqs. (2.1) and (2.2), the kinetic equation takes the following form:

i
∂

∂ t
Tr[g0S<d (P1)] = � i

M4
W

Z d4P4

(2p)4 Tr
h

S>d (P1)Gµ

ud,�S<u (P4)Gn

ud,+P>
µn

(Q)

�Gµ

ud,�S>u (P4)Gn

ud,+S<d (P1)P<
µn

(Q)
i

. (2.6)

The physical meaning of the expression on the left hand side of this equation is the time

derivative of the d-quark distribution function. By integrating this over the complete

phase space, we obtain the net rate of the d-quark production:

Gd ⌘� i
4

∂

∂ t

Z d4P1

(2p)4 Tr[g0S<d (P1)]. (2.7)

Then, by making use of the kinetic equation (2.1), we derive

Gd =
i

4M4
W

Z d4P1

(2p)4

Z d4P4

(2p)4

h

Tr
⇣

S>d (P1)Gµ

ud,�S<u (P4)Gn

ud,+

⌘

P>
µn

(Q)

� Tr
⇣

Gµ

ud,�S>u (P4)Gn

ud,+S<d (P1)
⌘

P<
µn

(Q)
i

. (2.8)

This rate should be non-vanishing only if the rates of the two non-leptonic weak pro-

cesses u+ s ! d+u and d+u ! u+ s differ. In b -equilibrium, in particular, the latter

two should be equal and the net rate of the d-quark production should vanish. The

corresponding state of equilibrium in dense quark matter is reached when the chemical

potentials of all three quark flavors are equal, i.e., µu = µd = µs. (For simplicity, here it

is assumed that all three quark flavors are approximately massless and, therefore, that

the electrical neutrality of quark matter is achieved without the need for the electrons.)

When the system is forced out of equilibrium, e.g., during the density oscil-

lations caused by the collective modes of stellar matter, small deviations from b -

equilibrium are induced. For our purposes, the corresponding state can be described

by the following set of the chemical potentials: µu = µd = µ and µs = µ +d µ , where

d µ is a small parameter that characterizes the magnitude of the departure from the

equilibrium state. Out of equilibrium, the net production of d-quarks may be nonzero.
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For example, if d µ > 0 (d µ < 0) the system has a deficit (an excess) of the down

quarks and an excess (a deficit) of the strange quarks. Then, one of the weak processes,

i.e., u+ s ! d +u (d +u ! u+ s), will start to dominate over the other in order to re-

store the equilibrium. The net rate of the d-quark (or equivalently s-quark) production

characterizes how quickly this happens.

In order to calculate the net rate of d-quark production, we need to use the ex-

plicit structure of the quark propagators in the specific spin-one color superconducting

phases. The quark propagators in Eq. (1.22) can now be used to derive the general

expressions for P<
µn

(Q) and P>
µn

(Q). This is done in the next subsection. The results

are then used to calculate the rate Gd in Eq. (2.8).

The W -boson polarization tensor is given in terms of the quark propagators in

Eq. (2.3). By taking into account the Nambu-Gorkov and flavor structure of the weak

interaction vertices in Eq. (2.4), as well as the quark propagator in Eq. (1.22), we derive

P<,>
µn

(Q) =� ie2V 2
us

8sin2
qW

Z d4P2

(2p)4 Tr
h

g

µ(1� g

5)G>,<
s,+ (P3)g

n(1� g

5)G<,>
u,+ (P2)

+g

µ(1+ g

5)G>,<
u,� (P3)g

n(1+ g

5)G<,>
s,� (P2)

i

, (2.9)

where we introduced the notation P3 ⌘ P2 +Q. Note that the anomalous (off-diagonal)

elements of the Nambu-Gorkov propagators dropped out from the result. This is the

consequence of the electric charge conservation. In calculations, this comes about as a

result of the specific flavor structure of the weak interaction vertices in Eq. (2.4). One

can further simplify the result for the polarization tensor in Eq. (2.9) by noticing that

the two terms on the right hand side are equal. From physical viewpoint, this is related

to the fact that the two terms are the charge-conjugate contributions of each other. After

taking this into, we arrive at the following expression for the polarization tensor:

P<,>
µn

(Q) = � ie2V 2
us

4sin2
qW

Z d4P2

(2p)4 Tr
h

g

µ(1� g

5)G>,<
s,+ (P3)g

n(1� g

5)G<,>
u,+ (P2)

i

. (2.10)

Then, by using the explicit structure of the normal components of the u- and s-quark
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propagators, defined in Eq. (1.23), we obtain

P<,>
µn

(Q) = � ie2V 2
us

4sin2
qW

Z d4P2

(2p)4 Tr
h

g

µ(1� g

5)g0L�
p3 Â

r3

P+
p3,r3

G>,<
+,r3,s(P3)g

n

⇥ (1� g

5)g0L�
p2 Â

r2

P+
p2,r2

G<,>
+,r2,u(P2)

i

. (2.11)

This can be rewritten in an equivalent form as

P<,>
µn

=� ie2V 2
us

4sin2
qW

Z d4P2

(2p)4 Â
r2,r3

T r3r2
µn

(p̂3, p̂2)G
>,<
+,r3,s(P3)G

<,>
+,r2,u(P2). (2.12)

where, by definition, the tensor T rr0
µn

(p̂, p̂0) is given by the following trace (in color and

Dirac spaces):

T rr0
µn

(p̂, p̂0) = Tr[gµ(1� g

5)g0L�
p P+

p,rg
n(1� g

5)g0L�
p0P

+
p0,r0 ] . (2.13)

This trace was calculated for each of the four spin-one color superconducting phases in

Ref. [56]. For convenience, the corresponding results are also quoted in Appendix A.1.

Finally, by making use of Eqs. (1.29) and (1.30), we arrive at the following

expression for the W -boson polarization tensor:

P<,>
µn

=
ipe2V 2

us

2sin2
qW

Z d3p2

(2p)3 Â
r2,r3,e1,e2

T r3r2
µn

(p̂3, p̂2)Be1
p3,r3,sB

e2
p2,r2,u

⇥ f (±e1ep3,r3,s) f (⌥e2ep2,r2,u)d (q0 +d µ � e1ep3,r3,s + e2ep2,r2,u).(2.14)

Here we denote d µ ⌘ µs � µd and assume that the upper (lower) sign corresponds to

P< (P>). It should be mentioned that one of the d -functions was used to perform the

integration over p2,0.

2.2 Calculation of the rate

In this section we derive a general expression for the net rate of the d-quark production

in spin-one color superconducting quark matter close to chemical equilibrium. The

corresponding rate is formally defined by Eq. (2.8). By making use of the quark prop-
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agators and the W -boson polarization tensor, derived in the previous section, we obtain

Gd =
ie2V 2

ud

16M4
W sin2

qW

Z d4P1

(2p)4

Z d4P4

(2p)4 Â
r1,r4

T µn

r4r1
(p̂4, p̂1)

⇥
h

G>
+,r1,d(P1)G<

+,r4,u(P4)P>
µn

(Q)�G>
+,r4,u(P4)G<

+,r1,d(P1)P<
µn

(Q)
i

.(2.15)

where we used the following results for the traces:

Tr
⇣

S>d (P1)Gµ

ud,�S<u (P4)Gn

ud,+

⌘

=
e2V 2

ud

4sin2
qW

Â
r1,r4

T µn

r4r1
(p̂4, p̂1)G>

+,r1,d(P1)G<
+,r4,u(P4),

(2.16)

Tr
⇣

Gµ

ud,�S>u (P4)Gn

ud,+S<d (P1)
⌘

=
e2V 2

ud

4sin2
qW

Â
r1,r4

T µn

r4r1
(p̂4, p̂1)G>

+,r4,u(P4)G<
+,r1,d(P1).

(2.17)

As in the calculation of the polarization tensor, the anomalous (off-diagonal) Nambu-

Gorkov components of quark propagators did not contribute to these traces. This is the

consequence of the specific flavor structure of the weak interaction vertices (2.4).

After making use of Eqs. (1.29), (1.30) and (2.14), we obtain

Gd = 27
p

4G2
FV 2

udV 2
us Â

r1r2r3r4
Â

e1e2e3e4

Z d3p1

(2p)3
d3p2

(2p)3
d3p3

(2p)3
d3p4

(2p)3 (1� p̂1 · p̂2)

⇥ (1� p̂3 · p̂4)wr4r1(p̂4, p̂1)wr3r2(p̂3, p̂2)B
e1
p1,r1,dBe2

p2,r2,uBe3
p3,r3,sB

e4
p4,r4,u

⇥ d (p1 +p2 �p3 �p4)d (e1ep1,r1,d + e2ep2,r2,u � e3ep3,r3,s � e4ep4,r4,u +d µ)

⇥
⇥

f (e1ep1,r1,d) f (e2ep2,r2,u) f (�e3ep3,r3,s) f (�e4ep4,r4,u)� f (�e1ep1,r1,d)

⇥ f (�e2ep2,r2,u) f (e3ep3,r3,s) f (e4ep4,r4,u)] .

(2.18)

In derivation, we used the definition of the Fermi constant in terms of the W -boson

mass,

GF =
e2

4
p

2sin2
qW M2

W
(2.19)

and the following Lorentz contraction:

T µn

r4r1
(p̂4, p̂1)T

r3r2
µn

(p̂3, p̂2) = 16(1� p̂1 · p̂2)(1� p̂3 · p̂4)wr4r1(p̂4, p̂1)wr3r2(p̂3, p̂2) , (2.20)
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where wrr0(p̂, p̂0) denotes a color trace that involves a pair of quasiparticles (r and

r0) with the given directions of their three-momenta (p̂ and p̂0) in a specific spin-one

color superconducting phase. The corresponding traces for all four phases are listed in

Appendix A.1.

Formally, the expression in Eq. (2.18) gives the net rate of the d-quark produc-

tion in quark matter away from chemical equilibrium. The first term in the brackets

describes the production of d-quarks due to s+ u ! u+ d, while the second one de-

scribes the annihilation of d-quarks due to u+d ! s+u.

Here it might be instructive to note that the above expression for the rate Gd

resembles the general result for the net rate of the d-quark production in the normal

phase of strange quark matter [103]. The key difference comes from the presence of the

Bogoliubov coefficients Bp,r, f and the wrr0(p̂, p̂0) functions that account for a non-trivial

quark structure of the quasiparticles in spin-one color superconductors. Naturally, when

such quasiparticles are the asymptotic states for the weak processes, the amplitude is

not the same as in the normal phase.

The degree of departure from b -equilibrium and, thus, the net rate is controlled

by the parameter d µ = µs � µd . When d µ = 0, the expression in the square brackets

of Eq. (2.18) vanishes and Gd = 0. When d µ 6= 0, on the other hand, one has

Gd ' ld µ (2.21)

to leading order in small d µ . Note that the overall sign was chosen so that l is positive

definite. (Recall that a positive d µ means an excess of strange quarks, which should

drive a net production of d-quarks, while a negative d µ means a deficit of strange

quarks, which will be produced by annihilating some d-quarks.)
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From the general expression in Eq. (2.18), we derive

l =
5l0

211
p

5
µ

5T 3 Â
r1r2r3r4

Â
e1e2e3e4

Z

d3p1d3p2d3p3d3p4(1� p̂1 · p̂2)(1� p̂3 · p̂4)

⇥ wr4r1(p̂4, p̂1)wr3r2(p̂3, p̂2)B
e1
p1,r1,dBe2

p2,r2,uBe3
p3,r3,sB

e4
p4,r4,ud (p1 +p2 �p3 �p4)

⇥ d (e1ep1,r1,d + e2ep2,r2,u � e3ep3,r3,s � e4ep4,r4,u)

⇥ f (�e1ep1,r1,d) f (�e2ep2,r2,u) f (e3ep3,r3,s) f (e4ep4,r4,u). (2.22)

where

l0 =
64G2

FV 2
udV 2

us
5p

3 µ

5T 2 (2.23)

is the corresponding l -rate in the normal phase of strange quark matter [103].

2.2.1 Analysis of the rate in CSL phase

Out of the four spin-one color superconducting phases studied in this thesis, the CSL

phase is special. This is the only phase in which the dispersion relations of quasiparti-

cles are isotropic. As a result, the corresponding rate is the easiest to calculate. In this

subsection, we analyze the l -rate in the CSL phase in detail.

Let us start by noting that the explicit form of the wrr0(p̂, p̂0)-functions in the

CSL phase is given by

w11(p̂, p̂0) = 1+
1
4
(1+ p̂ · p̂0)2 , (2.24)

w12(p̂, p̂0) = w21(p̂, p̂0) = 1� 1
4
(1+ p̂ · p̂0)2 , (2.25)

w22(p̂, p̂0) =
1
4
(1+ p̂ · p̂0)2 . (2.26)

(See Appendix A.1 and Ref. [56].) By making use of these expressions and introducing

the following notation for the angular integrals:

Fr1r2r3r4 =
Z

dW1

Z

dW2

Z

dW3

Z

dW4 (1� p̂3 · p̂4)(1� p̂1 · p̂2)wr4r1(p̂4, p̂1)

⇥ wr3r2(p̂3, p̂2)d (p1 +p2 �p3 �p4) , (2.27)
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we arrive at the following representation for the l -rate in the CSL phase:

l

(CSL) =
5l0µ

3

211
p

5T 3 Â
r1r2r3r4

Â
e1e2e3e4

Z •

0
d p1

Z •

0
d p2

Z •

0
d p3

Z •

0
d p4 Fr1r2r3r4

⇥ Be1
p1,r1,dBe2

p2,r2,uBe3
p3,r3,sB

e4
p4,r4,u f (�e1ep1,r1,d) f (�e2ep2,r2,u) f (e3ep3,r3,s)

⇥ f (e4ep4,r4,u)d (e1ep1,r1,d + e2ep2,r2,u � e3ep3,r3,s � e4ep4,r4,u). (2.28)

Here we took into account that, to leading order in inverse powers of µ , the absolute

values of the quark three-momenta can be approximated by µ . In the same approxi-

mation, the explicit form of functions Fr1r2r3r4 are given in Appendix A.2. All of them

are proportional to 1/µ

3. This factor cancels out with the overall µ

3 in Eq. (2.28). In

order to perform the remaining numerical integrations, it is convenient to introduce new

dimensionless integration variables xi = (pi � µ)/T instead of pi (i = 1,2,3,4). The

integration over x4 is done explicitly by making use of the d -function. The remaining

three-dimensional integration is done numerically, using a Monte-Carlo method. One

finds that the ratio l

(CSL)/l0 is a function of a single dimensionless ratio, f/T .

Before proceeding to the numerical results, it is instructive to analyze the lim-

iting case of low temperatures (or alternatively very large f/T ). In this limit, only the

ungapped r = 2 quasiparticle modes should contribute to the rate. The corresponding

contribution is easy to obtain analytically, i.e.,

l

(CSL) ' l0F2222

Âr1r2r3r4 Fr1r2r3r4

=
928

27027
l0 ⇡ 0.034l0, for

f

T
! •. (2.29)

The subleading correction to this result is suppressed by an exponentially small factor

exp(�
p

2f/T ). (Note that
p

2 in the exponent is connected with the conventional

choice of the CSL gap, which is
p

2f rather than f .)

It might be instructive to mention that the asymptotic value in Eq. (2.29) is

substantially smaller than l0/9, which is the corresponding contribution of a single

ungapped mode in the normal phase. The additional suppression comes from the func-

tions w22(p̂4, p̂1) and w22(p̂3, p̂2) which modify the amplitude of the weak processes
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with respect to the normal phase. Except for the special case of collinear processes

(i.e., p̂4 parallel to p̂1 and p̂3 parallel to p̂2), the corresponding w-functions are less

than 1, see Eq. (2.26). Interestingly, this kind of suppression is a unique property of

the non-leptonic rates and is not seen in analogous Urca rates because the latter are

dominated by the collinear processes [56, 65].

All our numerical results for the l -rates as a function of f/T are shown in

Fig. 2.2 [104]. In the case of the CSL phase (black points and the interpolating line in

Fig. 2.2), we used the Mathematica’s adaptive quasi-Monte-Carlo method to calculate

the l -rate. In order to improve the efficiency of the method, we partitioned the range

of integration for each of the three dimensionless integration variables xi = (pi �µ)/T

into several (up to 6) non-overlapping regions. This approach insures that the main

contribution, coming from a close neighborhood of the Fermi sphere, is not lost in the

integration over a formally very large phase space.

As seen from Fig. 2.2, the numerical results smoothly interpolate between the

value of the rate in the normal phase l0 and the asymptotic value of the rate due to the

CSL ungapped modes, given by Eq. (2.29).

2.2.2 Analysis of the rate in polar phase

Unlike the CSL phase, the polar phase is not isotropic. However, it is the simplest

one among the other three phases. While the dispersions relations of its quasiparticles

depend on the angle qp between the momentum p and a fixed z-drection, its wrr0(p̂, p̂0)-

functions are independent of the quasiparticle momenta, i.e.,

wrr0(p̂, p̂0) = nrdrr0 , (2.30)
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Figure 2.2: Numerical results for the l -rate in four different phases of spin-one color
superconducting strange quark matter [104]. The error bars show the statistical er-
ror estimates in the Monte-Carlo calculation of the rates. The horizontal dashed lines
correspond to the contributions of the ungapped modes in the limit of large f/T (or
equivalently the limit of low temperatures).

with n1 = 2 and n2 = 1, see Appendix A.1. Taking this into account, the corresponding

l -rate takes a simple form:

l

(polar) =
5l0

211
p

5
µ

5T 3 Â
r1r2

nr1nr2 Â
e1e2e3e4

Z

d3p1d3p2d3p3d3p4(1� p̂1 · p̂2)

⇥ (1� p̂3 · p̂4)d (p1 +p2 �p3 �p4)B
e1
p1,r1,dBe2

p2,r2,uBe3
p3,r2,sB

e4
p4,r1,u

⇥ f (�e1ep1,r1,d) f (�e2ep2,r2,u) f (e3ep3,r2,s) f (e4ep4,r1,u)

⇥ d (e1ep1,r1,d + e2ep2,r2,u � e3ep3,r2,s � e4ep4,r1,u). (2.31)

By making use of the first d -function, we easily perform the integration over p4. We

can also perform the integration over one of the remaining polar coordinates. This is

possible because the integrand depends only on the two independent combinations of

the polar angles, i.e., j̃1 = j1 �j3 and j̃2 = j2 �j3. By using j̃1 and j̃2 as new in-
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tegration variables (for simplicity of notation, the tildes are dropped in the following),

we see that the integrand is independent of the variable j3. Finally, by approximat-

ing p2
1 p2

2 p2
3 ' µ

6 in the integration measure, we rewrite the expression for the rate as

follows:

l

(polar) ' 5l0µ

218
p

4T Â
r1r2

nr1nr2

Z •

�•
dx1

Z •

�•
dx2

Z •

�•
dx3

Z 1

�1
dx1

Z 1

�1
dx2

Z 1

�1
dx3

Z 2p

0
dj1

Z 2p

0
dj2 Â

e1e2e3e4

Be1
x1,x1,r1

Be2
x2,x2,r2

Be3
x3,x3,r2

Be4
x4,x4,r1

⇥ (1� cosq12)(1� cosq34)

cosh(1
2ex1,x1,r1)cosh(1

2ex2,x2,r2)cosh(1
2ex3,x3,r2)cosh(1

2ex4,x4,r1)

⇥ d (e1ex1,x1,r1 + e2ex2,x2,r2 � e3ex3,x3,r2 � e4ex4,x4,r1), (2.32)

where the new integration variables are xi = (pi�µ)/T and xi = cosqpi . By definition,

the dimensionless energy is

ex,x ,r =
q

x2 + |f/T |2l

x ,r, (2.33)

with l

x ,1 = 1�x

2 and l

x ,2 = 0, and the new Bogoliubov coefficients are

Be
x,x ,r =

1
2

 

1� e
x

ex,x ,r

!

. (2.34)

Note that the expressions for x4, x4 and cosq34 in Eq. (2.32) are given by

x4 =
p4 �µ

T
,

x4 =
p1x1 + p2x2 � p3x3

p4
,

cosq34 =
p1 cosq13 + p2 cosq23 � p3

p4
, (2.35)

where p4 = |p1+p2�p3| is a function of xi (i = 1,2,3) and the three cosine functions,

cosq12 = x1x2 +
q

1�x

2
1

q

1�x

2
2 cos(j1 �j2),

cosq13 = x1x3 +
q

1�x

2
1

q

1�x

2
3 cos(j1),

cosq23 = x2x3 +
q

1�x

2
2

q

1�x

2
3 cos(j2). (2.36)
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In the calculation, we used a customized Monte-Carlo method in order to improve the

statistical error of the integration over xi (with i= 1,2,3). To this end, we used a special

type of importance sampling, which is motivated by the fact that the main contribution

to the rate should come from the region near the Fermi surface. In order to implement

this, we utilized random variables distributed according to the Gaussian distribution

[105]:

P(x) =
1p

2ps

2
exp

✓

�(x� x0)2

2s

2

◆

, (2.37)

where x0 and s are the mean and the width of the distribution, respectively. This was

applied to the numerical integration over the dimensionless variables xi = (pi � µ)/T

(i = 1,2,3), in which case we took x0 = 0 and s = 3. In order to generate independent

variables (e.g., x1 and x2), distributed according to Eq. (2.37), we applied the Box-

Muller transform,

x1 = x0 +s

p

�2lnu1 cos(2pu2), (2.38)

x2 = x0 +s

p

�2lnu1 sin(2pu2), (2.39)

where u1 and u2 are two independent variables, uniformly distributed in the range from

0 to 1.

In our numerical calculation, we also used a Gaussian function to approximate

the d -function responsible for the energy conservation in the expression for the rate

(2.32). For this purpose, we used the width of the distribution s0 = 0.2. This ap-

peared to be sufficiently small to avoid strong violations of the energy conservation in

the weak processes and, at the same time, sufficiently large to use in a Monte-Carlo

integration with the number of (eight-dimensional) random points on the order of 106

(in a Mathematica code) or 107 (in a Fortran/C++ code).

The numerical results for the l -rate in the polar phase are shown by squares

(and the interpolating line) in Fig. 2.2. At vanishing f/T , the rate coincides with
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that in the normal phase. At asymptotically large value of f/T , on the other hand,

the rate approaches l0/9. This value is marked by the purple dashed line in the figure.

Theoretically, the rate is dominated by the ungapped modes (r1 = r2 = 2) in the f/T !

• limit. The corresponding contribution can be obtained by analytical methods as

follows. We start by pointing that the Bogoliubov coefficients for the ungapped modes

are equal to the unit step functions: Bei
xi,xi,2

⌘ Q(�eixi), where by definition Q(x) = 1

for x � 0 and Q(x) = 0 otherwise. Since these Bogoliubov coefficients are nonzero

only for ei = sign(�xi), each sums over ei effectively reduces to a single contribution.

By taking this into account and making use of the result for the angular integration, K0,

defined in Appendix A.2, we derive

l

(polar)
unpaired ' l0

6p

2

Z •

�•
dx1

Z •

�•
dx2

Z •

�•
dx3

Z •

�•
dx4

⇥ d (�x1 � x2 + x3 + x4)

(ex1 +1)(ex2 +1)(e�x3 +1)(e�x4 +1)

=
1
9

l0. (2.40)

It should be noted that the numerical results for the polar phase in Fig. 2.2 approach

this asymptotic value very slowly. We can speculate that this indicates a weak (proba-

bly, power-law) suppression of the contribution of the gapped (mixed with ungapped)

modes to the rate. The key feature responsible for this behavior in the polar phase is the

presence of gapless nodes at qp = 0 and qp = p in the dispersion relation of the gapped

modes. As we shall see below, the same qualitative property is shared by the A-phase,

whose gapped modes also have a node at qp = p . In contrast, the rates in the CSL and

planar phases, whose gapped modes have no gapless nodes, show asymptotes that are

consistent with the rapid, exponential approach to their asymptotic values.

2.2.3 Analysis of the rate in A-phase

The analysis in the A-phase of spin-one color superconducting matter can be performed

along the same lines as in the polar phase. The apparent complication of the A-phase
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is the existence of three, rather than two distinct quasiparticle excitations. However,

it appears that the contributions of the two gapped modes (r = 1,2) can be replaced

by a single contribution of a modified mode with the energy ep =
p

(p�µ)2 + |f |2lp

where lp ⌘ (1+cosqp)2 (cf. the dispersion relations of the modes r = 1,2 in Tab. 1.1).

This alternative representation is possible because of the special, separable structure

of the corresponding wrr0(p̂, p̂0) functions in the A-phase. As seen from the expres-

sions in Eq. (A.7), the mode r = 1 contributes only when cosqp of the corresponding

quasiparticle is positive, while the mode r = 2 contributes only when cosqp is negative.

Then, when the contributions are nonvanishing, one always gets wrr0(p̂, p̂0) = 2. By

also noting that the corresponding eigenvalues

lp,1 = (1+ |cosqp|)2 for cosqp > 0 (2.41)

and

lp,2 = (1� |cosqp|)2 for cosqp < 0 (2.42)

formally take the same form, i.e., lp ⌘ (1+ cosqp)2, we conclude that the sum over

the original modes r = 1,2 in the rate can indeed be replaced by a single contribution

of the modified mode as defined above. By making use of this observation, the general

expression for the rate in the A-phase takes the form, which is similar to that in the

polar phase, see Eq. (2.31), but with a different dispersion relation of the (modified)

gapped mode.

By using a Monte-Carlo algorithm as in the previous case, we perform a nu-

merical calculation of the l -rate in the A-phase. The corresponding results are shown

by stars (and the interpolating line) in Fig. 2.2. In the limit of large f/T , the rate is

saturated by the contribution of ungapped modes, which is the same as in the polar

phase, namely l0/9. The derivation of this asymptotic expression is the same as in

the polar phase. The corresponding value is marked by the dashed line in the figure.

A slow (probably, power-law) approach of the asymptotic value at f/T ! • is again
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associated with the presence of a gapless node (at qp = p) in the dispersion relation of

the (modified) gapped quasiparticles.

2.2.4 Analysis of the rate in planar phase

The calculation of the rate in the planar case requires the largest amount of computer

time. One of the main reasons for that is the much more complicated expressions for

the wrr0(p̂, p̂0)-functions (see Appendix A.1). The numerical results for the l -rate in

the planar phase are shown by diamonds (and the interpolating line) in Fig. 2.2. The

asymptotic value of the rate at large f/T was extracted only numerically. By taking

into account possible systematic errors (e.g., due to the overall normalization of the rate

that may differ by up to 15% from the analytical estimate (2.23) in the normal phase),

we estimate l

(planar) ' (0.038±0.003)l0 for f/T ! •. Note that this is smaller than

l0/9, which is the contribution of a single mode in the normal phase. As in the CSL

phase, in the planar phase the additional suppression comes from the w-functions for

the ungapped modes.

2.3 Discussion

In this chapter we derived the near-equilibrium rates of the net d-quark production (or

equivalently the l -rates) due to the non-leptonic weak processes (i.e., the difference

of the rates of u+ d ! u+ s and u+ s ! u+ d) in spin-one color-superconducting

strange quark matter at high density [106]. The main numerical results are presented in

Fig. 2.2.

In the limit of f/T = 0, which is same as the normal (unpaired) phase of strange

quark matter, our results reproduce the known result of Ref. [103]. The effect of color

superconductivity is to suppress these rates. The degree of the suppression depends

on the details of the specific spin-one phases. To large extent, this is controlled by the

value of the energy gap (more precisely, f/T ) as well as its functional dependence on

the direction of the quasiparticle momentum. At very large f/T (or equivalently in the
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limit of low temperatures), the l -rates approach fixed values, which are determined by

the contribution of the ungapped modes alone. The corresponding limiting value is the

smallest in the CSL phase. It is less than a third of the “canonical” value l0/9 due

to a single ungapped mode in the normal phase of matter. The additional suppression

comes from the modification of the quasiparticles due to color superconductivity. A

similar observation applies to the planar phase. The rates in the other two phases, i.e.,

the polar and A-phase, approach the asymptotic values equal to l0/9.

The numerical results for the l -rates in Fig. 2.2 also indicate that the asymptotic

approach to the limiting values can be qualitatively different in spin-one color super-

conducting phases. In the case of the polar and A-phase, the approach follows a power

law. In contrast, the approach appears to be exponential in the case of the CSL and pla-

nar phase. This qualitative difference can be easily understood. The power law is the

consequence of the presence of gapless nodes in the dispersion relations of the gapped

quasiparticles in the polar and A-phase (the nodes are located at qp = 0 and qp = p

in the polar phase, and at qp = p in the A-phase). In the CSL and planar phase, the

approach to the asymptotic value at f/T ! • is exponential because no gapless nodes

are found in their gapped quasiparticles. (Note that a similar observation regarding the

rates of the semi-leptonic processes was made in Ref. [56, 65].)

The results for the rates of non-leptonic weak processes, presented here, is

an important ingredient for the calculation of the bulk viscosity of spin-one color-

superconducting strange quark matter, which we will discuss in the next chapter.
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CHAPTER 3

BULK VISCOSITY OF SPIN-ONE COLOR SUPERCONDUCTING STRANGE

QUARK MATTER

In this chapter we calculate the bulk viscosity of spin-one color superconducting strange

quark matter. The interplay of Urca and non-leptonic processes will be considered here.

3.1 Formalism

In order to calculate the bulk viscosity in the presence of several types of active weak

processes, we follow the general formalism of Ref. [77]. We assume that small oscil-

lations of the quark matter density are described by dn = dn0 Re(eiwt) where dn0 is

the magnitude of the oscillations. For such a periodic process, the bulk viscosity z is

defined as the coefficient in the expression for the energy-density dissipation averaged

over one period, t = 2p/w ,

hĖdissi=�z

t

Z

t

0
dt (— ·~v)2 , (3.1)

where~v is the hydrodynamic velocity associated with the density oscillations. By mak-

ing use of the continuity equation, ṅ+n— ·~v = 0, we derive

hĖdissi=�z w

2

2

✓

dn0

n

◆2
. (3.2)

Such an energy-density dissipation of a pulsating hydrodynamic flow is the outcome of

a net work done on a macroscopic volume over a period of the oscillation,

hĖdissi=
n
t

Z

t

0
PV̇ dt, (3.3)

where V ⌘ 1/n is the specific volume. By matching the hydrodynamic definition in

Eq. (3.2) with the relation in Eq. (4.2), we derive the expression for the bulk viscosity,

z =� 2
w

2

✓

n
dn0

◆2 n
t

Z

t

0
PV̇ dt. (3.4)

The dominant mechanism behind the bulk viscosity is related to weak processes [71,

72, 73, 107]. A periodic oscillation of the density is responsible for an instantaneous
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departure from b -equilibrium in the system. As a result, the forward and backward

weak processes (e.g., u+ d ! s+ u and s+ u ! u+ d), which have equal rates in

equilibrium, become unbalanced. Their net effect is to restore the equilibrium compo-

sition. However, since the weak rates are relatively slow, a substantial time lag between

the oscillations of the fermion number density (and, thus, the specific volume) and the

chemical composition (and, thus, the pressure) develops. If the resulting relative phase

shift of the two oscillations is Df , one finds from Eqs. (4.2) and (4.6) that the corre-

sponding energy dissipation and the bulk viscosity are proportional to sinDf . (Note

that the departure from the thermal equilibrium is negligible because it is restored by

strong forces on much shorter time scales.)

It should be clear that the instantaneous flavor composition in oscillating quark

matter and the rate difference of the forward and backward weak processes in Fig. 1.4

are related to each other. The difference of the rates changes the composition, while

the composition in turn influences the difference of rates. The corresponding dynamics

can be conveniently described in terms of the time dependent deviations of the chemical

potentials from their equilibrium values.

In b equilibrium, the chemical potentials of the three lightest quarks are related

as follows: µs = µd = µu + µe. Here µu, µd and µs are the chemical potentials of

up, down and strange quarks, while µe is the electron chemical potential. In pulsating

matter, the instantaneous departure from equilibrium is described by the following two

independent parameters:

d µ1 ⌘ µs �µd = d µs �d µd, (3.5a)

d µ2 ⌘ µs �µu �µe = d µs �d µu �d µe, (3.5b)

where d µi denotes the deviation of the chemical potential µi from its equilibrium value.

(Note that d µ3 ⌘ µd � µu � µe = d µ2 � d µ1 is not independent.) When d µi are non-
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zero, the corresponding pairs of forward and backward weak processes in Fig. 1.4 have

different rates. To leading order, the rate differences are linear in d µi,

G(a)�G(b) = �l1d µ1, (3.6a)

G(c)�G(d) = �l2d µ2, (3.6b)

G(e)�G( f ) = �l3 (d µ2 �d µ1) . (3.6c)

The corresponding l -rates have been calculated for the normal phase [71, 72, 103, 108]

as well as several color superconducting phases of quark matter [65, 101, 106]. The

results for the normal phase, in particular, read

l

(0)
1 ' 64

5p

3 G2
F cos2

qC sin2
qCµ

5
d T 2, (3.7a)

l

(0)
2 ' 17

40p

G2
F sin2

qCµsm2
s T 4, (3.7b)

l

(0)
3 ' 17

15p

2 G2
F cos2

qCasµdµuµeT 4. (3.7c)

These will be used below as a benchmark for the rates in spin-one color-superconducting

phases.

The semi-leptonic rate l3 is determined by the Urca processes u+e� ! d+ne

and d ! u+ e�+ n̄e, shown in diagrams (e) and ( f ) in Fig. 1.4. It was calculated in

Ref. [65] for four different spin-one color-superconducting phases of quark matter. The

result has a form of the product of the rate in the normal phase l

(0)
3 and a phase-specific

suppression factor,

l3 = l

(0)
3



1
3
+

2
3

H
✓

f

T

◆�

, (3.8)

where f is the spin-one color-superconducting gap parameter, and H(f/T ) is a sup-

pression factor for the processes involving gapped quasiparticles. (The first term in

square brackets is the contribution of ungapped quasiparticles.) When f ! 0, the sup-

pression factor H(f/T ) approaches 1 and the normal phase result is restored. A simple

fit to the numerical data of Ref. [65] for H(f/T ) is presented in Appendix B.1.
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Because of similar kinematics and phase space constraints for the other pair of

semi-leptonic processes, u+ e� ! s+ne and s ! u+ e�+ n̄e, shown in diagrams (c)

and (d) in Fig. 1.4, the dependence of the rate l2 on the color-superconducting gap

should take the same form as l3 in Eq. (3.8), i.e.,

l2 = l

(0)
2



1
3
+

2
3

H
✓

f

T

◆�

. (3.9)

In contrast, the rate l1 is determined by the nonleptonic processes u+ d ! s+ u and

s+u ! u+d, see diagrams (a) and (b) in Fig. 1.4, which have a qualitatively different

kinematics. In spin-one color-superconducting phases of quark matter, this was re-

cently calculated in Ref. [106]. The numerical result can be conveniently summarized

by the following expression:

l1 = l

(0)
1



N +(1�N )H̃
✓

f

T

◆�

, (3.10)

where, in addition to the suppression factor H̃(f/T ), we also introduced a constant

N , which determines a relative contribution of the ungapped quasiparticles to the cor-

responding rate. In the four spin-one phases studied in Ref. [106], the constant takes the

following values: N A =N polar = 1/9, N planar ⇡ 0.0393, and N CSL = 928/27027 ⇡

0.0343. A simple fit to the numerical data for H̃(f/T ) is given in Appendix B.2.

When the rates (3.8), (3.9) and (3.10) are known, the calculation of the instan-

taneous pressure and, thus, the bulk viscosity from Eq. (4.6) is straightforward [77].

Here we quote only the final expression for the viscosity,

z = z1 +z2 +z3, (3.11)

where

z1 =
n
w

a2a3

g2
1 +g2

2

h

a1a2a3C2
1 +(a1 +a2 +a3)(A1C2 �A2C1)

2
i

, (3.12a)

z2 =
n
w

a1a3

g2
1 +g2

2

h

a1a2a3C2
2 +(a1 +a2 +a3) [(A2 �B2)C1 �A2C2]

2
i

, (3.12b)

z3 =
n
w

a1a2

g2
1 +g2

2

h

a1a2a3 (C1 �C2)
2 +(a1 +a2 +a3)(B1C2 �B2C1)

2
i

, (3.12c)
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and

g1 =�a1a2a3 +(a1 +a2 +a3)(B1A2 �A1B2) , (3.13a)

g2 = a1a2 (B1 �B2)+a1a3 (A2 �B2)+a2a3A1. (3.13b)

Here ai ⌘ nw/li (i = 1,2) and n is the baryon density of quark matter. The quantities

Ai, Bi and Ci are susceptibility-like functions, see Ref. [77] for the definition. To leading

order in f/µi, they are the same as in the normal phase.

For comparison, let us also note that the bulk viscosity in the limit of the van-

ishing semi-leptonic rates reads

znon =
n
w

a1C2
1

a

2
1 +A2

1
. (3.14)
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3.2 Numerical results for bulk viscosity

In our calculation of the bulk viscosity in spin-one color-superconducting quark matter

below, we choose the same two representative sets of model parameters as in Ref. [77]:

Set A Set B
n = 5r0 n = 10r0
ms = 300 MeV ms = 140 MeV
as = 0.2 as = 0.1

In both cases, the masses of light quarks are the same: mu = 5 MeV and md =

9 MeV. In accordance with general expectations, the values of the strange quark mass

ms and the strong coupling constant as should be larger (smaller) in the case of lower

(higher) density. This qualitative property is reflected in the model parameters in Set A

(Set B). The values of all chemical potentials as well as the coefficient functions Ai, Bi

and Ci for each set of parameters are quoted in Table 3.1.

It may be appropriate to briefly comment about the choice of the strong cou-

pling constant as in the model at hand. The values of as in both sets of parameters may

seem abnormally small. Indeed, the running coupling in QCD is about 0.12 at the scale

of MZ (mass of Z boson) and about 0.32 at
p

3 GeV [109]. However, here we use the

model parameter as only in order to capture several qualitative (Fermi liquid) effects

in quark matter. Its nonzero value allows (i) to avoid the underestimation of the rate of

semi-leptonic processes due to a limited phase space [110] and (ii) to mimic the modifi-

cation of the quark equation of state due to strong interactions, see Ref. [77] for details.

The naive extension of the corresponding leading order corrections to the regime of

strong coupling is problematic. Not only would this imply the use of the perturbative

results beyond the range of their validity, but it would also lead to very large and seem-

ingly unphysical effects on the equation of state, used to determine the susceptibility

functions Ai, Bi and Ci. (Notably, if the equation of state is kept unchanged, the increase
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Table 3.1: Two sets of parameters used in the calculation of the bulk viscosity.

model µe [MeV] µu [MeV] µd = µs [MeV] A1 [MeV] A2 [MeV]
Set A 39.139 402.463 441.602 239.432 127.937
Set B 7.396 495.275 502.671 324.556 164.288

model B1 [MeV] B2 [MeV] C1 [MeV] C2 [MeV]
Set A 111.386 �3.726⇥104 �60.463 �60.460
Set B 160.268 �2.080⇥106 �10.692 �10.709

of as in the l

(0)
3 -rate, even by an order of magnitude, has little effect on the viscosity.)

This dilemma could be resolved by properly accounting the non-perturbative dynam-

ics of QCD. At present, however, such a task seems insurmountable at the low energy

scales relevant for neutron stars. For the purposes of this study, therefore, we treat as as

a small independent parameter that captures only some qualitative properties of quark

matter.

Here the critical temperature of the spin-one color-superconducting phase tran-

sition is assumed to be Tc = 2 MeV. This may be a somewhat high, but still reasonable

value for Tc. Indeed, in QCD the spin-one gap is estimated to be about two orders of

magnitude smaller than the spin-zero gap [52, 112, 55], and the latter is naturally of

order 100 MeV [26, 27, 28, 32, 33, 34]. Even higher values of the spin-one gap have

been reported in Ref. [114]. The effect of varying the critical temperature is easy to

understand and will be briefly discussed below. As in Ref. [65], we use the following

model temperature dependence of the gap parameter:

f(T ) = f0

s

1�
✓

T
Tc

◆2
, for T < Tc (3.15)

with f0 being the value of the gap parameter at T = 0. Note that the ratio Tc/f0 depends

on the choice of the phase [52]. The approximate values of this ratio are 0.8 (CSL),

0.66 (planar), 0.49 (polar), and 0.81 (A-phase).
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Figure 3.1: Temperature dependence of bulk viscosity z for the model parameters in
Set A, the color-superconducting critical temperature Tc = 2 MeV, and the frequency
of density oscillations t

�1 = 10 Hz.

For model parameters in Set A, the numerical results are presented in Fig. 3.1-

Fig. 3.4. As we can see, the value of Tc determines the point where the bulk viscosity

starts to deviate from the benchmark result in the normal phase (shown by the gray solid

line). Fig. 3.1 and Fig. 3.2 show the dependence of the bulk viscosity z on temperature

for two representative values of the oscillation frequency, t

�1 = 10 Hz and t

�1 =

1000 Hz. Fig. 3.3 and Fig. 3.4 show the temperature dependence of the ratio z/znon,

where z is the bulk viscosity that takes into account all weak processes, while znon

is an approximate result, see Eq. (3.14), in which only the nonleptonic processes are

included and the semi-leptonic processes are not. When the ratio z/znon is substantially

larger than 1, it is an indication that the semi-leptonic processes play an important role

and, thus, cannot be neglected.

Compared to the normal phase result, the main features of the temperature de-

pendences in spin-one color-superconducting phases (see Fig. 3.3) are (i) a smoothed
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Figure 3.2: Temperature dependence of bulk viscosity z for the model parameters in
Set A, the color-superconducting critical temperature Tc = 2 MeV, and the frequency
of density oscillations t

�1 = 1000 Hz.

shape of the semi-leptonic “hump” and (ii) an overall enhancement of the bulk viscosity

due to color superconductivity for a substantial range of temperatures below Tc.

As in the case of the normal phase, the semi-leptonic processes are responsible

for an increase (“hump”) of the bulk viscosity in a region of temperatures around Thump,

where

T (Set A)
hump ' 2.1 MeV

✓

1 ms
t

◆1/4
, (3.16a)

T (Set B)
hump ' 1.4 MeV

✓

1 ms
t

◆1/4
(3.16b)

are the approximate positions of the peak of the hump in the normal phase in the

case of the model parameters in Set A and Set B, respectively. In order to derive

these results, we used an approximate expression for the bulk viscosity in Eq. (24) of

Ref. [77], which is valid when the nonleptonic rate is infinitely large while the semi-

leptonic rates are finite. The maximum of that expression corresponds to l2 + l3 =
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Figure 3.3: Temperature dependence of the ratio z/znon for the model parameters in
Set A, the color-superconducting critical temperature Tc = 2 MeV, and the frequency
of density oscillations t

�1 = 10 Hz.

nwA1/(B1A2�B2A1), whose solution determines an approximate value for Thump. Two

remarks are in order here: (i) the scaling law Thump µ 1/t

1/4 follows from the power-

law temperature dependence of the semi-leptonic rates l2,l3 µ T 4 and (ii) the overall

value in Eq. (3.16) is slightly corrected to match the actual numerical results in the case

of a finite nonleptonic rate.
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Figure 3.4: Temperature dependence of the ratio z/znon for the model parameters in
Set A, the color-superconducting critical temperature Tc = 2 MeV, and the frequency
of density oscillations t

�1 = 1000 Hz.

When Tc & Thump the semi-leptonic hump is partially washed out by the pres-

ence of color superconductivity. This is most clearly seen from the ratio of the bulk

viscosities z/znon in Fig. 3.3 and Fig. 3.4. While the inclusion of the semi-leptonic

processes leads to an increase of the viscosity, the effect is not as large as in the normal

phase. Of course, this conclusion is sensitive to the choice of the color-superconducting

critical temperature Tc. In general, two qualitatively different regimes can be realized.

When Tc . Thump, the hump occurs in the normal phase and, therefore, its shape is al-

most unaffected by color superconductivity. In the opposite case, Tc & Thump, the effect

is present and gets stronger as Tc increases relative to Thump.
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Figure 3.5: The contour plot of the bulk viscosity enhancement factor due to spin-
one color superconductivity. The results are for the CSL phase in a model with the
parameters in Set A. The frequency of the density oscillations is t

�1 = 10 Hz.

Now, let us turn to an overall enhancement of the bulk viscosity due to color

superconductivity below Tc. This is observed almost for the whole range of tempera-

tures T0,max . T  Tc, where T0,max is the temperature at which the bulk viscosity of

the normal phase has a global maximum. The value of T0,max can be easily estimated

by considering an approximate expression for the bulk viscosity (3.14) when only the

nonleptonic processes are taken into account. The maximum of Eq. (3.14) corresponds

to a1 = A1. After solving this for the temperature, we obtain

T (Set A)
0,max ' 47 keV

r

1 ms
t

, (3.17a)

T (Set B)
0,max ' 41 keV

r

1 ms
t

, (3.17b)

where t is the period of oscillations measured in milliseconds. Notably, the location

of the maximum is almost the same for both sets of model parameters. Because of

the superconductivity, the location of the maximum is shifted to a higher temperature,

T
f ,max ' T0,max/

p
N , where N is the same parameter that appears in Eq. (3.10). Tak-
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Figure 3.6: The contour plot of the bulk viscosity enhancement factor due to spin-
one color superconductivity. The results are for the CSL phase in a model with the
parameters in Set A. The frequency of the density oscillations is t

�1 = 1000 Hz.

ing the shift of the maximum into account, we find that the enhancement relative to the

normal phase is observed for T?  T  Tc with T? ' T0,max/N 1/4 being the point be-

tween T0,max and T
f ,max, at which the bulk viscosities for the normal and superconduct-

ing phases cross. At lower temperatures, T < T?, the effect of color superconductivity

is opposite: it reduces the bulk viscosity.
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Figure 3.7: Temperature dependence of bulk viscosity z for the model parameters in
Set B, the color-superconducting critical temperature Tc = 2 MeV, and the frequency
of density oscillations t

�1 = 10 Hz.

The range of temperatures, in which the bulk viscosity increases relative to

the normal phase of quark matter, depends on the value of the critical temperature

Tc and the frequency of oscillations. While the actual enhancement of the viscosity

also depends on the specific pattern of spin-one pairing, the qualitative features in all

four phases studied here are similar. As an example, let us consider the CSL phase in

more detail. In Fig. 3.5 and Fig. 3.6, we show the contour plot for the bulk viscosity

enhancement factor due to color superconductivity. The ratio zCSL/znormal is larger

than 1 only in the shaded regions in Fig. 3.5 and Fig. 3.6. In white regions, it is either

1 (when T > Tc) or less than 1 (otherwise).

As evident from Fig. 3.5 and Fig. 3.6, the enhancement of the bulk viscosity

by spin-one color superconductivity occurs in a rather wide range of temperatures,

especially when the frequency of density oscillations is not too large and the value of

Tc is not too small. At t

�1 = 10 Hz, for example, it extends over an order of magnitude

58



polar
A
planar
CSL
normal

Τ"1#1000 Hz

0.01 0.05 0.10 0.50 1.00 5.00 10.00

1025

1026

1027

1028

T !MeV"

Ζ
!g
%c

m
"

1
%s
"

1
"

Figure 3.8: Temperature dependence of bulk viscosity z for the model parameters in
Set B, the color-superconducting critical temperature Tc = 2 MeV, and the frequency
of density oscillations t

�1 = 1000 Hz.

or more in temperature, provided Tc & 100 keV. At t

�1 = 1000 Hz, in contrast, an

order of magnitude or wider temperature range for the enhancement is seen only if

Tc & 1 MeV. (It should be noted that, in the case t

�1 = 10 Hz shown in Fig. 3.5, the

ratio zCSL/znormal is truly less than 1 in a small white region just below the T = Tc

line. This “abnormality” is due to a subtle interplay between the semi-leptonic and

nonleptonic processes when the value of Tc is fine-tuned to be near Thump.)

By ignoring the subtle complications due to the semi-leptonic hump around

Thump, we find that the enhancement of the bulk viscosity in the window of tempera-

tures T?  T  Tc (as well as the suppression at lower temperatures, T < T?) is primarily

due to the reduction of the nonleptonic rate l1 in color-superconducting phases. At tem-

peratures below Tc, when all gapped quasiparticles effectively cease to contribute, the

corresponding reduction factor for the rate is approximately given by the value of N .

This means that the enhancement factor for the viscosity approaches its inverse value,
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Figure 3.9: Temperature dependence of the ratio z/znon for the model parameters in
Set B, the color-superconducting critical temperature Tc = 2 MeV, and the frequency
of density oscillations t

�1 = 10 Hz.

N �1. By making use of the numerical results for N , we find that the enhancement

factor for the bulk viscosity reaches up to about 9 in the A- and polar phases, 25 in the

planar phase and 29 in the CSL phase. (The suppression factors at T < T? approach the

same values.) In the region of the hump, of course, the behavior is more complicated,

but the overall effect of superconductivity is still mainly to increase the bulk viscosity.

The numerical results in the case of the model parameters in Set B are shown

in Fig. 3.7, Fig. 3.8, Fig. 3.9 and Fig. 3.10. The qualitative features are similar to

those obtained for Set A. However, the effect of the semi-leptonic processes is less

pronounced: the corresponding hump is almost non-existent and the ratio z/znon does

not much deviate from 1. At the same time, the effect of color superconductivity is very

well pronounced. Compared to the normal phase result, an enhancement of the bulk

viscosity by a factor of about N �1 is seen in a relatively wide window of temperatures

from T? to Tc.
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Figure 3.10: Temperature dependence of the ratio z/znon for the model parameters in
Set B, the color-superconducting critical temperature Tc = 2 MeV, and the frequency
of density oscillations t

�1 = 1000 Hz.

3.3 Disscusion

In this chapter, we calculated the bulk viscosity in spin-one color-superconducting

strange quark matter by carefully taking into account the interplay between the non-

leptonic and semi-leptonic week processes [111].

As expected, the nonleptonic processes give the dominant contribution to the

viscosity in a wide range of parameters. Yet, as in the normal phase [77], the semi-

leptonic processes may also lead to a substantial correction in a window of temperatures

around Thump, see Eq. (3.16). The value of Thump scales as 1/t

1/4 and happens to be of

order 1 MeV for millisecond pulsars. The size and the relative importance of the hump

can be conveniently measured by the ratio z/znon when it is noticeably larger than

1. For millisecond pulsars, however, this ratio remains close to 1. The effect is more

pronounced when the period is a few orders of magnitude longer. We also find that
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the corresponding hump in the temperature dependence of the bulk viscosity of color

superconductors is partially washed out compared to the normal phase. The higher is

Tc relative to Thump, the larger wash out of the hump is seen.

In this study we assumed that the critical temperature of the spin-one color-

superconducting phase transition Tc is considerably larger than T0,max, see Eq. (3.17).

Then, the main effect of color superconductivity is an overall increase of the bulk vis-

cosity in a wide range of temperatures, T0,max/N 1/4  T  Tc. (At lower temperatures,

T < T0,max/N 1/4, color superconductivity leads to a suppression of the bulk viscosity.)

This is primarily due to the suppression effect that color superconductivity has on the

nonleptonic rate. At sufficiently low temperatures far from Tc, the rate is dominated by

the ungapped quasiparticles, whose relative contribution is scaled by the factor N with

respect to the normal phase (note that N < 1). Therefore, the actual enhancement of

the bulk viscosity is determined by the inverse value N �1. It is equal to 9 in the A-

and polar phases, about 25 in the planar phase and about 29 in the CSL phase.

In relation to this result, it might be appropriate to note that a similar en-

hancement mechanism was previously observed for spin-zero color superconductors

at T & T0,max [101]. A special feature of spin-one color superconductivity is that the

maximum enhancement factor can be much larger.

In our analysis, we utilized the same spin-one pairing pattern as in Refs. [52, 55,

112, 113]. In the case of zero quark masses, the main signature of the corresponding

phases is the presence of ungapped quasiparticles. When quarks have small masses,

the gaps of the corresponding modes are of order fm/µ . These may be still too small

to significantly affect our main results. However, if the spin-one gaps are larger, as

some studies suggest [114], the suppression of the nonleptonic rates and, therefore, the

enhancement of the bulk viscosity in color superconducting matter may turn out to be

even stronger.
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In application to compact stars, we may speculate that the transition to a spin-

one color superconducting phase in a stellar core can have a stabilizing effect against

the r-modes driven by the gravitational radiation [115]. If the critical temperature of the

corresponding phase transition is on the order of or above 1 MeV, the corresponding

dynamics can affect even relatively young stars.
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CHAPTER 4

BULK VISCOSITY IN THE NONLINEAR AND ANHARMONIC REGIME OF

STRANGE QUARK MATTER

In the previous chapter, we only considered the bulk viscosity for the harmonic density

oscillations and linear terms of the rates. As discussed in Refs. [116, 117, 118, 119, 120,

121], the nonlinear regime in compact stars may be responsible for several qualitatively

new features in the dynamics. In this chapter we will discuss the bulk viscosity in the

nonlinear and anharmonic regime of normal strange quark matter.

4.1 Formalism

One can calculate the bulk viscosity z under conditions realized in stars by comparing

the hydrodynamic relation for the energy dissipation, averaged over one period t ,

hĖdissi=�z

t

Z

t

0
(— ·~v)2 dt '� z

n2
0t

Z

t

0
(d ṅ)2 dt. (4.1)

with the thermodynamic relation for the mechanical work, counteracting the hydrody-

namic flow,

hĖdissi=
n
t

Z

t

0
PV̇ dt '� 1

n0t

Z

t

0
Pd ṅdt. (4.2)

The latter is given in terms of the instantaneous pressure P and the specific volume

V ⌘ 1/n. In the above expressions, n0 is the equilibrium density and dn = n� n0 is

the density deviation from the equilibrium value. (Even when the magnitude of density

oscillations is not vanishingly small, we will assume that |dn|⌧ n0.)

If the magnitude of the density oscillations dn0 is vanishingly small, one may

simulate the collective motion as a harmonic oscillation, dn(t) = dn0 cos(wt). How-

ever, in a resonance regime, when large density oscillations develop, nonlinear effects

may start to play an important role. In this thesis, we study this possibility by simulat-

ing two different types of anharmonic density oscillations. The two types correspond

to oscillators with cubic and quartic terms in the potential energy, which have different
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symmetry properties under dn !�dn. The corresponding equations of motion read:

d n̈+w

2
0 dn(1+adn) = 0, (Type I), (4.3)

d n̈+w

2
0 dn

�

1+bdn2�= 0, (Type II). (4.4)

Note that the coupling constants a and b have the dimensions of an inverse density

and an inverse density squared, respectively. It is convenient, therefore, to introduce

the dimensionless parameters a

⇤ ⌘ adn0 and b

⇤ ⌘ b (dn0)2, which are given in terms

of the amplitude of density oscillations dn0. [For asymmetric oscillations, described by

Eq. (4.3), we assume that the amplitude is the maximum deviation from the equilibrium

point.] Note that the parameters a

⇤ and b

⇤ can be either positive or negative. General

periodic solutions for both types of anharmonic oscillators can be given in terms of the

Jacobi elliptic functions. The corresponding solutions are presented in Appendix C.

By substituting these exact solutions into Eq. (4.1) and making use of the result in

Eq. (C.4), we derive

hĖdissi=�
z w

2
0

2

✓

dn0

n0

◆2
F , (4.5)

where the constant F for each type of solution is determined in terms of a

⇤ and b

⇤,

see Eqs. (C.5) and (C.9), respectively. As is easy to check, F ! 1 in the harmonic

limit a

⇤ ! 0 (Type I) or b

⇤ ! 0 (Type II).

By comparing Eqs. (4.2) and (4.5), we obtain the following expression for the

bulk viscosity:

z =
2n0

w

2
0 (dn0)2F

1
t

Z

t

0
Pd ṅdt. (4.6)

When there is a departure from b equilibrium, the pressure can be given in terms of the

instantaneous composition,

P = P̄+
∂P
∂n

dn+n(C1 �C2)dXe +nC1dXs, (4.7)

where Xe ⌘ ne/n and Xs ⌘ ns/n is the electron and strangeness fractions, and P̄ is

the pressure in equilibrium. The susceptibility functions C1 and C2 were defined in
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Ref. [77]. By taking into account that dn is a periodic function, one finds that only the

last two terms in the pressure (4.7) contribute to the bulk viscosity (4.6),

z =
2n2

0
w

2
0 (dn0)2F

1
t

Z

t

0
[(C1 �C2)dXe +C1dXs]d ṅdt. (4.8)

The instantaneous composition of quark matter is determined by the weak processes,

shown in Fig. 1.4. Taking all of them into account, we derive the following set of

nonlinear differential equations for the electron and strangeness fractions:

n
d(dXe)

dt
= (Gd �Gc)+

�

G f �Ge
�

= l2d µ2

2

Â
j=0

c j

✓

d µ2

T

◆2 j

+l3 (d µ2 �d µ1)
2

Â
j=0

c j

✓

d µ2 �d µ1

T

◆2 j
, (4.9)

n
d(dXs)

dt
= (Ga �Gb)+(Gc �Gd)

= �l1d µ1

1

Â
j=0

° j

✓

d µ1

T

◆2 j
�l2d µ2

2

Â
j=0

c j

✓

d µ2

T

◆2 j
(4.10)

where d µ1 ⌘ µs�µd , d µ2 ⌘ µs�µu�µe, and the notation for the l -rates are the same

as in Refs. [77, 111],

l1 =
64

5p

3 G2
F sin2

qc cos2
qcµ

5
d T 2, (4.11)

l2 =
17

40p

G2
F sin2

qcµsm2
s T 4, (4.12)

l3 =
17

15p

2 G2
F cos2

qcasµdµeµuT 4. (4.13)

In Eqs. (4.9) and (4.10), all higher order corrections in powers of d µi/T were taken

into account, while higher order corrections in powers of d µi/µ were neglected. This

is the same approximation that was used in Ref. [122]. By calculating the semileptonic

rates using the approach of Ref. [65], it is easy to check that the coefficients of the

nonlinear terms are the same as in the nucleon direct Urca process [123, 124]: c0 = 1,

c1 =
10

17p

2 , and c2 =
1

17p

4 . The corresponding coefficients in the nonleptonic rates are

°0 = 1 and °1 =
1

4p

2 [103, 122, 125].
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The functions that describe the deviation from equilibrium, d µi, can be equiv-

alently rewritten in terms of the electron and strangeness fractions: d µi = Ci
dn
n +

BidXe +AidXs, where coefficient functions Ai, Bi and Ci were defined in Ref. [77]. By

making use of these relations and Eqs. (4.9) and (4.10), we derive the following self-

consistent set of equations for the dimensionless quantities ni ⌘ d µi/T (for i = 1,2),

n0
dni

dt
=

Ci

T
d ṅ�l1Ai

1

Â
j=0

° j (n1)
2 j+1 �l2(Ai �Bi)

2

Â
j=0

c j (n2)
2 j+1

+l3Bi

2

Â
j=0

c j (n2 �n1)
2 j+1 . (4.14)

In this study, dn is a periodic function that describes anharmonic oscillations of either

Type I or Type II, see Eqs. (4.3) and (4.4). We make use of the analytical results in

Appendix C and solve Eq. (4.14) numerically. When the solutions for ni (with i = 1,2)

are available, one can invert the relations for d µi in terms of dn, dXe and dXs in order

to determine the deviation of the electron and strangeness fractions,

dXe = Ge
dn
n0

+Hen1 + Jen2, (4.15)

dXs = Gs
dn
n0

+Hsn1 + Jsn2. (4.16)

where

Ge =
A1C2�A2C1
A2B1�A1B2

, Gs =
B2C1 �B1C2

A2B1 �A1B2
, (4.17)

He =
TA2

A2B1�A1B2
, Hs =� T B2

A2B1 �A1B2
, (4.18)

Je =� TA1
A2B1�A1B2

, Js =
T B1

A2B1 �A1B2
. (4.19)

Finally, by making use of these results in Eq. (4.8), we can calculate the bulk viscosity,

z =
2T n2

0
w

2
0 (dn0)2F

A2(C1 �C2)�B2C1

A2B1 �A1B2

1
t

Z

t

0
n1 d ṅdt

+
2T n2

0
w

2
0 (dn0)2F

B1C1 �A1(C1 �C2)

A2B1 �A1B2

1
t

Z

t

0
n2 d ṅdt. (4.20)
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4.2 Harmonic oscillations

In the limiting case of harmonic oscillations, the density deviations are described by

dn = dn0 sin(w0t) and the constant F in Eq. (4.5) is equal to 1. The numerical results

for the bulk viscosity as a function of dn0/n0 for several fixed values of temperature

are shown in Fig. 4.1. The linear regime corresponds to small values of dn0/n0 , where

the bulk viscosity saturates. It is also interesting to present the temperature dependence

of the bulk viscosity. The corresponding plots for several fixed values of dn0/n0 are

shown in Fig. 4.2. As we see, with decreasing the temperature, the bulk viscosity

eventually levels off. This is the outcome of reaching the nonlinear regime, and it

would be absent if the linear approximation were used instead. In both Fig. 4.1 and

Fig. 4.2, the results for two representative values of the period of oscillations, t = 0.1 s

and t = 10�3 s, are shown. (In all calculations, we used the model parameters from

Ref. [77] at n = 5r0, where r0 ' 0.15 fm�3 is the nuclear saturation density.) In

most regions of the parameter space, our results qualitatively agree with earlier findings

in Refs. [71, 72, 76, 74, 122, 125, 126, 127]. The only notable difference occurs in

Fig. 4.2 around the “semileptonic” hump (T ⇠ 1 MeV). This comes from the interplay

of semileptonic weak processes with the more dominant nonleptonic ones [77, 111]. In

most of the studies, this is neglected because of a smallness of the semileptonic rates.

Here it is appropriate to mention that, in application to stellar quark matter, the

bulk viscosity may not be the only, or even the dominant mechanism responsible for

damping of the r-mode instabilities. For example, at sufficiently low temperatures, the

corresponding dissipative dynamics is known to be dominated by the shear viscosity

[128, 129]. (For several representative studies of the shear viscosity in dense quark

matter see, for example, Refs. [66, 130, 131].) In this connection, our low-temperature

results in Figs. 4.1 and 4.2 should be used only for the purpose of determining where

exactly the damping by the shear viscosity takes over.
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In order to better understand the role of nonlinear terms in the weak rates, see

Eqs. (4.9) and (4.10), as well as their effect on the bulk viscosity, it is instructive to

study the linear approximation. In this case, the expression for the viscosity can be

derived analytically. As we shall see, this will be also helpful to elucidate the role

of induced oscillations of d µ2 = µs � µu � µe when the semileptonic processes are

formally switched off.

4.2.1 Harmonic oscillations: linear approximation

In the linear regime, Eqs. (4.9) and (4.10) for dimensionless functions ni simplify down

to

dn1

dJ

= d1 cosJ � f1n1 � f2n2 + f3(n2 �n1), (4.21)

dn2

dJ

= d2 cosJ �h1n1 �h2n2 +h3(n2 �n1), (4.22)

where J = 2pt/t is the dimensionless time variable, di = Cidn0/(T n0) is the magni-

tude of the “driving force”, and the other coefficient functions are

f1 = l1
A1

w0n0
, h1 = l1

A2

w0n0
, (4.23)

f2 = l2
A1�B1
w0n0

, h2 = l2
A2 �B2

w0n0
, (4.24)

f3 = l3
B1

w0n0
, h3 = l3

B2

w0n0
. (4.25)

The general solution to this set of equations in the steady state regime is given by

n1 = x1 cosJ + y1 sinJ , (4.26)

n2 = x2 cosJ + y2 sinJ , (4.27)

where the coefficients satisfy the following set of algebraic equations:

( f1 + f3)x1 +( f2 � f3)x2 + y1 = d1, (4.28)

�x1 +( f1 + f3)y1 +( f2 � f3)y2 = 0, (4.29)

(h1 +h3)x1 +(h2 �h3)x2 + y2 = d2, (4.30)

�x2 +(h1 +h3)y1 +(h2 �h3)y2 = 0. (4.31)
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It is straightforward, although tedious to solve this set of equations. When the solution

is available, the result for the bulk viscosity will follow from Eq. (4.20), i.e.

z =
T n2

0
wdn0

A2(C1 �C2)�B2C1

A2B1 �A1B2
x1 +

T n2
0

wdn0

B1C1 �A1(C1 �C2)

A2B1 �A1B2
x2. (4.32)

It can be shown that this expression (with the appropriate solutions for x1 and x2) coin-

cides exactly with the result for the bulk viscosity, obtained in Ref. [77].

4.2.2 Harmonic oscillations: nonleptonic contribution in linear approximation

If one ignores the semileptonic processes (i.e. if one formally takes l2 = l3 = 0), the

linearized equations (4.21) and (4.22) for ni’s take the following form:

dn1

dJ

= d1 cosJ � f1n1, (4.33)

dn2

dJ

= d2 cosJ �h1n1. (4.34)

The explicit solution to this set of equations in the steady state regime is given by

n1 =
d1

1+ f 2
1
( f1 cosJ + sinJ) , (4.35)

n2 = d2 sinJ +
d1h1

1+ f 2
1
(cosJ � f1 sinJ) , (4.36)

and the corresponding expression for the bulk viscosity reads

znon =
T n2

0
wdn0

A2(C1 �C2)�B2C1

A2B1 �A1B2

d1 f1

1+ f 2
1

+
T n2

0
wdn0

B1C1 �A1(C1 �C2)

A2B1 �A1B2

d1h1

1+ f 2
1
=

l1C2
1

w

2 +(l1A1/n0)2 , (4.37)

where we used the relation f1/h1 = A1/A2 to arrive at the final result. As expected, this

agrees with the known result [72, 77, 122, 125].

It is interesting to notice that the final result for the bulk viscosity receives a

nonzero contribution due to the oscillation of n2 ⌘ d µ2/T . Since d µ2 ⌘ µs � µu � µe

controls the imbalance of the rates in the semileptonic processes, shown in Figs. 1.4 (c)
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and (d), which are formally switched off in the approximation at hand, one might won-

der why there should be such a contribution at all. The answer is quite simple. In ab-

sence of the semileptonic processes the electron fraction in quark matter cannot change.

However, when the nonleptonic processes drive the oscillations of the strangeness com-

position, they inevitably induce the oscillations of d µ2 ⌘ µs �µu �µe. Then, the latter

contributes to the instantaneous pressure and, in turn, to the bulk viscosity. Interest-

ingly, such a contribution due to the induced oscillation of n2 ⌘ d µ2/T were ignored in

all previous studies [71, 72, 76, 74, 122, 125, 126, 127]. Fortunately, the corresponding

correction is quantitatively small. The reason for its smallness seems to be rooted in the

“accidental” fact that one of the susceptibility functions, B2, is inversely proportional

to the square of the chemical potential of electrons (rather than quarks) and, thus, is

considerably larger than all others [77].

4.3 Bulk viscosity in anharmonic regime

In this section we study the effect that anharmonic oscillations of the density have on

the bulk viscosity of dense quark matter.

4.3.1 Anharmonic oscillations of Type I

Let us start by modeling the density oscillations of quark matter dn(t) by a time de-

pendent anharmonic function of Type I, which is a solution to Eq. (4.3) with a fixed

anharmonicity parameter a

⇤. Before we proceed to the numerical results, it is impor-

tant to notice that the corresponding oscillations are asymmetric with respect to the

equilibrium point dneq = 0. For a

⇤ < 0, the density oscillations are larger in the di-

rection of positive dn, while for a

⇤ > 0, the oscillations are larger in the direction of

negative dn, see also Fig. C.1. The cases of the positive and negative anharmonicity pa-

rameters are physically equivalent, however. Indeed, they are related by the following

sign reversal symmetry: a !�a and dn !�dn. Therefore, it is sufficient to study

only one of them. For technical reasons, we choose a

⇤ < 0.
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Typical results for the bulk viscosity as a function of anharmonicity parameter

a

⇤ are shown in the upper panel of Fig. 4.3 for the whole range of negative a

⇤, i.e.

�1 < a

⇤ < 0, for which physically meaningful periodic solutions exist. We used the

following values of the period and the amplitude of density oscillations: t = 10�3 s

and dn0/n0 = 10�3, and plotted the results for several representative values of tem-

perature. [It should be emphasized that the period t is related to the “bare” frequency

w0 by a modified relation, see Eq. (C.3).] In general, we find that the bulk viscosity

decreases with increasing the degree of anharmonicity. This qualitative behavior may

be understood as the result of an effective increase of the frequency of oscillations due

to an admixture of higher harmonics. Quantitatively, however, the effect is rather small.

Only a very large anharmonicity (a⇤ ⇡ �1) leads to a substantial decrease of the bulk

viscosity.

4.3.2 Anharmonic oscillations of Type II

Anharmonic density oscillations of Type II are modeled by a function dn(t), which is

a solution to Eq. (4.4) with a fixed anharmonicity parameter b

⇤. Conceptually, this

is a simpler case because the oscillations are symmetric about the equilibrium point

dneq = 0. Unlike the case of Type I oscillations, there is no reversal symmetry here. As

in the previous case, however, periodic solution exist only for a range of values of the

the anharmonicity parameter, b

⇤ >�1.

Numerical results for the bulk viscosity as a function of anharmonicity param-

eter b

⇤ are shown in the lower panel of Fig. 4.3. The qualitative dependence of the

viscosity on the parameter b

⇤ is somewhat different. While it decreases at large values

of parameter b

⇤, there is a range of small negative values of b

⇤, where it slightly grows

with increasing anharmonicity. Moreover, this feature seems to be rather general and

especially pronounced in the nonlinear regime (small temperature). Just like in the case

of Type I oscillations, the effects appear to be rather small.
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4.4 Disscusion

In this chapter we studied the bulk viscosity of dense quark matter by taking into ac-

count the nonlinear dependence of the nonleptonic and semileptonic weak rates on the

parameter d µi/T , where d µi are the chemical potentials that control the departure of

strange quark matter from b equilibrium [132]. We reproduce the earlier observed in-

terplay of the nonleptonic and semileptonic processes, leading to an increase (“hump”)

of the viscosity in a narrow temperature range around 1 MeV. The nonlinear correc-

tions have a small effect on the corresponding shape of the “hump”. The reason for

this is a relatively high temperature (T ⇠ 1 MeV), at which the corresponding effects

can be observed. At such moderately high temperatures, the interplay between the two

types of weak processes is substantially affected only if the nonlinearity (measured by

dn0/n0) is well above 10%.

We also found that the anharmonicity of density oscillations has an effect on

the bulk viscosity, even though the effect was not large in the cases that we studied.

For a strong anharmonicity, the bulk viscosity showed a substantial decrease. We also

saw that different types of anharmonicity have slightly different qualitative as well as

quantitative outcomes. This finding may suggest that some types of anharmonicity may

be more efficient and, thus, lead to larger corrections to the bulk viscosity.
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Figure 4.1: Bulk viscosity as a function of dn0/n0 for several fixed values of tem-
perature, i.e. T = 10�5 MeV (black solid line), T = 10�4 MeV (red long-dashed
line), T = 10�3 MeV (blue dashed line), T = 10�2 MeV (green short-dashed line),
T = 10�1 MeV (black dash-dotted line) and T = 1 MeV (red dash-dotted line line).
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Figure 4.2: Bulk viscosity as a function of temperature for several fixed values of the
amplitude of density oscillations, i.e. dn0/n0 = 10�5 (black solid line), dn0/n0 = 10�4

(red long-dashed line), dn0/n0 = 10�3 (blue dashed line), dn0/n0 = 10�2 (green short-
dashed line), and dn0/n0 = 10�1 (black dash-dotted line).
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Figure 4.3: Bulk viscosity as a function of anharmonicity parameter of Type I (upper
panel) and Type II (lower panel) for t = 10�3 s, dn0/n0 = 10�3 and several represen-
tative values of temperature.
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CHAPTER 5

ANALYSIS OF FARADAY ROTATION AND MEGNETO-OPTICAL

TRANSMISSION IN MONOLAYER GRAPHENE

In this chapter, we calculate the Faraday rotation effect and magneto-optical trans-

mission associated with the quantum Hall ferromagnetism and magnetic catalysis in

monolayer graphene. The experimental setup is schematically shown in Fig. 5.1.

5.1 Formalism

The Faraday rotation angle q and the magneto-optical transmission T are given by the

following expressions [133]:

q(W) =
1
2

arg


t+(W)

t�(W)

�

, (5.1)

T (W) =
1
2

h

|t+(W)|2 + |t�(W)|2
i

, (5.2)

Figure 5.1: Schematic setup of the Faraday rotation experiment. The plane of polar-
ization is rotated after passing through a monolayer of graphene with a perpendicular
magnetic field. The figure is taken from Ref. [134].
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which are written in terms of the transmission coefficients for circularly polarized

light [135],

t± =
2n0

n0 +ns(W)+(4p/c)s±(W)
, (5.3)

where n0 and ns(W) are the refractive indices of vacuum and substrate, respectively.

The complex optical conductivities, s±(W), are defined in terms of the diagonal and

off-diagonal elements of the conductivity tensor, i.e.,

s±(W) = sxx(W)± isxy(W). (5.4)

By making use of the Kubo formalism, see (1.48), we rewrite the expression for the

optical conductivity,

si j(W) =
ImPi j(W+ i0;0)

W
, (5.5)

in terms of the Fourier transform of the current-current correlation function,

Pi j(W;k) =
Z

dt
Z

d3re�iWt+ik·r Pi j(t;r), (5.6)

where the coordinate space function is given by

Pi j(t;r) =�ie2v2
FTr

h

g

i
eG(t;r)g j

eG(�t;�r)
i

. (5.7)

Note that this expression is written in terms of function eG(t;r), which is a translation-

ally invariant part of the full quasiparticle Green’s function, defined by

G(t � t 0;r,r0) = eiF(r,r0)
eG(t � t 0;r� r0), (5.8)

where eiF(r,r0) is the so-called Schwinger phase. The latter spoils translational invari-

ance of the quasiparticle Green’s function. Such a phase, however, does not affect the

result for the current-current correlation function. For a detailed derivation of the quasi-

particle Green’s function and the explicit form of the Schwinger phase, see for example

Appendix A in Ref. [136].
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For our purposes below, it is convenient to use the w-r representation of the

Green’s function[136] to arrive at the following form of the current-current correlation

function:

Pi j(iWr;0) = e2v2
FT

•

Â
m=�•

Z

d2r tr
h

g

i
eG(iwm;r)g j

eG(iwm � iWr;�r)
i

, (5.9)

where we used the Matsubara formalism to introduce a nonzero temperature. By def-

inition, the fermionic and bosonic Matsubara frequencies are wm = (2m+ 1)pT and

Wr = 2rpT , respectively. The explicit expression for the current-current correlation

function Pi j(iWr;0) will be derived in Sec. 5.3. The corresponding function for real

values of frequency will then be obtained by the analytical continuation iWr ! W+ i0.

Before proceeding to the current-current correlation function, however, we first need to

discuss the structure of the quasiparticle Green’s function, used in the calculation.

5.2 Quasiparticle Green’s function

Suppressing spin indices, we can write the inverse Green’s function in the following

general form [136]:

iG�1(w;r,r0) =
�

g

0
w + vFF̂+ (⇡ ·�)+ Ŝ+ 

d (r� r0), (5.10)

where F̂+ and Ŝ+ are generalized wave-function renormalization and self-energy op-

erators, respectively. The (bare) Fermi velocity is vF = c/300, where c is the speed of

light in vacuum. By definition, the canonical momentum is ⇡ ⌘ (px,py) = �ih̄r+

eA/c. Here the vector potential A is chosen in the Landau gauge and corresponds to a

magnetic field B orthogonal to the plane of graphene.

In the case of the bare Green’s function, the corresponding wave-function renor-

malization and self-energy operators read F̂+
bare = 1 and Ŝ+

bare = (µ�µBBs

3)g0. In gen-

eral, F̂+ and Ŝ+ are functions of energy w and the three mutually commuting dimen-

sionless operators: �(⇡ ·�)2`2, g

0 and is?g

1
g

2, where s? = sgn(eB) and `=
p

h̄c/|eB|

is the magnetic length.
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Taking into account that (g0)2 = 1 and (is?g

1
g

2)2 = 1, the operators F̂+ and

Ŝ+ can be equivalently written in the following form:

F̂+ = f + g

0g+ is?g

1
g

2g̃+ is?g

0
g

1
g

2 f̃ , (5.11)

Ŝ+ = D̃+ g

0
µ + is?g

1
g

2
µ̃ + is?g

0
g

1
g

2D, (5.12)

where f , f̃ , g, g̃, D̃, D, µ , and µ̃ are functions of only one operator, (⇡ · �)2`2. In

addition to F̂+ and Ŝ+, it is convenient to introduce also functions F̂� and Ŝ�,

F̂� = f � g

0g� is?g

1
g

2g̃+ is?g

0
g

1
g

2 f̃ , (5.13)

Ŝ� = D̃� g

0
µ � is?g

1
g

2
µ̃ + is?g

0
g

1
g

2D, (5.14)

which are related to F̂+ and Ŝ+ through the following commutation relations:

F̂+(⇡ ·�) = (⇡ ·�)F̂�, (5.15)

Ŝ+(⇡ ·�) = (⇡ ·�)Ŝ�. (5.16)

The physical meaning of functions f , f̃ , g, g̃, D̃, D, µ , and µ̃ can be understood in part

from the corresponding Dirac structures that they come with. For example, functions

D̃ and D are the Dirac (time-reversal even) and Haldane (time-reversal odd) mass func-

tions, respectively. Functions µ and µ̃ play the roles of chemical potentials controlling

the charge density and the charge density imbalance between the two valleys in the

Brillouin zone. The other functions ( f , f̃ , g, and g̃), appearing in the definition of F̂±,

are several possible types of the wave function renormalization.

In general, all dynamical parameters ( f , f̃ , g, g̃, D̃, D, µ , and µ̃) are functions

of the operator �(⇡ · �)2`2. The eigenvalues of �(⇡ · �)2`2 are nonnegative even

integers: 2n ⌘�(2N +1+ s?s12), where N = 0,1,2, . . . is the orbital quantum number

and s12 =±1 is the sign of the pseudospin projection. Taking this into account, we can

80



write the eigenvalues of F̂± and Ŝ± as follows:

Fs0,s12
n ⌘ fn + s0gn + s12g̃n + s0s12 f̃n , (5.17)

Ss0,s12
n ⌘ D̃n + s0µn + s12µ̃n + s0s12Dn , (5.18)

where fn, f̃n, gn, g̃n, D̃n, Dn, µn, and µ̃n are the eigenvalues of the corresponding coef-

ficient operators in the nth Landau level state.

The parameters s0 = ±1 and s12 = ±1 are the eigenvalues of g

0 and is?g

1
g

2,

respectively. The projectors on the corresponding subspaces are given by

Ps0,s12 =
1
4
(1+ s0g0)(1+ s12is?g

1
g

2), (5.19)

with s0,s12 =±1. By making use of this complete set of projectors in Dirac space, the

translationally invariant part of the Green’s function can be rewritten in the following

explicit form:[136]

eG(w;r) = i
e�x/2

2p`2

•

Â
n=0

Â
s=±1

Â
s0=±1

ns0(w +µn,s )� D̃n,s

(w +µn,s )2 �E2
n,s

⇥

d

s0
�s

Ln(x )+d

s0
+s

Ln�1(x )
⇤

+
ie`
`
(� · r) fn,s � s0gn,s

(w +µn,s )2 �E2
n,s

L1
n�1(x )

o

Ps0,s0s

, (5.20)

where La

n (x ) are Laguerre polynomials [by definition, L0
n(x )⌘ Ln(x )], and e` ⌘ h̄vF/`

is the Landau energy scale. We also introduced the following short-hand notations:

x =
(r� r0)2

2`2 , (5.21)

and

µn,s = µn +s µ̃n, D̃n,s = D̃n +sDn, (5.22)

fn,s = fn +s f̃n, gn,s = gn +s g̃n. (5.23)

Note that, by definition, the Laguerre polynomials La

n (x ) with negative n are identically

zero. The quasiparticle energies in the lowest and higher Landau levels are determined
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by

E0,s = s D̃0,s = D0 +s D̃0, (5.24)

En,s =
q

2ne

2
`

⇥

f 2
n,s �g2

n,s
⇤

+ D̃2
n,s , (n � 1). (5.25)

Here s =±1 is the eigenvalue of is?g

0
g

1
g

2 ⌘ s?g3g5, which up to the overall sign s?

is the quantum number associated with the valley.

Treating all Landau levels separately, it is convenient to introduce the following

spectral representation of the Green’s function,

eG(iwm,r) = i
•

Â
n=0

Â
s=±1

Z •

�•

dw

2p

An,s (w;r)
iwm +µn,s �w

. (5.26)

where An,s (w,r) = eGn,s (w + i0;r)� eGn,s (w � i0;r) and eGn,s (w + i0;r) is the n-s

contribution to the Green’s function (5.20), calculated at vanishing µn,s .

For the Green’s function in Eq. (5.20), in which all dynamical parameters are as-

sumed to be real, the spectral functions An,s (w,r) will be given in terms of d -functions

with nonzero values only at exact positions of Landau levels. In real systems, of course,

Landau levels have nonzero widths. In order to describe this important property, we

will introduce phenomenological width parameters Gn,s which may depend on the fre-

quency w , the Landau level index n, and the valley index s . We do this by replacing

the d -functions in the spectral functions with the Lorentzian distributions of nonzero

widths Gn,s , i.e.,

An,s (w;r) =
e�x/2

2p`2 Â
s0=±1

Â
l=±1

Â
h=±1

ih
2En,s

⇢

s0En,s +lDn,s

w +lEn,s + ihGn,s
[d s0

�s

Ln(x )

+ d

s0
s

Ln�1(x )]�
ie`
`
(� · r)

l ( fn,s � s0gn,s )L1
n�1(x )

w +lEn,s + ihGn,s

)

Ps0,s0s

, (5.27)

where we introduced an additional sum over l in order to separate the poles that cor-

respond to negative energy quasiholes and positive energy quasiparticles.
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5.3 Calculation of current-current correlation function

In this section, we present the general result for the current-current correlation function

in the field-theoretical model of Dirac quasiparticles. We start from the definition in

Eq. (5.9) and use the representation of the quasiparticle Green’s function in Eq. (5.26)

with the spectral functions in Eq. (5.27). After performing the Matsubara summation,

we derive the following expression for the current-current correlation function:

Pi j(iWr;0) = e2v2
F Â

n,n0
Â

s ,s 0

Z

d2r
Z dwdw

0

(2p)2
nF(w �µn,s )�nF(w 0 �µn0,s 0)

w �µn,s � (w 0 �µn0,s 0)� iWr

⇥ tr
⇥

g

iAn,s (w;r)g jAn0,s 0(w 0;�r)
⇤

, (5.28)

Then, by calculating the traces and integrating over spatial coordinates, we derive

Pi j(iWr;0) =
e2

e

2
`

2p

Â
n,n0

Â
s0,s

Z dwdw

0

(2p)2
nF(w �µn,s )�nF(w 0 �µn0,s )

w �µn,s � (w 0 �µn0,s )� iWr

⇥ Â
l ,l 0

Â
h ,h 0

hh

0

4En,s En0,s

(En,s +l s0Dn,s )(En0,s �l
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(d i j + ie i j)d s0
�s

dn,n0�1 +(d i j � ie i j)d s0
s

dn�1,n0
⇤

. (5.29)

(The results for Dirac traces, used in the calculation, are given in Appendix D.) In

terms of the tensor structure, this function has only two types of terms,

Pi j(iWr;0)⌘ d

i jPxx(iWr;0)+ e

i jPxy(iWr;0). (5.30)

The explicit forms of both diagonal and off-diagonal terms are obtained after integrat-

ing over the frequencies. The results read

Pxx(iWr;0) =
e2

e

2
`

2p

•

Â
n=0

Â
s=±1

Â
l ,l 0=±1
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h

I ll

0
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i

, (5.31)

Pxy(iWr;0) = i
e2

e

2
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2p
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Â
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0
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. (5.32)
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In the last two expressions, we made use of the following short-hand notation for the

results of integrations:

I ll

0
n,n0 (iWr) =

Z dwdw

0

(2p)2
nF(w �µn,s )�nF(w 0 �µn0,s )
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0

(w +lEn,s + ihGn,s )(w 0+l

0En0,s + ih 0Gn0,s )

=
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where
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(5.34)

In the zero temperature limit, in particular, these functions become

Sll

0
nn0 (W) =

i
2p

ln
l

0En0,s +µn0,s � iGn0,s �W� ie
lEn,s +µn,s � iGn,s

, (5.35)
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0
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, (5.36)

Zll

0
nn0 (W) =
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2p

h

ln
lEn,s +µn,s + iGn,s

lEn,s +µn,s + iGn,s +W+ ie

+ ln
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i

. (5.37)

In the derivation, we used the following asymptote of the y-function: y(z) ' ln(z)+

O(1/z) for z ! •.
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5.4 Numerical result

In this section, we calculate numerical results for the Faraday rotation angle as well as

the magneto-optical transmission for several different model parameters. Let us assume

that n0 and ns(W) are the refractive indices of vacuum and substrate. In general, the

refractive index of the substrate is dependent on the frequency of the light W. From

supplementary information of Ref. [134] we find that ns can be treated as a constant

ns(W)⇡ 2.6 at low frequencies, i.e., 0 < W < 60 Hz. So, we use this approximation in

our calculations.

Our numerical results for the transmission ratio T (B)/T (0) at zero temperature

are shown in Fig. 5.2 for three different values of the quasiparticle width: G = 1 meV,

G = 5 meV, and G = 10 meV. Different lines represent the results for different values

of the magnetic field, ranging from B = 1 T to B = 10 T with the increment of 1 T. The

corresponding numerical results for the Faraday rotation angle q are shown in Fig. 5.3.

As we see, the deviations of the transmission ratio and the Faraday rotation

angle from the corresponding zero-field results become larger with increasing the value

of the magnetic field. These result agree well with the experiment data when G = 5

meV. This value is less than a naive estimate for the quasiparticle width of 10 meV in

Ref. [134]. In our theoretical study we find that the effect of temperature (up to about

300 K) becomes noticeable only when G is of the order of, or smaller than about 1 meV.

When the best fit value G = 5 meV is used, then, the effect remains very small and the

T = 0 results give a very good approximation of the experimental data even at room

temperature (300 K).

We also find that the sign of the Faraday rotation angle changes from positive

to negative at a certain photon frequency, depending on the strength of the magnetic

field. As discussed in Ref. [134], this is explained by the classical cyclotron resonance
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Figure 5.2: Transmission for three different values of the quasiparticle width: G =
1 meV, G = 5 meV, and G = 10 meV, and zero temperature.
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effect. The classical Drude formulae for the conductivity tensor read:

sxx(W,B) =
2D
p

1/t � iW
W2

c � (W+ i/t)2 , (5.38a)

sxy(W,B) =�2D
p

Wc

W2
c � (W+ i/t)2 , (5.38b)

where D is the Drude weight, Wc is the cyclotron frequency (which is positive for

electrons and negative for holes) and t is the scattering time. By using this expression

in Eq. (5.1) we can find that there is a photon frequency W?,B, where the sign of the

Faraday rotation angle should change. This is a universal feature associated with the

photon absorbtion near a resonance frequency.

5.5 Discussion

In this chapter we present a detailed derivation of the Faraday effect and the magneto-

optical transmission/absorption in the semi-classical and the quantum Hall regimes by

using a unified approach [137]. We obtained the dependence of the magneto-optical

properties on the light frequency. Our theoretical calculation are in excellent qualita-

tive as well as a good quantitative agreement with the recent experimental results for

graphene on a SiC substrate [134, 138]. This is quite remarkable after taking into ac-

count that there is only one fit parameter (i.e., the quasiparticle width) in the model. In

particular, our simple quantum microscopic model suggests that the width of quantum

states in the setup of Ref. [134] must be about G = 5 meV, which is two times smaller

than the rough estimate, proposed in the original analysis of the experimental results.

The large magnitude of Faraday angle suggests that there exists a possibility of

a strongly pronounced inverse Faraday effect. The effect is seen as a generation of a

static magnetic field (or magnetization) when a material is irradiated with a circularly

polarized electromagnetic wave [139, 140]. Using general arguments about the free

energy in solids, Pershan predicted that the magnetization generated would be related

to the same magneto-optical tensor that characterizes the long established Faraday ef-
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fect. Further to this, Pershan and his co-workers went on to test these predictions and

established experimentally that magnetization could indeed be generated by circularly

polarized light. (See Ref. [141] for more details.)
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CHAPTER 6

SUMMARY AND OUTLOOK

6.1 Summary

In the introduction we have argued that in order to understand systems of relativistic

matter in nature, it might be important to study the properties of relativistic matter

under several extreme physics environments. We have introduced two examples where

relativistic matter may exist. One is the interior of neutron stars where the density is

so high that the corresponding state of matter is necessarily in the relativistic regime.

The other is graphene where the quasiparticle can be treated as massless relativistic

particles.

In Chapter 2 and 3 we studied the rate of nonleptonic weak processes as well as

the bulk viscosity in four transverse spin-one color superconducting phase of strange

quark matter. In the calculation of bulk viscosity we took into account the interplay

between the nonleptonic and semileptonic week processes. In agreement with previ-

ous studies, it is found that the inclusion of the semi-leptonic processes may result in

non-negligible corrections to the bulk viscosity in a narrow window of temperatures.

The effect is generally more pronounced for pulsars with longer periods. Compared to

the normal phase, however, this effect due to the semi-leptonic processes is less pro-

nounced in spin-one color superconductors. Assuming that the critical temperature of

the phase transition is much larger than 40 keV, the main effect of spin-one color super-

conductivity in a wide range of temperatures is an overall increase of the bulk viscosity

with respect to the normal phase. The corresponding enhancement factor reaches up to

about 9 in the polar and A-phases, about 25 in the planar phase and about 29 in the CSL

phase. This factor is determined by the suppression of the nonleptonic rate in color-

superconducting matter and, therefore, may be even larger if all quark quasiparticles

happen to be gapped.
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In Chapter 4, the bulk viscosity of cold, dense three-flavor quark matter was

calculated as a function of temperature and the amplitude of density oscillations. The

study is also extended to the case of two different types of anharmonic oscillations

of density. We pointed several qualitative effects due to the anharmonicity, although

quantitatively they appear to be relatively small. We also found that, in most regions

of the parameter space, with the exception of the case of a very large amplitude of

density oscillations (i.e., 10% and above), nonlinear effects and the anharmonicity have

a small effect on the interplay of the nonleptonic and semileptonic processes in the bulk

viscosity.

The bulk viscosity calculations in chapters 3 and 4 may give important phe-

nomenological information. By comparing theoretical predictions with the observation

data, it can help understanding the equation of state of dense matter present in neutron

stars. Firstly, the damping time scale, which depends on the viscosity determines if

the r-mode is unstable. The instability of the r-mode can lead to a transient state with

large emission of gravitational waves potentially detectable by Advanced LIGO [63].

Secondly, one can use the observational data for the distribution of pulsar in the plane

of frequency and temperature. The empty regions in the diagram should point to the

forbidden sets of parameters. By comparing these with the theoretically predicted re-

gions of instability will provide the constraint on possible phases of dense matter inside

pulsars.

We also studied optical conductivity and screening effects of monolayer graphene

in a strong magnetic field responsible for spontaneous symmetry breaking of an approx-

imate flavor symmetry and causing the anomalous quantum Hall effect. We calculated

the Faraday angle and transmission coefficients of different types of order parameters,

associated with the quantum Hall ferromagnetism and magnetic catalysis. It is found

that the qualitative features in the optical conductivity can unambiguously indicate the
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microscopic nature of the symmetry breaking patterns. Compare with the experimen-

tal data, we found the quasiparticle width is somewhat smaller than with the rough

estimate in the experimental paper [134].

6.2 Outlook

In the future, the analysis performed in this thesis can be extended to also study the

rates of weak processes and the corresponding the bulk viscosity in other spin-one

color supercoducting phases. Indeed, there are several studies [52, 53] suggesting other

possible spin-one color supercoductors. While all of them have similarities to the spin-

one phases studied here, there are often subtle differences that may lead to quantitative

and possibly even qualitative differences in the rates.

Also, it is of interest to extend the study of the bulk viscosity to obtain actual

quantitative effects that spin-one color superconductivity has on the reduction of the

instability window in the pulsar frequency and temperature plane. This can be done

along the lines of Refs. [128, 129, 142] in order to get a better understanding of the

implications of our results for physics of neutron stars. It would be ideal if the next

study is done with the proper analysis of possible anharmonic effects. In the prelimi-

nary study in Chapter 4, we considered only a toy model to introduce the anharmonic

oscillations. Eventually, it is interesting to study more realistic types of density oscilla-

tions that result from the actual nonlinear dynamics of stellar r-modes, produced by the

gravitational emission.

In connection to our study of the magneto-optical properties of graphene, the

next step will be the use of a more realistic model, in which all subtleties of the fre-

quency and temperature dependence of the quasiparticle width are properly taken into

account. While our toy model does a good job of qualitative description of the magneto-

optical properties of graphene, it may fall short of being quantitatively reliable in ex-

treme regimes of high temperature and frequency. In order to become truly predictive,
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the model should be also generalized to take into account the effects of wave-function

and Fermi-velocity renormalization.
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A.1 Color and Dirac traces

In this appendix, we write down the explicit expressions for the tensor T rr0
µn

(p̂, p̂0),

defined by Eq. (2.13). The corresponding results were obtained in Ref. [56]. In general,

one finds that

T µn

r,r0 (p̂, p̂
0) = T µn(p̂, p̂0)wrr0(p̂, p̂0) , (A.1)

where wrr0(p̂, p̂0) are the functions determined by a specific color-spin structure of the

gap matrix, and

T µn(p̂, p̂0)⌘ TrD

h

g

µ(1� g

5)g0L�
p g

n(1� g

5)g0L�
p0

i

. (A.2)

The explicit form of all the components of this tensor can be also found in Ref. [56]. It

is more important for us here to note that the following result for the contraction of this

tensor with itself is valid:

T µn(p̂4, p̂1)Tµn

(p̂3, p̂2) = 16(1� p̂1 · p̂2)(1� p̂3 · p̂4) . (A.3)

Since an essential information regarding spin-one color-superconducting phases is car-

ried by the wrr0(p̂, p̂0) functions, we also quote them here. (For more details, see

Ref. [56].)

In the polar phase, the wrr0(p̂, p̂0) functions do not depend on the quark mo-

menta. They are given by the following expressions:

w11(p̂, p̂0) = 2 , (A.4a)

w22(p̂, p̂0) = 1 , (A.4b)

w12(p̂, p̂0) = w21(p̂, p̂0) = 0 . (A.4c)
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In the planar phase, the explicit form of the wrr0(p̂, p̂0) functions reads

w11(p̂, p̂0) =
1
2
[3+h(p̂, p̂0)] , (A.5a)

w12(p̂, p̂0) = w21(p̂, p̂0) =
1
2
[1�h(p̂, p̂0)] , (A.5b)

w22(p̂, p̂0) =
1
2
[1+h(p̂, p̂0)] , (A.5c)

where

h(p̂, p̂0)⌘
4p̂z p̂0z +( p̂x p̂0x + p̂y p̂0y)2 � (p̂x p̂0y � p̂y p̂0x)2

[1+( p̂z)2][1+( p̂0z)2]
. (A.6)

In the A-phase, there are three different quasiparticle branches (r = 1,2,3). Con-

sequently, there are more wrr0(p̂, p̂0) functions, i.e.,

w11(p̂, p̂0) =
1
2
[1+ sgn(p̂z)][1+ sgn(p̂0z)], (A.7a)

w22(p̂, p̂0) =
1
2
[1� sgn(p̂z)][1� sgn(p̂0z)], (A.7b)

w12(p̂, p̂0) =
1
2
[1+ sgn(p̂z)][1� sgn(p̂0z)], (A.7c)

w21(p̂, p̂0) =
1
2
[1� sgn(p̂z)][1+ sgn(p̂0z)], (A.7d)

w13(p̂, p̂0) = w31(p̂, p̂0) = 0, (A.7e)

w23(p̂, p̂0) = w32(p̂, p̂0) = 0, (A.7f)

w33(p̂, p̂0) = 1. (A.7g)

Finally, in the CSL phase, the corresponding functions are

w11(p̂, p̂0) = 1+
1
4
(1+ p̂ · p̂0)2, (A.8)

w12(p̂, p̂0) = w21(p̂, p̂0) = 1� 1
4
(1+ p̂ · p̂0)2, (A.9)

w22(p̂, p̂0) =
1
4
(1+ p̂ · p̂0)2. (A.10)

A.2 Angular integrations in CSL phase

In the calculation of the l -rate in the CSL phase, there are four different types of

angular integrations over the phase space of quark momenta. Thus, the results for the
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Fr1r2r3r4 functions, formally defined by Eq. (2.27) in the main text, have the following

general structure:

F1111 = K0 +K1 +K2 +K3 , (A.11a)

F1112 = K0 �K1 +K2 �K3 , (A.11b)

F1121 = K0 +K1 �K2 �K3 , (A.11c)

F1122 = K0 �K1 �K2 +K3 , (A.11d)

F1211 = K0 +K1 �K2 �K3 , (A.11e)

F1212 = K0 �K1 �K2 +K3 , (A.11f)

F1221 = K2 +K3 , (A.11g)

F1222 = K2 �K3 , (A.11h)

F2111 = K0 �K1 +K2 �K3 , (A.11i)

F2112 = K1 +K3 , (A.11j)

F2121 = K0 �K1 �K2 +K3 , (A.11k)

F2122 = K1 �K3 , (A.11l)

F2211 = K0 �K1 �K2 +K3 , (A.11m)

F2212 = K1 �K3 , (A.11n)

F2221 = K2 �K3 , (A.11o)

F2222 = K3 , (A.11p)
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where the four types of angular integrals are given by:

K0 =
Z

dW1

Z

dW2

Z

dW3

Z

dW4(1� p̂1 · p̂2)(1� p̂3 · p̂4)

⇥ d (p1 +p2 �p3 �p4), (A.12)

K1 =
1
4

Z

dW1

Z

dW2

Z

dW3

Z

dW4(1� p̂1 · p̂2)(1� p̂3 · p̂4)(1+ p̂4 · p̂1)
2

⇥ d (p1 +p2 �p3 �p4), (A.13)

K2 =
1
4

Z

dW1

Z

dW2

Z

dW3

Z

dW4(1� p̂1 · p̂2)(1� p̂3 · p̂4)(1+ p̂3 · p̂2)
2

⇥ d (p1 +p2 �p3 �p4),

K3 =
1
16

Z

dW1

Z

dW2

Z

dW3

Z

dW4(1� p̂1 · p̂2)(1� p̂3 · p̂4)(1+ p̂4 · p̂1)
2

⇥ (1+ p̂3 · p̂2)
2
d (p1 +p2 �p3 �p4) . (A.14)

The result for K0 was obtained in Ref. [101]. It reads

K0 =
4p

3

p2
1 p2

2 p2
3 p2

4
L0(p12,P12, p34,P34) , (A.15)

where pi j ⌘ |pi � p j|, Pi j ⌘ pi + p j, and

L0(a,b,c,d) ⌘ Q(c�a)Q(d �b)Q(b� c)J0(c,b,b,d)

+ Q(a� c)Q(b�d)Q(d �a)J0(a,d,b,d)

+ Q(a� c)Q(d �b)J0(a,b,b,d)+Q(c�a)Q(b�d)J0(c,d,b,d)

(A.16)

which is given in terms of

J0(a,b,c,d) ⌘
Z b

a
dP(c2 �P2)(d2 �P2)

= c2d2(b�a)� 1
3
(c2 +d2)(b3 �a3)+

1
5
(b5 �a5) .

(A.17)

To leading order in powers of large µ , this result simplifies to

L0(0,2µ,0,2µ) =
28

µ

5

15
. (A.18)
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By making use of Eq. (A.15), therefore, we obtain

K0 '
4p

3

µ

8 L0(0,2µ,0,2µ) =
210

p

3

15µ

3 . (A.19)

Using the same approach, in the following subsections we calculate the results for K1,

K2, and K3.

A.2.1 Calculation of K1

Here we calculate the angular integral K1. Following the approach of Ref. [101], we

obtain

K1 =
1
4

Z

dW1

Z

dW2

Z

dW3

Z

dW4(1� p̂1 · p̂2)(1� p̂3 · p̂4)(1+ p̂4 · p̂1)
2

⇥ d (p1 +p2 �p3 �p4)

=
1

4p2
2

Z

dW1

Z

dW3

Z

dW4



1� 1
p2

(p̂1 ·P� p1)

�

(1� p̂3 · p̂4)(1+ p̂4 · p̂1)
2

⇥ d (p2 � |P�p1|)

=
1

4p2
2

Z

dW3

Z

dW4

Z 2p

0
df1

Z

p

0
dq1 sinq1



1� 1
p2

(Pcosq1 � p1)

�

⇥ (1� p̂3 · p̂4)d (p2 � |P�p1|) [1+ cosq1 cosq4 + sinq1 sinq4 cos(f1 �f4)]
2 ,

(A.20)

where P = p3+p4 and P = |P|. In order to integrate over q1, we choose the coordinate

system so that the z-axis is along the vector P. After making use of the d -function, we

easily integrate over q1 and arrive at the following result:

K1 =
Z

dW3

Z

dW4
P2

12 �P2

8Pp2
1 p2

2
(1� p̂3 · p̂4)Q(P12 �P)Q(P� p12)

⇥
Z 2p

0
df1[1+ cosq

⇤
1 cosq4 + sinq

⇤
1 sinq4 cos(f1 �f4)]

2

= p

Z

dW3

Z

dW4
P2

12 �P2

8Pp2
1 p2

2
Q(P12 �P)Q(P� p12)(1� p̂3 · p̂4)

⇥
h

2(1+ cosq

⇤
1 cosq4)

2 +(sinq

⇤
1 sinq4)

2
i

, (A.21)

where cosq

⇤
1 = (P2 + p2

1 � p2
2)/2Pp1 and cosq4 = (p̂4 · P̂) = (P2 + p2

4 � p2
3)/2Pp4. It

may be appropriate to emphasize that the result of the last integration was presented in
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a form that independent of a specific choice of the coordinate system. As can be easily

checked, the integrand in Eq. (A.21) depends only on the relative angle q34 between the

vectors p̂3 and p̂4 (or equivalently only on the variable P). Therefore, while integrating

over W4, we could fix the orientation of p̂3 arbitrarily. It is convenient to choose p̂3 as

the z-axis and perform the integration over W4. The result is independent of the angular

coordinates in W3. Thus, the remaining integration over W3 gives an extra factor 4p . In

the end, we arrive at

K1 =
p

3

2p2
1 p2

2 p2
3 p2

4

Z P34

p34
g(P)dP , (A.22)

where

g(P) = (P2
12 �P2)(P2

34 �P2)Q(P12 �P)Q(P� p12)

⇥
"

2
✓

1+
(P2 + p2

1 � p2
2)(P

2 + p2
4 � p2

3)

4P2 p1 p4

◆2

+

✓

1�
(P2 + p2

1 � p2
2)

2

4P2 p2
1

◆

⇥
✓

1�
(P2 + p2

4 � p2
3)

2

4P2 p2
4

◆

#

. (A.23)

Note that we changed the integration variable from q34 to P=
q

p2
3 + p2

4 +2p3 p4 cosq34.

The final result for K1 can be conveniently given in the same form as K0 in the

previous section, i.e.,

K1 =
p

3

2p2
1 p2

2 p2
3 p2

4
L1(p12,P12, p34,P34) , (A.24)

where, by definition,

L1(a,b,c,d) ⌘ Q(c�a)Q(d �b)Q(b� c)J1(c,b,b,d)

+ Q(a� c)Q(b�d)Q(d �a)J1(a,d,b,d)

+ Q(a� c)Q(d �b)J1(a,b,b,d)+Q(c�a)Q(b�d)J1(c,d,b,d) ,

(A.25)
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and

J1(a,b,c,d) =
Z b

a
dP(c2 �P2)(d2 �P2)

"

2
✓

1+
(P2 + p2

1 � p2
2)(P

2 + p2
4 � p2

3)

4P2 p1 p4

◆2

+

✓

1�
(P2 + p2

1 � p2
2)

2

4P2 p2
1

◆✓

1�
(P2 + p2

4 � p2
3)

2

4P2 p2
4

◆

#

. (A.26)

To leading order in powers of large µ , this result reduces to

L1(0,2µ,0,2µ) =
211

µ

5

35
. (A.27)

This, in turn, gives

K1 '
p

3

2µ

8 L1(0,2µ,0,2µ) =
210

p

3

35µ

3 . (A.28)

A.2.2 Calculation of K2

As is easy to see, the expression for K2 can be obtained from K1 by the following

exchange of variables: p1 $ p2 and p3 $ p4. Thus, the result reads

K2 =
p

3

2p2
1 p2

2 p2
3 p2

4
L2(p12,P12, p34,P34) , (A.29)

where

L2(a,b,c,d) ⌘ Q(c�a)Q(d �b)Q(b� c)J2(c,b,b,d)

+ Q(a� c)Q(b�d)Q(d �a)J2(a,d,b,d)

+ Q(c�a)Q(b�d)J2(c,d,b,d)+Q(a� c)Q(d �b)J2(a,b,b,d) ,

(A.30)

and

J2(a,b,c,d) =
Z b

a
dP(c2 �P2)(d2 �P2)

"

2
✓

1+
(P2 + p2

2 � p2
1)(P

2 + p2
3 � p2

4)

4P2 p2 p3

◆2

+

✓

1�
(P2 + p2

2 � p2
1)

2

4P2 p2
2

◆✓

1�
(P2 + p2

3 � p2
4)

2

4P2 p2
3

◆

#

. (A.31)

We also find that K2 is identical to K1 to leading order in powers of large µ , i.e.,

K2 '
210

p

3

35µ

3 . (A.32)

108



A.2.3 Calculation of K3

Now we calculate the angular integral K3. We start by using the same approach as in

the calculation of K1,

K3 =
1

16p2
2

Z

dW1

Z

dW3

Z

dW4



1� 1
p2

(p̂1 ·P� p1)

�

(1� p̂3 · p̂4)(1+ p̂4 · p̂1)
2

⇥


1+
1

p2 p3
(p3 ·P�p1 ·P+p1 ·p4)

�2
d (p2 � |P�p1|) . (A.33)

To calculate the integral over W1, we fix the coordinate system so that the z-axis coin-

cides with the direction of P. After integration, we obtain

K3 =
Z
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Z
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12 �P2

32Pp2
1 p2
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(A.34)

where cosq

⇤
1 = (P2 + p2

1 � p2
2)/2Pp1 and cosq4 = (p̂4 · P̂) = (P2 + p2

4 � p2
3)/2Pp4. In

the derivation, we also used the following relation:

p3 ·P =
P2 + p2

3 � p2
4

2
. (A.35)
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By performing the integration over f1, we derive

K3 = p
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(A.36)

Finally, in order to integrating over W4, we use the coordinate system with the z-axis

along p̂3. Then, we get

K3 =
p

3

32p2
1 p2

2 p4
3 p4

4

Z P34

p34
h(P)dP, (A.37)
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where
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The result can be given in the same form as the other integrals in the previous subsec-

tions, i.e.,

K3 =
p

3

32 p2
1 p2

2 p4
3 p4

4
L3(p12,P12, p34,P34) , (A.39)

where

L3(a,b,c,d) ⌘ Q(c�a)Q(d �b)Q(b� c)J3(c,b,b,d)

+ Q(a� c)Q(d �b)J3(a,b,b,d)

+ Q(a� c)Q(b�d)Q(d �a)J3(a,d,b,d)

+ Q(c�a)Q(b�d)J3(c,d,b,d) , (A.40)
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and

J3(a,b,c,d) =
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To leading order in powers of large µ , the result reduces to

L3(0,2µ,0,2µ) =
29⇥220

µ

9

45045
. (A.42)

Then, by making use of the relation in Eq. (A.39), we derive

K3 '
p

3

2µ

12 L3(0,2µ,0,2µ) =
29⇥215

p

3

45045µ

3 . (A.43)

A.2.4 Fr1r2r3r4 to leading order in inverse powers of µ

By making use of the leading order results for Ki (i = 1,2,3) obtained in the previous

subsections, here we write down the explicit results for the functions Fr1r2r3r4 in the

same approximation:

F1111 =
1301⇥210

p

3

9009µ

3 , (A.44a)

112



F1221 = F2112 =
443⇥210

p

3

9009µ

3 , (A.44b)

F1112 = F1121 = F1211 = F2111 =
415⇥210

p

3

9009µ

3 , (A.44c)

F1122 = F1212 = F2121 = F2211 =
1357⇥210

p

3

45045µ

3 , (A.44d)

F1222 = F2122 = F2212 = F2221 =
359⇥210

p

3

45045µ

3 , (A.44e)

F2222 =
29⇥215

p

3

45045µ

3 . (A.44f)

Note that

Â
r1,r2,r3,r4

Fr1r2r3r4 =
3⇥210

p

3

5µ

3 . (A.45)
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APPENDIX B

l -RATES OF WEAK PROCESSES
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B.1 l -rates of semi-leptonic (Urca) processes

The rates of the semi-leptonic processes in spin-one color superconducting quark matter

were calculated in Ref. [65]. The general expression for the rate takes the following

form:

li = l

(0)
i



1
3
+

2
3

H
✓

f

T

◆�

for i = 2,3, (B.1)

where l

(0)
i is the corresponding rate in the normal phase of quark matter and H (f/T ) is

a phase-specific suppression factor. By construction, it satisfies the constraint H(0)= 1,

which corresponds to the case of the normal phase. We used the numerical data of

Ref. [65] to obtain the following fits for the suppression factors as functions of the

dimensionless ratio j ⌘ f/T in the four spin-one color superconducting phases of

quark matter:

HA (j) =
a1j

4 +b1j

3 + c1j

2 +d1

j

5 + e1j

3 + f1j

2 +d1
, (B.2)

where a1 = 1.069, b1 =�0.2187, c1 = 3.666, d1 = 21.50, e1 = 1.333 and f1 = 9.349,

Hpolar (j) =
a2j

3 +b2j

2 + c2

j

5 +d2j

4 + e2j

3 + f2j

2 + c2
, (B.3)

where a2 = p , b2 = 21.94, c2 = 1386, d2 = 6.994, e2 = 11.20 and f2 = 214.0,

Hplanar (j) =
a3j

3.5 +b3j

3 + c3j

2 +d3(1+j)

j

3 + e3j

2 +d3
e�j , (B.4)

where a3 = 0.917, b3 = 0.456, c3 = 11.69, d3 = 34.0 and e3 = 4.221,

HCSL (j) =
a4j

4 +b4j

3 + c4j

2 +d4(1+
p

2j)

j

3 + e4j

2 +d4
e�

p
2j , (B.5)

where a4 = 1.034, b4 = 1.001, c4 = 9.735, d4 = 13.81 and e4 = 1.684.

B.2 l -rates of nonleptonic processes

The l -rate of the nonleptonic processes in spin-one color superconducting quark matter

was calculated in Ref. [106]. The general expression for the rate takes the following
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form:

l1 = l

(0)
1



N +(1�N )H̃
✓

f

T

◆�

, (B.6)

where l

(0)
1 is the corresponding rate in the normal phase of quark matter, N is a

constant that determines the relative contribution of ungapped quasiparticles to the rate,

and H̃ (f/T ) is a phase-specific suppression factor due to gapped quasiparticles. The

normal phase corresponds to f = 0, in which case there is no suppression and H̃(0) = 1.

The value of N for each phase reads

N A =
1
9
, (B.7a)

N polar =
1
9
, (B.7b)

N planar ⇡ 0.0393, (B.7c)

N CSL =
928

27027
. (B.7d)

For this study we used the numerical data of Ref. [106] to obtain the following fits for

the suppression factors as functions of the dimensionless ratio j ⌘ f/T :

H̃A (j) =
a1j

2 +b1

j

3 + g1j

2 +b1
, (B.8)

where a1 = 0.1247, b1 = 12.60 and g1 = 5.042,

H̃polar (j) =
a2j

2 +b2

j

4 + g2j

2 +b2
, (B.9)

where a2 = 0.0271, b2 = 65.45 and g2 = 13.35,

H̃planar (j) =
a3j

4 +b3j

3 + g3j

2 +d3(1+j)

j

2 +d3
e�j , (B.10)

where a3 = 0.0717, b3 =�0.2663, g3 = 1.108 and d3 = 4.561,

H̃CSL (j) =
a4j

4 +b4j

2 + g4(1+
p

2j)

j

3 +d4j

2 + g4
e�

p
2j , (B.11)

where a4 = 0.6981, b4 =�2.045, g4 = 4.482 and d4 =�1.217.
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APPENDIX C

ANHARMONIC OSCILLATOR
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C.1 Anharmonic oscillator with a cubic potential (Type I)

The anharmonic oscillator with cubic potential U(x) = mw

2
0

⇣

x2

2 +a

x3

3

⌘

is described

by the following equation of motion:

ẍ+w

2
0 x(1+ax) = 0. (C.1)

By making use of the known parametric solution to the above differential equation

[143] and assuming that x0 > 0 is the maximum deviation from the equilibrium point

x = 0 in the positive x-direction, we find that the periodic solution exists for �1 <

ax0 < 1/2. (The apparent asymmetry between positive and negative values of ax0 is

a result of the assumption that x0 is the maximum deviation from the equilibrium point

in the positive x-direction.) It is given in terms of the Jacobi elliptic function sn(u|m)

as follows:

x(t) = x0

"
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✓
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where a± = 1
2
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⇤±
q

(1+ 2
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⇤)(1�2a

⇤)

◆

and a

⇤ ⌘ ax0 is a dimensionless

parameter that measures the maximum deviation of the solution from the harmonic

regime. Note that x(t) is periodic with the period given by

t
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K
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' 2p
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4⇤
◆

, for a x0 ! 0, (C.3)

where K (a�/a+) is the complete elliptic integral of the first kind. Two representative

solutions are shown in Fig. C.1. For anharmonic solutions of this type, the average

kinetic energy is given by

hEkini=
1

t

a

Z

t

a

0

mẋ2

2
dt =

mw

2
0 x2

0
4

F , (C.4)
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Figure C.1: Solutions to the equation of motion of the anharmonic oscillator with a
cubic potential for two values of the coupling constant. The inserts show the corre-
sponding shapes of the potentials.
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where the analytical expression for constant F reads

F =
4(1+a
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Here E (a�/a+) is the complete elliptic integral of the second kind.

C.2 Anharmonic oscillator with a quartic potential (Type II)

The anharmonic oscillator with quartic potential U(x) = mw

2
0

⇣

x2

2 +b

x4

4

⌘

is described

by the following equation of motion:

ẍ+w

2
0 x
�

1+bx2�= 0, (Type II). (C.6)

Using the known parametric solution to the above differential equation [143] and as-

suming that x0 is the maximum deviation from the equilibrium point x = 0, we find that

the periodic solution exists for b

⇤ ⌘ b x2
0 > �1. The solution is given in terms of the

Jacobi elliptic function,

x(t) = x0
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This is a periodic solution with the period equal
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Two representative solutions are shown in Fig. C.2. For solutions of this type, the

average kinetic can be given in the same form as in Eq. (C.4), but the value of the

corresponding constant F is different,

F =
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. (C.9)
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Figure C.2: Solutions to the equation of motion of the anharmonic oscillator with a
quartic potential for two values of the coupling constant. The inserts show the corre-
sponding shapes of the potentials.
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APPENDIX D

DIRAC TRACES
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This Appendix contains the results for Dirac traces used in the calculation of

the current-current correlation function in Sec. 5.3.

There are two types of Dirac traces. The traces of first type are
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0
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, (D.1)

Tr[g1Ps0,ss0g

1Ps00,s 0s00
] = �d

�s00
s0 d

s

0
s

, (D.2)
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, (D.3)
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0
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, (D.4)

The traces of the second type are
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