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ABSTRACT  
 

This dissertation explores different methodologies for combining two popular 

design paradigms in the field of computer experiments.  Space-filling designs are 

commonly used in order to ensure that there is good coverage of the design space, but 

they may not result in good properties when it comes to model fitting.  Optimal designs 

traditionally perform very well in terms of model fitting, particularly when a polynomial 

is intended, but can result in problematic replication in the case of insignificant factors. 

By bringing these two design types together, positive properties of each can be retained 

while mitigating potential weaknesses. 

Hybrid space-filling designs, generated as Latin hypercubes augmented with I-

optimal points, are compared to designs of each contributing component.  A second 

design type called a bridge design is also evaluated, which further integrates the 

disparate design types.  Bridge designs are the result of a Latin hypercube undergoing 

coordinate exchange to reach constrained D-optimality, ensuring that there is zero 

replication of factors in any one-dimensional projection.  Lastly, bridge designs were 

augmented with I-optimal points with two goals in mind.  Augmentation with candidate 

points generated assuming the same underlying analysis model serves to reduce the 

prediction variance without greatly compromising the space-filling property of the 

design, while augmentation with candidate points generated assuming a different 

underlying analysis model can greatly reduce the impact of model misspecification 

during the design phase.   

Each of these composite designs are compared to pure space-filling and optimal 

designs.  They typically out-perform pure space-filling designs in terms of prediction 

variance and alphabetic efficiency, while maintaining comparability with pure optimal 

designs at small sample size.  This justifies them as excellent candidates for initial 

experimentation.  
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CHAPTER 1 – INTRODUCTION 

Design and analysis of computer experiments (DACE) is a rapidly growing field.  

Computer simulation models are often used in place of or in conjunction with physical 

experiments. Computer simulation models are becoming increasingly prevalent with the 

increase in computing power, and the development of software geared towards handling 

complex simulations.  There are many types of simulation – finite element analysis 

(FEA), computational fluid dynamics (CFD) and circuit simulation typically employ 

solutions to differential equations or complex numerical methods.  Discrete-event 

simulation models are built to simulate the operation of a system as a chain of events.  

The applications are quite diverse.  Regniere and Sharov (1999) simulated male gypsy 

moth phrenology over a large region including latitude, longitude, elevation and 

temperature in order to learn more about their prevalence and serve as a pest-

management planning tool.  Calise, Palombo, and Vanoli (2010) estimated the efficiency 

and costs associated with several large scale heating and cooling systems, while 

Ventriglia (2011) simulated a type of brain activity hypothesized to be important for 

learning and memory.   

The design space covered by the simulation may be so large, or the time to run 

each simulation instance so long that efficient and intelligent experimental design can be 

just as important as in traditional physical experiments.  There are several unique issues 

relating to computer experimentation however, that separate it into a branch of research 

of its own.  Some types of simulation models (such as FEA or CFD) will provide a 

deterministic response, such that any run with the same levels of the input factors will 

provide the same answer.  In the deterministic context, the presence of no natural error 

means that there is no additional information to be gained from replicates, and if factors 

are found to be insignificant the collapsing of the design may result in unintended 
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replication of design points in terms of the remaining factors.  Traditional statistical 

analysis methods that rely on error estimates are also inappropriate in such situations.   

Even in the case of a stochastic response, the variance may be small.  It is 

common to apply variance reduction techniques (such as common random numbers or 

importance sampling) to improve the efficiency of the simulation.  In the presence of 

small variance, the same issues that impact experiments with deterministic results still 

apply.   

This research looks at designs that seek to find a compromise between traditional 

designs from the design of experiments world and space-filling designs that are 

prevalent in the computer experiments world.  Properties such as prediction variance 

and residual analysis will be used to evaluate the balance between good properties for 

modeling and good projection properties in the case of insignificant factors. 

A literature review will be presented in the next chapter, in which topics relating 

to the design and analysis of computer experiments are discussed.  Chapter 3 describes 

hybrid space-filling designs, Latin hypercube designs that have been augmented with I-

optimal points prior to experimentation.  Chapter 4 details properties of bridge designs, 

which are Latin hypercube designs that are D-optimal subject to a minimum distance 

between points in any one-dimensional projection, and compares their performance to 

other common designs.  Chapter 5 assesses the prediction variance properties of bridge 

designs as they are augmented with I-optimal points, and in particular evaluates whether 

this type of augmentation may be used to mitigate problems associated with model 

misspecification.  Finally, Chapter 6 presents conclusions and suggestions for future 

research. 
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CHAPTER 2 – LITERATURE REVIEW 

 The literature relating to computer experiments can be classified into two main 

subsets.  One arm deals with the design of the experiments themselves.  This work 

concentrates on two major design types and their combination, namely optimal designs 

and space-filling designs.  The second subset focuses on the analysis of the results of the 

computer experiments.  The modeling methods discussed here include polynomials and 

Gaussian process modeling.  The chapter concludes with a review of augmentation 

strategies for computer experiments. 

Design of Computer Experiments 

Traditional Response Surface Methodology Designs 

The field of design of experiments has a rich history, with many classical designs 

shown to be efficient for factor screening and optimization (Montgomery (2009)).  Most 

commonly known are factorial and fractional factorial designs, where the factors are 

evaluated at all (or a fraction) of the combinations of the endpoints of their ranges.  If 

there is curvature anticipated in the response surface, a design with a greater number of 

levels will be employed, such as a central composite design.   

As described in Myers, Montgomery and Anderson-Cook (2009), optimal designs 

are computer-generated designs that are created to provide the best solution given a set 

of constraints imposed by the practitioner.  The constraints may include (but are not 

limited to) the sample size, the intended analysis model, and the allowable ranges of the 

factors.  Implicit in the intended analysis model is the number of factors, and the 

number of levels necessary for each factor.   Typically there are one or more objectives to 

be optimized, chiefly dependent on the intended analysis model.  There are several 

common criteria, with the letter-based naming convention giving rise to the term 
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alphabetic optimality.  The most commonly used criterion for screening designs is D-

optimality, in which the goal is to maximize the determinant of the information matrix.  

The determinant is inversely proportional to the squared volume of the confidence 

region around the regression coefficients.  Minimizing the volume of the confidence 

region increases the confidence in the coefficient estimates.  In this way, maximizing the 

determinant of the information matrix leads to a design that will have good parameter 

estimation properties.  I-optimality is another attractive criterion, seeking to place 

design points such that the average prediction variance is minimized over the design 

space with regard to the intended analysis model.  Myers, Montgomery and Anderson-

Cook (2009) discuss the I-optimal design with respect to the linear regression model in 

detail.  I-optimality tends to be used in cases in which the form of the expected model is 

more understood, and greater numbers of terms or higher order terms are expected to be 

included.  Other common optimality criteria include A-optimality and G-optimality.  A-

optimality attempts to minimize the average variance of the estimated regression 

coefficients by minimizing the trace of the inverse of the information matrix.  G-

optimality minimizes the maximum diagonal entry in the hat matrix, in order to 

minimize the maximum prediction variance across the design space. 

Replicates are often included in optimal designs to ascertain estimates of random 

error inherent in the system.  In the presence of insignificant factors, the designs often 

collapse to give greater numbers of replicates in the remaining factors, which help to 

further refine the estimates in experiments with noise present.   

In the world of computer experiments however, the literature tends to divide into 

two camps, based on whether the simulation model provides deterministic or stochastic 

responses.  There are many types of simulations that are deterministic in nature (e.g., 

FEA and CFD), where the response at a given set of input values will always return the 

same value.  In the deterministic context, the presence of no natural error means that 
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there is no additional information to be gained from replicates, and if factors are found 

to be insignificant the collapsing of the design results in the ‘wasting’ of the additional 

runs.  Other types of simulations (e.g., discrete-event simulation) result in a stochastic 

response, where the response at a given set of inputs represents a sample from a random 

distribution.  The methodology described in this work is generally more appropriate for 

application to cases with a stochastic response.  

Space-Filling Designs  

While traditional response surface designs are quite popular for physical 

experiments, other design methods have become prevalent in the world of design for 

computer experiments.  Avoiding the problems with irrelevant replication and the 

impracticality of factorial designs at high dimensionality, space-filling designs such as 

sphere-packing designs or Latin hypercubes in particular have gained popularity.  These 

designs attempt to fill the interior portion of the design space.  

The Latin hypercube is one of the most popular designs for deterministic models.  

The Latin hypercube design was first proposed by McKay, Beckman, and Conover (1979), 

and has been widely used in the field of computer experiments ever since.  It is defined in 

Fang, Li, and Sudjianto (2006) as, “A Latin hypercube design (LHD) with n runs and s 

input variables, denoted by LHD(n,S), is an n x s matrix, in which each column is a 

random permutation of {1, 2, … , n}.”   

A Latin hypercube sample is an extension of stratified sampling, dividing each of 

the s variables into n partitions of width 1/n and ensuring that a single design point is 

placed in each of the n divisions for each of the s variables.  In the case of a midpoint 

LHD, the design points are placed in the center of each of the partitions, and in the 

general case the location of the design points within the partitions is determined based 
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on a random draw from a uniform distribution.  An example of a Latin hypercube design 

with ten runs and two factors is presented in Figure 1. 

 

Figure 1 .  Example LHD(10, 2) 

In the original proposal, McKay, Beckman, and Conover (1979) investigated three 

methods for selecting the input values for a simulation study:  random sampling, 

stratified sampling, and Latin hypercube sampling.  Empirically, they found that all three 

sampling methods would yield unbiased estimates of the mean of the response, and 

while they did not have a direct means of comparing the variance of the mean from the 

LHD, they found that if the functions are monotonic in each of the arguments then the 

variance of the response mean as obtained with the LHD will be smaller than that of the 

random sample.  The results of their experiments confirmed that the estimates of the 

mean response were comparable, and that while the variance of the sample mean 

determined from the stratified sampling was consistently lower than that of the simple 

random sample, the results based on the Latin hypercube designs consistently had the 

smallest variance.   

McKay, Beckman, and Conover (1979) note that a great advantage of a LHD is 

that each of the components are fully stratified, which is beneficial in the case of a 
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sparsity of effects.  LHDs are easy to construct and ensure that the full range of each 

variable is explored.  They showed that the mean response of a LHD will have a smaller 

variance than that of a simple random sample. 

Without additional constraints, however, a randomly generated LHD can have 

poor coverage of the design space.  In the most extreme case, a design could be generated 

in which the input variables were perfectly correlated, such as the LHD(10, 2) displayed 

in Figure 2.   

 

Figure 2.  Example of an LHD(10, 2) with poor space-filling properties. 

Fang, Li, and Sudjianto (2006) recommend examining bivariate scatter plots, 

and generating a new LHD in the case that the plots do not ‘look reasonably uniform.’  

Due in part to the subjectivity associated with examining scatter plots and in part due to 

the fact that while the variance of the sample mean is comparatively small it is not 

minimized, many researchers have suggested modifications to the LHD.  A taxonomy of 

the designs to be described is presented in Figure 3.  The modified LHD are organized in 

a logical flow of their development, with other relevant designs or publications included 

where appropriate for chronology. 
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Intro of LHD for Comp Exp
McKay, Beckman, Conover (1979)

Rank Correlation
Iman, Conover (1982)

OA-based LHD
Tang (1993)

OA-based designs (incl LHD)
Owen (1992)

Optimal LHD
Park (1994)

Mm LHD
Morris, Mitchell (1995)

Orthogonal Column LHD
Ye (1998)

Optimal Symmetric LHD
Ye, Li, Sudjianto (2000)

Orthogonal-Maximin LHD
Joseph, Hung (2008)

Latin Hypercube Designs:

Min IMSE Design
Sacks, Schiller, Welch (1989)

mM and Mm Designs
Johnson, Moore, Ylvisaker (1990)

Other Important Design Results:

Max Entropy Design
Shewry, Wynn (1987)

Large Sample LHD Properties
Stein (1987)

Stepping Stones

Multi-Layer Designs
Ba and Joseph (2011)

Generalized LHD
Dette and Pepelyshev (2010)

Bridge Designs
Jones et al. (2012)

 

Figure 3.  LHD Taxonomy. 

Stepping Stones 

Iman and Conover (1982) did not propose a new type of design, but they noted 

that although much effort was being expended in the development of designs and 

analysis methods for computer experiments, most of the research presented was based 

on the assumption of independent input variables.  They introduced a method to induce 

dependencies amongst the input variables that can be applied to any sampling scheme, 

including LHD.  Their method is distribution-free, simple to implement, and preserves 

the marginal distributions of the sampling scheme.  The algorithm rearranges the values 

in each column of the n x s matrix such that the correlations between the input variables 

will approximate the desired correlation matrix supplied by the user.  The authors note 

that their method can also be used to produce a sample rank correlation matrix that 
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more closely resembles an orthogonal design matrix than a randomly generated design, 

if the inputs are intended to be independent.  

Stein (1982) likewise did not propose a new design type, but rather investigated 

the large sample properties of LHDs.  He confirmed the results of McKay, Beckman, and 

Conover (1979) that the variance of an estimator based on Latin hypercube sampling is 

less than that of a random sample, and that the size of the reduction is increased if the 

function being estimated is additive.  He also noted that the results most individuals deal 

with depend on the assumption of independence of the input variables, and that the 

method of inducing correlation proposed by Iman and Conover (1982) does not hold up 

in the case of large N.  He proposes a method that uses both the rank correlations and 

the joint distributions of the input variables to obtain a design that properly accounts for 

the dependencies amongst the variables at large sample size, but notes that additional 

simulations may be necessary to determine the necessary input information.  In the 

application presented in the paper, 10 initial simulations were run to gain the 

information necessary for the variable transformations. 

Orthogonal-Array Based Latin Hypercubes 

The property of orthogonality has long been exploited in traditional design of 

experiments, meaning that the columns of the design matrix are un-correlated.  

However, many of the most common designs that exhibit orthogonality (such as 

factorials or fractional factorials) result in replicated points in the case of effect sparsity.  

Orthogonal array-based LHDs (OA-based LHD) were investigated by Owen (1992) and 

Tang (1993) contemporaneously but independently.  Owen and Tang each sought to 

apply the orthogonality concept to LHD, hoping to achieve good balance not only 

amongst the variables themselves, but in the combinations of the variables.  This results 

in designs enhanced to not only fill the space in a single dimension, but in higher 

dimensional space as well.   
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Tang (1993) states that “an n x m matrix A, with entries from a set of s ≥2 

symbols, is called an OA of strength r, size n, with m constraints and s levels if each n x r 

submatrix of A contains all possible 1 x r row vectors with the same frequency λ.  The 

number λ is called the index of the array; clearly n = λsr.  The array is denoted by OA(n, 

m, s, r).”  By this definition, every LHD is already an OA of strength one (OA(n, m, n, 1)).  

Both Owen (1992) and Tang (1993) propose algorithms that begin with an existing 

orthogonal array, and permutes each of the entries within each column to create the OA-

based LHD.  The algorithm proposed by Tang (1993) will result in smaller variance of the 

mean response than that of Owen (1992) when the underlying function is additive.   

Owen (1992) notes that arrays of strength more than 2 will require larger sample 

sizes than may be of practical use. Tang (1993) notes that OA-based LHD are not 

necessarily unique, and that two OA-based LHD are equivalent if one is a permutation of 

the rows, columns, and symbols of the other. 

Orthogonal Latin Hypercubes 

Orthogonal LHDs were proposed by Ye in 1998.  In an orthogonal LHD, any pair 

of columns are orthogonal to one another (i.e., have zero correlation).  Orthogonal LHDs 

ensure that the estimates for linear and quadratic effects are independent, and that the 

linear interactions are uncorrelated with the linear effects.  The proportions of the design 

are strict – the number of runs must either be a power of 2 or a power of 2 plus one, and 

the number of columns s for a design of n = 2m or 2m + 1 runs is s = 2m - 2.  The 

algorithm proposed by Ye (1998) constructs the first 2m-1 runs, and then reflects them to 

generate the second half of the design.  In the case of n = 2m + 1 runs, a center point is 

added to the design.  Since the orthogonality of the columns does not necessarily 

guarantee good space-filling properties, it is recommended to generate permutations of 

the design (which can be easily done by reversing the signs of a subset of columns – 

analogous to reflecting the design over a hyperplane) and evaluating the properties of the 
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permutations against a criterion of interest in order to select the best design.  The 

advantage of the orthogonal LHD over an OA-based LHD is the ease of construction, but 

the inflexibility of the design proportions means that designs may grow too large for 

practicality in the case of large numbers of input variables. 

Steinberg and Lin (2006) propose a construction method for orthogonal LHD 

that builds from factorial designs.  Their algorithm rotates separate groups of factors and 

rescales them to a unit hypercube, which results in a LHD when they are all combined.  

Their construction method leads to larger orthogonal LHD than presented by Ye, but 

they are still severely limited as to sample size.  The number of runs must be equal to 2k, 

where k is also a power of 2. 

Bingham, Sitter, and Tang (2009) do not restrict their scope to LHDs alone, but 

they present a construction algorithm for orthogonal designs that ameliorates the sample 

size restrictions of the other methods presented.  They take the Kronecker product of an 

orthogonal array with two levels (±1) and another orthogonal array, which will then itself 

be an orthogonal array.  This allows for the extension or expansion of existing orthogonal 

LHDs beyond their originally constrained sizes.   

Optimal Latin Hypercubes 

There is a long tradition of optimal designs in the design of experiments world, as 

described previously.  Often, designs are optimized for a particular model, such that 

knowledge is required about the underlying model and variable relationships during the 

design process.  Shewry and Wynn (1987) used entropy as an optimality criteria, in order 

to ‘maximize the amount of information in an experiment.’  In the case of a Kriging 

model, maximizing the entropy can be done by maximizing the log of the determinant of 

the design correlation matrix (similar to the method used to generate a D-optimal design 

in traditional designed experiment).  Sacks, Schiller, and Welch (1989) propose the 

integrated mean squared error (IMSE) critiera, setting the design points so as to 
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minimize the variance of prediction.  Since the IMSE is dependent on the parameters of 

their model, however, they recommend either performing a robustness study to choose 

model parameters that will perform well over a wide range, or to design for asymptotic 

values of the parameters.  They note that the design optimization process (using a quasi-

Newtonian algorithm) is computationally intensive, particularly since the correlation 

matrix can be poorly conditioned in the case of small values of the correlation 

parameters.  Currin, Mitchell, Morris, and Ylvisaker (1991) used the entropy criterion of 

Shewry and Wynn (1987) in their design generation.  They used an excursion-based 

optimization algorithm to generate entropy-optimal designs, under the assumption that 

all the correlation parameters are equal.   

Park (1994) applied the optimality concept to LHDs.  He used a two-stage 

algorithm, first using an exchange-type algorithm to obtain an optimal midpoint LHD, 

and then relaxing the midpoint requirement to optimize the design with respect to 

criterion within the neighborhood using a Newtonian routine (which should not take 

long, given the narrow search region).  Given the two-stage nature of the algorithm, there 

is the chance that it will not return the ‘true’ optimal design, but it expected that it will 

not be too far when the number of runs is large in comparison to the number of 

variables. 

Park (1994) finds that in creating an optimal LHD for the maximum entropy 

criterion, the Latin hypercube structure prevents the replication of corner points at the 

edges of the design space typical of the criterion.  An optimal LHD generated to 

minimize the IMSE helps to prevent the clustering of design points.  He found that the 

designs are have good geometric properties (generally nearly symmetric), and are much 

more efficient than randomly generated LHDs.  Since one of the greatest benefits of a 

LHD is that the generation is cheap, he notes the need for a faster algorithm to generate 

the optimal designs.  Since the IMSE criterion requires the inversion of the correlation 
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matrix as opposed to the entropy criterion which simply requires the determinant, it may 

be more efficient to use the entropy criterion. 

Jin, Chen, and Sudjianto (2005) presented an enhanced stochastic evolutionary 

(ESE) algorithm in order to help more efficiently construct optimal designs.  They also 

present more efficient ways of computing the optimality criteria, which further promotes 

the efficiency of the design process.  They find that their algorithm is able to find good 

medium to large-sized designs within minutes (if not shorter), while retaining the 

desirable properties such as balance or orthogonality.  For small-sized designs, there 

may not be time savings realized.  They describe small designs as 12-24 runs in four 

factors, and medium to large designs as 50-100 runs in five to ten factors.   

Maximin Latin Hypercubes 

A special type of optimal LHD uses the maximin criteria in the optimization 

process.  Johnson, Moore, and Ylvisaker (1990) originally investigated designs based on 

the minimax (mM) or maximin (Mm) criteria.  A mM design is one in which the 

maximum distance from any design point to any point within the design space is 

minimized, similar to a covering problem.  A Mm design is one in which the minimum 

distance between any two design points is maximized, as in a packing problem.  The 

maximin distance criterion maximizes the minimum inter-site distance and is specified 

by  

𝑚𝑎𝑥𝐷 𝑚𝑖𝑛𝑢,𝑣 ∈𝐷 𝑑(𝑢, 𝑣) =  𝑚𝑖𝑛𝑢,𝑣 ∈𝐷∗ 𝑑(𝑢, 𝑣), 

where d(u,v) is a distance, which is greater than or equal to zero, and D represents the 

design points.  The Mm criterion proves to be the same as the entropy criterion, achieved 

by minimizing the determinant (or maximizing the log of the determinant) of the 

covariance matrix as in D-optimal designs. 
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Morris and Mitchell (1995) applied the Mm criterion to LHDs.  They extend the 

definition of a maximin design in order to allow for tiebreaking, and suggest a scalar-

valued criterion φp so they can rank competing designs.  Their algorithm uses simulated 

annealing, beginning with a randomly generated LHD, and ‘perturbs’ the design by 

interchanging two randomly chosen elements within a randomly chosen column of the 

design matrix.  The results they present show that the Mm LHD is superior to both a Mm 

design and a randomly chosen LHD in terms of both mean squared error and maximum 

prediction error after modeling a response surface with a Gaussian process model. 

Optimal Symmetric Latin Hypercubes 

Symmetry or near symmetry in optimal LHDs was observed by both Park (1994) 

and Morris and Mitchell (1995).  Ye, Li, and Sudjianto (2000) suggest the symmetric 

LHD as a good compromise design, yielding good geometric properties with greater ease 

of construction.  The design actually takes three criteria into account:  the projection 

properties guaranteed by the Latin hypercube structure, the orthogonality properties 

imparted by the symmetry of the design, and the space-filling properties of the maximin 

criterion used in the search algorithm.  They define a symmetric LHD (SLHD) as a LHD 

in which each row has a mirror image twin (reflected about the center).  SLHD have 

some orthogonal properties (each main effect is uncorrelated with all two-factor 

interactions and quadratic terms), but the sample size is flexible.  Ye, Li, and Sudjianto 

(2000) present a columnwise-pairwise (CP) exchange algorithm, where two 

simultaneous pair exchanges are made in each column in order to maintain symmetry 

(in the case of odd-numbered experiments, the centerpoint does not participate in the 

exchange).  They compare the CP algorithm to the exchange algorithm of Park (1994), 

and find that CP consistently performs better.  They also compare CP to the simulated 

annealing algorithm of Morris and Mitchell (1995), and find that while CP is more 

efficient in the case of smaller designs, the simulated annealing algorithm does work 
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better in the case of large designs.  In the example presented, the smaller designs 

consisted of 12 runs in two factors, while the larger designs were 25 runs in four factors.  

Orthogonal-Maximin Latin Hypercubes 

Joseph and Hung (2008) propose a multi-objective criterion for optimized LHDs.  

Orthogonal designs have attractive properties, as do maximin designs.  They note that 

intuitively, one would expect that a design with low correlation amongst the columns 

would spread points out within the design space, and that concurrently, spreading points 

out within the design would reduce correlation.  In truth however, they find that there is 

no definite relationship between the two, and that designs generated with the different 

criteria can vary greatly.  Owen (1994) proposed a performance measure for LHDs that 

takes the root mean square of all pairwise correlations between columns of the design, 

ρ2, which should be minimized to gain a design with the best orthogonality properties.  

Morris and Mitchell (1995) defined their criterion, φp, so that the design with the 

minimum value will identify the design with the best spread of design points.  Joseph 

and Hung (2008) suggest that the two objectives be combined in a weighted sum, ψp, 

and propose an algorithm that minimizes ψp.   

Their algorithm is a modification of the simulated annealing algorithm from 

Morris and Mitchell (1995), selecting promising exchanges by choosing a column that is 

highly correlated with others, and a row that is closest to other design points.  They 

compare their orthogonal-maximin LHDs with the maximin LHDs proposed by Morris 

and Mitchell (1995) as well as orthogonal LHDs as proposed by Ye (1998) in terms of the 

three criteria (ρ2, φp, and ψp), and find that their designs are a good compromise 

between the two comparators.  The efficient selection of exchanges also enables their 

algorithm to converge quickly. 
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Generalized Latin Hypercubes 

Dette and Pepelyshev (2010) note that in uniformly spaced Latin hypercube 

designs, the concentration of design points is greatest in the center of the design and 

decreases as the boundaries are approached.  They argue that this reduction of available 

information around the boundaries serves as a motivation for shifting some of the design 

points towards the edges of the experimental region, similar to an optimal or factorial 

design in traditional design of experiments.  They propose to ameliorate the problem by 

generalizing the Latin hypercube by taking a transformation of the points using the 

quantile function of a Beta density.  The tuning parameter can then be used to specify the 

importance of the boundaries, such that low importance results in the original uniformly 

spaced design.  The Integrated Mean Square Error associated with the generalized 

design was found to be much lower than that of a maximin Latin hypercube design in 

models with a stochastic term.  The generalized design also evens the mean squared 

error throughout the design space, which is typically small in the center and large in the 

outer regions of a typical Latin hypercube.   

Multi-Layer Designs 

Ba and Joseph (2011) propose the conversion of optimal factorial designs into 

space-filling designs called multi-layer designs (MLDs) in order to make them 

appropriate for computer experiments.  The geometric properties of the factorial designs 

help to reduce the time needed to produce the optimal space-filling design as compared 

to other methods.   

The base design for the construction of the MLD should be selected carefully.  A 

full factorial design with p factors two levels each would have n = 2p runs.  If the sample 

size for a full factorial is prohibitive, a 2-k fraction can be chosen, with n = 2p-k runs.  The 

authors recommend selecting a fractional factorial design based on the minimum 

aberration criterion of Fries and Hunter (1980).  The design with the minimum number 
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of words of the shortest length in the defining relation is the design with minimum 

aberration, ensuring that there is the smallest number of aliased effects. 

The base design is then split optimally into subgroups for allocation to different 

layers.  The methodology the authors propose is essentially a reverse foldover, where 

instead of reversing the signs of one (or more columns) to double the experimental runs, 

it is done backwards to halve the design (such that one half is the foldover of the other).  

This procedure can be repeated multiple times to split the design into L layers.   

The authors propose that L = n/2 layers will result in the most desirable 

projection properties.  Since points are split into layers using the minimum aberration 

criteria, the majority of factors will have n levels, with only a few having n/2 levels.  This 

will lead to one-dimensional projection properties nearly as good as LHDs, although 

perhaps not as uniform depending on the choice of spacing between the layers.   

For spacing between the layers, the authors recommend keeping an empty area at 

the center of the design.  Leaving a hypercube of size (-s, s)p within the [-1, 1]p hypercube 

of the design space since the volume of the layers increases as they get closer to the outer 

boundaries of the design space.  Experimentation revealed that a value of s = 0.45 

provides a nice balance between the maximin and minimax evaluation criteria.   

One constraint of MLDs is their restrictive sample size.  For MLDs constructed by 

splitting 2p-k designs into layers, the sample sizes are limited to powers of 2.  If there is 

budget for more points, the easiest way is to design the largest MLD allowable within n, 

and then add the additional n – 2p-k-1 points.  The authors recommend using the 

methodology for optimal foldover plans described by Li and Lin (2003), and subsetting 

the appropriate optimal foldover plan to the number of additional points that can be 

added.  These extra points get arranged into their own layers, and added to the original 

design for scaling. 
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Bridge Designs 

Similarly to the generalized Latin hypercubes proposed by Dette and Pepelyshev 

(2010), bridge designs are introduced by Jones, Johnson, Montgomery, and Steinberg 

(2012) as an attractive way to merge the properties of Latin hypercube designs and 

optimal designs.  The designs bridge the gap between Latin hypercubes and D-optimal 

designs, guaranteeing a minimum distance between points in any projection, and D-

optimality with respect to the specified analysis model subject to that constraint.  Their 

algorithm begins with a Latin hypercube, and uses point exchange to maximize the 

determinant of the information matrix. 

With n experimental points, each with a range of [-1, 1], the interpoint distance δ 

of any projection can take values between 0 ≤ δ ≤ 2/(n – 1).  At δ = 0, there is no 

constraint on the interpoint distance and a true D-optimal design can be returned.  The 

larger the δ value becomes, the more the design resembles a Latin hypercube, until at δ = 

2 / (n – 1) it becomes a D-optimal Latin hypercube.  The authors recommend a more 

flexible setting, letting 0 ≤ δ ≤ 1 / (n – 1).   

The algorithm requires four inputs to be set:  the number of factors, the number 

of runs, an a priori regression model intended for analysis, and the minimum spacing 

between points in any projection.  Once the inputs are set, a grid of candidate design 

points is generated based on δ.  The starting point for the design is a random Latin 

hypercube design, and a coordinate exchange algorithm is used to evaluate whether the 

determinant of the design can be improved upon by replacing one of the design points 

with a candidate grid point.  Since the algorithm only considers grid points and not all 

points within the design space, there is some degree of approximation in the solution, 

but it is minimal. 

In comparing the bridge designs to other types of LHDs such as multi-layer 

designs and maximin Latin hypercubes, the bridge designs have better D-efficiency as 
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well as average variance.  The algorithm does not attempt to maximize the distance 

between points, so the other designs do perform better in terms of minimum distances 

between design points.  The bridge designs also have an advantage over the multi-layer 

designs in terms of fitting higher-order models.   The bridge design is proposed for use in 

situations where the experimental error is small in comparison to the factor effects.  In 

this case, the minimization of the variance incurred by the optimization of the design can 

be secondary, and the resulting increase in factor levels an appropriate trade.  This 

allows for greater flexibility in modeling choices, in the addition of regression terms or in 

other models such as the Gaussian process model.  

Comparison 

An ordinary randomly generated LHD can be vastly improved upon, but there is 

no one best choice for all situations.  There are several types of LHDs that are model-

dependent, useful in cases in which the experimenter has good hypotheses as to the form 

of the model prior to experimentation.  Non-model dependent optimality criterion are 

more generally applicable, since the models are not known in advance of the 

experimental design, however, can still be a good starting point if the class of models is 

known to be likely.  The maximin criteria is the most commonly used, since it is fairly 

easy to implement with the various algorithms that have been developed and yields good 

space-filling properties.  Orthogonality is also a nice property in terms of model fitting, 

and that if it can be achieved within reason, it is likely to be helpful.  The original 

orthogonal designs proposed by Owen (1992), Tang (1993) and Ye (1998) carry difficulty 

of construction and are restrictive in terms of design size.  Multi-layer designs as 

proposed by Ba and Joseph (2011) also provide nice properties, but are restrictive in 

terms of sample size and model fitting.  Bridge designs as introduced by Jones, Johnson, 

Montgomery, and Steinberg (2012) are good options for situations in which a polynomial 

is deemed to be a good candidate model for analysis. 
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Analysis of Computer Experiments 

As important as the design of a computer experiments is, the analysis of the 

output is equally significant.  Computer experiments can be computationally expensive 

in terms of time required to run an experiment on the simulation model.  As an example, 

each of Ventriglia’s (2011) simulations took four days to complete.  Therefore, surrogate 

models or metamodels are often used to mimic the input-output relationship in the form 

of a simpler mathematical expression that can be quickly computed.  Surrogate models 

encompass a broad range of methods ranging from parametric to nonparametric 

analysis, and the type of experimental design chosen should be done in context of what 

type of surrogate model is intended to be employed.  Both Santner (2003) and Fang, Li, 

and Sudjianto (2006) provide good review information on the issues of design and 

subsequent analysis of computer experiments. 

There are many publications that evaluate experimental designs and analysis 

methods for computer simulations.  Since the appearance of the seminal paper by Sacks, 

Schiller, and Welch (1989), the most prevalent methods studied are variants of Kriging.  

Hussain, Barton, and Joshi (2002) tested two different types of metamodels for their 

designs, a radial basis function originally developed to fit irregular topographic contours 

of geographical data, and quadratic polynomial models.  Allen, Bernshteyn, and Kabiri-

Bamoradian (2003) compared combinations of experimental design classes with respect 

to second-order response surfaces and Kriging modeling methods. Bursztyn and 

Steinberg (2004) develop a new method of design comparison based on a Bayesian 

interpretation of an alias matrix. Chen, Tsui, Barton, and Meckesheimer (2008) discuss 

various designs used for computer simulation models and seven surrogate modeling 

methods, including response surface methodology, spatial correlation models (Kriging), 

multivariate adaptive regression splines, regression trees, artificial neural networks, and 
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least interpolating polynomials.  Ankenman, Nelson, and Staum (2008) discusses the 

application stochastic Kriging for stochastic simulation output in particular, employing 

methodology to separate out the intrinsic and extrinsic uncertainty. 

Kriging models are not the only appropriate models, however.  High-order 

polynomials can approximate complex surfaces as well, and Bingham, Sitter, and Tang 

(2009) note that many researchers are increasingly interested in them.  Polynomials are 

attractive due to the ease of fitting, and interpretability.  They can also be built up 

gradually, adding terms to reduce prediction error. 

Barton and Meckesheimer (2006) note that high-order polynomials can be non-

robust or over-fit in some situations where higher order terms added to fit certain areas 

of the response can cause the response to be overshot in other areas.  They note that 

regression splines make a good compromise for that problem, fitting lower order 

polynomials to local areas and requiring continuity at the edges.   

Other modeling methods have been proposed, such as radial basis functions or 

neural networks.  Radial basis functions are quite sensitive to scaling and experimental 

design, however.  Neural networks are difficult to fit, and very difficult to interpret.  

The two modeling methods employed for this work are traditional linear 

regression models (polynomials) and Gaussian Process (GASP) models (described in the 

next sections). 

Polynomial Models 

 Linear regression modeling as described in Montgomery, Peck, and Vining (2012) 

can be used to fit the polynomials that would approximate the response surface, 

describing the relationship between the independent variables (or factors) and the 

dependent variable (or response).  For example, a full second-order model in two factors 

would have six parameters (or β’s) to estimate, and take the form: 



22 
 

y = β0 + β1x1 + β2x2 + β3x1x2 + β4x12 + β5x22 + ε 

while if a fifth-order model was to be fit with two factors, it would have 21 parameters: 

y = β0 + β1x1 + β2x2 + β3x1x2 + β4x12 + β5x22 + β6x12x2 + β7x1x22 + β8x13 + β9x23+ β10x13x2 + 

β11x1x23 + β12x12x22 + β13x14 + β14x24 + β15x14x2 + β16x1x24 + β17x13x22 + β18x12x23 + β19x15 + 

β20x25 + ε 

The method of least squares is commonly used to estimate the β’s, solving the set 

of n least squares normal equations to minimize the sum of the squares of the errors, εi.  

Typically, the model can be written in terms of matrices, as:  

y = Xβ + ε 

If n represents the number of observations, k the number of independent factors 

(including one factor for each of the x’s, plus one for each interaction and higher order 

term), and p the number of parameters to be estimated, y is an n x 1 vector of the 

response observations, X is an n x p matrix with the levels of the independent variable 

expanded to model form, β is a p x 1 vector of the fitted coefficients, and ε is an n x 1 

vector of random errors associated with each of the observations. 

𝒚 = �

𝑦1
𝑦2
⋮
𝑦𝑛

�, 𝑿 = �

1 𝑥11 𝑥12 … 𝑥1𝑘
1 𝑥21 𝑥22 … 𝑥2𝑘
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1 𝑥𝑛1 𝑥𝑛2 … 𝑥𝑛𝑘

�, 𝜷 = �

𝛽0
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⋮
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The solution to the least squares normal equations can be written as:  

b = (X’X)-1X’y. 

 Various hypothesis tests can then be used to determine the significance of the 

model, or the individual regression coefficients, and so on.  In addition, residuals (the 

difference between the observed values and the predicted values obtained from the 

model) can be examined for patterns that may indicate lack of fit. 
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Gaussian Process Models 

Kriging is an interpolation technique named for D.G. Krige, a mining engineer 

who began developing the technique in order to predict locations of ore deposits.  It 

works as an approximation method that attempts to predict unknown locations based on 

a random process, assuming that the closer the input values the more positively 

correlated the prediction errors will be.  It is particularly attractive in the world of 

deterministic computer experiments, because as an interpolator it guarantees that the 

model will match the observed output at each of the observed points.  It has been applied 

successfully to stochastic cases as well, both in the same form and with other 

mathematical modifications.  One example of modified Kriging for stochastic models is 

presented by van Beers and Kleijnen (2003), who applied what they call ‘detrended 

Kriging,’ where the data go through a preprocessing step to prepare it for ordinary 

Kriging.  Linear regression is used in an attempt to separate the signal from the noise. 

The most common form of Kriging applied in the field of computer experiments 

is usually known as Gaussian process modeling.  It assumes that the form of the 

underlying random process follows a multivariate normal distribution.  The response is 

represented as an n x 1 vector, 𝒚(𝒙)~𝑁�𝜇𝟏𝑛,𝜎2𝑹(𝑿,𝜽)�.  With R representing the 

correlation matrix of the observed points (dimension n x n), and r as the vector 

representing the correlation of the point to be estimated with the design matrix, the 

fitted model form is: 

𝑦�(𝒙) = 𝜇̂ + 𝒓′�𝒙,𝛉��𝑹−𝟏�𝑿,𝜽��(𝒚 − 𝜇̂𝟏𝒏) 

The correlation matrix can take on several forms.  One commonly used form is 

called the product exponential, given by: 

𝑅𝑖𝑗(𝑋,𝜃) = 𝑒𝑥𝑝�−�𝜃𝑘�𝑥𝑖𝑘 − 𝑥𝑗𝑘�
2

𝑝

𝑘=1

� 
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while the estimated correlations of the unobserved y(x) at a new value of explanatory 

variables becomes: 

𝑟𝑖�𝑥,𝜃�� = 𝑒𝑥𝑝�−�𝜃𝑘�𝑥𝑘 − 𝑥𝑗𝑘�
2

𝑝

𝑘=1

� 

While not technically correlations, the θk values do describe the correlation in 

each of the k directions.  They must be greater than or equal to zero.  When θk is equal to 

zero, there is no effect of the kth factor and the fitted surface will be flat in that direction.  

As θk grows larger, correlation becomes smaller in the k direction and the fitted surface 

will become rougher in that direction.  The models are usually fit using maximum 

likelihood estimation (MLE). 

The idea that the data collected is a realization of a stochastic process makes 

sense in most situations, and the idea of fitting a surface through the observed points is 

intuitive.  There are also several nice properties associated with the Gaussian process 

that make it attractive for modeling.  It is infinitely differentiable with probability 1, 

given the proper correlation structure.  The optimal predictor and the optimal linear 

predictor are identical in terms of squared-error loss, whereas non-Gaussian 

assumptions typically have non-linear optimal predictors.   

Different variants of the GASP model may be more appropriate in different 

situations.  Typically the type of GASP model that is applied is ordinary kriging, where 

the response is modeled by a constant mean term added to a stochastic process.  

Universal kriging or blind kriging (Joseph, Hung, and Sudjianto (2008)) could be good 

extensions, where a linear model is substituted for the constant mean.  In universal 

kriging the terms of the model are set, and in blind kriging model fitting procedures are 

used to determine which terms should be included.  Each extends the capability of the 

ordinary kriging model, at the expense of complexity of model fitting. 
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Augmentation of Designs for Computer Experiments 

Building up information sequentially through design augmentation is efficient 

and economical. Montgomery (2009) points out that it is almost always preferable to run 

a small pilot design, analyze the results, and then decide on the best set of runs to 

perform next based on the results.  Design augmentation can also be used in computer 

simulation modeling to great benefit to the resulting models.  Johnson, Montgomery, 

and Jones (2010) demonstrate that augmenting a space-filling design with optimal 

points can be effective in improving the prediction variance across the design region.   

Other researchers have evaluated augmentation strategies with differing results.  

Kleijnen and van Beers (2004) augmented their initial pilot designs one point at a time, 

based on the assumption that simulation experiments must proceed sequentially anyway 

(unless parallel computers were used).  After analyzing the pilot runs, they create a set of 

candidate points and choose to simulate at the location with the highest estimated 

variance.  Ranjan, Bingham, and Michailidis (2008) also propose sequential 

augmentation in their algorithms meant to optimize the estimation of response surface 

contours, adding a single point in each cycle where the expected improvement in the 

contour estimation is maximized.  Loeppky, Moore, and Williams (2010) point out that 

one-at-a-time augmentation is impractical, since typically the reason for building the 

emulator is that the run time of the simulation is prohibitive.  They also note that it can 

tend to cluster points together, particularly when the minimization of the integrated 

mean squared error is used as the criteria for selecting the next design point.  This 

clustering can lead to the degradation of model performance overall.  In consequence, 

they introduce an algorithm which adds points in batches, choosing a value of 8 at a 

time.  They included a fixed maximin Latin hypercube design at the full sample size as a 

comparator to the sequential strategy designs.  In general, they found that the fixed 
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design performed as well as the sequential designs for RMSE (highlighting the 

importance of filling the design space), although the sequential designs performed better 

in terms of maximum error.    

Another important aspect of the augmentation problem is how the runs should be 

budgeted.  Ranjan, Bingham, and Michailidis (2008) have empirical results that show 

that a good rule of thumb is to allocate approximately 25-35% of the runs to the initial 

design.  Loeppky, Moore, and Williams (2010) acknowledge that the issue of allocation 

bears further study, but state in general terms that a minimum of a quarter of the full 

budget should be used for the initial design, with larger proportions dedicated to the 

initial design in the case of high dimensionality. 

There are many different methods proposed for evaluation of augmented designs 

in the literature, and what is appropriate is somewhat dependent on the intent of the 

augmentation.  Williams, Santner, and Notz (2000) used one-at-a-time augmentation to 

either maximize or minimize the response, and simply compared their designs’ 

performance to the known test function.   Kleijnen and van Beers (2004) compare their 

sequential design to a Latin hypercube sample in terms of the empirical integrated mean 

squared error and the L∞ norm.  Ranjan, Bingham, and Michailidis (2008) were 

interested in optimizing the ability to estimate a contour.  They created three distance-

based measures to compare their different design strategies in terms of how well they 

matched the true contour, and ultimately compared the performance of all the designs to 

that of a simple random Latin hypercube design (LHD).  Loeppky, Moore, and Wiliams 

(2010) compared their batch sequential designs to fully sequential designs and a 

maximin LHD in terms of the RMSE and maximum error in fitting the Gaussian process 

model.    
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CHAPTER 3 – HYBRID SPACE-FILLING DESIGNS FOR COMPUTER 

EXPERIMENTS 

Johnson, Montgomery, Jones, and Parker (2010) evaluate space-filling designs 

and optimal designs with respect to their performance when used to fit linear regression 

models. They compare designs based on their prediction variance. Their conclusions 

indicate that: 1) space-filling designs do not perform as well as optimal designs with 

respect to a linear regression model, 2) of the space-filling designs sphere packing 

designs generally have the lowest prediction variance followed closely by the Latin 

hypercube designs, and 3) augmentation of space-filling designs with I-optimal points is 

suggested whenever initial modeling indicates that the computer simulation model can 

be adequately approximated by a polynomial. Their last point suggests that hybrid 

designs, which combine both optimal points and space-filling points, have the potential 

to be powerful designs.  We compare hybrid space-filling experimental designs based on 

their prediction variance with respect to linear regression models and the Gaussian 

process model, both theoretically and empirically.  

Methodology 

The hybrid space-filling designs are created by generating a space-filling maximin 

Latin hypercube design in n points and then augmenting that design with m I-optimal 

points.  Latin hypercubes are commonly used in design for computer experiments, and 

are selected as the base space-filling design.  They can be generated fairly easily for large 

sample sizes and large numbers of factors, and do not result in replicated runs if factors 

drop out due to lack of effect.  The I-optimal points are determined assuming that the 

model the experimenter plans to fit is a polynomial of a specified order.  To maintain 

comparability between different design compositions, sample size was kept constant 

within each set to be compared.  For this chapter, designs were created to be saturated 
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designs in terms of the full form of the polynomial when fully completed, with 

compositions ranging from a full LHD to a full I-optimal design.   

To generate a space-filling design, no model specification is necessary, only the 

required number of points (sample size) is needed.  To generate an optimal design (or to 

augment a design with optimal points), the intended form of the analysis model must be 

specified as well as the number of design points required.  In order to test the predictive 

capabilities of space-filling designs and optimal designs when fitting a linear regression 

model we generated designs ranging from two to five factors and used second-order to 

fifth-order polynomials to generate the X model matrix. Table 1 illustrates the minimum 

number of design points needed to fit a given polynomial with 2 to 5 factors.   

Table 1.  Minimum number of design points needed (n = p). 

 

One hundred six (106) designs were generated, with several designs at each of the 

sixteen combinations of number of factors and polynomial order, holding sample size 

constant at the minimum number of design points needed to fit the full polynomial so 

that designs could be compared directly.  Within each combination of number of factors 

and polynomial order, designs ranged from a full Latin hypercube to a full I-optimal 

design with two to five smaller Latin hypercubes augmented with I-optimal points.  The 

notation used to identify designs throughout this work is LxIy_aF_bO, where x is the 

number of initial Latin hypercube points, y is the number of I-optimal points the Latin 

hypercube was augmented with, a represents the number of factors (x’s), and b 

represents the order of the intended polynomial specified for the augmentation. 
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All results presented for the polynomial analysis, both theoretical and empirical, 

represent a worst-case scenario.  The principle of sparsity of effects holds in most cases, 

in general meaning that systems are typically dominated by only a few main effects and 

lower-order interactions.  In these cases however, no attempt to reduce the models have 

been made, and hence all results are presented for the full model.  If fewer terms were 

included in the model the results for the polynomial analysis would be more favorable. 

Results 

Theoretical Prediction Variance 

Here the hybrid space-filling designs are compared with strictly space-filling 

designs and strictly optimal designs using prediction variance over the design region. 

The prediction variance is a standard criterion for comparing designs when 

modeling physical systems as well as computer simulations. If the intent is to analyze the 

data using a polynomial model, the scaled prediction variance (SPV) normalizes the 

prediction variance over the design region and is computed as   

𝑁 𝑉[𝑦�(𝑥𝑜)]
𝜎2

= 𝑁𝒙𝑜′ (𝑿′𝑿)−1𝒙𝑜 

where X is the model matrix and xo is the point being evaluated.  In order to penalize 

designs with larger sample size (which are more ‘expensive’ to run), the scaled variance 

is multiplied by the number of runs (N), but this is unnecessary when comparing designs 

of the same sample size.  Since deterministic computer experiments have no stochastic 

component it is necessary to justify the use of scaled prediction variance as a 

performance criterion.  Suppose that a given computer experiment is adequately 

modeled using a polynomial fit.  The difference between the observed and fitted values in 

a deterministic computer model, however, is not stochastic error, but rather is model 
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bias. If the polynomial model adequately describes the response surface of the true 

underlying function, the model bias of the fitted betas is negligible.  The model bias of an 

individual prediction is also fairly small because the fit is adequate. Assuming that the 

source of this bias is due to multiple high order terms, and deviations between the 

observed and predicted values will then behave like the sum of a number of independent 

small quantities.  Appealing to the central limit theorem, as the number of these bias 

quantities gets large, these deviations will converge to the normal distribution.  We then 

justify the prediction variance criterion as a measure of the sum of a large number of 

small biases.  

In order to compare the various designs, test spaces with 10,000 uniformly 

distributed points were generated.  The prediction variance was then calculated over the 

entire design space for each design, assuming the full form of the polynomial model.  

Comparing the designs based on summary statistics can be problematic, since designs 

with the same mean prediction variance could have very different profiles.  Hence, rather 

than trying to balance comparisons of the mean or maximum prediction variances, they 

were sorted from smallest to largest, and plots similar to Fraction of Design Space (FDS) 

plots were generated.  FDS plots graph the empirical distribution function of the 

prediction variance over the design space (Zaharan, Anderson-Cook, and Myers (2003)).   

They efficiently present a large amount of information, and allow for comparisons of 

design performance over the whole space rather than simply comparing designs based 

on summary statistics such as the mean or maximum.  Because the plot does not address 

location within the design space, it is only appropriate in cases where the entire design 

space is of equal importance.  If some regions are more interesting than others, a 

weighting scheme or partitioning should be applied.  The FDS plot for the four-factor, 

second-order polynomial case is presented in Figure 4 as an example. 
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Figure 4.  FDS plot for four-factor, second-order designs assuming a second-order 
polynomial. 

As expected, the full I-optimal designs performed best in terms of prediction 

variance, since the I-optimal criteria minimizes the average variance of prediction over 

the design region (with respect to the hypothesized model form).  The full Latin 

hypercube has the highest prediction variance across the whole design space.  The 

prediction variance is visibly reduced as a single I-optimal point is included, and again as 

a second I-optimal point is included.  The designs in which 3, 4, and 5 I-optimal points 

are included all perform similarly, and the minimum prediction variance over the design 

space is observed for the full I-optimal design.  In general, the hybrid designs in the 

other design categories perform similarly. 

It was noted across the different design categories that there were several outliers 

in terms of maximum prediction variance, particularly in the full Latin hypercube 

designs.  For each of the two-factor designs, five different designs were created to 
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attempt to assess design-related variability (only four designs were generated for the 

case with 4 Latin hypercube points augmented with 2 I-optimal points, since only four 4-

run Latin hypercube designs are possible).  The impact of design variability will be 

addressed in a following section. 

For the GASP model, the relative prediction variance is dependent on the design 

points (and hence implicitly, the sample size and number of factors) and the unknown 

thetas:  

𝑣𝑎𝑟�𝑦�(𝑥)�
𝜎2

= 1 − 𝑟′�𝑥,𝜽��𝑅−1�𝑿,𝜽��𝑟�𝑥,𝜽�� +
�1 − 𝟏′𝑅−1�𝑿,𝜽��𝑟�𝑥,𝜽���

2

𝟏′𝑅−1�𝑿,𝜽��𝟏
 

Since the unknown thetas are not known a priori, it is more difficult to evaluate 

designs in advance.  As described in Loeppky, Sacks, and Welch (2008), the worst case 

for prediction occurs when the thetas are equal.  For illustration, the designs were 

evaluated under the assumption that all thetas are equal at a value of 3.   
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Figure 5.  FDS plot for four-factor, second-order designs assuming a GASP model. 

It can be seen in Figure 5 that the full Latin hypercube performs best, while the 

full I-optimal design performs worst, but there is little difference between the designs 

across the majority of the design space.  

Empirical Root Mean Squared Error 

To evaluate the prediction properties of the GASP model and polynomials for the 

hybrid designs, a hypothetical response variable was created for each of the designs 

using a test function.  The designs were then “analyzed” using both a GASP model and a 

polynomial.  To assess their performance, the resulting models were then used to predict 

the response values for 10,000 randomly generated uniformly distributed test points, 

and the residual error calculated as the difference from the values determined by the test 
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function.  For each of the test functions used, the function and its source is described, a 

response surface varying two of the input factors is shown, and results pertaining to root 

mean squared error (RMSE) for the linear regression models (polynomials) and GASP 

models is provided. Descriptions of the results are also included.  

Test Function 1: The first test function was used in Santner, Williams, and Notz 

(2003), and first appeared in Brainin (1972). The function is 

𝑦 = �𝑥2 −
5.1
4𝜋2

𝑥12 +
5
𝜋
𝑥1 − 6�

2

+ 10 �1 −
1

8𝜋
�𝑐𝑜𝑠(𝑥1) + 10 

𝑥1 ∈ (−5,10),𝑥2 ∈ (0,15) 

The resulting surface (with x1 and x2 scaled from -1 to 1) is presented in Figure 6. 

 

Figure 6.  Surface plot of Test Function 1. 

As the polynomial order increases, the number of terms in the linear regression 

model increases (the number of terms in the model is equivalent to the number of design 
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points).  The GASP model interpolates the design points, and hence is also dependent on 

the sample size.  In Figure 7, it can be seen that the RMSE for both models is reduced as 

the number of design points increases.   

 

Figure 7.  RMSE for two-factor designs. 

There does not seem to be a tractable pattern of how the RMSE varies depending 

on the design composition (ratio of space-filling to I-optimal points).  Because the 

location of the design points is a factor in both models, the lack of a defined pattern may 

be related to the fact that only one design was generated for each composition. 
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Test Function 2: The second test function is found in Allen, Bernshteyn, and Kabiri-

Bamoradian (2003) and is designed to act as a surrogate model for a plastic seal design. 

The approximate analytical function is given as  

 

where x1, x2, and x3 represent input parameter dimensions on the plastic seal.  The 

bounds for the parameters are (in millimeters): 4 ≤ x1 ≤ 7, 0.7 ≤ x2 ≤ 1.7, and 0.055 ≤ x3 ≤ 

0.500.  A surface plot of Test Function 2 is shown in Figure 8 for variables x1 and x2 at a 

fixed value of x3 = 0.2225.  

 

Figure 8.  Surface plot of Test Function 2 (x3 set to 0.2225). 

As with the two-factor designs, Figure 9 shows that in the three-factor case both 

model types’ RMSE improves as the sample size increases.  The models perform 
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comparably, and there does not seem to be a tractable pattern of how the RMSE varies 

depending on the design composition (ratio of space-filling to I-optimal points). 

 

Figure 9.  RMSE for three-factor designs. 

Test Function 3: Our final test function was first published in Morris, Mitchell, and 

Ylvisaker (1993) and subsequently used for comparing metamodels in Allen, Bernshteyn, 

and Kabiri-Bamoradian (2003).  The function is  

 

where y predicts water flow – in cubic meters per year – as a function of eight design 

dimensions. As in Allen, Bernshteyn, and Kabiri-Bamoradian (2003), we only vary x1, x4, 

x6, and x7 and set the other four variables at their midpoint of the specified ranges from 

the experiment demonstrated in Morris, Mitchell, and Ylvisaker (1993).  The ranges and 

fixed values for each of the variables are presented in Table 2.  
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Table 2.  Ranges and fixed values for the experimental and fixed variables in Test 
Function 3. 

 

For the four-factor designs, the polynomials’ performance improves 

demonstrably as the number of design points and correspondingly the number of terms 

in the model increase (Figure 10).  

 

Figure 10.  RMSE for four-factor designs. 

The GASP models exhibit the lowest RMSE values when n = 35, which 

corresponds well to work by Loeppky, Sacks, and Welch (2008) that indicates that the 

GASP model works well given 10 times the number of factors’ worth of runs.  In the 

designs with 126 runs, it is likely that near singularity of the correlation matrix 

contributes to the increased error estimates.  In the case of near-singular matrices, the 



39 
 

model fitting algorithm within JMP includes the addition of a ridge parameter to the 

matrix to ensure it is invertible.  Some of the designs with the ridge parameter have 

relatively low error, while others in the same design class have error an order of 

magnitude higher.  One example being the disparity between the RMSE for the four-

factor, fifth-order design with 86 Latin hypercube points augmented with 40 I-optimal 

points and the design with 76 Latin hypercube points and 50 I-optimal points, with 

RMSE for the GASP model of 3.78 and 59.64, respectively.   

Test Function 3 was also used to evaluate the five-factor designs.  Factor x2, 

previously held fixed at 25,050, was added to the factors that were varied, ranging from 

24,950 to 25,150.  Factors x3, x5, and x8 were all held constant at the same levels.  Similar 

results were seen in the five-factor designs and models as were evidenced in four factors 

(Figure 11).   

 

Figure 11.  RMSE for five-factor designs. 
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Polynomial model performance improves with the addition of more design points 

and model terms, while the GASP models exhibit the lowest RMSE values when n is 

approximately 10 times the number of factors (n = 56).  As in the larger designs with four 

factors, as the number of runs increases the correlation matrices edge closer to 

singularity and additional complexity is added to the model estimation. 

The Predicted Residual Sum of Squares (PRESS) statistic may also be a useful 

statistic to aid in comparing designs in future research. 

Design Variability 

As noted earlier, there is also variability imparted on these summary statistics 

based on the exact design employed.  In order to begin to evaluate the effect of the design 

itself, each of the two-factor design combinations was replicated such that there are five 

designs of each type.    The theoretical prediction variance was evaluated for each design 

and modeling type, as well as the predictive capability of each as tested by Test Function 

1.        

To illustrate the effect of design variability, two of the five different 21-run Latin 

hypercube designs place points as follows in Figure 12.  
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Figure 12.  Point placement for two two-factor, 21-run Latin hypercube designs. 

Theoretical Prediction Variance 

The prediction variance for the five two-factor, 21-run Latin hypercube designs 

was calculated in terms of a fifth-order polynomial, and plotted in an FDS plot shown in 

Figure 13.  The prediction variance for Design 2 visibly separates from the other designs 

around the 90th percentile.  Looking at the summary statistics, for Design 1 and Design 2 

side by side as presented in Table 3, it can be seen that the separation occurs even earlier 

(by about the median), with sharp increases by the 75th percentile and beyond.  This 

results in a maximum prediction variance increase of almost 2000-fold from the 

maximum prediction variance of Design 1, as detailed in Table 3.   
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Figure 13.  FDS plot for replicated two-factor, 21-run Latin hypercube designs, in terms 
of a fifth-order polynomial model. 
 
  
Table 3.  Summary statistics for two two-factor, 21-run Latin hypercube designs, in terms 
of a fifth-order polynomial model. 
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The prediction variance over the design space is plotted in Figure 14, showing 

that the largest prediction variance is found in the (-1, 1) corner for Design 1.  This 

happens to be the only corner in the design without an observation.    

 

Figure 14.  Theoretical prediction variance for Design 1, in terms of a fifth-order 
polynomial. 

Given the scales on the Z-axis, it can be seen that Design 2 has very large 

prediction variance in the (-1, 1) and (1, -1) corners of the design space (Figure 15), 

corresponding to the largest gaps seen in the coverage.  The variance in each corner is so 

high that the ambient variance of the rest of the space is muted.  Design 1 has its largest 

prediction variance in the (-1, 1) corner of the design space as well, but it is more on the 

scale of the prediction variance seen elsewhere in the design space. 
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Figure 15.  Theoretical prediction variance for Design 2, in terms of a fifth-order 
polynomial. 

In general, the impact of the design itself on the prediction variance is much 

reduced as the I-optimal points are added.  This is an intuitive result, as the intent of the 

I-optimality criteria is to minimize the average scaled prediction variance over the design 

space.  As an example, Table 4 summarizes the range of the mean and maximum 

prediction variances for designs with two factors and a fifth-order polynomial as the 

intended analysis model.  It can be seen that the variability reduces dramatically as I-

optimal points are added to the Latin hypercube designs. 

Table 4.  Maximum prediction variance values observed across five two-factor, 21-run 
Latin hypercube designs, in terms of a fifth-order polynomial model. 
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The evaluation of the prediction variance of the same two designs with respect to 

the GASP model is shown in Table 5.  The summary statistics show that while Design 2 

still has a higher prediction variance than Design 1, the variance between designs is on a 

much smaller scale. 

Table 5.  Summary statistics for two 21-run Latin hypercube designs, in terms of a GASP 
model. 

 

The prediction variance for each design is plotted in Figures 16 (Design 1) and 17 

(Design 2).  The relative prediction patterns are similar to those seen for the polynomial 

models, with the maximum variance seen in the (-1, 1) corner for Design 1, and larger 

variance in the the (-1, 1) and (1, -1) corners of Design 2.  
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Figure 16.  Theoretical prediction variance for Design 1, in terms of a GASP model (both 
θi= 3). 

  

 

Figure 17.  Theoretical prediction variance for Design 2, in terms of a GASP model (both 
θi = 3). 
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Prediction Performance 

Using the same 21-run Latin hypercube designs as previously evaluated for 

prediction variance, it can be seen in Figure 18 that the form of the predicted surface is 

affected by the variance properties of the design.  Logically following from the theoretical 

prediction properties of the designs, it can be seen that the prediction capability in the   

(-1, 1) and (1, -1) corners is reduced for Design 2, although the departure is markedly 

smaller in the GASP model than the polynomial. 

 

 

Figure 18.  Predicted values for Test Function 1 for Designs 1 and 2, analyzed using fifth-
order polynomials or GASP models. 
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Empirical Root Mean Squared Error 

Finally, all of the repeated designs were analyzed under two scenarios – one in 

which Test Function 1 was used in a deterministic fashion, and another in which 

normally distributed random error was added to simulate a stochastic process.  In both 

cases, deterministic and stochastic, the designs perform as expected for the polynomials.  

The full I-optimal designs consistently have the lowest RMSE, while the full Latin 

hypercube designs consistently have the highest RMSE.  As the number of I-optimal 

points in the design increases, the RMSE decreases.  There was no apparent relationship 

between the mixture of design points and the RMSE for the GASP model, differences 

seemed to be solely related to sample size (as sample size increased, RMSE decreased) 

and whether the response was deterministic or stochastic (higher RMSE were evidenced 

in the stochastic case). 

In general, the fitted error for the GASP models was higher than that of the 

polynomials for small designs (n = 6 and 10).  As the number of design points increases, 

the GASP models begin to perform comparably to the polynomials in terms of fitted 

error, which corresponds to work by Loeppky, Sacks, and Welch (2008) that indicates 

that the GASP model works well given 10 times the number of factors’ worth of runs.  

The GASP models also begin to perform comparably or better than the polynomials as 

error is introduced into the system.   

As an example, the results for the two-factor, fourth-order designs are presented 

in the form of box plots. Figure 19 displays the RMSE values for each of the augmented 

space-filling designs fit to the responses with no random error, while Figure 20 includes 

random error in the test function.  Results from the GASP models and polynomials are 

presented side by side for comparison.  
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Figure 19.  Deterministic RMSE for two-factor, fourth-order designs. 
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Figure 20.  Stochastic RMSE for two-factor, fourth-order designs. 
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As can be seen by comparing Figure 19 and Figure 20, although the error in the 

stochastic case is higher for both GASP models and the polynomials, the GASP models 

are performing as well or better than the polynomials in the stochastic case.  In the 

deterministic case, the RMSE for the polynomial models was much smaller than that of 

the GASP models.   

Conclusions 

The results presented give insight into how hybrid space-filling designs perform 

with respect to prediction variance properties for the linear regression model and the 

GASP model.  The designs are compared to both solely space-filling and solely optimal 

designs.    

One of the benefits of a computer simulation models is the ability to build up a 

design sequentially, without concern for blocking or randomization. Note that in 

deterministic models replication and randomization are not needed and in stochastic 

models randomization can be controlled through the random number generator.  Either 

way, in computer simulation experiments the space-filling-hybrid design is an excellent 

choice.  Due to the potentially large impact of the design itself, the theoretical prediction 

capabilities should be evaluated prior to running the experiment.  Either type of model 

can be credibly fit after running the hybrid design, and after the experiments are 

completed the experimenter has a better idea of what modeling strategy to use.  At this 

point the design can be augmented with a criterion that is optimal for that strategy, be it 

a polynomial model or a GASP model.   

While some might question the use of the space-filling design for polynomials at 

all, it is important to remember that in advance of any experimentation it is impossible 

to know whether a polynomial model of any order will prove to be adequate.  Using a 

space-filling design for initial exploration makes considerable practical sense.   
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CHAPTER 4 – BRIDGE DESIGN PROPERTIES 

Bridge designs were introduced by Jones, Johnson, Montgomery, and Steinberg 

(2012) as a compromise between Latin hypercube designs and D-optimal designs.  They 

are intended for use when a polynomial is judged to be a promising candidate for 

modeling the response.  The algorithm for generating a bridge design ensures that the 

resulting design will be D-optimal for a specified polynomial, subject to the constraint 

that any one-dimensional projection will maintain a minimum distance between points.  

This results in a design that takes advantage of the efficiency of D-optimal designs for 

fitting a polynomial model to the response, while avoiding the potential replication 

inherent in traditional optimal designs. 

This chapter seeks to evaluate the performance of bridge designs in comparison 

with its parent components, as well as the commonly used I-optimal design.  This is done 

to better understand the prediction properties of the bridge design, and to better 

understand the situations in which it may best be applied.   

Methodology 

The JMP script that was used in the original work was extended to allow D-

optimal creation given full third through fifth-order models.  Similar to Chapter 3, the 

designs chosen for comparison were a maximin Latin hypercube design, a D-optimal and 

an I-optimal design.  All comparators were chosen to as frequently used, easily generated 

with commonly available software, and ultimately flexible in terms of sample size.   

As in Chapter 3, the designs were to be evaluated using similar methods as 

Johnson, Montgomery, Jones, and Parker (2010).  The prediction capabilities of the 

designs are assessed theoretically using the theoretical prediction variance for a 

polynomial model, based on a random sample of 10,000 points in the design space.  The 

designs are also compared using the design efficiencies.  JMP evaluates several design 
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diagnostics, assessing the efficiency of the design as assessed by several alphabetic 

optimality criteria.  D-optimality maximizes the determinant of the information matrix.  

G-optimality minimizes the maximum scaled prediction variance across the design 

space.  A-optimality minimizes the average variance of the coefficient estimates.  The 

average prediction variance is evaluated as an analog for I-optimality, which minimizes 

the average prediction variance across the design space.  Finally, test functions are set to 

act as response variables to compare the empirical results of the fitted models for each 

design.  

Designs with two to five factors were generated, with underlying models specified 

as second to fifth-order, for a total of 16 different factor-order combinations.  Four 

sample sizes per factor-order combination were evaluated, starting with the minimum 

number of design points necessary to fit the intended model.  The minimum was then 

increased by two, and four, and doubled, with sample sizes for all generated models 

presented in Table 6. 

Table 6.  Number of runs necessary for each design combination (number of factors, 
underlying model order, and number of runs). 

 

As noted in Chapter 2, in addition to the number of factors, the number of runs, 

and the intended regression model, a minimum spacing distance between points in any 

one-dimensional projection must be set.  The minimum distance set for the bridge 

design points was 0.04, unless the minimum recommended distance (δ ≤ 1 / (n - 1)) for 

the maximum number of runs in each factor-order combination was less than 0.04.  In 

those cases, the minimum distance was set to meet the minimum for all designs within 

that combination.   
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Results 

 The theoretical comparison of the design types will be presented by the intended 

model order of the response variable, second through fifth-order, followed by empirical 

results using the Gaussian process model to fit test function responses with two and 

three factors. 

Second-Order Designs 

Figure 21 shows examples of designs generated assuming an underlying second-

order model, with two factors.  The circled points in the optimal designs show the 

locations of replicates.   The D-optimal design places replicates at (1, 1), (1, -1), and (-1, 

1), while the I-optimal design places four runs at the center point.  Looking at the 

designs, it can be seen that the bridge design places points in similar locations to both of 

the optimal designs.  Although there are a few points that are placed close together, the 

bridge design is free of replicated points.   
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Figure 21.  Two-factor, 12-run designs generated assuming a full quadratic model. 

The prediction variance results for second-order designs with two to five factors 

are shown in Table 7.  The bridge designs consistently display smaller prediction 

variance than the Latin hypercube designs, particularly in terms of maximum variance  

(in fact there is only one case in which the maximum prediction for the bridge design 

exceeds that of the Latin hypercube design, at five factors and 42 runs).  In general, the 

bridge designs perform comparably to the optimal designs.  The majority of the bridge 

designs had median prediction variance within 10% of the comparable D-optimal design, 

and within 36% of the comparable I-optimal design.  The maximum prediction variance 
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was more likely to be much larger than the optimal designs, but was no more than twice 

as large for any design of two or three factors. 

Table 7.  Prediction variance estimates for designs generated assuming a full quadratic 
model. 

 

The minimum, maximum, and median prediction variance were plotted in Figure 

22 to visually compare the prediction variance across the designs.  The median was 

chosen for presentation rather than the mean, since in some cases the maximum 

prediction variance was large enough to skew the mean.  The minimum and maximum 

are represented by the bottom and top of the vertical lines, respectively, and the median 

by the arrows.  The Latin hypercube was omitted, since the prediction variance results 

were so much larger than the other design types that its inclusion increased the y-axis 

scale to a point in which it was difficult to distinguish differences between the bridge and 
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optimal designs.  There are few designs with two and three factors in which the 

maximum prediction variance of the bridge design is smaller than that of the optimal 

designs.  As the number of factors increases however, the maximum variance of the 

bridge design begins to greatly exceed that of the optimal designs, in some cases as much 

as 11 times larger.  This is likely due to the fact that in smaller design spaces, the optimal 

designs tend to place replicates, which does not occur in the larger design spaces.   
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Figure 22.  Prediction Variance (minimum, median, and maximum) for designs 
generated intending to be fit with a second-order polynomial model. 



58 
 

Table 8 presents the design efficiencies for the designs generated assuming an 

underlying second-order model.   

Table 8.  Design efficiencies for designs generated intended to be fit with a second-order 
polynomial model. 

 

 The D-efficiency results are plotted in Figure 23, and the G and A-efficiencies 

follow similar patterns.  The bridge designs perform very comparably to the optimal 

designs for cases with two and three factors.  While their relative performance does 

decline a bit as the number of factors and runs increases, their performance is still 

superior to the Latin hypercube designs until the sample size is increased to 2p in the 

four and five-factor designs. 
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Figure 23.  D-efficiencies for second-order designs. 

 

Third-Order Designs 

Figure 24 shows examples of designs generated assuming an underlying third-

order model, with two factors.  It can be seen that the bridge design places the points in 

the corners of the design rather than the center similar to both of the optimal designs, 

but again without replicated points.  The D-optimal design has 6 replicated points 

located at (1, 1), (1, 0), (1, -1), (0, -1), (-1, 1) and (-1, -1), while the I-optimal design has 5 

replicated points located at (0.5, 0.5), (0.5, -0.5), (0, -1), (-0.5, 0.5), and (-0.5, -0.5). 
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Figure 24.  Two-factor, 20-run designs generated assuming a full cubic model. 

The prediction variance results shown in Table 9 illustrate that there are no cases 

in which the maximum prediction variance for the bridge design exceeds that of the 

Latin hypercube design.  The median prediction variance is comparable between the 

bridge designs and the optimal designs, in most cases within 25%.  The maximum 

prediction variance for the bridge designs was generally no more than 70% higher than 

the comparable optimal design, although for the three-factor designs the multiple was as 

high as 13 times higher.  The prediction variance results are illustrated in Figure 25, 
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presenting the minimum, median, and maximum for the bridge designs and optimal 

designs similarly to the second-order designs.   

Table 9.  Prediction variance estimates for designs generated assuming a third-order 
polynomial model. 
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Figure 25.  Prediction Variance (minimum, median, and maximum) for designs 
generated intending to be fit with a third-order polynomial model. 



63 
 

Design efficiencies for the designs assuming an underlying third-order 

polynomial model are presented in Table 10.  The average prediction variance of the 

Latin hypercube designs is very large at small sample size, and decreases quickly with the 

inclusion of additional runs.   

Table 10.  Design efficiencies for designs generated intending to be fit with a third-order 
polynomial model. 

 

The D-efficiencies of the designs are plotted in Figure 26.  The performance of the 

bridge designs is closer to that of the optimal designs at smaller sample size, rather than 

larger sample size.  As with the prediction variance results, the three-factor bridge 

designs do not perform as well the designs with other factor levels.  The four and five-

factor bridge designs still fall short of the Latin hypercube designs when the sample size 

is increased to 2p. 
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Figure 26.  D-efficiencies for third-order designs. 

 

Fourth-Order Designs 

Figure 27 shows examples of designs generated assuming an underlying fourth-

order model, with two factors.  There are four replicated points in each of the optimal 

designs, all the corner points in the D-optimal design, while the I-optimal design has 

three replicates at the center point as well as replicates at (0.7, 0) and (-0.7, -0.6). 
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Figure 27.  Two-factor, 30-run designs generated assuming a full fourth-order model. 

Table 11 presents the prediction variance across the fourth-order designs.  There 

is an interesting disparity in how the median prediction variance compares between 

design types as opposed to the maximum prediction variance, for designs with two to 

four factors.  The bridge designs actually perform better (have smaller prediction 

variance) than the D-optimal designs for the majority of two to four-factor designs, and 

are within 60% of the prediction variance of the I-optimal designs.  While the maximum 

prediction variance of the bridge design is still smaller than that of the Latin hypercube 

design for all but the 252-run case, it is orders of magnitude larger than that of either of 
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the optimal designs in many cases.  The maximum prediction variance for the bridge 

designs is generally within five times the prediction variance of the optimal designs at 

two to four factors, but both median and maximum prediction variance are much greater 

for the bridge designs than the optimal designs in the five-factor case (up to 215 times 

greater).  It could be that the bridge design generation algorithm begins to break down as 

the number of potential exchanges has reached such high dimensionality. 

Table 11.  Prediction variance estimates for designs generated assuming a full fourth-
order polynomial model. 

 

The widening gap in prediction variance between the bridge designs and the 

optimal designs can be seen in Figure 28.  In particular, it is worth noting the expansion 

of the y-axis for the five factor case accommodating the maximum prediction variance of 

the bridge designs. 
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Figure 28.  Prediction Variance (minimum, median, and maximum) for designs 
generated intending to be fit with a fourth-order polynomial model. 
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The design efficiencies for the fourth-order designs are presented in Table 12.  

The bridge designs are comparable to the optimal designs when there are only two 

factors included, and for three factors at small sample size.   

Table 12.  Design efficiencies for designs generated intending to be fit with a fourth-order 
polynomial model. 

  

 The D-efficiencies for the fourth-order designs are plotted in Figure 29.  The 

bridge designs maintain better efficiency characteristics than the Latin hypercube 

designs for two to four factors with sample sizes of p + 4 or less, but are less efficient 

than the Latin hypercubes for all sample sizes at five factors. 
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Figure 29.  D-efficiencies for fourth-order designs. 

 

Fifth-Order Designs 

The algorithm was extended to generate designs intended for full fifth-order 

polynomials.  Fifth-order designs would converge for up to four factors, but not for five 

or more factors.  The prediction variance results are presented in Table 13.  Fifth-order 

bridge designs with two and three factors indicate that the resulting models are not 

nearly as efficient as the optimal designs, with results that are orders of magnitude 

greater than the optimal designs although still lower than the Latin hypercubes.  With 

four factors, however, the prediction variance results for four-factor designs are even 

orders of magnitude greater (5,000 to 82,000 times greater) than the Latin hypercube 

designs under 252 runs.  Given this trending, it follows that fifth-order bridge designs 

with five factors would likely have unacceptable performance even if the algorithm could 

be streamlined to allow convergence.   
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Table 13.  Prediction variance estimates for designs generated assuming a full fifth-order 
polynomial model. 

 

Theoretical Properties Summary 

The theoretical properties of bridge designs have been evaluated in terms of 

prediction variance and design efficiencies.  The bridge designs maintain good qualities 

in terms of each for smaller designs.  The difference between the bridge designs and the 

optimal designs increases as the design complexity increases, either number of factors or 

underlying model.  Although they may still be appropriate for use when a Gaussian 

process model is intended for modeling the response, bridge designs of five factors or 

more with an underlying fourth order model would not be recommended when a 

polynomial is intended for use, nor would bridge designs with underlying fifth-order 

models. 
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Empirical Model Fitting Results 

The bridge designs have been shown to be comparable to the optimal design 

types and superior to the Latin hypercube designs in terms of prediction variance 

properties assuming an underlying polynomial model.  The Gaussian process model was 

fit to the two-factor and three-factor designs to evaluate how the different designs handle 

departures from the underlying assumptions. 

A two-dimensional test function used previously by Jones, Johnson, 

Montgomery, and Steinberg (2012) in the introduction of bridge designs was used to 

compare design performance in the case that a Gaussian process model was to be fit.  

The equation is 

[ ] )10sin()3/(exp)( 2121 xxxxx −+=η  

and the surface is illustrated in Figure 30. 

 

Figure 30.  Test Function 1 surface plot. 
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The Gaussian process model was fit to each of the designs with two-factors, 

including bridge and optimal designs generated assuming second, third, or fourth order 

polynomials would be used for analysis (while no analysis model was necessary for the 

maximin Latin hypercubes).  The mean, median, and maximum squared prediction error 

(SPE) demonstrated across a test set of 10,000 randomly sampled points throughout the 

design space were recorded.  Of the 12 cases tested, the bridge design performed better 

(had smaller squared error) than the other designs most if not all of the time, as seen in 

Table 14.  The bridge designs likely perform superior to the optimal designs due to the 

fact that there are no replicates included in the design. 

Table 14.  Percent of cases in which the bridge design SPE is smaller than the comparator 

design for Test Function 1. 

 

The mean, median, and maximum squared prediction error are illustrated in 

Figure 31, and the superiority of the bridge design can be seen clearly, particularly for the 

mean and median.   
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Figure 31.  Squared prediction error results (mean, median, and maximum) for Test 
Function 1. 
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The same methods were used to evaluate the fitting of a second two-factor test 

equation, to see if there would be a difference in performance results based on surface 

complexity.  The second test function was used in Santner, Williams, and Notz (2003), 

and first appeared in Brainin (1972). The function is 

y = �x2 −
5.1
4π2

x12 +
5
π

x1 − 6�
2

+ 10 �1 −
1
8π
� cos(x1) + 10 

x1 ∈ (−5,10), x2 ∈ (0,15) 

The resulting surface (with x1 and x2 scaled from -1 to 1) is presented in Figure 32. 

 

Figure 32.  Test Function 2 surface plot. 

The range of the response surface of the two equations is quite different.  The 

response surface for Test Function 1 ranges from -0.36 to 2.57, while the response 

surface for Test Function 2 ranges from 0.4 to 308.1.  However, the surface of Test 

Function 2 appears to be less complex.   

The comparative performance of the bridge designs is not as superior as for Test 

Function 1, and is presented in Table 15.  The difference is particularly notable for the 
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Latin hypercube, which performs much more comparably in terms of mean and median 

SPE.  The bridge design has smaller median SPE than the Latin hypercube of like size in 

only one out of the 12 cases tested.  The bridge designs still perform better than both of 

the optimal designs a majority of the time. 

Table 15.  Percent of cases in which the bridge design SPE is smaller than the comparator 

design for Test Function 2. 

  

The mean, median, and maximum SPE are graphed in Figure 33.  The interplay 

between the bridge designs and Latin hypercube designs can be seen easily.  The designs 

track closely together for the mean SPE, while the Latin hypercube design performs 

better for the median SPE and the bridge design performs better for the maximum SPE.   
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Figure 33.  Squared prediction error results (mean, median, and maximum) for Test 
Function 2. 
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The last test equation was found in Dette and Pepelyshev (2010), including three 

factors.  The region of interest is the [0, 1]3 cube rather than the [-1, 1]3 cube, so each of 

the designs was scaled accordingly. 

( ) ( ) ( )2
33

2
2

22
221 12116438824)( −++−+−+−= xxxxxxxη  

The bridge designs with three factors perform better than the other design types 

in terms of SPE much of the time, as presented in Table 16.   

Table 16.  Percent of cases in which the bridge design SPE is smaller than the comparator 

design for Test Function 3. 

  

The mean, median, and maximum SPE are plotted in Figure 34.  In looking at the 

results this way, it can be seen that the places where the bridge design falls short of the 

optimal designs is when the underlying model intended for analysis during the design 

generation phase was assumed to be a fourth-order polynomial.   
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Figure 34.  Squared prediction error results (mean, median, and maximum) for Test 
Function 3. 
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 The results for the three test functions show that the bridge designs are excellent 

choices for modeling.  For the two-factor test functions, the results showed that the 

bridge design performed superior to the optimal designs a majority of the time in terms 

of squared prediction error, while being comparable or superior to the Latin hypercube 

design.  For the three-factor test function, the bridge designs performed better than the 

other designs tested primarily for second and third-order underlying models.  

Conclusions 

Bridge designs were evaluated in comparison to maximin Latin hypercube 

designs as well as D and I-optimal designs.  The theoretical properties associated with 

prediction variance and design efficiencies were evaluated in terms of the underlying 

polynomial models specified during design generation, and the prediction properties in 

terms of a Gaussian process model were evaluated empirically.   

In conclusion, bridge designs are judged to be good choices for computer 

experiments when the underlying model is hypothesized to be a second or third-order 

polynomial, or a fourth-order polynomial of up to four factors.  They maintain much of 

the favorable properties of optimal designs, while avoiding pure replicates as well as 

incidental replicates that would provide little additional information to the design in the 

case of deterministic models or those in which factors may be insignificant.  This makes 

them attractive for alternative modeling strategies as well, including the commonly used 

Gaussian process model. 
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CHAPTER 5 – AUGMENTED BRIDGE DESIGNS 

In the previous chapter, it was determined that bridge designs perform well as 

compared to the Latin hypercubes and traditional optimal designs, balancing an increase 

in prediction variance (PV) over an optimal design with more desirable space-filling 

properties.  This chapter focuses more on the scenario in which a polynomial model does 

turn out to be the most appropriate model for analyzing the response.  It was 

hypothesized that augmenting the bridge designs with even a few optimal design points 

might reduce the prediction variance to help bring the performance more in line with the 

optimal designs in terms of the prediction variance associated with the polynomial 

model.  A second research question involved whether augmentation with higher order 

optimal points could be an effective method to hedge against model misspecification in 

the case that a higher order model was required. 

Since the hybrid space-filling designs detailed in Chapter 3 are already a 

combination of space-filling and I-optimal points, they were not considered for 

augmentation testing.  If additional points were available for inclusion in the preliminary 

experimentation stage, the total sample size could be included in the initial generation of 

the design. 

Methodology 

The catalog of bridge designs created for the work in Chapter 4 is used as a basis 

to evaluate how augmentation affects the theoretical prediction variance in advance of 

any model-fitting attempts.  The bridge designs range from two to five-factors, and are 

generated with second, third, or fourth-order polynomial models specified for analysis.  

Sample sizes range from the minimum number of points necessary to fit the full pre-

specified model to twice the minimum number of necessary points for each factor-order 
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combination are created with different sample sizes, with sample sizes presented in 

Table 17. 

Table 17.  Design size for base bridge designs to be augmented with I-optimal points. 

 

The optimization objective of an I-optimal design is to minimize the average 

prediction variance over the design space, hence it was chosen as the criteria to provide 

candidate augmentation points.  I-optimal designs were generated for each of the factor-

order combinations, in order to provide candidate sets for augmentation.  The default 

number of runs suggested by JMP was specified for the original design size.  Prior to any 

augmentation attempt, the I-optimal designs are reduced to ensure that they include 

only unique points that do not replicate any in the base bridge design.  Table 18 presents 

the original sample sizes for each I-optimal design, as well as the resulting sample size of 

candidate points in parentheses.  In augmenting the designs with two or more I-optimal 

points, the number of candidate augmentation options increases combinatorically.   

Table 18.  Sample sizes for I-optimal designs generated as candidate sets for bridge 
design augmentation.   

 

A test set of 10,000 randomly sampled points within the design space was used to 

test the effect of adding each candidate point to the base bridge design.  The prediction 
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variance for the original design is calculated across the test set, and then again with the 

addition of the each candidate point in turn.  For each addition, the percentage reduction 

in the mean prediction variance and maximum variance was calculated.  In many cases, 

the point that results in the greatest mean prediction variance reduction differs from the 

point that reduces the maximum prediction variance, and hence the average of the mean 

and maximum prediction variance reductions was taken as a measure that may balance 

the two objectives.  SAS macros were written to automate the augmentation and 

prediction variance evaluation.   

The first case tested involves augmenting bridge designs with I-optimal points of 

the same model order, to evaluate whether the prediction variance can be reduced to 

levels similar to their counterpart optimal designs.  The second case augments bridge 

designs with I-optimal points of a higher order, in an attempt to mitigate the increased 

prediction variance that would be associated with model misspecification in the design 

generation phase.  Second-order bridge designs with enough runs to support fitting a 

third-order model were augmented with third-order I-optimal points, and the prediction 

variance calculated across the test space assuming a third-order analysis model.  

Similarly, third-order bridge designs with sufficient runs to fit a fourth-order model were 

augmented with fourth-order I-optimal points. 

For the sake of clarity, from here on, a bridge design that was generated assuming 

that a second-order polynomial would be used for analysis will be referred to as a 

second-order bridge design, as well as for third and fourth-order.  This convention will 

also be used for I-optimal designs, with an I-optimal design generated assuming a 

second-order polynomial would be used for analysis being referred to as a second-order 

I-optimal design, and so on. 
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Results 

To illustrate the method, a two-factor, second-order bridge design with six runs 

was selected to be augmented with points from an I-optimal design with 12 points.  After 

omitting replicates and overlap with the base design, there were eight I-optimal points 

remaining as candidates for augmentation.  It was found that candidate point 4, located 

at (0, 0), would result in the greatest reduction in both mean and maximum prediction 

variance, reducing the mean from 1.18 to 0.65, and the maximum from 1.85 to 1.40.  

Figure 35 shows the prediction variance for the original design, and Figure 36 the 

prediction variance for the design augmented with a single point at (0, 0).  It can be seen 

that the addition of the candidate point reduces the variance across the design space, and 

flattens the hump in prediction variance in the center of the original design space in 

particular (Figure 36).  

 

Figure 35.  Prediction variance for the original two-factor, second-order bridge design 
with six runs. 
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Figure 36.  Prediction variance for the two-factor, second order bridge design with six 
runs augmented with candidate point 4, (0, 0). 

Same-Order Augmentation 

The results for augmenting bridge designs with one or two I-optimal points are 

presented by intended analysis model order.  For each design, the point (and pair of 

points) that result in the greatest reduction in mean prediction variance and the greatest 

reduction in maximum prediction variance are presented.  Since those two points (or 

pairs) are different in many cases (i.e., different points impact the reduction in mean vs. 

the maximum prediction variance), the point (and pair of points) that results in the 

greatest average reduction across mean and maximum prediction variance is captured as 

well.   

For cases in which the single augmentation points that resulted in the greatest 

reduction in the mean prediction variance and the maximum prediction variance were 

different, special attention was paid to the addition of that pair.  While in most cases 
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adding that pair of points performed well, only in very few cases did it result in the 

optimal reduction in prediction variance across all potential pairs. 

The reduced prediction variance statistics are then compared between the 

original bridge design and comparable D and I-optimal designs as in Chapter 4.  Since 

the prediction variance associated with the bridge design is nearly always less than that 

of a comparable maximin Latin hypercube design, the Latin hypercube design was 

omitted from the comparison.  The bridge design was augmented with the point(s) that 

resulted in the greatest reduction in the averaged mean and maximum prediction 

variance.   

Second-Order Designs 

Table 19 presents the results for augmenting second-order bridge designs with 

one and two second-order I-optimal points.  With the addition of a single point, the 

reduction in the mean prediction variance ranged from 7.5% to 44.5%.  Intuitively, the 

larger reductions in prediction variances were seen with the smaller designs, since the 

new point represents a larger proportion of the total information for the design.  The 

reduction in maximum prediction variance ranged from 3.9% to 37.4%, and was less 

associated with design size.   

The addition of a second point reduces the mean prediction variance of the 

second-order designs by an additional 6.1%-8.8% (for a reduction of 13.6%-52.9% over 

the base design).  The maximum prediction variance of the second-order designs reduces 

by an additional 3.2%-24.3% (8.5%-44.9% overall).   
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Table 19.  Augmentation results for bridge designs generated with underlying second-
order polynomial models. 

 

The mean and maximum prediction variance for the second-order bridge and 

optimal designs is plotted in Figure 37.  For underlying second order polynomial models, 

the bridge designs already perform comparably to the optimal designs in many cases, 

particularly for smaller designs (factors and runs).  In cases in which the bridge design 

has demonstrably higher prediction variance than the optimal designs, such as the 

second-order, five-factor designs, the reduction in prediction variance due to the 

augmentation is still not enough to bring the prediction variance to comparable levels.  
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Figure 37.  Mean and maximum prediction variance for original and augmented second-
order designs. 
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Third-Order Designs 

The results for augmenting third-order bridge designs with one and two third-

order I-optimal points are presented in Table 20.  The reduction in mean prediction 

variance ranged from 3.8% to 18.3% with the addition of a single I-optimal point, while 

the reduction in maximum prediction variance ranged from 4.1% to 26.3%.   

The addition of a second I-optimal point reduces the mean prediction variance by 

an additional 3.2%-13.0% (for a reduction of 7.0%-29.7% over the base design).  The 

maximum prediction variance reduces by an additional 3.2%-21.4% (11.2%-37.2% 

overall).   

Table 20.  Augmentation results for bridge designs generated with underlying third-
order polynomial models. 

 

The prediction variance for the comparative designs in third-order is illustrated 

in Figure 38.  As with the second-order designs, for smaller designs the prediction 

variance was already comparable to the optimal designs.  In cases where the difference 

between designs begins to widen, such as the cases where the original sample size was 

set to twice the minimum number of parameters needed to fit the full polynomial model, 
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the reduction in prediction variance for the augmented bridge designs is not large 

enough to make them approximate the optimal designs. 

 

Figure 38.  Mean and maximum prediction variance for original and augmented third-
order designs. 
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Fourth-Order Designs 

Results for augmenting fourth-order bridge designs with a one and two fourth-

order I-optimal points are presented in Table 21.  The reduction in mean prediction 

variance associated with the addition of a single I-optimal point ranged from 3.4% to 

16.9%, and the reduction in maximum prediction variance ranged from 4.4% to 37.4%.   

The addition of a second point reduces the mean prediction variance of the 

fourth-order designs by an additional 3.9%-13.5% (for a reduction of 8.7%-30.1% over 

the base design).  The maximum prediction variance of the fourth-order designs reduces 

by an additional 2.0%-25.0% (11.1%-44.5% overall).   

Table 21.  Augmentation results for bridge designs generated with underlying fourth-
order polynomial models. 

 

The prediction variance for the comparative designs in fourth-order is presented 

in Figure 39.  While the bridge designs have comparable mean prediction variance to the 

optimal designs in many cases (two, three, or four factor designs with sample size less 

than twice the minimum number of points necessary for fitting the full polynomial 

model), the maximum prediction variance for each design is much larger in every case.  

The reduction associated with the addition of the I-optimal points is not large enough to 
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bring the maximum variance of the bridge designs down to comparable levels with the 

optimal designs.  

 

Figure 39.  Mean and maximum prediction variance for original and augmented fourth-
order designs. 
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Augmentation With Higher Order Optimal Points 

The previous augmentation results have been for cases in which a bridge design 

generated with a specified order of underlying model is augmented with I-optimal points 

generated assuming the same underlying model.  Given that the intended analysis model 

must be specified during the design generation phase, at which point the true underlying 

model is unknown, an additional question arises as to whether augmentation could be 

useful in mitigating the increased variance that would be associated with model 

misspecification.   

Second-Order Designs Augmented With Third-Order Design Points 

A third-order model can be fit to a two-factor design if there are 10 or more 

design points, so there are two existing two-factor bridge designs that could be tested to 

assess the effect of augmentation with third-order I-optimal points.  Results are 

presented in Table 22.  For the bridge design with 10 original points, the addition of a 

single third-order I-optimal point reduces the mean prediction variance by 46.1%, or the 

maximum prediction variance by 37.2%.  The results for the 12-point bridge design are 

even better, with a single I-optimal point reducing the mean prediction variance by 

84.4% and the maximum by 90.2%.  Adding a second point reduces the mean or the 

maximum prediction variance by 86% of the baseline for the 10-point design, and 93.3% 

and 95.2% respectively for the 12-point design.  While the gain in terms of percentage 

points is small for the addition of a third I-optimal point for both designs, the prediction 

variance is still substantially reduced.  

Visualizing the change in prediction variance for the two-factor, second-order 

bridge design with 10 runs, the prediction variance under a third-order model for the 

original design is plotted in Figure 40.  The resulting prediction variance after the 

addition of a single point at at (-0.5, 0.5) is presented in Figure 41. 
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Table 22.  Two-factor, second-order bridge designs augmented with one, two, or three 
third-order I-optimal points. 
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Figure 40.  Prediction variance for a two-factor, second-order bridge design under a 
third-order model. 

 

Figure 41.  Prediction variance for a two-factor, second-order bridge design under a 
third-order model, augmented with a single point at (-0.5, 0.5). 
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A third-order model can be fit to a three-factor design if there are 20 or more 

design points, so there is one existing three-factor bridge design that can be tested to 

assess the effect of augmentation with third-order I-optimal points.  The baseline mean 

and maximum prediction variance are quite high, but the addition of a single point 

reduces the mean prediction variance by 82.4%, or the maximum prediction variance by 

88.7% (85.0% averaged for the same point).  With the addition of a second point, the 

prediction variance further reduces, taking the mean prediction variance down by 94.9% 

and the maximum by 96.7% (95.5% averaged for the same point).  As with the two-factor 

designs, the gains for the addition of the third I-optimal point are much reduced in terms 

of the percentage from baseline, but the prediction variance itself is 40-50% smaller than 

that of the design augmented with two points.  Results are presented in Table 23. 

Table 23.  Three-factor, second-order bridge design augmented with one, two, or three 
third-order I-optimal points. 

 



96 
 

Fitting a third-order model in four factors would require 35 points, so there are 

no existing four-factor second-order bridge designs in the catalog that would be 

sufficient.  A new bridge design was generated with 35 runs, assuming an underlying 

second-order model, and results for its augmentation are presented in Table 24.  While 

the prediction variance reduction is not quite as dramatic as designs with two- and three-

factors, the reduction is still quite high. 

Table 24.  Four-factor, second-order bridge design augmented with one, two, or three 
third-order I-optimal points. 
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As with the four-factor second-order case, there are no existing five-factor 

second-order bridge designs with sufficient runs to fit a third-order model.  A new bridge 

design was generated with the minimum required 56 runs, assuming an underlying 

second-order model, with augmentation results presented in Table 25.  The baseline 

mean and maximum prediction variance associated with fitting a third-order model are 

quite high, and the reduction in prediction variance brought about with the 

augmentation of only a few third-order I-optimal points is excellent. 

Table 25.  Five-factor, second-order bridge design augmented with one, two, or three 
third-order I-optimal points. 

 

Third-Order Designs Augmented With Fourth-Order Design Points 

Moving from second-order to third-order base designs, the baseline prediction 

variance of all models tested increased greatly, with the additional terms required for 

fitting a fourth-order model, particularly for designs with more than two factors.  As a 
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result, while the additional percentage reduction seen in adding additional points may 

seem modest, the reduction in the actual prediction variance can be quite large.   

Prediction variance results for augmenting a two-factor, third-order bridge 

designs with fourth-order I-optimal points are presented in Table 26.  The addition of 

each additional point substantially reduces the prediction variance under the higher 

order model.  

Table 26.  Two-factor, third-order bridge design augmented with one, two, or three 
fourth-order I-optimal points. 

 

The prediction variance for the original design is plotted in Figure 42, and Figure 

43 shows the prediction variance after the addition of a single point at (-0.2, 0.1).  In 

particular, the increased prediction variance at the center of the design is flattened. 
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Figure 42.  Prediction variance for a two-factor, third-order bridge design under a 
fourth-order model. 

 

Figure 43.  Prediction variance for a two-factor, third-order bridge design under a 
fourth-order model, augmented with a single point at (-0.2, 0.1). 
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Prediction variance results for augmenting a three-factor, third-order bridge 

designs with fourth-order I-optimal points are presented in Table 27.  The addition of 

each additional point substantially reduces the prediction variance under the higher 

order model, although the maximum prediction variance is still quite high even after the 

addition of three points. 

Table 27.  Three-factor, third-order bridge design augmented with one, two, or three 
fourth-order I-optimal points. 

 

For the four and five-factor, third-order designs, the number of candidate 

augmentation options became unrealistically large for augmenting with three points.  In 

order to streamline the augmentation algorithm, only candidate points that resulted in 

reductions in the averaged mean and maximum prediction variance above the 70th 

percentile when added individually were considered.  The 70th percentile was chosen 

because all points that resulted in maximum reductions in the mean, maximum, or 

averaged mean and maximum in either one or two-point augmentations all fell at or 
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above the third quartile.  Sensitivity analysis was done varying the threshold down to the 

median, but the results were not markedly different.   

As with the three-factor designs, the baseline prediction variance of the four and 

five-factor designs was also quite large.  Similarly, while the additional percentage 

reduction seen in adding additional points may seem modest, the reduction in the actual 

prediction variance was be quite large.  Results for four and five-factor, third-order 

bridge designs augmented with fourth-order I-optimal points are presented in Tables 28 

and 29, respectively.  

Table 28. Four-factor, third-order bridge design augmented with one, two, or three 
fourth-order I-optimal points. 
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Table 29.  Five-factor, third-order bridge design augmented with one, two, or three 
fourth-order I-optimal points. 

 

Discussion 

 If the total sample size of a design needs to be large enough to fit a higher order 

model, one might question why a design with a lower order model would be generated 

and then augmented.  In point of fact, it would be more efficient to simply optimize the 

design for the higher order model, which would de facto include the terms from the 

lower order model. 

 The JMP script that generates the bridge design includes options for full 

polynomial models, but not intermediate models where only certain terms are included.  

If only certain higher order terms are of interest, it would be useful to use the methods 

described to generate designs suitable for fitting those specific models.  For instance, if a 

second-order design plus the pure cubic terms in two factors was of interest, the x12x2 

and x1x22 interactions would be unnecessary.  The second-order bridge design could be 
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augmented with the I-optimal points for the specific model of interest, and the complete 

design could be implemented in a minimum of eight runs total.  The methodology 

proposed here would require a design of more than 10 runs, but the same principles 

apply.  The augmentation of a bridge design with I-optimal points generated under the 

specific model of interest can quickly bring down the additional prediction variance 

associated with additional terms, however, while keeping the sample size and potential 

replication to a minimum. 

 One additional parameter that may help to evaluate the impact of adding a point 

to the base design is the variance of the prediction variance.  It is likely that a point that 

reduces the variance of the prediction variance has an impact in the reduction of the 

prediction variance across the design space.  In cases in which there are different points 

that result in the greater reduction of the mean prediction variance and the maximum 

prediction variance, there is likely a disparity in terms of the effect on the variance of the 

prediction variance as well.   

Conclusions 

There is little utility found in augmenting a bridge design with I-optimal points 

with the same underlying model.  While the reduction in mean prediction variance could 

be as much as 44.5% with the addition of a single point, in general the augmented bridge 

design still displays larger prediction variance than a comparable optimal design.  Since 

bridge designs are particularly useful for early stage experimentation, when it is unclear 

what type of model will best fit the response surface, it would make more sense to save 

the additional runs considered for augmentation for a secondary phase of 

experimentation after the initial models are created. 

In the case of protecting against model misspecification, however, the 

augmentation of bridge designs has great potential.  In augmenting bridge designs of 
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lower order with even a few I-optimal points of higher order, the reductions in prediction 

variance associated with the higher order model are substantial.  In fact, the results 

presented are for the worst case scenario, since the assumed models used for the 

estimation of the prediction variance are for the full model.  In practice, this 

methodology would be most effective in the case that only a subset of terms was of 

interest.  In that case, the I-optimal model for the specific model would be generated as a 

candidate set, and the sample size of the overall design could be minimized at the 

number of terms that would be necessary to fit the model.  The hybrid space-filling 

designs could also be tailored in this fashion, augmenting the space-filling portion with 

I-optimal points that are generated based on the specific model of interest, however the 

potential for replication in the case of insignificant terms would be higher than that of 

the augmented bridge designs. 

These results have all been for cases in which the design is being improved prior 

to any experimental simulations being run.  The methodology should also work for cases 

in which the experiments have been run and initial models generated.  If the initial 

results under polynomial models are promising, additional points could be added to help 

bring the variance down.  If the modeler is confident in the initial results and is only 

looking for refinement, the I-optimal designs used for candidate sets could be further 

streamlined by including only terms that appear to be significant.  In particular, if a 

higher order model than originally specified is indicated, the original design could be 

augmented with optimal points of a higher order. 
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CHAPTER 6 – CONCLUSIONS AND FUTURE WORK 

This work has evaluated different designs that meld traditional optimal designs 

with the commonly used space-filling designs used in computer experiments.  The 

results show that these composite designs can be quite useful, taking advantages of the 

positive aspects of each type while helping to mitigate the weaknesses of the other.    

Hybrid space-filling designs that are generated as Latin hypercubes augmented 

with I-optimal points were compared to designs of each contributing component.  The 

results presented give insight into how hybrid space-filling designs perform with respect 

to prediction variance properties for analysis with either a linear regression model or a 

Gaussian process model.   

The bridge designs further the integration of the disparate design types.  Unlike 

the hybrid designs, they ensure that there is zero replication of factors in any one-

dimensional projection, strengthening their relevance for computer experiments with 

deterministic outcomes.  They out-perform pure space-filling designs in terms of 

prediction variance and alphabetic efficiency, and maintain comparability with pure 

optimal designs especially for smaller factors and lower order polynomial models. 

Coming full circle, the bridge designs were augmented with small numbers of I-

optimal design points in order to reduce the prediction variance while introducing a 

minimum of replication potential.  The augmentation of bridge designs with I-optimal 

points of the same model order was found to be relatively ineffective.  In the case of 

smaller designs (in terms of number of factors and sample size), the prediction variance 

of the bridge designs was already comparable to that of corresponding optimal designs.  

In the case of larger designs where prediction variance reduction would be desirable, 

however, even though the addition of one or two I-optimal points could reduce the mean 

prediction variance by as much as 44.5% it was not a large enough reduction to approach 

the performance of the optimal designs. 
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The concept of augmentation shows great promise for mitigating the issue of 

increased variance associated with model misspecification, however.  Since the 

generation of the bridge design is dependent on the predicted model intended for 

analysis of the response, which is unknown prior to any experimentation, there is the 

potential that the experimenter choses poorly.  This work illustrates that adding a few I-

optimal points of a higher order than that of the base bridge design can result in a much 

reduced prediction variance with respect to the higher order model.  There is greater 

flexibility in specifying the intended analysis model for the I-optimal design to be used as 

a candidate set than there is in the original bridge design.   This means that the resulting 

augmented design could be engineered to give better information on a broader range of 

polynomial models for the response at a minimized sample size with small potential for 

replication. 

One of the benefits of a computer simulation models is the ability to build up a 

design sequentially, particularly without concern for blocking or randomization.  These 

composite designs are excellent starting points for experimentation, given that they 

allow for the credible fitting of either polynomials or other models.  Due to the 

potentially large impact of the design itself, the theoretical prediction capabilities should 

be evaluated prior to running the experiment.  They also provide an immediately 

intuitive functionality for augmentation after running the initial design, particularly in 

the case that a polynomial is judged to be appropriate, if additional information is 

desired to refine the model.   

Future Work 

In order to preserve comparability between the hybrid space-filling designs, each 

factor-order combination was only studied for a single sample size.  It could be 
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illustrative to evaluate the performance of larger hybrid designs, in cases in which 

polynomials are suitable or other modeling methods are anticipated. 

Bridge designs are generated as D-optimal Latin hypercube designs, but it could 

be interesting to employ other optimal design criteria.  In particular, given that it is the 

maximum prediction variance which differs most from optimal designs of comparable 

size and model order, a design that merges a space-filling design with G-optimality to 

minimize the maximum prediction variance could have interesting properties.  

The bridge and comparator designs were evaluated in terms of design efficiency 

criteria (D, A, G, and average prediction variance as a surrogate for I-efficiency).  In most 

cases the different efficiency values followed similar patterns, but in cases where they 

vary it could be of use to create a desirability function that may help to evaluate which 

design could be best given the experimenter’s priorities.   

A comparison between the properties of the bridge design and the generalized 

maximin Latin hypercube designs introduced by Dette and Pepelyshev (2010) would be 

of great interest, since the two designs have similar goals of seeking a compromise 

between between optimal and space-filling designs.  

In evaluating the prediction variance of both hybrid space-filling designs and 

bridge designs, there were locations noted in the design space in which the prediction 

variance was especially high.  It would be of interest to evaluate whether an 

augmentation strategy that places design points at the locations with maximum 

prediction variance would perform well to reduce the prediction variance quickly and 

hence improve prediction performance.   

 For the augmentation of bridge designs, it is possible that commercially available 

software may be able to achieve the same goals, albeit with less flexibility.  JMP provides 

design augmentation functionality, given an anticipated analysis model, allowing for the 

addition of either D or I-optimal points.  This was not previously tested since the 
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software requires a minimum number of additional points to be added, and the original 

goal of this work had been to keep the potential for replication small.   

The algorithms developed for Chapter 5 could also be used to augment bridge 

designs with points from another bridge design of higher order, rather than an optimal 

design.  In this way, depending on the minimum distance specified between points in the 

design generation, zero replication would be maintained in the case of an insignificant 

factor.  This is unlikely to have a large impact in the context of the current work, since 

the number of optimal points added represented a small percentage of the total design, 

but if true model-order hybrid designs were desired it could be effective.  

Finally, all the results presented in this work have been for cases in which the 

design is being improved prior to any experimental simulations being run.  The 

methodology should also work for cases in which the experiments have been run and 

initial models generated, but could be tested through sequential experimentation 

applications.     
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