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ABSTRACT  

   

The implications of a changing climate have a profound impact on human life, 

society, and policy making. The need for accurate climate prediction becomes 

increasingly important as we better understand these implications. Currently, the most 

widely used climate prediction relies on the synthesis of climate model simulations 

organized by the Coupled Model Intercomparison Project (CMIP); these simulations are 

ensemble-averaged to construct projections for the 21
st
 century climate. However, a 

significant degree of bias and variability in the model simulations for the 20
th

 century 

climate is well-known at both global and regional scales. Based on that insight, this study 

provides an alternative approach for constructing climate projections that incorporates 

knowledge of model bias. This approach is demonstrated to be a viable alternative which 

can be easily implemented by water resource managers for potentially more accurate 

projections. Tests of the new approach are provided on a global scale with an emphasis 

on semiarid regional studies for their particular vulnerability to water resource changes, 

using both the former CMIP Phase 3 (CMIP3) and current Phase 5 (CMIP5) model 

archives. This investigation is accompanied by a detailed analysis of the dynamical 

processes and water budget to understand the behaviors and sources of model biases. 

Sensitivity studies of selected CMIP5 models are also performed with an atmospheric 

component model by testing the relationship between climate change forcings and model 

simulated response. The information derived from each study is used to determine the 

progressive quality of coupled climate models in simulating the global water cycle by 

rigorously investigating sources of model bias related to the moisture budget. As such, 
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the conclusions of this project are highly relevant to model development and potentially 

may be used to further improve climate projections. 
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CHAPTER 1 

INTRODUCTION 

Evidence of recent changes in the climate system and concerns regarding 

subsequent effects on human society have led to concerted efforts to understand the 

sources of change and predict future conditions. Observed increasingly frequent 

occurrences of extreme hydrological events such as flooding and droughts (Solomon et 

al. 2007, sec. 3.8) and the security of the water supply are matters of critical importance 

to human life, making an understanding of the influence of climate change on 

precipitation and the hydrological cycle an urgent goal. The need to predict and quantify 

such change has led to the organization of numerous research institutions throughout the 

world with the same objective: to develop models which can be used to simulate and 

forecast climate processes. Information produced by these climate models now forms the 

basis of our predictions of the future. 

The fundamental issue of climate science is the fact that we only have one global 

system for reference; we cannot replicate this system or perform experiments on the 

system as a whole. Until the development of climate models, our methods for numerical 

weather prediction and long-term climate approximations had been exclusively based on 

little more than a century of firsthand observations and several thousand years of limited 

proxy data for a small number of variables. Now we have built complex, process-based 

models of the climate system with which we can test a hypothesis on a global scale. 

These models serve as artificial laboratories for examining climate dynamics, the 

sensitivity of the system to perturbations, and individual small and large-scale 

phenomena. The models have basic limitations, however; they are constrained by the 
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technological capabilities of the computers which run the simulations, compromising the 

model’s space-time detail and the length of time over which the simulation can be run. As 

such, the models are defined as “quasi-realistic” in the sense that the governing processes 

cannot be fully described within the model. These models are able to reproduce many of 

the physical processes of climate; however, due to their inherent technical limitations, 

models contain unavoidable sources of bias.  

A climate model is a mathematical representation of the interactions between and 

within the ocean, land, sea ice, and atmosphere. How each of these components is defined 

and coupled to the other components is particular to each model. The types of models can 

range from very simple, such as a single-point Earth system used to average the incoming 

and outgoing solar radiation, to the more complex fully-coupled ocean-atmosphere 

models which discretize and solve the full equations for energy, momentum, and mass 

transfer. In order to test quality, the model is used to simulate past climate conditions. 

The results are then compared with recorded observational data. Global climate models 

show a significant and increasingly accurate ability to recreate many large-scale climate 

features such as the distribution of land and sea surface temperatures, precipitation 

coverage and intensity, and sea ice cover (Meehl et al. 2007, Taylor et al. 2012). The 

models are continually being refined and improved with the intention of producing more 

accurate projections of possible future conditions of a changing climate. 

The overarching goal of the project described herein is to provide a valuable 

contribution to the model refinement process. From a broad perspective, the project 

incorporates several stages of analysis, with each stage examining specific sources of 

model bias associated with the simulation of precipitation. Chapters 2 and 3 provide the 
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scientific background and motivation for the project with relevant information leading to 

the formulated solutions in the subsequent chapters. Chapter 4 introduces an alternative 

method for constructing ensemble averaged climate projections of precipitation; Chapter 

5 details the further application of this alternate method to additional hydrological 

variables in the updated CMIP5 archive. Chapter 6 contains an extensive comparison of 

the seasonal and regional water budget quality between the CMIP3 and CMIP5 archives 

for selected quantities. Chapter 7 presents the rigorous analysis of the detailed global 

water budget and contrasts skill of selected CMIP5 models in reproducing associated 

quantities, and Chapter 8 provides sensitivity studies with the NCAR CAM 3.1 

atmospheric model to quantify precipitation response to climate change using CMIP5 

simulated data. Each study uncovers particular issues in model ability to generate 

precipitation and provides a pertinent starting point for the formulation of solutions these 

issues. The overall analysis employs rigorous methods for better evaluating and utilizing 

climate models for long-term prediction, potentially leading to improvements of IPCC-

type climate projection. Such improvements are valuable not only to climate research but 

also to policy making and all facets of the society that are directly affected by the 

implications of a changing climate. 
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CHAPTER 2 

BACKGROUND 

2.1     The hydrological cycle 

The hydrological cycle, also known as the water cycle, is a conceptual model 

describing the continuum of water movement along various pathways on the Earth. Water 

plays a crucial role both in regulating global weather and in providing for societal needs. 

Solar radiation serves as the driving force for the hydrological cycle, evaporating water 

from the oceans and land surfaces (Holton 2004). Wind advects the water vapor through 

the atmosphere until it condenses into clouds and precipitation, which falls back onto the 

land and ocean (Fig. 2.1). This water vapor is the dominant greenhouse gas in the 

atmosphere and, like other greenhouse gases, is responsible for the feedback of warming 

in the climate system (Solomon et al. 2007, Ch.1). As the warming of the atmosphere 

increases, the capacity for air to hold water vapor also increases (governed by the 

Clausius-Clapyron relation). This process further intensifies the concentration of 

atmospheric water vapor which in turn generates moisture convergence in clouds and 

increases the intensity of precipitation in storms (e.g. Held and Soden 2006). However, 

total precipitation is controlled by the available energy in the atmosphere, namely the 

ability of the troposphere to radiate latent heat released by precipitation. An enhanced 

water cycle is shown to produce a positive trend of increased precipitation in the high 

latitudes which is balanced by a negative trend of net precipitation in the subtropics (Wu 

et al. 2005), leading to increased occurrences of droughts in these regions. Understanding 

the feedback of warming and its effects on the climate system is crucial for water  
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Fig. 2.1 The hydrological cycle estimates of storage values for the main water reservoirs 

(103 km3) and the flow of moisture between the reservoirs (italicized, 103 km3/year) 

(Trenberth et al. 2007). 

resource management, especially for regions which are particularly vulnerable to drought, 

such as Arizona. 

Recent efforts have been made (especially rigorous in the last two decades) to 

understand and quantify the various physical, thermodynamic, and moisture processes of 

the hydrological cycle through each realm of the Earth system (e.g. Solomon et al. 2007). 

This chapter will introduce the fundamental principles and tools which climate scientists 

utilize to provide our most current knowledge of the present and future climate. 

2.2     Observational data sets 

Our understanding of the complex system of climate begins with the examination 

of its physical, chemical, and dynamical structure based on a combination of in situ 

observations and, in the last several decades, a growing number of new technologies. A 
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network of land-based surface meteorological stations combined with upper-air 

rawinsonde soundings and aircraft readings provides atmospheric measurements of 

pressure, temperature, specific humidity, and precipitation (Reynolds 2000). Ocean 

observations are taken by commercial ships and research vessels which provide both 

atmospheric and ocean measurements (sea surface temperature, salinity) as well as 

subsurface measurements (concentrations of CO2 and other chemicals) (Diamond and 

Lief 2009). As a supplement to the in situ observations, certain climate data may also be 

measured by an array of new technologies such as satellites, remote sensing, LIDAR, 

laser, and acoustics.  

The use of satellites in meteorological measurements has expanded greatly in the 

last 50 years, and we are now able to measure a broad spectrum of incoming and 

outgoing radiation fluxes to further our understanding of the present state of the climate 

system (Wallace and Hobbs 2006). Geosynchronous orbiters, among other types of 

satellites, provide daily global coverage with information supplying measurements of the 

visible spectrum (cloud cover), infrared radiation (temperature), and additional 

wavelengths which can detect water vapor profiles (humidity). 

Certain limitations exist in our ability to gather observational data. Ocean current 

velocities are very difficult to measure from ships; this issue severely limits our present 

knowledge of the dynamical structure of oceans. Furthermore, one of the most significant 

obstacles in understanding oceanic heat storage and its effects on long-term climate 

change stems from our inability to monitor the temporal variability in subsurface ocean 

temperature (Trenberth et al. 2002). In addition to the limited subsurface ocean 

measurements, a significant lack of upper air data exists over certain regions such as the 
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southern oceans. Fig. 2.2 depicts the incomplete global distribution of land-based stations 

and ocean surface ship reports. Satellite observations can be used to fill in the gaps both 

spatially and temporally. Global coverage is achieved by converting the information 

provided by the various datasets into a standard three-dimensional grid. This conversion 

is performed through interpolation or extrapolation techniques or by using alternative 

methods based on numerical weather prediction models (Kalnay et al. 1996, Xie and 

Arkin 1997, Adler et al. 2003). Several examples of datasets which incorporate these 

methods are described in the following sections; these datasets are utilized in all 

references to, or analyses involving, observational data within this project. 

 

Fig. 2.2 Global distribution of land precipitation data stations (top) and ship reports 

(bottom) from the Global Observing Systems Information Center (GOSIC) operated by 

the U.S. National Oceanic and Atmospheric Administration's National Climatic Data 

Center (NCDC) (Diamond and Lief 2009). 
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2.2.1  NCEP/NCAR Reanalysis data 

The NCEP/NCAR Reanalysis I Project is a joint project between the National 

Centers for Environmental Prediction (NCEP) and the National Center for Atmospheric 

Research (NCAR) with the goal of producing complete records using historical 

atmospheric data. The dataset includes readings taken from land surface stations, ships, 

rawinsonde, pibal, aircraft, satellite, and other sources, which are then quality controlled 

and integrated with a data assimilation system (Kalnay et al. 1996). Through this process, 

the reanalysis project fills in the gaps in the historical data records caused by missing, 

erroneous, or incomplete measurements. The model used for NCEP Reanalysis is the 

medium-range forecast (MRF) T62 model with an equivalent resolution of 210 km. This 

version of the model contains 28 pressure levels in the vertical which provide detailed 

resolution at both the planetary boundary layer and at upper atmospheric layers.  

For the NCEP Reanalysis model, the analysis scheme is the spectral statistical 

interpolation (SSI) without initialization. In this scheme, the analysis variables are 

spectral coefficients, which are evaluated using the same basic equations as statistical 

interpolation (Parish and Derber 1992). The NCEP model uses the Pan-Grell scheme 

(Pan and Wu 1994) for parameterization of convection. More detailed information about 

the model may be acquired from Kalnay et al. (1996). 

2.2.2  GPCP precipitation data 

The World Climate Research Programme (WCRP) established the Global 

Precipitation Climatology Project (GPCP) to formulate a dataset which would provide a 

more complete understanding of the spatial and temporal patterns of global precipitation 



 

9 

by merging data from multiple sources. The most recent version of the dataset combines 

data from over 6000 rain gauge stations, satellite geosynchronous and low-orbit infrared 

and microwave readings, and sounding observations onto a 2.5-degree grid (Adler et al. 

2003). The GPCP dataset provides monthly precipitation estimates from 1979 to the 

present. The project provides improvements over other precipitation datasets by using 

satellite-based rainfall estimates to provide a more complete analysis of rainfall over 

oceans, and adds additional spatial detail to rainfall estimates over land. A complete 

description can be obtained from Adler et al. (2003).  

 

Fig. 2.3 Comparison of average precipitation produced for summertime (July-September) 

long term average (1979-2000) precipitation using CMAP (left) and GPCP (right) 

precipitation datasets for the southwestern US region. Generated using mean standard 

monthly data from the NOAA Earth System Research Laboratory website 

(http://www.esrl.noaa.gov/psd/data/gridded/). 

2.2.3  CMAP precipitation data 

The CPC Merged Analysis of Precipitation (CMAP) was constructed due to the 

inherent limitations of other large-scale precipitation dataset sources, including 

incomplete global coverage and non-negligible bias (Xie and Arkin 1995). This analysis 

has been created by merging several precipitation data sources, including satellite 

observations and the NCEP/NCAR Reanalysis data. CMAP consists of gridded fields of 
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global monthly precipitation constructed on a 2.5-degree grid for the years 1979-2000, 

and the dataset features precipitation distributions with full global coverage and improved 

quality compared to the individual data sources. The dataset has been successfully used to 

reproduce and investigate the annual and interannual variability of large-scale 

precipitation. For a complete account of the construction of the dataset and comparison 

with observational precipitation data, see Xie and Arkin (1997). 

2.2.4  Selection of observational datasets 

When selecting a particular observational dataset for use in validation and 

verification of climate model simulations, it is important to consider the strengths and 

limitations of each dataset. The usefulness of a dataset for employment with the 

construction of climate projections which rely on model bias (such as the introduced 

alternative approach in Chapters 4 and 5) can be highly sensitive to the methods used for 

regridding or reanalyzing the in-situ measurements. For example, the GPCP dataset 

combines station observations with satellite measurements for full global coverage, but it 

has a known weakness of low precipitation estimates over ocean and water regions. The 

CMAP dataset, by contrast, blends five different satellite estimates and does not suffer 

from the same bias issue over ocean regions, but the satellite records used for the dataset 

are inhomogenous, and data from the NCEP Reanalysis 1 dataset is used to fill in gaps at 

high latitudes. Studies which rely on the choice of observational dataset for verification 

of model data should consider a particular dataset’s strengths, especially for regional 

construction of climate projections. 
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2.3     Introduction to numerical climate modeling 

Modern climate models contain three-dimensional fully-coupled routines with 

separate model components for the atmosphere, ocean, land, and sea ice realms of the 

Earth system. Although specific models vary in their particular parameterizations of 

various climate processes, all models incorporate the same full set of basic equations 

(Peixoto and Oort 1992). This section presents the basic “primitive” equations used in 

climate models and discusses the common numerical methods used to solve these 

equations. Finally, this section introduces model parameterization schemes related to 

moisture and precipitation. 

2.3.1  Basic model equations 

Climate models utilize systems of differential equations derived from the basic 

principles of physics, fluid motion, and chemistry. The fundamental equations which 

govern the motions and processes of the atmosphere, oceans, and sea ice have been 

developed from the conservation laws for momentum, mass, and energy. An equation of 

state is also used in order to close the system of equations produced by the conservation 

laws. These equations will be described in their “primitive” forms (prior to 

simplifications) following the derivations by Washington and Parkinson (2005). 

Conservation of momentum 

The motions of the climate system can be derived from the fundamental equation 

of classical mechanics in its vector form, expressed as 
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This expression is applied to a particle of air, water, or ice in which the particle retains its 

original mass, so we can assume that m is constant. For large-scale models in three 

dimensions, we will consider a spherical coordinate system in which the longitude is 

defined by λ (increasing to the east), latitude by 𝜙 (increasing to the north), and the radial 

distance r measured from the center of the Earth. This radial distance equals the radius of 

the Earth a plus the height z above the Earth’s surface such that r = a + z (the value of a 

is given as constant in modeling applications). The linear wind velocities in the three 

primary directions are labeled as u, v, and w, respectively. Based on plane geometry, we 

may define these velocities along a latitude circle, along a meridian, and local vertical 

velocity as 

      𝜙
  

  
    

 𝜙

  
           

  

  
                           

Next, we may rewrite (2.1) in spherical coordinates in the λ-direction, 

   
  

  
 ∑                      

We may further expand (2.5) into partial derivatives using the chain rule. Using the λ-

direction as an example, and combining (2.2-2.4), we obtain 
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 𝜙
  

  

  
                      

Corresponding equations for 𝜙 and z may be derived similarly. The forces in (2.5) are 

expressed as forces per unit mass; these are the major forces of motion acting on the 

climate system. These include the gravitational force, the centripetal and Coriolis forces 

due to the rotation of the Earth, pressure forces, and frictional forces. Considering a 
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volume of air on the Earth’s surface as depicted in Fig. 2.4, the net forces per unit mass 

acting on the volume are, 
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for the  -, 𝜙-, and  -components respectively, where density    /volume and volume 

=      𝜙   . Since all climate and weather models use a rotating frame of reference, the 

Coriolis force represents the deflection caused by the rotational acceleration of the Earth 

on an object given an initial velocity and the resulting force per unit mass acting on that 

object. If   is the angular velocity of the Earth, then the Coriolis parameter is defined as 

       𝜙 . The frictional force terms are expressed as   ,   , and   . Combining 

these forces and (2.7-2.9), (2.5) in each direction becomes, 
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where   is the acceleration of gravity. It should be noted that (2.10-2.12) are essentially 

the Navier-Stokes equations of fluid dynamics, with the addition of the Coriolis and 

friction terms due to the rotating frame of reference. These equations are often simplified 

for large-scale atmospheric motions. In such cases, the pressure gradient, Coriolis, and 

gravity terms become the dominant components, and we obtain the geostrophic 

equations. The geostrophic assumption is often used for the oceans where the large-scale 

motions are generally slow. However, the geostrophic approximation becomes invalid 
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near the equator where the Coriolis term equals 0. The  -direction geostrophic equation is 

termed the hydrostatic balance which consists only of a balance between the gravity and 

vertical gradient of pressure. The hydrostatic approximation is invalid for small-scale 

(<10 km) motions such as the convective processes which generate the storms inherent to 

monsoon precipitation. 

 

Fig. 2.4 Schematic of pressure forces on a volume of air in spherical coordinates 

(Washington and Parkinson 2005). 

Conservation of mass 

Considering the same volume of air in Fig. 2.4, the total mass flux difference 

across the faces is equal to the time change of the mass of the volume. Assuming the 

volume remains constant, the mass continuity becomes, 

  

  
 

 

    𝜙
[
  

  
 

 

 𝜙
     𝜙 ]   

  

  
                         

The time derivative term is very important for atmosphere applications where air is 

compressible; however, this term may be neglected in ocean or sea ice modeling. If   is 
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replaced with the concentration of water vapor   , then (2.13) becomes the equation for 

the conservation of water, which is used to obtain the vertically integrated mass 

conservation equation for water vapor in section 7.4. 

First law of thermodynamics 

Also called the law of the conservation of energy, the first law of thermodynamics 

is a statement of how the thermal energy of a system is related to the work done by 

compression or expansion of a volume of gas. It can be written as 

  

  

  
  

 

  
(
 

 
)                          

For atmospheric models, this system is considered to be a small volume of gas. In the 

ocean, the (d/dt)(1/ρ) term is usually neglected because water is considered 

incompressible. The Q term is called the nonadiabatic term because it represents an 

external gain or loss of heat. When Q = 0, the process is called adiabatic. For short-term 

atmospheric and ocean studies, the assumption of adiabatic motion is frequently used; 

however, this term becomes important when considering long-term climate processes as 

the net gain or loss of heat can be significant. For climate model simulations which 

incorporate emissions scenarios, the forcings of the greenhouse gases (GHGs) and other 

atmospheric forcings enter the system through the nonadiabatic term (see Fig. 2.5). The 

radiative forcing associated with a particular emission or source is imposed on the system 

through a forcing term   , and the net radiative forcing of all n forcings on a system 

becomes the sum of their respective forcings such that     ∑   . 

Equation of state 
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Finally, the equation of state relates the density, pressure, and temperature of a 

gas. For the atmosphere, this equation is the ideal gas law: 

                            

This system of six equations (2.10 – 2.15) represents the full set of basic 

equations used in atmospheric science prior to simplifications and numerical 

approximations. For modern climate models such as those evaluated in this project, no 

approximations are made to simplify these primitive equations; the full set of Navier-

Stokes equations, in the forms presented in (2.10-2.12), are used in both the atmospheric 

and ocean model components. This system contains six unknown variables (u, v, w, ρ, p, 

and T) as well as the frictional terms    and    and the nonadiabatic term Q. These last 

three terms provide the boundary conditions for the individual model components which 

are calculated based on interactions with the other components (such as the ocean-

atmosphere surface boundary). More information regarding model components may be 

found in section 2.4.1. 

Instead of attempting to provide solutions to fully resolved flows within the three-

dimensional field, climate models employ numerical approximations to aid in the 

discretization of the continuous domain. Some basic equations may be solved 

analytically, but many equations encountered in climate modeling do not have exact 

solutions, so numerical solutions become crucial. Some models are based on finite 

difference methods, while others are based on finite element techniques (Washington and 

Parkinson 2005). Many modern climate models also incorporate spectral techniques in 

their numerical approximations of the basic equations. 



 

17 

2.3.2  Vertical coordinate system 

Because the atmosphere exhibits a hydrostatic nature in large scales, early 

approximations set the vertical coordinate system at levels of pressure. However, this 

system experiences issues near the Earth’s surface where these pressure levels can 

intersect mountains. To avoid computational errors related to orography, the sigma-

coordinate system was developed in which the vertical sigma coordinate is a ratio of the 

level pressure to the surface pressure: 

  
 

  
                       

The sigma-coordinate system follows the land surface since it is a function of the local 

pressure. Many models use a hybrid vertical coordinate system which incorporates the 

sigma levels near the surface and pure pressure levels near the top of the atmosphere. 

2.3.3  Physical atmospheric processes  

Since radiation is the driving source of energy for the atmosphere, the 

thermodynamic and moisture processes are related through the energy cycle. Radiation 

can be used as a forcing in the atmosphere by modifying the solar radiation flux on the 

Earth in the climate model. The consideration of the concentrations of radiation-

absorbing chemicals in the atmospheric column as well as the terrestrial radiation 

produced by the warming from greenhouse gases is a critical step in climate modeling, 

especially when formulating future climate scenarios (discussed in detail in section 

2.4.2). An enhanced hydrological cycle can have a positive feedback on trapping 

terrestrial radiation, while land albedo and suspended aerosols can have a negative effect 
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by reflecting incoming solar radiation (Solomon et al. 2007, TS.2.5; see Fig. 2.5). As 

such, the parameters controlling radiation within climate models involve multiple 

modeling components.  

Climate models do not contain explicit equations for generating precipitation. 

Instead, climate models parameterize precipitation through the description of moisture 

and thermodynamic processes on a sub-grid scale. The models “generate” precipitation 

by determining whether latent heat is released in a process. This latent heat is computed 

in atmospheric models when the atmosphere is supersaturated (when the mixing ratio 

exceeds the saturated mixing ratio, or when relative humidity exceeds 100%) 

(Washington and Parkinson 2005). The saturated mixing ratio is only a function of 

pressure and the saturated pressure due to water vapor, which are both functions of 

temperature (from the Clausius-Clapyron relation). However, since precipitation can 

occur on smaller scales than model resolution can represent, some models assume latent 

heating occurs at lower percentages of relative humidity. Many models now also 

incorporate more complex parameterization schemes for producing different types of 

precipitation. 
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Fig. 2.5 Global mean radiative forcings and their 90% confidence intervals based on 2005 

values. Columns on the right-hand side specify best estimates and confidence intervals, 

typical geographical extent of the forcing, and level of scientific understanding (Solomon 

et al. 2007). 

The latent heating which occurs specifically as a result of convective precipitation is 

governed in models by the cumulus parameterization. This scheme allows for the 

quantitative expression of location, frequency, and intensity of processes in the model 

which occur at a subgrid-scale. Cumulus parameterization can be expressed as a function 

of potential temperature and water vapor mixing ratio, although other schemes have been 

developed which parameterize convection based on vertical mass flux. Table 2.1 

illustrates the variety of schemes used for both large-scale (stratiform) and convective 

precipitation. Information regarding model issues associated with the application of the 

various convective schemes can be found in section 3.2.3. 
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Model Stratiform precipitation Convective precipitation 

CCSM3, 

CCSM2 

Prognostic condensate and precipitation 

parameterization (Zhang et al. 2003) 

Simplified Arakawa and Schubert (1974) (cumulus 

ensemble) scheme developed by Zhang and McFarlane 
(1995) 

CGCM3.1 
Precipitation occurs whenever the local relative 

humidity is supersaturated 
Zhang and McFarlane (1995) scheme 

CSIRO-Mk3.0 
Statistical cloud scheme of Ricard and Royer 

(1993) 
Mass flux convection scheme with Kuo-type closure 

CNRM-CM3 
Stratiform cloud condensate scheme from Rotstayn 

(2000) 

Bulk mass flux convection scheme with stability-

dependent closure (Gregory and Rowntree 1990) 

ECHAM5/MPI-

OM 

Prognostic equations for the water phases, bulk 

cloud microphysics (Lohmann and Roeckner 1996) 

Bulk mass flux scheme (Tiedtke 1989) with 
modifications for deep convection according to 

Nordeng (1994) 

FGOALS-g1.0 
Precipitation occurs whenever the local relative 

humidity is supersaturated 
Zhang and McFarlane (1995) scheme 

GFDL-CM2.0, 

GFDLCM2.1 

Cloud microphysics from Rotstayn (2000) and 

macrophysics from Tiedtke (1993) 

Relaxed Arakawa–Schubert scheme from Moorthi and 

Suarez (1992) 

GISS-AOM Subgrid-relative humidity-based scheme 
Subgrid plume and buoyancy-based scheme (online at 

http://aom.giss.nasa.gov/DOC4X3/ 

ATMOC4X3.TXT) 

GISS-ER 
Prognostic stratiform cloud based on moisture 

convergence (Del Genio et al. 1996) 

Bulk mass flux scheme by Del Genio and Yao 

(1993) 

HadCM3 

Large-scale precipitation is calculated based on 

cloud water and ice contents (similar to Smith 

1990) 

Bulk mass flux scheme (Gregory and Rowntree 1990), 
with the improvement by Gregory et al. (1997) 

HadGEM1 
Mixed phase cloud scheme (Wilson and Ballard 

1999) 
Revised bulk mass flux scheme 

INM-CM3.0 
Stratiform cloud fraction is calculated as linear 

function of relative humidity 

Lagged convective adjustment after Betts (1986), but 

with changed referenced profile for deep convection 

IPSL-CM4 

Cloud cover and in-cloud water are deduced from 

the large-scale total water and moisture at 

saturation (Bony and Emmanuel 2001) 

Moist convection is treated using a modified version 
(Grandpeix et al. 2004) of the Emanuel (1991) scheme 

MIROC3.2-

medres, hires 

Prognostic cloud water scheme based on Le Treut 

and Li (1991) 

Prognostic closure of Arakawa–Schubert based on Pan 
and Randall (1998) with relative humidity–based 

suppression (Emori et al. 2001) 

MRI-
CGCM2.3.2a 

Precipitation occurs whenever the local relative 
humidity is supersaturated 

Prognostic Arakawa–Schubert based on Pan and 
Randall (1998) 

PCM 
Precipitation occurs whenever the local relative 

humidity is supersaturated 
Zhang and McFarlane (1995) scheme 

Table 2.1 Description of CMIP3 climate model parameterization schemes for stratiform 

and convective precipitation (Dai 2006). 

2.4     Background of the IPCC and CMIP  

Climate model simulations currently provide the most important knowledge basis 

for the projection of future climate on multidecadal to centennial time scales. The most 

comprehensive collection of peer reviewed and published scientific/technical literature in 

climate science has been compiled into four assessment reports since 1990 by the 

Intergovernmental Panel on Climate Change (IPCC), the most recent of which is the AR4 

Report (Solomon et al. 2007). The IPCC does not carry out research or monitor climate 
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data; rather, the authors of the reports assess and compile the most current information 

available.  

In order to provide controlled conditions for model evaluation and aid the IPCC in 

their task, the WCRP formed model intercomparison projects (CMIPs) which collect 

output data contributed by leading modeling centers around the world. The output data is 

made available freely to enable scientists outside the major modeling centers to perform 

research of relevance to the IPCC in preparation for their assessment reports.  

2.4.1  Details of the CMIP model ensembles 

The WCRP prepared the third Coupled Model Intercomparison Project (CMIP3) 

for the most recent AR4 report. Over 20 coupled general circulation models (GCMs) 

comprise the CMIP3 archive, and their simulation data has been used to produce the AR4 

projections (Meehl et al. 2005). Table 2.2 contains a list of the CMIP3 models and their 

respective modeling centers which are used in this project. Since many of these models 

have been developed independently of each other, some of the individual components 

differ from model to model, as do their respective horizontal resolutions. However, the 

models must follow certain guidelines for inclusion in the CMIP3 archive. The models 

are required to produce a basic output variable list from simulations based on a set of 

standardized conditions (more information concerning these conditions will be discussed 

in section 2.4.2 regarding climate scenarios). 

The Coupled Model Intercomparison Project phase 5 (CMIP5) is currently in the 

process of releasing simulation data. It contains the most recent ensemble of models to 

improve upon its predecessor (CMIP3) with the formulation of new long-term 
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simulations using experiments performed with additional types of models which were not 

present in the previous archives (Taylor et al. 2012). Table 2.3 provides a list of the 

models from the CMIP5 archive which are used within this project for analysis. This list 

is not exhaustive since over 30 models are included in the archive; however, only the 

selected models have been used based on the most current availability of data. In addition 

to containing a set of more refined model resolutions, the CMIP5 archive features a 

broader variety of experiments. Along with the most recent conventional climate models 

(Atmospheric-Ocean General Circulation Models – AOGCMs), CMIP5 includes 

experiments from the newest Earth system models (ESMs). Many of the climate model 

centers have provided both a general circulation model and an ESM version of their 

model for use in the archive. 

ESMs contain several features which are not present in their GCM counterparts. 

For example, ESMs contain a closed carbon cycle with the addition of biogeochemistry 

routines to the land and ocean components of the models. Several of the ESM model 

versions also have parameters which simulate changes in the atmospheric chemistry; 

these models are able to explicitly predict and calculate the formation and decay of 

atmospheric aerosols (Taylor et al. 2012). 

All models in the CMIP3 and CMIP5 archives are fully-coupled models in which 

the ocean, atmosphere, land, and sea ice components are each distinct models which 

mutually interact and exchange information through surface boundaries. The component 

models are stand-alone climate models themselves; for example, the atmospheric 

component of the CMIP3 fully-coupled NCAR CCM3 model is the NCAR CAM 3.1 

atmospheric model which is operated using ocean and land surfaces as constant boundary 
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conditions which are provided as inputs of the simulations. The CAM 3.1 atmospheric 

model is used to perform certain analyses in this project; Chapter 8 provides more details 

regarding these simulations. 

Institution Model 
Horizontal 

Resolution 

Bjerknes Centre for Climate Research (Norway) BCCR-BCM2.0 128x64 

National Center for Atmospheric Research (USA) CCSM3 256x128 

Canadian Centre for Climate Modelling & Analysis (Canada) 
CGCM3.1(T47) 96x48 

CGCM3.1(T63) 128x64 

Météo-France / Centre National de Recherches Météorologiques (France) CNRM-CM3 128x64 

CSIRO Atmospheric Research (Australia) CSIRO-Mk3.0 192x96 

Max Planck Institute for Meteorology (Germany) ECHAM5/MPI-OM 192x96 

Meteorological Institute of the University of Bonn, Meteorological Research Institute of 

KMA, and Model and Data group. (Germany/Korea) 
ECHO-G 96x48 

LASG / Institute of Atmospheric Physics (China) FGOALS-g1.0 128x60 

US Dept. of Commerce / NOAA / Geophysical Fluid Dynamics Laboratory (USA) 
GFDL-CM2.0 144x90 

GFDL-CM2.1 144x90 

NASA / Goddard Institute for Space Studies (USA) 

GISS-AOM 90x60 

GISS-EH 72x46 

GISS-ER 72x46 

Institute for Numerical Mathematics (Russia) INM-CM3.0 72x45 

Institut Pierre Simon Laplace (France) IPSL-CM4 96x72 

Center for Climate System Research (The University of Tokyo), National Institute for 

Environmental Studies, and Frontier Research Center for Global Change (JAMSTEC) 
(Japan) 

MIROC3.2(hires) 320x160 

MIROC3.2(medres) 128x62 

Meteorological Research Institute (Japan) MRI-CGCM2.3.2 128x64 

National Center for Atmospheric Research (USA) PCM 128x64 

Hadley Centre for Climate Prediction and Research / Met Office (UK) 
UKMO-HadCM3 96x73 

UKMO-HadGEM1 192x145 

Table 2.2 CMIP3 climate models which are analyzed in this project, shown with their 

respective modeling centers and horizontal resolutions (Meehl et al. 2005). 
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Institution and Country Model Horizontal Resolution 

Beijing Climate Center, China Meteorological Administration (China) 
BCC-CSM1.1 128x64L26(T42) 

BCC-CSM1.1.m 128x64L26(T42) 

College of Global Change and Earth System Science, Beijing Normal 

University (China) 
BNU-ESM 128x64L26(T42) 

Canadian Centre for Climate Modelling and Analysis (Canada) 
CanCM4 128x64L35(T63) 

CanESM2 128x64L35(T63) 

National Center for Atmospheric Research (USA) CCSM4 288x192L26 

Centro Euro-Mediterraneo per I Cambiamenti Climatici (Italy) 

CMCC-CESM 288x192L26 

CMCC-CM 480x240L31(T159) 

CMCC-CMS 480x240L31(T159) 

Centre National de Recherches Meteorologiques / Centre Europeen de 
Recherche et Formation Avancees en Calcul Scientifique (France) 

CNRM-CM5 256x128L31(T127) 

CSIRO (Commonwealth Scientific and Industrial Research Organisation, 

Australia), and Bureau of Meteorology (Australia) 

ACCESS1.0 192x145L38 

ACCESS1.3 192x145L38 

Commonwealth Scientific and Industrial Research Organisation in 

collaboration with the Queensland Climate Change Centre of Excellence 

(Australia) 

CSIRO-Mk3.6.0 192x96L18(T63) 

EC-EARTH consortium (multiple) EC-EARTH 320x160L62(T159) 

LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences; and 

CESS, Tsinghua University (China) 
FGOALS-g2 128x108L26 

LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences 
(China) 

FGOALS-s2 128x108L26 

The First Institute of Oceanography (China) FIO-ESM 128x108L26 

Geophysical Fluid Dynamics Laboratory (USA) 

GFDL-CM3 144x90L48 

GFDL-ESM2G 144x90L24 

GFDL-ESM2M 144x90L24 

NASA Goddard Institute for Space Studies (USA) 

GISS-E2-H 144x90L40 

GISS-E2-H-CC 144x90L40 

GISS-E2-R 144x90L40 

GISS-E2-R-CC 144x90L40 

Met Office Hadley Centre (UK) HadCM3 96x73L19 

National Institute of Meteorological Research (South Korea) HadGEM2-AO 192x145L40 

Met Office Hadley Centre (UK) 
HadGEM2-CC 192x145L40 

HadGEM2-ES 192x145L40 

Institute for Numerical Mathematics (Russia) INM-CM4 180x120L21 

Institut Pierre-Simon Laplace (France) 

IPSL-CM5A-LR 96x96L39 

IPSL-CM5A-MR 144x142L39 

IPSL-CM5B-LR 96x96L39 

Atmosphere and Ocean Research Institute (The University of Tokyo), National 

Institute for Environmental Studies, and Japan Agency for Marine-Earth 

Science and Technology (Japan) 

MIROC4h 640x320L56(T213) 

MIROC5 256x128L40(T85) 

Japan Agency for Marine-Earth Science and Technology, Atmosphere and 

Ocean Research Institute (The University of Tokyo), and National Institute for 
Environmental Studies (Japan) 

MIROC-ESM 128x62L80(T42) 

MIROC-ESM-

CHEM 
128x62L80(T42) 

Max Planck Institute for Meteorology (Germany) 

MPI-ESM-LR 192x96L47(T63) 

MPI-ESM-MR 192x96L95(T63) 

MPI-ESM-P 192x96L47(T63) 

Meteorological Research Institute (Japan) MRI-CGCM3 320x160L48(T159) 

Norwegian Climate Centre (Norway) 
NorESM1-M 144x96L26 

NorESM1-ME 144x96L26 

Table 2.3 CMIP5 climate models which are analyzed in this project, shown with their 

respective modeling centers and horizontal resolutions (Taylor et al. 2012). 
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The individual model simulations are ensemble-averaged with equal weight to 

construct the IPCC projection for the 21st century climate. However, a significant degree 

of variability in the errors of the model simulations for the 20th century climate is well-

known at both global and regional scales (e.g. Taylor 2001, Solomon et al. 2007, Lin et 

al. 2008, Reichler and Kim 2008). As a compelling example of model discrepancy, Fig. 

2.6 compares the North American monsoon precipitation from the 20th century 

simulations (the 20C3M case in CMIP3: more information regarding model scenarios 

may be found in section 2.4.2) with 22 climate models from the CMIP3 ensemble and the 

observed counterpart (top left) based on the CMAP dataset. It shows the ratio of 

summertime (July-September) precipitation to annual precipitation. The large value of 

this ratio in the subtropical region over Mexico and the Southwest U.S. is a unique 

signature of the North American summer monsoon. Such a contrast in the quality of the 

CMIP3 model simulations of present-day climate has also been demonstrated in recent 

studies for various regions and variables (Reichler and Kim 2008, Lin et al. 2008). This 

project incorporates such information in a detailed analysis of the major dynamical 

processes and water balance which will further help us understand the nature of the 

model bias and assess the integrity of the climate models, especially concerning the 

simulations for semi-arid regions. 
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Fig. 2.6 North American Monsoon phenomenon from observation (top left, using CMAP 

data for 1979-2000) and climate model simulations for present-day climate (based on the 

20C3M runs for CMIP3). Shown is the ratio of summertime precipitation to annual 

precipitation. The color interval is 0.1. Regions filled with deepest blue color are where 

the ratio is between 0 and 0.1; those filled with red/orange colors have the highest values 

of the ratio. 

2.4.2  Scenarios for climate change research 

The long-term and uncertain nature of climate change and its driving forces 

require the development of a standard set of scenarios that include the range of emissions 

of all relevant types of greenhouse gases. The accepted set of scenarios are generated and 

used by different types of models and analytic frameworks, including various types of 

climate models as well as approaches to assess impacts, adaptation, and vulnerability. 

These future projections are comprised of the Special Report on Emissions Scenarios 
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(SRES) scenarios used in CMIP3 climate model experiments (Nakićenović et al. 2000), 

while the newer CMIP5 archive uses emission scenarios determined by “representative 

concentration pathways” (RPCs) (Moss et al. 2008). This section highlights relevant 

details of the two scenario sets and their essential relevance to this project. 

Future greenhouse gas and aerosol emission levels will be determined by the 

result of a complex set of interactions, including energy use, economic growth of 

developing countries, and sustainability efforts. How those factors will unfold and thus 

affect the future concentration levels of atmospheric greenhouse gases is highly 

uncertain; however, a representation of a possible range of outcomes for assessing the 

potential impacts of anthropogenic climate change has been developed as an established 

set of scenarios. These scenarios are originally based on the 1990 IPCC released (SA90) 

emission pathways, later developed into the 1992 IPCC scenarios (IS92) which provide 

estimates for the full range of greenhouse gases and aerosol concentrations (Solomon et 

al. 2007, section 1.4). A supplemental report was released in 1996 as the SRES, which 

incorporated the emission scenarios of IS92 into a standard four sets of scenarios and 40 

individual scenarios (Nakićenović et al. 2000). The SRES includes a more 

comprehensive set of factors, including energy usage and the impacts of possible societal 

adaptation to the effects of climate and mitigation of greenhouse gas emissions. Fig. 2.7 

illustrates the range of future projected CO2 emissions corresponding to each of the four 

SRES scenario families. The A1 scenario family depicts the range of CO2 emissions 

corresponding to rapid economic growth, global population that peaks in mid-century and 

declines thereafter, and future energy usage divided into three groups: fossil intensive 

(A1FI), non-fossil energy (A1T), or a balance energy usage from all sources (A1B).  
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Fig. 2.7 Total global annual CO2 emissions normalized to 1990 values projected by the 

CMIP3 SRES scenario groups (Nakićenović et al. 2000).  

Similarly, Fig. 2.7 depicts the projected range of CO2 emissions based on continuously 

increasing population (A2), a peaking population and improved sustainability (B1), and a 

continuously increasing population with regional sustainability efforts (B2). 

Four new scenario groups have been formulated for use in CMIP5. Unlike their 

SRES predecessors, these scenarios incorporate a range of socioeconomic and 

technological development projections in a parallel process which allows for the 

inclusion of the most recent climate observations, and also unlike the SRES scenarios, 

they assume that policy actions will be implemented to mitigate greenhouse gas 

emissions (Moss et al. 2008, 2010). The new model simulations are forced using 

predefined scenarios determined by “representative concentration pathways” (RPCs). The  
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Fig. 2.8 Average global radiative forcing projected by the four RCP scenario groups 

based on projected emissions of the corresponding development teams: MESSAGE (RCP 

8.5), AIM (RCP 6.0), MiniCAM (RCP 4.5), and IMAGE (RCP 2.6 and 2.9) (Moss et al. 

2008). 

RCP labels are based on a rough estimate for the corresponding radiative forcing (in 

W/m2) in the year 2100 for the particular scenario, as shown in Fig. 2.8. 

The radiative forcing level is estimated based on the greenhouse gas forcings 

particular to each scenario. The forcing does not include the direct impacts of land albedo 

or mineral dust aerosols. As such, the RCP scenarios are not standalone, fully-integrated 

scenarios; rather, they are a set of projections which consist only of the components of 

radiative forcing needed to serve as inputs for climate modeling. The scenario groups 

formulate their forcing value based on contrasting scenarios: a “peaked” forcing with 

substantially reduced greenhouse gas concentrations (RCP 2.6), a stabilized forcing with 

reduced greenhouse gas emissions (RCP 4.5), a rising but gradually stabilizing forcing 

with some sustainability actions (RCP 6.0), and a rising forcing caused by continuously 
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increasing emissions (RCP 8.5) (Moss et al. 2010). The RCP data components include 

historical (1850 - 2000) emissions data and aerosols data as well as the projected 

emissions for each of the RCP scenarios (2000-2100) for the following gases: CH4, SO2, 

NOx, CO, NH3, BC, OC and VOC. Also included are the historical and RCP land-use 

projections and associated land-use transitions. These components are provided by the 

scenario groups specifically for use in CMIP5 model simulations at www.iiasa.ac.at/web-

apps/tnt/RcpDb/. 

The selection of a scenario when obtaining model simulation data is crucial for 

evaluating the climate change effects present in future simulations; each scenario will 

produce a different range of future projections, which can result in dramatically different 

conclusions. The CMIP3 analyses performed for this project use data from the model 

simulations forced with the SRES A1B scenario because it stands as a more conservative 

projection relative to the other scenarios. In this case, “conservative” refers to the 

scenario’s projected storyline of a plausible future homogenous world with continued 

rapid economic growth and a peaking global population, in which CO2 emissions 

increase until mid-21
st
 century and decline thereafter to 720 parts per million in 2100. As 

such, the SRES A1B scenario has been consistently used in other analyses of future 

climate projections (e.g. Mariotti et al. (2008) and Seager et al. (2007), among others). 

Similarly, the CMIP5 analyses in the majority of this project use data from model 

simulations forced with the RCP 4.5 scenario for its correspondingly conservative 

projections; simulations utilizing this scenario have already been used in a number of 

recent preliminary analyses of the CMIP5 ensemble, such as efforts by Kim and Yu 

(2012) and Kitoh (2012). 
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In addition to the future scenario pathways presented for the CMIP3 and CMIP5 

archives, this project also uses model simulation data which is not forced based on a 

particular scenario. This simulation data comes from historical runs of the 20
th

 century in 

which the experiments are run with greenhouse gas concentrations increasing as 

observed. For the CMIP3 archive, the non-SRES historical scenario used is 20C3M; for 

CMIP5, the equivalent scenario (‘historical’) is used. As intended for this project, any 

analyses involving 20
th

 century model simulated data utilize the 20C3M scenario for 

CMIP3 and ‘historical’ scenario for CMIP5.  
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CHAPTER 3 

SCIENTIFIC ISSUES AND GOALS 

3.1     Relevance of the water cycle and precipitation 

The ability to predict climate changes becomes increasingly important as we 

better understand the implications: according to the IPCC 4th Assessment (AR4) Report 

(Solomon et al. 2007) and updated recent studies (Seager et al. 2007, Karl et al. 2009), a 

moderate change in global temperature will accelerate the hydrological cycle. Areas in 

high latitudes and the wet tropics are projected to have increased precipitation, while 

semi-arid regions in midlatitudes and subtropics are projected to become even drier 

through decreased precipitation and increased evaporation. This scenario, if true, has 

critical consequences for semi-arid regions such as the Southwest U.S., where over-

development has already led to projected shortage of water but climate change will 

exacerbate the local water imbalance. Considering the case study of Lake Mead, a major 

water resource which is part of the Colorado River system, water management has 

become an urgent concern for the communities dependent on this water supply. Increased 

temperature and evaporation and decreased precipitation have already contributed to 

runoff reduction to the river system, and if no water management strategies are 

implemented, the water storage levels of this resource will become depleted (Barnett and 

Pierce 2008). How fast this process will unfold depends on the detail of the projected 

climate change for the region. Such a case is not unusual in the region; projections show 

that more areas in the Southwestern U.S. will exhibit signs of water resource depletion 

and droughts as the climate becomes increasingly arid (Seager et al. 2007, Karl et al. 
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2009). Should no actions be taken to implement sustainable practices for managing on the 

water supply, substantially less water providing for the needs of an increasing population 

in the region will likely have disastrous consequences. 

By understanding the impacts of even small changes in the projected trend of 

precipitation, our ability to assess the future of water resource management improves 

dramatically. This information communicates the threat of continued unsustainable water 

usage, especially in highly vulnerable areas and communities, in order to encourage and 

promote sustainable practices. The results of this study will prove invaluable in assessing 

future needs for adaptation to climate change. The distribution of vulnerability is highly 

imbalanced; the groups most vulnerable to the impacts of a changing climate tend to be 

impoverished or developing countries and communities, minorities, and women (Turner 

et al. 2003, Solomon et al. 2007). Need-based science is becoming increasingly 

significant for scientists in the climatology field, and identifying the areas and 

communities most in need of rigorous efforts in water resource planning is a task that 

involves the cooperation of both physical and social scientists. The wide scope of the 

issue makes water resource planning both incredibly challenging and highly relevant at 

this critical point transitioning to an uncertain future. 

3.2     Sources of model bias 

Climate models provide the basis for projections of future climate change, and the 

accurate prediction of precipitation patterns and variability is a primary concern for water 

management. However, models still face challenges in their ability to realistically 

simulate precipitation. Understanding these challenges and how they affect model output 
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is essential to improving the reliability of predictions using the model ensemble. This 

section will introduce known sources of model bias associated with the simulation of 

precipitation and provide a starting point for a deeper, critical inspection of the quality of 

the hydrological cycle in climate model simulations.  

3.2.1  Quantifying uncertainty: internal versus model variability 

Uncertainties in climate projections may be due to a number of factors which can 

vary not only with the variable, but also with the time projection and particular emissions 

scenario. It is important to be able to differentiate specific causes of uncertainty. There 

are three main types of uncertainties: internal variability (product of the natural 

fluctuations which occur in the absence of external forcing), the variability between 

models (with the same forcing, each model simulates different climate changes) and 

finally the variability among emission scenarios. Numerous studies have shown that these 

uncertainties can arise from uncertainties in initial conditions, observational data, model 

parameters and structural uncertainties resulting from the fact that certain climate 

processes are still not fully understood (i.e. Lin et al. 2008, Reichler and Kim 2008, 

Dominguez et al. 2010, Schaller et al. 2011, Blázquez and Nuñez 2012). Developing 

model quality metrics to handle the various types of uncertainty has been a topic of 

interest for the modeling community. Chapter 4 explores the application of weighting 

schemes to model ensembles and presents the results of applying an alternate method of 

calculating trends in precipitation. 
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3.2.2  Flux corrections 

 Early on, models faced difficulties in their development which causes their 

simulations to produce unrealistic data at the interface between atmospheric and ocean 

model components: the introduction of a surface flux imbalance can cause coupled GCM 

simulated variables to increase exponentially. In order to adjust the simulated state to one 

of realism, modelers introduced ‘flux corrections’ to the simulations (Solomon et al. 2007, 

section 1.5.3). These adjustments are essentially empirical corrections which cannot be 

justified on physical principles, and that consist of arbitrary additions of surface fluxes to 

heat and momentum in order to prevent the drift of the simulated climate away from a 

realistic state. The artificial nature of these corrections has raised concern in measures of 

model performance since they have been demonstrated to increase systematic biases by 

propagating errors to other climate fields (e.g Reichler and Kim 2008). While most 

models now apply parameterizations to perform necessary adjustments, certain models 

still employ the use of flux corrections at the air-sea interface (Dai 2006).  

3.2.3  Parameterization schemes of moisture processes 

There are a number of issues with the parameterization of precipitation within 

climate atmospheric models, specifically with convective precipitation and the cumulus 

parameterization scheme. Convective precipitation can occur in a number of different 

types of cumulus convective clouds, such as the deep cumulus cells which form near the 

ITCZ, the stratocumulus clouds in the subtropics, and the shallow cumulus clouds 

produced by trade winds (Wallace and Hobbs 2006). Each form of convective cloud has a 

unique structure and properties which are not fully described by a single parameterization 
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scheme. A range of different convective adjustment schemes have been developed, each 

based on an altered set of conditions for the formation of cumulus clouds. For example, 

the GFDL CM2.1 model parameterizes convection using the Relaxed Arakawa Schubert 

(Moorthi and Suarez 1992) in which cloud tracers detrain from convective updrafts to 

stratiform clouds, and the updraft detrainment scheme for the lower bound (Tokioka et al. 

1988) in which convective momentum transport is represented by diffusion proportional 

to cumulus mass flux. Every method of parameterization has certain disadvantages; the 

schemes chosen by a particular model to parameterize precipitation will contribute to 

sources of bias in the simulations based on the set of assumptions and simplifications 

used in the parameterization. 

3.3     Goals of the study 

This chapter concludes the general background information regarding climate 

model simulation and the CMIP model ensembles. The following chapters will apply this 

knowledge to specific approaches for quantifying and improving climate model biases in 

simulated precipitation. Two methods are employed for testing model quality: the first 

uses simulation data produced from CMIP3 and CMIP5 model runs (obtained through the 

model data archives at the Program for Climate Model Diagnosis and Intercomparison 

(PCMDI) website, http://www-pcmdi.llnl.gov/) to calculate model output based on 

scenario simulations. This examination encompasses all relevant output variables which 

comprise the water budget within global climate models. The second uses simulation data 

produced by in-house runs of at atmospheric component climate model which is forced 

using output data from selected CMIP5 models. Since this project focuses on semiarid 
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regions, the analysis concentrates on the climate processes which are associated with 

these regions. The results of the study are applied in the formulation of a novel approach 

for ensemble averaging with bias correction with the intentions of improving the future 

projections of precipitation using global climate models.  
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CHAPTER 4 

EXPLORING TECHNIQUES FOR CONSTRUCTING  

CLIMATE PROJECTIONS 

This chapter presents a proposed scheme for climate model ensemble averaging 

which has been developed as a bias correction for potentially improving the accuracy of 

future projections of precipitation. The study compares two methods of multimodel 

averaging based on the classically defined absolute and relative climate changes for the 

future projection of precipitation used in climate model prediction. The classical equal 

weight scheme estimates the trend by the simple arithmetic mean of the trends produced 

by the individual models. In the relative change scheme, the multimodel average of the 

percentage changes in precipitation is multiplied by the observed present climate to form 

the future projection; this method is equivalent to applying unequal weighting to the 

absolute change scheme which acts as a bias correction. Unlike other recently developed 

unequal weight schemes, the alternative scheme does not penalize a model with a greater 

bias by reducing the weight applied to it. Instead, the underlying philosophy is that a 

model that has a greater bias is as useful as other models except that it needs a greater 

bias correction which is facilitated by the unequal weighting. The feasibility of the 

alternative scheme is tested on the CMIP3 prediction of precipitation. It is found that the 

new scheme and the equal weight scheme do not produce radically different large-scale 

patterns of the trend. Nevertheless, notable differences emerge in the regional scales that 

may be large enough to have implications for local stake holders. 
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4.1     Introduction 

The IPCC AR4 has adopted a simple scheme of "equal weighting" in producing 

the multi-model projection. Some attempts have recently been made to explore 

alternative schemes for multi-model averaging beyond equal weighting (e.g., Giorgi and 

Mearns 2002, Knutti 2010, Knutti et al. 2010), although a clear agreement has yet to 

emerge on the optimal scheme and its justifications. In general, these existing schemes 

construct the trend from the multi-model averaging of the absolute change, defined as 

“future minus present” in the model simulation. A lesser-used alternative is the relative 

change, defined as the absolute change divided by the present climate from the model 

simulation. This study aims to assess the feasibility of multi-model averaging of the 

projected precipitation based on the relative change. It will be shown that the adaptation 

of relative change is equivalent to a specific unequal weight scheme for the absolute 

change. The potential benefit of this type of unequal weighting will be discussed. The 

two schemes are tested on CMIP3 simulations of precipitation, chosen both for its 

importance to societal needs and for technical ease in computing the relative change. 

4.2     Absolute change: discussion of equal and unequal weighting 

4.2.1  The classical scheme 

In the classical multi-model averaging used in most key assessments in IPCC 

AR4, equal weighting was applied to the trend produced by each model, defined by the 

absolute change, 
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where the subscript "j" indicates the j-th model, and "MOD21" and "MOD20" indicate 

the simulated future and present climate. (The "21" and "20" nominally indicate 21st and 

20th century. In our later analysis they correspond to 2080-2099 and 1980-1999, 

respectively.) Averaging was then performed over all N models to establish the multi-

model mean of the trend, 

  ∑    

 

   

                                        

where Wj = 1/N for all j. The trend T is understood as a function of space and season but 

those additional indices are omitted for brevity. For example, the T for annual 

precipitation from CMIP3 can be found in Fig. 10.12 in Solomon et al. (2007). Since 

climate models represent the long-term net response of many scales of processes on a 

large-scale output, the most useful information can be gained by taking long-term 

averages of the data. This practice helps to minimize the uncertainty caused by sources of 

variability such as periodic cycles (e.g. diurnal or seasonal cycles), quasiperiodic patterns 

(e.g. the El Niño Southern Oscillation), and internal or model variability (details in 

section 3.2.1). Fig. 4.1 demonstrates how the long-term mean is utilized to calculate the 

trend in (4.1) for a particular variable. Using precipitation as an example, this trend 

represents the predicted change in precipitation attributed to the model forcing and not 

variability, given that the long-term means span adequate lengths of time. All long-term 

means calculated for this project use 20-year periods separated by 100 years (such as 

1980-1999 and 2080-2099 for present and future means, respectively), which is a 

sufficient length of time for determining precipitation trends due to forcings in climate 

model simulations. 
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Fig. 4.1 An example of how the trend of a climate model variable is calculated using 

long-term means. The blue line represents the simulated output from a climate model. 

The gold and red lines represent the long-term averages calculated for a mean present (or 

past) state and a future state, respectively. The trend represents the difference (future 

minus present) between these two long-term averages. 

By taking the sum of the trend given in (4.1) and (4.2) and the observed climate of the 

20
th

 century, the projected total climatology for the future is defined as, 

                                    

Keeping (4.3), one may consider two alternatives of C21 by (i) replacing the equal weight 

in (4.2) with Wj = Rj/N where Rj depends on both Tj and the observed climate of the 20th 

century (and possibly the ranking of Tj in the multi-model ensemble, Giorgi and Mearns 

2002), or (ii) replacing the Tj in (4.1) by a relative change to reconstruct T. The second 

case will be explored and shown that it is related to an unequal weight scheme in (i).  

4.2.2  Unequal weighting and further motivation  

For multi-model averaging of the absolute change, the simplest unequal weight 

scheme is to use only a subset of all available climate models (for instance, those in 

CMIP3) to construct the multi-model mean, essentially assigning a "zero" weight to the 

discarded models. This has been adopted by the recent USGCRP Report (Karl et al. 

2008), in which only 15 of 21 CMIP3 models were used, based loosely on the reason that 
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the excluded models have lower resolution (footnote 93 in Karl et al. (2008)). One might 

also attempt to discard the outliers in the multi-model ensemble in order to reduce its 

spread, as there is evidence that it is too wide for CMIP3 models (Annan and Hargreaves 

2010). However, recent hindcast experiments indicate that the mean of the entire multi-

model ensemble generally outperforms that of a smaller subset (Reifen and Toumi 2009, 

Weigel et al. 2010). More generally, one can retain all models but assign a smaller weight 

to a model that produces a greater bias for present climate or a model that produces an 

outlier for the trend (Giorgi and Mearns 2002).  The existing unequal weight schemes 

adopt the philosophy that a model which produces a greater bias is penalized with a 

reduced representation in the multi-model ensemble. As an alternative, the proposed 

method for ensemble averaging can function as bias correction which applies a heavier 

correction (instead of a smaller weight) to a model that has a greater bias. In that manner, 

democracy (word of Knutti 2010) is preserved even with unequal weighting. (The 

subtlety here is that the bias is estimated by the simulated present climate while for 

climate prediction the bias correction must be applied to the simulated trend.) This idea 

sets the tone for our later discussion on the adaptation of relative changes. 

As previously discussed in Chapter 2, the North American summer monsoon 

exhibits diverse behavior in CMIP3; the region affected by this monsoon precipitation is 

of particular interest for our efforts. Fig. 4.2 illustrates the difference in model quality 

between two selected CMIP3 models. While the major features of monsoon rainfall was 

reproduced by the GFDL CM2.1 model (middle panel), the summer monsoon structure is 

almost non-existent in the IAP model simulation (bottom panel). For another example of  
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Fig. 4.2 North American Monsoon phenomenon from observation (top, using CMAP data 

for 1979-2000) and climate model simulations for present-day climate (middle: GFDL 

CM2.1 model; bottom: IAP model, both based on the 20C3M runs for CMIP3). Shown is 

the ratio of summertime precipitation to annual precipitation. The color interval is 0.1. 

Regions filled with deepest blue color are where the ratio is between 0 and 0.1; those 

filled with red/orange colors have the highest values of the ratio. 

model disparity, Fig. 4.3a shows the area-averaged summer (July-September) 

precipitation versus the ratio of summer to annual precipitation for a box in the same 

region representing the Southwest U.S. (indicated in Fig. 4.5a) as simulated by CMIP3 

models. The symbols with a black border are the 1980-1999 average from the 20C3M 

runs, and their counterparts with a gray border are 2080-2099 average from the SRES  
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Fig. 4.3 (a) The summer (July-September) precipitation (abscissa, in mm/day) versus 

summer-to-annual ratio of precipitation (ordinate) simulated by the CMIP3 models listed 

at right. The symbols with a black border are the 1980-1999 mean from 20C3M runs, and 

their counterparts with a gray border are the 2080-2099 mean from SRES A1B runs. The 

observation for 1980-1999 from two data sets is shown: CMAP data is shown as the 

black star, and GPCP data is shown as the black hexagram. (b) The CMIP3 simulations 

of the 1980-1999 summer precipitation arranged with the driest model to the far left and 

wettest model to the far right. The length of each red bar indicates the amount of 

precipitation (in mm/day) simulated by a model. The black bar is CMAP observation. (c) 

The length of each green bar indicates the absolute value of the summer precipitation 

trend simulated by a CMIP3 model, corresponding to the red bar in Fig. 4.3b immediately 

above it. The dashed line indicates the multi-model mean of all green bars. 

A1B runs. Also shown is the observation for 1980-1999 from two datasets: CMAP (Xie 

and Arkin 1997) as a filled black star, GPCP (Adler et al. 2003) as a black hexagram, for 

comparison purposes. The difference between CMAP and GPCP is small compared to the 

spread of the multi-model ensemble. CMAP is used for the ensuing analysis but the 
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conclusions are not sensitive to the choice of the observational dataset. For the summer 

precipitation, the multi-model distribution for the 20th century simulations is more 

centered around the observation; 9 models are drier and 12 models wetter than 

observation. For the summer-to-annual ratio, all CMIP3 models are biased to one side of 

observation (all models underestimate the ratio), which renders multi-model averaging 

less meaningful. Considering the better-behaved variable of seasonal precipitation, in Fig. 

4.3b the models (length of red bar indicates amount of rainfall) are arranged from the 

driest at far left to the wettest at far right, with the black bar being the observation. The 

green bar in Fig. 4.3c indicates the magnitude (absolute value) of the trend in summer 

precipitation simulated by the model that is directly above it in Fig. 4.3b. The dashed line 

indicates equal weight multi-model ensemble mean of all green bars. Interestingly, the 

models that are too dry (those to the left of the black bar in Fig. 4.3b) in the 20th century 

also tend to produce a smaller trend in precipitation in the 21st century: 8 out of 9 of 

those models produce a green bar shorter than the ensemble average, in contrast to 5 out 

of 12 for the models that are too wet in the 20th century. Effectively, a model which 

produces too little rainfall for the 20th century also tends to predict a more muted 

response to greenhouse gas forcing in the 21st century. Assuming that the model 

predicted trends are as centered around the truth as their simulated 20th century 

climatology, a useful bias correction would be to amplify the trend produced by a model 

that is too dry, and tone down the trend produced by a model that is too wet in the 20th 

century. 
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4.3     Relative change and relation to unequal weighting 

In the spirit of the discussion in section 4.2.2, it follows that the simplest scheme 

which uses relative change will replace the T in (4.3) by  

                                         
where  
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is the relative change of a climatic variable predicted by the j-th model. That is, the 

multi-model trend is defined as the observed present climate times the averaged 

percentage change predicted by the models. To compare this method to the weighted 

average of absolute changes, by expanding (4.4) we obtain 
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where  
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)            

Thus, by considering the multi-model average of relative changes, we essentially 

modify the equal weight 1/N commonly used in literature by multiplying it by a factor of 

Rj = COBS20/CMOD20, j. Using Fig. 4.3b as an example, Rj is the ratio of the length of the 

black bar (the observation) to the length of the red bar for a given model. A perfect model 

has Rj = 1. If a model is too dry, i.e., it produced too little rain for the 20th century 

climate, it has Rj > 1, while a model that is too wet has Rj < 1. This design is meaningful 
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since, as demonstrated by Fig. 4.3c, the models which are too dry in 20th century also 

tend to predict a muted response (can be an increase or decrease) in precipitation to 

greenhouse gas forcing in the 21st century. The factor Rj serves to enhance the predicted 

trend for those models. For the models which are too wet, Rj acts the opposite way to tone 

down the predicted trend. Thus, the unequal weighting potentially serves the purpose of 

bias correction for the simulated trend as envisioned in section 4.2.2. 

Our formula has restrictions. It is applicable only to a positive definite quantity 

like precipitation. Moreover, not every climatic variable possesses the relation shown in 

Figs. 4.3b and 4.3c between the magnitude of the simulated present climatology and that 

of the simulated trend. The presence of CMOD20, j in the denominator of the unequal weight 

might raise the concern that the scheme will become more singular over the regions 

where some models produce a very small amount of climatological precipitation. The 

examples which immediately follow should help ease this concern. 

4.4     Results and discussions 

Fig. 4.4 shows the projected trend, defined as the multi-model average of 2080-

2099 minus 1980-1999 climatology, of annual precipitation from CMIP3 models based 

on the equal weight scheme (Fig. 4.4a) and the scheme using relative change (hereafter 

called the “unequal weight scheme”) (Fig. 4.4b).  Fig. 4.4a is constructed entirely from 

CMIP3 model simulations while Fig. 4.4b incorporated the observation (needed for 

constructing the unequal weight) for 1980-1999, which is based on the gridded 2.5° x 

2.5° CMAP data. The CMIP3 simulations are interpolated to the same grid as 

observation. (A linear interpolation is used to ensure that no spurious negative values of 
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precipitation are created at this step.) The ratio, Rj = COBS20/CMOD20, j, is then calculated at 

each grid point for each model. Fig. 4.4a can be readily verified with Fig. 10.12 of IPCC 

AR4 (Solomon et al. 2007), which shows the familiar pattern of an intense increase of 

rainfall in the tropics, subtropical drying, and increased wetness in high latitudes. This 

large-scale pattern proves to be robust as it is also preserved in Fig. 4.4b, which confirms 

that the unequal weight scheme does not produce a radically different projection for 

global precipitation. 

 

Fig. 4.4 The CMIP3 multi-model average of the trend in annual precipitation as estimated 

from the (a) equal weight, and (b) unequal weight, schemes. Color scale (mm/day) is 

shown at bottom. White areas indicate where observation data is missing. 
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While the two schemes lead to similar global-scale structures of the trend in 

precipitation, regionally they produce notable differences. (Since Rj is a function of 

space, the impact of unequal weighting varies from one region to another.) For example, 

Fig. 4.5a and 4.5b show the detail of the trend of annual precipitation for Western U.S. 

and Northern Mexico based on the equal and unequal weight schemes, respectively. 

While both indicate drying in the Southwest U.S. (Seager et al. 2007), with the unequal 

weight scheme the reduction of precipitation is projected to be less severe for Arizona but 

more severe for part of Texas. The difference between the two schemes can be seen in 

Fig. 4.6: for a majority of the region, the alternative scheme predicts more rainfall than 

the equal weight scheme (indicated by orange and yellow). Over the black box in Fig. 

4.5a, the projected reduction of rainfall is 40 mm/yr from the unequal weight scheme, 

compared to 55 mm/yr from the equal weight scheme. This difference may be large 

enough to have implications for local stake holders. 

Given the concern of a small denominator discussed in section 4.3, sensitivity 

tests were performed by imposing a criterion which places a cap on the allowable 

percentage change that a particular model may have for a particular grid point. This 

percentage is capped at 500%. The grid points which exhibit singular behavior (i.e., 

affected by the cap) only occur in the seasonal (summer and winter) projections. Since 

they are very rare (less than one per model, on average) and the same points are not 

shared by more than one or several models, it has been determined their overall effect on 

the ensemble average is negligible. 
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Fig. 4.5 (a) and (b) are similar to Figs. 4.4a and 4.4b but for the Western U.S. and Mexico 

region. Equal weight and unequal weight schemes are used for (a) and (b), respectively. 

(c) and (d) are similar to (a) and (b) but for the trend in winter (December-February) 

precipitation. (e) and (f) are similar to (c) and (d) but for the Mediterranean region. 
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Fig. 4.6 The difference in the projected precipitation trend between the unequal weight 

and equal weight schemes (unequal – equal) in Fig. 4.5a and b for the southwestern US 

region. Yellow and orange areas indicate where the unequal weight scheme predicts a 

higher magnitude of the precipitation trend than the equal weight scheme. 

To test if the unequal weight scheme remains stable for a shorter-term 

climatology of precipitation (when the problem with small denominator might become 

more severe), it is applied it to the summer (July-September) and winter (December-

February) seasonal mean precipitation, also for CMIP3. Figs. 4.8a and 4.8b compare the 

equal and unequal weight schemes for winter, and 4.8c and 4.8d for summer. Figs. 4.8a 

and 4.8c can be verified with Fig. 10.9 in IPCC AR4 (Solomon et al. 2007). Just like the 

annual mean, the large-scale pattern of the trend produced by the unequal weight scheme 

is similar to its equal-weight counterpart. However, notable differences exist in the 

regional trend patterns. The trends in winter precipitation over the Western U.S. produced 

by the two schemes are compared in Figs. 4.5c and 4.5d. The shift of drying from 

Southwest U.S. to Texas produced by the unequal weight scheme is similar to the annual 

mean in Fig. 4.5b.  Figs. 4.5e and 4.5f show the equal weight and unequal weight 

(relative change) results for the change in winter precipitation over the Mediterranean 

region. Just like Southwest U.S., the unequal weight scheme preserves the large-scale 

pattern but also leads to some differences in the regional detail of the change. The 

Mediterranean region experiences a strong seasonal influence of winter precipitation 
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from the Northern hemisphere midlatitude storm band. Previous evaluations of the 

hydrological cycle in this region indicate an atmospheric water deficit evident in 

observational datasets (Mariotti et al. 2002). This deficit is shown to be strongly 

correlated with the North Atlantic Oscillation (NAO). It has also been shown that the 

CMIP3 ensemble projects a drying trend for the Mediterranean region (Mariotti et al. 

2008). The different processes which produce precipitation in this region make it another 

highly relevant choice for investigation. Our analysis showed that, for precipitation, the 

simple multi-model averaging of the relative change is a viable alternative to the classical 

equal weight scheme for the absolute change. Moreover, the former is equivalent to 

multi-model averaging of the absolute change using a specific set of unequal weight.  

Provided that a climatic variable exhibits a meaningful relation between the simulated 

20th century climate state and the simulated trend as exemplified by Fig. 4.3b and 4.3c, 

the unequal weighting has the added meaning of bias correction for the trend. This 

relation has been tested for the precipitation over the southwestern US to serve as a 

motivation for developing the unequal weight scheme. A comprehensive analysis is 

necessary to determine if the relation is maintained globally and for other climatic 

variables. To improve on our prototypical scheme, one could design more complicated 

ways to extract the relation between the simulated present climatology and future trend 

(for example, by regressing the former on the latter and use the outcome to adjust the Rj 

factor). However, doing so would require the introduction of new assumptions since the 

truth of the future trend remains unknown. Additionally, the robustness of the scheme 

may be tested using the leave-one-out cross-validation method for evaluating unequal 
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weight schemes as suggested by Räisänen et al. (2010). The details of this study have 

been published in the Atmospheric Science Letters (Baker and Huang 2012). 

 

Fig. 4.7 (top) The winter (December-February) precipitation (abscissa, in mm/day) versus 

winter-to-annual ratio of precipitation (ordinate) simulated by the CMIP3 models listed at 

right for the Mediterranean region. The symbols with a black border are the 1980-1999 

mean from 20C3M runs, and their counterparts with a gray border are the 2080-2099 

mean from SRES A1B runs. The observation for 1980-1999 from CMAP data is shown 

as the black star. (center) The CMIP3 simulations of the 1980-1999 winter precipitation 

arranged with the driest model to the far left and wettest model to the far right. The length 

of each red bar indicates the amount of precipitation (in mm/day) simulated by a model. 

The black bar is CMAP observation. (bottom) The length of each green bar indicates the 

absolute value of the winter precipitation trend simulated by a CMIP3 model, 

corresponding to the red bar in the center panel immediately above it. The dashed line 

indicates the multi-model mean of all green bars. 
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Fig. 4.8 Similar to Fig. 4.4 but (a) and (b) provide winter (December-February) and (c) 

and (d) provide summer (July-September) precipitation. (a) and (c) are based on the equal 

weight scheme and (b) and (d) unequal weight scheme. White areas indicate missing 

observation data. 
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CHAPTER 5 

APPLICATION OF AN ALTERNATIVE METHOD FOR  

ENSEMBLE AVERAGING CLIMATE MODELS 

The alternative ensemble averaging technique proposed in Chapter 4  is 

demonstrated on the CMIP5 model archive for the simulated quantities of rainfall and 

evaporation. This technique is based on the application of an unequal weight to each 

model which is calculated as the relative change of the model simulation to observed 

climatology. The trend is calculated globally for each quantity between the model 

simulated future (21
st
 century) and past (20

th
 century) atmospheric conditions, and the 

unequal weight is applied to the trend for each model prior to ensemble averaging. The 

weight can vary both spatially and temporally, and it effectively serves as a bias 

correction for each model as it alters the trend based on error with observed climatology. 

This technique has been previously demonstrated on the older CMIP3 archive and 

compared with the more commonly used equal weight averaging scheme, and it was 

shown that notable regional differences emerge between the two schemes in the intensity 

of the projected trend in rainfall; these results are confirmed in the current study using the 

updated CMIP5 archive for both simulated rainfall and evaporation. 
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5.1     Introduction 

Rainfall and surface evaporation play important roles in a regional water budget 

which can affect many aspects of human livelihood and the security of the water supply. 

Climate models attempt to predict possible changes in these quantities with simulations 

which estimate future conditions, and the predictions made by each model are averaged 

together for producing climate projections for chief scientific reports such as the 

Intergovernmental Panel on Climate Change (IPCC) assessment report (AR) 4 (Solomon 

et al. 2007). The current group of coupled general circulation climate models have 

produced simulation data which are available in the CMIP5 (Climate Model 

Intercomparison Project 5) online archive, and these data will be used to formulate the 

projections which will be included in the upcoming IPCC AR5. The accuracy of these 

projections is essential since many community managers around the world rely on 

information from scientific reports for planning regional water resource management and 

preparation for extreme events. The projections in these reports are typically produced by 

giving each model an equal weight in the ensemble average. However, it has been well-

demonstrated that many biases exist within climate models, and models exhibit varying 

degrees of skill in reproducing climate processes; for example, early analysis of the 

CMIP5 archive reveals a tendency of most models to overproduce annual mean 

precipitation trends (van Oldenborgh et al. 2013) and models exhibit a large spread in 

reproducing global monsoon area, precipitation, and intensity (Hsu et al. 2013). The 

models are not unique samples in a set, since the genealogy of the newest archive reveals 

that many models share considerable amounts of code, thus compounding the ensemble 

occurrences of certain model biases (Knutti et al. 2013). The idea of implementing 
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alternative methods for climate model ensemble averaging has been explored and 

demonstrated through various techniques such as using unequal weights (e.g. Xu et al. 

2010) or calculating the ensemble average using only a subset of models (e.g. Lee and 

Wang 2012). Each method for ensemble averaging has inherent strengths and weaknesses 

based on the qualitative selection of model weights, and these methods may not fully 

incorporate the knowledge of model bias. With the motivation of producing more 

accurate climate projections by using observed climate conditions, an alternative 

ensemble averaging technique was presented by Baker and Huang (2012) and 

demonstrated on the previous CMIP3 model archive for the simulated trends in 

precipitation. It was shown that the alternative unequal weight technique produced 

reasonable global patterns of rainfall which did not dramatically differ from those 

produced using the equal weight averaging method. However, the projected regional 

intensity of rainfall produced by the alternative technique differed from the equal weight 

method enough that the changes could be significant for managing water resources. 

These findings indicated that the alternative technique, with its bias-corrected ensemble 

average trend, may be a viable option for producing ensemble averaged regional 

projections of certain meteorological quantities using model simulation data. For further 

demonstration of method feasibility, the alternative technique has been applied to an 

additional important climatological variable (surface evaporation) and computed for both 

evaporation and rainfall using data from the newest climate model archive, CMIP5. This 

study presents the global projections produced using both the alternative and the classical 

ensemble averaging techniques for each quantity with highlighted selected regions for 

comparison. 
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5.2     Approach and averaging techniques 

5.2.1  Model data 

Simulation data from 37 models in the most recent CMIP5 archive are used for 

demonstrating the ensemble averaging technique. All selected models represent the set of 

coupled general circulation models with currently available data for the chosen quantities 

of precipitation and surface latent heat flux; these models are listed in Table 2.3. 

Documentation and data access for the models can be obtained from the PCMDI website 

at http://cmip-pcmdi.llnl.gov/cmip5/. Archive designated ‘historical’ runs of monthly 

averaged data have been selected for values corresponding to 20
th

 century (chosen as a 

1980-1999 time set) to represent the simulations forced only by observational data. The 

20
th

 century values will be used as a basis for comparison with the 21
st
 century (2080-

2099) values which are obtained from the selected ‘RCP 4.5’ simulation runs of monthly 

averaged data forced using the corresponding representative concentration pathway 

(RCP) scenario of greenhouse gas (GHG) emissions, as detailed by Taylor et al. (2012). 

The long-term difference of 100 years between epochs is chosen to help isolate the model 

response to the scenario forcings. Observational data are also selected for precipitation as 

the GPCP (Global Precipitation Climatology Project) version 2.2 dataset (Adler et al. 

2003) and for evaporation as the NCEP-DOE (National Centers for Environmental 

Prediction and the Department of Energy) Reanalysis 2 dataset (Kanamitsu et al. 2002) 

for the 20
th

 century time set. All model data are interpolated to a T62 Gaussian grid prior 

to analysis. 
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5.2.2  Methodology 

This study analyzes the atmospheric response to future GHG emissions with 

simulation data from the CMIP5 model archive by computing the trend for each model 

for selected quantities. Following the methodology described in Chapter 4, the trend is 

defined as the difference between the 20-year averaged time sets taken from model 

simulations,                      in which the subscript " " indicates the  -th model, 

and "     " and "     " indicate the model simulated time sets corresponding to 

21
st
 and 20

th
 century climate for the selected quantity  . The trend is then ensemble 

averaged for all models to produce a projection for each quantity. Two methods of 

ensemble averaging are discussed and demonstrated in this study for comparison. For the 

classical equal weight scheme, the ensemble average trend of N models is defined by 

equation (4.2) in which the weighting factor        for all j. This ensemble averaging 

method is typically used in climate projections such as those included in the IPCC 

assessment reports (Solomon et al. 2007). However, the weighting factor treats all models 

equally in the ensemble average; knowledge of model bias is not incorporated into the 

projections. As an alternative technique to the equal weight scheme, this study 

demonstrates an unequal weight method in which the ensemble average trend is defined 

by equation (4.7) in which the new weighting factor        is the weight     multiplied 

by a factor of                   . (See Baker and Huang (2012) or Chapter 4 for a 

complete derivation). This alternative technique was successfully demonstrated on the 

previous CMIP3 archive with significant regional differences in average projected 

rainfall. As an update to that study, this chapter presents the extension of the technique to 

the updated CMIP5 archive and for an additional climatological variable of evaporation. 
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5.3     Results and discussion 

5.3.1  Global trends 

To examine the effects of the alternative averaging technique on global trends of 

rainfall, Fig. 5.1 shows the annual ensemble average calculated using both the alternative 

technique (a) and equal weight method (b). Fig. 5.1(b) can be compared with the results 

from Lee and Wang (2012) which use a subset of CMIP5 models and show similar 

results in the general pattern of future precipitation trends. Increased radiative forcing due 

to GHG-related climate change is projected to produce wetter conditions in the tropics 

and high latitudes and drier conditions in the midlatitudes (Solomon et al. 2007). The 

global structure of the rainfall trend in Fig. 5.1 supports this projection with a positive 

response near the tropics and a negative response in the midlatitudes. The use of the 

alternative technique does not change this overall pattern as shown in Fig. 5.1(a) as the 

projected conditions are indeed preserved in global structure. However, the differences 

between the two methods can be rather significant as seen in Fig. 5.1(c). Over tropical 

ocean areas, the unequal weight averaging method still shows a positive trend in 

precipitation, but it produces a more muted response over the Indian Ocean and muted 

patterns of drying and wetting over the south Pacific.  

Increased radiative forcing also accelerates surface evaporation (Solomon et al. 

2007), and Fig. 5.2 supports this projection with a nearly global positive trend in surface 

evaporation as calculated from model surface latent heat flux. The most notable 

difference between the global patterns of ensemble-averaged surface evaporation trend as 

seen in Fig. 5.2(c) is in the stronger signal of increased evaporation predicted by the 

unequal weight method over most land surfaces in the northern hemisphere. 
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Fig. 5.1: Ensemble average annual trend in global precipitation from 21
st
 century (2080-

2099) minus 20
th

 century (1980-1999) means for (a) unequal weight and (b) equal weight 

averages in mm/day. Panel (c) represents the difference between the two averaging 

methods (a) minus (b) in 0.1 mm/day. Green colors represent projected surface wetting 

trends (precipitation trend > 0), brown colors represent projected surface drying trends 

(precipitation trend < 0). 



 

62 

 

Fig. 5.2: Same as Fig. 5.1 but for the annual trend in global evaporation. Green colors 

represent projected surface wetting trends (evaporation trend < 0), brown colors represent 

projected surface drying trends (evaporation trend > 0). 

The trends in global precipitation and evaporation averaged zonally to produce 

meridional cross-sections can be viewed as the consequences of the changes in poleward 

moisture transport. Fig. 5.3 depicts the seasonal-mean 21
st
 minus 20

th
 century trend in 

precipitation for both ensemble averaging methods, and the results can be confirmed with 
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Lau et al. (2013). A strong positive signal of increased precipitation in the tropics for all 

seasons is evident in the zonal average trend, with the most pronounced increase 

occurring in March-May. Zonal averages show a negative trend in precipitation for 

northern hemisphere (December-May) and southern hemisphere (all seasons) midlatitude 

regions. The differences between the unequal weight and equal weight ensemble 

averaging methods are most pronounced from December to May in the tropics in which 

the alternative unequal weight technique adds an even stronger precipitation response to 

GHG forcing, indicating that the CMIP5 ensemble tends to under produce tropical 

precipitation during these seasons. The zonally averaged seasonal mean evaporation 

trends in Fig. 5.4 are dominated by ocean responses to GHG forcing in the southern 

hemisphere since the evaporation over ocean areas greatly surpasses that from land 

surfaces, with a nearly globally positive trend in evaporation in all seasons and the largest 

positive evaporation trends occurring in the winter seasons for northern hemisphere 

(DJF) and southern hemisphere (JJA). It is notable that the unequal weight method 

produces ensemble averages with more pronounced positive signals during the winter 

seasons for both hemispheres, indicating that the CMIP5 models also tend to under 

reproduce ocean evaporation. In general, the alternative technique highlights ensemble 

deficiencies in producing poleward moisture transport processes and corrects for these 

biases accordingly. 
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Fig. 5.3: Zonal mean global precipitation trends taken for the same 21
st
 century minus 

20
th

 century temporal averages of DJF (December-February), MAM (March-May), JJA 

(June-August), and SON (September-November) seasonal means for unequal weight 

(blue) and equal weight (red) ensemble averages in mm/day. Shaded areas indicate 

ensemble standard deviation error bars for each method. 
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Fig. 5.4: Same as Fig. 5.3 but for zonal mean global evaporation trends. 

5.3.2  Regional trends 

Regional differences in projected rainfall and surface evaporation trends 

demonstrate the impacts of the averaging method on land surfaces as seen in Fig. 5.5 and 

5.6. The southwestern United States is a particular region of concern regarding water 

availability, and projections for this region show a future decline in available surface 

water (Seager et al. 2012). The unequal weight method also predicts a decline in 

precipitation for this region, but the response is more muted with a rainfall trend up to 10-

20 mm/year higher than the trend predicted by the equal weight average as seen in Fig. 

5.3(c). The northern US, by contrast, is projected to have increased rainfall and increased 

surface evaporation for the 21
st
 century (Fig. 5.3(b) and 5.4(b)), but the unequal weight 



 

66 

method projects much drier conditions of up to 60 mm/year less than the equal weight 

average with less intense rainfall and more intense surface evaporation.  

The Mediterranean region also falls within a midlatitude band expected to 

experience drying in the 21
st
 century as confirmed by initial analysis of the CMIP5 

ensemble, although the ensemble tends to demonstrate an underrepresentation of the 

seasonal cycle amplitude (Kelley et al. 2012). Fig. 5.5(f) shows that the unequal weight 

method corrects for this bias by predicting an increased drying trend of up to 80 mm/year 

less annual rainfall than the equal weight average. More intense evaporation is also 

projected using the unequal weight method for most land surfaces in the region (Fig. 

5.6(f)). The alternative technique produces significant enough differences that the results 

could be critical for planning 21
st
 century water management in the Mediterranean 

region. 

The Asian summer monsoon is an important climatological phenomenon for the 

region selected in Fig. 5.5 and 5.6 (g-i). Initial comparisons of late 20
th

 century 

simulations of the Asian monsoon between CMIP5 and its CMIP3 predecessor show 

ensemble improvements in all tested quantities, but systematic errors are still present in 

both ensembles (Sperber et al. 2012). A majority of the annual precipitation for the region 

comes from the summer monsoon, so the annual trend is also indicative of the trend in 

the summer monsoon. The difference in ensemble averaging methods shows that the 

unequal weight method projects the Asian monsoon region to receive even more intense 

rainfall and surface evaporation in the 21
st
 century, predicting up to 120 mm/year more 

precipitation than the equal weight average over the Indian peninsula. The accelerated 
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hydrological conditions due to GHG forcing of both surface evaporation and rainfall are 

projected to become more intense for this region due to the relative change in trends. 

 

 

Fig. 5.5: Ensemble average annual trend in precipitation for selected regions from 21
st
 

century (2080-2099) minus 20
th

 century (1980-1999) means for unequal weight (a, d and 

g) and equal weight (b, e and h) averages in mm/day. Panels (c, f and i) represent the 

difference between the two averaging methods for each region in mm/year. Green colors 

represent projected surface wetting trends (precipitation trend > 0), brown colors 

represent projected surface drying trends (precipitation trend < 0). 
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Fig. 5.6: Same as Fig. 5.5 but for the annual trend in evaporation. Green colors represent 

projected surface wetting trends (evaporation trend < 0), brown colors represent projected 

surface drying trends (evaporation trend > 0). 

5.4     Conclusions 

This study exhibits how an alternative ensemble averaging technique can produce 

regionally significant differences from the commonly used equal weight average for 

climatological quantities which are important to human life. While the updated CMIP5 

archive has been shown to improve over CMIP3 in reproducing many processes and 

conditions of observed climate, known biases still exist, and the construction of ensemble 

averages using unequal weight methods which consider model bias can be considered a 

viable option. The alternative technique demonstrated in this study is presented as one 
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such option for analyzing simulation data coupled climate models with the intention of 

considering known model bias in formulation of climate projections.  



 

70 

CHAPTER 6 

COMPARING PERFORMANCE OF MODEL ENSEMBLES 

This investigation delves into the quality of the water cycle in global climate 

models by examining multiple terms of the moisture budget in the most current CMIP5 

and the previous CMIP3 model archives. The two multimodel ensembles are compared 

by analyzing the seasonal simulated precipitation P, evaporation E, and P – E terms for 

each model and verifying the results with selected observational datasets. Inspection of 

complementary moisture variables enhances the understanding of both individual model 

and ensemble deficiencies in predicting regional water availability, and a comparison of 

the model quantities with observational data provides a better evaluation of model quality 

in simulating the global water cycle. This study focuses on the semiarid Mediterranean 

and southwestern US regions, comparing the quality of the model ensembles for these 

regions which have a particular sensitivity to changes in water availability for critical 

resource management. It is found that the ensembles produce similar seasonal cycles for 

both regions, with CMIP5 exhibiting no statistical reduction in spread from its CMIP3 

predecessor for regional season-averaged P, E and P – E. Both ensemble average 

simulated (future – past) trends (calculated using RCP 4.5 and historical runs for CMIP5 

and SRES A1B and 20C3M runs for CMIP3) predict a negative trend for the 

southwestern US and a strong negative trend for the Mediterranean region in annual P – 

E, with notable seasonal variations between the two archives. Higher resolution CMIP5 

models do not perform significantly better than the ensemble average for any calculated 

quantity. 
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6.1     Introduction 

Precipitation encompasses different phase states and convective properties and 

can exhibit intermittent behavior, making it insufficiently quantified by a single 

continuous value in the manner of temperature and other climate variables. These 

uncertainties make model precipitation a particularly challenging quantity to correctly 

simulate in climate models (Solomon et al. 2007, Ch.3 Sec.3). In order to understand 

possible contributing sources of bias in model simulations, examining multiple quantities 

of the moisture budget is one possible method of determining the source of model 

precipitation trends; for example, an increase in local precipitation could be identified as 

increased P – E or decreased evaporation. These terms can be evaluated using the mass 

conservation equation for water vapor in the atmosphere: for long-term averages, vertical 

integration with respect to pressure of the water vapor balance equation combined with 

mass continuity leads to     ⃑       where P is precipitation, E is evaporation, and 

the quantity (    ⃑ ) is the moisture convergence in the atmosphere. Previous work has 

incorporated the analysis of complementary moisture variables when assessing climate 

model projections of precipitation: Seager et al. (2013) examined model projected 21
st
 

century P – E for the southwestern US region, and Liepert and Previdi (2012) evaluated 

the global values of both precipitation and evaporation in the Coupled Model 

Intercomparison Project Phase 3 (CMIP3) archive. This study extends the analysis of the 

global moisture budget to the most current global climate model archive, CMIP5. The 

performance of the two model ensembles is compare using regional- and seasonal-

averaged quantities of precipitation, evaporation, and P – E computed for the selected 

southwestern US and Mediterranean semiarid regions. The long-term seasonal mean 
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values are calculated for each model from the CMIP3 and CMIP5 archives for both a past 

and future state, and the trends (future – past) are computed for the two chosen semiarid 

regions for each quantity P, E, and P – E. The same values produced using observational 

datasets are also included for comparison to provide a better understanding of ensemble 

behavior in reproducing present climate conditions and possible indications of the 

reliability of model projections.  

Preliminary studies comparing the CMIP3 and CMIP5 model archives have found 

some improvements in precipitation uncertainties in the CMIP5 ensemble over its CMIP3 

predecessor (Blázquez and Nuñez 2012; Kim and Yu 2012). This study endeavors to 

compare multiple quantities related to the moisture budget with an in-depth seasonal 

analysis, highlighting particular deficiencies in the model archives and giving a more 

complete understanding of future surface water availability in the selected semi-arid 

regions. 

6.2     Methods and analysis 

Selected for analysis are all available models in the CMIP3 and most current 

CMIP5 archives (see Chapter 2, Tables 2.2 and 2.3). For regional calculations, the 

climatological value represents an area-averaged long-term mean (abscissa, mm/day) 

which is plotted versus a ratio of the seasonal mean to the annual mean (ordinate) to 

demonstrate seasonal intensity. Past means represent a 1980-1999 average (shown in the 

scatter plots in Figs. 6.2, 6.4, 6.7, and 6.9), while trends represent a future (2080-2099) 

minus past mean (6.3, 6.5, 6.8, and 6.10). The southwestern US quantities are calculated 

as an area average over the box shown in Fig. 6.1a (30N – 40N, 120W – 95W) and 
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Fig. 6.1 The annual mean precipitation averaged 1980-1999 for (a) Southwest US, (b) the 

Mediterranean region. (c) and (d) are the counterparts of (a) and (b) but for precipitation 

minus evaporation. Precipitation is based on the GPCP data and evaporation the 

ECMWF-Interim reanalysis. Color scale is shown at bottom. The bold boxes in (a) and 

(b) indicate the regions over which area averaging is made to construct the scatter plots in 

Figs. 6.2-6.11. 

Mediterranean region quantities are calculated for the box in Fig. 6.1b (30N – 45N, 5W – 

35E) for all seasons. Also included for comparison are the same quantities calculated 

using four observational datasets: NCEP-DOE AMIP-II Reanalysis Global Precipitation 

(NCEP) (Kanamitsu et al. 2002), Climatology Centre (GPCC) Full Data Product version 

5 (Schneider et al. 2008), CPC Merged Analysis of Precipitation (CMAP) (Xie and Arkin 

1997), and European Centre for Medium-Range Weather Forecasts - ERA Interim 

(ECMWF) (Dee et al. 2011). The climatological annual mean values of precipitation and 

P – E averaged for 1980-1999 using observational datasets for the selected regions are 
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shown in Fig. 6.1. These semi-arid regions are characterized by generally dry climates as 

a result of their mid-latitude positions which receive descending dry air from the northern 

hemisphere Hadley cell circulation (Solomon et al. 2007). The seasonal modeled and 

observed values for each region will be compared and discussed in the following 

sections. 

6.3     Regional comparisons of ensemble quality 

6.3.1  Southwestern US 

As a basis for the examination of model bias, the southwestern US region 

provides a highly relevant starting point for regional analysis due to the diverse behavior 

of climate models in simulating its climatology. This region experiences strong annual 

rainfall contributions both from large-scale winter storm systems and from summer and 

early fall precipitation from the North American monsoon phenomenon. The most 

significant annual drying due to evaporation occurs in the hottest summertime months. 

Previous work (Baker and Huang 2012) demonstrated the ineffectiveness of the CMIP3 

ensemble in generating summer precipitation for this region due to the large variation in 

model skill in reproducing monsoon activity. This paper further explores the North 

American monsoon by inspecting the summertime regional averages of precipitation as 

well as complementary moisture variables of evaporation and P – E. Fig. 6.2 shows the 

seasonal mean precipitation versus the ratio of season to annual precipitation generated 

by CMIP3 and CMIP5 model simulations for an area-averaged region of the Southwest 

U.S. (box shown in Fig. 6.1a). CMIP3 models are shown as red markers and CMIP5 

models are shown as blue markers, with the largest markers indicating the ensemble 
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mean. A list of values for selected quantities and the corresponding models is shown in 

Table 6.1. The open ellipses represent one standard deviation from the ensemble means. 

Inspection of seasonal ratios (ordinate) reveals that both CMIP3 and CMIP5 ensembles 

simulate too much winter precipitation (a) and too little summer precipitation (c) when 

compared with both observational datasets (black stars). Both archives perform similarly 

for all seasons in this region, indicating that the CMIP5 ensemble does not demonstrate 

improvement in simulating the winter storm system and summer monsoon precipitation 

for the southwestern US region. Comparisons of ensemble average regional bias for 

annual means depict similar results between the archives for 1980-1999, showing a 

general pattern of CMIP models simulating the western US as too wet and the Midwest 

as too dry, primarily due to the difficulties in simulating precipitation (Fig 6.13a, c). An 

inspection of seasonal mean values of evaporation for the same region and time set, 

however, reveal that CMIP5 does demonstrate some improvement over the CMIP3 

ensemble. The Student’s T-test and Kolmogorov-Smirnov test were performed between 

the CMIP3 and CMIP5 archives for all calculated quantities to determine whether the 

ensembles are statistically indistinguishable; Table 6.5 contains the results of these tests. 

For evaporation and P – E quantities for season-averaged summer, both tests failed, 

indicating that the two multimodel ensembles are statistically distinct at a 95% 

significance level. The outcome indicates that the CMIP5 ensemble produces statistically 

significant simulation results when compared with its CMIP3 predecessor for the 

southwestern US region evaporation and P – E quantities. The CMIP5 ensemble also 

converges closer to the observational dataset values for this season, indicating an 

improvement in the archive. 
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 The improvement in skill between CMIP3 and CMIP5 in simulating present-day 

climate could also indicate improved skill for CMIP5 simulated trends (for justification, 

see the relevant discussion in section 4.2.2). Hsu et al. (2013) recently showed that North 

American monsoon precipitation is projected to increase by a majority of CMIP3 and 

CMIP5 models, though the monsoon will be affected by delayed onset. The trends in 

seasonal precipitation shown in Fig. 6.3 support these findings based on calculations of 

trend using the CMIP5 ensemble simulations of RCP 4.5 scenario 20-year mean (2080-

2099) minus 1980-1999 climatology. The CMIP5 ensemble mean does indicate a slight 

increase in precipitation during the fall season (Fig. 6.3) which is affected by the later 

activity of the North American monsoon; this result also supports the prediction that the 

monsoon will experience delayed onset and completion, with the maximum trend 

increase occurring in the fall. Previous work analyzing the trend in P and  P – E indicated 

that the CMIP3 ensemble predicts a decrease in surface water availability in the 

southwestern US due to reduced precipitation and increased evaporation in the winter and 

spring seasons (Seager et al. 2007); updated recent studies demonstrate a similar result 

using CMIP5 RCP 8.5 scenario simulations (Seager et al. 2012). While the scatter plots 

for trend values of P (Fig. 6.3) do indicate reduced future precipitation in the winter and 

spring months for CMIP3; however, the CMIP5 ensemble mean indicates a much weaker 

drying trend in spring and even a slight moistening trend in winter for the area-averaged 

southwestern US region using RCP 4.5 scenario data. Considering the precipitation 

values alone would lead to the conclusion that the southwestern US will not experience a 

significant drying trend in the future. It is necessary to inspect the overall trends for P – E 

(Fig. 6.6) for a more complete picture of the projected climate. In Fig. 6.6, both 
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ensembles do show an annual drying trend for the southwestern US. While the monsoon 

precipitation is not projected to increase significantly, reduced surface evaporation will 

contribute to an increase in surface water availability for the summer season. However, 

increased future evaporation combined with slightly decreased precipitation predicted by 

CMIP5 will create overall drier conditions for the region during the winter and spring 

seasons, and a drier annual average. A geographical inspection of the trends in P and P – 

E reveal that the drying trend is predicted not just over the southwestern US, but for most 

of the contiguous US and Mexico as well (Fig 6.12a, c, e, g). 
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Fig. 6.2 The scatter plots of seasonal mean precipitation (abscissa) vs. the ratio of 

seasonal to annual mean precipitation (ordinate) for the southwestern US and for four 

seasons as indicated in the individual panels. Light blue is the CMIP5 ensemble with bold 

dark blue its ensemble mean. A subset of the high-resolution (horizontal resolution 1.25 

degrees or finer) models from CMIP5 are marked in green. Pink and bold red are the 

CMIP3 ensemble and its ensemble mean. The ovals indicate one standard deviation of the 

ensemble in the abscissa and ordinate. The two filled stars are the observation from 

CMAP and GPCP. All simulations and observations are based on the average from 1980-

1999. The four seasons are defined as: Spring: MAM, Summer: JJA, Fall: SON, and 

Winter: DJF. 
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Fig. 6.3 The scatter plots for precipitation in four seasons in the same format as Fig. 6.2 

but for the 21
st
 century trend, defined as the mean of 2080-2099 minus that of 1980-1999. 

The 20C3M and SRES A1B runs from CMIP3, and Historical and RCP4.5 runs from 

CMIP5, are used to construct the late-20
th

 and late-21
st
 century climatology. 
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Fig. 6.4 Similar to Fig. 6.2 but for the 1980-1999 climatology of evaporation for the 

Southwest US. The two filled stars are the seasonal climatology deduced from NCEP 

Reanalysis II and ERA-Interim reanalysis. 
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Fig. 6.5 Similar to Fig. 6.3 but for the trend in evaporation for the Southwest US from 

CMIP3 and CMIP5. 
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Fig. 6.6  Left column: Top panel is the monthly climatology of P-E for 1980-1999 for the 

Southwest US from the CMIP3 ensemble (red line, with vertical bar indicating 

plus/minus one standard deviation), compared to the P-E from four combinations (black 

lines) with P taken from GPCP or CMAP and E taken from ERA-Interim or NCEP 

Reanalysis II.  Bottom panel is the monthly mean trend in P-E for the CMIP3 ensemble, 

with the vertical bar indicating plus/minus one standard deviation. The right column is 

similar to the left column but for CMIP5. 

6.3.2  Mediterranean 

The Mediterranean region experiences a strong seasonal influence of winter 

precipitation from the Northern hemisphere midlatitude storm band. Previous evaluations 

of the hydrological cycle in this region indicate an atmospheric water deficit evident in 

observational datasets (Mariotti et al. 2002). This deficit is shown to be strongly 

correlated with the North Atlantic Oscillation (NAO). It has also been shown that both 

the CMIP3 and CMIP5 ensembles project a drying trend for the Mediterranean region 

(Kelley et al. 2012). These findings are confirmed in the regional map of CMIP3 and 

CMIP5 annual trends in precipitation (Fig. 6.12b, d) and P – E (Fig. 6.12f, h) in which 



 

83 

CMIP3 predicts a uniform decrease in precipitation over the entire region and CMIP5 

also predicts a nearly uniform decrease, and both ensembles predict severe uniform P – E 

drying trends. The different processes which govern water availability in this region 

make it another highly relevant choice for investigation; Fig. 6.13b and d indicate that 

both CMIP3 and CMIP5 archives produce systematic bias in simulating precipitation for 

the whole region. Figs. 6.7-6.11 contain the results of the seasonal region-averaged 

precipitation, evaporation, and P – E using the CMIP3 and CMIP5 ensembles. The 

wintertime intensity (calculated as the ratio of winter to annual) of precipitation is very 

high for this region, indicating the high importance of winter storm systems for water 

resource management. The projected decrease in winter precipitation (Fig. 6.8) and 

increase in evaporation (Fig. 6.10) and the resulting strong drying trend (Fig. 6.11) 

predicted by both model ensembles may be cause for concern for local stakeholders. 

However, notable differences can be seen between the CMIP3 and CMIP5 simulated 

trends. The ensemble drying trends in precipitation predicted by the CMIP5 RCP4.5 

scenario is less severe for all seasons than those predicted by the CMIP3 SRES A1B 

scenario, but the drying trends in evaporation are more intense for the CMIP5 simulations 

during winter, spring and summer. The resulting trend in P – E (Fig. 6.11) is thus still 

present in the CMIP5 simulations, although somewhat less intense than that predicted by 

their CMIP3 predecessors (Fig. 6.12f, h). These differences are due to variances between 

the two scenario forcings which are imposed on each model ensemble as well as new 

modifications which are present in the updated CMIP5 models; however, it is unclear 

how much each source contributes to the simulated output differences between 

ensembles. 
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Fig. 6.7 Same as Fig. 6.2 but for the 1980-1999 climatology of precipitation over the 

Mediterranean region. 
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Fig. 6.8 Same as Fig. 6.3 but for the trend in precipitation over the Mediterranean region. 
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Fig. 6.9 Same as Fig. 6.4 but for the 1980-1999 climatology of evaporation over the 

Mediterranean region. 
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Fig. 6.10 Same as Fig. 6.5 but for the trend in evaporation over the Mediterranean region. 

 



 

88 

 

Fig. 6.11 Same as Fig. 6.6 but for the monthly climatology and trend in P-E for CMIP3 

(left column) and CMIP5 (right column), for the Mediterranean region. The format of 

presentation is the same as Fig. 6.6, with four different combinations of P and E used to 

construct the observed 1980-1999 climatology of P-E in the upper panels. 

6.4     Conclusions 

This chapter provides a detailed analysis of multiple terms associated with the 

water cycle for two semi-arid regions; the results are highly beneficial both to model 

development and to water managers who will use the CMIP archives for formulating 

projections of future climate. The analysis of complementary moisture variables provides 

a deeper understanding of model strengths and weaknesses when performing studies of 

present and future climate. The CMIP5 archive is found to perform similarly to CMIP3 in 

most tested quantities, exhibiting no statistically significant improvement in spread. Both 

ensembles predict drying trends for both the southwestern US and Mediterranean regions 

due to seasonal decreases in precipitation and increases in surface evaporation, indicating 
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reduced surface water availability over the next 100 years. However, in certain regional 

and seasonal quantities, the two ensembles demonstrate notable bias when compared with 

observational datasets. The diverse behavior of the models provides an interesting 

comparison for the selected quantities. Significant bias may be contributed by poor 

convective parameterizations by ensemble members in regions with large amounts of 

sub-grid scale precipitation (such as North American monsoonal rainfall). Since these 

processes occur at scales even below the refinement of the highest resolution models in 

the archives, no significant improvements can be determined in the performance between 

the previous CMIP3 and current CMIP5 ensembles for the quantities tested in this study. 

 



 

90 

 

Fig. 6.12 (a) The trend in the annual mean P over Southwest US from CMIP3. (b) The 

trend in the annual mean P over the Mediterranean region from CMIP3. (c) The trend in 

the annual mean P over Southwest US from CMIP5. (d) The trend in the annual mean P 

over the Mediterranean region from CMIP5. Panels (e), (f), (g), and (h) are the P-E 

counterparts of (a), (b), (c), and (d). The trend is defined as the average of 2080-2099 

minus that of 1980-1999. 
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Fig. 6.13 (a) The bias in the annual mean P over Southwest US for CMIP3. (b) The bias 

in the annual mean P over the Mediterranean region for CMIP3. (c) The bias in the 

annual mean P over Southwest US for CMIP5. (d) The bias in the annual mean P over 

the Mediterranean region for CMIP5. Panels (e), (f), (g), and (h) are the bias in P-E 

counterparts of (a), (b), (c), and (d). The bias is defined as the multi-model ensemble 

mean of CMIP3 or CMIP5 minus observation for 1980-1999. The GPCP data is used for 

the observed precipitation and ECMWF-Interim data used for evaporation.  
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CMIP3 20C3M climatology (1980-99) 

Southwestern US (Summer) Mediterranean (Winter) 

No. Model (CMIP3) Precipitation Evaporation Precipitation Evaporation 

1 BCCR-BCM2.0 0.92 1.72 2.35 2.82 

2 CCSM3 1.09 1.41 1.51 2.07 

3 CGCM3.1(T47) 0.98 1.41 1.69 2.40 

4 CGCM3.1(T63) 1.51 2.39 1.58 2.13 

5 CNRM-CM3 1.36 1.86 1.43 1.95 

6 CSIRO-Mk3.0 0.88 1.29 1.62 2.36 

7 CSIRO-Mk3.5 1.39 1.67 1.76 1.99 

8 ECHAM5/MPI-OM 1.49 1.67 1.56 2.20 

9 FGOALS-g1.0 1.56 2.20 2.01 2.52 

10 GFDL-CM2.0 1.83 2.43 1.21 1.87 

11 GFDL-CM2.1 1.93 2.64 1.67 2.06 

12 GISS-AOM 1.00 1.19 1.58 2.19 

13 GISS-EH 0.99 1.38 1.61 1.90 

14 GISS-ER 0.69 1.29 1.42 1.95 

15 INM-CM3.0 2.40 2.95 1.88 2.41 

16 INGV-SXG 1.30 2.08 1.44 2.33 

17 IPSL-CM4 1.71 1.84 1.76 2.78 

18 MIROC3.2(hires) 1.44 2.36 1.58 1.96 

19 MIROC3.2(medres) 1.40 1.71 1.68 2.00 

20 MRI-CGCM2.3.2 1.38 1.59 1.52 2.25 

21 PCM 2.61 2.75 1.41 2.11 

22 UKMO-HadCM3 1.31 1.72 1.66 1.94 

23 UKMO-HadGEM1 1.20 1.55 1.94 2.18 

 
Ensemble mean 1.41 1.87 1.65 2.19 

 
Std. deviation 0.46 0.51 0.24 0.26 

 
Model (obs.)  

 
CMAP 1.33 - 1.64 - 

 
GPCP 1.63 - 2.11 - 

 
NCEP - 2.32 - 2.54 

 
ECMWF - 2.19 - 1.87 

Table 6.1: CMIP3 (20C3M simulation runs) and observational dataset quantities 

calculated as long-term past (1980-1999) seasonal averages: (July-September) for 

southwestern US (30N – 40N, 120W – 95W), (December-February) for Mediterranean 

region (30N – 45N, 5W – 35E) for mean climatological values in units of mm/day. 

Calculated ensemble mean and standard deviation for each quantity are also shown. 

  



 

93 

 
CMIP5 Historical climatology (1980-99) 
Southwestern US (Summer) Mediterranean (Winter) 

No. Model (CMIP5) Precipitation Evaporation Precipitation Evaporation 

1 BCC-CSM1.1 1.30 1.82 2.09 2.30 

2 BCC-CSM1.1.m 1.34 1.88 2.09 2.35 

3 BNU-ESM 1.17 1.27 1.66 2.29 

4 CanCM4 0.70 0.94 1.47 2.25 

5 CanESM2 1.80 2.20 1.79 2.57 

6 CCSM4 0.85 1.25 1.53 2.23 

7 CMCC-CESM 0.95 1.41 1.44 2.22 

8 CMCC-CM 1.74 2.42 1.52 2.39 

9 CMCC-CMS 1.80 2.47 1.21 1.73 

10 CNRM-CM5 1.31 2.35 1.59 1.91 

11 ACCESS1.0 1.34 2.52 1.56 1.85 

12 ACCESS1.3 1.50 2.10 1.57 2.13 

13 CSIRO-Mk3.6.0 0.80 1.25 2.05 2.41 

14 EC-EARTH 1.23 1.82 1.93 2.46 

15 FGOALS-g2 1.81 1.88 2.41 2.50 

16 FGOALS-s2 0.42 0.71 1.44 2.69 

17 FIO-ESM 2.08 2.64 1.49 2.42 

18 GFDL-CM3 2.21 2.76 1.64 2.19 

19 GFDL-ESM2G 2.35 2.67 1.61 2.18 

20 GFDL-ESM2M 2.07 2.53 1.69 2.27 

21 GISS-E2-H 2.04 2.85 1.97 2.63 

22 GISS-E2-H-CC 1.96 2.77 1.92 2.59 

23 GISS-E2-R 2.19 2.84 1.69 2.27 

24 GISS-E2-R-CC 2.21 2.84 1.62 2.21 

25 HadCM3 1.31 1.75 1.63 1.93 

26 HadGEM2-AO 1.29 1.78 1.97 2.19 

27 HadGEM2-CC 1.18 1.69 2.24 2.24 

28 HadGEM2-ES 1.14 1.61 1.95 2.19 

29 INM-CM4 1.16 1.68 1.26 2.08 

30 IPSL-CM5A-LR 1.15 1.98 1.35 1.93 

31 IPSL-CM5A-MR 1.00 1.86 1.14 1.87 

32 IPSL-CM5B-LR 2.07 2.69 1.49 1.82 

33 MIROC4h 2.13 2.49 1.60 2.24 

34 MIROC5 1.47 2.38 2.19 2.64 

35 MIROC-ESM 2.01 2.78 1.68 2.48 

36 MIROC-ESM-CHEM 1.70 2.56 1.67 2.56 

37 MPI-ESM-LR 1.59 2.47 1.80 2.26 

38 MPI-ESM-MR 1.48 2.21 1.72 2.19 

39 MPI-ESM-P 1.59 2.64 1.95 2.33 

40 MRI-CGCM3 2.03 2.90 1.30 2.26 

41 NorESM1-M 2.10 2.79 1.81 2.34 

42 NorESM1-ME 2.08 2.63 1.78 2.29 

 Ensemble mean 1.56 2.17 1.70 2.26 

 Std. deviation 0.46 0.51 0.28 0.23 

 

Table 6.2: CMIP5 quantities calculated as long-term past (1980-1999) seasonal averages: 

(July-September) for southwestern US (30N – 40N, 120W – 95W), (December-February) 

for Mediterranean region (historical CMIP5 simulation runs) for mean climatological 

values (abscissa, mm/day) and seasonal ratios (ordinate). Calculated ensemble mean and 

standard deviation for each quantity are also shown.  
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CMIP3 SRES A1B trend (2080-99 minus 1980-99) 

Southwestern US (Summer) Mediterranean (Winter) 

No. Model (CMIP3) Precipitation Evaporation Precipitation Evaporation 

1 BCCR-BCM2.0 0.23 0.11 -0.39 -0.05 

2 CCSM3 0.12 0.12 -0.14 0.10 

3 CGCM3.1(T47) -0.11 -0.16 -0.09 0.12 

4 CGCM3.1(T63) -0.29 -0.24 -0.34 0.04 

5 CNRM-CM3 -0.11 -0.18 -0.06 0.09 

6 CSIRO-Mk3.0 0.10 0.11 -0.04 0.18 

7 CSIRO-Mk3.5 -0.64 -0.64 -0.14 0.09 

8 ECHAM5/MPI-OM -0.56 -0.51 -0.36 -0.07 

9 FGOALS-g1.0 -0.25 -0.38 -0.14 0.26 

10 GFDL-CM2.0 0.06 -0.10 -0.10 0.15 

11 GFDL-CM2.1 -0.16 -0.32 -0.20 0.18 

12 GISS-AOM -0.07 -0.03 -0.12 0.15 

13 GISS-EH -0.20 -0.18 -0.19 0.20 

14 GISS-ER 0.09 0.05 -0.19 0.11 

15 INM-CM3.0 -0.20 -0.41 -0.34 0.08 

16 INGV-SXG -0.30 -0.60 -0.30 0.09 

17 IPSL-CM4 0.10 0.05 -0.35 0.27 

18 MIROC3.2(hires) -0.18 -0.11 -0.55 -0.07 

19 MIROC3.2(medres) 0.17 0.04 -0.04 0.01 

20 MRI-CGCM2.3.2 0.18 0.11 -0.25 0.18 

21 PCM 0.07 -0.06 -0.03 0.06 

22 UKMO-HadCM3 0.05 -0.09 -0.09 0.18 

23 UKMO-HadGEM1 0.10 0.00 -0.13 0.07 

 
Ensemble mean -0.08 -0.15 -0.20 0.10 

 
Std. deviation 0.23 0.23 0.14 0.09 

 

Table 6.3: Same as Table 6.1 but for long-term mean future (2080-2099) minus past 

(1980-1999) trends using CMIP3 SRES A1B simulation runs. 
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CMIP5 RCP4.5 trend (2080-99 minus 1980-99) 

Southwestern US (Summer) Mediterranean (Winter) 

No. Model (CMIP5) Precipitation Evaporation Precipitation Evaporation 

1 BCC-CSM1.1 -0.18 -0.26 0.05 0.20 

2 BCC-CSM1.1.m 0.15 0.11 -0.20 0.25 

3 BNU-ESM -0.09 -0.10 0.08 0.25 

5 CanESM2 -0.05 -0.07 -0.06 0.23 

6 CCSM4 0.04 0.07 -0.10 0.09 

8 CMCC-CM 0.16 0.15 -0.10 0.15 

9 CMCC-CMS 0.08 0.09 0.07 0.18 

10 CNRM-CM5 -0.23 -0.05 -0.10 0.14 

11 ACCESS1.0 0.00 -0.09 -0.05 0.11 

12 ACCESS1.3 -0.07 0.01 0.08 0.14 

13 CSIRO-Mk3.6.0 0.01 -0.02 -0.15 0.20 

14 EC-EARTH -0.03 -0.10 -0.12 0.08 

15 FGOALS-g2 -0.09 -0.06 -0.06 0.07 

16 FGOALS-s2 0.02 0.04 -0.14 0.28 

17 FIO-ESM 0.13 0.04 -0.30 0.01 

18 GFDL-CM3 -0.12 -0.04 -0.21 0.20 

19 GFDL-ESM2G -0.03 0.07 -0.11 0.11 

20 GFDL-ESM2M 0.08 0.00 -0.17 0.12 

21 GISS-E2-H -0.25 -0.13 0.01 0.08 

22 GISS-E2-H-CC -0.12 -0.06 -0.16 0.04 

23 GISS-E2-R -0.31 -0.26 0.01 0.18 

24 GISS-E2-R-CC -0.22 -0.15 0.08 0.18 

26 HadGEM2-AO -0.28 -0.34 0.04 0.18 

27 HadGEM2-CC -0.07 -0.11 -0.05 0.11 

28 HadGEM2-ES 0.01 -0.10 0.05 0.19 

29 INM-CM4 0.04 -0.02 -0.13 0.01 

30 IPSL-CM5A-LR -0.09 -0.11 -0.17 0.02 

31 IPSL-CM5A-MR -0.14 -0.16 -0.02 0.13 

32 IPSL-CM5B-LR 0.21 0.11 -0.06 0.15 

34 MIROC5 0.06 -0.15 -0.02 0.14 

35 MIROC-ESM 0.05 -0.15 -0.26 0.19 

36 MIROC-ESM-CHEM 0.23 -0.02 -0.32 0.09 

37 MPI-ESM-LR -0.16 -0.34 -0.14 0.04 

39 MPI-ESM-P -0.25 -0.07 -0.21 -0.03 

40 MRI-CGCM3 0.24 0.19 0.17 0.10 

41 NorESM1-M -0.05 -0.09 0.04 0.19 

42 NorESM1-ME -0.17 -0.16 -0.10 0.13 

 Ensemble mean -0.04 -0.06 -0.06 0.16 

 Std. deviation 0.15 0.12 0.12 0.07 

 

Table 6.4: Same as Table 6.2 but for long-term mean future (2080-2099) minus past 

(1980-1999) trends using CMIP5 RCP4.5 simulation runs. 
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Region Season Quantity T-test KS-test F-test 

Southwest US 

Winter Precipitation 0 0 0 

(December-February) Evaporation 0 0 0 

 

P-E 0 0 0 

Spring Precipitation 0 1 0 

(March-May) Evaporation 0 0 0 

 

P-E 0 0 0 

Summer Precipitation 0 0 0 

(June-August) Evaporation 1 1 0 

 

P-E 1 1 0 

Fall Precipitation 0 0 0 

(September-November) Evaporation 0 0 0 

 

P-E 0 1 0 

Mediterranean 

Winter Precipitation 0 0 0 

(December-February) Evaporation 0 1 0 

 P-E 0 0 0 

Spring Precipitation 0 0 0 

(March-May) Evaporation 0 0 0 

 P-E 0 0 0 

Summer Precipitation 0 0 0 

(June-August) Evaporation 0 1 0 

 P-E 0 0 0 

Fall Precipitation 0 0 0 

(September-November) Evaporation 0 0 0 

 P-E 0 0 0 

 

Table 6.5: Two-sample Student’s T-test, Kolmogorov-Smirnov test, and F-test for equal 

variance results performed with the CMIP3 and CMIP5 ensembles for selected quantities 

(1980-1999). A result of 0 supports the null hypothesis that the two ensembles are 

statistically indistinguishable; a result of 1 rejects the null hypothesis at the 5% 

significance level. 
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CHAPTER 7 

EXAMINING MODEL QUALITY IN SIMULATING  

GLOBAL MOISTURE TRANSPORT 

This investigation delves deeper into the quality of the water cycle in the CMIP 

model archives by further examining the individual terms of the water budget. Four 

models from the most current CMIP5 model archive are selected for analysis due to the 

limited availability of daily simulation output data. The horizontal and vertical structure 

of present (1981-2000) global moisture transport is examined and compared with NCEP 

Reanalysis I observational data. All quantities are directly computed from the model 

simulation data for both the time-averaged present and future (2081-2100) states for the 

selected CMIP5 models. It is shown that the models reasonably reproduce global 

moisture transport; however, all models exhibit deficiencies which are illuminated when 

the calculated quantities are compared with those produced using the observational 

dataset. 

7.1     Introduction 

Analyses of precipitation in model simulations tend to focus on average 

precipitation quantities for both regional and global studies (Covey et al. 2003, Rasch et 

al. 2006, Solomon et al. 2007, Karl et al. 2009). However, precipitation can exhibit 

intermittent behavior which cannot be quantified by continuous values like temperature 

and other climate variables. Precipitation also encompasses different phase states and 

convective properties, each with particular properties. Previous studies have made efforts 

in quantifying the response of model simulated precipitation to the physical variables 
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associated with its generation. It has been shown that the frequency of precipitation 

extremes in climate change scenarios depends on changes in the moist-adiabatic 

temperature lapse rate, in the upward velocity, and in the temperature when precipitation 

extremes occur (O’Gorman and Schneider 2009). Challenges in parameterizing 

precipitation within models have been shown to be related to specific aspects of 

precipitation such as regional patterns, temporal variations, and the proper combination 

of the frequency and intensity of precipitation (Houghton et al. 2001, Covey et al. 2003, 

Meehl et al. 2005, Trenberth et al. 2007). Examining multiple characteristics of 

precipitation can reveal deficiencies in model physics which is necessary in order to 

understand possible contributing sources of bias in model simulations. For example, it is 

possible that multiple errors in these processes cancel to produce a correct precipitation 

field in the simulation. Previous studies have examined the individual quantities in the 

moisture budget using observational datasets: Mestas-Nuñez et al. (2007) evaluated 

seasonal convergence of water vapor flux, and Trenberth and Guillemot (1995) have 

examined the global vertically integrated moisture budget through evaporation minus 

precipitation calculations. Liepert and Previdi (2012) also evaluate the global budget for 

precipitation and evaporation in the CMIP3 archive. This study proposes to build on 

previous work by further examining the full equation for the water budget for selected 

models from the updated CMIP5 archive. An in-depth analysis of the individual terms of 

the moisture budget and a comparison of the quantities with those calculated from 

observational data will provide a better evaluation of model quality in simulating 

precipitation. 
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Chosen for analysis are four models from the CMIP5 archive which have daily 

output data available for the necessary terms. The simulation data from the ‘historical’ 

scenario run output is used for the CMIP5 models: GFDL ESM2M (NOAA Geophysical 

Fluid Dynamics Laboratory, resolution 144x90 L24), HadGEM2 CC (Hadley Centre for 

Climate Prediction and Research, 192x145 L40), MPI ESM LR (Max Planck Institute for 

Meteorology, T63), and BNU ESM (Beijing Normal University, T42). All four models 

are of the newest type of ‘Earth system’ models (ESM) which represent a general group 

of the most advanced global coupled climate models in the archive, featuring a range of 

new components such as more interactive atmospheric chemistry, aerosols, and dynamic 

vegetation. The NCEP/NCAR Reanalysis I (Kalnay et al. 1996) data (T62 resolution) is 

used as the observational dataset for comparison with the model simulations. All 

calculations use simulations archived at daily time steps unless otherwise noted. 

7.2     Calculating the mean flux of water vapor transport 

The amount of water vapor for a unit area column of air extending from the 

surface to the top of the atmosphere is defined as the precipitable water   contained 

within the unit column (Peixoto and Oort 1992), 

    𝜙    ∫  
  

 

  

 

                      

where   is the specific humidity,   is the pressure, and   is the acceleration of gravity.   

is a function of longitude  , latitude 𝜙, and time  . Fig. 7.1 depicts the global distribution 

of annual mean precipitable water  ̅. The general structure of precipitable water in the 

atmosphere shows a general decrease from the equatorial region, where the highest 
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values are observed, to the poles, where minimums occur. The magnitude is generally 

higher over ocean than land, and the magnitude is also somewhat lower over the desert 

areas corresponding to the large anticyclones of the subtropics. The vertical structure of 

water vapor is shown in Fig. 7.2 in the form of zonal-mean cross sections of the specific 

humidity q. Decreasing dramatically with height, the concentration of water vapor is 

highest near the surface of the Earth.  

 

Fig. 7.1 Global distribution of the (1981-2000) atmospheric precipitable water annual 

mean in units of 10 kg/m
2
 using NCEP Reanalysis I observational data. 

The integration of the horizontal transport of water vapor with respect to pressure 

leads to the definition of the water vapor flux  , 

    𝜙    ∫   
  

 

  

 

                              

whose components are given as the zonal    and meridional    water vapor flux, 

   ∫   
  

 
  〈  〉

  

 

                     

   ∫   
  

 
  〈  〉
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where u and v are the zonal and meridional wind velocity components of the atmospheric 

flow vector  . The time averages of the total zonal transport of water vapor  ̅  and the 

total meridional transport of water vapor  ̅  are defined as, 

 ̅  〈  〉̅̅ ̅̅ ̅̅                       

 ̅  〈  〉̅̅ ̅̅ ̅̅                       

The quantity 〈  〉̅̅ ̅̅ ̅̅  is defined as the time and vertical average of the product, 

〈  〉̅̅ ̅̅ ̅̅  〈 〉̅̅ ̅̅  〈 〉̅̅ ̅̅  〈 ̅   ̅  〉  〈 〉 〈 〉 ̅̅ ̅̅ ̅̅ ̅̅ ̅̅  〈            〉̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅                       

where the first and second terms on the right-hand side represent the time-average 

barotropic and baroclinic contributions, respectively, and the last two terms represent the 

transient barotropic and baroclinic perturbations, respectively. The quantity 〈  〉̅̅ ̅̅ ̅̅  may be 

defined similarly.  

The vertical average for the zonal component is calculated as the sum of the ratio 

of the discrete pressure levels to the surface pressure, or, 

〈  〉  
∫      

  

  

∫   
  

  

 
 

     
∫      

  

  

 
 

     
∑           

 

   

                     

The pressure level thickness       is a function of the vertical pressure level and varies 

with the surface pressure for that particular location. It is determined using a central finite 

difference approximation. The vertical average for the meridional component 〈  〉 may 

be found similarly.  

Finally, the time averages of the zonal 〈  〉̅̅ ̅̅ ̅̅  (and respective meridional 〈  〉̅̅ ̅̅ ̅̅ ) 

components may be calculated by: 
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〈  〉̅̅ ̅̅ ̅̅  
 

 
∑〈  〉  

 

   

                     

Figs. 7.3 and 7.4 show the global distributions of the vertical mean zonal water vapor 

transport in the eastward direction 〈  〉̅̅ ̅̅ ̅̅  and meridional water vapor transport in the 

northward direction 〈  〉̅̅ ̅̅ ̅̅  by all motions. The general pattern of the zonal transport 

reflects the zonal flow pattern, disrupted in only certain locations, such as over India 

where the summer monsoon circulation occurs. The meridional transport depicts the 

largest transport of moisture by Hadley circulation, and its variability is associated with 

the movement and changes in Hadley cells. A closer look at the semiarid regions of the 

southwestern US and the Mediterranean in Fig. 7.5 depicts the divergence of moisture 

associated with the descending dry branch of Hadley cell circulation in the subtropical 

regions related with semiarid climate conditions. 

The vertical integrals of the moisture transport terms represent the actual transport 

of the mass of water vapor in the atmosphere. For the zonal component   , we may 

calculate the vertical integral with, 

∫   
  

  

  

 
 

 

 
∑     

 

   

                           

in which the integral is calculated from local surface pressure    to a pressure at the top 

of the atmosphere    over K pressure levels using central difference approximation for 

each level k. An approximation for the vertical integral of the meridional component    

is employed in section 7.3 for selected models and observational data, and an in-depth 

analysis of the moisture flux divergence can be found in section 7.4. 
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A comparison of the global horizontal and vertical structure of water vapor 

transport between the selected CMIP5 models and the NCEP Reanalysis data reveals 

certain model deficiencies. For example, while all models reproduce the basic vertical 

structure of zonal-mean atmospheric water vapor with a higher concentration near the 

surface and equatorial regions (Fig. 7.2), all of the models underrepresent the annual 

equatorial maximum water vapor when compared with observational data for 1981-2000. 

Three of the CMIP5 models also suffer from errors in reproducing the concentration of 

water vapor in the vertical column over the polar regions; these errors are consistently 

present in the simulation data for all calculated time periods. Since these models are 

similar in that they utilize relatively new schemes which govern active atmospheric 

chemistry, it is possible that the generated errors are due to these chemistry components 

of the models. Comparisons between the CMIP5 models and observational data for the 

vertically averaged horizontal structure of water vapor transport reveal a general strong 

agreement between simulations. All models reproduce the low- and high-pressure 

systems associated with Hadley circulation and angular momentum which drive the 

global transportation of water vapor from the equator to the polar regions. 
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Fig. 7.2 Zonal-mean cross sections of specific humidity for DJF and JJA mean conditions 

averaged from 1981-2000 comparing four CMIP5 models (‘historical’ simulation runs) 

with NCEP Reanalysis I observational data. Shaded regions indicate the highest 

concentration of water vapor (>10 g/kg). This figure may be verified with Mo and 

Higgins (1996) for the NCEP data, but with improved accuracy over their analysis, 

especially over the polar regions due to corrected values where observational data is 

missing. 
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Fig. 7.3 Global distributions of the vertical mean meridional water vapor transport in the 

northward direction by all motions in m/s g/kg for annual mean (1981-2000) conditions 

using CMIP5 models (‘historical’ simulation runs) and NCEP Reanalysis I observational 

data. 
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Fig. 7.4 Global distributions of the vertical mean zonal water vapor transport in the 

eastward direction by all motions in m/s g/kg for annual mean (1981-2000) conditions 

using CMIP5 models (‘historical’ simulation runs) and NCEP Reanalysis I observational 

data. 
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Fig. 7.5 Distributions of the meridional water vapor transport in the northward direction 

by all motions in m/s g/kg for annual mean (1981-2000) conditions using CMIP5 models 

(‘historical’ simulation runs) and NCEP Reanalysis I observational data for the 

southwestern US (top) and Mediterranean (bottom) regions. 
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7.3     The moisture transport term 

The atmospheric moisture budget analysis continues with an inspection of the 

meridional moisture transport term (qv). We may explore moisture transport by different 

time scales in which the total moisture transport is the sum of the long term mean and the 

climate and synoptic anomalies: 

                 ̅                                         

                                                                        

The mean mass conservation of the atmosphere may be defined as, 

 ̅    ̅̅ ̅      ̅̅ ̅̅ ̅̅       ̅̅ ̅̅ ̅̅ ̅                      

The mean moisture budget is a balance between the moisture flux divergence and the 

water source/sink terms. In the tropics and subtropics, the meridional moisture flux is 

dominated by transport from the mean flow terms. In the midlatitudes, the meridional 

flux by synoptic anomalies is equivalent to or greater than the meridional flux by mean 

flow. This synoptic variability is focused within atmospheric rivers (Zhu and Newell 

1998) which provide extratropical water vapor transport from the tropics. The profile of 

the zonal mean vertically integrated meridional moisture transport term (qv) can thus be 

used as a measure of Hadley circulation. Adapting (7.10), this quantity is defined as, 

∫   
  

  

  

 
 

 

 
∑     

 

   

                           

where q and v are the simulated daily values for specific humidity and northward 

meridional wind velocity, respectively. The vertical integral was calculated from the local 

surface pressure to a pressure near the top of the atmosphere over K pressure levels using 
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central difference approximation for each level k. Since only a small fraction of the total 

water vapor present in the  

 

Fig. 7.6 Seasonal decomposition of the vertically integrated meridional profiles of the 

zonal mean seasonal northward transport of water vapor into the monthly mean 

component      and the sub-monthly variations due to transient eddies     . Derived 

from 1981-2000 in units of 100 g/(cm*s) using CMIP5 models (‘historical’ simulation 

runs) and NCEP Reanalysis I observational data. 

atmosphere exists at an altitude higher than the 300 mb pressure level, this level was 

chosen as the integral upper limit for calculation.  

The calculation for the zonal mean vertically integrated meridional moisture 

transport was performed for each grid space on the respective model then averaged 

zonally to produce the profiles shown in Fig. 7.6. The profile for NCEP Reanalysis data 

in Fig. 7.6 may be verified with the findings of Mo and Higgins (1996). These profiles 

show a good agreement between the CMIP5 models and the observational dataset. 

However, notable differences can be seen between the observations and the CMIP5 

model simulations. All of the models produce a stronger cross equatorial flow than 
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observations during all seasons except the northern hemisphere summer (June-August) 

months. Additionally, the model simulations produce a muted poleward transport from 

the northern midlatitudes and an amplified poleward transport from the southern 

midlatitudes in all seasons when compared with the observational dataset. Fig. 7.6 further 

decomposes the total meridional transport of water vapor into the average contributions 

(produced using monthly means)       and the sub-monthly transient eddies produced 

using daily average values     . The sub-monthly contributions are significant sources of 

transport from the equatorial region in all seasons, and their inclusion justifies the 

necessity of using data archived for daily values when analyzing the quality of water 

transport in model simulations. 

7.4     Calculation of the divergence of moisture flux 

The next step in the analysis of model quality in calculating the water budget is 

the computation of the divergence of moisture flux term, or    ⃑ . Vertical integration 

with respect to pressure of the water vapor balance equation combined with mass 

continuity leads to the mass conservation equation for water vapor in the atmosphere, 

  

  
     ⃑                           

where E is evaporation, P is precipitation, and    ⃑  is the moisture flux divergence or net 

outflow of water vapor through the sides of the atmospheric column. In long-term 

averages, the storage and tendency terms are small and may be neglected (e.g. Huang et 

al. 2005, Trenberth et al. 2007). This divergence may be represented mathematically by, 

   ⃑  
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and measures the difference between the inflow and outflow of water vapor to the 

atmospheric column. A positive divergence means that outflow is greater than inflow, 

and a negative divergence (or convergence) means that inflow is greater than outflow. 

The spherical form of the divergence equation (7.4) can be derived following the 

methodology of Kreyzig (1993), 

   ⃑  
 

     𝜙
(
   

  
 

       𝜙 

 𝜙
)                      

where    is the radius of the Earth taken as 6371.2 km,    and    are the zonal and 

meridional components of vapor flux,   is longitude in radians, and 𝜙  is latitude in 

radians. The central difference approximation of 7.15 is given by 

   ⃑       
 

     (𝜙 )
(
                   

           

 
   (𝜙   )               𝜙             

(𝜙    𝜙   )
)                       

This calculation is performed on the selected CMIP5 models as well as NCEP 

observational reanalysis data for comparison. The results are shown in Fig. 7.7. The 

general behavior of the global moisture flux calculated using observational data is well 

reproduced by the moisture flux computed with CMIP5 model simulation data. Fig. 7.7 

gives another good indicator of model quality in producing Hadley circulation. Shaded 

areas denote a negative moisture flux divergence from the atmospheric column, 

indicating inflow of water vapor to the region. White areas denote a positive moisture 

flux divergence which indicates an outflow of water vapor. Moisture in the atmosphere is 

concentrated in the tropics, while the subtropical regions exhibit expected patterns of 

drying. 
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Fig. 7.7 The global annual divergence of moisture flux averaged from 1981-2000 using 

CMIP5 models (‘historical’ simulation runs) and NCEP Reanalysis I observational data. 

Contour interval is 1 mm/day. Shading indicates negative values. 

7.5     Decomposition of the moisture convergence trend  

The trend in moisture convergence is defined as the difference between a time-

averaged future state and present (or past) state. For a complete qualitative analysis of 

these terms and their contributions to the water vapor transport, the convergence of 

moisture can be further decomposed into terms related to the change in circulation (the 

dynamical change) and the change in concentration of water vapor (the thermodynamic 

change). Following the methodology by Seager et al. (2007), the change in the 

convergence of moisture can be approximated by, 
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where    and    represent the present values of atmospheric humidity and flow, and    

and    represent the future – present trend in these values, respectively. The first term on 

the right-hand side of (6.1) approximates the contribution from the change in mean 

circulation, and the second term approximates the contribution from the change in mean 

humidity. Specifically, these terms show the contributions from model forcings of the 

individual water vapor transport terms on the convergence of moisture in the atmosphere. 

Fig. 7.8 shows the total trend and term decomposition of vertically integrated zonal 

averaged meridional water vapor transport between future (2081-2100) and present 

(1981-2000) epochs. The strongest trend in poleward water vapor transport is due to the 

dynamical change      for all models; this result is demonstrated in the similarity 

between the total trend and the trend in dynamical change profiles. Most models agree on 

the sign of the change and general magnitude; however, the HadGEM2 CC model 

produces a much more intense annual response of equatorial transport to climate change 

than the other models. The zonal average meridional transport profile of the 

thermodynamic change      demonstrates much weaker model agreement in both 

magnitude and intensity with strong seasonal variation between models. Fig. 7.9 depicts 

the global trend in moisture convergence decomposed into the dynamical and 

thermodynamical change terms for the same time periods. Here, the motions due to 

changes in mean humidity dominate moisture transport with most intense changes 

occurring over the equatorial region. The top four panels in Fig. 7.9 of the trend in 

moisture convergence closely resemble the 1981-2000 pattern depicted in Fig. 7.7, 

signifying that the trend of the global pattern of atmospheric water vapor remains largely 

the same in response to climate change, and the global structure of moisture transport is 
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most dependent on the atmospheric water vapor. These figure demonstrates the 

importance of including the term for (    ) sub-monthly variations in the calculations of 

total moisture flux convergence, as this term is not negligible. The recent study by Hsu et 

al. (2013) included calculations of moisture flux convergence values for many CMIP5 

models, but since daily archived simulation data is not available for these models, these 

values exclude the contributions due to high-frequency eddies. The values presented here 

for the selected models for both present climatology (Figs. 7.6 and 7.7) and 

decomposition of trend (Figs. 7.8 and 7.9) are thus more accurate than those published in 

the Hsu et al. (2013) study. 

 

Fig. 7.8 Seasonal decomposition of the future minus present trend in vertically integrated 

meridional profiles of the zonal mean seasonal northward transport of water vapor into 

change in specific humidity     , the change in mean circulation     , and transient 

eddies      in units of 100 g/(cm*s) using the CMIP5 model RCP 4.5 emissions scenario 

for future (2081-2100) and ‘historical’ simulation runs for past (1981-2000) epochs. 
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Fig. 7.9 Decomposition of the trend in moisture convergence into the change in specific 

humidity (top four panels) and the change in mean circulation (bottom four panels) 

calculated as the difference between CMIP5 model RCP 4.5 emissions scenario for future 

(2081-2100) and ‘historical’ simulation runs for past (1981-2000) epochs. Shading 

contours in mm/day.  
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CHAPTER 8 

IDENTIFYING MODEL RESPONSE TO CLIMATE CHANGE 

The final step in this project examines the production of precipitation within the 

atmospheric component of climate models by identifying a link between greenhouse gas 

(GHG) emissions and simulated precipitation. A direct consequence of changing 

atmospheric concentrations of GHGs is seen in the increased net radiation acting on the 

climate system, causing a warming of surface conditions. One method for modeling these 

effects is to isolate the atmospheric response to forced changes in sea surface temperature 

(SST). Using this method, the following study discusses the results of simulations 

generated by in-house model runs of the NCAR CAM 3.1 atmospheric general 

circulation model (AGCM) forced by an SST boundary condition. The SST trend data 

which provides the forcing for the AGCM simulations is derived from selected CMIP5 

coupled atmosphere-ocean general circulation models (AOGCMs). Global patterns of the 

21
st
 century minus 20

th
 century trend in precipitation are shown to be reasonably well 

reproduced using the AGCM and the SST trend forcing. Comparisons of regional 

precipitation trends, however, do show large differences between the AGCM simulations 

and fully-coupled AOGCM output for each model, indicating the limitations of SST 

control on regional precipitation. 

8.1     Introduction 

The understanding of temperature variations in the climate system as a response 

to the effects of climate change has improved with each new iteration of the model 

ensembles. Climate sensitivity to changes in radiative forcing due to higher atmospheric 
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greenhouse gas concentrations is well understood, and the sign and magnitude of the 

changes can be predicted with high confidence. An immediate response to increased 

radiative forcing is a warming of global surface temperatures, with land surfaces 

changing at a faster rate than oceans and the Northern Hemisphere experiencing the 

highest degree of warming (Solomon et al. 2007, sec. 10.3). While ocean warming occurs 

more slowly than on land, the changes have a robust effect on the atmosphere. Heating at 

the Earth’s surface affects evaporation and sensible heating and increases the capacity of 

the atmosphere to retain moisture. These changes alter the global hydrological cycle and 

shape the patterns and intensity of precipitation. 

The correlation between the observed trends in precipitation and the trend in SST 

has been examined for multiple regions. For example, Hoerling and Kumar (2003) 

demonstrate how the SST of the Indian Ocean influenced the post-1998 North American 

drought. Huang et al. (2009) examine how an atmospheric model forced with a tropical 

Atlantic SST gradient hindcast experiment may be used to study the influences on South 

American rainfall. Schubert et al. (2009) compare precipitation responses to SST forcing 

patterns in five selected atmospheric general circulation models and in NCEP Reanalysis 

observational data. It has also been shown that climate models exhibit well-known biases 

in the simulation of SST. For example, the models have displayed the tendency to 

produce a feature known as the equatorial Pacific “cold tongue” which extends too far 

west at colder temperatures than observation (Davey et al. 2002, Cai et al. 2003). This 

feature causes the model maximum SST (e.g. the Pacific warm pool) to become displaced 

too far west; the unrealistic displacement of the South Pacific convergence zone (SPCZ), 

evident as the well-known climate model issue which leads to the generation of an 
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incorrect double-band pattern of the intertropical convergence zone (ITCZ), has been 

shown to be linked to model bias in tropical rainfall patterns (Cai et al. 2009). The 

unrealistically warm SST in the southern ocean, incorrect zonal pattern of the SPCZ, and 

the double ITCZ are all common features in GCMs which have been studied in CMIP3 

and previous archives (e.g. Davey et al. 2002, Meehl et al. 2005, Lin 2007), and 

preliminary analyses indicate that these issues have not significantly improved in the 

CMIP5 ensemble (Meehl et al. 2012). 

8.2     Numerical experiments 

The use of fully-coupled climate model output SST trends as a forcing for 

atmospheric model simulations is inspired by Stephenson and Held (1993), who showed 

that many climate features can be reproduced using an atmospheric model. A similar 

analysis of the new CMIP5 archive provides the most updated results on this type of 

study. The selected models from the CMIP5 ensemble are all the newest type of GCMs, 

the Earth System models (ESMs, described in section 2.4.1); simulations forced by these 

models will provide valuable insight regarding the progression of global climate model 

quality. The list of CMIP5 models and their respective native resolutions is shown in 

Table 2.6. In order to isolate the atmospheric response to a forced SST, the simulations 

are executed using the NCAR CAM 3.1 atmospheric model which has a spectral T42 

resolution and 26 vertical pressure levels (performed by Houk Paek, see Paek 2013). The 

NCAR CAM 3.1 model represents the atmospheric component of the NCAR CCSM4 

fully-coupled model in CMIP5 (see section 2.4.1). Unlike a fully-coupled climate model 

in which the model components may pass information to each other and mutually adjust, 
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the atmospheric model treats the ocean component as a boundary condition. The imposed 

SST does not change based on the atmospheric response, but rather, it acts as a lower 

boundary forcing which drives an atmospheric response. The values for SST are long-

term means derived from simulations of selected CMIP5 models. The model is initialized 

with default conditions except for the values of SST and sea ice concentrations which are 

taken from the selected CMIP5 model simulation outputs, then simulations are performed 

for 30-year runs for each model using both a present (1981-2000) simulated state (with 

CMIP5 ‘historical’ runs providing the long-term mean) and a future (2081-2100) 

simulated state (the RCP 8.5 simulation data is selected for the future since this scenario 

depicts the highest radiative forcing response to greenhouse gas emissions of the CMIP5 

RCP scenario sets, producing the most pronounced simulated response). The trend in SST 

is the difference between these long-term means. Thus, the CAM 3.1 simulated 

precipitation response to the SST trend represents the precipitation trend attributed to the 

CMIP5 coupled climate model emissions scenario forcing. 

Initial analyses of the AGCM simulations indicate that certain atmospheric 

quantities are qualitatively well-produced in the runs forced by the SST trend. Paek and 

Huang (2013, in preparation) have shown that the global pattern of atmospheric zonal 

wind and angular momentum determined from simulation data may be verified with 

observations. These findings confirm that the atmospheric model simulations produce 

realistic data when forced with the CMIP5 SST trend. The analysis of the precipitation 

trend within these runs provides further insight regarding the diverse behavior of 

precipitation in climate model simulations. Conceptually, this analysis demonstrates how 

a warmer climate heats the oceans, and the change in SST influences the atmospheric  
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Institute Model Resolution 

Canadian Centre for Climate Modelling and Analysis 

(CCCMA) 
CanESM2 1.875°×1.875° L35 

National Center for Atmospheric Research (NCAR) CCSM4 1.25°×0.9° L26 

Geophysical Fluid Dynamics Laboratory (GFDL) GFDL-ESM2M 2.5°×2.5° L35 

Met Office Hadley Centre (MOHC) HadGEM2-ES 1.875°×1.25° L38 

Atmosphere and Ocean Research Institute (The University of 

Tokyo), National Institute for Environmental Studies, and 

Japan Agency for Marine-Earth Science and Technology 

(MIROC) 

MIROC-ESM 2.8°×2.8° L80 

Max Planck Institute for Meteorology (MPI-M) MPI-ESM-LR 1.875°×1.875° L47 

Table 8.1: CMIP5 climate models which are used for analysis in this study, shown with 

their respective modeling centers and horizontal resolutions (Paek and Huang 2013). 

branch of the hydrological cycle through the circulation of moisture, resulting in global 

changes in precipitation. The precipitation trend generated by the SST trend demonstrates 

one pathway which connects climate change, represented by the radiative forcing within 

the models, to a corresponding change in model simulated global precipitation. While 

each model is forced with the same globally uniform radiative forcing, the SST response 

from this forcing, and ultimately the resulting precipitation response, will vary among 

models. Thus, performing simulations which demonstrate the precipitation response to 

CMIP5 model-generated SST provides an excellent tool for illustrating the effects of 

climate change. 

8.3     Global precipitation response to SST trend 

Preliminary analyses of the CMIP5 archive indicate a robust global precipitation 

response to a warming climate as a positive trend over the wet tropical regions (especially 

the equatorial Pacific Ocean and the Asian monsoon regions) and a negative trend over 

the land areas of the subtropics (Lau et al. 2013) following a similar global pattern 

indicated by the previous CMIP3 archive (Seager et al. 2007, Karl et al. 2009). Fig. 8.1 
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demonstrates how this pattern in precipitation response can be replicated using an SST 

trend-forced AGCM. For example, the common feature of the equatorial Pacific 

maximum trend is present in both the AGCM precipitation responses and the 

corresponding AOGCM fully-coupled simulated trends. General global zonal mean 

patterns of precipitation responses also show agreements between the two sets of 

simulations (Fig. 8.2); both sets of simulations predict increased annual precipitation in 

the tropics and high latitudes and drying trends in the midlatitude subtropical dry zones. 

The zonal profile of each 5-model mean indicates that the AGCM simulations project 

higher magnitudes of precipitation increases globally except over the Southern Ocean. 

The AGCM runs forced using SST data from the HadGEM2 ES model predicts the most 

intense response in annual tropical precipitation at nearly a 2 mm/day increase over a 

zonal band slightly north of the equator. Precipitation trends from the AGCM runs forced 

using SST data from the GFDL ESM2M model show the most muted global responses of 

the five models. 

While the previous experiments by Stephenson and Held (1993) do show that 

many atmospheric features can be reproduced using SST boundary conditions as AGCM 

forcings, it should be noted that these experiments were performed using the atmospheric 

components of the CMIP3 models which they tested, and the results were compared to 

each model’s fully-coupled counterpart. Since this study is limited to all simulations 

being performed using one model (NCAR CAM 3.1), the results are limited by this 

model’s native resolution and parameterization schemes which contribute sources of bias. 

The individual models cannot be as easily compared with their AOGCM counterparts due 

to the inherent differences between them and the NCAR model. Nevertheless, the  
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Fig. 8.1 Mean annual global precipitation responses produced using NCAR CAM 3.1 

AGCM forced by model SST trends (left column) and the fully-coupled AOGCM 

simulation output (right column) calculated as average future (2081-2100, RCP 8.5 

simulations) minus present (1981-2000, ‘historical’ simulations). 
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Fig. 8.2 Zonal mean annual global precipitation responses produced using NCAR CAM 

3.1 AGCM forced by model SST trends and the fully-coupled AOGCM simulation 

output calculated as average future (2081-2100, RCP 8.5 simulations) minus present 

(1981-2000, ‘historical’ simulations) for each CMIP5 model and the 5-model mean. 

agreement on a global scale between the AGCM and AOGCM simulated precipitation 

trends indicates that these differences are reasonably small. 

Lee and Wang (2012) note in their analysis of CMIP5 that the center of increased 

precipitation over the equatorial Pacific is located further east in CMIP5 than CMIP3. 

They hypothesize that the differences may be related to the changes in SST mean field 

over the equatorial Pacific region. Fig. 8.1 confirms that the equatorial Pacific 

precipitation trend maximum exhibits an amplified eastern response; since this feature 
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has been reproduced here using only an atmospheric model and forced CMIP5 SST 

trends, the results of this study lend credibility to their hypothesis. 

8.4     Regional precipitation response to SST trend 

Regional patterns of rainfall have not been shown to be strongly correlated to 

global changes in SST (e.g. Ruff et al. 2012 found no coherent connections between the 

patterns of interannual precipitation for the southwestern US and global SST for the same 

time set) since regional precipitation trends over land are more directly influenced by 

changes in atmospheric circulation and moisture (such as the projected poleward 

expansion of subtropical dry zones, Scheff and Frierson 2012), and are dependent on 

local topography, land use, and vegetation (Solomon et al. 2007, Ch.11). As a result, the 

regional precipitation responses to forced SST in the AGCM simulations are not expected 

to closely resemble those produced using the AOGCMs.  

Annual trends in precipitation over North America are projected to be positive for 

most of the continent and negative over the southernmost portion which encompasses 

much of the southwestern US by both the CMIP3 (Solomon et al. 2007) and CMIP5 

(Seager et al. 2012) ensemble means. Individual model output of the CMIP5 AOGCMs 

depicted in Fig. 8.3 typically follows this pattern in moisture trends with some 

uncertainty between models regarding the sign of the change, especially in the 

northwestern portion of the region in which some models (GFDL ESM2M, MIROC ESM, 

HadGEM2 ES) project a drying trend while others project a mixed region of wet and dry 

trends (MPI ESM LR) or even a strong moistening trend (CanESM2). The precipitation 

response generated by the AGCM, however, depicts an intense negative trend (-0.5 to -
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1.3 mm/day) over the northwest portion of the region and a generally uniform positive 

trend in annual precipitation. Inspection of the monthly trends for an area averaged box 

over the southwestern US (30N-40N, 120W-95W) reveals little resemblance between the 

annual profiles of the AGCM and AOGCM means. A comparison of the individual 

models shows that certain features are reproduced, however; for example, the MPI ESM 

LR model experiences a minimum precipitation trend in late summer/early fall in both 

the coupled AOGCM output and the response simulated in the AGCM, and the MIROC 

ESM model experiences a maximum trend in October for both simulation sets. These 

similarities could be an indication of teleconnections between the SST trends and a 

precipitation response in this region. 

The Mediterranean region is also projected to become drier in the 21
st
 century 

with the sign and magnitude of this trend maintained both spatially and seasonally 

(Kelley et al. 2012). Individual model output of coupled AOGCMs shows a relatively 

high degree of certainty in the CMIP5 archive, with a reduced spread compared to the 

precipitation trends forecasted for the southwestern US region (see section 6.3). Fig. 8.4 

confirms these results in the selected CMIP5 models, depicting nearly uniform annual 

drying trends from the AOGCM simulations. The AGCM simulations again fail to 

capture the regional pattern of precipitation trends. Interestingly, while there is some 

disagreement between models over the spatial patterns of annual precipitation responses, 

the monthly profiles reveal a strong agreement in the seasonal pattern for all tested 

models. Positive precipitation responses in the Mediterranean region (30N-45N, 5E-35W) 

to forced SST conditions happen entirely during the summer and fall seasons, with a 

maximum for all models occurring in August. This robust signal could be an indication of 
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a shared aspect between the tested models, or it could indicate a systematic bias inherent 

to the NCAR CAM 3.1 model. 

 

Fig. 8.3 Mean annual precipitation responses for the southwestern US region produced 

using NCAR CAM 3.1 AGCM forced by model SST trends (left column) and the fully-

coupled AOGCM simulation output (right column) calculated as average future (2081-

2100, RCP 8.5 simulations) minus present (1981-2000, ‘historical’ simulations). 
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Fig. 8.4 Mean annual precipitation responses for the Mediterranean region produced 

using NCAR CAM 3.1 AGCM forced by model SST trends (left column) and the fully-

coupled AOGCM simulation output (right column) calculated as average future (2081-

2100, RCP 8.5 simulations) minus present (1981-2000, ‘historical’ simulations). 



 

128 

 

Fig. 8.5 Annual profiles of monthly precipitation responses area-averaged for the 

southwestern US (30N-40N, 120W-95W) and Mediterranean (30N-45N, 5E-35W) 

regions produced using NCAR CAM 3.1 AGCM forced by model SST trends (a,c) and 

the fully-coupled AOGCM simulation output (b,d) calculated as average future (2081-

2100, RCP 8.5 simulations) minus present (1981-2000, ‘historical’ simulations). 
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8.5     Conclusions 

This chapter provides detailed studies of particular model bias associated with the 

production of precipitation in an atmospheric climate model. The results are highly 

beneficial to model development and provide a deeper understanding of the sources of 

individual model bias. The study has demonstrated that the global pattern of precipitation 

trends over the 21
st
 century can be reproduced reasonably well using a decoupled 

atmospheric component model and SST trend values as a boundary condition. The annual 

mean trends in precipitation are predicted to increase between the 20
th

 and 21
st
 century, 

and the large-scale structure of these trends is maintained when comparing AGCM 

simulations with the fully-coupled model output. Maximum precipitation increases are 

projected to occur near the equator and tropics, and precipitation decreases of a much 

smaller magnitude are forecasted for the midlatitudes by both sets of simulations. 

However, the patterns of regional precipitation responses to a forced SST boundary 

condition do not share meaningful similarities with the regional trends simulated by a 

fully-coupled model. Comparisons of individual models do show some similarities 

between data derived for each model from the two types of simulations such as local 

maximum or minimum seasonal precipitation response, but it is unclear if these 

similarities are actually due to SST teleconnections to regional precipitation. The stronger 

correlation between SST trends and global patterns of precipitation responses indicates 

that a SST-forced AGCM can be effectively used for modeling the direct global effects of 

surface warming attributed to the GHG-caused climate change. 
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CHAPTER 9 

RECOMMENDATIONS 

The results of the studies performed for this project are highly beneficial for 

climate model developers, for the scientific community, and for local stakeholders and 

water resource managers who wish to construct accurate projections of future climate 

conditions. This project has demonstrated both the systematic bias of the water cycle in 

climate models as well as a viable, useable alternative for constructing climate 

projections which corrects for this bias. Chapters 4 and 5 provide the alternative method 

for constructing climate projections which is described in detail for the direct 

implementation by communities in need of water resource management as well as the 

scientific community. Chapters 6, 7, and 8 provide more detailed analyses of both 

individual models and model archives which identify particular sources of model bias; 

these studies are relevant both to the model developers who will work on future improved 

versions of the models, and to communities to help identify particular strengths and 

weaknesses of the models or model archives for their region which are optimal for their 

needs. It is my recommendation that both the climate community and water managers 

consider my alternative model averaging method when constructing climate projections 

based on the studies given in Chapters 4 and 5, since this new method corrects for model 

bias and may produce more accurate projections than the currently used methods for 

model averaging. For more in-depth discussions of particular sources of model bias, I 

recommend reading the studies provided in Chapters 6-8 and considering strengths and 

weaknesses of the tested climate models when constructing climate projections. 
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SUMMARY 

The quality of climate simulations of the water cycle in global general circulation 

models has been evaluated. It is found that the models, on average, show an increasing 

ability to accurately simulate present hydroclimatic conditions. However, analyses of 

precipitation indicate systematic biases between simulations and observed climatology 

which inherently exist in the models due to limited resolutions and simplifications of the 

dynamic and thermodynamic processes. These biases have not significantly improved in 

the most updated set of models. Individual models also exhibit a wide variety of behavior 

which is an indicator of the uncertainty of simulations. A deeper inspection of multiple 

quantities related to the water cycle reveals sources of bias in simulations of 20
th

 century 

climate: the tested models tend to underproduce the concentration of atmospheric water 

vapor but overproduce the zonal mean poleward transport of water vapor, especially in 

cross equatorial flow. The combination of these biases leads to an average global 

overproduction of precipitation. While the general flow patterns and global structure of 

atmospheric moisture transport is relatively well reproduced in climate models, on a 

regional scale, the errors due to model bias become much more significant. When 

modeling centers develop approaches for improving climate model simulations of 

precipitation, it will be necessary for them to consider the biases of all variables related to 

the moisture budget, not just the precipitation quantity. This project has demonstrated the 

importance of identifying multiple sources of bias in the full equation for global moisture 

transport for consideration when improving model quality.  

Despite the presence of inherent model bias, this project gives evidence that 

climate models are still beneficial tools for studying climate processes and projecting 
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future conditions when the knowledge of these biases are incorporated into projections. A 

new approach is presented for ensemble averaging climate models for producing future 

projections which utilizes observed climatological information and acts as a form of bias 

correction. The approach can easily be implemented by local water resource managers 

and stakeholders to whom the new climate projections could be highly beneficial, as 

these projections demonstrate small but significant differences on a regional scale which 

would have strong impacts on local water supply. 
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