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ABSTRACT 

 The research indicated effective mathematics teaching to be more complex than 

assuming the best predictor of student achievement in mathematics is the mathematical 

content knowledge of a teacher. This dissertation took a novel approach to addressing the 

idea of what it means to examine how a teacher’s knowledge of mathematics impacts 

student achievement in elementary schools.  Using a multiple case study design, the 

researcher investigated teacher knowledge as a function of the Mathematics Teaching 

Cycle (NCTM, 2007).  Three cases (of two teachers each) were selected using a 

compilation of Learning Mathematics for Teaching (LMT) measures (LMT, 2006) and 

Developing Mathematical Ideas (DMI) measures (Higgins, Bell, Wilson, McCoach, & 

Oh, 2007; Bell, Wilson, Higgins, & McCoach, 2010) and student scores on the Arizona 

Assessment Collaborative (AzAC). The cases included teachers with: a) high knowledge 

& low student achievement v low knowledge & high student achievement, b) high 

knowledge & average achievement v low knowledge & average achievement, c) average 

knowledge & high achievement v average knowledge & low achievement, d) two 

teachers with average achievement & very high student achievement. In the end, my data 

suggested that MKT was only partially utilized across the contrasting teacher cases 

during the planning process, the delivery of mathematics instruction, and subsequent 

reflection. Mathematical Knowledge for Teaching was utilized differently by teachers 

with high student gains than those with low student gains.  Because of this insight, I also 

found that MKT was not uniformly predictive of student gains across my cases, nor was 

it predictive of the quality of instruction provided to students in these classrooms. 
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CHAPTER ONE: INTRODUCTION 

When thinking about what makes an effective elementary school mathematics 

teacher, one intuitively thinks teacher content knowledge (Ball, Lubienski, & Mewborn, 

2001). Continuing this line of argument, one might consider a teacher who demonstrates 

sufficient understanding of the mathematics being taught to be able to produce high 

achievement in her students. Interestingly, empirical support for such an hypothesis has 

been very elusive. Demonstrating direct links between teachers’ mathematical content 

knowledge and student outcomes is a tricky business (Shechtman, Roschelle, Haertel, & 

Knudsen, 2010).  In fact, Nye, Konstantopoulos, & Hedges (2004) found that only 11% 

of the total variability in student achievement gains in mathematics over a year could be 

attributable to teacher effects. In addition, while Hill et al (2005) reported significant 

statistical findings mapping teachers’ mathematical knowledge and student achievement 

gains across two grade levels, the standardized regression coefficients were quite low 

at .05 and .06 respectively (Shechtman et al, 2010).  So, while we intuitively think that 

content knowledge should be highly correlated to student achievement gains at the 

elementary school level, it seems that when other factors are held constant, teachers’ 

having high content knowledge have lower impact on student gains scores we anticipate.  

In 1986, at the annual meeting of the American Educational Research 

Association, Lee Shulman introduced the theoretical idea of Pedagogical Content 

Knowledge.  He argued that as a community of researchers we have missed a critical 

component in a teacher’s repertoire: The blending of pedagogy and content that resulted 

in knowing why we do something in a particular content area beyond how to engage it 
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procedurally.  He noted that this knowledge separated the teacher from the content 

expert.   

Since Shulman’s original insight, a multitude of studies have been conducted 

examining specific aspects of teacher knowledge and classroom instruction that impact 

student achievement. Many studies employed case studies to look at expert/novice 

comparisons within classroom instruction (Borko & Livingston, 1989; Hill, Blunk, 

Charalambous, Lewis, Phelps, Sleep, Ball, 2008; Lehrer & Franke, 1992; Leinhardt & 

Greeno, 1989; Stein, Baxter, Leinhardt, 1990; Thompson & Thompson, 1994 & 1996). 

Others used proxy variables such as courses taken or certification tests as a direct 

measure of teacher knowledge (Begle, 1979; Monk 1994). Recently, researchers have 

begun using quantitative measures to assess the linkages between a teachers’ 

mathematical knowledge, classroom instruction, and student achievement (Baumert, 

Kunter, Blum, Brunner, Vos, Jordan, Klusmann, Krauss, Neubrand, & Tsai, 2010; Hill, 

Rowan, & Ball, 2005; Hill, Blunk, Charalambous, Lewis, Phelps, Sleep, & Ball, 2008; 

Shechtman, Roschelle, Haertel, & Knudsen, 2010).   

Despite three decades of research in this area: linkages between teacher 

knowledge and student learning, the field still struggles to determine how teacher’ 

knowledge fosters learning in students and what aspects of teacher knowledge can be 

developed in teacher training. This dissertation provides insight into what knowledge 

teachers’ use when planning, implementing, and reflecting on classroom practice in 

elementary mathematics.  I constructed cases of teachers whose knowledge level and 

student gain scores either has yet to be examined or are scarce in the current research. In 

addition, the observational data was collected prior to analyzing the participants’ 
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measured knowledge and post-test interview.  This is an important difference between 

this dissertation and the past literature because during the classroom observations I was 

blind to the types of measured knowledge held by each teacher.  The blinding reduced 

some of the potential biases that could occur if I had a deep understanding of the types of 

knowledge held by each teacher.   

Purpose 

 The purpose of this dissertation was to use a multiple case study design (Yin, 2009) 

to explore the association between six teachers’ Mathematical Knowledge for Teaching 

(MKT) (Ball et al, 2008) and the Mathematics Teaching Cycle (including: planning and 

implementation of instruction).   

Research Question 

1) How does a teacher’s Mathematical Knowledge for Teaching impact planning, 

instruction, and student gains in elementary mathematics? 

Importance of Study 

 This study was important for the four main reasons.  First, it examined the 

commonplace belief that teachers with high levels of mathematics content knowledge 

produced high student achievement scores and that teachers with low levels level of 

mathematics content knowledge produced low student achievement scores (NCLB, 2000; 

NMAP, 2008).   

 Second, there is a tremendous amount of money being funneled into states and 

school districts to improve student achievement through improving the distribution of 

high quality teachers (NCLB, 2000) across schools.  This study added to the discussion of 

what makes a high quality elementary school mathematics teacher, as well as where to 
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funnel the government resources to best improve students understanding and achievement 

in mathematics.   

 Third, the study unveils long-term implications for building a reflective practice, 

for designing professional development around teacher knowledge and instructional 

practice, and for instructing pre-service elementary school teachers.   

 Fourth, this study addressed some methodological issues in the scarce number of 

studies that look at the associations between a teacher’s MKT score, classroom practice, 

and student achievement 

Limitations 

 Due to practical constraints, this dissertation cannot provide a comprehensive 

review of the impact of teacher knowledge on classroom practice.  Teaching is a living, 

dynamic, and complex process.  Teachers make decisions instantly, sometimes without 

any tacit knowledge of what they are doing or why they made a specific choice.  

Unfortunately, capturing the instantaneous decision-making process is currently 

impossible without disrupting the learning of students.  Similarly, there is no method for 

mapping the brain during instruction so as to understand which types of knowledge were 

used at specific times to make specific decisions.  Instead, I used interviews and teacher 

reflections during instruction (if they chose to talk to me during instructional times, or 

made explicit comments about their teaching to the class) to assess instructional 

decisions.  I used the Mathematical Knowledge for Teaching framework and descriptions 

found in Ball et al (2008) to best pinpoint instances of teacher knowledge being used 

during instruction and planning times.  
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 In addition, this dissertation was somewhat limited by not having formal training 

on the Mathematical Knowledge for Teaching categories and the Mathematics Tasks 

Framework (Stein, Smith, Henningsen, & Silver, 2009), which was used to assess the 

tasks selected and presented during each class observation.  To account for the limited 

training, I discussed examples of each category of MKT I chose from my data with 

people familiar with the framework.  I engaged in a similar process with the Mathematics 

Tasks Framework and also strictly adhered to the analysis guides provided in Stein et al 

(2009). 

 Similarly, the frameworks used to collect and analyze the data limit this 

dissertation.  The Mathematical Knowledge for Teaching framework is a work-in-

progress (Hill, 2010).  Therefore, as that framework develops, my rendering of the 

original ideas for MKT and how I used the MKT categories might need adjusting.   

 Other limitations of the study pertained to access to complete data sets for the six 

teachers.  I have incomplete data for two teachers and modified some of the data for a 

third teacher.  The first of the two teachers with incomplete data (Teacher 1.2) disallowed 

audio-recordings during both the interviews and classroom observations. Due to this 

limitation, I could not conduct Classroom Assessment Scoring Systems (CLASS) 

observations and take detailed field notes of the instruction concurrently.  Therefore, 

Teacher 1.2 does not have CLASS data.  In addition, there are limitations in the analysis 

of Teacher 1.2 because her observational data was based on my field notes only.   

 The second teacher who has incomplete data (Teacher 2.1) only partook in one of 

the three interviews.  The missing interviews were about her task selections and the 

follow-up to her teacher knowledge assessment.   
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 The last teacher (Teacher 3.1) was on maternity leave for the first two months of 

data collection and, thus, her data was collected over a three-month period at the start of 

the second semester of the 2011-2012 school year.  This limitation on when data could be 

collected might impact a discussion on her teaching habits at the start of the year versus 

the instruction closer to the state’s standardized testing date.  It is possible that her 

teaching methods changed as the school year drew closer to the testing date but without 

baseline, I cannot say so with surety.   

 This dissertation was also limited by the location, the access I had to teachers, and 

the fact that teachers could choose to participate in my study or not.  Even with its 

limitations, this dissertation created compelling descriptions of how Mathematical 

Knowledge for Teaching impacts teachers throughout the teaching process.  

Organization of the Dissertation 

This dissertation is organized into seven chapters.  The following sections provide 

a brief description of chapters 2 through 7.  

Chapter Two 

 In chapter two, I carefully summarize and critique research relevant to teacher 

content knowledge, teacher instructional practices in mathematics, and linkages between 

the two as it relates to student achievement in mathematics.  Following this review, the 

conceptual framework that undergirds the dissertation research study was presented. This 

dissertation used the Mathematical Knowledge for Teaching framework (Ball et al, 2008) 

and the Mathematics Teaching Cycle (NVTM, 2007) as the basis for exploring the 

research question. These two components, the review and the theoretical framing, serve 

as the foundation for the generation of the research questions, choice of research design, 
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data collection and analysis, and allowed claims to be warranted in ways that lead to 

results that are both theoretically relevant and practically significant. 

Chapter Three 
 

 Chapter three outlines the methodology used in this dissertation.  This study used a 

multiple-case study design (Yin, 2009).  Three cases were used to illustrate “similar” 

results and “contrasting” results (Yin, 2009, p. 54).  Purposeful and convenience 

sampling were used to select the participants (Maxwell, 2005).  The teachers in each case 

were selected using scores on a teacher knowledge assessment and student gain scores 

over the 2011-2012 school year.  Two of the cases represented pairs of teachers with 

similar MKT scores and contrasting student gain scores, while the third case presented 

two teachers with low MKT scores, compared to their peers, who had the highest growth 

in student scores, compared to their peers.   

 The data for the dissertation were collected from two sources (each containing 

three subcomponents): Teacher interviews and classroom observations.  Three interviews 

were conducted with the participants. The first interview reviewed the general planning 

process used to construct daily lessons and units.  The second interviewed explored how 

a teacher selected specific tasks for students and what knowledge they anticipated gaining 

about student learning from the particular tasks.  The third interview was a follow-up to 

the teacher knowledge assessment. During this interview, the teacher walked me through 

their thought-process for solving the problems on the test. 

 The classroom observation data consisted of information from the CLASS 

observation protocol, the tasks used during each observation, field notes from the 

observations, and audio-recordings of each class period observed.  The purpose of these 
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data was to assess the learning environment, the task selection, and the discourse in the 

classroom, as outlined in the Mathematics Teaching Cycle (NCTM, 2007).  

 To analyze the data, I employed the guidelines of Miles and Huberman (1997). 

According to this analytic framework, the coding of chunks of data was used to “review a 

set of field notes, transcribe or synthesized, and to dissect them meaningfully, while 

keeping the relations between the parts intact . . .” (p. 56).  The data were chunked into 

the three categories within the Mathematics Teaching Cycle: Knowledge, Planning, and 

Classroom Instruction.  Codes based on the MKT categories found in Ball et al (2008) 

were used to examine the data. The coded data were then used to construct meaning from 

the themes and patterns across the data sources.  I also used the CLASS observation 

protocol, the Mathematical Tasks Framework, and Bloom’s Taxonomy (Bloom, 1956) to 

analyze components of the data sets and triangulate the findings.  From here, specific 

vignettes were selected from the transcripts. The vignettes illustrated specific coding 

schemes, or themes, that appeared across the data for a particular teacher or as a 

comparison across teachers within and between cases. 

Chapter Four 

 Chapter four starts the presentation of cases.  In chapter four, one learns the case of 

two teachers who scored similarly on the Teacher Knowledge Assessment but whose 

student gain scores differed greatly.  Both teachers scored at least a full standard 

deviation above the mean of their peers, from the larger NSF-funded study in which this 

dissertation is housed, on the teacher knowledge assessment.  One teacher had student 

gain scores that were the second highest of all of the student gain scores of the 

participants in the larger NSF-funded grant.  The student gain scores for the other teacher 
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in this case were just above the mean of the student gain scores of those in the larger 

NSF-funded grant.   

 This case demonstrated differences between the two teachers related to the types 

of knowledge used across all three facets of the Mathematics Teaching Cycle (knowledge 

test, planning, and implementation). The teacher with high student gain scores used a 

complex mix of Common Content Knowledge, Specialized Content Knowledge, 

Knowledge of Content and Students, and Knowledge of Content and Teaching.  Her 

teaching style embraced student thinking.  Both her classroom environment and her 

planning focused on providing activities to students based on what she learned through 

talking with her students about the mathematics.  As she learned what the students 

understood, Teacher 1.1 selected new tasks to challenge the students to think one step 

further than the point at which their knowledge extended mathematically.  She also 

challenged students to share their thinking at the board and was able to hear and interpret 

what students knew about the mathematics based on their explanations.   

Across the three facets of the Mathematics Teaching Cycle, the teacher with 

relatively average student gain scores demonstrated reliance on Common Content 

Knowledge.  Unlike the first teacher in this case, the second teacher imparted knowledge 

to her students.  She gave her students the formulas or procedures repeatedly and limited 

the classroom discourse to answering basic recall or comprehension questions.  She 

followed the order of the textbook and the district curriculum map to plan, regardless of 

what her students understood.   

Chapter Five 
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This case examined two teachers who scored on opposite sides of the mean of the 

participants in the NSF-funded grant on the Teacher Knowledge Assessment.  The 

student gain scores over the 2011-2012 school year for these two teachers also differed 

from each other.  The first teacher in this case had a MKT score almost three quarters of a 

standard deviation above the rest of the participants in the larger NSF-funded grant. Her 

student gain scores were a half of a standard deviation below the mean of the scores for 

the participants in the larger NSF-funded grant.  The second teacher in this case had an 

MKT score that fell just below the mean of the scores for all of the participants in the 

NSF-funded grant.  Her student change scores were a half of a standard deviation above 

the mean of the rest of the participants’ students’ gain scores.   

This case found that differences occurred in how the two teachers’ MKT 

manifested in their instruction.  For the most part, Common Content Knowledge (CCK) 

was very apparent in instruction of the teacher with relatively low student gain scores.  

This teacher stood at the front of the classroom and dictated the standard procedure for 

solving problems.  She read the question to the students, showed them the steps for 

completing the problem, and then the students demonstrated in their independent work 

that they could follow her directions for solving a task. Once she was satisfied that the 

students could mimic the procedure she gave them, the students were given multiple 

problems from the textbook to solve during the remainder of the class period.   

 Much like the first teacher in this case, a basic level of CCK was seen in the 

teaching of the second teacher.  What differed was that while the second teacher used the 

sequence of instruction laid out in the textbook and the procedures given in the textbook, 

she encouraged some discussion in her classroom and used her Knowledge of the Content 
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and Students (KCS) when deciding what textbook tasks would be hard or easy for 

students to solve.  She sometimes allowed students to tell her how they solved the 

problem before she gave them the procedure but usually she presented the procedure first.  

She also used a combination of KCS and Knowledge of Content and Teaching to 

determine when she could combine lessons. For example, she knew her students mastered 

the concept of Mode from their work on the Math Board.  So she collapsed that lesson in 

the textbook into the lesson on other measures of central tendency.  This teacher also 

used her knowledge of Bloom’s Taxonomy to structure her questions for students. She 

learned about developing questions from the Taxonomy from a professional development 

program provided for her school, during the 2011-2012 school year.  

It was possible that the differences in student gain scores for these teachers was a 

function of the differences in the amount of classroom discussions, the use, or lack 

thereof, of knowledge of student thinking when planning and implementing lessons, and 

the willingness of the second teacher to embrace ideas she learned in professional 

development courses. Because of the missing data from the first teacher in this case, it 

was hard to determine how MKT influenced the teacher’s decisions, but it was apparent 

that, for the most part, her instruction and planning were based on her CCK and 

knowledge of standard algorithms. 

Chapter Six 

The final case presented two teachers with relatively low MKT scores when 

compared to the rest of the participants’ scores in the NSF-funded grant. These two 

teachers, however, had the highest and third highest student change scores of all of the 

teachers in the NSF-funded grant.   
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This case found that both teachers used their pedagogical content knowledge far 

more often than their subject matter knowledge. They understood which resources 

provided them with examples of possible standardized test items and how those resources 

could be used to structure their daily lessons.  They also used their students’ thinking to 

modify the scope and sequence of the instruction and to know which types of tasks to 

give the students each day.   

Chapter Seven 

The last chapter presents the discussion section. In the end, my data suggested 

that MKT was only partially utilized across the cases during the planning process, the 

delivery of mathematics instruction, and subsequent reflection. Mathematical Knowledge 

for Teaching was utilized differently by teachers with high student gains than those with 

low student gains.  Mathematical Knowledge for Teaching was also utilized differently 

by teachers within the high student gain category.  Because of this insight, I also found 

that MKT was not uniformly predictive of student gains across my cases, nor was it 

predictive of the quality of instruction provided to students in these classrooms. 
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CHAPTER II: LITERATURE REVIEW & THEORETICAL FRAMING 

 In this chapter, I carefully summarize and critique research relevant to teacher 

content knowledge, teacher instructional practices in mathematics, and linkages between 

the two as it relates to student achievement in mathematics.  Following this review, I 

develop the conceptual framework that undergirds the dissertation research study. These 

two components, the review and the theoretical framing, serve as the foundation for the 

generation of the research question, choice of research design, data collection and 

analysis, allowing me to warrant the claims that will lead to results that are both 

theoretically relevant and practically significant. 

 For decades, mathematics education researchers have grappled with understanding 

how specific aspects of teacher effectiveness and quality (i.e., teacher knowledge, teacher 

affect and beliefs, classroom practices, discourse, teacher qualifications, etc.) pertain to 

student achievement and learning (Begle, 1972; Darling-Hammond, 2000; Eisenberg, 

1977; Escudero & Sanchez, 2007; Fennema & Franke, 1992; Franke, Kazemi, & Battey, 

2006; Hashweh, 1987; Hill, Blunk, Charalambous, Lewis, Phelps, Sleep, & Ball, 2008; 

Hill, Rowan, & Ball, 2005; Hill, Sleep, Lewis, & Ball, 2006; Philipp, R, 2006; Stein, 

Remillard, Smith, 2006; Thompson, 1992; Walkowiak, 2010). 

 As my particular study pertains to teacher knowledge of mathematics and 

mathematical pedagogy, I used the search terms teacher knowledge, mathematics, 

pedagogical content knowledge, mathematics knowledge for teaching, instructional 

practices, elementary schools, student achievement, and learning in Google Scholar.  

From the list of references, I ruled out articles that only looked at content knowledge as 

the determinant of teacher knowledge because my definition of teacher knowledge goes 
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far beyond basic content knowledge.  I also found numerous articles documented that 

content knowledge alone does not necessarily equate to noticing teachable moments or 

lead to considerably improved pedagogical skills in the classroom (Baumert, Kunter, 

Blum, Brunner, Voss, Jordan, Klusmann, Krauss, Neubrand, & Tsai, 2010).  In addition, 

I ruled out articles that only focused simply on the expert/novice relationship because I 

do not view the act of teaching from a deficit perspective.  I am not looking to see what 

teachers do not know, instead I wish to examine how different levels of Mathematical 

Knowledge for Teaching affect teachers instructional choices, and thus inform us on how 

teachers utilize and draw on their individual resources to support learning in their 

classrooms (Cohen, Raudenbush, & Ball, 2000; Escudero & Sanchez, 2007).  

 For over 40 years, researchers have examined the links between teachers’ 

knowledge, classroom practice, and student achievement (Hill et al, 2008).  In 1972, 

Edward Begle assessed the knowledge of three hundred 9th grade algebra teachers 

participating in an NSF summer institute, to determine if a link existed between teachers’ 

algebraic knowledge and student achievement.  Begle (1972) used the Abstract Algebra 

Inventory Forms B and C to assess teacher knowledge and the Mathematics Inventories 

III and IV to assess their students’ learning at the end of 9th grade.  Using these tests, 

Begle concluded that there was no significant correlation between teacher understanding 

of algebra and student achievement in algebraic computation.  He found a statistically 

significant correlation between a teacher’s understanding of the algebra of real number 

systems and students’ understanding of 9th grade algebra, however, the correlation was so 

small that Begle argued it was not educationally significant.  
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 Begle’s (1972) study indicated early on the importance of using curriculum 

sensitive measures to assess teacher knowledge, the possibility that classroom practice 

could impact student achievement, and the issues of selection bias.  While Begle (1972) 

found that the predictor variables in the Mathematics inventories given to the teachers 

were well chosen and meaningful, Begle’s assessment measured basic content knowledge 

of algebra with no emphasis on pedagogy or pedagogical content knowledge.  In 

addition, the sample of teachers used in the study was not representative of the general 

population of teachers in the United States.  The sample consisted of teachers who 

volunteered for a summer professional development course in mathematics.  Therefore, it 

is possible that the effect of teacher knowledge on student achievement might be more 

easily seen with a different sample of participants, or if it were measured differently. 

 To account for the sampling bias, Eisenberg (1977) replicated Begle’s study using 

what he considered a “normal” sample of teachers.  Using the same methodology and 

assessment tools, Eisenberg (1977) collected a sample of teachers from all of the junior 

high schools across Columbus, Ohio.  The 28 participants were given the Algebra 

Inventory Form B during one 50-minute time period.  Their students were assessed using 

Begle’s Mathematics Inventory during the last two weeks of the school year.  Eisenberg 

confirmed that teacher knowledge of the subject matter had little measurable effect on 

student performance, using Begle’s (1972) test of algebra.  

 Ten years later, Hashweh (1987) used three different methods of assessing science 

teachers’ subject matter knowledge when investigating the relationship between subject 

matter knowledge and classroom practice and found dramatically different results.  In his 

study, Hashweh defined subject matter knowledge as the “teacher’s knowledge of the 
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discipline – knowledge of content and its organization.  This included both abstract 

knowledge, such as knowledge of disciplinary conceptual schemas, and more specific 

knowledge, such as knowledge of a particular topic (Hashweh, 1987, p. 110).  The 

researcher used card sorting, concept-map labeling, and free recall to determine the 

knowledge base of three biology and three physics secondary teachers had of their own 

disciplines and of the other discipline.  In addition, in two subsequent interview sessions, 

Hashweh asked the teachers to design a unit within their own field of expertise (either in 

biology or physics) and the one they had less experience with (again, either biology or 

physics), and gave the six teachers simulated teaching tasks from each discipline.  The 

purpose of the study was to measure the effects of the knowledge level on planning and 

teaching of two science subcategories.  

 Hashweh (1987) found that within their field of expertise, the teachers had “(a) 

more detailed topic knowledge, (b) more knowledge of other disciplinary concepts; (c) 

more knowledge of higher-order principles that are basic to their discipline and (d) more 

knowledge of ways of connecting the topic to other entities in the discipline” (p. 113).  

More specifically, the physics teachers expressed a detailed organization of their 

understanding of the relationships among topics found in physics. However, the biology 

teachers displayed no overarching organizational structure of relationships across biology 

topics.   The biology teachers demonstrated clear organization of specific components 

related to different aspects of the field of biology but not a single, unified organization of 

their knowledge.  

 When it came to teacher planning, Hashweh (1987) found that knowledgeable 

teachers used their understanding of the topic to modify lessons, to add supplementary 
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activities, and to explain why they decided upon certain activities and not others.  When 

teachers were asked to plan a unit outside of their field of expertise, the teachers 

consistently followed the textbook lessons sequentially and without modification.  

Regarding the instructional tasks, Hashweh found that knowledgeable teachers asked 

higher-order thinking questions that required synthesis and analysis of the readings in the 

textbook. Less knowledgeable teachers asked recall and memorization questions.  In 

addition, knowledgeable teachers identified and addressed students’ misconceptions, 

while less knowledgeable teachers were unaware of their student misconceptions, even 

reinforcing student misconception at times.   

The physics incidents indicated that the unknowledgeable (sic) teachers 
might actually reinforce preconceptions, incorrectly criticize correct 
student answers, and accept faulty laboratory results.  The biology 
incidents indicated that in some cases even relatively knowledgeable 
teachers would lack the knowledge necessary to deal effectively with 
student difficulties (p. 118).  
  

His results indicated that subject-matter knowledge influenced the decisions teachers 

made when planning and when engaging teachable moments.  

 This study illuminated some critical methodological techniques that aided in 

assessing teacher subject matter knowledge.  First, Hashweh (1987) used a broader 

definition of subject matter knowledge than either Begle (1972) or Eisenberg (1977).  His 

definition aligned with that of Shulman (1986).  This expansion of what constituted 

useable knowledge in teaching enabled Hashweh to construct meaningful tasks that 

explored a teacher’s content and pedagogical knowledge of familiar and unfamiliar 

topics.  Hashweh also established the importance of linking knowledge to classroom 

practice and planning, which is a key aspect of NCTM’s Mathematics Teaching Cycle 
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(2007).  Lastly, this study provided positive insight into the need for case study analysis 

when trying to understand teacher behaviors and learning.  The author generated an in 

depth analysis of teacher knowledge across a variety of sources and illustrate the impact 

of teacher knowledge on practice. 

 Hashweh’s (1987) work is not without limitations, however.  First, Hashweh 

simulated teaching moments to assess teacher decision-making.  That is, he linked 

teacher knowledge of content to hypothetical situations that the teachers had time to 

process and evaluate before discussing.  He did not observe practice as the intellectual 

stepping-stone to understanding teachers’ decision-making processes or to evaluate what 

teachers actually do in the moment.  Second, Hashweh met with each teacher for three 

sessions totaling 4-6 hours (perhaps leading to fatigue on the part of the participants). 

Third, the fact that he used two different content areas could account for different 

schemas, as the structure of each subject differs greatly within each field.  Finally, 

Hashweh did not address how teacher knowledge linked to student achievement, a central 

goal for mathematics education.  

 In a similar study, Stein, Baxter, and Leinhardt (1990) examined how subject 

matter knowledge of one elementary school teacher impacted his teaching of functions 

and graphing.  Much like Hashweh (1987), these researchers defined subject matter 

knowledge broader than their predecessors (Begle, 1972; Eisenberg, 1977).  For Stein, 

Baxter, and Leinhardt (1990), subject matter knowledge was defined as a combination of 

beliefs and knowledge of mathematics and content-specific pedagogy.  Like Hashweh, 

the authors used an interview method and card sorting activity to assess the teacher’s 

subject matter knowledge, specifically, of functions and graphing.  
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 The Stein et al (1990) study differed in some critical features from Hashweh 

(1987).  First, the authors used one teacher for their case study rather than six.  Second, 

the participant’s knowledge and classroom practices were compared to an “expert” 

mathematics educator selected by the researchers as a comparison, rather than another 

teacher in the field.  Neither study linked teacher behavior to student achievement.  

 Much like Hashweh (1987), Stein et al (1990) found that the participant in their 

study lacked important components of knowledge compared to their chosen “expert.”  

The teacher demonstrated a basic understanding of functions arithmetically and a basic 

internal organization of functions.  His knowledge lacked the complex, multi-layered 

organization held by the expert.  This lack of depth impacted his instruction greatly.  The 

case teacher did not provide students with examples that demonstrated the mathematical 

relationships between functions and graphs.  He relied heavily on textbook material, 

much like the teachers in Hashweh’s (1987) study when they were planning lessons 

outside of their field of expertise.  Stein et al (1990) also concluded that much of what the 

teacher found important to teach linked back to his beliefs and understanding about 

functions and graphing.  

 Stein et al (1990) concluded the following.  First, the investigators found that the 

depth of a teacher’s knowledge influenced the degree to which the teacher could provide 

groundwork for later math learning.  Because the participant in their study lacked a 

sophisticated understanding of functions and how these functions related to graphing, his 

students were never exposed to opportunities to learn fundamental algebraic ideas.  

Second, the authors noted that a lack of rich mathematical knowledge generated 

misconceptions in students, poorer planning, and limited learning opportunities for 
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students.  Again, these two conclusions paralleled the findings of Hashweh (1987).  

These are important conclusions for teacher education research but one must consider 

that some of the conclusions were drawn about the participant’s knowledge and teaching 

ability in contrast with a mathematics “expert,” whose teaching practices were not 

evaluated.  Also, there were no explicit details given about what made the participant an 

“excellent” teacher in the eyes of his principal or what made the “expert” the expert in 

this study. Consequently, one needs to be cautious of the generalizations made about 

teacher knowledge based on the Stein et al (1990) study.  

 With regard to the method of assessing teacher knowledge, Baxter and Lederman 

(1999) note that card sorting has yet to be established as a “literal representation of how 

knowledge is stored in memory” (p. 153).  It is also a very restrictive technique to use 

when assessing an individual’s knowledge base.  The technique “requires either a 

particular format (hierarchical, static and two-dimensional) or use of particular ideas in 

the representation of one’s conceptual schema.  As a consequence, the researcher is only 

provided with how the research subject views the ideas presented by the researcher, or a 

representation that is restricted to a particular hierarchical format” (Baxter & Lederman, 

1999, 152). 

A second, and central, concern with this study is that there is no link to student 

achievement.  While the teacher participant might have less knowledge than the expert, 

the reader cannot assess the impact of the missing knowledge on student learning.  In my 

study, I have linked teacher knowledge with student achievement in order to select the 

sample of teachers as a way to alleviate this possible concern.  Using this method, I was 

able to select teachers at two levels of teacher mathematical knowledge for teaching (high 
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and low) and two levels of student performance (high and low).  This created the 

opportunity for four groupings of contrasting cases.  

 In 2005, Hill, Rowan, and Ball assessed whether, and how, teachers’ 

mathematical knowledge for teaching contributed to gains in students’ mathematical 

achievement.  They defined mathematical knowledge for teaching as “the mathematical 

knowledge used to carry out the work of teaching mathematics.” (p. 373).  The authors 

used a quantitative linear mixed-model methodology to complete their study. In order to 

assess teacher knowledge, Hill et al (2005) used LMT (Learning Mathematics for 

Teaching) items, specifically developed to assess at teacher’s MKT (Mathematical 

Knowledge for Teaching).  Students’ learning was assessed using the Terra Nova 

mathematics test at the end of a school year.  In addition, teacher practice information 

was gathered using a self-report log.  The teachers filled out the log after each lesson.  

The log was used to measure the amount of time given to instruction, content covered, 

and instructional practices.  The use of the log was piloted prior to the actual study.  The 

inter-rater agreement between teachers and trained observers was estimated to be 

above .7.  

 The Hill et al (2005) study employed 3,000 1st and 3rd grade students and their 

700 teachers from 115 elementary schools across 15 states.  The study lasted 4 years.  

Eighty-nine of the 115 schools were participating in larger comprehensive school reform 

programs (i.e., America’s Choice), while 26 schools were not.  These 26 schools were 

used as a comparison group.  The schools were matched in terms of community 

disadvantage and district setting.  There was deliberate overrepresentation of high 
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poverty schools in urban, suburban, and urban fringe areas (neighborhoods close to urban 

settings).  

 Effect size analyses indicated that their analytic model displayed a positive link 

between teacher knowledge and student achievement.  They found that their task-

sensitive tool (LMT, 2006) was positively related to student achievement in mathematics.  

Based on this relationship, the authors noted that,  

Teacher’s content knowledge for teaching mathematics was a significant 
predictor of student gains in both models at both grade levels . . . 
expressed as a fraction of average monthly student growth in 
mathematics, this translates to roughly one half of two thirds of a month of 
additional growth per standard deviation difference on the CKT-M 
variable (Hill et al, 2005, p. 396).  
 

Lastly, the article reported that the average length of a lesson significantly impacted the 

student gains in third grade and that years of teaching experience showed no relationship 

with the student achievement of first graders but a slightly positive relationship with third 

grade student achievement scores.   

 The findings from this study highlighted a number of gaps in the literature, 

however.  One significant gap discussed in the conclusion of the study was centered on 

the instructional practices of mathematically knowledgeable and less knowledgeable 

teachers.  Specific questions in need of exploration included:  

How knowing mathematics affects instruction - has yet to be studied and 
analyzed.  Does teachers’ knowledge of mathematics affect the decisions 
they make?  Their planning?  How they work with students, or use their 
textbooks?  How they manage students’ confusion or insights, or how they 
explain concepts . . . how mathematical and everyday language is bridged, 
for example, or how representations are deployed or numerical examples 
selected? (Hill et al, 2005, p. 401).  
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This dissertation begins to address, to varying degrees of depth, many of these 

questions.  The cases were generated to provide explicit contrasts between teachers with 

high and low levels of measured MKT, whose students’ gain scores were either high or 

low, relative to their peers in other classrooms.  Thus, the case selection method 

described earlier allowed me to investigate carefully these interactive questions in situ.  

Others have tried to address these questions but with limited success. I review their work 

below.  

 Using a case study method with two experienced high school teachers, Escudero 

and Sanchez (2007) investigated how domains of knowledge integrate into classroom 

practices.  The authors defined domains of knowledge using Shulman’s (1986) 

definitions of pedagogical content knowledge and content knowledge in conjunction with 

Shoenfeld’s (1998) theory of teaching in context.  To link the practice and knowledge 

domains, the participants were interviewed during planning sessions and given pre- and 

post-observation interviews to assess goals and immediate reactions to their lesson.  The 

researchers also used Leinhardt’s (1989) framework to analyze each lesson for the quality 

of its mathematics content.  

 Escudero and Sanchez (2007) found that one teacher provided students with 

experiences that allowed for the demonstration of student knowledge and meanings.  He 

used a lot of interconnected ideas, showed a deep understanding of the mathematical 

concepts, and explained how concepts related to each other.  The other teacher used more 

traditional methods of teaching introducing basic procedures with close-ended questions.  

The second teacher tried to anticipate student issues when students were learning 

mathematical procedures.   
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Once again, we annotate the limitations to this study.  Teacher knowledge levels 

were assessed from years of teaching, peer recommendations, and that they both had 

degrees in mathematics.  Also, each teacher had complete freedom to plan the lesson at 

will.  The authors did not control for differences in planning, which likely lead to many 

variables influencing differences in teaching not just knowledge levels. Finally, the 

authors never addressed the impact of the differing teaching styles on student 

achievement.  While it is important to look at knowledge differences, without examining 

student learning one cannot say if more knowledge or what type of knowledge is needed 

to be a successful and high quality teacher.  

 In a subsequent study, Hill, Blunk, Charalambous, Lewis, Phelps, Sleep, & Ball 

(2008) explored the link between teachers’ Mathematical Knowledge for Teaching 

(MKT) and the Mathematical Quality of Instruction (MQI).  The authors assessed the 

mathematical knowledge for teaching in 10 elementary school teachers and the 

mathematical quality of their instruction using comparative case studies.  Four types of 

data were collected from each of the teachers: a paper-and-pencil Mathematical 

Knowledge for Teaching test, nine videotaped classroom observations of teaching 

practices, post-observation debriefings, and interviews.  The authors constructed five 

cases to illustrate convergent and divergent examples of how teachers’ knowledge 

influences pedagogical decisions, beliefs about what mathematics is, and the goals for 

student learning.  

 The first case depicted a teacher with a high-degree of mathematics knowledge 

and a very high score on the mathematical quality of instruction index.  Her instruction 

included a rich exploration of mathematical concepts, links across mathematical ideas, 
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few mathematical errors, and a strong connection to student thinking (including using 

students’ mistakes to move the instruction forward).  

 The second case illustrated a classroom where low mathematical knowledge 

aligned with low quality of mathematics instruction.  The researchers reported that this 

teacher created misconceptions for students.  Her language, superficial teaching methods, 

and a lack of connection among the different parts of each lesson confused students and 

led them to forming incorrect assumptions about the mathematics.  Frequently, she dealt 

with students’ mistakes by repeating a procedure to the students or by completing tasks 

for the students.  

 The last three cases did not easily align as convergent or divergent across MKT 

and MQI scores.  The teacher’s instruction did not necessarily match the expectations 

elicited from the MKT scores.  For example, one of the teachers had a very high MKT 

score but lessons were discrete and unconnected.  The teacher provided rich activities and 

language to students but each activity lacked a link to an overarching purpose.   

Another teacher had average MKT scores but scored very low on the MQI tool.  

This teacher used a plethora of “fun” activities to entice kids to love math but she was 

unable to draw out rich mathematical discussions or concepts using these games.  Also, 

almost one-third of every mathematics class was unrelated to mathematics at all, in 

contrast to the nine other participants who spent at least 90% of the time on mathematics 

tasks.   

The last case discussed was of a teacher without a teaching certification who 

scored lowly on both the MKT and MQI assessments.  This teacher demonstrated many 

mathematical errors through out her instruction. However, few of these errors seemed to 
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be as damaging to student learning as some of the other teachers with higher MKT 

scores.  

 This study (Hill et al, 2008) provided support for my own research.  The authors 

demonstrated “that there is a powerful relationship between what a teacher knows, how 

she knows it, and what she can do in the context of instruction” (p. 496).  However, this 

study left room for other interesting contrasts between teachers.  For example, the 

following dissertation added two supplemental comparative cases: 1) a teacher with high 

MKT scores and low student achievement scores with a teacher who had a low MKT 

score and high student achievement, 2) two teachers with modest MKT scores but the 

highest student achievement scores in the district, and 3) a teacher who scored highly on 

the teacher knowledge assessment but whose students had a miniscule amount of change 

from first quarter AZAC scores to third quarter.  This type of teacher is rarely found in 

the data when looking at teacher knowledge and student achievement.  Therefore, my 

comparisons add depth to the case-study literature examining how MKT relates to student 

achievement.  

In the last year, two very interesting studies appeared in the literature regarding 

teacher knowledge of mathematics, teaching, and student achievement.  One study, out of 

Germany, (Baumert, Kunter, Blum, Brunner, Voss, Jordan, Klusmann, Krauss, 

Neubrand, & Tsai, 2010) differences in Pedagogical Content Knowledge and Content 

Knowledge of mathematics teachers to determine how each contributed to teachers’ 

professional knowledge for teaching.  The researchers also assessed the impact of the 

differences in knowledge on student achievement.  They defined PCK as “the knowledge 

that makes mathematics accessible to students” (p. 142).  The authors distinguished three 
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forms of knowledge within PCK: knowledge of tasks as instructional tools, knowledge of 

student thinking and understanding, and knowledge of multiple representations and 

explanations.  Content knowledge, on the other hand, was defined as “a profound 

mathematical understanding of curricular content to be taught” (p. 142).  The authors 

argued that content knowledge was based in academic research but modified and 

developed through practice.  

The authors (Baumert et al, 2010) sampled 181 teachers with 194 classes of 4,353 

students.  The sample included two types of teachers: gymnasium teachers and not-

gymnasium teachers.  The gymnasium teachers, who majored in maths, taught higher-

level mathematics and were expected to have higher content knowledge then non-

gymnasium teachers, who minored in maths.  The researchers assessed the content 

knowledge of the 5th through 10th grade teachers using a paper-pencil test.  Observations 

and a single interview consisting of all open-ended questions determined the pedagogical 

content knowledge of the teachers.  Instruction was examined at three levels: tasks, the 

amount of individual learning support given to students, and effective class management.  

The authors used a mediation model to test the extent to which CK and PCK influenced 

instructional quality and student learning gains in mathematics.  

Baumert et al (2010) found that gymnasium teachers scored significantly higher 

on CK test than non-gymnasium teachers, as anticipated.  However, when CK was 

controlled for, non-gymnasium teachers scored higher on PCK than gymnasium teachers.  

They found that 69% of the variance in achievement between classes was accounted for 

by PCK.  The PCK of the teachers influenced cognition, curricular knowledge, and 

learning support aspects of a teacher’s instructional quality.  These findings implied that a 
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teacher’s pedagogical content knowledge impacted student gains more than content 

knowledge.  Also, a teacher who is strong in content knowledge might not have the 

highest achieving students over time.  My study took these findings and broke them down 

further.  My study examined what happens in the classroom and how different 

dimensions of mathematical knowledge for teaching influence a teacher’s decision-

making process and student achievement.  

The second study (Shechtman, Roschelle, Haertel, & Knudsen, 2010) used Ball’s 

notion of MKT (Ball, 1990; Ball, Hill, & Bass, 2005; Shulman, 1986) to determine the 

links among teacher knowledge, classroom practice, and student learning in middle-

school mathematics classrooms.  One hundred twenty-five seventh grade teachers and 56 

eighth grade teachers volunteered to participate in this study. The teachers were randomly 

assigned to treatment or control groups.  The treatment group received professional 

development on using a SimCalc intervention to teach proportionality and linear 

functions.  The control group members received professional development on the same 

topics but were then asked to teach the SimCalc units using the normal curriculum.  The 

teachers’ knowledge was assessed three times throughout the study using a measure 

developed by the researchers.  Student achievement scores and daily logs helped 

researchers understand the learning goals of each lesson, the use of technology in the 

classroom, and the daily topics covered.  

The authors (Shechtman et al, 2010) found a significant relationship in the 

seventh grade treatment group between a teacher’s MKT level and student gains.  They 

determined that the pretest was a modest predictor of student learning gains in 

proportionality and linear functions.  In addition, they found that high MKT scores did 
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not necessarily equate to high student gains.  Many teachers who received a low score on 

the MKT measure showed high student gains over the course of the study.  Other teachers 

with high MKT scores had low student gains.  Lastly, the authors determined that MKT 

was an independent construct and that while SimCalc teachers’ added difficult topics to 

their daily lessons, it was not related to their MKT scores.  

 Like many of the other studies reviewed here, Shechtman et al (2010) displayed 

critical limitations.  First the authors created their own measure of MKT (LMT, 2006).  It 

is unfortunate they did not replicate their measured results with student achievement and 

were unable to link their findings with the already developed measure of MKT that was 

publically available.  With a more sensitive measurement tool, the findings could have 

been different.  Lastly, neither observations nor interviews were used to assess classroom 

practices.  Instead, the teachers filled out a daily log and their answers in the log 

measured their classroom decisions.  

Even so, much like the previous studies, this study (Shechtman et al, 2010) 

provided both information and gaps that support the need for my dissertation.  For 

example, this study provided additional evidence that successful teaching involves more 

than high mathematical content scores.  Teachers with a variety of levels of mathematics 

and pedagogical knowledge showed student gains over time.  Therefore, we need to look 

at how the mathematical and pedagogical knowledge impacts the many components of 

the mathematical teaching cycle.  This requires examinations beyond expert/novice 

comparisons and investigations of good teaching versus bad teaching.  It requires a 

holistic view of the instructional system (Lerman, 2001; Sfard, Forman, & Kieran, 2001).  
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From this literature review, one can see many gaps in the area of linking teacher 

knowledge, classroom practices, and student achievement in mathematics education.  My 

study addressed many of the following concerns: 

• Holistic view of teaching based on the Mathematics Teaching Cycle, 

• Creating a sample of teachers using statistical data regarding the teachers’ 

Mathematical Knowledge for Teaching scores and gains in student learning 

over a three-quarter period, 

• Constructing case-studies based on contrasting evidence against the common 

belief that more content knowledge directly aligns with higher achieving 

students, 

• Observing teachers’ instruction prior to delving into their mathematical 

knowledge in order to limit observation bias, 

• Using outside observers to check rater reliability of classroom observations 

• Capturing real-time decision-making process through interviewing teachers 

during instruction and post-instruction on a weekly basis, and  

• Assessing teacher knowledge through paper-pencil assessments, open-ended 

interviews, and talk aloud interviews (Chapter 4), 

• Assessing instructional practice using interviews, task analysis, questioning 

techniques, and discourse analysis. 

Theoretical Framing 

Understanding teacher knowledge of mathematics is a complex and dynamic area of 

research in the field of mathematics education.  It spreads beyond counting college math 

courses, examining scores on teacher preparation tests, and unlocking procedural 
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knowledge of a teacher.  The research on teacher knowledge includes understanding how 

teachers internalize the underlying processes of mathematical ideas, link different 

concepts within mathematics, figure out multiple ways of representing the mathematics to 

students, and (Shulman, 1986) student thinking of the mathematics to best prepare 

instruction (Fennema and Franke, 1992).  

 This elusive and compound notion of deciphering what knowledge teachers hold 

and how they utilize that knowledge in the classroom has lead to the development of 

multiple theories and frameworks.  These theories strive to explain the large system of 

integrated knowledge used by teachers in hopes of developing future professional 

development and strong teacher preparation programs for generations of teachers to 

come.  

 In the later half of this chapter, we examine a number of poignant theories 

describing teacher knowledge of mathematics to illustrate the diverse yet overlapping 

views within our field.  We start with a general, largely influential theory, about teacher 

knowledge and then moved into specific theories found in mathematics education.  We 

conclude this chapter with a framework that envelops the notion that of teacher 

knowledge as situated knowledge (Fennema and Franke, 1992).  This theoretical framing 

(NCTM, 2007) sets the foundation for exploring our research questions, the data that 

needs to be gathered, the analytic models we will utilize, the warranting of our data based 

claims, and building empirical linkages back to theory (NRC, 2002).  

Lee Shulman’s (1986) Framework  

 In his 1985 Presidential Address to the members of the American Educational 

Research Association (Shulman, 1986), Lee Shulman argued, that teaching entails much 
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more thought, skill, and knowledge than perceived by the public.  He also argued that 

previous research rarely focused on content knowledge but instead on the generic process 

of teaching or decision-making. He structured teaching as an integration of subject matter 

knowledge and pedagogical knowledge, a novel idea to research on teaching up until 

Shulman’s address in 1986. 

. . . No one asked how subject matter was transformed from the knowledge 
of the teacher into the content of instruction. Nor did they ask how 
particular formulations of that content related to what students came to 
know or misconstrue . . . what we miss are questions about content of the 
lessons taught, the questions asked, and the explanations offered. . . . Our 
work does not intend to denigrate the importance of pedagogical 
understanding or skill in the development of a teacher or in enhancing the 
effectiveness of instruction. Mere content knowledge is likely to be as 
useless pedagogically as [a] content-free skill. But to blend properly the 
two aspects of a teacher’s capacities requires that we pay as much 
attention to the content aspects of teaching as we have recently devoted to 
the elements of teaching process. (Shulman, 1986, pp. 6 & 8) 
 

 What Shulman (1986) laid out for the Educational Research community was an 

original theoretical perspective that mapped out teacher knowledge.  He “distinguish[ed] 

among three categories of content knowledge: (a) subject matter content knowledge, (b) 

pedagogical content knowledge, and (c) curricular knowledge” (p. 9). 

 Content knowledge. Content knowledge, “refers to the amount of organization of 

knowledge per se in the mind of the teacher” (Shulman, 1986, p. 9).  He elaborated 

stating that not only does the teacher know the facts and concepts of a particular subject 

matter but also the structure of how the ideas and concepts within a subject matter are 

organized and related.  Similarly, the content knowledge held by a teacher included 

understanding what ideas were truths and/or falsehoods within a particular discipline 
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based on particular warrants or propositions held within the theory and practice in a 

subject.  

. . . The teacher need not only understand that something is so; the teacher 
must further understand why it is so, on what grounds its warrant can be 
asserted, and under what circumstances our belief in its justification can 
be weakened and even denied. Moreover, we expect the teacher to 
understand why a given topic is particularly central to a discipline 
whereas another may be somewhat peripheral.” (Shulman, 1986, p. 9)  
 

 Pedagogical content knowledge.  The second category, Pedagogical 

Content Knowledge (PCK), encompassed a deeper understanding of the content 

knowledge needed for teaching.  Included in PCK were understandings of 

representing ideas in multiple fashions depending upon the skills of the learner, 

knowing potential conceptions and misconceptions students bring with them, 

strategies for recognizing misconceptions and methods for dismantling 

falsehoods, and ways of adjusting content to allow the learner success when 

tackling foreign or difficult notions (Shulman, 1986).  Shulman argued that it was 

within the concept of PCK where research on teaching and learning concur.  It 

was also where much of the present research on teacher knowledge and 

instructional practice failed. 

 Curricular knowledge.  The final category, curricular knowledge, is:  

represented by the full range of programs designed for the teaching of 
particular subjects and topics at a given level, the variety of instructional 
materials available in relation to those programs, and the set of 
characteristics that serve as both the indications and contraindications for 
the use of particular curriculum or program materials in particular 
circumstances. (Shulman, 1986, p. 10) 
 

 He explained that curricular knowledge extended beyond knowledge of multiple 

curricula within one’s own discipline into knowledge of what students were learning 
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within other disciplines simultaneously.  This lateral knowledge, as he called it, enabled 

teachers to reference and pull from the ideas in other subjects that might help clarify or 

pertain to ideas being taught during a specific lesson.  The integration of three categories 

of knowledge: content, PCK, and curricular are, for Shulman (1986), the essence of his 

theoretical framework that depicted teacher knowledge.  

Liping Ma’s (1999): Profound Understanding of Fundamental Mathematics 

 As Ma (1999) explains, there is a clear difference between the training of teachers 

in China and the U.S. While most U.S. teachers complete at least a bachelor’s degree, 

Chinese teachers complete only between two and three years of formal training following 

the ninth grade.  How, then, could it be possible that Chinese teachers have a better 

understanding of elementary mathematics?  Ma hypothesizes that elementary teachers in 

the two countries possess differently structured bodies of mathematical knowledge, 

where pedagogical content knowledge (i.e. knowing how to represent the content in a 

comprehensible way) is central.  The question of teachers’ mathematics subject matter 

knowledge – what does a teacher need to know to be well equipped to teach mathematics 

– has been a focus of mathematics education researchers since the late 1980’s.  

 For the U.S. sample, Ma interviewed twenty-three “above average” (school in-

service training leaders, or near the completion of a Master’s degree) U.S. elementary 

teachers.  As well, Ma interviewed seventy-two Chinese teachers from five urban/rural 

elementary schools “ranging from very high to very low quality” educational status (Ma, 

1999, p. xxiii).  All these teachers were interviewed with four questions from the TELT 

study.  The following topics were covered: (questions paraphrased) 
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1. Subtraction with regrouping – how would you teach and explain this 
topic to a grade two class? 
2. Multi-digit number multiplication – how would you respond to student 
mistakes when dealing with questions from this topic? 
3. Division by fractions – how would you represent (“real-world” 
situation, story, model, etc.) this concept?  
4. The relationship between area and perimeter: This content area is 
important and is explored in more detail below.  Interestingly, this 
question is intended to determine how teachers may “explore new 
knowledge.”  As Ma suggests, students suggest novel ideas in math 
classrooms all the time.  The focus of this question was on how teachers 
would respond to seemingly novel student claims. The question is as 
follows: “Imagine that one of your students comes to class very excited.  
She tells you that she has figured out a theory that you never told the 
class.  She explains that she has discovered that as the perimeter of a 
closed figure increases, the area also increases.  She shows you this 
picture to prove what she is doing: [a 4cm by 4 cm square and a 4cm by 
8cm rectangle, with respective perimeters and areas calculated correctly, 
and “in support” of her claim].  How would you respond to this student?” 
 
The perimeter-area question.  Of the U.S. teachers, 2 simply accepted the claim, 

18 did not pursue a mathematical investigation, and 3 investigated the claim 

mathematically.  Of this group, only one teacher achieved a correct solution (via 

counterexample).  Approaches included consulting a book, calling for more examples, 

and approaching the question mathematically.  Of the Chinese teachers, about 8% simply 

accepted the claim to be true (similar to U.S. sample).  However, 92% explored the 

problem mathematically.  Of this 92%, 22% reached an incorrect solution due to 

problematic strategies, but 70% of these teachers reached the correct solution.  Based on 

the Chinese teachers’ solutions, Ma presents four levels of understanding in relation to 

this problem: 

1. Disproving the claim – finding a viable counterexample (14 teachers). 
2. Identifying the possibilities – finding examples that display the 
possibilities of relationships between the area and perimeter of two closed 
figures (8 teachers). 
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3. Clarifying the conditions – determining the conditions under which the 
possible relationships between area and perimeter held true (26 teachers). 
4. Explaining the conditions – elaborating on why the area and perimeter 
relate as they do under particular conditions, so as to support or refute the 
student’s claim (6 teachers). 
 
Exploring teacher success.  In examining the interview results of the teachers, 

Ma explains that strategy and intention were key factors in the nature of teachers’ 

exploration of the student’s claim.  Strategy appears to be an obvious ingredient, which 

includes knowledge of appropriate formulae, their underlying rationales, and modes of 

mathematical thinking such as the use of examples and counterexamples.  In contrast to 

mathematical maturity, Ma expresses her concern regarding the layperson-like attitude 

that some of the teachers expressed in their investigations.  For instance, the idea that a 

mathematical statement can be proved through the use of a single example was evident in 

the responses of several of the U.S. and Chinese teachers.  

 Intention, on the other hand, is dependent on a teacher’s interest in exploring a 

mathematical idea and their self-confidence in tackling a new problem.  The teachers in 

the study who thoroughly explored (or unpacked) the area-perimeter problem showed a 

genuine interest in the problem, which fuelled their desire to reach a plausible conclusion.  

Interestingly, Ma suggests that teachers’ confidence is a function of teacher attitudes 

towards the possibility of solving a novel problem.  While some of the U.S. teachers 

showed difficulty with the strategy component of the problem, Ma suggests that their 

intention was their pitfall – many of the U.S. teachers knew the appropriate formulae, but 

lacked the necessary interest and confidence to approach the new problem 

mathematically. 
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Thinking mathematically.  Ma notes that the U.S. teachers did not necessarily 

have less to say than the Chinese teachers, but their answers were, generally speaking, 

“less mathematically relevant and mathematically organized” (Ma, 1999, p.104).  

Furthermore, she suggests that the Chinese teachers’ proficiency in communicating 

mathematics may stem from their chosen style of teaching, which involves a significant 

component of lecture presentation.  Thus, for each new lesson, Chinese teachers spend 

some time preparing a lecture-style introductory, yet complete, presentation on the topic.  

According to Ma, these lecture-style lessons require the teachers to practice and train 

their mathematical communication skills.  Acquiring well-developed communication 

skills in mathematics is possible through other teaching styles.  However, since the 

lecture element was a salient feature of the Chinese teachers’ pedagogical repertoire (and 

not necessarily for the U.S. teachers), Ma suggests that this may be a significant factor for 

the differences in communication skills between the two groups.  

Knowledge packages.  Throughout her investigation, Ma used the term 

“knowledge package” when speaking about the subject matter knowledge of teachers.  

Ma explains that when a teacher begins to teach a new topic, that teacher has an idea in 

her mind about where this idea is situated in the field of mathematics.  Thus, “given a 

topic, a teacher tends to see other topics related to its learning,” and such topics comprise 

the knowledge package for the topic to be taught (Ma, 1999, p.118).  In knowledge 

packages, there are “key pieces,” which include certain related mathematical topics that 

are viewed as being more important to the comprehension of the topic at hand.  

Knowledge packages for any topic can contain both procedural and conceptual elements, 

and Ma asserts that the two are interrelated.  Ma found that teachers with a conceptual 
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understanding of a topic viewed related procedural topics as being essential to student 

understanding.  “In fact,” Ma emphasizes, these teachers felt that “a conceptual 

understanding is never separate from the corresponding procedures where the 

understanding ‘lives’” (Ma, 1999, p.114).  Ma believes that knowledge packages are 

important because it is from this information that a teacher attempts to construct a 

cohesive and comprehensive picture of a mathematical topic.  With underdeveloped 

knowledge packages, it can be very difficult for a teacher to plan and facilitate a course 

of study for their students. 

Learning progressions.  Knowledge packages also contain implicit sequences of 

student learning, where a student is expected to know and understand key related pieces 

before they can grasp the topic at hand.  Ma (1999) explains, “teachers believe that these 

sequences are the main paths through which knowledge and skill about the… topic 

develop” (p.114).  While this may seem to be a linear progression of learning (you need 

to know x, y, and z, before you can learn topic A), Ma clarifies that topics in a knowledge 

package are interdependent, and that “linear sequences, however, do not develop alone, 

but are supported by other topics” (p.114).  Thus, the learning progressions generated 

through teachers’ knowledge packages are similar to the hypothetical learning 

trajectories. 

Profound Understanding of Fundamental Mathematics (PUFM).  Ma builds 

her analysis of teacher training in mathematics around the idea of teachers’ acquiring a 

profound understanding of fundamental mathematics (PUFM).  Early on, Ma (1999) 

explains that a teacher with PUFM “goes beyond being able to compute correctly and to 

give a rationale for computational algorithms” (p. xxiv). A grasp of both the procedural 
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and conceptual elements of topics in elementary mathematics is necessary.  A PUFM 

teacher is “not only aware of the conceptual structure of mathematics inherent in 

elementary mathematics, but is able to teach them to students” (p. xxiv).  Thus, Ma 

situates subject matter knowledge (concepts, procedures & attitudes) and pedagogical 

content knowledge (how to teach math) as both being essential to a successful elementary 

teacher.  Ma highlights the fact that PUFM is possible at the elementary level because 

elementary mathematics is a field rich with “depth, breadth, and thoroughness” (p.122).  

It is not a superficial discipline that is easily and commonly understood in its entirety by 

people. 

PUFM characteristics.  Ma explains that a classroom led by a PUFM teacher has 

the following characteristics: 

Multiple perspectives.  PUFM teachers will stress the idea that multiple solutions 

are possible, but also stress the advantages and disadvantages of using certain methods in 

certain situations.  The aim is to give the students a flexible understanding of the content. 

Basic Ideas.  PUFM teachers stress basic ideas about mathematics and the 

conduct of mathematics.  For example, these include the idea that single examples cannot 

be used as proof.  

Longitudinal Coherence.  PUFM teachers are fundamentally aware of the entire 

elementary curriculum (and not just the grades that they are teaching or have taught).  

These teachers know where their students are coming from and where they are headed in 

the mathematics curriculum.  Thus, they will take opportunities to review what they feel 

are “key pieces” in knowledge packages, or lay appropriate foundation for something that 

will be learned in the future (see, for example, The Common Core Standards). 
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In this study we explore the central role that a profound understanding of 

mathematics plays in teacher planning for instruction, their observed instruction, 

classroom discourse, and their assessment practices. 

Mathematical Knowledge for Teaching 

One of the most recent frameworks for understanding teacher knowledge in the 

field of mathematics education comes from Deborah Ball and her colleagues. This 

framework, called Mathematical Knowledge for Teaching (MKT), developed from Ball’s 

own teaching experience in an elementary school classroom (Ball, 1990; Ball, Hill, and 

Bass, 2005) and the work of Lee Shulman (1986).  Ball expressed in her 1999 

Contemporary Mathematics article that, while fascinated with the notion of Pedagogical 

Content Knowledge, she grappled with the idea of how teachers negotiated the interplay 

of content with pedagogy in the classroom.  When teachers look at student work, choose 

a text to read, design a task, or moderate a discussion, they must attend, interpret, decide, 

and make moves. Their thinking depends on their capacity to call into play different kids 

of knowledge form different domains (Ball, 1999, p. 27). 

 Using video of Dr. Ball’s teaching, investigators examined the practice of 

teaching to determine the actual work teachers engaged in during math instruction (Ball, 

1999).  From this job analysis, Ball developed a theory of professional knowledge (MKT) 

used by teachers when teaching.  Her theory encompassed Shulman’s (1986) idea of 

Pedagogical Content Knowledge adding a second category called, Subject Matter 

Knowledge.  In combination, she labeled the new theory: Mathematical Knowledge for 

Teaching. 
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 MKT: pedagogical content knowledge.  The pedagogical content knowledge 

section of MKT aligns with Shulman’s theory of PCK.  Contained in this portion are 

three strands: knowledge of content and students (KCS), Knowledge of content and 

teaching (KCT), and knowledge of content and curriculum.  

 Knowledge of content and students.  Knowledge of content and students refers to 

the idea that “teachers must anticipate what students are likely to think and what they will 

find confusing. Central to these tasks is knowledge of common student conceptions and 

misconceptions about particular mathematical content” (Ball, Thames, and Phelps, 2008, 

p. 401).  For instance, teachers need to be able to anticipate how students will think 

through a task when the teacher is preparing the lesson for the day (NCTM, 2007).  

Teachers must also interpret student thinking by navigating the language used by students 

to explain their techniques so as to reiterate the explanation using correct mathematical 

language for the rest of the class.  Critically important to this subcategory is the idea that 

teachers use their understanding of how students think about a topic as a mechanism for 

preparing lessons (Ball et al, 2008; NCTM, 2007).  

 Knowledge of content and teaching.  The second component of PCK is 

knowledge of content and teaching.  This dimension “requires an interaction between 

specific mathematical understanding and an understanding of pedagogical issues that 

affect student learning” (Ball et al, 2008, p. 401). Specifically, teachers evaluate how to 

structure examples so that they build on both the students’ prior knowledge and on each 

other in terms of difficulty.  It is a matter of understanding sequencing problems and 

evaluating how to represent mathematical ideas in multiple ways to help students achieve 

mastery of specific concepts.  For example, when looking at place value through the use 
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of money, one might ask “what does money afford instructionally for a particular 

subtraction problem and how is this different from what coffee stirrers bundled with 

rubber bands would afford?” (Ball et al, 2008, p. 402). 

 Knowledge of content and curriculum.  The last component of the PCK strand is 

knowledge of content and curriculum. This type of knowledge refers to Shulman’s notion 

of curricular knowledge (1986).  The following paragraphs describe the second half of 

Ball’s theory.  

 MKT: Subject matter knowledge.  Under the category of Subject Matter 

Knowledge, Ball, Thames, and Phelps (2008) include three subsets of knowledge: 

common content knowledge (CCK), specialized content knowledge (SCK), and horizon 

content knowledge.  

 Common content knowledge.  Common content knowledge refers to “the 

mathematical knowledge and skill used in settings other than teaching” (Ball et al, 2008, 

p. 399).  For example, being able to correctly solve a math problem would be viewed as 

common content knowledge, as would the provision of explanations for common 

procedures for solving the problem.  Common content knowledge is not unique to 

teachers. It is knowledge that is used across settings and people (Hill, Ball, & Schilling, 

2008). 

 With regard to teaching, Ball, Thames, and Phelps (2008) explained that common 

content knowledge was expressed through recognizing the flaw in students’ thinking 

when the children present incorrect solutions or when the textbook provides incorrect 

definitions or insufficient examples of a specific topic.  In addition, teachers demonstrate 

this type of knowledge when writing appropriate mathematical notations or providing the 
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correct algorithm for different problems.  Through the analysis of hours of video, Ball et 

al (2008) noted that critical instructional time was lost when teachers could not figure out 

a problem mathematically or quickly decipher the flaw in their students’ thinking.  Thus, 

this type of knowledge is vital to successful real time decision-making and consequent 

instruction.  

 Specialized content knowledge.  The second subset under subject matter 

knowledge is specialized content knowledge (SCK).  This domain refers to the specific 

knowledge and skills employed when teaching.  More specifically, SCK includes 

“understanding different interpretations of the operations in ways that students need not 

explicitly distinguish; it requires appreciating the difference between ‘take-away’ and 

‘comparison’ models of subtraction and between ‘measurement’ and ‘partitive’ models of 

division” (Ball, Thames, & Phelps, 2008, p. 400).  Furthermore, teachers need to be able 

to unpack mathematical ideas, such as place value in order to help students carry out 

operations requiring regrouping, in a way that uses appropriate mathematical language 

while still being understood by young children (Ball and Cohen, 1999; NCTM, 2007).  

Ball et al (2008) elaborated this central idea stating, “Accountants have to calculate and 

reconcile numbers and engineers have to mathematically model properties of materials, 

but neither group needs to explain why, when you multiply by 10, you ‘add a zero’” (p. 

401).  

 Horizon content knowledge.  The last subset within subject matter knowledge is 

horizon content knowledge.  This particular subset is relatively newer to the theory of 

Mathematical Knowledge for Teaching (Hill and Ball, 2009).  This category is described 

as “a kind of mathematical ‘peripheral vision’ needed in teaching, that is, a view of the 
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larger mathematical landscape that teaching requires” (Hill & Ball, 2009, p. 70).  

Furthermore, the mathematical horizon encompasses the idea that teachers must 

understand how topics within mathematics relate so they can best tackle the curriculum 

being taught.  For example, in Arizona, teachers in primary grades need to understand 

how they are building the foundation of number sense in children and how the 

development of deep understanding of place value will further a child’s mathematical 

knowledge when they engage more complex issues of rational numbers in middle school. 

According to Ball, Thames, and Phelps (2008), this category is still underdeveloped.  

They are even unsure if the concept of horizon content knowledge fits within the larger 

domain of Subject Matter Knowledge, but they are hoping to explore this idea in the 

future.  

 As one can see investigating teacher knowledge in mathematics is complex.  We 

constantly strive to better understand how teacher knowledge impacts student learning 

and achievement.  Across the three main frameworks, the researchers agreed that 

common content knowledge served as the tip of the iceberg for unpacking teacher 

knowledge.  Beyond knowing facts and procedures, teachers held knowledge of general 

pedagogy, math-specific pedagogy, student thinking, curriculum, and how the 

mathematics worked.  

 Each of the previously explained educational frameworks examined teacher 

knowledge as a complex notion seemingly independent of classroom practice and student 

achievement.  All of the frameworks included knowledge of the curriculum, of student 

thinking, of content, of instructional practices, and of other disciplines; however, this 

knowledge was measured without taking into account the influence of what the teacher 
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learns as a consequence of being one of many components in an educational 

environment.  This dissertation expands on the described frameworks by embracing 

knowledge as situated (Fennema and Franke, 1992; Forman, 1996; Van Oers, 1996).  To 

best understand the specific framework embraced in this dissertation (NCTM, 2007), we 

first need to illustrate what is meant by knowledge being situated. 

Conceptual Framework 
 
 Sociocultural theory of learning or Cultural-Historical Activity Theory (CHAT) 

originated out of the work of Vygotsky, Luria, and Leont’ev during the 1920s in the 

former Soviet Union (Roth & Lee, 2007) and was further developed, decades later, by 

Michael Cole in “Anglo-Saxon academia” (Roth & Lee, 2007, p. 190).  The main 

premise of this theory follows that learning is a social endeavor and occurs through social 

participation in meaningfully structured activities within a community (Cobb, Jaworski, 

& Presmeg, 1996; Forman, 1996; Van Oers, 1996).  In terms of education, the goal is to 

engage students in authentic practices of the desired cultural community so that overtime 

the child can internalize the practices of the culture through specific learning activities 

and eventually create more efficient and productive ways to complete these activities. 

Rogoff (2003) defined a cultural community as including: a) a structured means 

of communication, b) stability of involvement, c) participants taking on different roles 

within the society, d) a way of resolving conflicts, e) a common history (including 

generations of people participating in the community), and f) a way for adapting the 

community as times changed.  Wenger defined a community as, “a way of talking about 

the social configurations in which our enterprises are defined as worth pursuing and our 

participation is recognizable as competence” (Wenger, 2009, p. 211).  Both of these 
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definitions explain a cultural community as more than just the local experience and 

members.  Communities include a history, a set of established norms, roles for members, 

a language, and a method for constructing knowledge within the group that only group 

members can acquire.  Newcomers to such a community must apprentice into it through 

the help of old timers, or those already legitimately accepted in the culture (Lave and 

Wenger, 1991).   

In the mathematics classroom, the community occurs outside or inside the school 

system.  It includes the students, the teacher, the past and present mathematicians who 

have contributed to the overarching mathematics knowledge base; along with the school 

norms, the norms of the mathematics, the norms of the classroom, the norms of the state 

standards, the norms of the textbook, etc.  According to Vygotsky (1978), students 

become enculturated in the community through the Zone of Proximal Development 

(ZPD).  This activity setting is co-constructed between the child (the newcomer) and the 

adult (the old timer).  Based on what learning the child is motivated to engage, and what 

the child can do independently.  The teacher (i.e., the adult) then structures activities to 

engage the newcomer (the student) in the language and social practices of the desired 

culture.  Lave and Wenger (1991) explain further that learning occurs through the power 

struggles, the social structure, and the conditions for legitimate participation.  As 

teachers, in their roles as instructors and classroom leaders, model social norms, 

apprentices gather information about acceptable practices within the culture in order to 

negotiate into full participants.  The teachers, thus, challenge the apprentices to explore 

ways of thinking just beyond the apprentices’ actual level.   
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More specifically, and most relevant to this dissertation, knowledge is situated 

within the negotiations that occur as newcomers engage with old timers as they 

apprentice into the community through Legitimate Peripheral Participation (LPP).  The 

LPP defines the apprentices’ movement in community from marginalized to full 

participation with the help of the expert members.  It is “proposed as a descriptor of 

engagement in social practice that entails learning as an integral constituent” (Lave & 

Wenger, 1991, p. 35).  The LPP portrays how the new member moves across the ZPD.  

For example, the apprentice observes and internalizes the practices of the group.  The old 

timers show the apprentice appropriate ways of interacting in the society.  This 

illustration encourages the apprentice to move beyond his or her way of thinking and into 

using more of the community behaviors.  Theorists watch the negotiations of the 

newcomer with the experienced member and how these interactions change the new 

participant (socially and intellectually).  As the novice interacts more, the community 

practices evolve, and the person (here the student) gradually becomes a full participant 

(Lave & Wenger, 1991).  I will use this framing throughout the dissertation as it 

theoretically grounds the NCTM framework (2007).  

The Mathematics Teaching Cycle (NCTM, 2007) 

 The Mathematics Teaching Cycle (Figure 1), or cycle of teaching activity, 

consists of three components: knowledge, analysis, and implementation (NCTM, 2007; 

Walkowiak, 2010). 
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Figure 1. Mathematics teaching cycle (adapted from NCTM, 2007). 

  These interrelated dimensions of teaching represent the critical aspects of teaching 

that are central for creating a classroom environment that encourages the critical thinking 

and dialogue needed for children to develop a deep, conceptual understanding of 

mathematics (Hiebert et al, 1997; NCTM, 2000).  Let us next examine each component 

of the Mathematics Teaching Cycle. 

 Knowledge.  For teachers to successfully teach mathematics, they need a strong 

understanding of the content, methods for teaching the content, and a solid grasp of how 

their students think and approach different mathematical ideas (NCTM, 2007).  Much 

like the previously described frameworks on teacher knowledge, the mathematics 

teaching cycle states, “teachers need a sound knowledge of the concepts, skills, and 

reasoning processes of mathematics to construct and achieve short- and long-term 

curricular goals” (NCTM, 2007, 19).  

 Knowledge of mathematics and general pedagogy.  One key feature of the 

knowledge component of the Mathematics Teaching Cycle is that teachers hold a deep 

understanding of the mathematics, mathematical learning trajectories of students, and 

Knowledge	  

Analysis	  Implementa5on	  
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effective mathematics pedagogy.  The deep understanding includes viewing school 

mathematics as interconnected and embedded in the natural world.  Teachers must 

engage in problem solving, proving and justifying mathematical ideas, and find 

alternative ways of representing the mathematics.  As described in both the MKT and 

PUFM frameworks, the Mathematics Teaching Cycle argues teachers need specialized 

content knowledge that spans the entire mathematics K-12 curriculum.  

 Knowledge of planning poignant and motivating lessons is also crucial for 

effective teaching.  Teachers must think out multiple ways to represent the mathematical 

concept being taught.  They need to anticipate the prior knowledge of their students and 

how to address misconceptions their students will likely bring to the lesson.  Formative 

assessment affords teachers opportunities to learn about their students’ knowledge and 

help teachers formulate future lessons (NCTM, 2007).  

  Knowledge of student mathematical learning. The second key feature of the 

knowledge strand is recognizing how students learn mathematics, knowing methods of 

supporting students as they grapple with complex concepts, and finding ways to build on 

students’ prior knowledge. When listening to students explain their thinking, teachers 

learn common misconceptions held by students, how to best represent the mathematics to 

suit the needs of the students, and tailor experiences to individual students. This 

knowledge gives teachers a pathway for guiding students through explorations of new 

mathematics concepts and for questioning students to discover their misconceptions in 

ways that allow students to rethink their work. Further, teachers learn what tool will aid 

their students in discovering new ideas or comparing and connecting multiple 

representations of a specific topic.  
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 Implementation.  The second component of the Mathematics Teaching Cycle is 

implementation.  According to the NCTM (2007), implementing one’s mathematical 

knowledge in the classroom consists of three subcomponents: (1) selecting challenging 

and worthwhile tasks, (2) creating a learning environment that supports mathematical 

reasoning and opportunities for all students to demonstrate understanding and learning, 

and (3) mathematical discourse that encourages communication, reasoning, conjecturing, 

justifications, and evaluations in positive ways. 

 Learning Environment.  When developing strong mathematics learners, teachers 

need to use their knowledge of the mathematics, the curriculum, and student thinking to 

create learning environments conducive to supporting discussion, critical thinking, 

problem solving, and skill mastery (Cohen, Raudenbush, & Ball, 2000; Hiebert et al, 

1997; Lampert, 2001; NCTM, 2000 & 2007; NRC, 2000).  To create such an 

environment, a teacher needs to foster collaboration, explanations, evaluation, and 

justification through thoughtful, guided questioning (Carpenter, Fennema, Peterson, 

Chiang, & Loef, 1989; Franke, Webb, Chan, Ing, Freund, & Battey, 2009; Lampert, 

2001), appropriate task assignments (NCTM, 2007; Stein, Smith, Henningsen, & Silver, 

2009), and student collaboration (Franke, Kazemi, & Battey, 2006; Hiebert et al, 1997; 

NCTM, 2007).  To sum up, a teacher creates a positive learning environment when 

“students work independently or collaboratively to develop skills, make conjectures, and 

develop arguments within a mathematical community that values the contributions of all 

participants and defers to the authority of sound reasoning in the search for mathematical 

truth” (NCTM, 2007, p. 45).  Two key aspects of creating such an environment are 
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selecting worthwhile mathematical tasks and orchestrating appropriate mathematical 

discourse.  

 Task Selection.  If we think about tasks as providing students with opportunities 

to learn specific types of mathematics, then task selection is very crucial to students’ 

future success and to their learning of mathematics (Hiebert et al, 1997; Stein, Smith, 

Henningsen, & Silver, 2009).  Hiebert et al (1997) emphasized the importance of giving 

students tasks that encourage reflection, analyzing procedures, building relationships 

across mathematical ideas, and comparing methods for solving problems.  These types of 

tasks, as opposed to ones where the teacher gives direct instructions on the algorithm for 

completing a specific type of problem, better allow students to construct new 

understandings and connections between concepts.  Therefore, when creating a learning 

environment conducive for students to engage in mathematical reasoning and success, 

teachers must depend upon their own knowledge of mathematics, students, and pedagogy 

when selecting appropriate tasks for students (NCTM, 2007).   

 What makes a task important or of greater learning value than another? One idea 

is that tasks should encourage students to use basic computational skills to solve larger 

mathematical problems or mathematical relationships.  When rote skills are embedded 

within complex problems, students can more readily see how all of their mathematical 

skills relate and build upon each other.  One example given in NCTM (2007) 

distinguished between two tasks regarding data analysis.  The example illustrated the 

importance of task selection and how tasks can build upon each other while embedding 

skill practice.  In the first task, students were asked to compute the mean, median, and 

mode of a data set.  In the second task, students were asked to explain which method 



	   52 

provided the best measure of central tendency given some data and a specific claim the 

students would like to make about the data.  The first task has the students practicing 

basic computational skills.  The second also has skill practice but it goes further to ask 

the students to evaluate and justify their decisions based on their arithmetic computations.  

 Similarly, another idea posits that teachers select tasks while keeping in mind the 

cognitive demand level of the task (Stein et al, 2009).  In other words, not all tasks 

provide students with the same opportunities to learn, therefore teachers must use their 

understanding of student knowledge, the level of mathematics at which his/her students 

are working (Hiebert et al, 1997; NCTM, 2000 & 2007, Stein et al, 2009), the goal of the 

lesson, and the potential each task has for engaging students in a particular type of 

learning, when they select tasks for their students to solve.  In the earlier example from 

NCTM (2007), the first task is considered a Procedure without Connections Task (Stein 

et al, 2009).  The task is solved using an algorithm only, there is limited cognitive 

demand needed to solve the problem, and there is a focus on finding a correct answer 

rather than developing a mathematical understanding.  The second task is a Procedure 

with Connections Task (Stein et al, 2009) asks the students to understand the procedure 

and engage metacognitively; it requires some more cognitive effort.  Both of these tasks 

are important but they serve different purposes and tasks with higher cognitive demand 

generally require students to use complex thought processes in solving them.  

 Unfortunately, selecting a task is only half of the battle.  Stein, Grover, & 

Henningsen (1996) found that when teachers purposefully selected high demand tasks, 

about 40% of the tasks selected remained at the high cognitive demand level when 

students worked on them.  What appeared critical was how the teacher supports the 
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students in reflecting and communicating when engaging with a task (Carpenter, 

Fennema, Franke, Levi, & Empson, 1999; Hiebert et al, 1997; NCTM, 2000 & 2007, 

Stein et al, 2009).  Reflecting upon a task means students have to think and puzzle 

through new or complex ideas.  Communication with other students, or the teacher, needs 

to be engaged to allow students to see mathematics in novel ways and to see mathematics 

as a language full of justifications and reasoning skills (Hiebert et al, 1997; Lampert, 

2001).  

 Centrally, teachers need to know what their students are thinking, the 

misconceptions they bring to the lesson, the possible methods students might disclose for 

solving a task, and how to guide students’ thinking and communicating through 

questioning (Franke, Webb, Chan, Ing, Freund, & Battey, 2009; Hiebert et al, 1997; 

Lampert, 2001; NCTM 2007; Webb, Franke, Ing, Chan, De, Freund, & Battey, 2008).  

With out taking these ideas into consideration during the lesson, in addition to the 

planning stage, a high cognitive demand task quickly morphs into a low cognitive 

demand task (Stein et al, 2009).  Thus, task selection is more than just picking problems 

1-30 on a textbook page and assigning them.  One must also carefully examine the actual 

dialogue, or discourse, taking place around the completion of a task. 

 Discourse.  One central tenant in building a learning environment dedicated to 

fostering intellectual growth and positive learning is structuring the classroom discourse 

so as to foster students’ learning (NCTM, 2007).  Students must feel comfortable to share 

their conjectures, their ideas about the mathematical concept being explored, argue about 

the validity of a claim, and feel confident in their mathematical reasoning (Franke, 

Kazemi, & Battey, 2006).  Knowledgeable teachers structure lessons to incorporate time 
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for students to discuss the mathematics and question what they are learning. They also 

facilitate discussion by selecting specific students to share their strategies with the class 

and by frequently expecting students to justify their strategies when solving problems. 

 Creating positive classroom discourse incorporates a teacher’s content 

knowledge, knowledge of student thinking, and pedagogical knowledge.  Thoughtful task 

selection and using probing questions require teachers to stretch their own understanding 

of the mathematics, reflect on ways of interpreting the mathematics, and actively listen to 

each student (Lampert, 2001).  A teacher must also know when to ask questions and 

when to allow students time to explore the mathematical ideas independent of the 

teacher’s input. The teacher must be sensitive to who is speaking, to how ideas are 

shared, and to modeling good mathematical reasoning. Through these discussions, 

students develop connections and meaning in the activities. The students learn what it 

means to do mathematics and how to communicate effectively in a mathematics 

environment. The teacher is central to fostering positive mathematics discourse. 

 Analysis.  Central to preparing for teaching a lesson is the question “how well are 

the tasks, discourse, and learning environment working to foster the development of 

students’ mathematical proficiency and understanding?” (NCTM, 2007, p. 54).  

Formative assessments made by teachers are crucial to creating productive learning 

environments for students.  These assessments move beyond structured tests.  They 

include feedback from students through discussions about solving problems, observations 

of how students understand a concept, discussions with parents and colleagues about the 

child’s learning across disciplines and in mathematics, as well as portfolios, journals, and 

quizzes that ask students to demonstrate their insights.  These formative assessments aid 
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teachers in understanding how students retain subject matter and how they process the 

information being taught in school (NCTM, 2007).  

 In addition, to assessing the students’ proficiency and understanding, teachers need 

to reflect upon their own teaching practices.  This is an ongoing process.  For teachers, it 

happens before, during and after the delivery of a lesson.  Without self-monitoring and 

analysis, teachers cannot fully evaluate how well their students are learning.  Moreover, 

they will be left unable to evaluate the quality of their chosen tasks as their students 

actually engage them.  

 The next chapter outlines the methodology used in this dissertation study to 

examine how MKT plays out in the Mathematics Teaching Cycle (NCTM, 2007). 
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CHAPTER III: METHODOLOGY 

Research Design 
 
 My study conforms to Yin’s (2009) multiple-case study design.  A case study is 

defined as “an empirical study that investigates a contemporary phenomenon in depth and 

within its real-life context, especially when the boundaries between phenomenon and 

context are not clearly evident” (Yin, 2009, p. 18).  This dissertation aligns with the case 

study design best because the study examined the phenomena of Mathematical 

Knowledge for Teaching (MKT) and how this phenomenon distributed across a teacher’s 

classroom interactions with students and the curriculum she employed and her 

instructional planning for upcoming lessons. As seen in Chapter Two of this dissertation, 

it is unclear how MKT manifests in practice and, ultimately, influences student learning.   

 However, the research question for this dissertation required more than one case, 

therefore, a multiple-case study design fit best because this design employed specific 

cases based on either the cases’ ability to “predict similar results” (p. 54) or “predict 

contrasting results” (p. 54).  In this dissertation, three contrasting cases (i.e., pairs 

teachers) were selected. The specific method and reasoning for case selection can be 

found in the section labeled Sample in this chapter. 

 Evidence for case studies come from a variety of sources (Creswell, 2007; Yin 

2009). This study collected data from the following sources: (a) semi-structured 

interviews with each teacher to investigate how lessons are planned, (b) semi-structured 

interviews with teachers, in which mini-tour questions (Spradley, 1979) were used to 

explore the teacher’s thought process for completing the teacher knowledge assessment, 

and (c) classroom observations, which included a look at task selection and 
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implementation, teacher questioning, and classroom discourse.  A further description of 

each data source is located in the Data Collection section. 

 Analyzing case study evidence is the most difficult aspect to case study design 

(Yin, 2009). Creswell (2007) describes the analysis section as creating a detailed account 

of each case based on the data collected. In my situation, the detailed illustrations of the 

cases depicted a cross-case synthesis (Yin, 2009), in which each case was treated as an 

individual case study initially and then synthesized across the cases. The methods of 

analysis, and the framework for creating a cohesive story across the cases, is discussed in 

the Data Analysis section.  

Situational Context 
 
 The specific situational context for my study was an urban K-8 school district in a 

large metropolitan city in the southwest region of the United States, where I participated 

in conducting research for a university grant funded by the National Science Foundation 

(NSF).  According to the 2010 US Census, the population of the neighborhood in which 

the school district resides is 80.9% Hispanic or Latino, with the average age of people 

being 25.6 years. The median income of the people living in the district is $25,562, which 

is significantly lower than the median income in the United States of $56,604.  Seventy-

six percent of the population lives in family households. Twenty-four percent live in non-

family, predominantly single, households. The district is evenly split between owner-

occupied and renter-occupied homes.  

 According to the greatschools.org and the school district websites, the student 

population (of about 2,700 pupils) in the district is: 95% Latino students, 2% Caucasian 

students, 2% African-American, and less than 1% Native American.  Ninety-one percent 
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of the student population speaks Spanish at home, while nine percent speak English in 

their homes. In addition, 89% of the students receive free or reduced lunch, as the median 

yearly income of the families who attend the schools is about $11,000 (significantly 

lower than district residents overall).  

 Academically, the district is in Corrective Action and is closely monitored by the 

State Department of Education. During the 2008-2009 school year the district failed to 

meet Annual Yearly Progress (AYP) for the fourth year in a row. AYP is the measure 

used for ensuring that 100% of the students in each state Meet or Exceed the state’s 

academic standards by 2014. Based on the No Child Left Behind Act (2000), in order for 

a district to meet AYP, “each group of students meets or exceeds the statewide annual 

objective except for: (1) the number below proficient reduced 10% from prior year, and 

(2) subgroup made progress on other indicators. In addition, for each group, 95% of 

students enrolled participate in the assessments on which AYP is based” (NCLB, 2000).  

When a school fails to meet AYP goals for two consecutive years, the school (or district, 

if the failure includes all of the schools) must create an Improvement Plan. The school 

receives two years to meet the goals of the Improvement plan and reach AYP. If neither 

goal is achieved by the end of the second year, the state takes over the school (or district) 

and tries to restructure the school in a manner that results in reaching AYP.  

 The district where my study takes place failed to meet AYP after two years of 

being on an Improvement Plan. During the 2009-2010 school year, the state retained 

control of the district. Throughout the school year, state representatives made surprise 

visits to classrooms in order to check teachers’ lesson plans, ensure state standards were 

visible in the classroom, and that students’ academic progress was also visibly charted in 
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the classroom.  In addition, principals and other administrative officials were 

redistributed across the schools in the district and a few teachers were placed into 

instructional coaching roles.  

 Also, as previously described, the majority of the students enrolled are English 

Language Learners (ELL).  Ninety-one percent of the ELL-designated students speak 

Spanish at home and in the community, while they learn all academic material using 

English in schools (greatschools.org). What makes this situation particularly interesting 

and more unique is that 63% voters in Arizona passed Proposition 203 on November 7, 

2000 mandating English-only instruction in the classroom (Arizona Department of 

Education website).  According to the proposition, all children enrolled in public schools 

would be taught only in English. ELL students would be placed into Sheltered English 

Immersion (SEI) classrooms to receive special instruction in reading, writing, and 

conversational English over the course of one academic school year.  

 In 2006, The State of Arizona House of Representatives passed House Bill (HB) 

2064, which expanded state laws regarding ELL students in public education. While HB 

2064 included many administrative expectations for the Department of Education, the 

main ideas affecting public schools focused on developing a SEI classroom model. The 

model resulted in the following changes in the school district in this study: (1) Materials 

and instruction were in English, (2) A student was given an English Language 

Assessment test (AZELLA) upon entering school to determine his or her English 

language proficiency level, (3) students were grouped together according to the Arizona 

English Language Learner Assessment (AZELLA) results and were taught by a SEI-
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certified teachers. The expressed goal of HB 2064 was to have students reach academic 

proficiency in English at the end of one academic school year.  

 In the district where my study occurs both Proposition 203 and HB 2064 play 

important roles in structuring the daily calendar for academics. Based on their AZELLA 

test results, students are designated into a Pre-Emergent/Emergent SEI classroom, a 

Basic/Intermediate SEI classroom, or a Proficient/Mainstream classroom, on entry to 

school. In all classrooms, instruction is provided in English-only, further all materials and 

resources are aligned with the state’s language and subject matter curriculum standards. 

What differs between classrooms is the amount of time spent on English Language 

Development (ELD).  According to the Arizona Department of Education website, any 

non-mainstream SEI classroom must incorporate a 4-hour ELD block into the 6-hour 

school day. In our study schools, the Pre-Emergent/Emergent level, the 4-hour block is 

broken up as follows: 45 minutes of Conversation, 60 minutes of Grammar, 60 minutes 

of Reading, 60 minutes of Vocabulary, and 15 minutes of Pre-Writing. At the Basic level, 

the Grammar, reading, and vocabulary times remain the same. The change occurs with 

Conversation taking 30 minutes and instead of pre-writing, the students are writing for 30 

minutes. The Intermediate level varies only slightly from the Basic level. Conversation 

time lasts for 15 minutes, while writing takes 45 minutes of the 4-hour block. The 

curricula for each of the components of the ELD program are provided by the State and 

school administrators and State officials closely monitor the implementation of these 

curricular materials. The last two hours of the school day are dedicated to lunch, specials 

(i.e., art, physical education, music, library, or computers), and mathematics. 
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 At the end of each school year, or the beginning of the subsequent school year, 

students are reassessed using the AZELLA test. Since the goal of the ELD program is to 

move students into a proficient classroom after a year in an SEI classroom, students are 

expected to demonstrate mastery of the English language upon taking the AZELLA at the 

completion of the school year. Students who do not pass into a mainstream classroom are 

placed back into an SEI classroom the following school year. 

 For students in proficient/mainstream classrooms in the district, the subject matter 

can vary greatly between time spent on reading, language arts, mathematics, science, and 

social studies. However, the teachers are still required to post language and subject-

matter objectives each day, as well as the students’ weekly scores on each Performance 

Objective aligned to the state standards because the district continues to be in Corrective 

Action.  

Sample 

Purposeful and convenience sampling (Maxwell, 2005) supported my research 

design. Thirty-one teachers participating in the overarching NSF-grant provided a 

platform from which to select my dissertation teachers. The 31 teachers had all completed 

two years of monthly professional development and weekly classroom observations as 

participants in the NSF grant. I gathered data about the 31 teachers regarding: 1) the 2010 

or 2011 scores on a test assessing components of Mathematical Knowledge for Teaching 

and 2) the four scores their students received on the Arizona Assessment Consortium 

(AzAC) test, over the 2011-2012 academic year.  These two data sources will be 

explained next and then the process for using these scores to narrow down my 

participants follows.  
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Teacher Knowledge Test  

In 2008, the Co-PIs and graduate students working on the NSF funded-grant 

created a twelve-question teacher knowledge test.  This test was given to participating 

teachers at the end of each year that they received monthly professional development 

from the grant. Over the five years of the grant, the teacher cohorts (grades k-1; grades 2-

3; grades 4-5) took the teacher assessment test twice: 1) end of the first year of 

participation and 2) end of the second year of participation, see Table 1. 

Table 1  
 
Administration of the Teacher Knowledge Assessment 
 
Cohort 
(grade level) 

Years test taken 
2008 2009 2010 2011 2012 (follow-up) 

K-1 Yes Yes -- -- -- 
2-3 -- Yes Yes -- -- 
4-5 -- -- Yes Yes -- 

 
 Table 1 illustrates that each cohort participated in the NSF grant for two 

consecutive years. At the end of each of those years, the teacher took the Teacher 

Knowledge Test. The last year of the grant, the 2011-2012 school year, no professional 

development was provided and therefore no teacher knowledge test was given.  

The test used 9 multiple-choice items from the Learning Mathematics for 

Teaching (LMT) project (Hill, Schilling, & Ball, 2004) and 4 open-ended items adopted 

from the Developing Mathematical Ideas (DMI) group (Higgins, Bell, Wilson, Oh, & 

McCoach, 2007; Bell, Wilson, Higgins, & McCoach, 2010).  The multiple-choice items 

focused on numbers and operations. The open-ended questions asked teachers to 

formulate ideas of how students might solve a particular problem, to assess student 



	   63 

strategies, and to evaluate misconceptions held by students around numbers and 

operations (Battey, Llamas-Flores, Burke, Guerra, Kang, & Kim, 2013). 

 Originally, the Learning Mathematics for Teaching (LMT) items were developed 

to measure the mathematical learning and field-tested with teachers who participated in a 

professional development program in California. The researchers wanted to see how 

much learning occurred during the professional development, in addition to assessing 

how “useful and usable knowledge of mathematics develops in teachers” (Hill & Ball, 

2004, p. 333).  

 These items were “grounded in common tasks of mathematics instruction, were 

designed to elicit both teachers’ common and specialized knowledge of content, and were 

drawn both from the research literature (e.g., Ball, 1993a, 1993b; Carpenter, Hiebert, & 

Moser, 1981; Lamon, 1999; Lampert, 2001; Ma, 1999) and from writers’ experiences 

teaching and observing elementary classrooms” (Hill & Ball, 2004, p. 337).  The authors 

sought to create items based upon elementary school mathematics concepts, such as 

number concepts, operations, patterns, functions, and algebra, as well as how students 

thought about these particular mathematical ideas. Subsequently, the Hill and Ball (2004) 

focused on writing items that also captured specific types of professional knowledge for 

mathematics called knowledge of content and students (Schilling & Hill, 2007).  

 As described in Chapter Two, Mathematical Knowledge for Teaching consists of 

three more components than what the LMT items measure. At this time, Schilling, Blunk, 

& Hill (2007) state that they have an understanding of Knowledge for Content and 

Teaching but no measures for this element as of yet. The last two areas, Horizon Content 

Knowledge and Knowledge of the Curriculum and Content, are under developed. In 
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2010, Heather Hill explained that MKT test encompasses only a portion of the full MKT 

framework,  

. . . we elected to combine all items into one indicator, which we named 
mathematical knowledge for teaching (MKT). We chose to do this for 
several reasons. First, we did not have a sufficient number of items to 
return adequate person-level reliabilities for most subscales. Second, 
although we might have omitted the one KCS items or constructed a 
measure of only SCK items, this would have had the effect of decreasing 
the measure’s accuracy and reducing the amount of information provided 
about various aspects of teachers’ knowledge. . . .  Third, the idea 
composition of an MKT measure is, in fact, unknown; until we have more 
information regarding which dimensions contribute with which weight to 
student outcomes, we can only guess what such a measure should look 
like. (p. 525) 
 

 To account for the limitations with the LMT items, we added DMI items to the 

teacher knowledge test to help flush out the Knowledge of Content and Teaching and 

Knowledge of Content and Students components of a teacher’s mathematical knowledge 

for teaching. The four DMI items enabled teachers to explain their thought process and 

have more freedom to divulge their understanding of elementary school students.   

 I used this test in the sample selection process in two ways. First, the assessment 

consisted of two validated and reliable measures of Teacher Knowledge: the LMT and 

DMI items. Using pre-made and valid test items meant that I did not have to construct my 

own items and that there was a standard by which to compare the teachers’ scores.  

Second, the assessment allowed me to rank and compare the Mathematical Knowledge 

for Teaching (MKT) across all of the teachers in the NSF-funded study. Once I compared 

teachers of similar and different MKT scores, I used the student scores from the Arizona 

Assessment Consortium (AzAC) to construct comparable and contrasting cases for this 

dissertation, as discussed in the next section.   
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Arizona Assessment Consortium (AzAC) 

The second measure used to select the sample were the student achievement 

scores from the Arizona Assessment Collaborative (AzAC). The AzAC test is a 

cumulative, multiple-choice test. The test was distributed four times across the school 

year – at the end of the 1st, 2nd, 3rd, and 4th quarters; however, only students who did not 

pass the AzAC in the 3rd quarter took the test in the 4th quarter.  

 The AzAC test highly correlated with Arizona’s Instrument to Measure Standards 

(AIMS) test with ranges from .86 to .92, using time point three (third quarter distribution 

of test) for the estimated correlation. The correlation was permissible because the AzAC 

test aligned with the 2008 Arizona standards, it was a cumulative assessment, and a few 

questions were given on the AzAC and AIMS tests (the matching items were unknown to 

the author of this dissertation).  

 Upon initial selection of the teachers for this dissertation in 2010, a z score was 

constructed using the change in the students’ scores from 1st quarter to 3rd quarter. The 

mean score of the student data was 0.386 with a standard deviation of 0.62147. Eighteen 

classes fell below the mean and 13 classes were above the mean. The data collection 

occurred over the 2011-2012 school year, however, and therefore, these class means and 

subsequent z-scores changed, although the process for finding the z-scores did not. The 

specific sample used, and selection criteria for the sample, will be discussed in the 

following section. 

Selection of Sample 

To create cases for this dissertation, I constructed a 2 x 2 table (Figure 2) with the 

help of Dr. Middleton in Fall 2010. This table created a means for comparisons to be 
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made between teachers using their scores from the two measures described above.  From 

this matrix, purposeful sampling (Creswell, 2007) could be used to select cases that 

contradicted the current research (i.e., two low MKT scoring teachers with high student 

gain scores) and that provided contrasts that would illuminate how different 

manifestations of MKT might impact instruction (i.e., a high MKT teacher who have low 

student gains versus a high MKT teacher with high student gains, or two average MKT 

teachers with contrasting student gain scores).  

 MKT Levels (zscore) 

Student 
Achievement 
(Q3 zscore) 

 Different Same 
 

Different 
  

 
Same 

  

 
Figure 2. Basic sampling chart. 

 
The columns in Figure 2 refer to the Mathematical Knowledge for Teaching 

(MKT) Scores/Levels.  The rows in Figure 2 refer to the change in student scores on the 

AZAC test between the first quarter and third quarter administrations. For this measure, 

the different and similar categories also align to teachers whose student assessment z-

scores either clumped together or differed significantly around the mean (of all 

classrooms). 

 The data collection for this dissertation was anticipated to occur during the 2010-

2011 school year; however, such was not the case. The data collection occurred during 

the 2011-2012 school year when the NSF grant. Figure 2 represents the original sample 

of participants used in this dissertation. 
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 MKT Levels (zscore) 

Student 
Achievement 
(Q3 zscore) 

 Different Same 

Different 

 Case 2: -0.48/0.83 
 Case 2: 2.08/-0.64 
 
 A: 0.72/-1.20 
 B: -1.33/0.01 

 C: 0.38/-1.35 
 D: 0.38/1.21 
 
 E: -0.48/0.83 
 F: -0.48/-0.58 

Same 

 Case 3: 1.23/-0.05 
 Case 3: -1.33/0.01 
 
 

 Case 1: -0.13/1.83 
 Case 1: 0.04/2.42 
 
 G: -0.65/-0.14 
 H: -0.65/-0.21 

 
**The teachers willing to participate in the study are in bold and marked by “Case #.” 
The other teachers, who were not participants either by choice or because they left the 
district, were assigned an arbitrary letter. 
 
Figure 3.  2010 sample chart: adjusting for change in q1-q3 scores. 
 

As stated, Figure 3. Depicts the initial sample of teachers for this dissertation.  

Multiple things happened, as a result of waiting one year to collect data impacting the 

selection process. The first issue was attrition. Teacher turnover was very high 

throughout the five years of the NSF grant. Between the 2010-2011 and 2011-2012 

school years, many teachers left the district for other jobs, which narrowed the pool from 

which I could construct a sample.  The reason for the high teacher turnover is unclear, 

other than a few teachers retiring.  I lost one compelling case due to teachers leaving the 

district. The case would have been teachers C and D in Figure 3.  However, when the test 

scores were run with the 2011-2012 data, I was able to replace the “lost” comparison with 

two other teachers who met my selection criteria.  

Second, by waiting until the 2011-2012 school year finished, I was able to create 

cases that represented the most interesting findings of the six teachers willing to 

participate in my study using the test score data from the students being observed 
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throughout the year.  For example, although I lost a potential case due to attrition, when I 

used the 2011-2012 AzAC scores and the teachers’ MKT scores, I found a pair of 

teachers who fit the same criteria as the original case I wanted.  

Third, all of the teachers in this dissertation had completed the two years of 

professional development provided by the NSF grant by the fall of 2011. This fact is 

important because it means that the amount of years the teachers had of the NSF-funded 

grant’s professional development was controlled for in this study.  Had I selected teachers 

who had completed either one or two years of professional development in the NSF-

Funded grant, it is possible that the differences in amount of professional development 

could have impacted their use of MKT during planning and instruction.    

Figure 4 depicts the shift in scores that resulted in new cases illustrated in this 

dissertation to answer the research question. On a basic level, between 2010 and 2012, all 

six teachers fell into the category of Same/Different, Same/Same, or Different/Different. 

There is no longer a case where the teachers are Different/Same.  

 MKT Levels (z-score) 

Student 
Achievement 

Q1-Q3 Change 
Score (z-score) 

 Different Same 
 

Different 
T2.1: 0.78 / -0.57 
T2.2: -0.28/ 0.56 
 

T1.1: 2.11 / 1.40 
T1.2: 1.18/ -0.19 

 
Same 

 T3.1: -0.55 / 2.22 
T3.2: -0.42 / 1.07 

**Case & Teacher Number: MKT z-score / Student Achievement Change scores** 

Figure 4.  Dissertation sampling chart. 
 

The next sections will elaborate Figure 4 data further for a more detailed 

explanation of the matrix used. To start, the teachers were labeled with a “T#.#.” The “T” 



	   69 

indicated “teacher.” The first “#” indicated the case (i.e., case 1, case 2, or case 3). The 

“#” after the “.” distinguished between the two teachers in each case.  

Case one was made up of two teachers with high MKT scores relative to the 

larger pool of teachers in the NSF grant. Teacher 1.1 was tied for the highest MKT score 

relative to the NSF grant participants at two standard deviations above the mean, while 

teacher 1.2 MKT score was one standard deviation above the mean relative to the NSF 

grant participants. One can see, though, that student achievement gain scores were 

significantly different for these two teachers. Specifically, Teacher 1.1’s student scores 

were the second highest at 1.399 standard deviations above the relative mean, while 

Teacher 1.2’s student scores were 0.198 standard deviations below the mean. To further 

explore the differences in average student achievement scores for these two teachers, let 

us examine the box and whisker plots that graphically display their student data.   

At the first test time point (the end of Quarter 1 – early October, 2011), the 

students of Teacher 1.1 scored between 32.88 and 69.86 points on the cumulative AzAC 

assessment. The mean of the data was 51.20 points with a standard deviation of 9.37 

points. Nine students tested as Falling Far Below the 4th grade standards, fourteen tested 

at Approaching the 4th grade standards, one tested at meeting the 4th grade standards and 

none of the students at the end of the 1st quarter had exceeded the 4th grade standards as 

tested by the AzAC assessment. 

At the end of the third time point (the end of Quarter 3 – early March, 2012), the 

students of Teacher 1.1 scored between 56.16 and 95.89 points on the AzAC assessment. 

The mean of the data was 77.68 points with a standard deviation of 10.22 points. No 

students tested as Falling Far Below the 4th grade standards, three tested as Approaching 
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the 4th grade standards, fifteen tested as Meeting the 4th grade standards and six tested as 

Exceeding the 4th grade standards as assessed by the AzAC assessment.  

 

Figure 5. Teacher 1.1 student performance scores. 

Teacher 1.2’s student scores tell a different story. Figure 6 displays the student 

data in a box and whisker plot.  

We see that at the first time point, Teacher 1.2’s students scored between 27.94 

and 83.82 points. The mean of the 1st quarter data was 53.415 points with a standard 

deviation of 16.398. Ten students tested as Falling Far Below the 4th grade standards, 

fourteen tested as Approaching the 5th grade standards, seven tested as Meeting the 4th 

grade standards, and none of the students tested at Exceeding the 4th grade standards as 

assessed by the AzAC test.  

At the end of the third time point, the students of Teacher 1.2 scored between 

26.47 and 95.59 points on the AzAC assessment. The mean of the data was 64.559 with a 

standard deviation of 19.34 points. Seven students tested as Falling Far Below the 5th 
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Figure 6. Teacher 1.2 student performance scores. 

grade standards, five tested as Approaching the 5th grade standards, fifteen tested as 

Meeting the 5th grade standards, and 3 tested as Exceeding the 4th grade standards as 

assessed by the AzAC test. Based on these student gain differences between two high 

MKT teachers, the first case fell into the “same/different” quadrant of Figure 4.   

In case two, the teachers had different MKT scores and different student 

achievement change scores. One teacher, Teacher 2.1, had a MKT score that was just 

above ¾ of a standard deviation above the mean relative to the NSF-grant participants. 

Teacher 2.2 fell just below the mean of the NSF grant participants when it came to the 

knowledge test score.  As in the first case, Teachers 2.1 and 2.2 also had different student 

gain scores.  

Teacher 2.1 student achievement z score was 0.57 standard deviations below the 

mean, while Teacher 2.2’s z score was 0.57 standard deviations above the mean. As you 
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can see the scores were at opposite ends of the common z score distribution. To further 

explore student achievement scores for these two teachers, let us examine the box and 

whisker plots that graphically display their student data.  

 
Figure 7. Teacher 2.1’s student performance scores. 

At the first test time point (the end of Quarter 1 – early October, 2011), the 

students of Teacher 2.1 scored between 27.94 and 79.45 points on the cumulative AzAC 

assessment. The mean of the data was 49.63 points with a standard deviation of 10.82 

points. Fourteen students tested as Falling Far Below the 4th or 5th grade standards, 

Thirteen tested at Approaching the 4th or 5th grade standards, one tested at meeting the 

4th or 5th grade standards and none of the students at the end of the 1st quarter had 

exceeded the 4th or 5th grade standards as tested by the AzAC assessment. 

At the end of the third time point (the end of Quarter 3 – early March, 2012), the 

students of Teacher 2.1 scored between 41.10 and 83.56 points on the AzAC assessment. 

The mean of the data was 57.49 points with a standard deviation of 12.52 points. Six 



	   73 

students tested as Falling Far Below the 4th or 5th grade standards, eleven tested as 

Approaching the 4th or 5th grade standards, eight tested as Meeting the 4th or 5th grade 

standards and zero tested as Exceeding the 4th or 5th grade standards, as assessed by the 

AzAC assessment.  

Turning to Teacher 2.2, the following figure shows her students’ performance 

scores for the 2011-2012 school year.  

 
Figure 8. Teacher 2.2’s student performance scores. 

At the first time point, Teacher 2.2’s students scored between 18.84 and 56.52 

points. The mean of the 1st quarter data was 33.52 points with a standard deviation of 

9.61. Nineteen students tested as Falling Far Below the 3rd or 4th grade standards, two 

tested as Approaching the 3rd or 4th grade standards, zero tested as Meeting the 3rd or 4th 

grade standards, and none of the students tested at Exceeding the 3rd or 4th grade 

standards, as assessed by the AzAC test.  
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At the end of the third time point, the students of Teacher 2.2 scored between 

26.03 and 75.34 points on the AzAC assessment. The mean of the data was 52.02 with a 

standard deviation of 15.60 points. Eight students tested as Falling Far Below the 3rd or 

4th grade standards, five tested as Approaching the 3rd or 4th grade standards, six tested as 

Meeting the 3rd or 4th grade standards, and zero tested as Exceeding the 3rd or 4th grade 

standards as assessed by the AzAC test.  Based on the teacher knowledge test scores and 

the student gain scores, case two depicted two teachers in the “different/different” 

quadrant of Figure 4. 

The third case in this dissertation housed the two teachers who had the same MKT 

score and the same student achievement change score. The two teachers fell below the 

mean of the NSF grant participants who took the teacher knowledge test in either May 

2010 or May 2011, depending upon which year they completed two years of professional 

development. For these two teachers, their student change scores fell at the top of the 

range of scores for all 31 NSF grant participants. Teacher 3.1’s students’ change scores 

on the quarterly AzAC test were the highest of all of the participating teachers in the 

NSF-grant during the 2011-2012 school year. Her students’ change scores were 2.22 

standard deviations above the mean of her peers. 

At the first test time point (the end of Quarter 1 – early October, 2011), the 

students of Teacher 3.1 scored between 33.33 and 69.57 points on the cumulative AzAC 

assessment. The mean of the data was 52.74 points with a standard deviation of 11.93 

points. Five students tested as Falling Far Below the 3rd grade standards, thirteen tested 

at Approaching the 3rd grade standards, five tested at meeting the 3rd grade standards, 
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and none of the students, at the end of the 1st quarter, had exceeded the 3rd grade 

standards as tested by the AzAC assessment. 

 

Figure 9. Teacher 3.1 student performance scores. 

At the end of the third time point (the end of Quarter 3 – early March, 2012), the 

students of Teacher 3.1 scored between 76.81 and 92.75 points on the AzAC assessment. 

The mean of the data was 86.50 points with a standard deviation of 4.63 points. No 

students tested as Falling Far Below the 3rd grade standards, no students tested as 

Approaching the 3rd grade standards, thirteen tested as Meeting the 3rd grade standards 

and nine tested as Exceeding the 3rd grade standards as assessed by the AzAC 

assessment.  

Teacher 3.2’s students’ change scores were the 4th highest at 1.07 standard 

deviations above the mean of the other participants in the NSF-grant. Teacher 3.2’s box 



	   76 

and whisker plot told a similar story. Figure 10 displays the student data in a box and 

whisker plot.  

 

Figure 10. Teacher 3.2 student performance scores. 

We see that at the first time point, Teacher 3.2’s students scored between 27.54 

and 78.26 points. The mean of the 1st quarter data was 63.77 points with a standard 

deviation of 11.22. One student tested as Falling Far Below the 2nd grade standards, 

thirteen tested as Approaching the 2nd grade standards, ten tested as Meeting the 2nd 

grade standards, and none of the students tested at Exceeding the 2nd grade standards as 

assessed by the AzAC test.  

At the end of the third time point, the students of Teacher 3.2 scored between 

55.07 and 94.20 points on the AzAC assessment. The mean of the data was 86.77 with a 

standard deviation of 7.61 points. No students tested as Falling Far Below the 2nd grade 

standards, one Approached the 2nd grade standards, twelve tested as Meeting the 2nd 
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grade standards, and ten tested as Exceeding the 2nd grade standards as assessed by the 

AzAC test.  Based on the MKT scores and the student gain scores Teachers 3.1 and 3.2 

fit the “same/same” category presented in Figure 4. 

Data was collected on the six teachers over the 2011-2012 school year. The types 

of data collected are described in the following section. 

Data Collection 

The research question posed in this dissertation is “how does a teacher’s Mathematical 

Knowledge for Teaching impact planning, instruction, and student gains in elementary 

mathematics?” To examine this question in depth data was collected from the following 

sources: Teacher interviews and classroom observations (including data from task 

analysis, the CLASS observation protocol, and classroom discussions).  

 Artifacts, such as student work, was not collected from the classroom was not 

collected for a few reasons. First, the unit of analysis was the teacher and not the student 

because the phenomenon being investigated was a teacher’s mathematical knowledge for 

teaching.  Thus, the information collected corresponded to decisions made by the teacher 

regarding planning, implementation, task selection, and questioning.  While I understand 

that student work should inform a teacher’s decision making process (i.e., as formative 

assessment or as part of reflective practice), in all but one classroom, formative 

assessment was not overtly taking place.  Second, the student and the work constructed 

by students played a secondary role in the mathematical teaching cycle. Since my 

dissertation used that framework, I selected data sources that aligned with the 

components of the cycle.  The lack of student work and classroom artifacts is a limitation 
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in this study and hampered my ability to discuss student learning in detail beyond test 

scores and classroom discussions.   

 All interviews and observations (except for observations conducted in the room of 

Teacher 1.2) were audiotaped and transcribed.  Field notes were taken during all 

interviews and observations as well.  According to Erickson (1986) audiotaping helped to 

reduce bias in the research process.  It allowed the researcher to revisit events that 

occurred at later times in the analysis process and confirm or disconfirm potential 

interpretations.  Next, I explain each of the sources of data in more detail.  

Interviews 

 “Conversation is an ancient form of obtaining knowledge” (Kvale, 1996, p. 8).  

In general, three teacher interviews were conducted with each of the six participating 

teachers. The first interview examined the general planning process through which the 

teacher follows when setting up a unit, a lesson, and the math wall. This interview 

employed “grand tour questions” (Spradley, 1979).  Grand tour questions allowed for “a 

verbal description of significant features of the cultural scene” (Spradley, 1979, p. 87).  

These types of questions provided space for a teacher to generalize and freely talk about 

their planning process.  The follow-up questions to the grand tour ones were dependent 

upon the descriptions provided by each teacher.  The second interview investigated 

specific tasks teachers selected for their students to solve, the answer choices of these 

particular tasks, and the direction the teacher hoped to pursue based on how the students 

answered the specific tasks. The tasks discussed in this interview were specific to the 

particular teacher and the work being observed in the classroom.  The line of questioning 

used in the second interview followed the structure of “mini-tour questions” (Spradley, 
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1979).  Mini-tour questions examined specific aspects of planning, such as task selections 

and answer choice selections.  These types of questions are identical to grand tour 

questions except they deal with a much smaller grain size (Spradley, 1979).  The second 

interview also included some hypothetical-interaction questions (Spradley, 1979), where 

the teacher described questions they might ask a student about a particular task or 

anticipatory ideas of what students might do when solving problems.  I did not use 

predetermined tasks for this interview. The final interview was used to gather more 

information about the teachers’ MKT than what is known from the results of the one 

paper and pencil test. The teachers were asked to walk through their teacher knowledge 

assessment and explain their thinking, just as many of them do with their students in the 

classroom.  

Teacher interview protocol.  The first two interviews were semi-structured, 

meaning there were general questions asked to all of the teachers but the follow-up 

questions and overall flow of the interview was based on the teacher’s responses. While 

using an open-ended interview leaves room for variation within the interview and 

subsequent answers, it allows for relevant and meaningful data to be collected pertaining 

to the individual knowledge of the teacher. The interview will be recorded and 

subsequently transcribed. It will be included in the observational component of the study. 

 The general questions for the Planning Interview were: a) Describe for me how 

you plan a lesson, b) What resources do you use when planning? And, c) How does 

testing impact your lesson planning?  

 For the Task selection interview, the general questions were: a) Describe for me 

how you select the tasks you give your students, b) How do you come up with answer 
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choices for the tasks you write, c) How do you select the students who share their 

strategies, and d) how they differentiate tasks for students at different levels? 

 The second type of interview took place post-observation data collection. This 

interview was semi-structured. The teachers were asked to talk through their thought 

process for completing the teacher knowledge assessment.  The teachers were asked to, 

“tell me how you solved this question?” and “walk me through your thinking and 

decision making process for answering this particular question.” The interviews were 

audiotaped and transcribed post-interview.  

Classroom Observations 

 Classroom observations occurred between October 2011 and May 2012 on a 

weekly basis.  The observations lasted approximately one hour, or the length of the full 

mathematics lesson. The focus of the classroom observations was on the teacher-student, 

student-student, teacher-curriculum, and student-curriculum interactions.  Also, field 

notes were taken on the line of questioning used by the teacher to elicit student responses, 

as well as the tasks completed during the instructional time. The purpose of collecting 

observations was to assess how a teacher’s MKT impacts the classroom management 

style, task selection and implementation, and classroom discourse. 

Procedure for classroom observations.  Each observation was audiotaped on a 

hand-held recorder, unless the teacher stated they did not give permission for recording to 

occur. After each observation, the data was transferred to a laptop and saved in a data 

collection file using the pseudonyms for the teachers in the file name as well as the date 

of the lesson.  
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 I took field notes during each observation. My role was strictly observational.  I 

noted the types of tasks assigned by the teacher, the questions asked during the 

instruction, and general observations on the mathematics being taught and student 

thinking elicited by the teacher.  

 The audio-recordings were transcribed and the field notes were embedded into the 

transcriptions to create a vivid description of each observation. These final write-ups 

were saved in a data collection file using the pseudonyms for the teachers in the file name 

as well as the date of the lesson. 

Data Analysis 

 Overall, the analysis of the data followed the guidelines of Miles and Huberman 

(1997). According to this analytic framework, the coding of chunks of data was used to 

“review a set of field notes, transcribe or synthesized, and to dissect them meaningfully, 

while keeping the relations between the parts intact…” (p. 56).  The entire data set for a 

teacher within each case was broken down into three chunks: Knowledge, Planning, and 

Classroom Instruction.  This separation of the data sources allowed for detailed analysis 

of each part to be conducted independently of the other sources of data.  This is important 

because it enabled me to see clearly how different components of Mathematical 

Knowledge for Teaching (MKT) were expressed across different sections of the 

Mathematics Teaching Cycle and enabled comparisons between teachers in a case at both 

a macro- (the entire teaching cycle) and micro- (knowledge, planning, implementation) 

levels.  Chunking the data into three sections also enabled triangulation to occur across 

the separate data sets.   
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 Initial codes used to examine the three chunks of data per teacher were derived 

from the relevant literature relating to the topic of MKT.  Specifically, I constructed a list 

of characteristics representative of the six components of Mathematical Knowledge for 

Teaching (See Appendices A & B) based on the details found in the Ball et al article 

(2008).  After constructing the detailed category list, the MKT codes were used to 

analyze the teacher knowledge test and related interview, the planning interviews, the 

task selection episodes, as well as the entire transcript for each classroom observation per 

teacher.  Specific methods for coding and analyzing each type of data source follow this 

section.  One limitation of this process was that I did not have formal training in 

matching data to the specific category.  This limitation might affect the results presented 

in this dissertation.  However, using the thorough descriptions of the Mathematical 

Knowledge for Teaching (MKT) categories provided in Ball, Thames, and Phelps (2008) 

and the MKT chart I derived from the article, I felt confident that the codes I assigned 

data were true to those created by Ball et al (2008).  Further studies would require the 

training of raters and the generation of high levels of inter-rater reliability. 

 The coded data were then used to construct meaning from the themes and patterns 

across the data sources.  From here, specific vignettes were selected from the transcripts. 

The vignettes illustrated specific coding schemes or themes that appeared across the data 

for a particular teacher or as a comparison across teachers within and between cases. The 

process of generating themes and of coding the data was an iterative process (Miles and 

Huberman, 1997).  The following sections describe in detail the analytic tools used, in 

conjunction with the MKT codes, to dissect the planning interviews and the classroom 

observation transcripts.  
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Interviews 

 Three interviews were conducted with each of the teachers in this dissertation.  

The first interview focused on the teacher knowledge assessment.  The second two 

interviews examined the planning process for each teacher.  The analysis of each type of 

interview follows. 

I interviewed each teacher (except Teacher 2.1) about their thinking process when 

answering the questions from the teacher knowledge assessment.  This interview was 

important because it allowed the participants in my study the opportunity to explain their 

thinking and explore their answers. One limitation regarding my interviews was that they 

were conducted a year, and in some cases two years, after the teacher took the Teacher 

Knowledge test. It is possible that teachers might have learned more about student 

thinking and the teaching of mathematics within the intervening time span or that they 

forgot what they were thinking when taking the test and were guessing based on what 

they knew at the time of the interview. Even so, this interview allowed teachers time to 

revisit the test and reassess their thinking. 

To analyze the teacher knowledge interview, I read through the interview 

transcript and compared the responses to the answers given on the teacher knowledge test 

for each teacher. I noted instances when teachers said “I don’t know” or “I am not sure 

what I was thinking” to see if there was a pattern as to when the teacher expressed a lack 

of knowledge (i.e., when talking about a specific mathematical concept such as fractions).  

I also noted instances when teachers changed their answers and were able to explain why 

their answer was originally incorrect.  Finally, I noted whether or not teachers referenced 

their own students’ thinking when talking through a hypothetical student answer.  I 
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selected these types of utterances to make note of because they often represented using 

Common Content Knowledge and Knowledge of Content and Students to think through a 

problem or a lack of one of the two MKT categories when working through a problem.  

Next, I went back through the transcripts and coded the teacher’s comments using 

the MKT code chart that I constructed based on Ball et al, (2008).  Specifically, I coded 

comments paragraph by paragraph within each explanation related to the questions on the 

test.  I selected the main category of MKT used in each utterance and then noted the 

specific component of the category to which the comment related (i.e., CCK – recognized 

when a student gave a wrong answer or KCS – Knowledge of students common 

conceptions and misconceptions about particular mathematical content).  Once I coded all 

of the transcripts, I constructed a frequency table depicting the type of MKT used 

(correctly or incorrectly by the teacher) and the specific part of the category under which 

the comment fell.  Using the frequency table, I was able to compare the two teachers in 

each case and select vignettes to illustrate the teacher’s knowledge.  In addition, I 

selected two tasks from the Teacher Knowledge Assessment to use as an illustration of 

how each teacher answered the tasks.  It was important to use the same two tasks across 

the six teachers when comparing and contrasting the teachers’ approaches to solving the 

tasks.  One task was multiple-choice and the other task was open-ended.  The two 

different types of tasks allowed for a comprehensive look at how the teachers answered 

comparatively.   

 The second type of interview conducted was the planning interview.  To analyze 

these interviews, I transferred both of the transcripts into an excel file so that the 

documents were parsed paragraph by paragraph. I removed all of the questions I posed to 
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the participants and put them in a new column.  Then I chunked the response related to 

each question in groups in a second column.  I removed any utterances such as “um” or 

“uh huh” or anything discussing non-teaching topics and put them in a separate excel 

filed labeled “irrelevant.”  Next, I read through each paragraph and created a column 

listing to which question the paragraph corresponded.  I reread the paragraphs and 

highlighted the main focus of each response.  Using the highlighted sections, I generated 

summaries of each “chunk” (Miles & Huberman, 1997, p. 57) of data in a third column.  

As with the knowledge interview, I went through each original paragraph and assigned 

MKT codes that best captured the knowledge used throughout each paragraph. Some 

paragraphs represented one MKT code, while others used multiple MKT codes.  For 

paragraphs with multiple codes, I noted the order in which the codes appeared to see if a 

pattern occurred over time.  Any pieces that discussed planning issues but did not fit into 

a MKT code were placed to the side and labeled “Miscellaneous” and a brief description 

was written in place of a code. Once the coding was completed, I printed out and cut 

apart the excel file so that each code was its own strip.  I then clumped together the 

pieces based on their MKT code. Once all of the pieces were grouped, I constructed a 

concept map for each teacher based on their interviews.  The concept map illustrated how 

the teacher thought through the planning process. I then color-coded the components 

based on which MKT code corresponded to it.  I also created a frequency table, similar to 

the one constructed for the knowledge interviews to see how often codes were used.  

Further, I used the table to help select vignettes to illustrate critical or unique aspects of a 

teacher’s planning.  Lastly, I related the codes found in the planning interviews to those 

found in the knowledge test and interview. Later I linked them with the codes found in a 
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teacher’s classroom data.  I did this as part of the triangulation of data and to look for 

patterns in the data.   

 Part of the Mathematics Teaching Cycle (NCTM, 2007) is the concept of 

“Analysis.”  A teacher should analyze what aspects of instruction help foster student 

learning and which aspects hamper student learning over time (NCTM, 2007).  The 

interviews dedicated to understanding how teachers plan were critical in assessing how a 

teacher reflects and analyzes what occurs during instructional times.  I asked each teacher 

to give a general overview of their planning process and then narrowed the focus down to 

specific task selections, answer choice selections, and how their students interacted with 

the various tasks.  Through this line of questioning, teachers provided information about 

their use of formative assessment and their knowledge of the relationship among the 

content, the students, and teaching practices.  This information was used to create a 

detailed picture of how MKT was used or not used by teachers when planning. 

 This process of analyzing the planning interviews and constructing a concept map 

was limited because the teachers were never given a chance to review the concept map or 

the coding scheme used to categorize their interviews.  If this study were replicated, I 

would return to the teachers in the study and ask them to verify their statements and the 

outline of their thinking. In addition, as stated earlier, I never received training on the 

MKT coding scheme, other than reading the many articles published by the Learning 

Mathematics for Teaching project. The lack of training might have impacted my final 

results and my ability to examine the validity of the claim that LMT items were 

predictive of student achievement or teacher knowledge.   
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Classroom Observations 

 The classroom observations were analyzed using four different methods: 

Classroom Assessment Scoring System (CLASS) (Pianta, La Paro, & Hamre, 2008), The 

Mathematical Tasks Framework (Stein, Smith, Henningsen, & Silver, 2009), the MKT 

framework codes (Ball, Thames, & Phelps, 2008), and Bloom’s Taxonomy (Bloom, 

1956). Each method of analysis will be examined in the following sections. 

 Classroom Assessment Scoring System (CLASS).  The CLASS observation 

protocol "is an observation instrument developed to assess classroom quality..." (Pianta et 

al, 2008, p.1).  This protocol aligned nicely with the part of the Mathematics Teaching 

Cycle called “learning environment.”  As described in Chapter Two, the learning 

environment subcategory falls under the category of “Implementation” and includes eight 

criteria deemed important when creating a classroom that fosters mathematical learning 

described in the NCTM’s Principles and Standards document (NCTM, 2000).  These 

criteria included:  

time necessary to explore sound mathematics and deal with significant 
ideas and problems; a physical space and appropriate materials that 
facilitate students’ learning of mathematics, access and encouragement to 
use appropriate technology, a context that encourages the development of 
mathematical skill and proficiency; an atmosphere of respect and value 
for students’ ideas and ways of thinking; an opportunity to work 
independently or collaboratively to make sense of mathematics; a climate 
for students to take intellectual risks in raising questions and formulating 
conjectures; and encouragement for the student to display a sense of 
mathematical competence by validating and supporting ideas with a 
mathematical argument (NCTM, 2007, pp. 39-40). 

  
The CLASS observation protocol scoring system examined all criteria present in 

the NCTM (2007) category “learning environment,” as illustrated in the following section 

on the Domains of the scoring protocol. The foundation for the scoring system was based 
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on the research stating, “that interactions between students and adults are the primary 

mechanism of student development in learning” (p. 1). There are three domains within 

the scoring system: Emotional Support, Classroom Organization, and Instructional 

Support. Each domain contains three to four dimensions. The dimensions “are based 

solely on interactions between teachers and students in classrooms; this system does not 

evaluate the presence of materials, the physical environment or safety, or the adoption of 

a specific curriculum” (p. 1).  

 The domains.  Emotional Support examines a teacher’s ability to create a learning 

environment that supports social and emotional functioning. There are four dimensions 

under Emotional Support: Positive Climate, Negative Climate, Teacher Sensitivity, and 

Regard for Student Perspectives (p. 3).  Under positive climate, researchers look for 

“warmth, respect, and enjoyment communicated by verbal and nonverbal interactions” 

(Pianta et al, 2008) in ways like smiling, enthusiasm, positive expectations, warm, calm 

voice, eye contact, cooperation and sharing, and peer assistance. A negative climate, on 

the other hand, includes negativity expressed in “frequency, quality, and intensity” (p. 28) 

of yelling, threats, peer aggression, teasing, sarcasm, humiliation, and bullying. Teacher 

Sensitivity contains “the teacher’s awareness of and responsively to students’ academic 

and emotional needs; high levels of sensitivity facilitate students’ ability to actively 

explore and learn because the teacher consistently provides comfort, reassurance, and 

encouragement” (p. 32). This dimension is manifested through anticipating problems, 

noticing students who are struggling with an idea, students show comfort in participating 

and taking risks, and providing individualized support to the students. The final 

dimension under Emotional Support is Regard for Student Perspectives. This dimension 
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“captures the degree to which the teacher’s interactions with students and classroom 

activities place an emphasis on students’ interests, motivations, and points of view and 

encourage student responsibility and autonomy” (p. 38). Respect for student perspectives 

includes showing flexibility for students’ ideas, providing choices and students to lead 

the lessons, and allowing movement around the classroom.  

Classroom Organization is the second domain. It includes Behavior Management, 

Productivity, and Instructional Learning Formats. Behavior Management “encompasses 

the teacher’s ability to provide clear behavioral expectations and use effective methods to 

prevent and redirect misbehavior” (Pianta et al, 2008, p. 44). A researcher looks for items 

like clear expectations that are enforced consistently, effective redirection of 

misbehavior, and little aggression or defiance. Under productivity, one looks for “how 

well the teacher manages instructional time and routines and provides activities for 

students so that they have the opportunity to be involved in learning activities” (p. 51). 

Examples of this would be clear instructions, brief transition times, having materials 

ready and the lesson prepared. Instructional Learning Formats “focuses on the ways in 

which the teacher maximizes students’ interest, engagement, and ability to learn from 

lessons and activities” (p. 57). Activities in this dimension are effective questioning, 

active student participation, using interesting and creative materials, focused attention, 

and using advanced organizers.  

The final domain is Instructional Support. Concept Development, Quality of 

Feedback, and Language Modeling comprise this final domain. Concept development 

“measures the teacher’s use of instructional discussions and activities to promote 

students’ higher-order thinking skills and cognition and the teacher’s focus on 



	   90 

understanding rather than on rote instruction” (Pianta et al, 2008, p. 63).  This dimension 

includes integrating new knowledge with previous knowledge, relating topics to the 

students’ lives and the real world, asking why and how questions, having the students 

create things, and using predictions when experimenting. Quality of Feedback “assess the 

degree to which the teacher provides feedback that expands learning and understanding 

and encourages continued participation” (p. 72) through activities like using following-up 

questions, asking kids to explain their thinking, expanding on students’ ideas, and 

providing recognition for students’ persistence. The last part of the domain is Language 

Modeling:  language modeling “captures the quality and amount of the teacher’s use of 

language-stimulation and language-facilitation techniques” (p. 79). It can be seen through 

peer conversations, revoicing student comments, elaborating on students’ thinking, self-

talk, using a variety of words, and questioning students in a way that requires more than 

one-word answers.  

 CLASS procedure.  During my time as a graduate research assistant on the NSF-

funded grant, I was trained on the CLASS observation protocol tool.  The 16-hour 

training program “prepared participants to take the CLASS reliability Test and become 

certified CLASS observers” (CLASS Observation Training Certificate, received April 2, 

2010).  I successfully completed the training and passed the CLASS Reliability Test on 

April 2, 2010.  The following is a description of the CLASS procedure and the variations 

I engaged in when using the protocol to assess the learning environment of each 

classroom during my dissertation.   

Pianta et al (2008) designed the CLASS instrument to capture at least two hours 

of observation minimum, for a total of four cycles minimum, to determine overall scores 



	   91 

for a teacher. A cycle is a 30-minute observational period that includes 20-minutes of 

observation and 10-minutes for scoring. A description of when the observations were 

conducted for each teacher is described within each case because variations were made 

on a teacher-by-teacher basis.  For example, Teacher 1.2 refused audiotaping of her 

classroom instruction.  Therefore, CLASS data was not collected for Teacher 1.2 because 

I felt that gathering detailed field notes of what was happening during each observation 

was more important for the study than constructing an overview of her learning 

environment.  Teacher 3.1 had limited CLASS observations because she was on 

maternity leave for half of the time that I observed other teachers in my study.  Rather 

than collect the CLASS observations over the course of 6 months, all of her CLASS 

observations were conducted over three months in the spring.  This compressed time 

frame might have limited the reliability of her composite scores across the cycles because 

the scores were collected so close together.  Other variations of data collection for the 

CLASS protocol were explained in the cases.   

At the end of the observations, observers construct a composite score across the 

cycles. The composite score is in average for each dimension (the dimensions are the 

subcategories found within each of the three domains) across the number of cycles 

observed. The scores range from 1 to 7, with 1 being the lowest possible score and 7 

being the highest score.  Pianta et al (2008) described each score using both a rubric 

system (see Appendix C).  A score of a 1 or 2 is in the low range. A score of 3, 4, or 5 is 

in the middle range. A score of 6 or 7 is in the high range. Once all of the composite 

scores for the dimensions are calculated, the average dimension scores are then used to 



	   92 

construct a composite domain score. The composite scores for the three domains provide 

insight into the level and types of interactions occurring in a classroom.   

For this dissertation, six observation cycles were completed for five of the six 

teachers. As stated earlier, one teacher opted not to be audiotaped. This meant that 

CLASS observations were impossible to conduct, as the researcher had to simultaneously 

take detailed field notes throughout the lesson. Composite and Dimension scores were 

calculated using the rubrics provided by Pianta et al (2008). For the most part, the 

composite scores for the teachers were used to provide a general comparison among the 

six teachers.  The dimension scores were, instead, used to elaborate on how MKT 

impacted the learning environment of each classroom because these scores were more 

detailed and relevant to the eight bullet points in the Mathematics Teaching Cycle 

(NCTM, 2007).  These scores were then matched to the MKT framework codes, if 

applicable.  To match the MKT codes to the CLASS observation protocol, I examined the 

descriptions of each domain.  From the descriptions, I coded the relevant aspects of MKT 

within the domains.  From there, I looked at each teacher’s score for each part of the 

domain and extrapolated how the various MKT categories were used or not used during 

interactions with students.  This matching process is further explained in the cases 

themselves.  

Using the CLASS protocol in this dissertation allowed me to examine how 

student to teacher interactions might be impacted by a teacher’s mathematical knowledge 

for teaching. For example, do teachers with higher MKT scores have higher scores in 

Classroom Organization or Instructional Support than teachers with lower MKT scores? 

Are there specific aspects of MKT that appear more often than other categories? If so, is 
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there a pattern to these appearances or are they specific to each teacher?  These and other 

similar questions might speak to the opportunities to learn provided to students in each 

classroom. The next section examines the analysis of the tasks used in the classroom 

instruction.  

The mathematical task framework (Stein et al, 2008).  The Mathematical 

Tasks Framework (Stein et al, 2009) examines the level of cognitive demand tasks used 

in a mathematics lesson. Stein et al define cognitive demand as “…the kind and level of 

thinking required of students in order to successfully engage with and solve the task” (p. 

1).  There are four levels of cognitive demand (Stein & Smith, 1998): memorization, 

procedures without connections, procedures with connections, and doing mathematics. 

Because Stein et al (2009) clumped the four levels of cognitive demand together in their 

description of the levels I have done so in the following description of the four levels.  

Part of my limitation from not being formally trained on this framework is that all of my 

knowledge of the levels came from reading the articles and books published on the 

framework.  Without a full description from the creators of the framework, I am limited 

on what I can disclose and explain in my dissertation. 

Thus, the first two levels, memorization and procedures without connections, fall 

under the category of low-level cognitive demand. These tasks often require students to 

memorize a fact or perform a task using standard algorithms in the absence of context or 

meaning. Many times, students are required to complete 10 to 30 recall questions in one 

sitting or class period. The other two levels, procedures with connections and doing 

mathematics, are considered high-level cognitive demand tasks (Stein et al, 2009). These 

tasks might also use procedures but ask students "to think about the relationships [among 
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ideas]...in a way that builds connections to underlying concepts and meaning" (Stein et al, 

2009, p. 2). Students usually complete only a few of these types of problems at one time.  

Cognitive demand is measured in two phases: the written task and the evolution 

of the task during the lesson. To decide the cognitive demand of a written task, the Task 

Analysis Guide found in Stein et al (2008) was used. The guide provided characteristics 

of the various levels of demand.  One limitation of this dissertation was that the 

researcher was not trained in this framework, other than reading the book on the task 

analysis process.  

The first phase in understanding the cognitive demand level of a task was 

examining the written task.  One important factor in deciding the cognitive demand level 

of each written task is ensuring that the task is designed to fit the needs of the students. 

Tasks might look initially meet the high level of demand, however, if the task is above 

the students’ capability of completing without teacher-direction (other than guidance) or 

if it just requires students to repeat a procedure, it would fall under low-level cognitive 

demand, as a written task.  

At the implementation phase, or what is known as part of the second phase in 

assessing the cognitive demand level of a task, the level of cognitive demand might 

change.  This second phase includes the teacher’s set up of the task (i.e., explanation of 

the task, directions for completion) and the “enactment” of the task (Stein et al, 2009, p. 

15).  Many times, the demand level of the task is changed during the “set up” portion of 

the implementation phase. During this time, teachers often inadvertently provide step-by-

step algorithms for solving a problem or complete most of the task for the students when 

presenting the task. During the “enactment” part of the implementation phase, high-level 
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tasks might become low-level tasks "a teacher 'takes over' the thinking and reasoning and 

tells students how to do the problem" (Stein et al, 2009, p. 16), or if the focus of the tasks 

switches to the correct answer rather than the meaning or understanding of what the task 

requires. A task might also be at an inappropriately high level for the students, in which 

case students do not engage with the task and the teacher "takes over.” Or, students might 

not be held accountable to engage in high-level thinking with the task (i.e., provide 

justifications for thinking or be thorough with their explanation). At the same time, a task 

maintains a high cognitive demand level if a teacher: scaffolds student thinking and 

reasoning, the teacher or students model high-level thinking, there is a "sustained press 

for justifications, explanations, and/or meaning through teacher questioning, comments, 

and/or feedback" (Stein et al, 2009, p. 16). In addition, prior knowledge is built upon by 

the task, or sufficient time is given for the full completion and exploration of the 

connections within the task. Too assess what happened during the set up and 

implementation phase; I used the guidelines found in Stein et al (2008) on page 16.  

The importance of assessing the cognitive demand of tasks was twofold. First, it 

is critical to understand that the selection of tasks impacts the opportunities to learn 

mathematics in the classroom. Each task sets up a different learning objective, such as 

practicing a procedure or justifying one’s thinking or making connections among 

mathematical ideas. These differences not only provide multiple learning consequences 

but also affect how students view the subject of mathematics and their identity as math 

doers (Stein et al, 2009). Second, it is important to investigate how the selection and 

implementation of tasks is impacted by a teacher’s mathematical knowledge for teaching. 

For example, does task selection or implementation differ based on a teacher’s 
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knowledge level? If yes, then how? Or, what are the implications of these differences on 

student learning and performance?  

Procedure for assessing cognitive demand.  To analyze the tasks given to 

students, I first created “episodes.” The episodes included the written task and the set up 

and implementation phases of the instruction. I cut and pasted the task, the dialogue from 

the transcripts, and important information from the field notes into a word document. The 

word document included all of the episodes for each observation per teacher. I reviewed 

each written task and assigned a cognitive demand level using the Task Analysis Guide 

(see Appendix C). After which I read each episode in its entirety. Using the 

Implementation Phase guidelines, (see Appendix D) from Stein et al (2009), I noted any 

changes in the cognitive demand of the task throughout the episode and notes that 

supported the label. This procedure was used to assess the tasks of each teacher in the 

study.  

Once the cognitive demand was selected for each phase, I used the Mathematical 

Knowledge for Teaching codes (described earlier in this chapter) to assess the linkages 

between cognitive demand and MKT scores. I went through the transcripts for each 

episode and parsed out the specific representations of each MKT code. The compilation 

of codes for each episode were used to also compare the knowledge used in the task 

selections to the knowledge used in planning, CLASS protocol, and discourse for each 

teacher and within each case. This comparison method was completed for each teacher 

and each of the six observations. The final tool used to analyze the data was Bloom’s 

Taxonomy (Krathwohl, 2002). Background information and the use of Bloom’s 

Taxonomy are presented in the next section. 
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Bloom’s taxonomy.  This dissertation used the original taxonomy (Krathwohl, 

2002) to analyze the participants’ questions to students in the observations. The original 

taxonomy included sufficient details and relevant components to analyze the level of 

questioning presented by the teachers.  

 Bloom’s Taxonomy was originally constructed to assist in the construction of a 

bank of test items (Krathwohl, 2002). The original taxonomy consisted of a hierarchy of 

six categories: knowledge, comprehension, application, analysis, synthesis, and 

evaluation. These six levels moved from concrete ideas to abstract concepts. Each level 

assumes mastery of the previous level’s content. The levels were originally framed 

behaviorally.  However, there application here is more cognitive in its orientation. The 

most basic level, Knowledge, is classified as having students recall or recognize a simple 

fact or procedure. The knowledge level is the most frequently used in classrooms. This is 

unfortunate because the remaining levels are “considered the most important goals of 

education” (p. 213).  The second level, Comprehension, includes restating one’s ideas, 

explaining meaning, or interpreting ideas from a scenario. Application implies being able 

to use a procedure in a problem. Analyzing information includes being able to take apart 

a method or theory and figuring out how the pieces relate to the overall theory. The fifth 

category is Synthesis. This includes the creation of something new. The last category in 

the original taxonomy is Evaluation. At this level, students are able to make judgments 

about a particular situation based on specific criteria. While the taxonomy is often used to 

assign items to categories in a priori manner, this is not how the taxonomy was employed 

in this dissertation. 
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 Examining questioning techniques of the teachers enabled me to examine how 

teachers facilitated discourse or stifled discourse, and understood student thinking 

(NCTM, 2007).  One of the main components of the Mathematics Teaching Cycle’s 

discourse category was the notion that teachers needed to “provoke students’ reasoning 

about mathematics” (p. 46) using thoughtful tasks and lines of questioning.  Through the 

use of Bloom’s Taxonomy, I assessed how teachers with different levels of MKT scores 

questioned students, used the information they obtained through the questions, and 

adjusted or did not adjust curriculum accordingly.  In addition, the questioning techniques 

impacted the implementation of the written tasks, which in turn, influenced student 

learning.   

Procedure for analyzing data using Bloom’s Taxonomy.  The questions asked by 

teachers were analyzed using Bloom’s Taxonomy. Each of the six observations for each 

teacher was broken into episodes (see section on “The Mathematical Tasks Framework” 

for further details). These cognitive episodes were read and coded using Bloom’s 

Taxonomy. After each episode was coded, I compared the types of questions asked with 

the MKT codes to see if any patterns emerged. I also used the taxonomy codes to assess 

how the written task was implemented regarding the cognitive demand level.  This 

process was completed for each of the participants in the dissertation.  Lastly, I used the 

constructed vignettes representative of teacher questioning and subsequent discourse for 

each classroom.  These vignettes were used to illustrate the appearance of MKT during 

classroom discourse with the teacher’s questions as the entry point for students in the 

discussion.   
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General Overview of the Cases 
 
 In the next three chapters the individual cases are presented.  In Chapter Four, one 

finds a case of two teachers with high MKT scores, relative to their peers in the NSF-

grant, who had different student gain scores.  In Chapter Five, the case includes two 

teachers who had mid-range MKT scores, relative to their peers in the NSF-grant, who 

also had different student gain scores. In this case, the teacher with the higher MKT score 

of the two teachers in the case had lower student gain scores, while the teacher with the 

lower MKT score had larger student gain scores.  In Chapter Six, the case includes two 

teachers with relatively low MKT scores.  Their student gain scores are the highest and 

third highest scores among the participants in the NSF-grant.   

The cases are outlined according to the Mathematics Teaching Cycle (NCTM, 

2007).  The first section of each case examined the Knowledge held by each teacher.  The 

second section of each case illustrated the each teacher’s Analysis of instruction and 

student learning.  This was accomplished through an investigation into the teacher’s 

planning process.  The final section in each case looked at the Implementation of 

instruction.  It included an examination of the learning environment, using the CLASS 

protocol, the task selection and implementation, using Stein et al’s (2009) Mathematical 

Task Framework, and an assessment of teacher questioning and student responses using 

Bloom’s Taxonomy (1956). 
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CHAPTER FOUR: CASE ONE 
 

A Case of High MKT Scores and Different Student Gain Scores 
 

This case examined two teachers who scored similarly on the Teacher Knowledge 

Assessment but whose average student gain scores differed greatly.  To reiterate the 

information presented about the sampling process in Chapter Three, both teachers in this 

case scored at least one standard deviation above the mean of the measure of Teacher 

Knowledge of the participants in the larger NSF-study.  Their average student gain scores 

were very different, however.  Teacher 1.1’s students’ gains were 1.2 standard deviations 

above the classroom mean student gain for the other NSF-grant participants.  Teacher 

1.2’s students’ gains were  -.2 standard deviations below this mean. This case presented 

the first layer for understanding how MKT might link to student gain scores through 

classroom instruction.   

General Descriptions of Teacher 1.1 and Teacher 1.2 
 
Teacher 1.1 
 

Teacher 1.1 is a fourth year teacher. Her teacher training occurred at a large 

university in the Midwest.  According to Teacher 1.1, the program focused on the 

development of deep conceptual understanding of mathematics in the pre-service 

teachers. She explained that in her pre-requisite math courses for elementary education 

teachers she was expected to provide 8-10 page explanations of how she solved whole 

number operation problems in bases other than base 10.  She felt that explaining her 

thinking and experiencing learning outside of the “normal” base 10 number-system 

strengthened her understanding of whole number operations (Teacher 1.1, 1st interview).  

During her second interview, she explained that the research in the larger NSF-grant 
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complimented her undergraduate teacher training very well and helped her to push her 

knowledge of mathematics and the teaching of mathematics further (Teacher 1.1, 2nd 

interview).  Since graduating from college, Teacher 1.1 has been at her current school 

where she taught 4th grade all but one year when she looped with her students to 5th 

grade.   

Over the 2011-2012 school year, Teacher 1.1 taught approximately 24 fourth grade 

students.  The classroom was set up so that four to five students sat at a table.  There were 

three tables in two columns facing the front white board.  The math instructional time 

was separated into two time periods in the morning.  When the students first arrived at 

school, Teacher 1.1 expected them to try to complete the Math Mastery Wall (explained 

later on in the description of her instruction) independently in their math journals.  Then, 

during the designated math lesson time, the students either showed her their work on 

personal white boards or the students discussed their findings with their tablemates and 

the students presented their solution and strategies on butcher paper, as a group.   

Teacher 1.2 

 Teacher 1.2 has been at the district for five year. She taught 5th grade for the 

entire duration. She is a graduate large university in the Southwest, where she went 

through a typical pre-service teaching program.  Unfortunately, this was all of the data 

that I could gather from Teacher 1.2 regarding her educational and career history.   

Teacher 1.2 taught approximately 26 fifth grade students over the 2011-2012 

school year. The students sat in desks grouped into pods of four to five desks with a few 

students seated independently at desks scattered around the classroom. The math 

instructional time was divided up into three sections, according to the mandate put forth 
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by the principal at the school. The one-hour allotted for mathematics each school day was 

spent in the following manner: 

Table 2 

Lesson Structure for Teacher 1.2 

Lesson component Allotted time Purpose 
Math wall 15 minutes Spiral state standards throughout the 

year 
Daily lesson 30 minutes Objective provided by the district 

curriculum map 
Problem solving (Otter Creek) 10 minutes Adopted curriculum to help with 

building problem solving skills 
Math facts (Otter Creek) 5 minutes Adopted curriculum to help build math 

fact fluency 
 

Teacher 1.2 followed the instructional break down shown in Table 2, as best she 

could.  She explained that re-teaching time was built into the curriculum map, which 

made it easier to follow (Teacher 1.2, 1st interview). 

Teacher Knowledge 

 One component of the Mathematics Teaching Cycle (NCTM, 2007) was 

Knowledge.  According to the Teaching Principle (NCTM, 2000), an effective teacher 

needs knowledge in: “mathematical content, pedagogy, assessment strategies, and an 

understanding of students as learners” (NCTM, 2007, p. 19).  These four criteria for “an 

effective teacher” aligned with Ball et al (2008) MKT components of Common Content 

Knowledge (CCK), Specialized Content Knowledge (SCK), Knowledge of Content and 

Teaching (KCT), and Knowledge of Content and Students (KCS).  In the following 

section, I used the data representative of the entire data set gathered from the Teacher 

Knowledge Assessment and follow-up interview to illustrate the degree to which the 

components outlined in the Teaching Principle and the MKT framework presented in 
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Teacher 1.1 and Teacher 1.2 and how the presence or lack of some criteria might account 

for different student gain scores.   

Example 1 From the Teacher Knowledge Assessment: A Multiple Choice Item 

 Because the LMT items are not released to the public, the following is a 

description of a task given to the teachers participating in the NSF-funded Grant.  The 

task was a multi-digit subtraction problem that included regrouping of the minuend.  The 

digit “0” was in the tens place of the minuend as well.  The teachers were given three 

hypothetical students’ responses to examine.  The task asked the teachers to state whether 

or not each response was acceptable evidence indicating that the child knew why the 

procedure worked. The teacher had the option to say that they were unsure if the answer 

was acceptable or not. 

 The first response (a) was a direct description of the steps taken to solve the 

problem.  The response was void of place value or explanation regarding regrouping. The 

second response (b) indicated the child could decompose numbers and regroup fluidly 

across place value positions.  The final response (c) was tricky for most of the teachers.  

The student indicated some understanding of place value at a superficial level.   

Teacher 1.1’s response. According to her written test answers, Teacher 1.1 

disagreed with answer choice (a), agreed with answer choice (b), and was unsure about 

answer choice (c).  The follow-up interview provided insight into her thinking and the 

role MKT components played in her thinking. 

In her follow-up interview, Teacher 1.1 started to work through the answer 

choices for this multi-digit subtraction problem systematically.  She began at answer 

choice (a).  Immediately she demonstrated aspects of Common Content Knowledge (Ball 
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et al, 2008): “What does that even mean you can’t take 7 away from 6? Because 

technically you can take 7 away from 6. You owe a, like if it’s money, you owe a dollar” 

(Teacher 1.1, 3rd interview).  In this except of Teacher 1.1 assessing answer choice (a), 

she expressed an understanding of the real numbers and operations.  In addition, she 

evaluated the student’s understanding of the mathematics and drew a conclusion that “he 

doesn’t understand why the procedure works, I mean he knows the procedure but the 

reason why? I, but yeah that’s why I picked no, because..it doesn’t show evidence that 

they understand why it works” (3rd interview).  Additionally, this excerpt illustrated 

Teacher 1.1’s ability to solve the problems “assigned” to the students and evaluate 

whether or not the students’ responses were correct (“correct” in this sense meaning 

“providing evidence that the student understands why the procedure works” as stated in 

the directions of the test item).  These are other examples of Common Content 

Knowledge rooted in her evaluation of student thinking.   

Rather than systematically move to the next answer choice, Teacher 1.1 provided 

a general description of the type of answer she would find acceptable:  

I have three, this is 3 one-hundreds, I have zero tens, and I have six ones. I 
want seven ones but I only have 6 ones right now. I would accept that they 
said okay, so I am going to take 100 and I am going to break it up into, 
that’s 3 one-hundreds, now I have two one-hundreds left, if I take, like do 
you see what I am saying? If he broke it up and he said now I have ten 
tens but I need ones so I am going to break up those ten tens, I am going 
to take away one ten. I have nine tens left. Now I have ten ones so I have 
16 ones (Teacher 1.1, 3rd Interview). 
 

 I pointed out to her that her general description aligned with answer choice (b) at 

which point she stated “oh yeah! I didn’t even look at that.”  This movement from 

looking specifically at a student’s answer choice and into her own understanding of the 
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problem was typical of Teacher 1.1’s responses.  She was able to unpack the problems 

into rich mathematical descriptions of her own understanding of the mathematics (i.e., 

decomposition of numbers, the relationship between place value, regrouping, etc.).    

Teacher 1.2’s response.  Teacher 1.2 gave a short and concise answer in her 

interview about this particular problem. She explained the following for the example 

above,  

For the first answer choice, when you cross out the zero it doesn't become 
a 9, you must go to the hundreds. That is wrong. The second one works. 
You go to the hundreds column to get enough tens to borrow and have 
enough ones. The last one says can't borrow from tens, nothing there so it 
is wrong (Teacher 1.2, 3rd interview).  

 
 Based on this response, deciphering what Teacher 1.2 understood about the 

mathematics and student thinking was difficult. It was clear that Teacher 1.2 focused on 

her finding responses “acceptable” or “unacceptable” based on whether or not the student 

demonstrated an ability to articulate the need for “borrowing” or demonstrated 

“borrowing.”  Her reasoning for selecting the use of borrowing as the benchmark for 

right or wrong was unclear.  She did not provide any indication as to her understanding of 

decomposing numbers and the relationship between the place value of the particular 

number being described.   

This brief response was representative of all of the responses Teacher 1.2 gave 

during her follow-up interview, even when probed to expand on her responses. There 

might be a few reasons for the lack of depth in Teacher 1.2’s responses.  First, she might 

have been nervous about sharing her thoughts.  She was the one teacher in my study who 

did not want her classroom or interviews audio taped. I never received an explanation for 

why this was the case.  Second, it is possible that her concise answers seemed sufficient 
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to her.  They were to the point and logical.  Third, her depth of knowledge might have 

been lacking.  It is possible that in her own mathematical development she was not 

pushed beyond procedural knowledge and therefore cannot move beyond the procedures.  

All of these ideas, and others, are plausible explanations for the short answers given by 

Teacher 1.2. 

Example 2 From the Teacher Knowledge Assessment: An Open-Ended Item 

The following problem was given to the teachers to assess their knowledge of 

relational thinking in students.  The teachers were provided with half of a page to 

write or illustrate their responses.  To receive total points for the problem, the 

participants had to answer all three sub-questions (Carpenter et al, 2003).   

Assume we gave this problem to some elementary school students: 
      What number can you put in the box to make this number sentence 
true? 
          8 + 15 = ___ + 16 
     What strategies would you expect students to use to solve this problem? 
     What answers do you expect them to come up with? 

 Teacher 1.1’s response.  Teacher 1.1 answered on the test that she would 

see her students give two answers, “23” and “7,” when solving this type of 

problem.  I focused on her response to students giving the answer of “23” in this 

section because it illustrated best her understanding of the mathematics and her 

knowledge of her students’ thinking.  

Okay, they would put 23. [I: how come?] because they are just going to 
add right here and it’s like they don’t even see this as like, the reason they 
would do that is because a lot of times they don’t see this as like meaning 
something. Like they just see like it as, when they see the equal sign they 
think that they are giving an answer right there, they don’t see it like as 
being like a, what am I trying to say? Like equal quantities or value 
(Teacher 1.1, 3rd interview).    
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 Teacher 1.1 focused on the notion that the students did not understand the 

meaning of the equal sign.  She explained that they viewed the equal sign as “answer 

comes next” rather than “equal quantities or value” (Carpenter, Franke, & Levi, 2003). 

This excerpt characterized Knowledge of Content and Students. Teacher 1.1 

anticipated what the students would answer: “23.” She anticipated what they would do 

with the task: view the equal sign as indicating an answer followed. In addition, she 

showed familiarity with common errors and an awareness of common confusion around 

the equal sign: “they don’t see, always necessarily see that like 8 is equal to 8…they just 

didn’t grasp the fact that what goes on either side of that [the equal sign], they represent 

the same thing” (3rd interview).   

She added to her response with an explanation of a task she gave her students to 

help them develop an understanding of the equal sign: “Oh! We did something like this, 9 

= 4 + 5 or something…and they’d be like yeah that’s true, and, no because they are not 

used to, they want to see like operations on the left side and the answer on the other” (3rd 

interview).  The task of 9 = 4 +5 confused children who have yet to develop a relational 

understanding of the equal sign because 1) it is an unfamiliar format, and 2) if a child has 

an understanding of the equal sign that “answer comes next,” they only see the four and 

they know four is not equal to 9 (Carpenter, Franke, & Levi, 2003).   

This second excerpt demonstrated Knowledge of Content and Teaching that 

resulted from Teacher 1.1’s understanding of her students’ misconceptions and her own 

knowledge of the equal sign.  Teacher 1.1 provided her students with true and false 

sentences (Carpenter, Franke, & Levi, 2003) that challenged their understanding of the 

equal sign: “Interviewer [me]: so you wrote true/false sentences with them? Teacher 1.1: 
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yeah and we did all kinds of stuff” (3rd interview), such as “9 = 4 +5.”  Her goal was to 

get her students to gain flexibility when working around an equal sign.   

The response given by Teacher 1.1 to this second task again demonstrated the rich 

descriptions she provided of not only her own mathematical understanding but also of 

how she used her knowledge of student thinking to construct her mathematics lessons. 

Teacher 1.2’s response.  On the Teacher Knowledge Assessment, Teacher 1.2 

gave the answer of “7.”  She wrote on her test that her students would use algebra to 

solve for the unknown.  Her follow-up interview response was a completely different 

answer. In the follow-up interview, Teacher 1.2 focused on the alternative answer choice 

her students might provide.  She explained that “the kids would not acknowledge the first 

number, the number 8, and would put -1 in the box or just 15 in the box” (3rd Interview).  

In both of her responses, Teacher 1.2 assumed that her 5th grade students knew about 

algebra, solving for an unknown, and integers.  Her follow-up interview response also 

indicated that she believed her students would not know what to do with the two numbers 

on the left side of the equation and therefore would ignore the first number (the “8”) and 

then would solve the right side of the equation where they would have to know that they 

are subtracting a positive one from sixteen in order to arrive at an answer of fifteen.  

Students would also have to have an understanding of the equal sign beyond “answer 

comes next.”   

Clearly, Teacher 1.2 demonstrated her ability to solve the problem in a variety of 

ways and potential alternative methods used by students when answering the question.  

This would indicate a presence of Common Content Knowledge and some Knowledge of 

Content and Students in her thought process.  Teacher 1.2 demonstrated Common 
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Content Knowledge showing that she could solve 15 = ____ + 16 by putting a “-1” in the 

blank.  She also showed me during her interview how she would solve the equality 

statement using algebra.  She first “added the 8 and 15 to get 23 and then subtracted the 

16 from both sides to get 7” (3rd interview).  She demonstrated her ability to anticipate 

what students might do to solve the problem (Knowledge of Content and Students): use 

algebra or ignore the “8” and solve for the blank.   

One puzzling piece in the response of Teacher 1.2 was the notion that she 

believed her 5th grade students had a complex, procedural understanding of algebra, 

variables, and the equal sign but they would arbitrarily leave out the first number in the 

equation.  It is unclear whether or not she thought they would just not see the 8 in the 

problem or if they would just not think it necessary to take it into account when solving 

the equality statement (Carpenter, Franke, & Levi, 2003).  Another puzzling idea was the 

amount of middle school and high school level mathematics Teacher 1.2 thought 

elementary school students knew.  The test item explicitly stated the question was given 

to elementary school students and not middle or high school students.  Based on her lack 

of response, it was difficult to understand if she held this belief because of her own 

personal experience as a math learner or from previous teaching experiences or for an 

entirely different reason.  As with the multiple-choice item response, Teacher 1.2 

demonstrated procedural knowledge of the mathematics needed to solve this problem and 

her answer was, again, short and concise. 

Comparison of the Teachers’ Responses Across the Test Items 

Teacher 1.1 and Teacher 1.2 demonstrated Common Content Knowledge when 

discussing their responses to the teacher knowledge assessment items.  First, they were 
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able to complete the elementary school-level tasks, such as indicating the correct number 

in an equality statement and decomposing multiple-digit numbers to complete a 

subtraction problem that included regrouping.  Both teachers demonstrated knowledge of 

comparing 5/9 and 3/7 using benchmark fractions of one-half.  They were also able to 

demonstrate multiple methods for solving 61-36 other than the standard algorithm.   

Where they differed in their knowledge was when it related to student thinking or 

non-standard methods for problem solving.  For example, questions in the teacher 

knowledge assessment that asked the test taker to decide if a non-standard method of 

solving a problem was a method that would work for all whole numbers (i.e.: solving 35 

x 25 as (5 groups of 25) + (30 groups of 25) instead of (5 groups of 35) + (20 groups of 

25) or when using compensation as a means for solving 61-36 rather than the standard 

algorithm) stumped Teacher 1.2.  When asked to think of her own non-standard methods 

for solving 61-36, she provided answers: “models – drawing base ten blocks and crossing 

out 36 of them. Drawing 61 pictures and crossing out 36 of them.” (Teacher Knowledge 

Assessment Test for Teacher 1.2).   

Teacher 1.1, on the other hand, received full credit on those same questions.  The 

only question she did not receive full credit on that dealt with alternative problem solving 

methods was the question: I’ve got 24 balloons that I am going to give out to my friends 

in bunches of 4. How many of my friends will get a bunch of balloons? For this question, 

Teacher 1.1 received two points.  During her interview, she explained that the problem as  
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written was a measurement problem and therefore a drawing (or illustration) of a fair 

sharing type of method would be incorrect: 

I think there are other ways that they would solve it; I think that this is the 
right way to do it as long as you are dealing with measurement. Like other 
kids might try to do fair sharing, some of them might be like just make four 
boxes and they are going to put 6 in each box, which is good if you just 
have 24 divided by four, that’s fine. But in this problem, this is what I 
would want to see and expect to see based on, because I teach a lot of 
measurement division, so I think they would probably go into the four 
boxes and stuff . . . (Teacher 1.1., 3rd interview) 

 
 It is clear in this excerpt that Teacher 1.1 not only understood the mathematics 

behind solving the division word problem but also that the wording of the problem was 

critical when deciding how she ultimately answered the question.  It was also clear that 

the rubric used to grade the responses did not take into account the type of division 

problem being asked and how that might impact a teacher who understood differences 

between measurement and partitive division. 

Looking at the responses from the teacher knowledge assessment alone, it was 

apparent that similar MKT scores were anything but similar when the teachers’ answers 

were closely examined.  Whether or not these differences in MKT plays out in the 

Analysis and Implementation components of the Mathematics Teaching Cycle (NCTM, 

2007) are examined in the next two sections. It is possible that strong Common Content 

Knowledge but less use of Knowledge of Content and Students or Knowledge of Content 

and Teaching might hamper a teacher's ability to plan activities best suited for the 

strengths and weaknesses of the students, as well as impede a teacher’s competence in 

adjusting instruction or task selection based on student thinking in the moment.   
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Analysis, or Planning, of Instruction 

Teacher 1.1 

In general, Teacher 1.1's planning was multi-faceted and complex.  To best 

describe her complex planning system, the following sections will first walk through the 

general structure of how Teacher 1.1 planned, and then the main components of 

Mathematical Knowledge for Teaching that seem to be illustrated throughout her 

planning process are described. 

Teacher 1.1 described a tri-layered structure to her planning.  At the top level, she 

started with the state's Common Core Mathematics Standards Document for the 4th 

grade. After picking the concept to teach, she found all of the standards related to the 

concept. From there, she decided what performance objectives had been covered, which 

ones still needed to be covered, and whether or not students had mastered the objective. 

Once she has determined these three items, she developed a scope and sequence for the 

un-mastered standards and selects tasks to use with the students.  For example, when 

planning a fractions unit, she explained that she ". . . looked at all of the standards that 

dealt with fractions and then I came up with a plan, like okay, this week I am going to 

target on, like you said, how many different ways can you make one whole? How many 

different ways can you make one half? And then, like we talked about, like adding 

fractions with like denominators . . ." (Teacher 1.1, 2nd Interview).  

Once she established the scope and sequence, she examined the released practice 

items for the end of the year state standardized test and other practice booklets to 

determine "exactly what they [the students] are going to be tested on...I literally go 



	   113 

through all of the books so I can see all different types of problems that they are going to 

need to know for planning and then I group them in order" (Teacher 1.1, 2nd Interview).  

Using the revised Bloom's Taxonomy, she decided, "okay these are the types of 

questions [tasks] I am going to answer, ask on Monday, these are they types of questions 

I am going to ask on Tuesday and so on and so on. Monday, if they don't get through it, 

it's Monday, Tuesday, and Wednesday . . ." (Teacher 1.1, 2nd Interview).  She gives an 

example of this sequence from a week where the focus was on ratios, ". . . say like ratios 

was my focus, you know? I'll start off like with like a basic ratio problem, like you know, 

what is this a ratio of and I'll show something. And, you know, by the end of the week 

they'll be dissecting word problems or they'll be like writing a word problem like using 

ratios, you know what I mean?" (Teacher 1.1, 1st Interview, 1/17/12).   

Another example of something she did was "like when I was doing division, you 

know, I would start off like strand one would just be a division problem and as the week 

would go on by like Friday they were, and then they would have to identify, like by the 

middle of the week, identify if it was measurement or fair sharing problem, and then by 

Friday they were creating a measurement or fair sharing problems . . ." (Teacher 1.1, 1st 

interview, 1/17/12). 

Once the sequence of the tasks has been selected for the week, she constructs the 

Math Mastery Wall. The Math Mastery Wall is a set of five open-ended questions that 

relate to the five strands in the Common Core Standards (one question per strand), with 

the understanding that the sixth strand, Mathematical Practices, is embedded within the 

other five.  Teacher 1.1 sets up her Math Mastery Wall so that the students solve all five 

questions each day, but the focus during the lesson pertains to one specific pre-selected 
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strand on the board. Usually, the selected strand and performance objective are the focus 

for the week, while the other four strands are usually reviews of previously learned topics 

or pre-assessments for future topics.  

The last part of Teacher 1.1’s planning process, the one that tied everything 

together, was the use of formative assessment within her planning. She indicated that 

formative assessment happened in two ways. First, at the end of a week of focusing on 

one particular task, she  

gives the students an assessment to see how they do but then in a couple of 
weeks I'll bring it back again and I wanna see that by Monday, I'll give 
'em that word problem and I want to see if they've got it, and if they got it 
then I won't spend time, I'll change it and on Tuesday I'll switch gears and 
I'll go to something that, something new or whatever. If they don't have it, 
then I already have problems written for the rest of the week that's gonna 
kinda back up and go through it again (Teacher 1.1, 1st interview, 
1/17/12).   

 
Teacher 1.1 changed her instruction based on whether or not she saw the students 

mastered a particular concept.  If they demonstrated mastery, she moved onto a different 

concept. She always wrote tasks for the next concept at the end of the week.  If the 

concept was not mastered, she had alternative problems to help the students revisit the 

un-mastered concept.  

Her second type of formative assessment happened at the beginning of teaching a 

new concept. While Teacher 1.1 had her week of tasks planned out ahead of time, she 

often put a problem on the board that mapped to where she wanted the kids to end up. 

She used this challenging problem as a pre-assessment and as an indication of whether or 

not her sequence of tasks aligned to a level just above what her students already knew 

about the standard or if changes need to be made to her sequence. "And sometimes I'll 
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take the hardest one and I'll just put it up there just to see what they will do, you know? 

Just to see what they already know and like where they need to go . . ."(Teacher 1.1, 2nd 

Interview). Next, I examined how Mathematical Knowledge for Teaching manifests itself 

throughout the planning process of Teacher 1.1.  

Across the two interviews conducted with Teacher 1.1, 46 excerpts pertained 

specifically to planning. Table 3 shows how the MKT codes were expressed throughout 

the planning interviews. 

In addition to the codes found independently throughout the planning interviews 

with Teacher 1.1, she also expressed overlapping MKT codes. Eleven different excerpts 

expressed multiple MKT categories. Table 4 describes the complexity of the overlapping 

MKT codes found within her planning process.  

 As noted in the previous section, Teacher 1.1 had one of the highest MKT scores 

relative to the NSF-participants from which the sample in this dissertation was selected. It 

would not be unusual then to think that this high test score would mean her planning  

highlighted many facets of Mathematical Knowledge for Teaching. Such was the case 

with Teacher 1.1. During her interviews, a critical number of the ideas presented of how 

Teacher 1.1 planned lessons illustrated an extensive reliance on Pedagogical Content 

Knowledge, which included Knowledge of Content and Teaching (KCT), Knowledge of 

Content and Students (KCS), and Knowledge of the Content and Curriculum (KCC). It is 

noted that underlying all of these categories is a knowledge of the common content being 

presented to the students and without that common content knowledge, pedagogical 

content knowledge might not be as explicit or important (Bruner et al 2010). Next we will 

examine how MKT presented itself during the planning interviews with Teacher 1.2, who 
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also earned one of the highest MKT scores, relative to the participants in the larger NSF-

funded grant, in order to later compare the similarities and differences between the two 

high knowledge teachers in my sample. 

Table 3 
 
MKT Codes Related to Teacher 1.1’s Planning 
  
MKT category Number of excerpts Description of excerpts 
Knowledge of Content 
and Teaching 

17 total excerpts • 8 about sequencing instruction 
• 2 about posing a new task 
• 1 about each: when to use a students' 

remark to make a mathematical point, 
choosing examples, evaluating 
instructional advantages and 
disadvantages of a particular method of 
representation, deciding which remarks to 
pursue and when to pose a new task based 
on those remarks, when to ask for 
clarification, and deciding which remarks 
to ignore and which to save. 

 
Knowledge of Content 
and Students 

9 total excerpts • 3 about hearing and interpreting students' 
emerging and incomplete thinking 

• 3 about familiarity with common errors 
• 1 about each: knowing what kids will find 

confusing, and anticipating when students 
will find a task hard and predict examples 
students will find motivating 

 
Knowledge of Content 
and Curriculum 

4 total excerpts 4 about knowledge of available resources 
 

Specialized Content 
Knowledge 

3 total excerpts • 2 about being able to unpack 
mathematical knowledge in ways that are 
not necessary in settings other than 
teaching 

• 1 about knowledge of how to make 
features of particular content visible to 
and learnable by students 

 
Horizon Content 
Knowledge 

1 total excerpt 1 about the vision useful in seeing 
connections to much later mathematical 
ideas 
 

Common Content 
Knowledge 

1 total excerpt (although 
this category was 
expressed throughout the 
interviews indirectly) 

1 showed explicit understanding of the 
mathematics in the curriculum 
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Table 4 
 
Multiple MKT Codes in the Planning Interviews 
 
MKT categories Number of excerpts Description of excerpts 
Knowledge of Content and Curriculum 
– Knowledge of Content and Teaching 
– Specialized Content Knowledge 

2 total excerpts In these excerpts, Teacher 1.1 expressed knowledge 
of available resources (KCC) that she used to 
sequence examples (KCT) based on her 
"decompressed mathematics knowledge" (SCK) 

Knowledge of Content and Students  
– Knowledge of Content and Teaching 

2 total excerpts • One expressed an ability to anticipate what 
students are likely to think and what they will 
find confusing (KCS) and use that knowledge to 
evaluate the instructional advantages and 
disadvantages of representations (KCT) to 
determine which representations would be assist 
her student's learning. 

• The second excerpt demonstrated her ability to 
anticipate how students will solve a problem 
(KCS) and use that to sequence her instruction 
(KCT) 

Knowledge of Content and Teaching 
 – Knowledge of Content and Students 

2 total excerpts In these excerpts, Teacher 1.1 sequenced instruction 
(KCT) from most difficult to least difficult through 
anticipating what tasks students might find difficult 
(KCS). The point of this was to use a difficult 
question as a pre-assessment to the unit on 
equivalent fractions 

Knowledge of Content and Teaching 
 – Knowledge Content and Students 
– Knowledge of Content and Teaching 
– Knowledge of Content and 
Curriculum 

1 excerpt This excerpt showed how Teacher 1.1 sequenced 
instruction (KCT) based on her ability to unpack 
mathematical knowledge embedded in a particular 
concept like fraction development (SCK). Once she 
sequenced the instruction, she was able to choose 
and sequence examples (KCT) based on her 
extensive knowledge of available resources (KCC). 

Knowledge of Content and Teaching  
– Knowledge of Content and Students 
– Knowledge of Content and Teaching 

1 excerpt In this excerpt, Teacher 1.1 knew when to pose a 
new task (KCT), anticipate what the students would 
find difficult in the task (KCS), and then evaluate 
instructional advantages and disadvantages of 
specific representations (KCT) to determine which 
representation would assist her teaching best. 

Specialized Content Knowledge  
– Knowledge of Content and Teaching 

1 excerpt In this example, Teacher 1.1 was able to decide 
between problems (SCK) that represented the 
particular mathematical concept and use that 
knowledge to choose examples to use in her teaching 
(KCT) 

Knowledge of Content and Teaching  
– Knowledge of Content and Students 
– Specialized Content Knowledge 

1 excerpt This excerpt demonstrated Teacher 1.1's ability to 
determine when to pose and new task (KCT) and her 
ability to hear and interpret students' emerging and 
incomplete thinking (KCS). During her explanation 
of their thinking, she was able to break down what 
the student did mathematically (SCK). 

Horizon Content Knowledge  
– Specialized Content Knowledge 

1 excerpt This excerpt demonstrated Teacher 1.1's knowledge 
of connections to much later mathematical ideas 
(HCK) and her ability to unpack the mathematics in 
ways unnecessary to professions other than teaching 
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Teacher 1.2 

In general, the planning process described by Teacher 1.2 focused on achieving 

the district and school administrative directives. For example, on a broad level, Teacher 

1.2 planned lessons and structured her time according the district curriculum map given 

to the teachers at the start of each school year. On a more limited level, meaning the level 

of classroom instruction, Teacher 1.2 planned lessons based on the specific time 

allotments and prescribed programs given to the teachers by her school administration. 

The following sections will first walk through the general structure of how Teacher 1.1 

plans and then we will describe the main components of Mathematical Knowledge for 

Teaching that seem to be illustrated throughout her planning process.  

There are two levels to how Teacher 1.2 planned her lessons. At the top level is 

the District Curriculum Map. This map was designed by employees of the district and is 

based on what students need to know by the end of each quarter before taking the district 

quarterly assessment. The idea was that by the time the students take the state 

standardized test at the end of the year, all of the state's standards will have been 

mastered by the students at each grade level, if a teacher follows the district curriculum 

map. Teacher 1.2 uses this map as her guide for what to teach each day.  

Since Teacher 1.2 refused audio-recordings during either the interviews or 

instructional time, all of her statements presented here are imperfect quotes. The 

researcher did her best to ensure quotes were written down exactly and confirmed by the 

participant. This is a limitation to the study and might influence the interpretation of the 

data. With that said, Teacher 1.2 stated that the district plans for them. They were given 
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the topics for each day but there was time built into the schedule to reteach concepts that 

students did not learn the first time through (Teacher 1.2, 1st interview, 1/26/12).  

To assess learning, Teacher 1.2 used the weekly district assessments as her guide. 

Employees of the district created these assessments. Each assessment contained about 5 

questions related to the mathematical concepts taught during the week. The assessment 

questions were adapted from a computer-based program called Study Island. Upon 

analyzing her 3rd quarter weekly tests, Teacher 1.2 assessed that 64% of her students 

passed the 3rd quarter content overall. She used this knowledge to decide who was a low 

student and who did not know the material. These students were placed into a small 

group for reteaching (Teacher 1.2, 2nd interview, 2/27/12). She admitted, however, that 

she believed that the Study Island questions were tougher than the state standardized test 

questions at the 5th grade level and this made her wary of relying on the weekly tests for 

assessing students. For example, she said the weekly tests asked the students to multiply 

3-digit by 2-digit numbers when the standard for multi-digit multiplication in 5th grade 

was 2-digit by 2-digit. She continued stating that it was good to have the weekly tests be 

harder than the quarterly test or state standardized test because then those two important 

tests were easier for the students (Teacher 1.2, 2nd interview, 2/27/12). She further 

explained that the writing and reading weekly tests were at grade level and her 83% and 

74% of her students passed those on average in the 3rd quarter respectively.  In addition, 

she explained that it was the same 10 kids that failed and the same 10 that passed each 

week. This knowledge helped her to structure her Math Wall and decide who needed to 

be in a small reteach group each week.  
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The second level of planning explained by Teacher 1.2 was about her daily lesson 

plan. Again, she explained that like the unit planning, the daily lessons were structured by 

the administration at her school. The teachers were allotted 15 minutes for the Math Wall 

(this time was the only flexible time in the hour), 10 minutes to discuss the steps of 

problem solving and 5 minutes for math facts (both of which were out of the Otter Creek 

curricula), and 30 minutes for the standard of the day (as determined by the District 

Curriculum Map).  

The Math Wall questions were based on the AzAC test results and the weekly 

tests. She used the data to determine what concepts the students struggled with most and 

then she created questions for each strand on the Math Wall. The questions mainly 

focused on basic facts because that is what her students struggled with most often. She 

explained that each day she was supposed to review all five strands and then change the 

questions for the next day but she chooses to stay with similar topics each week. By 

staying with similar topics, she explained that she mainly just changed the numbers in the 

questions. She believed that changing weekly instead of daily allowed for connections to 

grow and stay (Teacher 1.2, 1st interview, 1/26/12). At the end of the week, she assessed 

learning with the weekly test. The students who failed to pass the test were placed into a 

small group where the students could focus better on the procedures they were taught 

during the week (Teacher 1.2, 1st interview, 1/26/12). Her thinking was the students did 

not need a new method for solving the problem just someone on top of them to keep them 

focused and "make them believe they can do it by letting them see their progress" 

(Teacher 1.2, 1st interview, 1/26/12). Now that we've investigated the general outline of 
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how Teacher 1.2 plans, we will examine how her Mathematical Knowledge for Teaching 

manifests itself throughout her planning. 

Across the two interviews, 9 excerpts pertained specifically to planning. In eight 

other excerpts, Teacher 1.2 demonstrated her common content knowledge needed to 

solve various algebraic problems given to her students on their weekly district 

assessments. While trying to explain what her students got wrong on the tests, she solved 

each of the problems correctly. We will look at the 9 excerpts according to Ball et al, 

2008. 

Teacher 1.2 had one of the highest MKT scores, relative to her peers participating in the 

NSF-funded grant. Like with Teacher 1.1, it would not be unusual for a person to think 

the high MKT score would indicate complex planning based on the high level of 

knowledge about the mathematics and about the teaching of mathematics shown on the 

knowledge test. In this case, however, the two planning interviews illustrated that 

planning was something for which Teacher 1.2 found already provided for her by the 

school level and district level administration. Her role, in planning, then, was to use the 

data provided by the district to manipulate the Math Board questions to function as a 

review and reteaching of concepts students still found difficult after the presentation of 

the original lesson. Beyond this, Teacher 1.2 followed the District Curriculum Map and 

the adopted textbook to plan her teaching.  

In summary, both teachers received relatively high scores on a teacher assessment 

test. They both demonstrated high common content knowledge for their subject matter, 

knowledge of how to break down the mathematics being taught, and, for the most part,   
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Table 5 
 
MKT Codes Related to Teacher 1.2’s Planning 
 
MKT category Number of excerpts Description of excerpts 
Knowledge of Content 
and Curriculum 

4 total excerpts • 3 excerpts discussed the available 
curriculum provided by the district 
for her to use as a resource 

• 1 excerpt discussed the limitations 
of Study Island but also how she 
found the limitations beneficial for 
her students' learning 

 
Knowledge of Content 
and Teaching 

3 total excerpts • 2 excerpts described when Teacher 
1.2 thought it was wise to stay with 
one topic on the Math Board and 
when she decided to pose a new 
task 

• 1 excerpt described how she 
sequenced instruction on the Math 
Board and the benefits of concepts 
spiraling 

 
Specialized Content 
Knowledge 

1 excerpt In this excerpt, Teacher 1.2 explained 
what aspect of multi-digit 
multiplication her students found 
difficult. She broke apart components 
in multiplication and explained which 
part was tricky 
 

Knowledge of Content 
and Students – 
Knowledge of Content 
and Teaching  

1 excerpt In this excerpt, Teacher 1.2 
anticipated whether or not a task was 
easy or hard for the students and how 
she adjusted her sequence of 
instruction to accommodate 

 
were able to decipher non-standard methods of problem solving on that test. But what 

does that mean practically? How does this knowledge translate to what they do as 

teachers? In this section, we examined how these two teachers described their planning 

process. Both teachers discussed the resources they use, the tasks they select, the purpose 

of their tasks, and even some beliefs about their roles as teachers during their interviews. 
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While examining beliefs is not a major component of this dissertation study, it is critical 

to note the importance of understanding and acknowledging teacher beliefs when looking 

at practice (Thompson, 1992). When analyzing qualitatively, similarities and differences 

appeared between the two teachers. Those similarities and differences are explained next. 

Mathematical Knowledge for Teaching and Planning: A Comparison Between 

Teachers 1.1 and 1.2 

To organize a comparison, I looked across the two main domains within 

Mathematical Knowledge for Teaching. First, I examined how the components of Subject 

Matter Knowledge were expressed in the planning interviews and then I examined the 

Pedagogical Content Knowledge impact.  

Specialized content knowledge comparison.  Teacher 1.1 made explicit 

comments that pertained to her use of specialized content knowledge.  Of the 46 excerpts, 

three of them pertained to some form of SCK, while in 11 other excerpts SCK overlapped 

with other subcategories of MKT. Teacher 1.2 only referred to SCK once in her excerpts. 

This does not mean that Teacher 1.2 does not utilize SCK as much as Teacher 1.1. It 

signified that during the interviews her remarks did not indicate the unpacking of the 

mathematics quite so much as Teacher 1.1. Only Teacher 1.1 expressed the last 

component, Horizon Content Knowledge, during the interviews. She was able to discuss 

how she knew where she wanted to go with the students to build the foundation for 5th 

grade math and higher-level math when it came to fraction development. This discussion 

of other grade level mathematics might have been sparked by the fact that she had just 

taught 5th grade the previous year. The lack of HCC examples presented in the 
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interviews aligns with research results from the Mathematical Knowledge for Teaching 

study (Ball et al, 2008; Hill et al, 2010). 

Pedagogical content knowledge comparison.  Pedagogical Content Knowledge 

has three subcategories as well: Knowledge of Content and Students, Knowledge of 

Content and Teaching, and Knowledge of Content and Curriculum. The major 

differences for these two teachers regarding planning showed up when analyzing the data 

for PCK.  As might be expected, about 90% of the excerpts for each teacher pertained to 

PCK.  Specifically for Teacher 1.1, forty-one out of 46 comments were related to 

Pedagogical Content Knowledge, while for Teacher 1.2, 8 out of 9 comments 

exemplified aspects of PCK. The differences came when looking deeper into what parts 

of Pedagogical Content Knowledge were discussed.  Knowledge of Content and 

Teaching characterized 17 excerpts for Teacher 1.1 and 10 of the 11 excerpts that housed 

multiple components of PCK, while for Teacher 1.2, KCT was represented in 3 excerpts 

and 1 combination excerpt. For Teacher 1.1, KCT manifested mostly as sequencing 

instruction and knowing when to pose a new task. For Teacher 1.2, all three excerpts 

discussed determining when to pose new tasks for students.  Knowledge of Content and 

Students was the next highest category for Teacher 1.1. Nine of the excerpts exemplified 

KCS and 5 of the 11 combined excerpts related to KCS topics. It manifested 

predominantly through hearing and interpreting emerging and incomplete student 

thinking when categorized alone. For the combination excerpts, KCS was illustrated 

through anticipating what tasks students would find difficult or easy. For Teacher 1.2, 

Knowledge of Content and Students was exhibited only in the excerpt that combined 

KCS and KCT. It manifested as being able to anticipate when students would find a 
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particular task hard or easy. The last part of Pedagogical Content Knowledge is 

Knowledge of Content and Curriculum. For Teacher 1.1, she talked extensively about the 

available resources that she uses outside of those provided by the district (KCC) on 4 

different occasions. Teacher 1.2, however, extensively talked about the district 

curriculum and resources provided by the district as her go-to references for teaching 

(KCC). It should be noted that KCC has yet to be confirmed as its own category, 

according to Ball et al, 2008. It is possible that KCC is actually a part of KCT or 

embedded within many of the components of MKT, for now, though, it is considered its 

own subcategory.  

Discussion of differences in MKT when planning.  So, what might account for 

these differences in the planning of two knowledgeable teachers? A few themes that 

appeared across the four interviews (two per teacher) might account for the differences in 

how MKT impacted planning.   

Teacher training.  First, teacher training was talked about with both teachers. 

Teacher 1.1 attended a large university in the Midwest that is regarded for excellence in 

research on teaching and for their teacher-training program, especially in mathematics 

education. Teacher 1.1 attributed her wealth of knowledge of alternative methods for 

problems solving and how to elicit student thinking in ways that informed instruction on 

her teacher training. She expressed that the NSF-grant followed much of what she had 

learned in college and was a great extension for her own learning as a teacher during the 

two years she participated on the grant.  

Teacher 1.2 only referenced her pre-service learning when directly asked about 

her training. She explained that she received a very traditional training in her methods 
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course and that the information she was exposed to while participating on the NSF-grant 

was new to her. Thus, one reason there might be discrepancies in the use of components 

of pedagogical content knowledge might be the differences in pre-service teacher training 

experienced by the two teachers. 

High-stakes testing.  Another theme and possible explanation might be because of 

how the two teachers approached high stakes testing. Teacher 1.1 expressed multiple 

times that her goal was to build conceptual understanding of the 4th grade curriculum in 

her students. That conceptual foundation would assist the students as they navigated 

through the state standardized tests. She explained that once she understood all of the 

various types of problems the students might see on the test, she could decide how to best 

approach the teaching of the concept. She did not believe in using traditional test 

preparation methods, such as talking through multiple choice answers or only giving 

questions that were seen on the test to the students daily, instead her test preparation was 

based on teaching kids how to problem solve, critique their answers, solve in multiple 

ways, justify their answers, estimate, draw their thinking, rationalize, understand the 

question, etc. She also felt that the district curriculum guide did not allow for conceptual 

development to occur. She did not agree with the learning progression built into the map. 

Teacher 1.1, instead, used her own knowledge of the mathematics content and resources 

from the Internet, Test prep booklets, and current research to create a learning 

progression that suited the needs of her students. Teacher 1.2 did the opposite. She used 

the District Curriculum Map because she felt it mapped to the state standardized tests and 

the district quarterly assessments. For her, learning was the goal but having her students 

pass the test was the main focus. Therefore, she used the resources she was told best fit 



	   127 

the needs of the students. It is possible that teacher 1.2 did not know of other resources to 

use or was not comfortable using outside resources as her evaluations in the district 

depended upon the administration seeing specific things happening in her classroom.  

Role of teacher.  The third theme that might influence the planning is how the two 

teachers view their roles as teachers. Teacher 1.1 expressed that she is a guide who 

facilitates learning. She figures out what the students know and do not know, then she 

finds tasks that help students figure out what they do not know, and then she reassess the 

students, and moves on to another topic. During the class time, she expressed that she 

selects students to share who have something interesting or relevant to helping other 

students figure out how to solve a particular problem. Again, this facilitation of selecting 

students is her method of guiding the class to a particular understanding of the 

mathematics being taught. For Teacher 1.1, the learning and teaching really happens at 

the hands of the students. Teacher 1.1 has a progression in mind and a goal for the lesson 

but each day the learning that occurs is determined by the students and what they present 

to her and the rest of the class. Doing this type of guiding means the teacher has to have a 

deep understanding of the mathematics, the possible avenues the students might travel 

down when problem solving, how to assist students who veer in the wrong direction, and 

knowledge of tasks that get at specific aspects of the standard being taught. This type of 

knowledge was apparent in Teacher 1.1's planning interviews.  

Teacher 1.2, on the other hand, explained that she was there to help motivate kids 

and keep them focused on the schedule provided by the district. Her instruction followed 

the district map and the textbook provided by the district. When explaining how students 

might solve particular problems, she explained the standard algorithm and then said if 
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they struggled she would put them in a small group so they could focus better on the 

method. In many ways, her role was to impart knowledge and to systematically work 

through the district's set plan for getting kids ready to pass the state test. It is possible that 

the limited exposure Teacher 1.2 has had to alternative modes of teaching mathematics 

concepts hampered her planning and ability to look at student thinking as a springboard 

for planning. It is also possible that the beliefs these teachers hold about the role of the 

teacher is something that needs to be further explored using a well-respected belief 

survey or other type of qualitative protocol. There does seem to be something related to 

their ideas about the role of the teacher and what it means to teach that impacts their 

knowledge and planning.  

In the following section, we moved to explaining the classroom instruction of 

Teacher 1.1 and 1.2 as we move toward the final step of understanding possible reasons 

as to why teachers with similar MKT scores have very different student change scores 

over a school year. The section will examine the general look of each class if an observer 

walked in, the cognitive demand of the tasks (Stein et al, 2009), the types of questions 

asked by the teachers according to Bloom's Taxonomy, and the types of responses 

provided by students to both the teacher and each other. 

Implementation 

 The Implementation Phase of the Mathematics Teaching Cycle included: the 

learning environment, selection of meaningful tasks, and discourse. For this section, I 

presented the entire Implementation Phase components for each teacher and then 

compared the two teachers. Using this format for discussing the instruction component 
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seemed more comprehensive and coherent than jumping between the components and the 

teachers.   

Teacher 1.1 

 The instructional practice of Teacher 1.1 was evaluated using three methods: 

CLASS observation protocol, the Mathematical Tasks Framework, and Bloom's 

Taxonomy.  Across all three tools, one could see that Teacher 1.1 created a classroom 

environment based on student thinking and exploration of ideas, discourse, positive 

interactions among students and with the tasks, and conceptual learning. Teacher 1.1 also 

provided evidence in her instruction of high reliance on her Specialized Content 

Knowledge, Knowledge of Content and Students, and Knowledge of Content and 

Teaching.  These were not discrete occurrences of these knowledge types but instead 

interconnected, dynamic relationships among the MKT categories throughout her 

observed teaching. The following sections provided the evidence to support this 

comprehensive summary. 

The learning environment.  

 Classroom Assessment Scoring System (CLASS) observation.  The learning 

environment of the classrooms in this case was assessed using the CLASS observation 

protocol.  The interactions evaluated using the CLASS protocol were scored on a 1 to 7 

scale.  A score of 1 or 2 meant a low frequency of something occurring.  A score of 3, 4, 

or 5 indicated a mid-range frequency of something occurring. A score of 6 or 7 indicated 

a high frequency of an interaction occurring.  The importance of using this protocol and 

rubric system to assess the learning environment was because it aligned with much of the 

NCTM (2007) description of what a mathematics classroom should look like.  For 



	   130 

example, the CLASS protocol examined climate, how much flexibility students received 

to taken on leadership roles in the classroom, time for students to share, risk taking, and 

engaging in mathematical discourse. These ideas coincide with the ones described by the 

NCTM in the Mathematics Teaching Cycle. 

In addition, the CLASS protocol allowed me to look for links between the 

interactions that occurred in the learning environment with MKT categories.  Linking 

these two ideas helped with triangulation of data when making conjectures about MKT 

and classroom instruction. 

Teacher 1.1.  Six CLASS observations were conducted during the time period in 

which Teacher 1.1 was observed. Two were conducted in October and November 2011  

and four were conducted in January and February of 2012. The following Table shows 

the average scores across the 10 dimensions for teacher 1.1:   

Table 6 
CLASS Scores for Teacher 1.1 
Dimension Average Score 
Positive climate 6.5 
Negative climate 1.167 
Teacher sensitivity 5.83 
Regard for student perspectives 5.67 
Behavior management 6.16 
Productivity 5.5 
Instructional learning formats 6 
Concept development 5.16 
Quality of feedback 5 
Language modeling 4.83 
 

Except for the scores in Negative Climate and Language Modeling, Teacher 1.1 

received, on average, 5s and 6s for eight out of the ten dimensions. Negative climate was 

below a 2, meaning very few negative interactions occurred during the observation 
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period. Language modeling was a 4.83. This score is in the middle range but was tied for 

the second highest score on this dimension when compared to all of the teachers 

participating in this dissertation.  

When composite scores were calculated for the three CLASS domains, Teacher 

1.1 received a 6.20 on Emotional Support, a 5.89 on Classroom organization, and a 4.996 

on Instructional Support. Again the scores based on a scale of 1 to 7, with 1 as the lowest 

score and 7 as the highest. As we can see by the scores for Teacher 1.1, the interactions 

pertaining the Emotional Support were high. This means that there was on average a high 

positive climate, a low range of negative interactions happening, the teacher was aware 

and responsive to her students' needs and students also asked questions and talked in this 

classroom. It also captured the fact that the teacher incorporated students' ideas into the 

activities, followed the students' lead much of the time, gave students responsibility and 

choice in the classroom, encouraged talk among and between the students, and was able 

to elicit students' ideas and thinking about the tasks (Pianta et al, 2008).  

The Classroom Organization score was also high in this classroom. Teacher 1.1 

set clear expectations and enforced them consistently. She was proactive in anticipating 

behavior problems and in monitoring for potential problems during activities. She used 

efficient redirection and subtle cues to redirect students who were getting off task. 

Students complied with Teacher 1.1's expectations and were infrequently defiant. The 

classroom environment allowed for high productivity, for the most part. Students knew 

what to do and transitions between activities were brief and concise. Materials were 

prepared ahead of time and the teacher knew how to keep a steady pace throughout the 

class time. In this classroom, the teacher demonstrated effective lines of questioning that 
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kept the focus and attention of students. A wide range of auditory, visual, and movement 

opportunities were provided for students to complete the mathematics tasks.  

Lastly, Teacher 1.1 received a middle of the range score, for Instructional support, 

but it was on the high end of the middle range. There was a high middle range score for 

items pertaining to analysis and reasoning, brainstorming, planning, connections across 

mathematics concepts and application to real-world situations. There were also high-

middle range scores for "the degree to which the teacher provides feedback that expands 

learning and understanding and encourages continued participation" (Pianta et al, 2008, 

p. 72) and middle range scores for "the quality and amount of the teacher's use of 

language-stimulation and language-facilitation techniques" (Pianta et al, 2008, p. 79).  

Overall, the CLASS observations captured a classroom where a large majority of 

the instruction encouraged positive interactions between the teacher and students and 

among the students themselves that aided in the learning of 4th grade math. Students 

were active participants in the classroom, their comments often drove the direction of the 

lesson, and the teacher was aware of the needs of her students. This description aligned 

well with how Teacher 1.1 structured her lessons, planned, and her MKT scores. One 

main focus in her planning was utilizing student thinking as a platform for generating 

tasks and direction of the lessons, which described two dimensions in the CLASS 

protocol: regard for student perspectives and teacher sensitivity. These two dimensions 

align nicely to the subcategory of Knowledge for Content and Students found in 

Mathematical Knowledge for Teaching.  They all pertain to how a teacher anticipates 

what difficulties students might have with particular problems and how to plan 

accordingly. They also focus on a teacher understanding what motivates and interests the 
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students regarding the content. There is also a large portion of the two dimensions and the 

KCS category that focus on hearing students' thinking in emerging and incomplete 

thoughts. In addition, teacher sensitivity and having regard for student perspectives aligns 

with components in Knowledge of Content and Teaching. For example, Teacher 1.1 

showed high scores for regard for student perspectives, which encompassed allowing 

students to lead the lessons, incorporated students' ideas, and encouraged student talk. 

Knowledge of Content and Teaching included deciding which student contributions to 

pursue, which to ignore, and which to save for later, when to ask for clarification, and 

when to use students' ideas to make a mathematical point (Ball et al, 2008). 

 The middle of the range CLASS scores was mostly seen in conceptual 

development, quality of feedback and language modeling. These range scores aligned 

with her planning interviews, as well. Teacher 1.1 alluded to needing to enhance these 

aspects in her own teaching. She realized that she was asking mostly knowledge 

questions over the last few years of teaching when she needed to be asking questions that 

got at higher-thinking. There were also a few observations conducted where the focus of 

the lesson ended up being about constructing a number line accurately rather than the 

assigned task. While the construction of an accurate number line is an important 

component of mathematics development, multiple occasions of this activity inhibit 

productivity and the learning of other mathematical ideas about, in these instances, 

fractions. The change in focus of the lesson did impact her scores on sensitivity and 

regard for student perspectives. Again, aligning to her communication about using 

student thinking as a driving force for planning (Teacher 1.1, 1st interview).  



	   134 

Unfortunately, subcategories in MKT are harder to find in these CLASS 

dimensions. On a general level, these middle range scores on the CLASS protocol might 

match with Specialized Content Knowledge and the unpacking of mathematical ideas in 

ways specific to teaching because these three dimensions look at the unpacking of the 

mathematics content and being able to find ways to make parts of particular content 

visible to and learnable by students (Ball et al, 2008).  Next, we examined the cognitive 

demand of tasks given by Teacher 1.1 (Stein et al, 2009).  

Worthwhile mathematical tasks and classroom discourse. 

The mathematical tasks framework (Stein et al, 2009) for Teacher 1.1. Six one-

hour classroom observations were used to assess the teachers' instruction in this 

dissertation. During the six observations on Teacher 1.1, between one and five tasks were 

assigned during a single class period, for a total of 19 written tasks given to the students.  

Overall, there were a total of 2 memorization tasks, 11 procedures without connections 

tasks, 4 procedures with connections tasks, and 1 doing math task (Stein et al, 2009).  The 

following table provides examples of the different types of tasks assigned by Teacher 1.1. 

 To best understand how Teacher 1.1 implemented the written tasks and how the 

implementation related to MKT, I used the following memorization task that was given 

on January 24, 2012: “plot 1/5,2/5, 3/5, 4/5, and 5/5 on a number line. On a second 

number line, plot 1/10, 3/10, 5/10, 9/10, and 10/10.” There was a number line drawn 

underneath the question with the points “0” and “2” at each end.  
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Table 7 

Cognitive Demand Level of Tasks Given by Teacher 1.1 

Classification of task Example Explanation 

Memorization Plot 1/5, 2/5, 3/5, 4/5, and 5/5 on the 
number line. Plot 1/10, 3/10, 5/10, 
9/10, and 10/10 on a second number 
line 

As written this task involves reproducing 
already learned facts and "have no 
connection to the concepts or meaning that 
underlie the facts, rules, formulae, or 
definitions being learned or reproduced" 
(Stein et al, 2009, p. 6). 
 

Procedure without 
Connections 

"87 x 56" and "The students in the 
sunshine club are making cards. 
They can each choose one sheet or 
construction paper: green, purple, or 
orange. And one shape to glue on it: 
a smiley face, a star, or a heart. How 
many different kinds of cards can be 
made?" 
 

These tasks are algorithmic and require 
limited cognitive demand for successful 
completion, as written. They are "focused 
on producing correct answers rather than 
developing mathematical understanding" 
(Stein et al, 2009, p. 6) and they "require 
no explanations, or explanations that focus 
solely on describing the procedure that was 
used" (p. 6). 
 

Procedures with 
Connections 

"Stephanie had 37 inches of ribbon 
to make hair bows for her amigas. If 
each bow needs 7 inches to be 
made, how many friends get bows? 
How much ribbon is left?" 

This task "requires some degree of 
cognitive effort. Although general 
procedures maybe followed, they cannot be 
followed mindlessly. Students need to 
engage with conceptual ideas that underlie 
the procedures in order to successfully 
complete the task and develop 
understanding" (Stein et al, 2009, p. 6) 
This task also requires students to think 
about what they are answering and how 
they will get to the answer. In addition, 
there are multiple ways in which a child 
might solve this problem and there is a 
demand on the children to monitor their 
own thinking because the answer they 
might initially end up with might not be the 
answer to the question presented. 
 

Doing Mathematics "Karla baked a batch of 37 brownies 
for a bake sale. If she places an 
equal amount of brownies into 7 
containers, how many brownies will 
be left over? Show your method for 
solving." 

This task is at the highest level of cognitive 
demand because "there is not a predictable, 
well rehearsed approach or pathway 
explicitly suggested by the task, task 
instructions, or a worked-out 
example"(Stein et al, 2009, p. 6). In fact, 
there were no examples modeled or 
instructions given about solving this task 
until after the students had tried to solve it 
on their own. Thus, this task "required 
students to access relevant knowledge and 
experiences and make appropriate use of 
them in working through the task" (p. 6). 
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Students worked independently on this task at the start of the school day.  During 

math time (when my observations occurred), students worked in groups to answer the 

question.  The students were expected to discuss their strategies and decide how best to 

present their thinking as a group to the class.  Teacher 1.1 walked around the class during 

the group work time questioning students about their ideas.  She used the information she 

gathered to select students to share the work on the board.  The students were selected 

based on factors such as: incorrect answers but good strategies, novel strategies, having a 

strategy that represented what most of the class thought, or having a strategy that could 

help students who used a similar strategy incorrectly (Teacher 1.1, 2nd Interview).  

One student selected to share his groups’ thinking was Carlos.  Carlos went to the 

board and drew a number line that had hash marks placed haphazardly from 0 to 5/5.   

Teacher 1.1: I want to know exactly what you did because they have no 
idea what you are thinking, they have no idea what goes on in this head of 
yours so you need to tell them what was going on in your guys' brain, start 
with this one what was the first thing that you did?  
Carlos: we started 
Teacher 1.1: don't talk to the board, talk to the class 
Carlos: we started with the fifths and put them in order 
Teacher 1.1: how did you know the 1/5 went right there? 
Carlos: it's next to zero and zero is right there 
Teacher 1.1: so you knew, okay so you are saying that you knew that 1/5 
would be closer to zero than the what?  
Carlos: zero 
Teacher 1.1: you knew 1/5 would be closer to zero than what? 
Carlos: then half 
Teacher 1.1: so did you figure out where the half would be first? 
Carlos: yeah 
 

 Using a mixture of Comprehension and Analysis questions (Bloom, 1956), 

Teacher 1.1 encouraged Carlos to explain his thinking (see Appendix E – Maintenance of 

high-level cognitive demand factor 4: sustained justification and explanation through 
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teacher questioning).  She further assessed the students’ learning through asking the 

whole class to evaluate their own work against what Carlos presented. 

Teacher 1.1: why didn't you put anything over here? 
Carlos: because there is no . . . ??. . . there' no 6/5, 7/5 
Teacher 1.1: okay so you're right, so he's saying, I am asking him alright 
so the number line I did this on purpose because I am tricky. The number 
goes from zero to what class? 
Class: two 
Teacher 1.1: and he only used this side. How many of you guys did that? 
Only did, you only put it from zero to one? And I asked him well how come 
he didn't put anything over here and he's like we'll there's no 6/5, 7/5, in 
other words there's not more than what? 
Class: 5 
Teacher 1.1: one whole. Right. Actually what you did first is you figured 
out where 5/5 went. And 5/5 is equal to what class? 
A group of kids: one whole 
 

 Again, we see Teacher 1.1 pressing the students to ensure that they understand 

“one whole” and what it meant to extend beyond one whole on the number line.  At this 

point, Carlos explained that he finished his number line by plotting the rest of the points 

in order.  Teacher 1.1 used Carlos’s explanation and description to make her own number 

line. 

Teacher 1.1: okay, so he's [Carlos] saying you need to put them in order, 
do you guys agree? Like 1/5, then 2/5/, then 3/5, then 4/5, do you guys all 
agree with that? Okay, he's right. Here's my question, if I have the number 
line right here, alright I'm going to do exactly what Carlos did, alright? He 
said zero to 5/5. He said went in order from 1/5, 2/5, 3/5, 4/5, right? 
Because one-fifth is closer to zero, if you only have 1/5 that's closer to not 
having one candy bar than having a whole one, right? Right? So he said 
you had to go in order, right? 
Kids: right 
Teacher 1.1: okay, here's my question, I am going to do exactly what he 
said you guys tell me what you think . . . [she draws her number line. The 
distances between points varies] tah dah! Cool? Does that look right to you 
guys? 
Kids: no 
Teacher 1.1: pretty cool. How many of you guys think that looks right? You 
agree with me? Nobody agrees with me? Why not? You know I could fail 
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you, right? Nobody agrees with me? Why not? What’s wrong with it? I did 
exactly what Carlos said. I made my number line, 0 to 5/5 and I went in 
order just like a candy bar goes in order. Here's my whole, 1/5, 2/5, 3/5, 
4/5, 5/5, it's in order. Right? Cause from here to here is one fifth [points to 
her number line]. This is a 1/5 piece, this is a 1/5 piece [the point is right 
next to the first “1/5,” this is a 1/5 piece [much further away], 1/5 piece [at 
the far right of the number line, almost on top of the last fifth], 1/5 piece, so 
from here to here that's 2/5 right? so I went in order, so why is that wrong? 
You're right that's not right! Why is this wrong? 
 
Teacher 1.1 drew a number line similar to ones found on the papers of other 

groups in the classroom (SCK – recognizes error patterns in students' thinking). She used 

this knowledge (KCT – using a students’ remark to make a mathematical point) to expose 

the misconceptions the students had about fractions (KCS – knowledge of common 

misconceptions in student thinking) and then engage in a conversation about what a 

fraction represented (see Appendix E – Maintaining high level cognitive demand #1 – 

scaffolding of student thinking).   

Teacher 1.1:  . . . so why can't I do it? [Can’t hear her] huh? [Can’t hear 
her] the 5/5 doesn't go there? But that's my whole.  
Boy: because the 1/5, the 2/5, the 3/5, and the 4/5 are not separate. 
Teacher 1.1: what do you mean by that? 
Same boy: like, the 1/5 it has to be like a little bit separately 
Teacher 1.1: why do they need to be more separate? 
Same boy: because it's like um if it's lie half or like um  
Teacher 1.1: well, like technically guys I want you to look at what 4/5 
looks like. Okay? Does that look like closer to zero, half or one whole? 
Kids: one whole 
Teacher 1.1: it looks closer to one whole. Do you see where 4/5 is right 
there? What does that look like on a number line? That looks like it is 
closest to half right? Basically what I just did on this number line, I am 
saying the way that I did it. If I were to draw it like on a candy bar, it 
would look like this. Here’s 1/5, here's 2/5, here's 3, so this would be like 
a 1/5 piece, this is a fifth piece, this is a fifth piece and this is a fifth piece. 
What’s wrong with that? Joy? 
Joy: four pieces are 
Teacher 1.1: are what? 
Joy: aren't all the same 
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 Through scaffolding, Teacher 1.1 lead her students to the realization that the on-

fifth pieces needed to be equal distances on the number line (SCK – being able to unpack 

a mathematical concept in a way that is transparent and learnable by students).  Teacher 

1.1 never told the students that the fractional pieces had to be equidistant, instead she 

used what the students knew in conjunction with her own understanding of fractions to 

create a learning environment where student thinking propelled learning and the 

acquisition of a specific concept.  Teacher 1.1 started with a memorization task and raised 

the level of cognitive demand through her questioning, use of student thinking, and her 

own content knowledge.   

In another example from the same observation, the students were given a task of 

selecting a number sentence that represented a word problem about a student who broke 

three dishes when unloading the dishwasher. As written, the task was a procedure without 

connections. The students solved this problem and selected their answer at the start of the 

day. When they reached this question during math time, Teacher 1.1 asked the students to 

reexamine their answers and assigned them three things to complete when reexamining: 

a) write the letter that represented the answer choice that they selected from the three 

possibilities, b) write the number sentence that corresponded with the answer choice, and 

c) label each part of the number sentence with what it represented in the problem. She 

gave the students a few minutes of class time to make sure they answered all three 

components of what she asked. She proceeded asking, "how many of you guys changed 

your answer? How many of you guys started to write out your answer and label it and 

then you realized, uh oh! I need to change my answer? Did that happen to you guys? 

Good, that's okay, that's what you should be doing.” She waited and then refocused the 
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children, "so I am going to ask you again, how many of you guys had your answer this 

morning like when you were working on your math mastery and then as you guys started 

writing it, you are like uh oh! I didn't do this right. You changed your answer? How many 

of you guys did that? Awesome!" 

This snippet was another example of how characteristics of Knowledge of Content 

and Students and Knowledge of Content and Teaching appeared in the instruction of 

Teacher 1.1. First, the teacher presented the original problem to the students at the start of 

the day. From looking at their work and seeing what they had done on previous 

assessments, she modified her expectations and the requirements for answering the 

question when it came to math time. This represented the aspect of Knowledge of 

Content and Teaching where teachers know when to pose a new task to students (Ball et 

al, 2008). The key was that her awareness of knowing when to pose a new task or modify 

the original task might have been sparked by her anticipation of what students would do 

with the task and what errors they might have when selecting a number sentence, which 

is part of the Knowledge of Content and Students (Ball et al, 2008). It is possible that the 

intersection of these two categories enabled Teacher 1.1 to move this task to a high-level 

of cognitive demand.   

Not all of the written tasks given by Teacher 1.1 resulted in high-level cognitive 

demand when implemented. As time moved closer to the State's standardized testing 

week, some of the low-level cognitive demand tasks maintained their level of difficulty. 

For example, she gave the students a picture of a triangle with the measures of 11, 22, 

and 13 cm. She asked them for the perimeter and to classify the triangle as scalene, 

isosceles, or equilateral. The students independently answered the question at the start of 
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the day and then during math time, Teacher 1.1 asked basic Knowledge questions 

(Bloom, 1956) to assess if they all got the correct answer. She asked what information 

was needed to find the perimeter? What part of the word perimeter helped them 

remember what to do when solving the problem? What the tricks were that they learned 

to help them remember the meaning of scalene and isosceles (“Scalene was mean and all 

of the sides did their own thing. Isosceles had two "ees" and two sides of equal length”). 

These tricks helped the students remember the definitions, as seen in the observation, but 

they did not help build conceptual understanding.  

Even in situations where the cognitive demand level was high as a written task and 

dropped to a low-level task during the instructional time period, components of MKT 

were seen.  For example, when Teacher 1.1 presented the students with the task: 

“Stephanie has 37 inches of ribbon to make hair bows for her amigas. If each bow needs 

7 inches to be made, how many friends get bows? How much ribbon is left?” she ended 

up diverting the class discussion away from strategies for solving this problem to a 

discussion about problem types (something that is not necessarily important for students 

to know and understand. Teachers should know and be aware of problem type differences 

but not necessarily students). Even so, Teacher 1.1 demonstrated Specialized Content 

Knowledge when she explicitly described the differences between partitive and 

measurement models of division to the students. She used a students' remark to help 

scaffold a mathematical point relevant to the differences in models, which is Knowledge 

of Content and Teaching. She explained the common errors she was seeing when kids 

tried to solve measurement problems with partitive methods and how the students might 

arrive at the correct numerical answer but not be able to explain what the number 
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represented in the problem, which is a combination of Knowledge of Content and 

Students and Specialized Content Knowledge (Ball et al, 2008).  

What is important to note is that even with the use of recall questions and basic 

tricks, Teacher 1.1 still made the students answer the questions and give her the 

information needed to solve the problems. In fact, over the six observations used for data 

analysis purposes of this dissertation, it was rare to see Teacher 1.1 stand and deliver 

instruction. If such a pedagogical method was used, it was usually because the student 

struggled to explain their thinking to the class and Teacher 1.1 modeled how to explain 

the student's method to the class. Traditional direct instruction was never seen during the 

six observations, however. It is possible that such methods were used during other days 

of the week. All of the observations conducted on Teacher 1.1 were completed on 

Tuesdays. Had observations been conducted on another day of the week, other methods 

of teaching might have been observed. However, one can only speculate at this point 

without such data.  

In summary, the instructional practice of Teacher 1.1 was evaluated using three 

methods: CLASS observation protocol, the Mathematical Tasks Framework, and Bloom's 

Taxonomy. Across all three tools, one could see that Teacher 1.1 created a classroom 

environment based on student thinking and exploration of ideas, discourse, positive 

interactions among students and with the tasks, and conceptual learning. Teacher 1.1 also 

provided evidence in her instruction of high reliance on her Specialized Content 

Knowledge, Knowledge of Content and Students, and Knowledge of Content and 

Teaching. These were not discrete occurrences of these knowledge types but instead 

interconnected, dynamic relationships among the MKT categories throughout her 
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observed teaching. Next, we examined Teacher 1.2 using the same analytic methods to 

see if any patterns or disparities were seen between the two teachers with relatively high 

MKT scores.  

Teacher 1.2 

 The instructional practice of Teacher 1.2 was evaluated using two methods: the 

Mathematical Tasks Framework and Bloom’s Taxonomy.  Teacher 1.2 provided evidence 

in her instruction of a high reliance on Common Content Knowledge.  This type of 

knowledge was evident in her implementation of the tasks she gave the students and in 

the types of questions she asked the students during class discussions.  Her teaching style 

was very systematic and orderly.  For example, during each observation, Teacher 1.2 

stood at the front of the class and solved problems found in the 5th grade textbook for the 

students.  Her instruction did not change based on students demonstrating a lack of 

understanding.  She addressed confusion with a repeat of the procedure and additional 

examples from the textbook.  The following sections provided the evidence to support the 

claims made in this introductory paragraph. 

 The learning environment. 

 CLASS observation protocol.  Unfortunately, one limitation to the data collection 

process of Teacher 1.2 was that she did not agree to audiotaping of either her 

observations or interviews. This means that CLASS observations could not be collected 

for Teacher 1.2 because instead of conducting live CLASS observations, while the audio 

recording captured the specific dialogue and interactions occurring at the same time, I 

chose to omit the CLASS observations as a data source for this teacher. 
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During all observations and interviews, detailed notes and quotes were taken 

down in a notebook and then immediately flushed out following the observation or 

interview. This method of collecting data on Teacher 1.2 is another limitation to the 

ability to analyze and piece together how MKT influences her instruction to the same 

degree as the other 5 participants. Even so, because Teacher 1.2 was an interesting 

contrast and enough data could be collected about her instruction and planning, I chose to 

keep her in the sample even with the limitations.  

Worthwhile mathematics tasks and classroom discourse. 

The mathematical tasks framework (Stein et al, 2009) for teacher 1.2.  Over the 

six observations selected for this dissertation analysis, between five and twelve tasks 

were assigned during a single class period, for a total of 29 written tasks.  There were a 

total of 3 memorization tasks and 26 procedures without connections tasks (Stein et al, 

2009).  The following table provides examples of the different types of tasks assigned by 

Teacher 1.1. The following table provides examples of the tasks assigned by Teacher 1.2.  

To best understand how Teacher 1.2 implemented the written tasks and how the 

implementation related to MKT, I used the following memorization task that was given 

on October 27, 2011. The students were working on learning and applying divisibility 

rules to reduce fractions. Each student had a textbook open in front of them at their desks. 

Teacher 1.2 is stood at the front of the class at the white board. 

Repeat after me. Put your finger on the 5. We're looking at the green 
table. Find where it says 5. Okay? Repeat after me. If a number ends in 
zero or five, it's divisible by five. The kids repeat the rule to the teacher. 
She turns to the board and writes 15/90 on the board. Does this [pointing 
at the 15] end in a zero or a five? A student asks her what she means by 
end. The last digit is the end. Is it a five or zero? Yes, replies the student. 
Now look at the bottom number. Does the last digit, or the end, end in a  
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Table 8 
 
Cognitive Demand Level of Tasks Given by Teacher 1.2 
 
Classification of task Example Explanation 
Memorization "24/n = 3" or "draw an 

isosceles triangle" or "Start 
with 2 1/2. Complete the 
alternating pattern: adding 1, 
adding 1/2 -->  starting at 2 
1/2" 

As written, this task has "no 
connection to the concepts or 
meaning that underlie the facts, 
rules, formulae, or definitions 
being learned or reproduced" 
(Stein et al, 2009, p. 6). It also is 
"not ambiguous – such tasks 
involve exact reproduction of 
previously seen material and 
what is to be produced is clearly 
and directly stated" (p. 6). Lastly, 
this task "involves either 
reproducing previously learned 
facts, rules, formulae, or 
definitions OR committing facts, 
rules, formulae, or definitions to 
memory" (p. 6). 
 

Procedure without 
Connections 

"10 2/4 - 4 3/4" or  "2/10 + 
3/10" or "4/5 + 1/10" 
 

These problems, and all of the 
others like them, "are 
algorithmic. Use of procedure is 
either specifically called for or 
its use is evident based on prior 
instruction, experience, or 
placement of the task" (Stein et 
al, 2009, p. 6). Also, these 
problems "are focused on 
producing correct answers rather 
than developing mathematical 
understanding" (p. 6) and they 
"require limited cognitive 
demand for successful 
completion. There is little 
ambiguity about what needs to 
be done and how to do it" (p. 6). 
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zero or five? Yes or no? Yes. Okay so 5 is a common factor. She turns 
back to the board and writes 
15/90 ÷ 5/5  
Look at the table. We're going to read the rules. Not that you'll remember 
them just because you heard them once. We will memorize them later in 
the hour. Teacher 1.2 reads the rule for dividing by 2. The kids softly 
repeat the rule. Okay, I'm convinced you know where we are. Imagine we 
have 6/27 as the answer to a problem. We have to simplify that fraction. 
We have to find the little number that goes into both the top and the 
bottom. It will be good to know the rules to figure this out. Let's try. Can 
you reread the rule for 2s to see if it will apply? Raise your hand if you 
think you know if two will go into six, if two will go into our numerator? Is 
two a factor of six? The class says yes. What about 27? Is two a factor of 
27? Last digit 2 or 7? Is 7 even? Can you see how these rules might help 
you later? Let's do another . . . 

 
At the start of this lesson, the tasks were written at a level of Procedure without 

Connection. As the task was implemented the low-level cognitive demand of the task 

remained low-level. The task remained algorithmic and required limited cognitive 

demand for successful completion. The most the students had to do with the task was 

read the rule and apply the divisibility rule. Even so, as it was implemented during the 

lesson, Teacher 1.2 modeled how to do all of the problems for the students. They did not 

have time or room to work through the problems independently until after she modeled 

every type of problem they were going to encounter in their class work. Teacher 1.2 used 

mostly knowledge and comprehension level questions from Bloom's Taxonomy. Her 

questions required recall of material read in the textbook. The students had to recognize 

digits, as well, in this vignette.  

The second vignette is from January 26, 2011. The questions asked during this 

observation were taken from the math wall, written by Teacher 1.2. The students worked 

through the five questions independently. We pick up where the whole class is working 

through the answers to the questions, in particular they are answering the question: Start 
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with 2 1/2. Complete the alternating patter: adding 1, adding 1/2 --> 2 1/2, ____, _____. 

_____. _____, etc. Teacher 1.2 stands at the front of the room.  

Last week, no one could add 1/2 in a patter so that's what we are 
practicing. She picks a name from a cup and calls on the girl whose name 
she selected. Angela, starting at 2 1/2 we are going, plus 1, plus 1/2, plus 
1, plus 1/2. Ready? Angela answers 3 1/2. Okay, plus 1/2, Georgia? 4. 
Okay, plus one, Michael? Michael does not answer. You're supposed to be 
paying attention. What is this plus one? Michael responds. Four and one 
half. Hum, Teacher 1.2 says, what is 4 plus 1? Michael says 4 1/2. 
Teacher 1.2 turns to the board and writes 4 + 1. What is that? Michael 
says 5. What is plus one-half, Michael? 5 and one-half. Good. What is 
plus whole, Brynn? 6 and one-half. Teacher 1.2 continues asking the 
students to extend the pattern by giving the next step in the pattern to the 
child. Okay, good. Now, whose pattern matches? Did I do this right? Look 
at your pattern? Same or different? She walks around the class and checks 
each students' paper.  
 

 The task worked on during this vignette was written at a memorization level of 

cognitive demand. There was no ambiguity in how to solve the problem. The steps for 

creating the pattern were given to the students in the written task and then during the 

implementation phase giving the answer was all that was required of the students. This 

task did not increase in cognitive demand during the implementation phase (Stein et al, 

2009, p. 15).  

 According to Bloom's Taxonomy, the questions in this vignette aligned with 

knowledge question. The students had to provide an answer by following a rule she gave 

them in her question. The students did not have to explain, extend, show, or interpret the 

pattern or their thinking. They had to recall the answer to the next step in the pattern.  

 Overall, the instruction of Teacher 1.2 could be characterized as following 

traditional direct instruction methods. The teacher imparted knowledge to the students 

through providing them with the procedure for solving problems before the students are 
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given time to solve subsequent problems independently. The questions asked of the 

students were rote questions that required very little thinking or analysis. Responses from 

the students were usually one word or a short phrase that directly answered a recall 

question.  

 Across the six one-hour observations, two main categories characterized the 

instruction of Teacher 1.2: Common Content Knowledge (mostly) and Knowledge of 

Content and Teaching (less often). In the first vignette, described above, Teacher 1.1 used 

terms and notations correctly; she accurately and correctly completed the work the 

assigned the students, and she demonstrated an understanding of when students were 

incorrect in their thinking. All of these are characteristics of Common Content 

Knowledge (Ball et al, 2008). In this excerpt, other forms of MKT were less notable.  

 In another example, Teacher 1.2 used arrays to help students visualize the area of 

a rectangle. Teacher 1.2 writes "Area" on the board. Turning to the class, she tells them 

today's lesson is a continuation of the geometry lessons they worked on during the 

previous week.  

Does anyone remember learning about area last year? A few students 
raised their hands. Okay. Take out your notebooks and title the page 
"Area,” just like I wrote on the board. Good. What does area mean? Well, 
it means how much space is inside a shape. Or in our case today, how 
many boxes are in a shape. She pauses and writes her definition on the 
board. The students copy it into their notebooks. The teacher passes out 
whiteboard markers. Now, kids, this was a disaster last time we used the 
markers so let us try to be better this time. Please, open up the marker and 
put the cap on the back. Okay. Everyone finish that? On your whiteboards, 
draw a 1 by 4 model, or 1 row of four. She draws a long, horizontal 
rectangle on the board. Let's everyone do that. Start on the upper left hand 
corner of your paper. 1 row of 4. She walks around the room checking on 
the students. She holds up the work of one student to demonstrate the 
quality she was looking for. Now draw a 2 by 4, or 2 rows of four, on your 
paper. She returns to the board and draws the rectangle. What I want you 
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to do is outline the grid in marker and then write the 2 by 4 next to the 
model in pencil. Do not color in the squares, just outline them in marker. 
This procedure continues for another two rectangles. A young girl stops 
and asks why they are not supposed to outline the squares in the grid like 
Teacher 1.2 did on the board. Teacher 1.2 responds, yours will look like 
just an outline of the squares. In pencil, write the problem next to the 
model. Remember don't separate the squares. You are outlining them. 
After constructing a rectangle of 4 by 7, Teacher 1.2 turns to the class and 
says, repeat after me. Area means . . . The kids repeat Area means. Now, 
find the first model you drew. I want you to calculate the area and write it 
next to it. How many boxes inside that shape. Write it next to or near by. 
Who knows the answer? How many boxes are inside this shape? My hope 
is you did this. She turns to the board and writes "4 x 1 = 4" underneath 
her 4 by 1 rectangle.  
 
This example is a depiction of Common Content Knowledge. The characteristics 

of the instruction follow the same ones from the previous vignette: used terms correctly. 

She was able to accurately complete the students' work and she pronounced the terms 

correctly. It looked as though other MKT categories could be found in this vignette but 

looking closely at what was happening in the classroom, there was very little 

mathematics being worked on that was unique to teaching. There was no explicit 

connection to multiplication, commutativity, what area actually means, or alternative 

ways to represent area. There was no attention given to students’ prior knowledge, other 

than asking if they remembered area from the previous school year. The tasks assigned 

were basic and low-level. In fact, later in the lesson the students tell her they are bored 

and she says she will speed things up.  

In summary, the instructional practice of Teacher 1.2 was evaluated using two 

methods: the Mathematical Tasks Framework and Bloom’s Taxonomy.  Teacher 1.2 

provided evidence in her instruction of a high reliance on Common Content Knowledge.  

This type of knowledge was evident in her implementation of the tasks she gave the 
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students and in the types of questions she asked the students during class discussions.  

Her teaching style was very systematic and orderly.  For example, during each 

observation, Teacher 1.2 stood at the front of the class and solved problems found in the 

5th grade textbook for the students.  Her instruction did not change based on students 

demonstrating a lack of understanding.  She addressed confusion with a repeat of the 

procedure and additional examples from the textbook.  

Discussion 

 Overall, Teachers 1.1 and 1.2 presented a case of two teachers with similar MKT 

scores relative to their peers in the NSF-funded grant but very different student gain 

scores.  Why was this? What was it about how they drew upon their MKT that might 

have accounted for the differences in their scores?  

 One major difference between Teacher 1.1 and Teacher 1.2 was the fact that 

across all three facets of the Mathematics Teaching Cycle (knowledge test, planning, and 

implementation), Teacher 1.1 used a complex mix of Common Content Knowledge, 

Specialized Content Knowledge, Knowledge of Content and Students, and Knowledge of 

Content and Teaching.  Her teaching style embraced student thinking.  Both her 

classroom environment and her planning focused on providing activities to students 

based on what she learned through talking with her students about the mathematics.  As 

she learned what the students understood, Teacher 1.1 selected new tasks to challenge the 

students to think one step further than the point at which they resided mathematically.  

She also challenged students to share their thinking at the board and was able to hear and 

interpret what students knew about the mathematics based on their explanations.   
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Across the three facets of the Mathematics Teaching Cycle, Teacher 1.2 

demonstrated reliance on Common Content Knowledge.  Unlike Teacher 1.1, Teacher 1.2 

imparted knowledge to her students.  She gave her students the formulas or procedures 

repeatedly and limited the classroom discourse to answering basic recall or 

comprehension questions.  She followed the order of the textbook and the district 

curriculum map to plan, regardless of what her students understood.   

Based on the differences outlined in this case study, it is possible that the 

differences in student gain scores for these teachers was a function of the differences in 

what types of MKT were used by each teacher throughout the Mathematics Teaching 

Cycle: a complex mix of MKT categories versus a heavy reliance on Common Content 

Knowledge.  The next chapter examined the case of two teachers with different MKT 

scores from each other and who had opposite student gain scores from what one might 

think looking at their MKT scores. 
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CHAPTER FIVE: CASE TWO 
 

A Case of Different MKT scores and Different Student Gain Scores 

 This case examined two teachers who above and below the mean of the 

participants in the NSF-funded grant on the Teacher Knowledge Assessment.  Their 

student gain scores over the 2011-2012 school year also differed from each other.  To 

reiterate the information presented about the sampling process in Chapter Three, Teacher 

2.1 scored 0.78 of a standard deviation above the mean of the participants in the larger 

NSF-funded study, while Teacher 2.2 scored just below the mean of her peers.  The 

change scores for the two teachers respective students presented in direct contrast to 

general expectations. They were exact opposite of what one might anticipate.  Teacher 

2.1’s students’ gain scores were a half of a standard deviation below the mean of the 

student scores for those participating in the NSF-funded grant, while Teacher 2.2’s 

students’ gain scores were half of a standard deviation above the mean of her peers’ 

students’ scores.  This case added another layer for understanding how MKT might link 

to student gain scores through classroom instruction with the addition of a teacher who 

has a relatively average MKT score with above average student gain scores.  

General Descriptions of Teacher 2.1 and Teacher 2.2 

 Both of the teachers in this case provided a limited amount of background data.  

What was provided is presented below. 

Teacher 2.1 

 Teacher 2.1 had been teaching almost 30 years. She taught almost every grade 

level from primary to 8th grade all around the United States.  She planned to retire at the 

end of the 2011-2012 school year.    
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 Over the 2011-2012 school year, Teacher 2.1 taught approximately 25 fourth and 

fifth grade students who tested at the “Basic” level for English Language Development at 

the start of the school year.  The desks in her classroom were pushed into little pods of 

five to six desks each.  The pods were scattered around the classroom and faced either the 

front chalkboard or the side chalkboard.  During instructional time, Teacher 2.1 taught 

each grade level separately.  The group being taught sat at the front of the classroom, 

while the other students moved to the back of the class.  In addition, the grade level not 

being taught worked on a review of previously learned material in the textbook or worked 

on a worksheet practicing a previously learned skill.   

Teacher 2.2 

Teacher 2.2 was a 3rd year teacher. All three of the years were spent in this district. 

She grew up in the district and as a child she had aspirations to return as a teacher.  She 

was a graduate of a larger university in the Southwest.  

 Over the 2011-2012 school year, Teacher 2.2 taught approximately 18 third and 

fourth grade students who tested at the “Basic” level for English Language Development 

at the start of the school year.  Similar to Teacher 2.1, the desks in this classroom were 

pushed together to make groups of four.  During many of my observations, the 3rd grade 

students were sent to learn math from a teacher who taught only 3rd grade students. 

Teacher 2.2 kept the fourth grade students for math.  Teacher 2.2 received a set of 3rd 

grade textbooks at the start of the school year and a few resource books for the 4th graders 

but no 4th grade textbook.  The students completed assignments out of the 3rd grade 

textbook, however, the example problems reviewed during the lessons came from the 4th 
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grade “Reteach” resource book.  The students also received homework from the 

“Reteach” book.    

Teacher Knowledge 

 As stated in Case One, one component of the Mathematics Teaching Cycle 

(NCTM, 2007) was Knowledge.  According to the Teaching Principle (NCTM, 2000), an 

effective teacher needs knowledge in: “mathematical content, pedagogy, assessment 

strategies, and an understanding of students as learners” (NCTM, 2007, p. 19).  These 

four criteria for “an effective teacher” aligned with Ball et al (2008) MKT components of 

Common Content Knowledge (CCK), Specialized Content Knowledge (SCK), 

Knowledge of Content and Teaching (KCT), and Knowledge of Content and Students 

(KCS).  In the following section, I used the data representative of the entire data set 

gathered from the Teacher Knowledge Assessment and follow-up interview to illustrate 

the degree to which the components outlined in the Teaching Principle and the MKT 

framework presented in Teacher 2.1 and Teacher 2.2 and how the presence or lack of 

some criteria might account for different student gain scores. 

Example 1 From the Teacher Knowledge Assessment: A Multiple Choice Item 

 Because the LMT items are not released to the public, the following is a 

description of a task given to the teachers participating in the NSF-funded Grant.  The 

task was a multi-digit subtraction problem that included regrouping of the minuend.  The 

digit “0” was in the tens place of the minuend as well.  The teachers were given three 

hypothetical students’ responses to examine.  The task asked the teachers to state whether 

or not each response was acceptable evidence indicating that the child knew why the 
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procedure worked. The teacher had the option to say that they were unsure if the answer 

was acceptable or not. 

 The first response (a) was a direct description of the steps taken to solve the 

problem.  The response was void of place value or explanation regarding regrouping. The 

second response (b) indicated the child could decompose numbers and regroup fluidly 

across place value positions.  The final response (c) was tricky for most of the teachers.  

The student indicated some understanding of place value at a superficial level.   

Teacher 2.1’s response.  Unfortunately, Teacher 2.1 never returned any 

correspondence regarding the follow-up interview to the teacher knowledge assessment.  

There are a few possibilities as to why Teacher 2.1 never participated in a follow-up 

interview.  First, she expressed repeatedly during our first interview that she had limited 

time to plan or do anything school related because she only received a planning period 

once every six days when her students went to P.E. Second, it is possible that Teacher 2.1 

did not want to talk about her answers to the teacher knowledge assessment. Lastly, 

Teacher 2.1 retired at the end of the school year and might have had other obligations 

after school that took up her time.  Therefore, the only data I have for Teacher 2.1 

regarding the teacher knowledge assessment was the written test and the answers she 

provided on that test.   

 Looking solely at the written test, Teacher 2.1 one point for this particular 

problem.  She left answer choice (a) blank.  She responded “Yes” to answer choice (b) 

and responded “Yes” to choice (c).  The only correct answer was the “Yes” to answer 

choice (b). 
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 Teacher 2.2’s response.  Teacher 2.2 received zero points for this question.  She 

did not provide an answer for (a). She said “no” to (b) and “yes” to part (c). During the 

interview, she explained “I didn’t know what they were talking about, hahahah!” 

(Teacher 2.2, 2nd Interview) when asked why she left answer choice (a) blank.  I cannot 

say why she laughed at the end but it did not sound malicious.  The laugh seemed more 

out of nerves or embarrassment for not understanding the response, however, this is 

speculation and not grounded in explanation provided by Teacher 2.2.   

When looking at choices (b) and (c), Teacher 2.1 left the answer choices as 

written and further explained “yeah, I put I understand they understand grouping but I 

would also ask them why they regroup to kind of get that questioning like why? Why did 

you guys regroup? Why do we regroup when we subtract?” (Teacher 2.2, 2nd Interview) 

when she read (b) this time around.  She also explained that she would accept the 

response in (c) but again wanted to know why they had “to borrow” (2nd Interview, 

4/11/12).   

The response given by Teacher 2.1 demonstrated Knowledge of Content and 

Teaching.  Knowing when to ask a follow-up question or ask for more clarification, 

which is what she was doing when probing about why the children wanted to regroup, 

were characteristic of Knowledge of Content and Teaching.  It was unclear as to what this 

information was going to inform or how she was going to use it but she was the first 

participant to want to get clarification for some of the “answers” provided by the 

students.  
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Example 2 from the Teacher Knowledge Assessment: An Open-Ended Item 

The following problem was given to the teachers to assess their knowledge of 

relational thinking in students.  The teachers were provided with half of a page to write or 

illustrate their responses.  To receive total points for the problem, the participants had to 

answer all three sub-questions (Carpenter et al, 2003).   

Assume we gave this problem to some elementary school students: 
      What number can you put in the box to make this number sentence 
true? 
          8 + 15 = ___ + 16 
     What strategies would you expect students to use to solve this problem? 
     What answers do you expect them to come up with? 

 
Teacher 2.1’s response.  Teacher 2.1 wrote the following response to this 

question on her test: “I would have the children add the 8 +15, which is 23.  Either tell 

the children to subtract 16 from 23 for missing addend or ask children what could you 

add to 16 to make 23?” (Teacher 2.1, Teacher Knowledge Test response).  Based on this 

response, her thinking was characterized as Common Content Knowledge.  Teacher 2.1 

demonstrated an ability to correctly solve the problem.  She also used correct 

terminology: “missing addend.”  She provided two methods for solving for the unknown: 

a) find the difference between 16 and 23 or b) Count up from the smaller (Carpenter et al, 

1999).   

 Teacher 2.2’s response.  Teacher 2.2 answered on the test that would answer the 

question with “7.”  Her written response was a little confusing.  She wrote “1) My 

students would think of order of operations. 2) They would write PEMDAS. 3) Then 

figure out what to do first.”  During the follow-up interview, Teacher 2.2 expressed that 

she did not know why she wrote down order of operations.  She proceeded to say, “I 
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probably would have told them to solve it first…8+15 and then, so whatever your answer 

is. I did it here [points to the top of her test paper]; I don’t know why I put order of 

operations. That has nothing to do with it.” (Teacher 2.2, 2nd Interview).  It is clear that 

Teacher 2.2 recognized that the order of operations was not necessary in this problem.   

 What she did provide, however, was a reliance on Knowledge of Content and 

Students through detailed explanations of how her students would directly model their 

thinking using pictures.  On her test paper, she wrote “4) some would add the 8 + 15 and 

come up with an answer. Some will draw. My kids love to draw and it helps them a lot 

[she included an illustration of 8 circles + 15 circles]” (Teacher 2.2, 2nd Interview).   

The written test answer to this second test question raised an issue, which I 

followed up with during her interview.  Teacher 2.2 stated, “Some would add 8 +15 and 

come up with an answer.”  As written, it seemed like Teacher 2.2 thought the answer to 8 

+ 15 belonged in the blank and that she disregarded the “+ 16” on the right side of the 

equation.  This would indicate a misunderstanding in her Common Content Knowledge.  

In the follow-up interview, Teacher 2.2 clarified this confusion with a description of her 

teaching method.  “They would solve first and then so then I would say we want to know 

what needs to go in here, yeah, to make it true. I would have to subtract and then I like do 

a lot of drawing the pictures” (2nd Interview). This explanation characterized a mix of 

Knowledge of Content and Students and Knowledge of Content and Teaching.  She 

anticipated that her students would solve the left side of the equation first.  Then she 

described her understanding that this equation was a true/false type of question 

(Carpenter et al, 2003).  Again, she anticipated that her students would model the 

subtraction needed to make the sentence true.    
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Comparison of the Teachers’ Responses Across the Test Items 

 Due to the fact that Teacher 2.1 did not participate in a follow-up interview, this 

comparison was based on mostly what was written on the test paper, unless Teacher 2.2 

provided extra information during her post-test interview. 

 Teachers 2.1 demonstrated Common Content Knowledge on the written test. She 

For example, she knew that “1 hundred + 119 tens + 1 one” was not equal to “391.” She 

also knew that “3 hundreds + 9 tens 10 tenths” was equal to “391.”  She also knew that 

5/9 was greater than 3/7 because “5/9 is greater because it is more than one-half, while 

3/7 is less than one-half” (Teacher Knowledge Assessment question 3 answer choice E).   

 Teacher 2.2, in contrast, demonstrated limited Common Content Knowledge on 

this same task. She thought that “1 hundred + 119 tens + 1 one” was equal to “391.”  

When asked about this question during the follow-up interview, Teacher 2.2 avoided 

parts (b), (c). She explained part A first:  

so for A, um, she put 300 and the 90 tens, um that’s when I circled it and I 
said well you would need 90 tens to make 90? And then I would ask them 
okay, well if you put 90 tens, what would that equal? To, to kind of get 
them to see. So in this case, I would pull out the manipulatives and have 
them figure it out (Teacher 2.2, 2nd Interview).  
   

This excerpt demonstrated her Common Content Knowledge, Knowledge of Content and 

Students, and Knowledge of Content and Teaching.  Teacher 2.2 demonstrated that she 

understood that 90 tens did not equal 90.  She acknowledged that her students had a 

misconception about place value and what 90 tens represented. She explained that she 

would resolve this misconception using manipulatives and having the students physically 

figure out what 90 tens represented.  
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 After this explanation of part (a), Teacher 2.2 talked about one of her students 

using this method of demonstrating that 90 tens was more than 9 tens in class.  She 

immediately skipped to part (d) and explained that she would have the students use 

manipulatives to show her ten tenths. She never responded to part (b) or (c) and due to 

time and courtesy, I moved forward with the interview because we have 9 questions left 

to address in a 20 minute lunch period.  It was possible that Teacher 2.2 did not 

understand part (b) and (c) and therefore avoided talking about them.  It was also possible 

that Teacher 2.2 recognized that she would use the same technique to help students 

understand what ten-tenths represented and, thus, jumped to part (d).  What was 

interesting was that Teacher 2.2 did not recognize that part (d) was a correct answer.  

Again, demonstrating her limited Common Content Knowledge.  

Teacher 2.2 struggled “sizing up” (Ball et al, 2008) whether or not a nonstandard 

approach to problem solving would work in general (a characteristic of Specialized 

Content Knowledge). For example, she marked that a method where a child solved the 

problem 35 x 25 by doing (5 x 25) + (30 x 25) instead of the standard method of (5 x 35) 

+ (20 x 35) would not work for all whole numbers, when it would.  

She also had difficulty with the problem that asked her assess fraction word 

problems. She received zero points for a question that asked: Mrs. Wise wants to include 

some word problems on her fractions quiz.  Which of the following problem(s) could she 

use as a word problem for ½ - 1/3? (Mark YES, NO, or I’M NOT SURE for each one.)  

Teacher 2.2 marked yes for the incorrect word problems: I have ½ of a pizza left. My 

brother comes in and eats 1/3 of my leftover pizza. How much pizza is left? Teacher 2.2 

marked no for the correct word problems: Mom has ½ of a cup of sugar. She needs to use 
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1/3 of a cup of sugar to make some brownies.  How much sugar will Mom have left? 

Without the follow-up interview, it cannot be established what aspect of these types of 

problems were most difficult for Teacher 2.1 or what she understood about the word 

problems. 

Teacher 2.2 also struggled with these problems and did not have an answer for 

how to solve them during her follow-up interview.  Instead, Teacher 2.2 provided 

examples of how her students would solve the problems on the test.  For example, for the 

fraction problem that compared 5/9 to 3/7, she drew a picture of the two fractions and 

knew that 5/9 was larger, as her students would do in class. She also explained that her 

students would use cross-multiplication to solve the problem. “I have found that easier to 

teach it that way [using cross-multiplication].  I mean I like for them to see it where I say 

draw it and check so I kind of make them do that part first and then check. But I find that 

most of the time, even I have trouble [drawing it]” (Teacher 2.2, 2nd Interview).  These 

types of explanations, ones that depicted how her students would solve the problems or 

how she would teach the concept, were representative of how Teacher 2.2 answered most 

of the teacher knowledge assessment. Her main focus was on what she knew about her 

students and her teaching method. 

Looking at the responses, it was apparent that Teacher 2.1 and Teacher 2.2 had 

strengths in different areas, although this assessment was limited since Teacher 2.1 never 

had a follow-up interview.  It was apparent that Teacher 2.1 demonstrated strong 

Common Content Knowledge on the teacher knowledge assessment than Teacher 2.2 but 

Teacher 2.2 grounded all of her answers in her students’ thinking and her teaching 

methods. Without an interview with Teacher 2.1, I cannot say if this were the case with 
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her thinking.  The next section examined the two teachers’ planning process and the 

influence of MKT on planning. 

Analysis, or Planning, of Instruction 

Teacher 2.1 

Teacher 2.1 presented an interesting case during her planning interviews. Even 

though the questions asked were the same ones as with all other participants, Teacher 2.1 

focused the majority of the interview on a few themes: Time constraints and Isolation. 

Based on the focus during the interview, the format for this description of how Teacher 

2.1 plans differed from the structure of the descriptions in the first case.  After describing 

the general lesson structure and how it was planned, I examined the main themes in the 

interview. 

Teacher 2.1 described her classroom structure as having two separate grade levels 

in one classroom. “I did try that [working with all of the students to cover one topic and 

then group them in mixed-grade level groups to completed problems]. In fact, I had the 

5th graders divided up also so that they could be in a group so that they could be sort of 

the elder, elder and the more knowledgeable. That didn’t work” (Interview).  Since her 

attempts to group students in mixed grade levels were unsuccessful, she reverted back to 

teaching the 4th and 5th grade independent of each other. She determined the sequence of 

her instruction from the district curriculum map. She planned on a weekly basis.  At the 

start of each week, she looked at the 4th grade district curriculum map to see what was 

expected each day and matched textbook lessons to the standard.  For the 5th grade lesson 

plans, she received those on a weekly basis from the other 5th grade teacher.  
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The evidence of Mathematical Knowledge for Teaching in the planning of 

Teacher 2.1 was less apparent in her interview than in either Teacher 1.1 or Teacher 1.2.  

Instead, issues of management and survival due to time constraints and isolation saturated 

her responses. Teacher 2.1 explained that in the past, the school district set up the schools 

on a six-day schedule based on the rotation of specials (i.e., art, P.E., computers, library, 

music, etc.) offered at the schools. During the 2011-2012 school year, budget cuts limited 

the amount of specials the students attended. Of the six original specials only one was 

kept: Physical Education (PE). Students attended PE once every six days. The other days 

of the week, the teachers kept their students in their classrooms and continued teaching. 

As a result, the teachers’ planning time was eliminated except for the one day students 

went to PE.  “We have only one prep every six days” so “we don’t have time to plan 

together…seriously…seriously” (Interview).  

To account for the lack of planning time, the 3rd, 4th, and 5th grade teachers 

divided up the lesson planning.  Each was responsible for the plans of their respective 

grade levels. The plans were dispersed among the teachers who taught multiple grade 

levels at the start of each week. In the twenty minutes we talked about planning, Teacher 

2.1 used the following phrase, or a slightly varied version of the phrase, four different 

times: “yeah, so that’s how we do it. We use the state standards and then we and then 

[another teacher] makes the plans for the 5th, I find the 4th grade, what lessons go with 

that PO and then…” (Interview).  What happened as a result of the lack of joint planning 

time was isolation, both in teaching and in developing a teacher-learning community at 

the school.  



	   164 

A major drawback of the time constraints for Teacher 2.1 was the sense of 

isolation she felt both inside and outside of the classroom. For starters, the lack of 

planning time equated to less time with her colleagues. She no longer had a place to 

gather ideas for teaching difficult topics, such as teaching integers to the 5th graders 

(Teacher 2.1, interview).  She also found herself less connected to the community of 

teachers at her school. In fact, she had no idea how one teacher was planning or 

instructing his combination classroom (Teacher 2.1, interview).   Even during district 

grade level meetings, she found herself unable to utilize the time in a meaningful manner.  

Instead of discussing the curriculum, the teachers charted their students’ performance 

scores.  She found this unhelpful for planning her daily lessons. “. . . no but that’s how 

we do it and the thing is we used to plan together but we don’t have time so all that 

happens right now at our grade level collaboration is we go through the charting of our 

data charts, you know we get that, and you know we are not even together on that 

because [another teacher] is teaching 3rd and 4th grade, so I don’t know what he’s doing. 

So I don’t know if he’s going with the 3rd, if the 3rd, if they are doing 3-4, if he’s going to 

the 4th grade standards or if he an [another teacher] are, I don’t know” (Interview). 

In the classroom, the lack of collaboration time impacted how Teacher 2.1 dealt 

with having 4th and 5th grade students. She found herself teaching the grade levels 

independent of each other.  She tried multiple times to combine the two grade levels but 

that proved too difficult and, therefore, she taught the students in isolation.  This 

separation resulted in one grade receiving direct instruction while the other grade level 

worked alone on an activity that required little assistance from her. For example, she 

anticipated difficulty in teaching integers to the 5th grade students, so she planned for the 
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4th graders to work on transformations. “So on that one I would look to see what thing I 

could have them review or to practice or to go over because I can’t, integers is going to 

be hard enough for me to teach without um having to do two, see understanding? I’m 

putting them on transformations, so they are going to be doing, on tessellations and stuff. 

They are pretty good with that so I am just sort of giving them that, just giving them a 

very broad thingy. They have done it before and then, hopefully, they will be able to 

work that lesson by themselves while I go [I: is it something that they could just create 

their own tessellation pictures?] yeah, they can use their book. I will try to find something 

that will keep them occupied and busy” (Teacher 2.1, Interview).  

Locating characteristics of MKT was difficult when analyzing this interview 

because of the overwhelming amount of discussion about the time constraints at her 

school. In general, there were flashes of Knowledge of Content and Students. She was 

able to anticipate lessons that her students could work on independently. She was able to 

anticipate concepts where students needed her full attention to help them succeed (i.e., as 

shown in the comment about teaching the 5th graders integers, while the 4th graders 

worked on tessellations independently).  It is possible that Teacher 2.1 had limited ways 

to access her Knowledge of Content and Teaching or Knowledge of Content and 

Curriculum and that caused the difficulty in spotting MKT characteristics in her planning. 

It is also possible that the fact that 2011-2012 was her last year teaching before retirement 

impacted her drive to find ways to teach a combination class. Unfortunately, without an 

interview or follow-up discussion, these possibilities are only speculation and not 

evidence based.  Next, I examined how MKT presented itself during the planning 

interviews with Teacher 2.2. 
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Teacher 2.2 

In general, the planning process described by Teacher 2.2 focused on integrating 

the various programs adopted by her school administration in a way that best served her 

3rd and 4th grade combination classroom.  For example, her lesson plans were based on 

the district curriculum map.  She deviated as little as possible from the curriculum map.  

She also utilized Bloom’s Taxonomy when deciding the types of questions (not tasks, as 

was the strategy of Teacher 1.1) to ask her students when teaching. The addition of 

Bloom’s Taxonomy in her teaching came from a new professional development program 

her school adopted that year. This new program taught the teachers to use student 

performance data to inform their teaching. In addition, the program encouraged using 

new strategies, like Bloom’s Taxonomy, to get students to think at higher levels 

(Interview, 3/7/12).  Teacher 2.2 also integrated her background knowledge on teaching 

native Spanish speakers into her classroom planning. She stressed vocabulary and using 

cognates (Interview, 3/7/12) to help her students understand how certain words were 

similar across both Spanish and English.  

Teacher 2.2 taught a 3rd and 4th grade combination class. For mathematics 

instruction, however, the 3rd grade students attended the lesson in the classroom of the 

teacher who only teaches 3rd grade at the school. Therefore, Teacher 2.2 planned lessons 

based on the 4th grade curriculum map. One setback was that she does not have the 4th 

grade adopted curriculum; she only had the 3rd grade textbooks and the “reteach” book 

from the 4th grade supplemental materials. Using Bloom’s Taxonomy and the 3rd grade 

materials, she figured out “how she is going to challenge the kids because they’re using 
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the 3rd grade stuff. They’ve already seen it so then I have to challenge them and ask them 

questions at a 4th grade level” (Interview, 3/7/12). 

Next, Teacher 2.2 decided her examples for the “I do” and the “We Do” sections 

of her lesson. The “We Do” was her main focus because it was what the whole class 

completed together. She explained the “We Do” part of the lesson to be very helpful for 

her ELD students. “Yeah, so a big part of our lesson is the ‘We Do’. A big part of my less 

is the ‘We Do’ and that’s just you know because they are the ELD class and they have to 

have that extra you know reviewing and the vocabulary and the understanding it” 

(Interview, 3/7/12). After the “We Do,” she assigned a “Ticket out the Door,” which was 

a question (not predetermined) that reviewed the objective of the day. The name of the 

informal assessment was a misnomer because it actually was used as a culminating 

activity of the guided practice, rather than as the final activity of the math instructional 

time.  The answers to the ticket out the door were used to determine who to pull into a 

small group during independent practice time, also called the “You Do” time in the 

lesson.  

Teacher 2.2 also completed questions on the Math Wall with students on a daily 

basis. She based the five questions for the math wall on the 4th grade level questions from 

Study Island because that was where the weekly test questions were pulled from. In 

theory, she was supposed to work through all five questions in 15 minutes with her 

students; however, she chose to complete one strand question a day to ensure that her 

students understood the concept being reviewed. She found that over time the test scores 

increased. She felt that the spiraling nature of the math wall contributed to the increase  
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Table 9 
 
MKT Categories in the Planning of Teacher 2.2 
 
MKT category Number of excerpts Description of excerpts 
Knowledge of Content 
and Curriculum 

8 total excerpts • 5 excerpts described her knowledge of the available 
resources in her district to use for planning 

• 3 excerpts were a critique of a program implemented across 
the district to help spiral the standards throughout the year 

Knowledge of Content 
and Teaching 

7 total excerpts • 2 excerpts described when Teacher 2.2 decided to pose a 
new task to the students or ask a new question to the class 

• 1 excerpt described how she sequenced instruction on the 
Math Board 

• 1 excerpt was an evaluation of the advantages and 
disadvantages of using a mix of multiple choice and open-
ended questions on the math board 

• 1 excerpt demonstrated her knowledge of when to use 
small groups as a method for revisiting misunderstood 
content 

• 1 excerpt demonstrated an ability to decide when to ask a 
child for clarification 

• 1 excerpt showed her method for choosing examples 

Knowledge of Content 
and Students 

1 total excerpt Teacher 2.2 explained that she anticipates what students will 
do based on past teaching experiences 

Horizon Content 
Knowledge 

1 total excerpt Teacher 2.2 described briefly how the 3rd grade curriculum 
matched the 4th grade curriculum 

Specialized Content 
Knowledge 

1 excerpt In this excerpt, Teacher 1.2 explained what aspect of multi-
digit multiplication her students found difficult. She broke 
apart components in multiplication and explained which part 
was tricky 

Knowledge of Content 
and Students – 
Knowledge of Content 
and Teaching  

4 total excerpts • In one excerpt, Teacher 2.2 describes how she anticipated 
that a particular lesson was going to be easy for the 
students (KCS) so she changed the sequence of her 
instruction (KCT) 

• 1 excerpt showed how Teacher 2.2 understood common 
errors made by students (KCS) and structured the 
instruction to address the errors in a beneficial way for ELL 
students (KCS) 

• In 1 excerpt, Teacher 2.2 anticipated what students will 
think about a particular task (KCS) and sequences 
instruction to challenge the students (KCT) 

• The last excerpt exemplified her familiarity with language 
issues having been a ELL student herself (KCS) and 
strategies that best helped students work through the 
problems (KCT) 

Knowledge of Content 
and Teaching – 
Knowledge of Content 
and Students – 
Specialized Content 
Knowledge 

1 total excerpt Teacher 2.2 described how she chose examples to teach her 
students using her Bloom’s Taxonomy Wheel (KCT). The 
students were asked to analyze a graph. She anticipated that 
students might not understand or know how to “analyze” per 
se (KCS). For her teaching of this concept, she unpacked the 
language in the question using examples and familiar 
synonyms to “analyze” that the students knew (SCK) 
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because the kids were constantly reviewing material that they might otherwise forget how 

to solve. 

Due of time constraints, Teacher 2.2 participated in one planning interview 

instead of two.  In that one interview, 22 excerpts pertained specifically to planning.  

Interestingly enough, the planning interviews for Teacher 2.2 reflected a 

dominance of Knowledge of Content and Curriculum (KCC) and Knowledge of Content 

and Teaching (KCT), neither of which is assessed in the Teacher Knowledge Assessment. 

It is possible that had such items been developed for the assessment, Teacher 2.2 might 

have a higher score relative to her peers in the larger study. It is also possible that her 

reliance on the district policies and supported teaching methods impacted the types of 

knowledge that appeared in her interview. It is also possible that her reliance on the 

district adopted curriculum and methods stems from the fact that this was her 4th year 

teaching and is still figuring out her way among all of the changes in the state, the 

district, and at her school over the last three years policy- and administration-wise.  

Overall, the planning of Teacher 2.2 reflected that of a new teacher who 

understood the district resources and what was expected of her in terms of using the 

resources (I.e., curriculum map, textbook, adopted professional development programs, 

and the Math Wall).  She described the district recommended method for designing 

lesson plans (i.e., find the standard from the curriculum map, find the textbook page, 

decide the I do, the We Do, the You Do problems, decided the questions based on 

Bloom’s Taxonomy, etc.). She also demonstrated a willingness to try new ideas with her 

students, even if she was skeptical of the results. For example, at first she hesitated to 

state the usefulness of the Math Wall. She explained that over time she saw the benefit of 
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the math wall for pre-teaching and reviewing purposes. She noticed that her students 

were ready for the mode lesson because the students had learned mode earlier in the year 

on the Math Wall. The previous year it took two days to teach mode but this year she was 

able to teach mode and range together because mode had been introduced on the Math 

Wall. As for reviewing, she noticed that “scores had gone up because it’s, they are 

constantly reviewing it, it’s just not taught you know that first quarter and then you know 

that’s it. That’s where it stays and then you get tested on it later on in the 4th quarter. And 

you know they are going to be like well I don’t remember learning this” (Interview, 

3/7/12).  

 In summary, Teacher 2.1 and Teacher 2.2 received z-scores on a teacher 

assessment test above and just below the mean respectively. Teacher 2.1 demonstrated 

high common content knowledge for their subject matter, knowledge of how to break 

down the mathematics being taught, and, for the most part, was able to decipher non-

standard methods of problem solving on that test. Teacher 2.2 demonstrated these skills 

as well, on her teacher knowledge assessment, but there were aspects of common content 

knowledge, breaking down the mathematics, and in deciphering students’ non-traditional 

methods that Teacher 2.2 did not know. 

Discussion of Difference in MKT when Planning 

What do these results mean practically? How does this knowledge translate to 

what they do as teachers?  For Teacher 2.1, the impact of her high-middle range MKT 

score was difficult to figure out when analyzing her planning interview. The 

overwhelming frustration and sense of loss created by the time constraints around her 

planning time embodied so much of the interview, her actual knowledge of teaching or 
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how she broke down the content for her teaching, or even how her students’ knowledge 

base affected her planning never really became transparent. For Teacher 2.2, it was 

possible that her lower MKT knowledge impacted her choice to rely on the district 

adopted text and curriculum map for planning. Her lower knowledge might have kept her 

from branching out to find alternative resources for helping her teach conceptually or to 

be able to critique the questions in the textbook to see what would best suit the needs of 

her students. Unlike other teachers, Teacher 2.2 never discussed the breath of questions 

on the AzAC test or the state standardized test pertaining to the content she taught, such 

as fair sharing versus measurement division, or understanding how important it is to keep 

units the same throughout a fraction problem. Again, this might represent her shortage of 

specific types of MKT knowledge. 

One interesting theme that appeared between these two teachers was how they 

dealt with teaching a combination classroom. Both teachers isolated the two grade levels 

from each other in one-way or another. They each taught the grade levels separately. In 

fact, Teacher 2.2 explained that she sent her 3rd grade students to another teacher for 

much of the math instructional time. Teacher 2.1 described how she separated the groups 

and planned independent activities for the grade level students not being directly taught 

by her at a particular time. It is interesting to note that neither one of these teachers had a 

degree in bilingual education. Instead, they had a Structured English Immersion (SEI) 

endorsement, which is required of all teachers. It is possible that part of their struggles 

with the combination classroom were due to a lack of knowledge of how to teach 

mathematics to English Language Learners. It is also possible that this lack of knowledge 
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impacted their overall MKT scores, seeing as how MKT does not take into account the 

learning environment of a classroom and how teachers negotiate that aspect of teaching.   

In the following section, I moved to explaining the classroom instruction of 

Teacher 2.1 and 2.2.  I examined the interactions that occurred during instructional times 

(Pianta et al, 2008), the cognitive demand of the tasks (Stein et al, 2009), the types of 

questions asked by the teachers (Bloom, 1956), and the types of responses provided by 

students to both the teacher and each other. 

Implementation 

 As seen in Case One, the Implementation Phase of the Mathematics Teaching 

Cycle included: the learning environment, selection of meaningful tasks, and discourse. 

For this section, I presented the entire Implementation Phase components for each teacher 

and then compared the two teachers. Using this format for discussing the instruction 

component seemed more comprehensive and coherent than jumping between the 

components and the teachers.   

Teacher 2.1 

The instructional practice of Teacher 2.1 was evaluated using three methods: the 

CLASS protocol, the Mathematical Tasks Framework, and Bloom’s Taxonomy.  Teacher 

2.1 provided evidence in her instruction of a high reliance on Common Content 

Knowledge with a little use of Specialized Content Knowledge.  This type of knowledge 

was evident in her implementation of the tasks she gave the students and in the types of 

questions she asked the students during class discussions.  Her teaching style was very 

systematic and orderly.  Much like Teacher 1.2, Teacher 2.1 stood at the front of the class 

and solved problems from the adopted textbook. Occasionally, her instruction changed 
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based on students demonstrating a lack of understanding.  Sometimes students were 

called to the board to show a different way to solve a problem but mostly if the children 

did not understand a concept, she yelled a little louder or provided another example.  The 

following sections provided the evidence to support the claims made in this introductory 

paragraph. 

 The learning environment. 

 CLASS observation protocol.  Six CLASS observations were conducted with 

Teacher 2.1 between October 2011 and February 2012. The following Table shows the 

average scores across the 10 dimensions for Teacher 2.1.  

Table 10 
 
CLASS Dimension Scores for Teacher 2.1 
 
Dimension Average Score 
Positive climate 4.33 
Negative climate 3.33 
Teacher sensitivity 2.67 
Regard for student perspectives 2.67 
Behavior management 4.67 
Productivity 3.83 
Instructional learning formats 3.167 
Concept development 1.5 
Quality of feedback 2.5 
Language modeling 2.67 

 
For the most part, Teacher 2.1 received average scores ranging from 1.5 to 4.67, 

with most of the dimension scores being between 2 and 3.  She scored a middle range 

score for both Behavior Management and Positive Climate. These were also her highest 

score. Teacher 2.1 had a relatively high Negative Climate score of 3.33. While the score 
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of 3.33 fell in the low-middle range, it was indicative of some negative interactions in 

each of the six observations. Her lowest score was in Concept Development.   

When composite scores were calculated for the three CLASS domains, Teacher 

2.1 received the lowest scores on two of the three domains (Emotional Support and 

Classroom Organization) for all six participants in this dissertation. She scored a 3.59 on 

Emotional Support, a 3.89 on Classroom Organization, and a 2.22 on Instructional 

Support. Again, the scores based on a scale of 1 to 7, with 1 as the lowest score and 7 as 

the highest. As we can see by the scores for Teacher 2.1, the interactions pertaining to the 

Emotional Support were on the low end of the middle range of scores. On average, the 

climate in the classroom was sometimes positive and sometimes negative, the teacher 

was aware and responsive to her students' needs but there was not a lot of support for 

student leadership or autonomy or student expression. While there were many positive 

communications in this class between students and the teacher, there were also times 

where the teacher directed punitive control over the students and severe negativity. This 

was indicated in the Positive and Negative Climate dimensions being almost exactly the 

same. This classroom was also predominantly teacher-driven with little room for student 

expression or autonomy and leadership. Many times, the teacher was unresponsive to 

students who did not understand or who answered a question incorrectly. At these 

moments, the teacher frequently raised her voice and redirected the question to the entire 

class.  

The CLASS data also reported that the Classroom Organization was in the middle 

range.  The teacher was fairly proactive in this classroom and able to redirect any 

misbehavior quickly. She gave quite a bit of proactive praise to the students and gave 
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clear directions during each lesson. Her lack of preparation for the lesson was seen at 

times when she took students down unnecessary pathways to answer a task that required 

students to combine fractions into wholes and find a total. She was also took a lot of time 

to collect homework and then scold a child for not making sure that everyone’s name was 

on the paper when they were collected. She was very good at reviewing the lesson 

objective daily. She also made the vocabulary in the objective transparent to the students 

through examples of the word, or root word, in everyday life. The students showed a lack 

of interest in their work often through facial expressions, side conversations, and not 

following along with the instruction. There was also only one occasion where students 

were not taking notes or answering questions with paper and pencil. On this occasion, 

they used fraction tiles to compare fractions. Otherwise, there was little variety in the 

materials and modalities used in the teaching (Pianta et al, 2008). 

Lastly, the composite domain scores indicated that there was low Instructional 

Support in this classroom. Instructional support included: Concept Development, Quality 

of Feedback, and Language Modeling.  The scores showed that very little analysis and 

reasoning occurred over the six CLASS observations. Scaffolding of any of the 

mathematics happened in the form of giving the steps to a procedure, which is not exactly 

scaffolding as intended by Vygotsky and the Zone of Proximal Development (Vygotsky, 

1978). The conversations consisted of one-word answers from the students and very little 

conversation. The teacher modeled how she solved the mathematics problems but it was 

not in the form of self-talk or language modeling. It was very procedural. The teacher 

rarely revoiced students’ answers or extended on their thinking. The majority of the 
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classes showed the students copying the teacher’s work onto their paper and then giving 

brief responses when called upon (Pianta et al, 2008).   

Overall, the CLASS observation protocol depicted a classroom that was very 

teacher-centered and procedurally driven. These scores, in a few ways, align with the 

planning interview and the Teacher Knowledge Assessment scores. First, Teacher 2.1 

received a score that was three-quarters of a standard deviation above the mean relative to 

the other NSF-funded grant participants. When the test items were individually 

examined, Teacher 2.1 struggled with deciphering non-standard algorithms used by 

students and with unpacking what the student was thinking either when drawing 

representations of ½ +1/3 or subtracting multi-digit numbers with regrouping, or 

explaining the steps used to solve a multi-digit subtraction problem with regrouping.  

These difficulties pertaining to Knowledge of Content and Students might explain why 

there the scores for Regard for Student Perspectives, Concept Development, and Quality 

of Feedback fell into the low range. If a teacher has difficulties hearing and interpreting 

students’ emerging and incomplete thinking as expressed in the ways that pupils use 

language, his or her ability to anticipate what students are likely to think and what they 

find confusing, and this, in turn, might impact how a teacher presents information. Not 

understanding or knowing how students think might either stem from teacher-centered 

instruction or it might prevent teachers from moving into a teaching style that encourages 

student exploration or autonomy. It is also possible that this restricted knowledge base 

might be an indicator of why Teacher 2.1 focused on time constraints and disjointed 

planning during her interview and neglected to respond to my in-person and email 

communications to set up a second and third interview. If Teacher 2.1 had little 
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knowledge of student thinking because her teaching style did not lend itself to utilizing 

student thinking, she might not use much of her knowledge outside of Common Content 

Knowledge or basic knowledge of selecting examples and sequencing instruction (KCT). 

Talking about her planning based on student thinking would be quite difficult.  Next, I 

examined the cognitive demand of tasks given by Teacher 2.1 (Stein et al, 2009).  

 Worthwhile mathematics tasks and classroom discourse. 

 The mathematical tasks framework (Stein et al, 2009) for teacher 2.1.  Over six 

observations on Teacher 2.1, sixty-seven written tasks were given. All of the tasks were 

either memorization tasks or procedures without connection tasks. The range of tasks 

assigned was between 3 and 30. Overall, there were a total of 42 memorization tasks, and 

25 procedures without connections tasks (Stein et al, 2009).  Table 11 exemplifies the 

types of tasks assigned by Teacher 2.1. 

To best understand how Teacher 2.1 implemented the written tasks and how the 

implementation related to MKT, I used the following memorization task that was given 

on November 28, 2011 to the 5th grade students: Is 3/6 greater than or less than 2/8? This 

task came out of the adopted textbook. It was an “example” problem that was solved in 

the textbook using pictorial representations of base ten blocks.   

The fifth grade students were seated at the front of the class facing the 

chalkboard. Teacher 2.1 stood at the board with her textbook in hand.   

Teacher 2.1 eyes up here. Yes, up here. I'm going to do an “I do,” then it's 
going to be a “we do” and then it's going to be a “you do” do. Okay? 
Ready? Eyes up here. Ready? Alright so if we have three six and we want 
to know if three-sixths. We are going to start easy and go from there. Is 
3/6 bigger or less than 2/8? Now there's a couple of ways of doing this. 
Can anybody figure out one way of doing this? How would I do this? 
George, eyes up here.  
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Table 11 
 
Cognitive Demand Level of Tasks Given by Teacher 2.1 
 
Classification of task Example Explanation 
Memorization “3/6 is greater than or less 

than 2/8” (classroom 
observation, 11/28/11) and 
“9 x 3 = 3 x W” (classroom 
observation, 10/31/11) 

As written these two examples 
“have no connection to the 
concepts or meaning that 
underlie the facts, rules, 
formulae, or definitions being 
learned or reproduced” (Stein et 
al, 2009, p. 6) and “they involve 
either reproducing previously 
learned facts, rules, formulae, or 
definitions OR committing 
facts, rules, formulae, or 
definitions to memory” (p. 6). 
 

Procedure without 
Connections 

“892 x 37” (classroom 
observation, 11/14/11). “Find 
the GCF of 14 and 16.” 

These two tasks, as written, “are 
algorithmic. Use of the 
procedure is either specifically 
called for or its use is evident 
based on prior instruction, 
experience, or placement of the 
task” (Stein et al, 2009, p. 6). 
There is a limited cognitive 
demand required to complete 
these tasks and the focus was 
“on producing correct answers 
rather than developing 
mathematical understanding” 
(p. 6). 

 

Kid: you could draw them out. 
Teacher 2.1: I could draw them out. But, put them over there! But when I 
draw them out, I have to be very very exact and speaking of drawing out 
[kids says something] what? We’re not waiting for them; I don't know 
where they are. They’re in the office? Are they in the office? Does anyone 
know where Liz and Jonas, I mean Liz and Ariel and ah Silvia are? 
Kid: Liz's right there 
Teacher 2.1: Ariel. Where’s Ariel? Where’s Silvia? 
Kid: Ariel went with Ms. Lopez 
T: do you know why? Okay. 
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 At the start of this lesson, Teacher 2.1 began to ask the students how she might 

solve the problem. A student told her to draw out the pictures. Teacher 2.1 explained to 

the child that draw pictures required careful and exact drawings. The lesson immediately 

got side tracked when students realized their peers were missing.  Teacher 2.1 clearly did 

not know where the children were and demanded answers from the students in the 

classroom.  It was evident that Teacher 2.1 worried about the students once she realized 

they were gone but there was a sense of awkwardness in the students reactions, especially 

when Teacher 2.1 asked about a child sitting in front of her.  These sorts of interactions 

were captured in the CLASS observation protocol under “Negative Climate.”  

 Teacher 2.1 provided the students with fraction bars from the kits that came with 

the adopted textbook.   

Teacher 2.1: alright now eyes up here so we are looking at a fraction. 
When we look at a fraction what's this part of a fraction called? What's 
this called? It is called the numerator. What is it called? 
Kids: numerator 
Teacher 2.1: what is it called? 
Kids: numerator 
Teacher 2.1: what is this called? 
Kids: denominator 
Teacher 2.1: so the denominator tell you eyes up here, the denominator 
tells you how many parts something is divided into. So I want you to find 
your fraction bards that are the sixths. So go find the sixths. Open them up 
be careful because you are responsible for them. Okay so you have your 
sixths so get your sixths out . . . 
 

 Using basic knowledge questions (Bloom, 1956), Teacher 2.1 quizzed the 

students’ knowledge of fractional parts.  She then gave the students the definition of the 

denominator and told them to get out sixths (CCK – using correct mathematical terms; 

being able to solve the problems assigned to students).  She proceeded to tell the students 
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how to set up their fraction bars to make a comparison and what a drawing of their bars 

might look. 

Teacher 2.1: so get your eighths . . . okay once you get your sixths and 
eighths together I want you to put them in a row, nice little, so put...you 
know what don't worry about these. Get your sixths and your eighths 
together. Look back in your box to see if you can find. Did it drop? Move 
your backpack . . . get your eighths together and your sixths together. 
You’re missing one? There it is. Now get your sixths together. Don’t worry 
about these right now . . . [00:11:14.18] so your sixths and your eighths 
should be very close together like right underneath together. Perfect. So 
when, when you are drawing something, hurry up let's get them in 
order . . . okay now this is exactly the way that I wanted it, I wanted it 
separate so that you could see it away from the rest of the, ah the rest of 
those fraction parts. Now, look up here. Look up here. When you are. Eyes 
up here. When you say draw it. If you are going to draw it. That means the 
length of each of them as to be exactly the same. So if I would want to 
draw this I have to make sure that this length is the same as this length 
and then I would divide this into what? Sixths? And this into eights? You 
have already gotten that. It’s already been divided because, hurry. We are 
using the fraction bars. Okay, 
 

 In this monologue, Teacher 2.1 briefly explained that fractional pieces needed to 

be equidistant (CCK – knowledge of how to solve the mathematics of 5th grade) but there 

was an absence of why the length were the same and any discussion of how the pieces 

related to a whole unit.  Teacher 2.1 maintained control of the activity and thus 

maintained the low-level cognitive demand of the task (see Appendix E – maintenance of 

low-level cognitive demand – teacher takes over the task, no time for students to puzzle 

through the task).   

T: now take three-sixths down okay so there's three-sixths and there is two 
eighths so my question is this. Is three-sixths greater than, less than, or 
equal to two eighths? Look at your thing. Is 3/6 greater than, less than, or 
equal to two-sixths? Two-eighths? Alright I don't know what you are 
looking at children! Here is 3/6 and here is 2/8. My question is this is 3/6 
greater than, less than, or equal to two eighths? 
Kids: greater 
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T: it's greater than. Do you see it? There’s the two eighths. There’s the 
3/6, which is bigger? Which is bigger? Three sixths? Soo 3/6 is greater 
than 2/8. Do you see that? Do you see that?  
Kids: yes 
T: good okay. 
 

 Teacher 2.1 directed the entire learning in this task implementation. There were a 

few moments in the episode where Teacher 2.1 could have drawn out conceptual 

understanding. For instance, instead of asking the students why drawing fractions was 

sometimes problematic and how to ensure they were accurate when drawing, she told 

them each length had to be the same length and then moved back to the fraction tiles. 

Even when using the fraction tiles, Teacher 2.1 never addressed the need for the two 

fractions to be lined up at the same starting point. They also did not examine if equivalent 

fractions might help them figure out this problem without tiles. It is quite possible that 

students understood that 3/6 was the same as 1/2 and that 2/8 was the same as 1/4 or even 

that 2/8 was less than one-half because they knew that 4 is half of 8 and 2 is half of four, 

or even that 2 is less than 4. Instead, the focus of this episode was finding the answer.  

 It could be argued that this was an “I do” portion of the lesson and that was why 

Teacher 2.1 directed the entire lesson around that task, however, a second example of 

task implementation based on a whole class discussion of a task will be explored next to 

illustrate the patterns in Teacher 2.1’s teaching practices.  

 The second vignette comes from February 6, 2012. The class is working through 

the Math Wall questions from a previous week. Each child sat at his or her desk with a 

white board and a marker and a binder with all of the Math Wall questions. The question 

was written as a Procedure without Connections but possibly could be categorized as a 

Procedure with Connections. An internet survey asks Web site visitors what fraction of a 
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gallon of water they drink each day. The line plot displays the visitors’ responses. Which 

column totals the greatest number of gallons drunk? [NOTE: they were given a line plot 

not a table] 

Fractions in a gallon Frequency 
¼ 8 
½ 7 
¾ 6 

 
a) ¾ 
b) ½ 
c) ¼ 

 
Much like the first example, Teacher 2.1 read the task to the students at the start 

of this example and then immediately began to question the students about the procedure 

for solving this task (see Appendix E – maintenance of a low-level cognitive demand task 

– students do not receive time to puzzle through the task).   

Teacher 2.1:  . . . so what bit of information do we have to know? How 
much what?  
Kid: how many ounces in a gallon 
T: how many ounces are in a gallon. Well let's start with the basics. How 
many ounces are in a quart?  
Kids: ahhh 
Kid: 8 
T: nope. How many ounces are in a quart?  
Kid: 4 
T: how many ounces. You are guessing now. Stop and think you did this 
last year. How many ounces are in a quart? 
Kid: 6 
T: okay start over here I will give you the first. One quart equals 32 
ounces. Now going from there what am I going to have to do? How many 
ounces in a 
Kids: quart 
T: NO! I already told you that! How many ounces in a  
C: gallon 
T: so what am I going to do? I gave you some basic knowledge so you 
have to know how many quarts are in a gallon? How many quarts are in a 
gallon? 
Boy: four 
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T: four quarts in a gallon. 
 

 Using Knowledge questions, Teacher 2.1 walked through the procedure she 

thought necessary to solve this problem.  She demonstrated Common Content Knowledge 

of converting measurements related to volume.  Unfortunately, the task did not require 

such mathematical knowledge for solving.  The task could have been solved knowing that 

eight one-fourth pieces made 2 gallons, seven-halves was 3.5 gallons, and six-fourths was 

4.5 gallons. Instead, Teacher 2.1 proceeded to make the students convert all of the 

measures to ounces and then told the students that they needed to add all of the ounces 

together because the question asked them how many altogether.  The task, as understood 

by Teacher 2.1, fell far beyond what the students understood (see Appendix E – 

maintaining low-level cognitive demand).  In addition, Teacher 2.1 completed the entire 

task for the students.  At this point, I stop the lesson and explained she was solving a 

different problem than the one asked. Once Teacher 2.1 realized her mistake, she walked 

the students through a new way to solve the problem. 

Teacher 2.1: how many 8ths make one? 
Kids: 2 
Teacher 2.1: two-eighths make one? How many eighths make one? 
Kids: four 
Teacher 2.1: how many eighths make one?  
Kids: one 
Teacher 2.1: how many eighths make one? 
Kids: four . . . two . . .  four . . . eight 
Teacher 2.1: eight eighths. Right? Eight eighths make one? Okay. Let’s go 
over here. It says, oh we don't have eighths.  
Teacher 2.1, I don't know why you keep seeing 8ths there. Okay fourths,  
Kids: four 
Teacher 2.1: Four-fourths make one. Now how many fourths do you have 
here? Count. 
Kids: 8 
Teacher 2.1: 1,2,3,4, 
Kids: 8 
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Teacher 2.1: 5,6,7,8 . . . if you were that sick let me send you to the nurse. 
Which we don't have. Okay. Feeling any better. Did you get a drink of 
water? Good. Okay so you have 8/8 actually eight fourths. How do I 
change it? Divide the four into the 8?  
Kids: two 
Teacher 2.1: first column has two gallons so put two gallons down 
 
Even after Teacher 2.1 realized her mistake, her teaching of the task was answer-

focused, little engagement on the part of the students beyond simple one-word answers to 

knowledge level questions, and was a demonstration of her knowledge of a procedure for 

solving the task.   

Teacher 2.1 did not demonstrate much in the way of Pedagogical Content 

Knowledge. There were no large examples of her using student thinking or her own 

knowledge of student thinking to inform instruction. Instead, working through procedures 

with the students dominated her instruction, as did working through textbook problems. 

As with the planning and in the CLASS observation notes, it is possible that Pedagogical 

Content Knowledge was rarely used because Teacher 2.1 did not know what her students 

thought other than what was given to her as a test score. If a teacher does not know what 

the students actually know, how can they plan or teach accordingly? It is possible that 

time constraints prevented her from utilizing student thinking because she felt that too 

much time would be taken if students did the work but one would not know without a 

method for tracking beliefs and thoughts of the teacher. It is possible that Teacher 2.1 did 

not have a large repertoire of activities to use, however, this seems unlikely after 30 plus 

years of teaching and knowing the activities the NSF-grant provided for the teachers over 

the two years of professional development. It is possible that accessing these activities 

when under stress was too much for Teacher 2.1. Again, all of these hypotheses are just 
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that, hypotheses. Follow-up studies would have to be conducted to begin to unpack the 

reason why Teacher 2.1 relied so heavily on her Common Content Knowledge.  

To reiterate, the instructional practice of Teacher 2.1 was evaluated using three 

methods: the CLASS protocol, the Mathematical Tasks Framework, and Bloom’s 

Taxonomy.  Teacher 2.1 provided evidence in her instruction of a high reliance on 

Common Content Knowledge with a little use of Specialized Content Knowledge.  This 

type of knowledge was evident in her implementation of the tasks she gave the students 

and in the types of questions she asked the students during class discussions.  Her 

teaching style was very systematic and orderly.  Much like Teacher 1.2, Teacher 2.1 

stood at the front of the class and solved problems from the adopted textbook. 

Occasionally, her instruction changed based on students demonstrating a lack of 

understanding.  Sometimes students were called to the board to show a different way to 

solve a problem but mostly if the children did not understand a concept, she yelled a little 

louder or provided another example. Next, we examined Teacher 2.2 using the same 

analytic methods to see if any patterns or disparities were seen between the two teachers 

with MKT scores around the mean of the larger NSF-grant sample and different student 

achievement scores. 

Teacher 2.2 

 The instructional practice of teacher 2.2 was evaluated using three methods: the 

CLASS protocol, the Mathematical Tasks Framework and Bloom’s Taxonomy.  Teacher 

2.2 provided evidence of her reliance on her Common Content Knowledge and some 

Knowledge of Content and Teaching. These types of knowledge were evident in her 

procedural instruction techniques and her ability to supplement the textbook activities 
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when students struggled to understand a concept.  For the most part, Teacher 2.2 taught 

her 4th graders from the front of the classroom, however, she provided opportunities for 

students to demonstrate their ability to work through a problem using the procedure she 

showed them.  The following sections provided the evidence to support the claims made 

in this introductory paragraph. 

 The learning environment. 

 CLASS observation protocol.  Six CLASS observations were conducted with 

Teacher 2.2 between October 2011 and February 2012. Table 12 shows the average 

scores across the 10 dimensions for Teacher 2.2:  

Table 12 
 
CLASS Dimension Scores for Teacher 2.2 
 
Dimension Average score 
Positive climate 6.167 
Negative climate 1 
Teacher sensitivity 3.83 
Regard for student perspectives 2.167 
Behavior management 4.83 
Productivity 3.83 
Instructional learning formats 3.67 
Concept development 1.5 
Quality of feedback 2.167 
Language modeling 2.67 
 

For the most part, Teacher 2.2 received average scores ranging from 1 to 6.167, 

with most of the dimension scores being between 2 and 4.  Teacher 2.2 scored the highest 

marks for Positive Climate and the lowest scores for Negative Climate, which is what one 

wants to see when looking at the types of interactions occurring in the classroom. Other 
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than Regard for Student Perspectives and Concept Development, the rest of the scores 

fell on the low end of the middle range.  

When composite scores were calculated for the three CLASS domains, Teacher 

2.2 received a score of 4.791 for Emotional Support, 4.11 for Classroom Organization, 

and 2.112 for Instructional Support. For both Emotional Support and Classroom 

Organization, Teacher 2.2 was fourth in comparison to all of the other participants in this 

dissertation, just above Teacher 2.1. She had the lowest score of all of the participants 

when it came to Instructional support but only by 0.1 of a point behind Teacher 2.2. 

Again, all of these scores are based on a scale of 1 to 7 points, with the lowest attainable 

score being a 1 and the highest being a 7.  

As we can see by the scores, the interactions recorded under Emotional Support 

were very high. This means that, on average, Teacher 2.2 created a classroom that 

promoted positive interactions, such as having respect for everyone, building positive 

relationships with students, and having a positive affect toward the students. This score 

also indicated that Teacher 2.2 was mostly aware of her students’ needs and was very 

responsive to their comfort level. She made time in her teaching to working with 

individual students and helped them solve problems in a timely manner. The students 

seemed very free to participate and take risks in this classroom for the most part. In this 

classroom, there was also some indication that Teacher 2.2 tried to incorporate students’ 

ideas into her teaching and the students were allowed some choice and leadership but 

usually Teacher 2.2 took control of the classroom direction and focus (Pianta et al, 2008). 

Classroom Organization fell in the middle range as well. Teacher 2.2 was 

frequently consistent with the rules and set clear expectations for the students. She often 
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anticipated problem behavior before it escalated. She was able to use subtle cues to 

redirect students, either by using their name or by giving a quick look. The students were 

quick to comply with the teacher when she corrected their behavior for the most part. For 

the most part Teacher 2.2 provided activities but there were times when instructional time 

was lost to students goofing around or everyone getting off of task. At times, there were 

long transitions and some difficulty in following routines. For the most part the teacher 

was prepared with the materials for the class but occasionally the activities were 

impacted by the lack of supplies. The lowest scores for this domain came from 

Instructional Learning Formats. While Teacher 2.2 received middle range scores for 

Instructional Learning Formats, they were relatively low mid-range scores.  Students 

participated in this classroom but occasionally their attention wandered. There were some 

creative and interesting materials used in this classroom, such as Smart Board Dice 

activities and the construction of multiplication books but the activities were not always 

at grade level nor expanded on what children already knew (Pianta et al, 2008). 

Lastly, Teacher 2.2 received a low score for Instructional Support.  Teacher 2.2 

struggled to “use instructional discussions and activities to promote students’ higher-

order thinking skills and cognition and the teacher’s focus on understanding rather than 

on rote instruction” (Pianta et al, 2008, p. 64). The students rarely brainstormed or 

problem solved in this class. There were few connections made across the concepts and 

few connections to real-world applications. Teacher 2.2 occasionally provided 

scaffolding for students and assistance but not often. Most of the feedback given to the 

students was positive affirmations rather than an exchange of ideas. Students were 

occasionally asked to explain their thinking but a lot times the teacher moved forward 
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with the explanations on her own. Lastly, while some techniques were used to encourage 

language development, this protocol indicated that there were few interactions among 

students that promoted language development and few opportunities for students to 

engage in back and fourth exchanges. There were also a few moments where Teacher 2.2 

used a variety of words and extended on what students were saying.  

Overall, the CLASS observation depicted a very positive classroom where 

students were engaged for the most part and compliant with the directions of the teacher. 

Students were usually active participants in the classroom and were engaged in the 

learning that occurred. What were missing in this classroom were interactions that 

promoted higher-level thinking and the development of mathematical language. It is quite 

possible that the low scores captured by the CLASS observation protocol resulted from 

the below average MKT scores of Teacher 2.2. If a teacher lacks subject matter 

knowledge, as was depicted in the interview and test scores of Teacher 2.2, developing a 

learning environment that promoted higher-level thinking might be very difficult, as the 

teacher might not know where to take a lesson mathematically (Horizon Content 

Knowledge) or how to unpack the mathematics being taught with depth (SCK).  Low 

teacher knowledge might also indicate difficulty in anticipating tasks that would 

challenge students, although Teacher 2.2 strove to do just that with her 4th graders (KCS) 

and also difficulty sequencing instruction in a way that encourages creating connections 

across concepts and building on prior knowledge (KCT).  What is interesting is that the 

student change scores for Teacher 2.2 were a standard deviation above the mean of the 

NSF-grant participants’ scores. Next, we will examine the instructional strategies of 

Teacher 2.2 using The Mathematical Tasks Framework (Stein et al, 2009), Bloom’s 



	   190 

Taxonomy, and MKT categories (Ball et al, 2008), in hopes of addressing this dichotomy 

between the knowledge scores and student scores. 

 Worthwhile mathematical tasks and classroom discourse. 

 The mathematical tasks framework (Stein et al, 2009) for teacher 2.2.  Six one-

hour classroom observations were used to assess the teachers' instruction in this 

dissertation. During the six observations on Teacher 2.2, between one and nine tasks were 

assigned during a single class period, for a total of 28 written tasks.  Overall, there were a 

total of 9 memorization tasks, 12 procedures without connections tasks, 6 procedures 

with connections tasks, and 1 doing math task (Stein et al, 2009).  Table 13 provides 

examples of the different types of tasks assigned by Teacher 2.2. 

 To best understand how Teacher 2.2 implemented the written tasks and how the 

implementation related to MKT, I used the following memorization task that was given 

on November 15, 2011 during Math Wall time. The memorization task read:  

Which of these equations shows the distributive property? 
a) (4x2) +8 = 4(2+8) 
b) 23 x 2 = (20 x 2) + (3 x 2) 
c) 68 x 0 = 0 
 

At the start of the Math Wall time, the students solved the problems independently. After 

10 minutes, Teacher 2.2 reviewed one or two of the five math wall problems with the 

class.  For this task, she read the question to the students and then questioned them on 

their thinking. 

Teacher 2.2: Let's do it, let's eliminate the easiest one. How do we know 
that it is not C?  
Kid: Because it 
Teacher 2.2: ohh! Thanks for raising your hand...Olivia? 
Olivia: because anything times zero is zero 
Teacher 2.2: zero. So that shows, which property is that one? 
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Table 13 
Cognitive Demand Task Levels for Teacher 2.2 
 
Classification of task Example Explanation 
Memorization “5 x 3” and “8 ÷ 4” As written these task involves reproducing 

already learned facts and "have no 
connection to the concepts or meaning that 
underlie the facts, rules, formulae, or 
definitions being learned or reproduced" 
(Stein et al, 2009, p. 6). 
 

Procedure without 
Connections 

"Divide 15 counters into 5 
equal groups” 
 

This task requires limited cognitive demand 
for successful completion, as written. It 
"requires no explanations, or explanations 
that focus solely on describing the 
procedure that was used" (p. 6). Also, “use 
of a specific procedure is called for” (p. 6). 
 

Procedures with 
Connections 

"Charlie brought 25 cookies 
to school. He wants to give 
some cookies to 8 friends. 
How many cookies does 
each friend get and how 
many are left over?" 

This task "requires some degree of cognitive 
effort. Although general procedures maybe 
followed, they cannot be followed 
mindlessly. Students need to engage with 
conceptual ideas that underlie the 
procedures in order to successfully complete 
the task and develop understanding" (Stein 
et al, 2009, p. 6) This task also requires 
students to think about what they are 
answering and how they will get to the 
answer. In addition, there are multiple ways 
in which a child might solve this problem 
and there is a demand on the children to 
monitor their own thinking because the 
answer they might initially end up with 
might not be the answer to the question 
presented. 
 

Doing Mathematics Kids had to estimate and 
then get a specific 
measurement of items 
around the classroom 

This task is at the highest level of cognitive 
demand because "there is not a predictable, 
well rehearsed approach or pathway 
explicitly suggested by the task, task 
instructions, or a worked-out 
example"(Stein et al, 2009, p. 6). In fact, 
there were no examples modeled or 
instructions given about solving this task 
until after the students had tried to solve it 
on their own. Thus, this task "required 
students to access relevant knowledge and 
experiences and make appropriate use of 
them in working through the task" (p. 6). 
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Kids: zero 
Teacher 2.2: the zero property so we know it's not C. 
 

 While Teacher 2.2 asked Olivia to explain how she knew that answer choice C 

was incorrect, this excerpt did not extend beyond Common Content Knowledge for 

Teacher 2.2. She did not have to make any mathematics transparent for students or figure 

out ways to represent the property being illustrated in answer choice C or use what Olivia 

said to make a mathematical point.  Instead, the level of questioning focused on Olivia’s 

recall of the definition of the “Zero Property” and maintained a low-level of cognitive 

demand.   

Teacher 2.2: . . . So you guys are saying it's this one. A. Okay. Remember 
last time when I was telling you guys that the associative property has 
parentheses? And this one has parentheses too, BUT the associative prop, 
this one when you distribute you are distributing the problem. You're 
distributing it. Okay? By place value. Okay? You guys the answer is and I 
am going to give it to you so you guys know it and we are going to put 
more practice the answer is B.  
Kids: yes!! 
T: because I am distributing this 23. Look you guys; I am distributing this 
20 times 2 and 3 times 2. That’s what we've been learning in multiplication. 
With multi-digits remember. Remember when I say you guys what is . . . 
and we've been, and it's on our goal. We're using the distributive property; 
I am going to, what am I going to do to this? I'm going to, break it apart 
right? That’s distributing. Okay? Are we good? We are going to do more 
practice. I am not going to continue with this because we are going to do 
this during our regular math lesson, okay? So. We’re going to move on, 
okay? But everyone got why it was B?  
C: yes 
T: yes? Okay   
 

 At this point in the task implementation, Teacher 2.2 took over this problem 

(Stein et al, 2009, p. 16).  She stopped asking the students what the different properties 

meant and what they were thinking.  Instead, she explained the different properties at a 

very basic level and then showed why one answer fit versus another.  Again, Teacher 2.2 
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demonstrated Common Content Knowledge in this excerpt, however, what is most 

notable is the fact that she showed incorrect Common Content Knowledge throughout 

this episode. First, answer choice A, as written, is incorrect. The left side of the equation 

equals 16, while the right side of the equation equals 40.  It was apparent that Teacher 2.2 

did not notice the answer choice was not only an incorrect representation of the 

associative property but that it also was a false statement. Second, her explanation of the 

distributive property was confusing. She did break apart the 23 into 20 and 3 but she did 

not distribute the 23 across the two, she distributed the 2 across the 23. While her method 

works, there left a great possibility that the students will be confused at a future point.  

 Beyond Common Content Knowledge, there were few examples of any other 

category of MKT in the first vignette. Possibly, the lack of other components stemmed 

from the incomplete knowledge Teacher 2.2 held about the distributive property. If one 

does not understand the content being taught, asking students to clarify their thinking 

(KCT), hearing incomplete thinking (KCS), decompressing the mathematics behind the 

distributive property (SCK), or choosing examples to assist in explaining the property 

might be very difficult.  Further investigation is needed to examine what is happening 

during this vignette with regards to Teacher 2.2’s MKT. 

 On January 31, 2012, Teacher 2.2’s reliance on Pedagogical Content Knowledge 

was evident. During this episode, the students investigated the concept of measurement 

by Doing Math (Stein et al, 2009).  The lesson started with a review of the topic 

discussed the previous day, which was estimating the length of an item and then 

measuring said items in the book such as a paper clip and an illustrated ribbon. They also 

recalled how to estimate the length of an item using their thumbs or their hands or their 
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fingernails. Then Teacher 2.2 asked the students how they measured using a ruler 

because she anticipated difficulty in their measuring abilities based on past experiences 

with this activity (KCS – anticipating what students might find difficult; anticipating 

misconceptions students had about measuring and using a tool for measuring).  

Teacher 2.2: . . . okay, so for today's activity. Okay . . . and just to go over 
with you how to measure something correctly, cause I know that this is a 
mistake that we always, we sometimes we might do, and I don't want you 
guys making that mistake. Okay I am waiting [phone rings] for when you 
are ready. 3rd grade go . . . [00:06:08.20] yeah they are on their way . . . 
okay. [00:06:29.05] Okay. okay. Right now? No just do your work and 
that's it okay. You are staying in here . . . okay let's say we have this line 
and we wanted to measure it, okay? Here’s what I need you guys to make 
sure you are always doing. By looking at your ruler you can see that there 
are two different sides to it, okay? This side the lines are, what do we 
notice between this side and this side?  
Kid: that the  
Jorge: one says cm for centimeters and the bottom says in for inches 
Teacher 2.2: there you go, so this is inches so what we are trying to find it 
inches so we are going to use this side, okay? And here's what I need you 
guys to know when you are measuring with a ruler. You don't just put it 
like this and you start measuring and you say oh it's like that okay? Got 
it? 
Kid: yes 
Teacher 2.2: okay. Look at my line down here. You grab the very end of it, 
right before the one starts, see that? [kid: yes] and you put it right at the 
end. And you measure it. 
 

 Teacher 2.2 demonstrated to the students how to use the ruler correctly when 

measuring items around the classroom.  The students were given free reign to measure 

items around their classroom.  Teacher 2.2 walked around the class helping the students.  

She stopped the students at one point when a disagreement occurred as two students tried 

to measure her. 

Teacher 2.2: you said 5 inches and you said 72. [00:24:14.14] How did 
you get 5 and how did you get 72. Huh? Wait class? 
C: yeah 
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T [00:24:24.16] okay, here's another great learning opportunity for all of 
you guys because I see a lot of you guys doing this. 
   

 In this moment, Teacher 2.2 demonstrated Knowledge of Content and Students 

(KCS – knowledge of common misconceptions and difficulties around the mathematics 

content).  She also used the two answers (5 inches and 72 inches) to make a mathematical 

point (Knowledge of Content and Teaching) and scaffold the learning around the 

importance of units (Knowledge of Content and Teaching). 

Teacher 2.2: how did you come up with 5? 
Josue: cause I used a ruler 
T: how did you come up with 5? ohhh! did I tell you to talk? Jorge, go sit 
down. go sit down real quick, Jorge. right now. how did you get five? so 
do you think he is correct? 
Kids: no 
Teacher 2.2: am I 5 [she demonstrates 5 inches on the ruler]? 
Kids: no you are more than that! 
Teacher 2.2: huh? 
Kids: you are more than that! 
Teacher 2.2: 5foot? 
Kids: yeah 
Teacher 2.2: 5? 
Kids: feet! 
Teacher 2.2: feet. okay. how did you figure that out?  
 

 Teacher 2.2 demonstrated Specialized Content Knowledge when she showed the 

students what 5 inches looked like compared to her height (SCK – making a concept 

transparent; knowing what representation would be impactful for students about units).  

She also used a student’s thinking to make a mathematical point and when to ask for 

clarification about the units being used (Knowledge of Content and Teaching).   

Teacher 2.2: okay, here's what I saw you guys were doing at first. We are 
making that mistake of telling, of saying that I was five inches just because 
when you measured me you went 1,2,3,4,4 and then 5. that's not five 
inches. that's tell me that I am this tall. 
Kids laugh! 
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Teacher 2.2: okay? close but not that small, okay? you need to know that 
if you are trying to measure in inches how many times you went so look. 
I'll wait until you guys are watching me . . . cause if you don't know what, 
how to do you are going to continue making that mistake. 
 

 Again, Teacher 2.2 made the concept of “inches” versus “feet” transparent for 

students (SCK).  She also stated that she knew they would continue to confuse the units 

unless they learned the difference (Knowledge of Content and Students).  She continued 

by scaffolding how to convert inches to feet using the students’ prior knowledge that 

there are 12 inches in a foot.  A student explained that they could multiply 5 times 12 to 

figure out how many inches was 5 feet.  Teacher 2.2 used the work of another student (a 

first grader who was in the class that day because the school did not have a substitute for 

his classroom) to demonstrate another method for calculating “inches” to “feet.” 

Teacher 2.2: Javier, what did you do when you measured me?  
Javier: I was using the ruler? 
Teacher 2.2: uh huh 
Javier: and I was going number by number 
Teacher 2.2: number by number. and what were you doing with number by 
number? weren't you saying numbers 
Javier: I was going 12,13,14,15,16,17,1819,20, and I was going  
Teacher 2.2: ohhh, did you see how he did it 
Kids: yes 
Boy: no 
Teacher 2.2: so he went like this, this is what he did cause I was hearing 
him. He used his ruler and he said this is 12 and then he said okay, I don't 
think he still knows how to multiply but I think he knows he still has to add 
12 so what he did he added all of the other number so he said, 
13,14,15,16,17,18,19,20,21,22,23,24 and he did it again 24, 
C: 25,26 
Teacher 2.2: and all the way he got to the top of my head. that's very good 
thinking for a 1st grader, okay? for you 3rd and 4th graders I expected 
you guys to multiply it  

 
 Using Javier’s work (KCT), Teacher 2.2 not only exposed the students to another 

way of converting units, she used this moment to ask the rest of the class how this related 
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to the multiplication and why she had the 4th graders multiply instead of count by ones. 

One student yelled that they are the same. She asked him, “So I can say, 12 + 5 is the 

same as 12 times 5?” The students said that was not correct. Teacher 2.2 explained that 

12 times 5 is the same as 12 + 12 + 12 + 12 +12 and that this was exactly what the 1st 

grader wrote on his paper. She further explained that the addition was a trick the students 

could use if they forget how to multiply. 

 Overall, the teaching practices of Teacher 2.2 could be characterized as a mix of 

traditional direct instruction and reform teaching practices. Most of the time, Teacher 2.2 

stood at the front of the class and taught exactly what the textbook directed. However, 

many times she asked students to show her what they were thinking or solve problems at 

the board. She allowed kids to explore measurement through measuring items around the 

room and to explore vertex-edge graphs by coloring a map of Arizona. She tried new 

strategies that she learned in the TAP program and from the NSF-Funded grant, such as 

designing questions that accessed higher-levels of thinking according to Bloom’s 

Taxonomy.   

The level at which Teacher 2.2 engaged these new strategies and reform teaching 

practices in her teaching seemed to map to her lower MKT score, as compared to her 

peers.  In the second vignette, Teacher 2.2 allowed students to roam the classroom and 

discover why understanding differences among units of length was important. That 

activity also engaged students in seeing the relationship between inches and feet. During 

that lesson, Teacher 2.2 demonstrated Common Content Knowledge, Knowledge of 

Content and Students, and Knowledge of Content and Teaching. She also showed some 

Specialized Content Knowledge. For example, Teacher 2.2 was able to solve the 



	   198 

conversion problem of 5 feet to 60 inches. She was able to solve it with multiplication 

and relate it back to the number of groups of 12 in 60 inches. She was able to assess 

correctly that 72 inches was 6 feet. Both are examples of Common Content Knowledge. 

She was able to anticipate mistakes students might have when using the ruler and when 

converting from inches to feet. A few times in the lesson she was able to decipher and 

interpret students’ incomplete thoughts and scaffold the thinking of the students to help 

them get the correct answer. These exemplified Knowledge of Content and Students. 

Throughout the lesson, she was able to ask for clarification of students who 

misunderstood conversions and lead that student to the correct answer. This was an 

example of Knowledge of Content and Teaching as well as Knowledge of Content and 

Students. She used multiple students’ thinking to make a mathematical point, which was 

Knowledge of Content and Teaching. She also selected specific misconceptions to clarify 

issues the whole class was having with measurement and units. This was another example 

of Knowledge of Content and Teaching.  

As one can see, Teacher 2.2 utilized a variety of components of Mathematical 

Knowledge for Teaching in the second vignette. However, this engagement and extensive 

use of MKT categories was not seen often during the six observations. Instead, Teacher 

2.2’s teaching practices most often embrace Common Content Knowledge and 

occasionally Knowledge of Content and Teaching. Since Teacher 2.2 relied heavily on 

the textbook for her lessons, it was hard to determine whether or not her knowledge of 

the mathematics was representative of her own knowledge or that of the textbook writers. 

As seen in the first vignette, when Teacher 2.2 deviated from the textbook and veered 

into subjects where her common content knowledge wavered, she demonstrated fewer 
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moments where multiple MKT categories were used. Next, I summarized the findings 

across the teachers in this case. 

Discussion  

Overall, Teachers 2.1 and 2.2 presented an interesting situation between average 

MKT levels relative to their peers in the larger NSF-Funded grant and gains in student 

achievement.  Although Teacher 2.1 scored higher on the MKT test than Teacher 2.2, 

their students’ gain scores were opposite. Teacher 2.1’s gain scores were less than 

Teacher 2.2’s gain scores.  Why was this? What about how they drew upon their MKT 

might have accounted for the differences in these scores? 

 Both teachers taught combination classes based on the English Language 

Development level of the students as tested by the state language test.  Both teachers 

followed the adopted textbook and the district curriculum map when planning daily 

lessons for each grade level.  Teacher 2.1 also used the state standards document to plan 

her daily lessons.  Although there were flashes of reliance on Knowledge of Content and 

Students during the planning of lessons for both Teacher 2.1 and Teacher 2.2, for the 

most part these teachers adhered to the predetermined curriculum map and textbook when 

planning.  Therefore, MKT was less noticeable, and quite superficial when apparent, 

during the planning phase for these two teachers than others in my study.  

 Differences occurred in how Teacher 2.1 and Teacher 2.2 implemented the 

instruction.  For the most part, Common Content Knowledge (CCK) was very apparent in 

Teacher 2.1’s instruction.  Teacher 2.1 stood at the front of the classroom and dictated the 

standard procedure for solving problems.  She read the question to the students, showed 

them the steps for completing the problem, and then the students demonstrated they could 
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follow her directions. Once she was satisfied that the students could mimic the procedure 

she gave them, the students were given multiple problems from the textbook to solve for 

the remainder of the class period.   

 Much like Teacher 2.1, a basic level of CCK was most apparent in the teaching of 

Teacher 2.2.  What differed was that while Teacher 2.2 used the textbook and the 

procedures found in the textbook, she encouraged some discussion in her classroom and 

used her Knowledge of the Content and Students when deciding what textbook tasks 

would be hard or easy for students to solve.  She sometimes allowed students to tell her 

how they solved the problem before she gave them the procedure but usually she 

presented the procedure first.  She also used a combination of KCS and Knowledge of 

Content and Teaching to determine when she could combine lessons. For example, she 

knew her students mastered the concept of Mode from their work on the Math Board.  So 

she collapsed that lesson in the textbook into the lesson on other measures of central 

tendency.  Teacher 2.2 also used her knowledge of Bloom’s Taxonomy to structure her 

questions for students. She learned this skill from a professional development program 

the teachers in her school participated in that year.  

 It was possible that the differences in student gain scores for these teachers was a 

function of the differences in the amount of classroom discussions, the use, or lack of use, 

of knowledge of student thinking when planning and implementing lessons, and the 

willingness of Teacher 2.2 to embrace ideas she learned in professional development 

courses. Because of the missing data from Teacher 2.1, it was hard to determine how 

MKT influenced the teacher’s decisions but it was apparent that for the most part her 

instruction and planning was based on her CCK and knowledge of standard algorithms.  
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The next chapter examined the case of two teachers with relatively low MKT scores and 

two of the highest students’ gain scores relative to the teachers in the larger NSF-Funded 

grant. 
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CHAPTER SIX: CASE THREE 

A Case of Low MKT Scores and High Student Gain Scores 

 This final case examined two teachers who scored similarly on the Teacher 

Knowledge Assessment and whose student gain scores were similar.  To reiterate the 

information presented about the sampling process in Chapter Three, both teachers in this 

case scored about one-half of a standard deviation below the mean of the participants in 

the larger NSF-funded study.  In contrast, their students’ gain scores were strikingly high 

relative to their peers.  Teacher 3.1’s students’ gain scores were the highest of all of the 

teachers in the NSF-funded grant with her classroom average a little over two standard 

deviations above the mean of the NSF-grant participants’ students.  Teacher 3.2’s 

students’ average gain score was the fourth highest at one standard deviation above the 

mean of the NSF-grant participants’ students.  This case presented the last layer for 

understanding how MKT might link to student gain scores through classroom instruction.   

General Descriptions of Teacher 3.1 and Teacher 3.2 

Teacher 3.1 

 Teacher 3.1 was in her 7th year of teaching.  All seven years were spent teaching 

3rd grade in two southwest states. She graduated from a large state university in the 

southwest and completed her student teaching in the district in which this dissertation 

study took place.  She immediately moved into a job in the district at the end of her 

undergraduate work. She left the district for a few years to live in a neighboring state. It 

was during that time where she was introduced to the Math Wall, a program now adopted 

by the district in this study.  She felt very comfortable teaching the 3rd grade standards 

but very wary of higher-grade level mathematics. She identified herself as being bad at 
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math growing up. She thought this assisted in her ability to teach because she understood 

how to work through the problems, like the kids have to do (Teacher 3.1, 2nd Interview, 

3/5/12).  

 Over the 2011-2012 school year, Teacher 3.1 taught approximately 23 third grade 

students.  Teacher 3.1 taught at the same school as Teacher 1.2 and had a similar break 

down in lesson structure as Teacher 1.2, as seen in Table 14. 

Table 14 
 
Lesson Structure for Teacher 3.1 
 
Lesson component Allotted time Purpose 
Math wall 30 minutes Spiral state standards throughout the 

year 
Daily lesson 30 minutes Objective provided by the curriculum 

map 
Problem solving (Otter Creek) 10 minutes Adopted curriculum to help with 

building problem solving skills 
Math facts (Otter Creek) 5 minutes Adopted curriculum to help build math 

fact fluency 
 
 During the Math Wall time, the students gathered on the floor with their 

individual white boards and markers in front of the chalkboard. They sat at tables in 

groups of three to four during the Daily Lesson.  Teacher 3.1 stood at the front of the 

class when providing instruction but walked among the students when they were working 

on problems individually or sharing ideas with their partners.   

Teacher 3.2 

Teacher 3.2 was also a teacher for the last seven year. Like Teacher 3.1, Teacher 

3.2 graduated from a large state university in the southwest and student taught in the 

district where this study took place.  All seven years of her teaching experience were in 

the 2nd grade in the same district (Teacher 3.2, 1st interview, 1/26/12).   
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 During the 2011-2012 school year, Teacher 3.2 taught approximately 24 second-

grade students.  For all of my observations, the students sat on the floor with their 

individual white boards facing the Math Board.  Like Teacher 3.1, Teacher 3.2 stood at 

the front of the class when discussing the task or was directly instructing the class but 

then moved among the students during pair-sharing time or individual think time. 

Teacher Knowledge 

 As stated in Chapters three and four, one component of the Mathematics Teaching 

Cycle (NCTM, 2007) was Knowledge.  According to the Teaching Principle (NCTM, 

2000), an effective teacher needs knowledge in: “mathematical content, pedagogy, 

assessment strategies, and an understanding of students as learners” (NCTM, 2007, p. 

19).  These four criteria for “an effective teacher” aligned with Ball et al (2008) MKT 

components of Common Content Knowledge (CCK), Specialized Content Knowledge 

(SCK), Knowledge of Content and Teaching (KCT), and Knowledge of Content and 

Students (KCS).  In the following section, I used the data representative of the entire data 

set gathered from the Teacher Knowledge Assessment and follow-up interview to 

illustrate the degree to which the components outlined in the Teaching Principle and the 

MKT framework presented in Teacher 3.1 and Teacher 3.2 and how the presence or lack 

of some criteria might account for different student gain scores.   

Before discussing the data on the teacher knowledge test for this particular case, it 

must be acknowledged that during a few different administrations of the teacher 

knowledge test, teachers gathered together and took the test in groups. This “group work” 

occurred the year Teachers 3.1 and 3.2 took the test for the second time.  I realize the 

written test scores were not necessarily indicative of what each teacher knew 
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individually, however, the follow-up interviews were given individually and were used to 

parse out what information Teacher 3.1 knew versus Teacher 3.2.  

Example 1 From the Teacher Knowledge Assessment: A Multiple-Choice Item 

 Because the LMT items are not released to the public, the following is a 

description of a task given to the teachers participating in the NSF-funded Grant.  The 

task was a multi-digit subtraction problem that included regrouping of the minuend.  The 

digit “0” was in the tens place of the minuend as well.  The teachers were given three 

hypothetical students’ responses to examine.  The task asked the teachers to state whether 

or not each response was acceptable evidence indicating that the child knew why the 

procedure worked. The teacher had the option to say that they were unsure if the answer 

was acceptable or not. 

 The first response (a) was a direct description of the steps taken to solve the 

problem.  The response was void of place value or explanation regarding regrouping. The 

second response (b) indicated the child could decompose numbers and regroup fluidly 

across place value positions.  The final response (c) was tricky for most of the teachers.  

The student indicated some understanding of place value at a superficial level.   

Teacher 3.1’s response.  According to the written test, Teacher 3.1 answered that 

both choices (a) and (c) were not acceptable and that choice (b) was acceptable. During 

the interview, Teacher 3.1 explained, 

Oh no, I wouldn’t accept that [answer choice A] because I would tell them 
that they have to make it a 10 and then borrow to make it a nine. [she 
reads the second answer choice] I took away 7. . .  from 16 . . . and I took 
away 9 from 9. I mean I guess I was thinking that but I still, oh yeah, yeah, 
I think this one is acceptable. Why? Because they are explaining how they 
regrouped this one and that’s why the 9 so it kind of made sense. [reads 
the third solution] yeah, so I would accept this because they’re explaining 
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each step and validating their answer. I guess. I’m sorry I am not being 
very helpful. 
  

 In this answer, Teacher 3.1 demonstrated that she understood the 

procedure for completing the subtraction problem. However, she failed to notice 

that answer choice (c) was also incorrect. In fact, answer choices (a) and (C) were 

similar in that the student tried to “borrow” from a “zero,” without recognizing 

that they were actually “borrowing” from 30 tens. Teacher 3.1 utilized some 

Common Content Knowledge in this problem but was not able to unpack the 

underlying concepts of place value rooted in the explanations. 

 Teacher 3.2’s response.  According to the written test, Teacher 3.2 

answered that both choices (a) and (c) were not acceptable and that choice (b) was 

acceptable. Teacher 3.2 ended up accepting answer choice (a) during the 

interview but explained that she wanted to hear more explanation of how the child 

“borrowed.” Her answer was also rooted in the standard procedure for 

subtracting. She continued with the remainder of the problem stating, 

Okay, borrowed from the tens place to make 6 a 16 but since it was a zero 
I had to borrow again, yeah. That’s good and especially when they started 
with this because they don’t get the three right away so who knows if they 
know if it’s connected. So, yeah, I guess, yeah. Alright. 

 
 From this explanation, it was difficult to decipher what exactly Teacher 

3.2 knew or which knowledge she might be accessing to solve this problem. She 

had an understanding of the traditional algorithm for solving the subtraction task 

but beyond that there was little indication of other MKT categories being used. 

Example 2 From the Teacher Knowledge Assessment: An Open-Ended Item 
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The following problem was given to the teachers to assess their knowledge of 

relational thinking in students.  The teachers were provided with half of a page to write or 

illustrate their responses.  To receive total points for the problem, the participants had to 

answer all three sub-questions (Carpenter et al, 2003).   

Assume we gave this problem to some elementary school students: 
      What number can you put in the box to make this number sentence 

true? 
          8 + 15 = ___ + 16 
     What strategies would you expect students to use to solve this problem? 
     What answers do you expect them to come up with? 

 
 Teacher 3.1’s response.  Teacher 3.1 wrote that her students would put 

“7” in the box.  She wrote that her students would solve the left side of the 

equation first and then figure out what went into the box.  She demonstrated her 

Common Content Knowledge for solving this problem both on the written test 

and during the interview.  In addition, she anticipated that her students would 

count up from 16 to 23 to get the answer of 7.  Such anticipatory understanding 

was characteristic of Knowledge of Content and Students.  She emphasized 

during her interview that she would teach her students this method of problem 

solving. 

Teacher 3.1 further explained that her students might put the answer to 8 and 15 

in the box because “they wouldn’t really look at the whole problem” (Teacher 3.1, 3rd 

Interview, 4/12/12). Teacher 3.1 was less convinced that her students would put 23 into 

the box. She said they have been working on these types of problems and her students 

were less inclined to put the sum of the left side of the equation in the box (Teacher 3.2, 

3rd interview, 4/11/12).  
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Teacher 3.2’s response.  Teacher 3.2’s written response was very similar to 

Teacher 3.1.  She also said her students would put “7” in the box.  She demonstrated how 

the students would solve the equation starting with the left side and then figure out what 

went into the box.  The main difference in her explanation was that she anticipated that 

her students would subtract 16 from 23 rather than count up from 16 to 23.   

Comparison of the Teachers’ Responses Across the Test Items 

In summary, both teachers received relatively low scores on the Mathematical 

Knowledge for Teaching assessment. Using the breakdown of MKT found in Ball et al 

(2008), I examined specific MKT categories found in the two teachers’ teacher 

assessment interviews and test to better understood what the teachers understood and 

found confusing.  

Teacher 3.1 demonstrated Common Content Knowledge of her grade level topics 

throughout the interview and test. She explained at one point that students would 

complete missing addend problem using the steps that she had given them in class 

(Teacher 3.1, 3rd Interview, 4/12/12). She struggled to work through the problems 

involving fractions and non-standard algorithms. For example, she received five points 

total out of thirteen for questions pertaining to fractional representations. She selected the 

correct word problem representations for the problem “1/2 – 1/3”; however, when asked 

to explain how she knew which were right and wrong, she said she did not know and that 

her sister problem knew and they worked through this test together (Teacher 3.1, 3rd 

Interview, 4/12/12).  

Teacher 3.1 also struggled to assess whether or not a nonstandard algorithm 

would work in general (Ball et al, 2008).  She was unable to understand how a child used 
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the distributive property to divide a multi-digit number by a single-digit number. In 

addition, she had difficulty understanding how a child worked through “37-19” by “(7-9) 

+(30-10).”  The negative number in this method was challenging for her to work through. 

This same difficulty was represented when asked to assess “61-36.” Again, a negative 

number was used in the solving of the problem (Teacher 3.1, 3rd Interview, 4/12/12). 

These examples demonstrated a weakness in Common Content Knowledge and a lack of 

Specialized Content Knowledge, as assessed in this particular test. In addition, Teacher 

3.1 provided an incorrect representation of the problem “I’ve got 24 balloons I’m going 

to give out to my friend in bunches of 4. How many of my friends will get a bunch of 

balloons?” The picture Teacher 3.1 drew (and the subsequent explanation) represented a 

partitive notion of solving the problem. The question, however, was a measurement 

problem. She should have drawn six bunches of four but instead she drew four bunches 

of six balloons. Again, this illustrated a lack of Specialized Content Knowledge (Ball et 

al, 2008).   Lastly, when examining the interview, I found that I explained how to 

complete most of the exam during the interview. Much of the interview consisted of 

Teacher 3.1 stating that she did not know. 

Using the MKT categories from Ball et al (2008), I noticed that Teacher 3.2 

demonstrated a strong aptitude toward pedagogy and how her students would think about 

the problems. For example, she explicitly stated how her students would solve a 

subtraction problem multiple times. She drew pictures of what how the students would 

solve the problems. This Knowledge of Content and Students was apparent throughout 

her interview and her test paper. She would also comment on how she didn’t know how 

to teach certain things like when addressing the problem where the student struggled to 
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understand the distributive property. Her focus throughout the interview was on the 

teaching of concepts and how the students thought through the problems rather than the 

procedures or methods of solving the problems. 

Teacher 3.2 struggled with Common Content Knowledge and Horizon Content 

Knowledge.  Throughout the interview, if Teacher 3.2 did not know an answer or how to 

solve one of the tasks, she said “I don’t know” or “We don’t teach this.” Much like the 

interview with Teacher 3.1, I found myself explaining how to work through a problem 

most of the time. For both teachers it is possible that the lack of knowledge was a product 

of the two-year time gap between when they took the test and the follow-up interviews. 

The other teachers in this dissertation took the test at the end of the previous school year. 

Therefore, those teachers might have an easier time recollecting their thought process. It 

is also possible that these teachers struggled with the concepts on the test because they 

teach lower grade levels, while the other teachers teach higher-grade levels or a mix of 

grade levels.   

Analysis, or Planning, of Instruction 

Teacher 3.1 

In general, Teacher 3.1 planned her lessons around the school administration’s 

structure for teaching mathematics.  Her principal mandated that math time be broken 

into three sections: Math Wall, Daily Lesson, and Math Facts/Problem Solving. Teacher 

3.1 dedicated 30 minutes of time to each component.  I explained the three factions of 

math time next.  

Teacher 3.1 used the Math Wall as a vehicle for helping students master the state 

standards and pass the state’s standardized test at the end of the school year. She found 
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that through the math board students received frequent and repeated exposure to the 

standards throughout the school year because she rotated the standards on a weekly basis.  

This rotation of standards meant that procedures remained fresh in the students’ minds 

because the students were constantly practicing the skills needed to master each standard. 

So like I’ll put like a problem up there and then um maybe I’ll change it 
but I’ll keep it up there until like most of the kids or like all of the kids are 
understanding that problem and then, um, and then once they kind of get it 
then like I put another type of problem and then I go back to it so they are 
always seeing it, you know? And I think that’s like the biggest thing. I 
think for them I think the math board is like why they are so successful 
(Teacher 3.1, 1st interview, 3/1/12).   

 
She also found that the math board enabled her to conduct a talk aloud with the 

class when presenting a new procedure for solving a problem.  “. . . I always do like an I 

Do, you know? I show them and I model them and sometimes I only need to model like 

two times or sometimes it’s more on my part and then we try to do something together 

(Teacher 3.1, 1st interview, 3/1/12).”  Lastly, the math board enabled her to engage the 

students in test prep. “I love test prep . . . they need to learn how to take a test” (Teacher 

3.1, 1st interview, 3/1/12).  

In this classroom, the math wall was broken into the five domains found in the 3rd 

grade state standards: Number Sense, Operations, Estimation, Data Analysis, Discrete 

Math, Patterns, Algebra, Functions, Geometry, Measurement, and Logical Reasoning. 

Under each concept, Teacher 3.1 posted one to two problems for the students to solve.  

The tasks used in the math wall were selected from both the state’s standards document, 

sample test questions, an AIMS resource book, and a computer program called Study 

Island.   
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yeah, I’ve seen the problems so much but I also use this book that I have 
from Harcourt. It’s an AIMS prep test book that I have. I used that 
sometimes. Sometimes like the released test questions like form the State, 
like I can look at those, like how that’s been worded and like our 
curriculum assessment book. Like I pull problems from that but I kind of 
just like know like what type of also like just my knowledge level of like 
what you know, what’s been on like the AzAC, like what should be 
teaching, you know? I also come from up there cause we do test talk with 
the kids and we’re doing that today so it’s really, makes me become more 
familiar with the test too and that’s supposed to mirror AIMS, so hopefully 
it does (Teacher 3.1, 2nd interview, 3/5/12).  

 
 She explained that she pulls a lot of questions from Study Island as well because 

their weekly tests from the district and the AzAC questions came from that computer 

program. When selecting tasks from the various resources, Teacher 3.1 tried 

to get something easier, you know, like scaffold it, make them feel 
successful at it and once they’ve gotten that then I’ll like, you know, 
increase the level of it and make it like harder or easier…and so and then 
like once they’ve gotten a certain concept down then maybe I like try to 
word it in a different way or like change like a vocabulary word or include 
like which one does NOT include a multiple or something like that. So they 
can see it from different angles (Teacher 3.1, 2nd interview, 3/5/12).  

 
 The daily lesson followed the district curriculum map. She explained that she 

wrote objectives based on the standard for the day and then tried to find meaningful 

activities to give the children. She starts the math lesson with an I Do where she models 

the activity or procedure and then they complete a similar problem together. During the 

We DO part of the lesson, she has the students talk and explain the procedure to each 

other. “I have sentence frames in place that everything has a ‘because, like my answer is 

this because’ and they have to be able to verbalize it um because that way they can 

internalize it and it can become theirs and they can use the vocabulary. If they can use it 

open and freely everyday then you know you understand it” (Teacher 3.1, 1st interview, 

3/1/12).   
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 The last section of her lesson was the implementation of an adopted problem 

solving and math fact program called Otter Creek. Teacher 3.1 did not have to plan for 

this part of her math lesson because the program was scripted and the principal of the 

school made sure all of the teachers had the necessary handouts prior to teaching each 

week. She found the program helpful when teaching students how to manage solving 

word problems. She found the formulas useful for the students and saw her students 

being successful when working through the word problems.  

 Across the two interviews conducted with Teacher 3.1, 30 excerpts pertained 

specifically to planning. Table 15 shows how the MKT codes were expressed throughout 

the planning interviews.  

In addition to the codes found independently throughout the planning interviews 

with Teacher 3.1, she also expressed overlapping MKT codes as seen in Table 16. Nine 

different excerpts expressed multiple MKT categories. The following table describes the 

complexity of the overlapping MKT codes found within her planning process.  

During her interviews, Teacher 3.1 illustrated an extensive reliance on 

Pedagogical Content Knowledge, which included Knowledge of Content and Teaching 

(KCT), Knowledge of Content and Students (KCS), and Knowledge of the Content and 

Curriculum (KCC), when planning her lessons.  What was fascinating about these 

findings was that they contradict the results of Bruner et al (2010).  In that article, the 

authors discussed how without common content knowledge of the subject matter; 

pedagogical content knowledge might not be as relevant or explicit. Teacher 3.1 even 

discussed that she was really bad at math and was unsure of mathematics beyond the 

scope of what she taught her 3rd graders (Teacher 3.1, 2nd Interview, 3/5/12).  It is   
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Table 15 
 
MKT Codes Related to Teacher 3.1’s Planning  
 
MKT category Number of excerpts Description of excerpts 
Knowledge of Content 
and Teaching 

9 total excerpts • 3 about evaluate the instructional 
advantages and disadvantages of 
representations 

• 2 about choosing and sequencing 
examples 

• 2 about sequencing instruction 
• 1 about deciding which students’ 

contributions to pursue and when to 
use a students’ remark to make a 
mathematical point 

• 1 about deciding when to pose a new 
task 

 
Knowledge of Content 
and Students 

4 total excerpts • 2 anticipating what students are 
likely to think and what they will 
find confusing 

• 1 anticipating what students will find 
exciting and relevant 

• 1 anticipating what students are 
likely to think and what they will 
find confusing, as well as knowledge 
of common conceptions and 
misconceptions about particular 
mathematical content 

 
Knowledge of Content 
and Curriculum 

6 total excerpts • 5 about knowledge of available 
resources 

• 1 about the uses of particular 
programs in specific situations 

 
Specialized Content 
Knowledge 

2 total excerpts • 1 about explaining and justifying 
one’s mathematical ideas 

• 1 about how to choose, make, and 
use mathematical representations 
effectively 
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Table 16 
 
Multiple MKT Codes in the Planning Interviews with Teacher 3.1 
 
MKT categories Number of excerpts Description of excerpts 
Knowledge of Content and 
Students – Knowledge of 
Content and Teaching 

4 total excerpts • 1 expressed an ability to anticipate what 
students are likely find exciting and 
relevant (KCS) and sequence instruction 
accordingly (KCT). 

• 1 demonstrated familiarity of common 
errors and which most students are most 
likely to make (KCS) and to choose and 
sequence examples (KCT) 

• 2 expressed her ability to anticipate what 
students were likely to think and what 
they would find confusing (KCS) and 
then sequence instruction accordingly 
(KCT) 
 

Knowledge of Content and 
Teaching – Knowledge of 
Content and Curriculum 

2 total excerpts • 1 excerpt discussed how she sequenced 
instruction (KCT) based on the available 
resources (KCC) 

• 1 showed how she choose and selected 
tasks (KCT) and used particular 
programs in specific situations (KCC) 
 

Knowledge of Content and 
Teaching – Specialized 
Content Knowledge  

1 excerpt This excerpt showed how Teacher 3.1 
evaluated the instructional advantages and 
disadvantages of representations and how 
she chose and selected representations 
effectively (KCT). She also talked about 
unpacking mathematical knowledge, to 
make features of particular content visible to 
and learnable by students (SCK) 
 

Knowledge of Content and 
Curriculum and 
Knowledge of Content and 
Students 

1 excerpt In this excerpt, Teacher 3.1 demonstrated 
knowledge of available curriculum (KCC) 
and anticipated what tasks in the curriculum 
might be hard or easy for the students 
(SCK) 
 

Specialized Content 
Knowledge – Knowledge 
of Content and Teaching 

1 excerpt In this example, Teacher 3.1 talked 
explicitly about how math language was 
used in her class, how to explain and justify 
one’s mathematical ideas (SCK) and how 
she sequenced instruction based on this 
knowledge.  
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possible that the fact that the teacher assessment focused on content taught in 2nd through 

5th grade impacted Teacher 3.1’s ability to demonstrate knowledge of the mathematics 

she knew.  It is also possible that her identity as “not a math person” might have inhibited 

her ability to demonstrate her mathematical knowledge on the teacher assessment.  It is 

also possible that the high change scores on her students’ assessments were a function of 

her focus on test prep and usage of tasks based on the AzAC test. The possibilities of her 

instruction influencing this discrepancy between high content knowledge and extensive 

pedagogical knowledge will be further explored in later sections. Next we look at the 

planning of Teacher 3.2. 

Teacher 3.2 

Math time in Teacher 3.2’s classroom consisted of two different components: the 

Math Board and the daily lesson. Each part was planned separately and followed different 

objectives.  For Teacher 3.2, the math board provided time for the students to review all 

of the new Common Core State standards before the state test in April.  On the other 

hand, the daily lesson followed the district curriculum map.  She explained that her main 

focus during math time was the math board because it spiraled the standards and provided 

time for students to review concepts they might have not learned the first time.  Our 

interviews focused mainly on the math board and therefore the following description of 

her planning process centered solely on the math board preparation.  

Teacher 3.2 planned the math board on a daily basis.  In her classroom, the math 

board consisted of one to two questions per each of the four 2nd grade common core 

domains.  For the most part, the tasks she puts on the math board were taken from the 

state’s common core document, test prep materials, or knowledge of questions that were 
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previously used on prior years’ tests.  She left tasks on the board for approximately one 

week or until the students demonstrated they understood the concept they were working 

on.  “You feed a lot from the kids so like one week I might have all the same problems 

but just be changing the numbers or not the numbers but just change the scenario or then 

like you’ll go through like, you’ll go through different problems” (Teacher 3.2, 1st 

interview, 1/26/12).  She further explained that her main focus was to expose the students 

to as many different scenarios as possible because she never knew what type of problem 

would be on the test.   

When selecting her tasks, Teacher 3.2 started with the easiest standards at the 

beginning of the school year.  She anticipated what aspects of the curriculum the students 

might understand quickly and which concepts would help the students build a foundation 

for the more complex concepts later in the school year.  She also planned how to instruct 

the unfamiliar concepts using the math board. “When I first, when they don’t know the 

concept or they are sort of unfamiliar, I can’t give them all of the information. I could just 

do a think aloud where I am just walking through it and then I can just say I, here’s why I 

got this answer so just talk to your partner about the three steps, or I should be hearing 

that I have to take or something you know? Then, you know, the next day you give a little 

bit more information and then the next day a little bit more and the next day none at all” 

(Teacher 3.2, 1st interview, 1/26/12).  She explained that talk alouds during math board 

enabled her to scaffold the concept over a week’s time. What seemed crucial was the time 

she gave the students to discuss how they understood her process and what it meant for 

them solving the problem. It was during the student talk time that Teacher 3.2 assessed 
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what her students understood and what they needed more time learning. She also used 

this time to decide which students should share their ideas with the rest of the class.   

The final aspect of the math wall was the notion of test preparation.  Teacher 3.2 

used the math board as a vehicle to help students learn how to take a test.  She exposed 

them to multiple-choice questions that mimicked the ones on the state and district tests.  

She required her students to explain why certain answer choices were incorrect so they 

could see how their silly mistakes ended up possible answer choices.  She also expressed 

that “people are like don’t teach to the test, but by, you’d be doing a disservice if you 

didn’t teach how to take a test. Cause if like, I was in college, like I have to pay, we have 

to pay for our education, if I’m in there and I can’t get a good grade on the test even 

though I am trying, I’m going to be pissed like this guy is not teaching me what I need to 

know and that’s kinda like, it’s our responsibility to teach them” (Teacher 3.2, 1st 

interview, 1/26/12). Therefore, Teacher 3.2 structured her math board to not only spiral 

the standards, provide time for students to discuss their thinking, but also to learn how to 

take a standardized test. 

 Across the two interviews conducted with Teacher 3.2, 65 excerpts pertained 

specifically to planning. Table 17 shows how the MKT codes were expressed throughout 

the planning interviews. 

 The main focus of Teacher 3.2’s planning interviews was how she taught the 

Common Core standards.  Of the 65 comments made during her interview, 59 pertained 

to Pedagogical Content Knowledge categories: Knowledge of Content and Teaching, 

Knowledge of Content and Curriculum, and Knowledge of Content and Students (Ball et 

al, 2008).  Her strengths showed when discussing how she used the knowledge of what 
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Table 17 
 
MKT Codes Related to Teacher 3.2’s Planning  
 
MKT category Number of excerpts Description of excerpts 
Knowledge of Content 
and Teaching 

40 total excerpts • 21 about how she sequenced instruction 
• 9 about choosing and sequencing examples 
• 4 about how she evaluated the instructional 

advantages and disadvantages of 
representations 

• 3 about deciding when to pause, ask a new 
question, or pose a new task 

• 2 about when to use a student’s remark to 
make a mathematical point. 

• 1 excerpt regarding which student 
contributions to pursue, which to ignore, 
and which to save until later 

 
Knowledge of Content 
and Students 

4 total excerpts • 2 anticipating what students are likely to 
think and what they will find confusing 

• 2 anticipating what students are likely to do 
with a task and whether they will find it 
easy or hard 

 
Knowledge of Content 
and Curriculum 

15 total excerpts • 7 showing her knowledge of available 
curriculums 

• 5 about instructional materials  
• 2 discussing how she used particular 

programs in specific situations 
• 1 showing her knowledge of the new 

curriculum (Common Core) 
 

Common Content 
Knowledge 

1 total excerpt (specific 
demonstration of her 
CCK) 

1 showing her specific understanding of the 
mathematics in the students’ curriculum 

 
Specialized Content 
Knowledge 

3 total excerpts • 2 demonstrating her knowledge beyond that 
being taught to the students 

• 1 showing how to explain and justify one’s 
mathematical ideas 

 
Horizon Content 
Knowledge 

2 total excerpts • 1 showing how she saw connections 
between the 2nd grade curriculum and much 
later mathematics 

• 1 showing her knowledge of how 
mathematical topics are related over the 
span of the mathematics included in the 
curriculum 
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her students found tricky or easy to assist her in sequencing instruction.  She explained 

how she selected and scaffolded the Common Core standards based on her students’ 

thinking and how she learned of her students’ ideas through making them discuss and 

justify their work.   

 Another interesting point that was not captured in the table was that Teacher 3.2 

really focused her teaching on what might be on the state standardized test at the end of 

the year. This notion came across during the interview, but was not captured when coding 

for Mathematical Knowledge for Teaching. What made this absence important was that 

the high rate of change in performance in Teacher 3.2’s (as well as with Teacher 3.1) 

students on the AzAC test might actually be related to her knowledge of the types of 

questions on the test and her ability to sequence tasks similar to those on the standardized 

tests rather than an extensive pedagogical content knowledge, even though the coding 

might show otherwise. Therefore, what looked like high PCK might actually be high 

knowledge of the standardized test questions along with knowledge of what concepts kids 

find easier or harder based on years of teaching experience at the same grade level.  

Teacher 3.2’s (and Teacher 3.1’s) relatively low teacher knowledge score supported the 

notion that the coding misrepresented her knowledge, as did her inability to explain her 

answers on the teacher knowledge test about concepts she has not taught.   

Mathematical Knowledge for Teaching and Planning: A Comparison Between 

Teachers 3.1 and 3.2 

Both Teacher 3.1 and 3.2 scored relatively low on the MKT test given to the 

sample of teachers in the NSF-funded grant.  Each of them demonstrated high reliance on 

categories related to Pedagogical Content Knowledge during their planning interviews. 
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While this seemed like an obvious place for such knowledge to appear, the discrepancies 

between what could be explained, or what could not be explained, during their teacher 

knowledge assessment interview and the extremely high prevalence of PCK categories 

during their planning interviews made it possible to think something else influenced their 

planning and their high change in student performance scores.   

High Stakes Testing.  It is possible that high-stakes testing heavily influenced 

their planning and teaching but was captured under MKT codes as Pedagogical Content 

Knowledge.  For instance, both teachers based their instructional sequence on the state’s 

standards documents, which has examples of high quality tasks for teaching each 

performance objective.  The standards document is highly correlated to the state’s 

standardized test. Also, both teachers selected tasks from sample questions released by 

the state. In addition, they both emphasized the importance of learning how to take a test 

and providing instruction that would achieve this particular learning objective.  This is 

not to say that Teacher 3.1 and Teacher 3.2 had no or little PCK. Instead, it brings up the 

question of whether or not their students’ dramatic increase on the AzAC test over two 

quarters was a function of the teachers’ Mathematical Knowledge for Teaching or the 

teachers’ knowledge of test taking skills and methods for exposing students to a plethora 

of possible test questions. It is hard to determine based on the planning interviews and 

teacher knowledge assessment alone.  

Next, I examined the instruction of Teacher 3.1 and Teacher 3.2.  The section will 

examine the general look of each class if an observer walked in, the cognitive demand of 

the tasks (Stein et al, 2009), the types of questions asked by the teachers according to 



	   222 

Bloom's Taxonomy, and the types of responses provided by students to both the teacher 

and each other. 

Implementation 

 The Implementation Phase of the Mathematics Teaching Cycle included: the 

learning environment, selection of meaningful tasks, and discourse. For this section, I 

presented the entire Implementation Phase components for each teacher and then 

compared the two teachers. Using this format for discussing the instruction component 

seemed more comprehensive and coherent than jumping between the components and the 

teachers.   

Teacher 3.1 

The instructional practice of Teacher 3.1 was evaluated using three methods: 

CLASS observation protocol, the Mathematical Tasks Framework, and Bloom's 

Taxonomy. Across all three tools, one could see that positive classroom management and 

teacher-driven lessons characterized Teacher 3.1’s teaching style. She utilized published 

resources that aligned with the state’s standardized test to select tasks for the students.  

For the most part, the tasks selected were written at a low-level of cognitive demand. 

During the implementation of the tasks, they remained at a low-level.  For the most part, 

Teacher 3.1 modeled test taking strategies and procedures for solving the assigned 

problems.  Students who answer the problem incorrectly were frequently called upon to 

walk through a problem with the teacher.  Infrequent were occasions where students 

explained their thinking prior to receiving assistance from Teacher 3.1.   

Aside from a few occasions where blatant errors in Common Content Knowledge were 

made evident during instructional times, the relationship between Teacher 3.1’s MKT 
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score and her instruction were difficult to determine.  For the most part, Teacher 3.1 

demonstrated a keen sense of what resources would provide her with similar tasks to the 

state’s standardized test.  She also showed an ability to sequence examples in a manner 

that allowed her students to build upon easier skills throughout the school year to reach 

mastery of more complex mathematics skills.  It was unclear if this knowledge of 

sequencing instruction and knowledge of resources stemmed from her own understanding 

of the mathematics or her numerous years of teaching the same grade level and having a 

parent in the school district who was a resource teacher for over three decades. The 

following sections provided the evidence to support this comprehensive summary. 

The learning environment. 

 Classroom Assessment Scoring System (CLASS) observation.  Six CLASS 

observations were conducted during the time period in which Teacher 3.1 was observed. 

Because Teacher 3.1 was on maternity leave for the entire first semester of the 2011-2012 

school year, all of the CLASS observations were conducted between January 2012 and 

February 2012.  This shortened time period was a limitation of this study.  Even so, the 

following Table shows the average scores across the 10 dimensions for teacher 3.1: 
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Table 18 
 
CLASS Scores for Teacher 3.1 
 
Dimension Average score 
Positive climate 5.5 
Negative climate 1.67 
Teacher sensitivity 4.67 
Regard for student perspectives 2.5 
Behavior management 6.67 
Productivity 5.5 
Instructional learning formats 3.67 
Concept development 1.67 
Quality of feedback 4.5 
Language modeling 4.83 
 
 The CLASS dimension scores for Teacher 3.1 ran the gamut from very low scores 

for Negative Climate (which is what one wants to see), Regard for Student Perspectives, 

and Concept Development to a very high score in Behavior Management. The rest of the 

dimension scores fell in the middle range.  

This wide range of scores across the 10 dimensions was apparent in the composite 

scores for the three CLASS domains. Teacher 3.1 received a score of 4.65 on Emotional 

Support, 5.28 on Classroom organization, and 3.67 on Instructional Support.  Again, the 

scores based on a scale of 1 to 7, with 1 as the lowest score and 7 as the highest.  As we 

can see, the domain scores for Teacher 3.1 fell within the mid-level range, with her 

highest score being Classroom Organization.  This meant that Teacher 3.1 set clear 

expectations and enforced them consistently. She was proactive in anticipating behavior 

problems and in monitoring for potential problems during activities. She used efficient 

redirection and subtle cues to redirect students who were getting off task. Students 
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complied with Teacher 3.1's expectations and were infrequently defiant. The classroom 

environment allowed for high productivity, for the most part. Students knew what to do 

and transitions between activities were brief and concise. Materials were prepared ahead 

of time and the teacher knew how to keep a steady pace throughout the class time. The 

lowest scores in this domain came from the lack of variation in modalities and materials 

used during instruction, as well as the role of the teacher being less of a facilitator and 

more of a director of instruction (Pianta et al, 2008).   

Teacher 3.1 received a mid-level composite score for Emotional Support.  For the 

most part, positive interactions occurred in this classroom. Teacher 3.1 seemed to hold 

positive regard for the students as they did her. She frequently moved into close 

proximity to the students during their talk time but she mostly stood at the board to lead 

discussions or talk alouds.  There were times during the observations where Teacher 3.1 

was a little short when interacting with the students, especially when she was rushed for 

time or a student struggled to explain their thinking. However, these occasions were 

infrequent. She never yelled at the students or was sarcastic with them.  Nor was there 

ever a moment of bullying either between the teacher and students or the students with 

each other during the CLASS observations.  Also, Teacher 3.1 was fairly responsive to 

students when they were struggling with a concept but occasionally she dismissed what a 

student was saying and completed an activity herself, especially when she seemed 

pressed for time.  The low score in this domain came from Regard for Student 

Perspectives.  For the most part, Teacher 3.1 led the lessons and maintained a very 

structured classroom.  Students were encouraged to talk to each other but only when 

given permission or when called upon to share ideas with the class.  There were few 
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opportunities for students to lead discussions or move about the classroom during the 

lesson (Pianta et al, 2008).    

The lowest domain score was in Instructional Support.  There was middle of the 

range scores for items pertaining to “the degree to which the teacher provides feedback 

that expands learning and understanding and encourages continued participation” (Pianta 

et al, 2008, p. 72) and the modeling of language in the classroom.  Teacher 3.1 frequently 

mapped her own thinking through language and description as well as asked students a 

mix of open- and closed-ended questions. She also revoiced students’ thinking. There 

were limited conversations in the classroom, however, between students. They were 

given sentence frames for discussions but the peer talk time was closely monitored and 

controlled by Teacher 3.1.  In addition, advanced language was used on a limited 

occurrence.  The low score manifested through concept development.  There was rarely a 

time for students to be creative and generate their own ideas for problem solving.  

Teacher 3.1 most often showed or provided the method for solving particular problems 

and then the students reproduced the method when practicing.  Also, concepts were 

frequently shown independently from each other. Often times, the students told her when 

concepts related or when they had learned a relevant skill for solving a problem 

previously.  They also told her when they used one problem on the Math board to solve 

another one under a different strand.   

Overall, the CLASS observations depicted a classroom dominated by positive 

interactions, active participation, and high productivity.  But, Teacher 3.1 determined the 

direction and focus of the instruction in the classroom.  The relationship between Teacher 

3.1’s CLASS scores and her MKT scores proved difficult.  Teacher 3.1 demonstrated 
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high scores for interactions related to classroom management, such as Positive Climate, 

Negative Climate, and Behavior Management. These aspects of teaching were not 

included in the Mathematical Knowledge for Teaching framework.  Teacher 3.1’s lowest 

scores in the categories of Regard for Student Perspective, Instructional Learning 

Formats, and Concept Development might map to her low MKT scores. These particular 

categories examined the flexibility in the classroom, the role of students, the variety of 

modalities and materials used in the classroom, effective questioning, the use of advanced 

organizers and summation of lessons, as well as interactions pertaining to problem 

solving, predictions, evaluations, brainstorming, connections among concepts and real 

world applications.  Without a breadth of knowledge about the elementary school 

mathematics curriculum, content, and how to unpack the mathematics, it might be hard 

for a teacher to relinquish control, allow for student questions to drive the conversation, 

or be able to construct activities that integrate mathematical concepts across the 

curriculum.  It is also possible that her drive to ensure her students passed the state’s 

standardized test caused her to keep control of the discussions and the direction of the 

class.  Teacher 3.1 moved away from the textbook, she stuck closely to the state 

standards document and the activities provided in resources pertaining to the state 

standardized test.  Based on the CLASS assessment and the importance of high-stakes 

testing to Teacher 3.1, it was difficult to determine how Teacher 3.1’s MKT pertained to 

interactions in the classroom as assessed by the CLASS observation protocol.  Next, we 

examined the cognitive demand of tasks given by Teacher 3.1 (Stein et al, 2009).  
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Worthwhile mathematical tasks and classroom discourse. 

The mathematical tasks framework (Stein et al, 2009) for Teacher 3.1.  Because 

Teacher 3.1 was on maternity leave for the first semester of the 2011-2012 academic 

year, three one-hour long classroom observations were used to assess her instruction. 

Teacher 3.2 divided her instruction into three 30-minute sections: Math board, daily 

lesson, and Otter Creek. For purposes of this analysis, I analyzed the math board and 

daily lesson separately, even though Teacher 3.1 used the tasks on the math board as an 

introduction or review of the daily lesson. Over the three observations, Teacher 3.1 only 

taught a lesson once during the daily lesson time.  The other two observations included a 

video to introduce fractions and the student teacher teaching the lesson.  Because only 

one observation of the daily lesson was actual instruction, I opted not to use this portion 

of the lesson as part of the results.  Also, Teacher 3.2 was only observed teaching the 

math board, therefore, it only seemed logical to only analyze Teacher 3.1’s math board 

time in order to make a comparison across the teachers in the case.  I opted not to analyze 

the tasks from the Otter Creek curriculum because it was not a curriculum adopted across 

the district. The teachers in Teacher 3.1’s school were piloting Otter Creek during the 

2011-2012 academic year.   

In each of the three observations, 12 written tasks were given to the students 

during math board time.  There were a total of 21 memorization tasks, 7 procedures 

without connections tasks, 6 procedures with connections tasks, and 2 doing math tasks 

assigned (Stein et al, 2009).  Each task was written as a multiple-choice question, except 

for one of the doing math tasks.  The one open-ended question was based on an Otter 

Creek question. Teacher 3.1 wanted to know if the students knew the Otter Creek 
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Table 19 
 
Cognitive Demand Level of Tasks Given by Teacher 3.1 
 
Classification of task Example Explanation 
Memorization “What is four thousand, six 

hundred five written in standard 
form?” or “Anissa has 8 quarts. 
How many gallons does she 
have?” 

As written this task involves reproducing 
already learned facts and "have no 
connection to the concepts or meaning that 
underlie the facts, rules, formulae, or 
definitions being learned or reproduced" 
(Stein et al, 2009, p. 6). 
 

Procedure without 
Connections 

"Ben colored a figure with the 
fewest possible colors. The edges 
that touch must be different colors. 
Which could his figure be? 
(answer choices were drawn on the 
board)” 

These tasks are algorithmic and require 
limited cognitive demand for successful 
completion, as written. They are "focused on 
producing correct answers rather than 
developing mathematical understanding" 
(Stein et al, 2009, p. 6) and they "require no 
explanations, or explanations that focus 
solely on describing the procedure that was 
used" (p. 6). 
 

Procedures with 
Connections 

"Four friends will share this pizza 
equally. Which fraction shows the 
part of the pizza that each will eat? 
(The answer is in eighths)” or 
“Brenda has 27 stuffed animals at 
home. She gives an equal number 
of stuffed animals to her three 
friends. Which number sentence 
can be used to show how many 
stuffed animals they each 
received?” 

This task "requires some degree of cognitive 
effort. Although general procedures maybe 
followed, they cannot be followed 
mindlessly. Students need to engage with 
conceptual ideas that underlie the procedures 
in order to successfully complete the task and 
develop understanding" (Stein et al, 2009, p. 
6) This task also requires students to think 
about what they are answering and how they 
will get to the answer. In addition, there are 
multiple ways in which a child might solve 
this problem and there is a demand on the 
children to monitor their own thinking 
because the answer they might initially end 
up with might not be the answer to the 
question presented. 
 

Doing Mathematics "Mr. Barbosa rode his bicycle 81 
miles in 4 days. If he rode the same 
number of miles each day. About 
how many miles did he ride each 
day?”  

This task is at the highest level of cognitive 
demand because "there is not a predictable, 
well rehearsed approach or pathway 
explicitly suggested by the task, task 
instructions, or a worked-out example"(Stein 
et al, 2009, p. 6). In fact, there were no 
examples modeled or instructions given 
about solving this task until after the students 
had tried to solve it on their own. Thus, this 
task "required students to access relevant 
knowledge and experiences and make 
appropriate use of them in working through 
the task" (p. 6). 
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procedure, meaning they had memorized the procedure and recognize when to use it, or if 

they were solving the problem other ways (Teacher 3.1, 2nd Interview, 3/5/12).  Table 19 

provided examples of the different types of tasks assigned by Teacher 3.1 during math 

board. 

For the most part, all of the tasks either remained or became lower-level cognitive 

demand tasks upon implementation (Stein et al, 2009).  For example, the following is a 

vignette of the implementation of a Procedure with Connections task.  The observation 

occurred on January 30, 2012. The task given to the students was: 

Cesar has 3,462 marbles, Levy has 3,211. About how many do they have in all? 
a) 1,000 
b) 6,000 
c) 9,000 
d) 7,000 

 
 To introduce the task, Teacher 3.1 read the question to the students.   

T: Cesar has 3,462 marbles. Leslie has 3,211. About how many do they 
have in all? Something they really have to remember and the key word 
here, who knows the key word, one of them? Daniel? 
Daniel: About 
T: thank you so much. About is a key word and that means to? 
C: estimate! 
T; and another key word is, and what does it mean?... 
Kid: in all? 
T: in all most of the time means to do what? 
Class (with teacher): add or multiply! 
T: most of the time. K? so figure it out. think about what you have to do. 
do that same way we talked about, the 8th grade way. ready, ready set? 
C: Go! 

 When introducing the task, Teacher 3.1 focused on the key words in the problem 

and told the students to use the “8th grade” method for solving (See Appendix E – 

maintaining low-level cognitive demand—students told the procedure to use; directions 

of what to do are clear and teacher-directed).  Teacher 3.1 demonstrated that she knew 
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the definition of the key words in the problem and that “in all” might indicate either “add 

or multiply” (Common Content Knowledge – knows the terminology in the problem; able 

to solve the assigned task).   

T: Okay let's come together in 5,4,3,2, and 1[00:17:54.09] this is um, ???, 
alright so let me show you the correct. raise your hand if you think you 
found a goofy mistake? realizing after talking. what was your mistake, 
Tracy?  
Tracy: I put D, D, because like, um, I . . . put 3,462 and 3,211 and I forgot, 
I forgot to estimate. and then um I remembered and then like I like I tried 
four like I like I thought 4 was like a power mean, power number 
 

 In this segment, Teacher 3.1 asked the student to explain the mistake she made 

when solving the problem.  Teacher 3.1 frequently asked students to explain their 

thinking when they made a mistake.  At this point in the task implementation, Teacher 

3.1 took over the task and solved the problem for the class using the “8th grade” method.   

T: ohhhhh, so let's and let's make sure we are always doing the 8th grade 
way. I think I saw some of you that weren't. this is the way when you need 
to do it. you have to circle, look up here please. you're going to circle the 
4. you are going to ask your self does the 4 play for the power team or the 
weak team [has motions for each label]?  
C: weak Team [make motion] 
T: sooo, can it push up the three? 
C: NO!!! 
T: stays the  
C: the same! 
T: put the power to the weak team 
C: weak team! 
T: it tries to put the push up the three but can it? 
C: NO!! 
T: it stays at 3,000. and then I look at in all so zero, zero, zero, six. So the 
answer is? 
C: B!!!! 
T: If you go D, did you, now, I saw that you put D. Did you solve it the 8th 
grader way or the other way?  
Kid: the other way? 
T: If you solved it the other way of first subtracting and then rounding, 
you're gonna sometimes get a different answer. so I WANT...everybody to 
solve it, this same way. every time. this will get you the correct answer all 
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of the time. okay? Do not solve first. Always, always, and I got this 
information from the 8th grade teacher. She said that's going to get the 
wrong answer sometimes, so if you follow directions quickly, you solved it 
this way and you got it right. if you didn't you got it wrong. Don't get it 
wrong again. the answer, the correct answer is B.      
 

 Teacher 3.1 asked the students Knowledge questions (Bloom, 1956) when 

explaining how to solve the task.  She did follow up with a student to find out why he 

selected answer choice D, but instead of allowing the child to explain how he solved the 

problem, she jump in and reemphasized exactly how the problem should be solved 

(maintenance of low-level cognitive demand – see Appendix E).   Not once in the 

conversation did Teacher 3.1 explain why the 8th grade method worked or why estimation 

might trick students.  The focus remained on selecting the correct answer choice and then 

moving on to the next question.  It was hard to determine if the lack of depth about 

estimation was a function of Teacher 3.1’s knowledge level or time constraints based on 

the amount of work that had to be accomplished in the math period. 

This set of vignettes represented much of what occurred during math board time.  

The students received a task, then they completed the task independently and showed 

their answer choice using answer cards when asked.  If multiple answers were given, the 

students discussed their work with a partner.  If most answers were correct then Teacher 

3.1 walked the students through the process of solving the problem. If one student gave 

an incorrect answer, Teacher 3.1 usually asked the child to walk through solving the 

problem with her. Other wise, they solved the problem as a group and then moved on to 

the next problem.   

The second example of Teacher 3.1’s teaching occurred on February 6, 2012.  

The students were asked the following question:  
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Four friends will share this pizza equally. Which fraction shows the part of the 
pizza that each person will eat? 

a) 1/8 
b) 1/2 
c) 2/8 
d) 3/4 

 
As written, this task fit the criteria for the label of a procedure with connections task 

(Stein et al, 2009).  The problem required students to understand equivalent fractions and 

how to determine equivalency of fourths.  This required students to fully engage with the 

mathematics and monitor their own thinking.  The start of the implementation of this task 

followed the progression of most other assigned tasks, however, things changed when 

Teacher began to explain how to solve the problem.   

Teacher 3.1: thank you Sam for putting it up fast...alright, hands down 
let's see, um, I’m going to explain the four pieces because there are four 
people. this one, I will eat one out of the four. this will eat one piece. this 
will eat one piece. and so does this one. so...whoa! what is this. the 
answers aren't even here. part of the piece that each people would eat. oh 
the answer should be here. U. . . ..[kids are talking] that's because the 
thing is I was coping it . . . [kids talk] no, let's just forget this problem. 

 
 This excerpt demonstrated Teacher 3.1’s lack of Common Content Knowledge 

about equivalent fractions.  Halfway into explaining how to divide the pieces into fourths, 

she realized that her answer of “1/4” was not on the board.  She, later, admitted to 

copying the problem from another source and then proceeded to throw the problem away.   

 What made this interesting was that a child was making eighths during the 

independent work time.  Teacher 3.1 did not understand what the child was doing and 

told him to focus on the 4 people eating the pizza.  “why are you splitting that into 2,4,6,8 

pieces. only 4 people.” 
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 In this episode, the teacher’s lack of common content knowledge cost the children 

an opportunity to discuss equivalent fractions.  It also cost the teacher an opportunity to 

ask the children to show her how they solved the problem.  They all showed her their 

answers but she failed to ask the students to help her understand the problem.    

 This vignette aligns with the struggles seen in Teacher 3.1’s teacher knowledge 

assessment and post-assessment interview.  She admitted to struggling with fractions and 

not knowing how to teach them.  It was also apparent, based on the questions in the 

teacher knowledge test, that Teacher 3.1 was unable to understand student thinking about 

fraction problems.  Such struggles were demonstrated with this task.  This particular 

weakness in Teacher 3.1’s knowledge, leads one to question whether or not the students 

performed well or not on the AzAC test questions related to fractions.  Or if the students 

could explain fractions, equivalent fractions, and operations with fractions beyond a 

procedural level at the end of the school year.  Those questions are out of the scope of 

this dissertation, unfortunately. 

 In summary, positive classroom management and teacher-driven lessons 

characterized Teacher 3.1’s instructional practice.  She utilized published resources that 

aligned with the state’s standardized test to select tasks for the students.  For the most 

part, the tasks selected were written at a low-level of cognitive demand. During the 

implementation of the tasks, they remained at a low-level.  For the most part, Teacher 3.1 

modeled test taking strategies and procedures for solving the assigned problems.  

Students who answer the problem incorrectly were frequently called upon to walk 

through a problem with the teacher.  Infrequent were occasions where students explained 

their thinking prior to receiving assistance from Teacher 3.1.  Aside from a few occasions 
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where blatant errors in Common Content Knowledge were made evident during 

instructional times, the relationship between Teacher 3.1’s MKT score and her instruction 

were difficult to determine.  For the most part, Teacher 3.1 demonstrated a keen sense of 

what resources would provide her with similar tasks to the state’s standardized test.  She 

also showed an ability to sequence examples in a manner that allowed her students to 

build upon easier skills throughout the school year to reach mastery of more complex 

mathematics skills.  It was unclear if this knowledge of sequencing instruction and 

knowledge of resources stemmed from her own understanding of the mathematics or her 

numerous years of teaching the same grade level and having a parent in the school district 

who was a resource teacher for over three decades.  Teacher 3.1 also demonstrated that 

even if a teacher used a well-crafted curriculum guide for selecting tasks and sequencing 

instruction, a lack of Common Content Knowledge could hamper students’ opportunities 

to learn.  Next, we examined Teacher 3.2, using the same analytic methods, to see if any 

patterns or disparities were seen between the two teachers with relatively low MKT 

scores. 

Teacher 3.2 

The instructional practice of Teacher 1.2 was evaluated using three methods: the 

CLASS protocol, the Mathematical Tasks Framework, and Bloom’s Taxonomy. Overall, 

Teacher 3.2 constructed a classroom environment that embraced discussion, evaluation, 

and the exploration of the mathematics content in the second grade curriculum.  Even 

though Teacher 3.2 directed the initial method for how students solve problems, she 

allowed students to present their own ideas and methods for solving problems as long as 

the students could explain how their method worked.  Much like Teacher 1.1, Teacher 3.2 
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provided evidence in her instruction of high reliance on her Specialized Content 

Knowledge, Knowledge of Content and Students, and Knowledge of Content and 

Teaching. These were not discrete occurrences of these knowledge types but instead 

interconnected, dynamic relationships among the MKT categories throughout her 

observed teaching. The following sections provided the evidence to support the claims 

made in this introductory paragraph. 

The learning environment. 

 CLASS observation protocol.  Six CLASS observations were conducted during 

the time period in which Teacher 3.2 was observed. Two were conducted in October and 

November, 2011 and four were conducted in January and February of 2012. The 

following Table shows the average scores across the 10 dimensions for teacher 3.2: 

Table 20 
CLASS Scores for Teacher 3.2 
Dimension Average score 
Positive climate 6.167 
Negative climate 1.5 
Teacher sensitivity 6.167 
Regard for student perspectives 4.67 
Behavior management 6.67 
Productivity 6.67 
Instructional learning formats 5.5 
Concept development 3.67 
Quality of feedback 5.33 
Language modeling 6.33 
 
 Aside from the low score on Negative Climate (again, this low score meant there 

was a low occurrence of negative interactions in the classroom), Teacher 3.2 received 
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scores averaging in the 5 or 6.  The two lowest scores received were still in the middle 

range of scores.   

 When composite scores were calculated for the three CLASS domains, Teacher 

3.2 received a 5.75 on Emotional Support, a 6.28 on Classroom organization, and a 5.11 

on Instructional Support. Again the scores based on a scale of 1 to 7, with 1 as the lowest 

score and 7 as the highest.   When looking across the teachers in this dissertation, Teacher 

3.2 had the second highest composite score for Emotional Support and the highest 

composite score for Classroom Organization and Instructional Support.  In this 

classroom, interactions related to Emotional Support reflected a setting of care, 

excitement, happiness, and kindheartedness where students felt capable of exploring new 

ideas and taking risks (Pianta et al, 2008).  Teacher 3.2 added to the positive climate of 

the classroom by constructing an environment where the students’ needs, thoughts, and 

interests directed the interactions, for the most part.  

 The Classroom Organization score was also high in this classroom.  This score 

represented a classroom where Teacher 3.2 set expectations clearly and used successful 

ways of redirecting bad behavior.  She also effectively constructed instructional routines 

that added to the productivity of the class time and many opportunities for students to 

express their thinking.   

 Lastly, Teacher 3.2 received the highest composite score for Instructional 

Support. While, her lowest score in this category came from the concept development 

dimension, Teacher 3.2 still maintained frequent use of “discussions and activities to 

promote students’ higher-order thinking skills and cognition” (Pianta et al, 2008, p. 63) 

rather than on rote instruction.  She also provided feedback to students that enhanced 



	   238 

their learning and engagement in the activities.  The CLASS observations captured a 

classroom where discussions occurred frequently between the teacher and the students 

and the students among themselves. There was a high occurrence of times where Teacher 

3.2 used “language-stimulation and language-facilitation techniques” (Pianta et al, 2008, 

p. 63) to enhance learning in the classroom and to model how to use the mathematical 

language being taught.  

 Teacher 3.2 presented a very interesting contrast to Teacher 3.1, and the other 

teachers in the study, when examining the CLASS scores with the MKT scores.  While 

Teacher 3.2 received the a low MKT score relative to her peers in this dissertation, 

Teacher 3.2 created a classroom environment with her students that encouraged 

discussions, risk-taking, limited behavior problems, and positive interactions that 

surpassed the other teachers in this study.  One reason might be that in many ways, the 

CLASS scores for Teacher 3.2 mapped to her planning interviews more so than her 

teacher knowledge assessment score.  For example, the planning interviews depicted a 

teacher who relied heavily on the interaction between her knowledge of content and 

teaching and her knowledge of content and students.  Teacher 3.2 stressed the need for 

test preparation and constructing an environment where students talked through their 

thinking with each other in a manner that allowed them to learn how not be tricked by 

distractor answers on multiple choice tests.  She also talked about how she used student 

thinking to sequence her tasks.  These ideas were captured in the CLASS assessment.  

The lower score in concept development mapped to Teacher 3.2’s MKT score, however, 

the CLASS score was still in the middle range and not the lowest score on concept 

development of all of the teachers.  Teacher 3.2 structured her instruction in a way that 
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encouraged students to justify and explain their problem solving strategies.  She also 

asked students higher-order thinking questions (Bloom, 1956) and frequently engaged in 

feedback loops with the students (Pianta et al, 2008).  Next, I examined the instruction of 

Teacher 3.2 using the Mathematical Tasks Framework (Stein et al, 2009).   

Worthwhile mathematics tasks and classroom discourse. 

The mathematical tasks framework (Stein et al, 2009) for teacher 3.2.  Three 

one-hour classroom observations were used to assess the teachers' instruction in this 

dissertation. Although more observations were conducted with Teacher 3.2, I kept the 

analysis portion to the same number used to analyze Teacher 3.1’s instruction.  During 

the three observations on Teacher 3.2, seven tasks were assigned during a single class 

period, for a total of 21 written tasks.  All 21 tasks were written as multiple choice.  

Overall, there were a total of 14 memorization tasks, 3 procedures without connections 

tasks, and 4 procedures with connections tasks (Stein et al, 2009).  The following table 

provides examples of the different types of tasks assigned by Teacher 3.2.  

Table 21 
Cognitive Demand Level of Tasks Given by Teacher 3.2 
Classification of task Example Explanation 
Memorization “Which two numbers are 

even? 
a) 364, 324 
b) 672, 675 
c) 321, 324” 

As written this task involves 
reproducing already learned facts 
and "have no connection to the 
concepts or meaning that 
underlie the facts, rules, 
formulae, or definitions being 
learned or reproduced" (Stein et 
al, 2009, p. 6). It is a task that 
demonstrates mastery of 
vocabulary.   
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Table 21 
Cognitive Demand Level of Tasks Given by Teacher 3.2 
Classification of task Example Explanation 
Procedure without 
Connections 

"What two numbers come 
next? 625, 635, 645, ___, 
____? 

a) 646, 647 
b) 655, 665 
c) 745, 845” 

 

These tasks are algorithmic and 
require limited cognitive demand 
for successful completion, as 
written. They are "focused on 
producing correct answers rather 
than developing mathematical 
understanding" (Stein et al, 2009, 
p. 6) and they "require no 
explanations, or explanations 
that focus solely on describing 
the procedure that was used" (p. 
6). 
 

Procedures with 
Connections 

"Which person has 65¢? 
a) Tom has 2 quarters 

and 5 pennies 
b) Sam has 6 dimes and 

5 pennies 
c) Mary has 6 dimes” 

This task "requires some degree 
of cognitive effort. Although 
general procedures maybe 
followed, they cannot be 
followed mindlessly. Students 
need to engage with conceptual 
ideas that underlie the 
procedures in order to 
successfully complete the task 
and develop understanding" 
(Stein et al, 2009, p. 6) This task 
also requires students to think 
about what they are answering 
and how they will get to the 
answer. In addition, there are 
multiple ways in which a child 
might solve this problem and 
there is a demand on the children 
to monitor their own thinking 
because the answer they might 
initially end up with might not be 
the answer to the question 
presented. 
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To best understand how Teacher 3.2 implemented the written tasks and how the 

implementation related to MKT, I used the following memorization task  (Stein et al, 

2009) that was given on January 25, 2012: 

Which two numbers are even? 
a) 38, 35 
b) 24, 56 
c) 73, 47 

 
The students were seated on the floor facing the math board.  They each had a 

small white board and marker in their laps. At the start of this lesson, the task was a 

memorization task.  It asked students to distinguish between odd and even numbers.  

While the task remained at a memorization level, the implementation of the task included 

aspects of higher cognitive demand. 

Teacher 3.2: alright, everybody erase your boards and eyes up here for 
instruction in three, two, one. Thank you. . . .  Alright, now we're looking 
at even and odd. Now, we have all, we only have the two numbers here so 
let me just talk to you about this for a second. So if we have two numbers, 
we know we have tens and ones. So think about the place value of the ten 
and the one. the one is just one little tiny square . . . is one. The tens is a 
stick and it has ten little squares in there, so each of these has a one in 
them. one one, one ten. which one is more?  
Class: Ten! 
Teacher 3.2: yes. because it's not one, it's one tens stick. if we throw in the 
hundreds, it has a huge box and it has ten ten-sticks with ten-ones in them. 
so it has 100. so when we say one hundred. it isn't just one it's one HUGE 
block of 100 little blocks. So whenever we are looking at even and odd. 
now that we know that. whenever we're looking at even and odds. we 
never look at the 10, the 100, why? 
Class: cause they're already stuck together! 
Teacher 3.2: they're stuck together and they all have partners in there, 
they all like live in there so there's no reason that it would be one left out 
and we never look at the 10s, why? 
Class: cause they're all stuck together 
Teacher 3.2: perfect. because they are in a tens stick and they all have 
partners.  
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 Using comprehension and analysis level questions (Bloom’s 1956), Teacher 3.2 

introduced the task of deciding between odd and even numbers.  The students explained 

to her that numbers in the 10s and 100s place already have partners and are unnecessary 

to look at when deciding if a number is odd or even.  Teacher 3.2 demonstrated Common 

Content Knowledge of odd and even numbers, as well Specialized Content Knowledge 

upon explaining the question.  She was able to break down the place value and explain 

what the place values meant using the representation of base 10 blocks.  Using this 

representation, she was able to explain why they only look at the unit place when 

determining numbers as odd or even.  This example also falls under the category of 

Knowledge of Content and Teaching because she was able to figure out viable models 

that would help students understand place value (Ball et al, 2008).  

Teacher 3.2: But the ones we don't know. As soon as they get ten they are 
all partners and they become a stick but if they don't have ten yet they are 
just ones, they are all over the place so we have to even Steven them off. 
So what I want to see, and you're going to have to write all of these down, 
is you're gonna write these numbers down and I'm gonna see tens, ones 
just like this and I want to see 8 for this one dots, and then you are going 
to even Steven them off. Even Steven, even Steven, even Steven, even 
Steven! This one is even. is it enough? No! we have to check which two. 
Both of them have to be even. so don't just look at the first one, go to the 
next one. Can I see it? 
Class: NO! 
T: what is it? 
Class: it's ODD! 
T: odd, Todd. so this is, are these two even? no! I just did that for you. You 
have to decide between B and C. you want to pick the two that are even. I 
want to see dots. I want to see houses. Forget A. Do B and C. I already 
told you A.  

 
 At this point, Teacher 3.2 gave the students the procedure they should use for 

completing the task but then allowed students time to replicate the procedure in order to 

solve the problem (maintaining low-level cognitive demand – see Appendix E).  She gave 
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the students time to discuss their thinking with their partner and then selected students to 

share at the board.   

T: okay, George and Cameron are going to come up to explain. You need 
to give them nice and respectable bodies, just like you gave me when I was 
explaining the problem. We'll wait for you.  
George: I put B because I put four dots, one, two, three, four, and even 
Steven they were even. Then two, they were even. But I wanted to see just 
to make sure. One it wasn't even. and that was wrong and three, even 
Steven and then {inaudible} 
T: Alright good. 
Cameron: I agreed with him because I looked at the board and I saw the 
question. it was wrong because one isn't even.  
T: what is it? 
Cameron: odd 
T: it's odd. 
Cameron: so if it was a two it would have been even 
T: but it's not. okay, good. 
Cameron: and I checked so that was wrong 
T: Cameron, why didn't you look at the tens spot? 
Cameron: cause this was, cause this already messed up. It already messed 
it up the one. So that's why I didn't chose A 
T: no, no. A you didn't chose. But look at, you're working, do you see that 
he's working on the ones, why aren't we doing dots by the tens? 
Boy: Cause 
T: no Cameron 
Cameron: cause they're in sticks 
T: and? 
Cameron: and, and they have partners.  
T: they have partners and they, is that the same reason that we're not 
working in the hundreds too, right? 
Boy: yes 
T: good. I like what I heard. Thank you Cameron and George. 
Class: thank you Cameron and George 
 
George and Cameron were expected to explain why they chose an answer and 

why the other answer choices were incorrect.  In conjunction with the time allotment of 

solving the problem and the student discussions with their partners, the task 

implementation shifted from low-level to high-level.  In addition, Teacher 3.2 asked a 

variety of questions to her students but mostly those at the level of analysis.  She asked 
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the students why they never look at the tens place when dealing with odd and even 

numbers. She also asked kids to analyze what their partner did and evaluate if they agreed 

or disagreed with each other’s methods during their partner talk time. Teacher 3.2 also 

used George and Cameron’s thinking to reiterate why only the unit place was used to 

solve this problem (Knowledge of Content and Teaching – using student thinking to 

make a mathematical point).     

This vignette illustrated a typical progression of Teacher 3.2’s instruction during a 

math board activity.  Teacher 3.2 began with an introduction to the concept. In this 

particular case, she reviewed place value with the students and reminded the students 

what tens and ones looked like if using base ten blocks.  The kids told her they dismissed 

the places other than the ones place because those units are already stuck together, 

meaning they are already paired up.  Teacher 3.2 completed one of the answer choices for 

the students, as part of her talk aloud and then the students were tasked with finding the 

correct answer choice independently.  Once Teacher 3.2 noticed enough students had 

finished solving the problem on their boards, the students discussed their findings with 

their partner.  The students were given sentence frames to structure their discussions.  

One child started with, “I chose ____ because ___.” The other child replied, “I agree (or 

disagree) because _____.” Teacher 3.2 moved among the pairs as they talked.  During 

that time, she decided which pair of students to call upon to share with the class. In this 

particular case, she selected two students who had finished quickly and explained their 

thinking to her well.  Other times, she called upon students who had a disagreement but 

figured out how to help each other arrive at the correct answer. It was dependent upon 

what she saw troubling most of the students in the class (Teacher 3.2, 2nd interview).   
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 A second interesting example of Teacher 3.2’s instruction occurred on February 

1, 2012.  The written task was: 

 What is another way to solve five times 2? 
a) 5 +2 
b) 5 + 5 
c) 5 - 2 

 
 As written this task was categorized as a memorization task (Stein et al, 2009).  

The vignette starts with Teacher 3.2 reading the task to the students: 

Teacher 3.2: okay, erase your boards and bodies up here in three seconds, 
I can give you some. three, thank you, two, one, do your part...thank you 
okay now for this one, this says what is another way to solve, 5 times 2. we 
have not done this in a loooong time but remember when we are talking 
about times it's just how many times you see the number. so if it says 5 
how many times are we going to add five?  
Kids: two 
Teacher 3.2: two so, it, it, it just is that. so what you would do, is it 5 plus 
two? tell me 
Kid: no 
Teacher 3.2: why is five plus two wrong? 
Kids: cause we're doing times 
Teacher 3.2: five plus two equals what? 
C: 7 
Teacher 3.2: 7. so if we, this is like, this is like, what this is, is saying that 
we have five groups or no we have the number 5 just two times. or we can 
say 5 dots and then another group of 5 dots. okay? so it's the number 5 in 
some way two times. so if we count these 1,2,3,4,56,7,8,9,10, that's not 
going to be the same as 7. okay? we're looking for the number five two 
times 

 
 In this portion of the lesson, Teacher 3.2 took over how to solve the problem.  She 

explained that they were looking for the number 5, two times. She also worked through 

the first answer choice with the students to demonstrate how to think through the problem 

solving steps.  She asked the students why the answer choice was wrong but this was 

introduction to the task was less about student thinking and more a “talk aloud” about 

how to solve the problem.  Teacher 3.2 demonstrated Common Content Knowledge and 
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Specialized Content Knowledge in this excerpt because she was able to complete the task 

and break the task down into a pictorial representation that illustrated multiplication as 

“groups of” for students.  They were able to see how “5 + 2” differed from “5 x 2.”   

Teacher 3.2: okay, so now we have five plus five. what is that? 
Boy: no 
Class: yes . . . maybe! 
Teacher 3.2: okay, why do you think it's kind of a good answer? what?  
Boy: because I counted by 2s five times. 2,4,6,8,10 and it make ten 
Teacher 3.2: great! great job! and what else? why else do you think it's a 
good answer? Josue? 
Josue: because um um um we got two circles and I know that two is my 
two, and it's two circles of 5 
Teacher 3.2: two circles of five. I like that. and um job you put your hand 
up. Yeah, it's going to be two circles of five. and what he was saying, what 
Jose was saying is really good because it doesn't, do you remember me 
talking about this? it doesn't matter if you switch it, it can either be two 
circles of five or it can be five circles of what? 
Kids: two 
Teacher 3.2: of two, so we'll just say 2,2,2,2,2 and that's what Jose did. He 
counted by twos. Do it with me 
C: 2,4,6,8,10 
T: either way if this was a five or this they both equal ten because they are 
both showing um five two times or two five times. so when you see times, 
right now, in third grade you're going to have to know [kid walks in].  

 
 In this excerpt, Teacher 3.2 used student thinking to introduce the commutative 

property (without using the terminology) to the students (Knowledge of Content and 

Teaching – using students’ thinking to make mathematical points). She heard two 

students giving complementary methods for solving the problem. One child counted 2s 

five times, while another child counted two circles of five.  Teacher 3.2 also 

demonstrated Common Content Knowledge.  

T: okay, now in third grade you are going to have to remember all of these 
multiplication facts and it's going to get hard, look up, I know it's going to 
get hard to draw them all out like this. The little numbers it's easy but in 
the bigger numbers it's hard so you are going to have to remember in your 
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head right now you just have to know this that 5 times two is actually the 
number 5 two times or the number 2 five times. Okay?  

 
 This monologue illustrated Teacher 3.2’s Horizon Content Knowledge about what 

knowledge her students would gain in 3rd grade and how this task would help them 

become fluid with multiplication facts.   

David: you have to go over all of them so you can make sure 
Teacher 3.2: and David is right, so we stopped here and we really should 
go over all of them. This is just five minus two, what do you think? 
Class: no.  
Boy: that's a crazy one 
Teacher 3.2: that's crazy. five and you take two away is how many? 
Class: three! 
Teacher 3.2: three we are not seeing the five two times or the two five 
times. this is seeing repeated numbers, seeing the numbers at different 
times, so um what I want you to do, I don't want you to solve this since we 
solved it together but you're going to talk about in multiplication when you 
have times or when you have to multiply you um, put the number a certain 
amount of times and it's okay if you put the two first and then the five, two 
five times or if you put five two times, whatever's easier. How about you 
do that and what would be cool is if you had your boards and you kind of 
did that. like this. 5 times two and then you could either drew five ah 
circles with two inside or you can do two circles and five inside. okay, so I 
just want you to be having conversations like that. Now wait, wait, wait, 
wait. Pencils um are going to start talking first and then books can start 
talking and I just have one question for you, who let the smart out? 
Class: me! You! 
Teacher 3.2: good  
Kids talk to their partners 
Teacher 3.2: draw the things so it's five two times or two five times...yeah, 
you're doing it. good, good . . . so if there are five circles how many are 
going to go in?. . . yeah! and we are looking for the five two times, this is 
saying 5 two times do you see that here? no it's only one time, do you see 
five two times here? that's what you want . . . okay, okay, sit down. thank 
you. okay, let's get back 
Class: together  
Teacher 3.2: Okay, so I see lots of good stuff so when it says 5 times two 
you can either do five two times or the two five different times so um we're 
going to um keep putting this up on the board and I'm going to keep trying 
to trick you, okay? sounds like you guys are doing a great job on that.  
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At the end of this lesson, David reminds Teacher 3.2 that they need to review all 

of the answer choices.  This was a test preparation strategy that she taught her students 

throughout the school year.  In addition, the focus of the pair sharing was an evaluation of 

the various methods to solve the task.  Again, she was able to take a low-level cognitive 

demand task and add in aspects of high-level cognitive demand.  

These two examples of Teacher 3.2’s instruction depicted what happened through 

out the three observations analyzed for this dissertation.  Across the lessons, Teacher 3.2 

introduced a problem, asked the students to solve the problem, and then had some sort of 

discussion (whether that was between the pairs of students or having students present 

their ideas to the class) based on the students’ thinking of how to solve the problem.  For 

the most part, when using Bloom’s taxonomy to analyze the questions presented to the 

students, Teacher 3.2 asked the students higher order thinking questions.  These questions 

required students to think about the mathematics beyond a recall level.  They had to 

analyze, justify, and evaluate their problem-solving methods against their fellow peers’ 

methods to see if they solved the problem correctly.   

While these were only two illustrations of Teacher 3.2’s instruction, they were 

indicative of what happened through out the observations.  Overall, Teacher 3.2 

constructed a classroom environment that embraced discussion, evaluation, and the 

exploration of the mathematics content in the second grade curriculum.  Even though 

Teacher 3.2 directed the initial method for how students solve problems, she allowed 

students to present their own ideas and methods for solving problems as long as the 

students could explain how their method worked.  Much like Teacher 1.1, Teacher 3.2 

provided evidence in her instruction of high reliance on her Specialized Content 
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Knowledge, Knowledge of Content and Students, and Knowledge of Content and 

Teaching. These were not discrete occurrences of these knowledge types but instead 

interconnected, dynamic relationships among the MKT categories throughout her 

observed teaching.   

In many ways, the multiple occurrences of Specialized Content Knowledge, 

Knowledge of Content and Students, and Knowledge of Content and Teaching aligned 

with Teacher 3.2’s planning and teacher knowledge assessment interviews.  In her 

planning interviews, Teacher 3.2 demonstrated a high frequency of using students’ 

knowledge in order to plan her lessons.  She also demonstrated this on her teacher 

knowledge assessment test, when she explained multiple ways that her students would 

solve problems related to subtraction and multi-digit addition.  It is possible, that if the 

teacher knowledge assessment test only looked at the second and third grade curriculum, 

Teacher 3.2 might have scored higher than she did.  Where she faltered on that test was 

with fractions and understanding student thinking related to fractions and multi-digit 

multiplication.  Both of these concepts were topics that she did not teach in the second 

grade.  Next, I summarize the findings for this third case.   

Discussion 

For both Teacher 3.1 and Teacher 3.2, ensuring their students all passed the 

state’s high stakes test at the end of the school year drove their instruction.  They focused 

on mastery of the state standards document rather than the adopted textbook or the 

district’s curriculum map.  This document was constructed with the help of math 

educators and researchers in the state. The document included sample tasks for teaching 

each standard and an explanation of what the students should learn mathematically from 
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each standard.  Teacher 3.1 and Teacher 3.2 explained that this document aligned with 

the state test and the tasks for each performance objective imitated test questions.  It was 

the best resource they had for planning instruction. 

 Similarly, Teachers 3.1 and 3.2 focused on the Math Wall as their primary means 

for test preparation and the mastery of standards.  They constructed a classroom 

environment rich in high behavioral expectations and set routines. Little time was wasted 

with classroom management when students engaged with the math wall tasks.  Students 

understood that during math wall the expectation was that students would solve the 

problem independently and then have to explain their thinking to their partner.  The 

partner would then have to agree or disagree and justify their decision with their own 

mathematical thinking.  Based on the discussions, Teachers 3.1 and 3.2 returned to the 

standards document and modified tasks to give the students following the guidelines for 

mastery and potential test items stated in the document.   

 The teachers differed in how the amount of control they had over how students 

solved problems. Teacher 3.1 tended to dictate exactly how she wanted problems solved.  

For example, with any type of fraction problem, the children had to draw “candy bars” 

when solving the problems. When solving division problems, Teacher 3.1 emphasized 

using a partitive method. The kids drew circles and then partitioned the amount into the 

circles evenly.  She never introduced the notion of measurement division.  Teacher 3.2 

also showed methods for solving problems, such as “even Steven” and “odd Todd” for 

figuring out if a number was even or odd. They both also forced students to solve 

addition and subtraction problems starting with the ones place. What differed between the 

teachers was in the discussion time.  Teacher 3.1 focused on making sure that students 
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solved the problems using the method she showed, while Teacher 3.2 focused on making 

sure the students understood and explained why answer choices were incorrect.  It was 

during this time that differences occurred in the depth and richness of the mathematics 

being taught.   

 Looking at how Teacher 3.1 and Teacher 3.2 utilized MKT during instruction, 

they both used a combination of Knowledge of Content and Curriculum (KCC), 

Knowledge of Content and Teaching (KCC), and Knowledge of Content and Students 

(KCS).  They started with KCC.  They were able to evaluate the curriculums available to 

them (including the state standards document, which they each made into a curriculum 

for their teaching) and distinguish which curriculum best suited their ultimate goal of 

having all students pass the state test at the end of the school year.   

 From there, the teachers selected tasks for their students. The tasks usually started 

at a basic level and then moved to more difficult tasks. The selection of tasks depended 

upon the teacher’s knowledge of the curriculum and the prior knowledge of the topic held 

by the students. For example, Teacher 3.2 discussed how she began the school year using 

Join and Separate Result Unknown questions and moved into Join and Separate Change 

Unknown over time and then was going to end the year with Join and Separate Start 

Unknown questions (Carpenter et al, 1999) as explained in the standards document.  She 

was unaware of the connection between the progression she used from the standards 

document and the research that supported the sequence. She only understood the 

sequence from what she read in the document (KCC) and how her students reacted to the 

various problem types (KCS).  However, her knowledge of the content, the curriculum, 



	   252 

and her students allowed Teacher 3.2 to determine when to pose new tasks or stay with 

the same task and sequence her examples (Knowledge of Content and Teaching).  

 The talk alouds and discussion of how students solved the tasks depended largely 

upon the teachers’ Specialize Content Knowledge (SCK) or Common Content 

Knowledge (CCK) and Knowledge of Content and Teaching (KCT).  For example, when 

Teacher 3.2 discussed even and odd numbers, she made it explicitly clear using 

illustrations of base ten blocks why only the unit place mattered (SCK).  The kids used 

her explanation to determine that in other places, such as the tens or the hundreds place, 

all of the units making up the place had “partners.” Only in the unit place was it possible 

for a unit to be without a “partner.”   Teacher 3.1 unpacked the mathematics less 

frequently. She predominantly showed the students a procedure (CCK) and then expected 

the students to mimic the process.  She did, however, use whether she saw students 

demonstrating the procedure correctly to decide when to pose new tasks and how to 

sequence her instruction (KCT).  She also used the answers she received for each 

problem to decide which students to call on and when to ask for clarification (KCT).   

 Overall, Teachers 3.1 and 3.2 received low MKT scores relative to their peers in 

the larger NSF-Funded study, but their student gain scores far exceeded those of their 

peers.  One possibility for this is the idea that Teacher 3.1 and Teacher 3.2 used a 

document correlated to the state’s end of the year test instead of the adopted curriculum.  

Their understanding of how to manipulate this document to fit the needs of their students 

might have helped to expose the students to the various types of questions on the state 

test often enough that the students were well prepared to pass.  In this sense, the teachers’ 

pedagogical content knowledge and knowledge of the benefits of using a state 



	   253 

constructed document aligned with the state test outweighed their low subject matter 

knowledge.   
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CHAPTER SEVEN: DISCUSSION  

 In 2005, Hill, Rowan, and Ball found that their measure of Mathematical 

Knowledge for Teaching demonstrated a positive predictive relationship between teacher 

knowledge and student achievement.  They concluded that a “teacher’s content 

knowledge of mathematics was a significant predictor of student gains...” (p. 396).   In a 

follow up study conducted in 2008, Hill, Blunk, Charalambous, Lewis, Phelps, Sleep, and 

Ball found that their MKT measures correlated positively to their measures of 

Mathematical Quality of Instruction (MQI).  They defined MQI using literature on high-

quality classroom practice.  These practices included: mathematical errors, responding to 

students correctly, connections of classroom practices to those of the professional 

mathematics community, richness of the mathematics, and mathematical language.  This 

dissertation added to this trajectory of research by carefully unpacking how MKT relates 

to classroom practices and student mathematical growth.   

 In this study, I examined the relationship among the Mathematical Knowledge for 

Teaching (MKT) score of six teachers, their planning for instruction, their actualized 

instruction and their reflective practices, as they related to the mathematical growth of 

students in their classrooms. I used a multiple case study method to investigate these 

relationships.  Six 2nd to 5th grade teachers participated.  The six teachers were selected 

using their MKT score and their student gain scores.  Three comparative cases were 

constructed based on matching MKT scores for pairs of teachers whose students 

displayed approximately equal of different growth patterns in a school year. I used 

observations and interviews to assess how the teachers used MKT in their classroom 

practice.  Unlike Hill et al (2008), I did not look for specific individual practices. Instead, 
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I took a holistic view of teacher practice and to determine what aspects of MKT appeared 

in the teaching cycle (NCTM, 2007). The goal was to examine patterns of practice for 

teachers with higher student gains and see how these patterns differed from those 

teachers whose students had lower average gains.  

 My data suggested that MKT was only partially utilized across my cases during 

the planning process, mathematics instruction, and subsequent teacher reflection 

practices. Mathematical Knowledge for Teaching was utilized differently among the 

teachers with high student gains than those with low student gains.  I also found that 

MKT was not predictive of student gains across my cases, nor was it predictive of the 

quality of instruction provided to students in these classrooms.  This discussion chapter 

examines the variability found across the cases within the observed classrooms, students’ 

opportunities to learn, and how my findings related back to the literature on teacher 

knowledge and practice.  Interestingly, there seemed to be a possible relationship 

between the students’ gains scores and the resources the teachers used for planning 

purposes.  The chapter concludes with an examination of the limitations of the study and 

potential avenues for further research.  

Differences in MKT Use  

  There was a clear distinction between the different facets of MKT that were used 

by teachers with high student gain scores for their students and teachers with lower 

average student gain scores.  Before examining those differences and their implications, it 

should be made clear how I defined “teachers with high student gain scores” and 

“teachers with low student gain scores.”  In the first classification, teachers with high 

student gain scores, included four teachers whose student gain scores were higher than 
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the mean student gain score for the larger NSF-funded grant participants.  The means 

score for the NSF-Funded grant teachers was 12.7 points with a standard deviation of 11 

points.  Teachers 3.1, 1.1, 3.2, and 2.2 had student gain scores of 34 points, 26 points, 23 

points, and 18 points respectively.  The standard deviation for the teachers ranged from 

about 7 points to 12 points. The second classified group, teachers with low student gain 

scores, included Teachers 1.2 and 2.1.  Teacher 1.2’s students had an average gain score 

of 10.8 points with a standard deviation of 9.7 points. Teacher 2.2’s had an average gain 

score of 7 points with a standard deviation of 9 points.   

 Planning.  When looking across the cases, the teachers with high student gain 

scores utilized a complex web of Knowledge of Content and Curriculum (KCC), 

Knowledge of Content and Teaching (KCT), and Knowledge of Content and Students 

(KCS) to varying degrees to plan their lessons.  Three main themes were found across the 

planning data.  These included: how state’s standards document was utilized to guide 

planning, student thinking, and standardized in different ways than the district’s 

curriculum map.  

 First, I examined the issue of using the state’s standards document versus the 

district’s curriculum map as the foundation for lesson planning.  As a reminder, 

educational researchers, educators, administrators, curriculum designers, and state 

officials in education formed the state’s standards document.  Teachers and instructional 

coaches in the district put the district’s curriculum map together over one summer.  Three 

teachers used the state’s standards document as the strict guide for planning, one used a 

mix of the two documents, and two used only the district’s curriculum map.  Teachers 

3.1, 3.2, and 1.1 detailed their mathematics curriculum, especially in regard to the ways it 
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was used to support instructional tool the Math Wall. These teachers found the adopted 

textbook outdated and not aligned to the state’s standardized test.  In addition, Teacher 

1.1 highlighted that the textbook and the district’s curriculum map did not align with her 

students’ thinking, or with the research on how to teach conceptually.  Consequently, she 

relied on her own knowledge of external resources and her students’ thinking to develop 

a curriculum that suited the needs of her students, while ensuring that the students were 

exposed to a sufficient number of different problem types to be prepared for what was 

given on the state’s standardized test.   

 Teacher 2.2 used a mix of the state’s standards document and the district’s 

curriculum map, but mostly the curriculum map, for planning. For example, Teacher 2.2 

used the adopted textbook as her curriculum and the district curriculum map for her scope 

and sequence. Yet, she modified the curriculum map to fit the amount of time her 

students needed to “master” each concept.  She also supplemented the textbook with 

activities she learned from various professional development courses and websites she 

learned about from other teachers.  Like Teacher 1.1, Teacher 2.2 used Bloom’s 

Taxonomy to ensure that she provided her students with higher-order thinking questions 

throughout a lesson.   

 The two teachers in the low student gain group mostly relied on their Common 

Content Knowledge (CCK) and the district curriculum map for planning.  Teacher 2.1 

and Teacher 1.2 used the adopted textbook and the district curriculum map to plan. They 

followed the time allotted to each standard as dictated by the curriculum map and the 

textbook pages that aligned with the map.  Very little of their planning took into account 

the prior knowledge held by their students or the use of outside resources.  
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  Interestingly, there seemed to be a possible relationship between the students’ 

gains scores and the resources the teachers used for planning purposes.  The three 

teachers with the highest student gain scores did not use the adopted textbook or the 

district curriculum map as the foundation for planning the instruction.  Instead these 

teachers sought outside resources and used the state’s standards document to plan.  These 

were not necessarily the teachers with the highest MKT scores, however.  Teacher 1.1 

had the highest MKT score relative to the participants in the NSF-funded grant, while 

Teachers 3.1 and 3.2 had the lowest relative to the other participants.  What these three 

teachers had in common was an extensive use of the PCK components of Mathematical 

Knowledge for Teaching.  All three of these teachers used their students’ thinking as a 

guide to select new tasks, ask clarifying questions, and evaluate available curricula suited 

for the their teaching needs.  A further break down of the nuances among the three 

teachers with the highest student gains scores can be found in the “implications” section 

of this chapter.   

 Teacher 2.2, who fell in the middle of the continuum of student gain scores 

relative to her peers, and also relied on her PCK for planning. However, she used PCK a 

little differently from the teachers with the highest gain scores.  Teacher 2.2 used a 

combination of Knowledge of Content and Teaching and Knowledge of Content and 

Curriculum.  Because Teacher 2.2 did not have the 4th grade textbook, she found 

resources online and in the supplemental material that she felt suited the level of her 

students.  It would be interesting to see if her planning would have been different had she 

had the adopted textbook for her 4th grade students.  Teacher 2.2 also engaged in 

occasionally asking students clarifying questions.  These questions tended to help 
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Teacher 2.2 decide whether or not the class was ready to move forward in the 3rd grade 

textbook or if they needed a “reteach” activity.   

 To review, Teachers 1.2 and 2.1, who had the lowest student gain scores relative 

to their peers, used mostly CCK for their planning.  Little to no reference to outside 

materials, use of student thinking, or development of a new scope and sequence (to name 

just a few components of PCK categories) was present in the planning interviews.   

Instead, these two teachers relied on the textbook and the district’s curriculum map to set 

the pace and schedule of the daily lessons. 

 It is possible that there were a few factors that might have impacted the student 

gain scores for these teachers, one of which might be directly impacted by how a teacher 

uses their MKT.   First, there were two different groups of people who developed the 

standards document and the district curriculum map.  One major difference in the group 

compositions was the addition of educational researchers in the state’s group.  The 

educational researchers might have brought a depth and breath of knowledge about the 

teaching of mathematics, appropriate scope and sequences for the various levels of 

mathematics, and knowledge about student thinking that might not have been available in 

the group who developed the district’s curriculum map.  This is not to say that the 

teachers who developed the district’s curriculum map did not have some knowledge in 

these three areas.  It is possible, however, that the teachers had limited knowledge or a 

different perspective on the importance of the underlying mathematics when constructing 

their own scope and sequence maps for the district.  The district’s curriculum map was 

based on the state’s standards document, however, without knowledge of how 

mathematical topics related to each other (Horizon Content Knowledge) creating a 
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coherent map for a teaching trajectory might be anemic and not allow for the same 

fundamental development that might occur if following a map that better considers the 

progression of mathematical ideas.  A further investigation on the idea of scope and 

sequence is discussed later in this chapter. 

 A second factor, directly related to a teacher’s MKT and planning, that possibly 

created differences in student gain scores was the idea that a teacher who had limited 

knowledge of their students’ mathematical thinking might blindly trust that the textbook, 

or district’s curriculum map, is the best suited curriculum and teaching trajectory for her 

students.  It is possible that this potential “blind trust” would limit student growth 

because students likely need more specificity in the development of topics than the 

textbook affords.  If such is the case where the teacher uses the textbook or curriculum 

map without scrutinizing the sequence based on student thinking then the limited student 

gains might be as much a function of a teacher’s knowledge as it is the textbook being 

problematic (Franke et al, 2006).    

 Next, I examined the notion of resources in more depth for the teachers who 

created their own scope and sequence.  Teachers with high student gain scores admitted 

to constructing a scope and sequence for their students based on the standards document 

and their students’ prior knowledge of specific math topics rather than the district 

curriculum map or textbook. Teacher 1.1 often provided her students with a task that 

mapped to a higher-order thinking task on Bloom’s Taxonomy (Bloom, 1956) at the start 

of the unit.  Usually, the task mapped to where she wanted her students to be at the end of 

the unit.  Using the information she gathered from this task, Teacher 1.1 then modified 

the scope and sequence for the rest of the unit.  In essence, Teacher 1.1 generated a 
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formative assessment at the start of each unit to create her lesson plans based on her 

analysis of student thinking.  She gathered ideas for tasks from the standards document, 

research published about the topic she was teaching, national mathematics organizations’ 

websites, and AIMS resource books.  Her assessment of student thinking did not end with 

the initial formative assessment.  As the week progressed, Teacher 1.1 evaluated what she 

learned each day from students presenting their solution strategies and modified the tasks 

she planned to ask the following day based on her analysis and her goal for building 

conceptual understanding of important 4th grade topics.   

 Teachers 3.1 and 3.2 created a scope and sequence a little differently.  They 

scaffolded the standards document differently. They selected specific performance 

objectives within a standard and scaffolded the performance objectives according to what 

previous students found easy or hard.  Once these two teachers knew the order with 

which they were going to present the concept, they used the standards document, sample 

questions from the state test, and websites that mapped to the state’s end of the year test 

to find tasks that exposed their students to a variety of problem types related to the topic.  

Tasks remained on the board until the students solved the problems without mistake.  

Once demonstration of “mastery” occurred, Teachers 3.1 and 3.2 either modified the 

problem type within a particular concept or introduced a new standard altogether.  In the 

next section, I discuss the instruction of all the teachers and implications of these 

findings. 

 Instruction.  Overall, the instruction of the teachers in the high student gain 

group was characterized by a combination of Knowledge of Content and Students (KCS), 

Knowledge of Content and Teaching (KCT), and Specialized Content Knowledge (SCK).  
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There was great variation in the amount and type of use of each of these three MKT 

components in their instruction. While all three teachers in this group allowed time to 

have discussions and student sharing each day, the structure and purpose of the 

discussions differed.  

 Teachers 3.1 and 3.2 assigned their students partners for discussion time and 

provided sentence frames for each partner to help the children structure their talking 

around the mathematics.  The purpose of the partner talk time and sentence frames was to 

aid in language development (Teacher 3.1 & 3.2; 2nd interviews for each).  In addition, 

they called on their students to share what was discussed during partner talk time.  The 

purpose of this activity was to hold students accountable for the work and to assist in 

classroom management (Teacher 3.1 & 3.2; 2nd interview for each).  Teacher 3.2 selected 

pairs of students to talk through their process for answering multiple-choice questions in 

front of the whole class. She selected the pairs based on “good” discussions she heard 

going on as she monitored the partner talk time (Teacher 3.2, 2nd Interview).  For the 

most part, the students were explaining a process or procedure that Teacher 3.1 or 3.2 

showed the class prior to the partner talk. Sometimes a child showed his or her own 

method for solving a problem but that was rare.  Usually, the students shared a procedure 

that was given that day or during previous instruction.  In both classrooms, Teacher 3.1 

and Teacher 3.2 expected the class as a whole or the students sharing to discuss why the 

alternative answer choices in the multiple-choice problem were incorrect.  This part of 

the discussion aligned to their respective beliefs about preparing students to take the 

standardized test through showing the students how their mistakes were usually 

alternative answer choices on the tests (Teachers 3.1 and 3.2, 2nd interview for each). 
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 Teacher 1.1 used collaborative learning groups and open-ended questions to 

increase discussion. To ensure all students participated, she provided each group with one 

sheet of butcher paper and a marker.  The students were expected to work together as a 

team to solve the assigned problem during math time.  Individual work time was 

provided to the students at the start of the day.  She selected specific students to share the 

group’s thinking based on what she saw during the problem solving time.  Unlike in 

Teachers’ 3.1 or 3.2’s classrooms, student thinking and sharing drove the whole group 

discussions and the direction of the lesson in Teacher 1.1’s classroom.  Teacher-directed 

methods for solving were rarely seen in this classroom. Instead, Teacher 1.1 had a goal in 

mind for where she wanted her students to go mathematically and used what the students 

brought to the class discussion as the springboard for moving the students forward in 

their conceptualization of a specific topic and along her trajectory. Teacher 1.1 viewed 

student sharing as formative assessment and used discussion time as the format for 

gathering student data.  She used what the students showed her to manipulate her scope 

and sequence to follow what the students knew and where she wanted them to go.  

 Teacher 2.2 also used discussions in her classroom; however, the structure of the 

instruction exemplified a more traditional teaching environment than the other 

classrooms in the high student gains group.  Much like in a traditional classroom, Teacher 

2.2 used the methods in the textbook to teach the students and provided the procedure for 

solving the problems prior to allowing the kids to solve the problem. The discussion in 

this classroom focused on calling students to the board to show her they have mastered 

the provided procedure.  Occasionally, a student yelled out that he or she knew the 

procedure prior to the instruction and she would allow the student to demonstrate what to 
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do.  What made this classroom different from traditional instruction was that Teacher 2.2 

used what the data she received from both in class discussions and from the district’s 

quarterly assessments to inform her instruction.  She modified lessons and added time to 

her calendar based on what the data told her.  In addition, she was trying to introduce 

alternative methods for solving problems based on what she learned in professional 

development courses.  Lastly, Teacher 2.2 sent her 3rd grade students to another teacher 

for the 3rd grade mathematics lesson. When the students returned to her classroom, 

Teacher 2.2 reiterated the lesson she taught to the 4th graders to the 3rd graders.  Thus, the 

3rd grade students not only received instruction at grade level but then further instruction 

designed for the next grade up.  If the 3rd graders remained in her classroom for all of the 

mathematics instruction, Teacher 2.2 modified the tasks she gave to the 4th grade. She 

had predetermined tasks for the 4th grade students and then ones for the 3rd grade based 

on grade level and competency.   

 The high student gain teachers also utilized the math wall/board extensively in 

their classrooms.  The math wall was seen as a tool for spiraling the standards throughout 

the school year so that students had frequent exposure to all of the topics on the end of 

the year standardized test.  For all of the teachers in this group, the math wall played an 

essential role in formative assessment.  The teachers used the knowledge they gained 

from student sharing during math wall time to modify their daily lesson or future math 

wall problems.  Teacher 2.2 used what the students showed her during math wall time to 

combine future textbook lessons.  This compression of topics allowed her time to review 

concepts the students found difficult and time to add supplemental activities that 

encouraged higher-order thinking.  Teacher 1.1 used the math wall to scaffold conceptual 
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understanding of particular topics.  Based on what the students showed her, she 

structured the tasks to go from very basic to abstract over a week or two time frame.  

Teachers 3.1 and 3.2 used the math wall to teach students how to take a test and expose 

students to a variety of problems types that might potentially appear on the standardized 

test at the end of the year.   

 All of the teachers in this high achieving group tended to present the students with 

a handful of tasks per class period.  If there were more than 7 tasks given to the students, 

the tasks varied greatly in difficulty and type.  For example, Teachers 3.1 and 3.2 often 

gave students one task per content strand in the standards document. However, the 

assigned tasks changed daily either based on problem type (such as moving from Join 

Result Unknown to Join Change Unknown to Join Start Unknown) or the numbers in the 

problem (i.e., single digit to multi-digit and single-digit to all numbers being multi-digit).  

The answer choices also changed.  For instance, they might include a problem that asked 

kids what characteristic does NOT define a particular shape or pattern.  Teacher 2.2 

assigned the most problems per class period of the teachers in this group.  She used 

Bloom’s Taxonomy to ensure that she asked a variety of questions to the students 

throughout her instruction. The cognitive demand level of her tasks did not increase, as it 

did for some of the other teachers, during the implementation phase, it was that she asked 

students to evaluate and analyze the processes they used to solve problems throughout a 

lesson.   

 The teachers in the low student gain group demonstrated use of Common Content 

Knowledge (CCK) in their instruction.  Rarely did these teachers explain mathematical 

processes beyond what is commonly known about specific topics in 4th and 5th grade 
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mathematics.  Both Teacher 1.2 and Teacher 2.1 followed the district curriculum map and 

the adopted textbook to plan and implement their lessons.  The math wall, or other 

outside resources, was rarely used during the four months of weekly observations. Their 

instruction epitomized direct instruction and teacher-directed procedures.  Teacher 1.2 

often stood at the front of the class and told students to “write what you see,” meaning the 

students needed to copy exactly what she was writing on the board when solving 

problems.  Discussions, student sharing at the front of the board, and partner talk rarely 

happened, if ever, in these two classrooms.  The expectation was that the students would 

copy the procedure directly from the textbook or shared by the teacher and then use the 

algorithm to solve anywhere from 15 to 30 textbook problems independently.  Student 

thinking rarely influenced instruction and lesson design in these two classrooms.  In fact, 

Teacher 1.2 and Teacher 2.1 struggled with anticipating what tasks might be hard for 

students or how students might solve problems aside from use of the standard algorithm.   

Implications 

 One major implication of this dissertation was that Mathematical Knowledge for 

Teaching was not predictive of student gain scores or specific types of instruction.  In 

2005, Heather Hill and colleagues found that teacher’s content knowledge for 

mathematics teaching was a significant predictor of student gains.  The authors stated that 

for every standard deviation difference on the content knowledge for teaching 

mathematics variable, there was “an average months student growth in mathematics…to 

roughly one half of two thirds of a month of addition growth” (Hill et al, 2005, p. 396).  

In my dissertation, the teachers with the two lowest MKT scores relative to the sample 

showed the highest student gains over the course of two academic quarters.  The teacher 
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with the third lowest MKT score relative to the sample had student gains of a half 

standard deviation above the mean of the NSF-funded grant participants.  The last teacher 

in the high student gains scored the highest MKT score of all of the NSF-funded grant 

participants but she had the second highest student gain scores among the participants in 

my dissertation.  On the other hand, the two teachers in the low student gain score group 

scored a half standard deviation and a full standard deviation above the mean of the NSF-

funded grant participants on the MKT measure.  Therefore, aside from Teacher 1.1, who 

had a high MKT score and high student gain scores, the rest of the teachers in my 

dissertation aligned more with the results of Shechtman et al (2010) and Hill et al (2012) 

than the Hill et al (2005) study.  In the chronologically later studies, the researchers found 

that many teachers in their study had low MKT scores and high student gains while other 

teachers had high MKT scores and low student gains (Schechtman et al, 2010) and that 

the predictive power of MKT scores for teachers with average MKT was less stable when 

looking at student gain scores (Hill et al, 2012).   

 A possible reason for the discrepancies between my findings and the Hill et al 

(2005) findings might be that I used a mix of LMT items (Hill et al, 2004) and DMI items 

(Higgins et al, 2007) to assess MKT.  Shechtman et al (2010) also used their own 

measure of MKT and found that MKT scores were not necessarily predictive of student 

gains. It is possible that the measure I used and the measure used by Shechtman et al 

(2010) were not sensitive enough to MKT and thus affected the results of our studies.  It 

is also possible that my sample size was too small to provide adequate results for the tool 

used to measure MKT and was too small to provide a wide range of variable MKT 

scores.  While my sample included a range of MKT scores (all relative to the NSF-grant 
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participants) from -0.5 standard deviations below the mean to 2.11 standard deviations 

above the mean.  This is a spread of 2.61 standard deviations (in comparison to the larger 

spread of 6 standard deviation found in normally distributed data). In addition, sampled 

teachers did not populate the distribution evenly.  A larger sample might have resulted in 

similar findings to Hill et al. (2005) that predicted spread in their measure of MKT.  The 

dissertation sample aligned with Hill et al. (2012) distribution, in that 68% of the sampled 

teachers’ MKT scores captured the mid-range of the estimated data. In this range, Hill et 

al. (2012) teachers’ MKT scores did not predict student growth in mathematics. This 

result mapped to the results presented here (for a smaller sample). An important new 

study would measure teachers’ MKT with all the teachers in the sample schools across 

the full complement of LMT items measure (Hill et al, 2007) and then compare student 

gains across MKT levels.  

 What did the differences in student gains mean though in regards to teaching and 

how MKT impacted planning, instruction, and reflection? To begin, some of my data 

supported the findings of Baumert et al (2010).  In that study, the researchers examined 

differences in Pedagogical Content Knowledge (PCK) and Content Knowledge (CK) to 

determine how each contributed to a teacher’s professional knowledge for teaching and 

learning.  The researchers found that when content knowledge was held constant, 

teachers with a minor in mathematics scored higher on Pedagogical Content Knowledge 

than teachers with a major in mathematics. They also found that PCK influenced 

instructional quality on a cognitive level, curricular level, and in learning support. In fact, 

PCK accounted for 69% of the variance in achievement between classes.  Lastly, the 

researchers reported that CK was essential for the development of PCK but having high 
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content knowledge did not automatically predict a teacher had pedagogical content 

knowledge or higher student gains.   

 My data suggested that PCK contributed to the planning and instruction of 

teachers who had high student gains, whereas PCK was less noticeable in the planning 

and instruction of teachers who had low student gains.  This finding related to PCK 

overlapped with the curriculum guide used by the teachers in this dissertation. The 

teachers in the high student gain group used the state’s standards document as their 

curriculum guide,, the teachers who used more Subject Matter Knowledge with limited 

PCK used the textbook and district’s curriculum map as a curriculum guide.  This finding 

raises an interesting question as to whether a teacher’s PCK impacted student gains, or 

whether the implementation of the curriculum guide increased student performance, or 

whether it was the interaction of PCK and curriculum guide that made a difference.   

 As stated previously in this dissertation, the state standard’s document was 

constructed by a group of educational researchers, professional developers, 

mathematicians, teachers, administrators, and state personnel.  This document included 

the standard, the mathematical practices aligned with a particular standard, examples of 

tasks that address the standard, and descriptions of how students might approach the 

mathematical ideas embedded in the standard.  The document also included descriptions 

of the mathematics underlying the standard.  The state standards document can be found 

at, http://www.azed.gov/standards-practices/mathematics-standards.  

 K-8 teachers in the school district in which this research took place, were 

appointed by the district administrators, developed the district’s curriculum map.  The 

district’s curriculum map was developed over a two-week summer session.  The teachers 
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on the development committee worked in grade level bands to align the state’s 

mathematics standards with the adopted textbook.  The document included, the standard, 

the title of the textbook lesson that aligned with the standard, the time period indicating 

how long each lesson should take (i.e., a half of a class period, a whole lesson, a multiple 

day lesson, etc.), and possible supplementary resources (i.e., websites) to use during 

instruction. The curriculum maps are located on the Internet but due to identifying 

information in both the website and document, I decided to omit the documents and 

website location.   

 Intriguingly, the state’s standards document seemed to align with aspects of PCK, 

such as knowing what a student is thinking or anticipating how a student might work 

through a problem related to the standard, or how a teacher might manipulate tasks to 

address various mathematical concepts found within a standard.  For teachers with high 

PCK and high student gains, it was conceivable that as they interacted with the state’s 

standards document over the school year, their knowledge of the content being taught 

increased because of the content in the state’s standards document.  For example, a 

teacher with little MKT knowledge or any measurable content knowledge (i.e., Teacher 

3.1, Teacher 3.2, and Teacher 2.2) could go to the state’s standards document, find a 

standard, and select a task aligned with the standards.  The teacher could present this task 

to the students (as seen in the work of Teacher 3.1 and Teacher 3.2, specifically) and 

watch how the students interacted with the task.  Through carefully observing their 

students solving the assigned task, the teacher could learn crucial information about what 

the students know, and do not know, about the standard being taught.  This new 

information could lead the teacher to return to the standards document and find a 
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subsequent task that would further aide the students in learning the mathematical 

concepts embedded in the standard.  This cycle of moving from the state’s standards 

document to the instruction and back to the state standards document might continue for 

the course of a few days to a week or a few weeks, depending upon the mathematical 

concept being taught.  Regardless, through interaction with the curriculum guide (in this 

case the state’s standards document), the teacher gains knowledge not only of the 

document, but how the students think about the mathematical concepts, and the 

mathematics itself.  Over time, the knowledge in the curriculum guide becomes part of 

the teacher’s own knowledge base (Lave & Wenger, 1991).  This development occurs to 

the point where a teacher’s mathematical knowledge for teaching grows through their 

practice, making their initial MKT score less relevant as a predictive measure.   

 One implication of viewing knowledge from a situated learning perspective (Lave 

& Wenger, 1991), is that it is conceivable that a teacher’s initial MKT score fails to 

indicate a teachers’ complete knowledge base because knowledge is not a static concept.  

Instead, knowledge continually grows based on interactions, discourse, and reflective 

practice with others; as well as through artifacts, and tools already established in the 

community of learners. Therefore, an MKT score at a fixed point in time might not be 

indicative of the knowledge held by a teacher over time because one’s knowledge is part 

of a dynamic and interactive system that cannot be fully captured.  Further study on the 

interaction between teacher knowledge and curriculum guides is necessary to better 

understand this phenomenon. 

 In addition, the teachers with high PCK and high student gain scores engaged 

students in critical thinking activities that included justifying and explaining different 
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mathematical processes, and they used their knowledge of student learning to modify the 

curriculum.  All of these practices fall under the realm of pedagogical content knowledge 

and align with research on practices that have positive affect on student achievement 

(Ball, 1993; Franke et al, 2006; Lampert, 1990; NCTM, 2007). Franke et al (2006), 

further, explained that the nature of the discourse in the classroom was critical.  

Discussion time devoted to a specific task helped teachers unpack their students’ 

mathematical thinking in ways that foster further mathematical proficiency, especially 

through practices of asking questions beyond recall and requiring students to describe 

their strategies in detail and what makes the strategy work.  Such instructional practices 

were noted in Chinese teachers who demonstrated Profound Understanding of 

Fundamental Mathematics (Ma, 1999) and in the classrooms of teachers from countries 

whose students outperformed U.S. students in the Third International Mathematics and 

Science Study (Stigler and Hiebert, 1999).  These specific characteristics were present to 

varying degrees in all of the classrooms observed for my dissertation where students had 

high gain scores. These practices were not present in the two classrooms with low student 

gain scores, which aligns with Baumert et al’s (2010) claim that having high content 

knowledge (alone) does not mean a teacher has well developed pedagogical knowledge 

or high student gains.  Both Teacher 1.2 and 2.1 had relatively high content knowledge 

and used their content knowledge extensively during their teaching but neither 

demonstrated utilizing facets of pedagogical content knowledge when teaching other than 

knowledge of the curriculum map and how it related to the textbook.  In fact, Teacher 1.2 

expressed during an interview that she was sure her students could not solve specific 

algebraic equations because she had not taught them how to do so (albeit that she later 
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expressed that they would address certain problem types algebraically).  Also, she was 

unable to explain or anticipate how students might solve problems outside of her teaching 

method.  Her questioning of students during instruction was limited to recall or 

comprehension questions (Bloom, 1956).  

 What my data did not suggest, or necessarily support, was the notion that a 

teacher had to have well-developed content knowledge in order to develop pedagogical 

content knowledge or to achieve high student gains on achievement tests.  Teachers 3.1, 

3.2, and 2.2 scored relatively low on the teacher assessment test.  They each struggled to 

complete tasks outside of their grade level of teaching, such as problems with fractions or 

figuring out how students solved fraction problems when using non-standard algorithms.  

But, it seemed that these teachers knew when to pose new questions, asked for 

clarification, constructed a scope and sequence of activities based on student thinking, 

anticipated tasks that students would find difficult, understood misconceptions held by 

their students, and knew how to supplement their lessons with resources that helped 

students prepare for standardized testing.  Looking across this data superficially one 

might think that increasing PCK and teaching students how the subcategories connect 

might be a key to increasing student gain scores.  If we look deeper into the data, 

however, a different story appears and more questions arise.   

 Teachers 3.1 and 3.2 had two of the highest student gain scores across the 

teachers in our study sample and in the larger NSF-funded grant. It has been well 

documented in this dissertation that they also had two of the lowest MKT scores across 

those same two sample groups.  When coding their transcripts using the MKT codes from 

Ball et al (2008), the teachers seemed to engage in a complex web of interrelated 
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characteristics found in all of the PCK subcategories and some CCK and SCK.  Similarly, 

Teacher 1.1, who tied for the highest MKT score among participants in the larger NSF-

Funded grant, utilized multiple facets of the PCK subcategories as well as CCK and SCK 

to a greater extent.  Clearly the instruction of all three teachers equated to increasing 

student scores.  But, when I went back into the planning interviews for these three 

teachers and examined their goals and focus for teaching, it appeared that Teachers 3.1 

and 3.2 were quite savvy in how they planned.  Repeatedly, they each independently 

discussed the importance of high stakes testing and having their students perform well on 

these tests.  They also talked about the fact that the state standards document aligned to 

the state’s standardized test and how the standards document provided example questions 

and explanations for preparing students to master each concept.  They knew researchers, 

educators, and people connected to the state standardized test who helped develop the 

document.  They used the document to select initial tasks for their students and used the 

information in the document to find out how the tasks might be manipulated in ways that 

exposed students to other potential test questions around the same topic.  They also used 

the descriptions in the state standards document of how to solve problems related to each 

concept to teach the students, as well as other resources they gathered during various 

professional development courses and from websites.  

 Teacher 1.1 also used the state’s standards document to prepare for her lessons 

and used some of the tasks provided in the document. The difference was that rather than 

using the progression of learning stated in the document, Teacher 1.1 understood how the 

4th grade curriculum mapped to future mathematics concepts and used that Horizon 

Content Knowledge to design a scope and sequence that lead to the foundational building 
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of conceptual understanding of mathematics topics necessary in the future.  She then 

presented her students with difficult tasks to assess where the students were 

mathematically and used the information she gathered from her students to modify her 

scope and sequence.  In this classroom, the learning and methods for problem solving 

started with the students. Teacher 1.1 had a goal in mind but she facilitated the learning 

rather than dictated the learning (NCTM, 2007).  One major question then is what do 

these differences in planning and instruction mean for learning? On a basic level, all 

students in these three classrooms met or exceeded the district test by the end of the third 

time period, except for roughly three students, who were approaching the standards at the 

end of the third time point.  But two sets of students were provided opportunities to learn 

test taking skills throughout the year and methods for solving problems based on their 

teacher’s understanding of the mathematics, while the other classroom of students were 

given opportunities to learn to puzzle through the mathematics and develop a foundation 

for future mathematics learning. Which of these opportunities matter? Which do we value 

today? All students “succeeded” in these classrooms, so is it even important to 

distinguish between the opportunities to learn and what it means for our students? 

Absolutely. However, a follow-up study would be needed to examine how these specific 

opportunities impacted future learning (in a lasting way). Consequently, the data 

collected for this study cannot fully speak to this issue.   

 Another implication from this dissertation is that we need to think about 

administrators forcing teachers to follow a set curriculum map or the adopted textbook 

that might not align with the students’ mathematical knowledge or the best practices for 

teaching mathematics in elementary school.  Data, evidence and warranted claims from 
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this dissertation, demonstrate clear gain score differences among the teachers who 

disregarded the textbook and curriculum map, those who used a combination of the state 

standards document and the textbook, and the teachers who strictly followed the textbook 

and district curriculum map.  Based on this information, it seems that we need to trust 

teachers who use their students’ thinking as a road map for constructing their daily lesson 

plans and learning trajectories, to provide assistance for growth in understanding how to 

use student thinking as a formative assessment, to find high-quality professional 

development programs on resources for developing student thinking and generate tasks 

that carefully increase cognitive demand, and finally provide instructional coaches whose 

knowledge is grounded in the research on teaching mathematics as well as the 

mathematics content who have documented these capabilities in the classroom.  

Delivering on the promise of this "holy grail" will be no easy feat to accomplish. 

 Clearly, this dissertation added to the literature on the impact of MKT on 

planning, teaching, and reflection.  It provided rich detail on what happens in classrooms 

across teachers at varying MKT levels. It showed that high student gains did not always 

occur with teachers who had high MKT scores but instead the gains corresponded to a 

high reliance on PCK (aligned with a form of test preparation) and with strategies that 

support standards-based reform teaching methods.  It supported the literature 

documenting that traditional mathematics classrooms restrict student learning and growth 

in elementary school.  It also added to the literature on what it means to educate students 

mathematically, especially in an age where high-stakes testing is at the forefront of 

everyone’s mind raising interesting validity questions for the measurement community.  

It also brings up issues of what do we do to help teachers who utilized very little PCK? 
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Drastic learning differences occurred between students in Teacher 3.1’s classroom and 

Teacher 2.1, both quantitatively and qualitatively.  Based on a paper-pencil teacher 

knowledge test, many people would want their children in Teacher 2.1’s classroom at the 

start of the year. But, my evidence showed that very little learning occurred (whether it 

was test preparation or conceptual or procedural in its essence) when contrasting the 

affects of these two teachers on their students’ mathematical growth.  One major reason 

for this might be how these two teachers used their MKT. 

 A final implication of this study was that of affective instruction and the role of a 

positive classroom environment on student performance.  All four of the high gains 

teachers demonstrated high Emotional Support on the CLASS instrument, while the two 

low gains teachers scored quite low on this measure.  Even more interesting was the case 

of Teacher 2.2 with regard to a positive climate and students’ mathematical development.  

 Teacher 2.2 was selected for this study because of her relatively low MKT scores 

and moderately high student gain scores, as compared to the participants in the larger 

NSF-study.  She followed the textbook for the 3rd grade students (even though she taught 

mostly 4th graders), used a mix of the district’s and state’s curriculum guides for planning 

and used formative assessment in her classroom.  She was also a product of the school 

district, as she grew up attending a school in the neighborhood and always wanted to 

return to the district as a teacher.  Her CLASS scores indicated very high Emotional 

Support but low Instructional Support.  Her case raises a fundamental question about the 

impact of a positive climate and high regard for students’ perspectives in a learning 

environment.  It is possible that her belief in and high regard for her students created an 

environment where students thrived and wanted to learn, thus, impacting their over all 
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performance throughout the school year.  The remaining three teachers with high student 

gains scores (two of whom also scored relatively low on the MKT assessment) also 

demonstrated high Emotional Support and positive regard for students’ perspectives.  In 

light of these insights, a follow up study attending to these conditions might prove 

theoretically, and from a practical perspective, fruitful.  

 Where do we go from here? When looking at the quantitative data, it would be 

interesting to conduct a follow-up study using the entire MKT assessment test to see how 

the teachers faired and if that changed the allocation of teachers to groups for the cases. 

However, the reliability of the measure used (alpha = .83) suggests that this is not likely. 

Another quantitative follow up study would be to look at specific items on the MKT test 

that mapped to the various mathematics topics covered on the district quarterly 

assessment. As the district quarterly assessment is cumulative (over the school year) it 

would be easy to examine each time point measure and to see how the instruction 

differed across MKT levels across the school year.  For example, one question might be 

how did students do on the district quarterly assessment on items that matched to 

weaknesses in teacher knowledge versus items that matched to strengths in teacher 

knowledge? A second study, mentioned earlier in this dissertation, might be to follow the 

students in these classrooms for another year or two to investigate whether or not their 

gains equated to actual mathematics learning, or if they learned test taking skills enabled 

them to pass the test without truly understanding the mathematics they learned (or 

without building a foundation for future mathematics learning). 

 Qualitative follow up studies might include a thorough examination of the 

mathematical discourse found in each classroom to examine the types of learning going 



	   279 

on.  Another study could examine how students at various levels of ELD labels learned in 

these classrooms.  Was their English development increased? What mathematics was 

learned? How do these two types of learning intertwine over time? Another study might 

be to look at how students across these classrooms viewed themselves as mathematics 

learners.  Did they identify as mathematically capable? Did they feel competent in the 

mathematics? One might also look at how the teachers identified themselves as 

mathematics learners and how that identity impacted instruction and the utilization of 

MKT.  

 One interesting fact that was learned after the data was collected for this 

dissertation was that Teacher 3.1 and 3.2 were promoted to learning coaches in their 

respective schools.  This brings up a question of what is valued in mathematics teaching? 

These teachers produced high levels of student gains but the richness of the mathematics 

being taught in the classrooms was deeper in the classroom of Teacher 1.1.  Therefore, 

what does it mean to be a leader? What is the role of High Stakes testing in selecting 

leaders in our schools? What characteristics of teaching should be looked at when 

selecting school leaders or coaches? What impact will this have on the future of our 

students? How will these teachers fair when it comes to assisting teachers with higher 

MKT than they have or what happens when these teachers are asked to present on the 

teaching of specific mathematics content a little outside of their knowledge base?   

 In conclusion, the Mathematical Knowledge for Teaching framework is a useful 

for looking at teacher knowledge and teaching practices, but it is not necessarily 

representative or predictive of what happens in all the classrooms.  This dissertation, 

although of small scale and with limited scope, showed that the community of elementary 
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school mathematics educators needs to continue examining what it means to teach 

mathematics, what knowledge is needed to teach mathematics, and what types of learning 

are important when educating our students.  We need to explicitly examine the critical 

policy roles of high stakes testing, the roles of administrative mandates, the roles of 

textbooks, the roles of test preparation, and the roles of how we measure success in our 

students and in our teachers.  We cannot simply state that increasing measured 

knowledge in our teachers will improve student mathematical knowledge. We need to 

carefully examine what the many types of teacher knowledge actually produce in their 

students and these knowledge types play out in practice. Finally, we need to be ever more 

clear about what we mean by the learning of mathematics in our schools. This 

dissertation exemplified that we are far from definitively answering the plethora of 

questions on teacher knowledge and its many complicated relationships with student 

learning.  That said, it demonstrated that the Mathematical Knowledge for Teaching 

framework is an intellectually reasonable starting place to explore and examine how 

teaching influences student learning of elementary school mathematics, particularly as a 

lens to evaluate teacher interactions with critical artifacts including policy and standards 

documents, textbooks, and other curricular materials, along with the capacity of teachers 

to create positive classroom environments.  

  



	   281 

REFERENCES 
 
Ball, D. L. (1990). Prospective elementary and secondary teachers’ understanding of 

division. Journal for Research in Mathematics Education, 21(2), 132-144. 
Retrieved from http://www.jstor.org.ezproxy1.lib.asu.edu/stable/pdfplus/749140. 

 
Ball, D.L. (1993a). Halves, pieces, and twoths: Constructing representational contexts in 

teaching fractions. In T. Carpenter, E. Fennema, & T. Romberg (Eds.), Rational 
numbers: An integration of research (pp. 157-196). Hillsdale, NJ: Erlbaum. 

 
Ball, D. L. (1993b). With an eye on the mathematical horizon: Dilemmas of teaching 

elementary school mathematics. Elementary School Journal, 93(4), 373-397. 
Retrieved from http://www.jstor.org/stable/1002018. 

 
Ball, D. L. (1999). Crossing boundaries to examine the mathematics entailed in 

elementary teaching. In T. Lam (Ed.), Contemporary mathematics (pp. 15-36). 
Providence: American Mathematical Society. 

 
Ball, D.L. & Cohen, D. K. (1999). Developing practice, developing practitioners: Toward 

a practice-based theory of professional education. In G. Skyes & L. Darling-
Hammond (Eds.), Teaching as the learning profession: Handbook of policy and 
practice (pp. 3-32). San Francisco: Jossey Bass. 

 
Ball, D.L. & Hill, H. (2009). The curious – and crucial – case of mathematical knowledge 

for teaching. Phi Delta Kappan, 91(2), 68-71. Retrieved from 
http://www.jstor.org/stable/40344904. 

 
Ball, D. L., Hill, H. C., & Bass, H. (2005). Knowing mathematics for teaching: Who 

knows mathematics well enough to teach third grade, and how can we decide? 
American Educator, 14-22. 

 
Ball, D. L., Lubienski, S., and Mewborn, D. (2001). Research on teaching mathematics: 

The unsolved problem of teachers' mathematical knowledge. In V. Richardson 
(Ed.), Handbook of research on teaching (4th ed.). New York: Macmillan. 

 
Ball, D. L., Thames, M.H., & Phelps, G. (2008). Content knowledge for teaching: What 

makes it special? Journal of Teacher Education, 59(5), 389-407. Retrieved from 
http://ejournals.ebsco.com.ezproxy1.lib.asu.edu/direct.asp?ArticleID=446C8C8D
EB4944EB8811. 

 
Battey, D., Llamas-Flores, S., Burke, M., Guerra, P., Kang, H.J., & Kim, S. H. (2013). 

ELL policy and mathematics professional development coding: Placing teacher 
experimentation within a sociopolitical context. Teachers College Record, 115(6), 
060304. 

 



	   282 

Baumert, J., Kunter, M., Blum, W., Brunner, M., Voss, T., Jordan, A., Klusmann, U., 
Krauss, S., Neubrand, M., & Tsai, Y-M. (2010). Teachers’ mathematical 
knowledge, cognitive activation in the classroom, and student progress. American 
Educational Research Journal, 47(1), 133-180. doi:10.3102/0002831209345157. 

 
Baxter, J.A. & Lederman, N. G. (1999). Assessment and measurement of pedagogical 

content knowledge. In J. Gess-Newsome & N.G. Lederman (Eds.), Examining 
pedagogical content knowledge (pp. 147–161). Boston: Kluwer Academic 
Publishers. 

 
Begle, E., G. (1972). Teacher knowledge and student achievement in algebra. SMSG 

Reports, No. 9. Stanford: School Mathematics Study Group. 
 
Bell, C. A., Wilson, S. M., Higgins, T., & McCoach, D. B. (2010). Measuring the effect 

of professional development on teacher knowledge: The case of Developing 
Mathematical Ideas. Journal for Research in Mathematics Education, 41(5), 479-
512.  

 
Bloom, B. S. (1956). Taxonomy of educational objectives. Boston, MA: Allyn and 

Bacon. 
 
Carpenter, T.P., Fennema, E., Franke, M.L., Levi, L., & Empson, S.B. (1999). Children’s 

mathematics: Cognitively guided instruction. Portsmouth, NH: Heinemann. 
 
Carpenter, T. P., Fennema, E., Peterson, P.L., Chiang, C.P., & Loef, M. (1989). Using 

knowledge of children’s mathematics thinking in classroom teaching: An 
experimental study. American Educational Research Journal, 26(4), 499-531. 
doi:10.3102/00028312026004499. 

 
Carpenter, T.P., Franke, M.L., & Levi, L. (2003). Thinking mathematically: Integrating 

arithmetic & algebra in elementary school. Portsmouth, NH: Heinemann. 
 
Carpenter, T.P., Hiebert, J., & Moser, J. M. (1981). Problem structure and first-grade 

children’s initial solution processes for simple addition and subtraction problems. 
Journal for Research in Mathematics Education, 12(1), 27-39. Retrieved from 
http://www.jstor.org.ezproxy1.lib.asu.edu/stable/pdfplus/748656. 

 
Cobb, P., Jaworski, B., & Presmeg, N. (1996). Emergent and sociocultural views of 

mathematical activity. Theories of Mathematical Learning, 3-19.  
 
Cohen, D., Raudenbush, S., & Ball, D. (2000) Resources, Instruction, and Research: A 

CTP working paper (Document W-00-2). Seattle, WA: Center for the study of 
teaching and policy.  

 



	   283 

Creswell, J. W., (2007). Qualitative inquiry & research design: Choosing among five 
approaches (5th ed.). Thousand Oaks, CA: Sage. 

 
Darling-Hammond, L (2000). Teacher quality and student achievement: A review of state 

policy evidence. Education Policy Analysis Archives, 8(1), 1-44. Retrieved from 
http://epaa.asu.edu/ojs/article/view/392/515.  

 
Eisenberg, T. (1977). Begle revisited: Teacher knowledge and student achievement in 

algebra. Journal for Research in Mathematics Education, 8(3), 216-222. 
Retrieved from http://www.jstor.org.ezproxy1.lib.asu.edu/stable/pdfplus/748523. 

 
Escudero, I. & Sanchez, V. (2007). How do domains of knowledge integrate into 

mathematics teachers’ practice? Journal of Mathematical Behavior, 26(4), 317-
359. doi:10.1016/j.jmathb.2007.11.002. 

 
 
Fennema, E. & Franke, M. (1992). Teachers’ knowledge and its impact. In D.A. Grouws 

(Ed.) Handbook of research on mathematics teaching and learning: A project of 
the National Council of Teachers of Mathematics (Ch. 6). New York: Macmillian 
Library Reference.  

 
Forman, E. (1996). Forms of participation in classroom practice: Implications for 

learning mathematics. In L. Steffe, P. Nesher, P. Cobb, G. Goldin, & B. Greer 
(Eds,), Theories of mathematical learning (pp. 115-130). Hillsdale, NJ: Erlbaum. 

 
Franke, M. L., Kazemi, E., & Battey, D. (2006). Mathematics teaching and classroom 

practice. In F. Lester (Ed.), Second handbook of research on mathematics 
teaching and learning (Ch. 6). Charlotte, NC: NCTM.  

 
Franke, M. L., Webb, N.M., Chan, A.G., Ing, M., Freund, D., & Battey, D. (2009). 

Teacher questioning to elicit students’ mathematical thinking in elementary 
school classrooms. Journal of Teacher Education, 60(4), 380-392. Retrieved from 
http://ejournals.ebsco.com.ezproxy1.lib.asu.edu/direct.asp?ArticleID=4434946F4
ED0EF3FB7C8. 

 
Hashweh, M. (1987). Effects of subject-matter knowledge in the teaching of biology and 

physics. Teaching and Teacher Education, 3(2), 109-120. Retrieved from 
http://dx.doi.org.ezproxy1.lib.asu.edu/10.1016/0742-051X(87)90012-6. 

 
Hiebert, J., Carpenter. T. P., Fennema, E., Fuson, K.C., Wearne, D., Murray, H., Olivier, 

A., & Human, P. (1997). Making sense: Teaching and learning mathematics with 
understanding. Portsmouth, NH: Heinemann. 

 
Higgins, T., Bell, C.A., Wilson, S. M., McCoach, D. B., & Oh, Y. (2007). Measuring the 

impact of professional development on mathematical knowledge for teaching 



	   284 

number and operations to elementary students. Paper presented at the annual 
meeting of the National Council of Teachers of Mathematics, Atlanta, GA. 

 
Hill, H.C. (2010). The nature and predictors of elementary teachers’ mathematical 

knowledge for teaching. Journal for Research in Mathematics Education, 41(5), 
513-545. Retrieved from http://www.jstor.org/stable/41110412. 

 
Hill, H.C. & Ball, D. L. (2004). Learning mathematics for teaching: Results from 

California’s mathematics professional development institutes. Journal for 
Research in Mathematics Education, 35(5), 330-351. Retrieved from 
http://www.jstor.org/stable/30034819. 

 
Hill, H.C., Ball, D. L., & Schilling, S. G. (2008). Unpacking pedagogical content 

knowledge. Journal for Research in Mathematics Education, 39(4), 372-400. 
Retrieved from http://www.jstor.org/stable/40539304. 

 
Hill, H.C., Blunk, M. L., Charalambous, C.Y., Lewis, J.M., Phelps, G. C., Sleep, L., & 

Ball, D.L. (2008). Mathematical knowledge for teaching and the mathematical 
quality of instruction: An exploratory study. Cognition and Instruction, 26(4), 
430-511. Doi: 10.1080/07370000802391711.  

 
Hill, H.C., Rowan, B., Ball, D.L. (2005) Effects of teachers’ mathematical knowledge for 

teaching on student achievement. American Educational Research Journal, 42(2), 
371-406. doi:10.3102/00028312042002371. 

 
Hill, H.C., Schilling, S.G., & Ball, D. L. (2004). Developing measures of teachers’ 

mathematical knowledge for teaching. Elementary School Journal, 105, 11-30. 
doi:10.1086/428763. 

 
Hill, H., Sleep, L., Lewis, J., & Ball, D. L. (2006). Assessing teachers’ mathematical 

knowledge: What knowledge matters and what evidence counts? In F. Lester 
(Ed.), Second handbook of research on mathematics teaching and learning (Ch. 
4). Charlotte, NC: NCTM.  

 
Hill, H. C., Umland, K., Litke, E., & Kapitula, L. R. (2012). Teacher quality and quality 

teaching: Examining the relationship of a teacher assessment to practice. 
American Journal of Education, 118(4), 489-519. doi: 10.1086/666380. 

 
Krathwohl, D. R. (2002). A revision of Bloom’s taxonomy: An overview. Theory into 

Practice, 41(4), 212-218. Retrieved from http://www.jstor.org/stable/1477405. 
 
Kvale, S. (1996).  Interviews: An introduction to qualitative research interviewing. 

Thousand Oaks, CA: Sage. 
 



	   285 

Lamon, S. J. (1999). Teaching fractions and ratios for understanding: Knowledge and 
instructional strategies for teachers. Mahwah, NJ: Lawrence Erlbaum Associates. 

 
Lampert, M. (2001). Teaching problems and the problems of teaching. New Haven, CT: 

Yale University Press. 
 
Lampert, M. (1990). When the problem is not the question and the solution is not the 

answer: Mathematical knowing and teaching. American Educational Research 
Journal, 27(1), 29-63. doi:10.3102/00028312027001029. 

 
Lave, J. & Wenger, E., (1991). Situated learning: Legitimate peripheral participation. 

Cambridge: Cambridge University Press. 
 
Learning Mathematics for Teaching. (2006). A coding rubric for measuring the 

mathematical quality of instruction (Technical report LMT1.06.). Unpublished 
technical report. Ann Arbor: University of Michigan, School of Education.  

 
Leinhardt, G. (1989). Math lessons: A contrast of novice and expert competence. Journal 

for Research in Mathematics Education, 20(1), 52-57. Retrieved from 
http://www.jstor.org/stable/749098. 

 
Lerman, S. (2001). Cultural, discursive psychology: A sociocultural approach to studying 

the teaching and learning of mathematics. Educational Studies in Mathematics, 
46(1/3), 87-113. 

 
Ma, L. (1999). Knowing and teaching elementary mathematics: Teachers’ understanding 

of fundamental mathematics in China and the United States. Mahwah, NJ: 
Lawrence Erlbaum Associates, Inc.  

 
Maxwell, J.A. (2005). Qualitative research design: An interactive approach (2nd ed.). 

Thousand Oaks, CA: Sage. 
 
Miles, M. B. & Huberman, A., M. (1994). Qualitative data analysis (2nd ed.). Thousand 

Oaks, CA: Sage.  
 
National Council for Teachers of Mathematics (2000). Principles and standards for 

school mathematics. Reston, VA: NCTM. 
 
National Council for Teachers of Mathematics (2007). Mathematics teaching today: 

Improving practice, improving student learning (2nd Ed.). Reston, VA: NCTM. 
 
National Mathematics Advisory Panel. (2008). Foundations for success: The final report 

of the National Mathematics Advisory Panel. Retrieved September 22, 2011, from 
http://www.ed.gov/about/bdscomm/list/mathpanel/report/final-report.pdf 



	   286 

National Research Council. (2001). Adding it up: Helping children learn mathematics. J. 
Kilpatrick, J. Swafford, & B. Findell (Eds.). Mathematics Learning Study 
Committee, Center for Education, Division of Behavioral and Social Sciences and 
Education. Washington DC: National Academy Press. 

No Child Left Behind Act of 2001, 20 U.S.C. § 6319 (2008). 
Pianta, R.C., LaParo, K. M., & Harme, B. K. (2008). Class assessment scoring system: 

Manual K-3. Baltimore, MD: Paul H. Brookes Publishing Co. 
 
Rogoff, B. (2003). The cultural nature of human development. New York: Oxford 

University Press. 
 
Roth, W.-M. & Lee, Y.J. (2007). “Vygotsky’s neglected legacy”: Cultural-historical 

activity theory. Review of Educational Research, 77(2), 186-232. Retrieved from 
http://www.jstor.org/stable/4624893. 

 
Schilling, S. G., Blunk, M., & Hill, H.C. (2007). Test validation and the MKT measures: 

Generalizations and conclusions. Measurement: Interdisciplinary research and 
perspectives, 5(2-3), 118-127. Retrieved from 
http://sitemaker.umich.edu/lmt/files/measurement_-_test_validation.pdf. 

 
Schilling, S. G. & Hill, H. C. (2007). Assessing measures of mathematical knowledge for 

teaching: A validity argument approach. Measurement: Interdisciplinary research 
and perspectives, 5(2-3), 70-80. Retrieved from 
http://sitemaker.umich.edu/lmt/files/measurement_-_assessing_measures.pdf. 

 
Schoenfeld, A. H. (1998). Toward a theory of teaching-in-context. Issues in Education, 

4(1), 1-94. Retrieved from http://dx.doi.org.ezproxy1.lib.asu.edu/10.1016/S1080-
9724(99)80076-7. 

 
Sfard, A., Forman, E., & Kieran, C. (2001). Guest editorial: Learning discourse: 

Sociocultural approaches to research in mathematics education. Educational 
Studies in Mathematics, 46(1/3), 1-12. Retrieved from 
http://www.jstor.org/stable/3483238. 

 
Shechtman, N., Roschelle, J., Haertel, G. & Knudsen, J. (2010). Investigating links from 

teacher knowledge, to classroom practice, to student learning in the instructional 
system of the middle-school mathematics classroom. Cognition and Instruction, 
28(3), 317-359. Doi: 10.1080/07370008.2010.487961. 

 
Shulman, L. (1986). Those who understand:  Knowledge growth in teaching. Educational 

Researcher, 15(2), 4-14.  
 
Stein, M.K., Baxter, J., & Leinhardt, G. (1990). Subject-matter knowledge and 

elementary instruction: A case from functions and graphing. American 



	   287 

Educational Research Journal, 27(4), 639-663. 
doi:10.3102/00028312027004639. 

 
Stein, M.K., Grover, B., & Henningsen, M. (1996). Building student capacity for 

mathematical thinking and reasoning: An analysis of mathematical tasks used in 
reform classrooms. American Educational Research Journal, 33(2), 455-488. 
doi:10.3102/00028312033002455. 

 
Stein, M. K. & Smith, M. S. (1998). Mathematical tasks as a framework for reflection: 

From research to practice. Mathematics Teaching in the Middle School, 3(4), 268-
275. Retrieved from http://www.jstor.org/stable/41180401. 

 
Stein, M.K., Smith, M., Henningsen, M., & Silver, E. (2009). Implementing Standards-

Based Mathematics Instruction: A Casebook for Professional Development (2nd 
ed.). Reston, VA: NCTM and Teachers College Press. 

 
Stein, M.K., Remillard, J., & Smith, M.S. (2006). How curriculum influences student 

learning. In F. Lester (Ed.), Second handbook of research on mathematics 
teaching and learning (Ch. 8). Charlotte, NC: NCTM.  

 
Thompson, A. (1992). Teachers’ beliefs and conceptions: A synthesis of the research. In 

D. Grouws (Ed.) Handbook of research on mathematics teaching and learning: A 
project of the National Council of Teachers of Mathematics (Ch. 7). New York: 
Macmillan Library Reference. 

 
van Oers, B. (1996). Learning mathematics as meaningful activity. In L. Steffe, P. 

Nesher, P. Cobb, G. Golding, & B. Greer (Eds.), Theories of mathematical 
learning (pp. 91-114). Mahwah, NJ: Erlbaum. 

 
Vygotsky, L. S. (1978). Mind in society: The development of higher psychological 

processes. Cambridge, MA: Harvard University Press. 
 
Walkowiak, T. (2010). Third grade teachers’ mathematics instructional quality, 

mathematical knowledge for teaching, and mathematics teaching efficacy: A 
quantitative and qualitative analysis (Doctoral dissertation). Retrieved from 
ProQuest Dissertations & Theses Full Text (3437728). 

 
Webb, N.M., Franke, M.L., Chan, A., De, T., Freund, D., & Battey, D. (2008). The role 

of teacher instructional practices in student collaboration. Contemporary 
Educational Psychology, 33(3), 360-381. Retrieved from 
http://dx.doi.org.ezproxy1.lib.asu.edu/10.1016/j.cedpsych.2008.05.003. 

 
Wenger, E. (2009). A social theory of learning. In K. Illeris (Ed.), Contemporary theories 

of learning: Learning theorists…in their own words. London: Routledge. 
 



	   288 

Yin, R. K. (2009). Case study research: Design and methods (4th ed.). Los Angeles, CA: 
Sage. 



	   289 

APPENDIX A 

OPERATIONALIZING MKT: CRITERIA FOR CODING  

(adapted from Ball et al, 2008)  
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Subject Matter Knowledge 
Common Content 

Knowledge 
Specialized Content 

Knowledge 
Horizon Content 

Knowledge 
• Recognize when students 

give wrong answers 
• Recognize when the 

textbook gives an 
inaccurate definition 

• Use terms and notation 
correctly 

• Be able to do the work 
assigned to students 

• Pronounce terms 
correctly 

• Calculate correctly 
• Understand the 

mathematics in the 
student curriculum 

• Looking for patterns in 
student errors 

• Sizing up whether a 
nonstandard approach 
would work in general 

• “an uncanny kind of 
unpacking of 
mathematics that is not 
needed – or even 
desirable – in settings 
other than teaching” (p. 
400) 

• Knowledge beyond that 
being taught to students 

• Understanding different 
interpretations of the 
operations in ways that 
students not need to 
distinguish 

• Figuring out which types 
of problems fit with 
which operations 

• Use of “decompressed 
mathematical 
knowledge” (p. 400) 

• Talk explicitly about how 
mathematical language is 
used 

• How to choose, make, 
and use mathematical 
representations 
effectively 

• How to explain and 
justify one’s 
mathematical ideas 

• Includes the vision 
useful in seeing 
connections to much 
later mathematical ideas 

• Can help in making 
decisions about how, for 
example, to talk about 
the number line 

• Might impact how a 
teacher’s choices 
anticipate or distort later 
development 
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APPENDIX B 
 

OPERATIONALIZING MKT: CRITERIA FOR CODING 

(adapted from Ball et al, 2008) 
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Pedagogical Content Knowledge 

Knowledge of Content and 
Students 

Knowledge of Content and 
Teaching 

Knowledge of Content and 
Curriculum 

• Anticipate what students 
are likely to think and 
what they will find 
confusing 

• Predict which examples 
students will find 
interesting and 
motivating 

• Anticipate what students 
are likely to do with a 
task and whether they 
will find it easy or hard 

• Hear and interpret 
students’ emerging and 
incomplete thinking as 
expressed in the ways 
that pupils use language 

• Knowledge of common 
students conceptions and 
misconceptions about 
particular mathematical 
content 

• Familiarity with common 
errors and deciding 
which of several errors 
students are most likely 
to make 

• Sequence instruction 
• Choose and sequence 

examples 
• Evaluate the 

instructional advantages 
and disadvantages of 
representations 

• Deciding which student 
contributions to pursue, 
which to ignore, and 
which to save until later 

• Decide when to ask for 
more clarification 

• When to use a student’s 
remark to make a 
mathematical point 

• When to pause, ask a 
new question, or pose a 
new task 

• Knowledge of the range 
of curricula available 

• Knowledge of 
instructional materials 
available 

• Know when to use a 
particular program in a 
specific situation  
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APPENDIX C 
 

CLASS OBSERVATION PROTOCOL RUBRIC  
 

(adapted from Pianta et al, 2008) 
  



	   294 

 
Low Range Middle Range High Range 

1 2 3 4 5 6 7 
The low-

range 
description 

fits the 
classroom 

and/or 
teacher very 
well.  All, or 
almost all, of 
the relevant 
predictors 

are 
noticeable 

The low-
range 

description 
fits mostly 

with what is 
happening in 

the 
classroom 

and/or 
teacher, but 

there are one 
or two 

indicators 
that fall in 
the middle 

range 

The middle-
range 

description 
mostly fits 
the middle-

range 
criteria for 

the 
classroom 

and/or 
teacher, but 
one or two 
indicators 
fall in the 
low range 

The middle-
range 

description 
fits the 

classroom 
and/or 

teacher very 
well. All, or 
almost all, 

of the 
indicators 
fall in the 

middle 
range 

The middle-
range 

description 
mostly fits 

the 
classroom 

and/or 
teacher, but 
one or two 
indicators 
fall in the 

high-range. 

The high-
range 

description 
mostly fits 

the 
classroom 

and/or 
teacher, but 

there are one 
or two 

indicators in 
the middle 

range 

The high-
range 

description 
fits the 

classroom 
and/or 

teacher very 
well.  All, or 
almost all, 

of the 
indicators 
fall in the 

high-range. 
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APPENDIX D 
 

THE MATHEMATICAL TASKS FRAMEWORK 
 

(adapted from Stein et al, 2009) 
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Low Cognitive Demand High Cognitive Demand 
Memorization Tasks Procedures without 

Connections Tasks 
Procedures with 

Connections Tasks 
Doing Mathematics 

Tasks 
• Involve 

reproducing 
learned facts, 
rule, formulae, or 
definitions OR 
committing facts, 
rules, formulae, 
or definitions to 
memory 

• Cannot be solved 
using a procedure 
because a 
procedure does 
not exist 

• Short time frame 
given to solve 
task 

• Are not 
ambiguous – 
directions on how 
to solve the task 
are clearly stated 

• Have no 
connection to 
underlying 
concepts 

• Are algorithmic 
– use of 
algorithm is 
specifically 
noted or evident 
based on prior 
instruction or 
experience with 
the task 

• Little ambiguity 
on what needs to 
be done to solve 
the problem 

• Have no 
connection to 
underlying 
concepts 

• Are focused on 
producing the 
correct answer 

• Require no 
explanation 
other than 
describing the 
formula being 
used 

• Focus students’ 
attention on the 
procedures for 
the purpose of 
developing 
deeper levels of 
understanding 

• Suggest 
pathways to 
follow that are 
broad general 
procedures that 
have close 
connections to 
underlying ideas 

• Usually are 
represented in 
multiple ways 
that help develop 
meaning 

• Require some 
cognitive effort. 
Procedures 
cannot be 
followed 
mindlessly 

• Require complex 
and 
nonalgorithmic 
thinking 

• Require students 
to explore and 
understand the 
nature of 
mathematical 
conceptions or 
relationships 

• Demand self-
monitoring or 
self-regulation of 
one’s own 
cognitive process 

• Require students 
to analyze the task 
and actively 
examine task 
constraints 

• Require 
considerable 
cognitive effort 
and may involve 
some level of 
anxiety due to the 
unpredictive 
nature of the task 
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APPENDIX E 
 

THE FACTORS ASSOCIATED WITH IMPLEMENTATION OF COGNITIVE 

DEMAND (adapted from Stein et al, 2009) 
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Factors associated with the decline  

of high-level cognitive demands 
Factors associated with the maintenance  

of high-level cognitive demands 
1. Problematic aspects of the task become 
routine 

1. Scaffolding of student thinking and 
reasoning 
 

2. The teacher shifts emphasis to the 
correctness or completeness of the answer 

2. Students are provided with means of 
monitoring their own progress 
 

3. Not enough time allowed to figure out 
the demanding aspects of the task 

3. Teacher or capable students model high-
level performance 
 

4. Classroom management causes problems 
for students to engage with the task 

4. Sustained press for justifications, 
explanations, or meaning through teacher 
questioning 
 

5. Inappropriateness of task for a given 
group of students 

5. Tasks build on students’ prior 
knowledge 
 

6. Students are not held accountable for 
high-level products or processes 

6. Teacher draws frequent conceptual 
connections 
 

 7. Sufficient time to explore 
 

 


