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ABSTRACT  
   

To further the efforts producing energy from more renewable sources, microbial 

electrochemical cells (MXCs) can utilize anode respiring bacteria (ARB) to couple the 

oxidation of an organic substrate to the delivery of electrons to the anode. Although ARB 

such as Geobacter and Shewanella have been well-studied in terms of their microbiology and 

electrochemistry, much is still unknown about the mechanism of electron transfer to the 

anode. To this end, this thesis seeks to elucidate the complexities of electron transfer existing 

in Geobacter sulfurreducens biofilms by employing Electrochemical Impedance Spectroscopy 

(EIS) as the tool of choice. Experiments measuring EIS resistances as a function of growth 

were used to uncover the potential gradients that emerge in biofilms as they grow and 

become thicker. While a better understanding of this model ARB is sought, electrochemical 

characterization of a halophile, Geoalkalibacter subterraneus (Glk. subterraneus), revealed that this 

organism can function as an ARB and produce seemingly high current densities while 

consuming different organic substrates, including acetate, butyrate, and glycerol. The 

importance of identifying and studying novel ARB for broader MXC applications was 

stressed in this thesis as a potential avenue for tackling some of human energy problems.
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CHAPTER 1 

INTRODUCTION 

Over the centuries, humans have developed an insatiable appetite for energy in order 

to make daily life less rigorous. From the advent of coal burning and the industrial age, our 

cravings for energy have consistently increased. In fact, some of our energy resources are 

being consumed rather quickly and also being produced at a remarkable rate (Welch et al., 

2005) as the world’s population continues to increase. While critics, scientists and even the 

general public argue constantly about having enough to sustain daily life for centuries or 

even decades to come, we, as a people, have recognized that we have a challenge/mandate to 

search for alternatives to subsidize and possibly replace our fossil fuels. 

To meet this challenge of replacing fossil fuels with more renewable energy sources, 

we can utilize microorganisms since they have the ability to generate energy from renewable 

sources of biomass that do not disrupt the human food-supply systems (Chynoweth et al., 

2001; Logan, 2004). There exist communities of organisms that convert biomass to useful 

energy forms such as hydrogen, methane and electricity (Rittmann, 2008) and since we 

generate agriculture waste and food processing industries wastes, there is an abundant 

amount of biomass substrate for these organisms (Rittmann et al., 2008). The ability of 

microorganisms to generate energy from the oxidation of organic compounds can be applied 

to the degradation of the waste we generate from human activities. While some of these 

bacteria possess the ability to use organic wastes compounds as carbon sources, others are 

able to utilize them as electron donor sources or electron acceptors. Studies have shown that 

the degradation of these compounds happen quicker if oxygen is present, but in high-

strength wastes and subsurface environments, the probability that oxygen will be available is 
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very slim, therefore, the degradation of these compounds have to rely on organisms that do 

not need oxygen to function (Lovley, 2000; Siegert et al., 2010).  

Anaerobic organisms can use a variety of compounds as their electron acceptors 

such as nitrates, sulfates, iron, manganese and even uranium. The choice of the electron 

acceptor depends on the electron donor available in the environment and on the energetics 

of the donor/acceptor couple. This is the reason why hydrogen and oxygen are nature’s 

choice for electron donor and acceptor couple; an organism gains the most energy with this 

couple (Figure 1.1) (Madigan et al., 2009).  There are anaerobic organisms that couple the 

reduction of metals most common in nature to the oxidation of simple organics. These are 

termed dissimilatory metal reducing bacteria and a few of these have been extensively 

studied. Shewanella oneidensis, a freshwater organism, is known to couple the oxidation of 

organics to the reduction of manganese, Mn (II). In fact, it has become the star of this 

process (Kostka et al., 1995; Lin et al., 2012). Iron is an electron acceptor that is more readily 

available than manganese (Figure 1.1), hence, there have been numerous studies focusing on 

iron-reducers and their ability to oxidize a diverse set of donors. A known dissimilatory iron 

reducing organism of this sort, Geobacter sulfurreducens, was first isolated in 1994 from surface 

sediments of a hydrocarbon-contaminated ditch in Norman, Okla (Caccavo et al.,1994). It is 

a gram-negative bacterium, nonfermentative, nonmotile and also a freshwater organism. This 

organism has since been known as G. sulfurreducens PCA and it was found to be able to not 

only reduce solid acceptors such as elemental sulfur and Fe (III) oxide, but also a few other 

soluble iron forms, such as iron citrate and iron pyrophosphate, when coupled to the 

oxidation of acetate or hydrogen. This ability to respire to a solid acceptor outside of the cell 

has made this genus a prime target for electrochemists and microbiologists interested in 
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bioremediation. In these circles, these bacteria are known as Anode Respiring Bacteria 

(ARB) because they can be used in fuel cells and electrochemical cells to harness their 

energy.  

 
Figure 1.1. The electron tower showing various redox couples and their reduction potential 

with the most reduced, hydrogen, at the top and the most oxidized, oxygen at the bottom of 

the tower. Source: Madigan et al., 2009 

As a general definition then, ARB are anaerobic bacteria that possess the ability to 

couple the oxidation of organic compounds such as acetate or hydrogen (electron donor) to 

electron transfer to an anode that is positioned outside of the cell. ARB are used in microbial 

electrochemical cells (MXCs) to transform energy from that which is stored in the organic 

compounds to electrical energy through cells growing on the electrodes (Figure 1.2). With 

the use of a potentiostat, the anode is usually poised at a specific redox potential that will 
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allow for current dispersed to be measured as the bacteria transfer electrons onto the anode. 

Therefore, the anode is their terminal electron acceptor. 

 

Figure 1.2. Schematic of an MXC showing the complete oxidation of an electron donor to 

carbon dioxide while the electrons released are transferred to the cathode to split water into 

hydrogen gas and hydroxide ions. The potentiostat is used to maintain the anode at a 

potential conducive for the oxidation of the electron donor. The two chambers are separated 

with a membrane to provide a medium for ion transport. 

Adapted from Torres et al., 2010. 

MXCs take on very different designs specific to the objective of the study as will be 

outlined in the next few chapters and displayed in Figure 1.3. There are H-type reactors that 

allow for the isolated control of the electrode of interest, which is the anode in most cases. 

These are mostly used to study kinetic and thermodynamic parameters. There are other 

designs that allow for more in-depth fundamental electrochemical studies. These types are 

usually single chamber ones where both electrodes exist in the same electrolyte. Both of the 

reactors discussed here are shown in Figure 1.3 below.  
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MXC applications require having fundamental knowledge of the mechanisms 

involved in electrical current production by ARB.  Thus, researchers in the field are 

constantly trying to improve our understanding of ARB, by characterizing their behavior in 

MXCs. MXCs and the ARB that grow in them have a long way to go to make their mark in 

the industrial setting because of scale-up constraints and the ability to minimize potential 

losses in all chambers of the reactors. Overall, an efficient MXC need be one that is able to 

minimize resistances that can originate from the anode, cathode or the electrolyte. Later in 

this document, I discuss our work on the identification of resistances as it relates to the ARB 

anode  (Chapter 4). 

 

Figure 1.3. On the left, a single chamber small (50 mL, 3.14 mm2 anode size) reactor used 

for fundamental characterization of ARB. A zoomed in version of this reactor is shown in 

the middle picture. On the right, an H-type MEC (350 mL, 5.27 cm2 anode size) is shown 

with the anode chamber (right chamber) and the cathode chamber (left) separated by an 

anion exchange membrane.  

There have been many spirited debates in the MFC community since the late 90s 

about the mechanism of electron transfer from the biofilm formed by these bacteria to the 

electrode (Lovley,1991). Some ARB do not form a biofilm, but the ones that do must have a 

conductive ability responsible for their current generation. To this end, there are in fact three 
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different mechanisms of extracellular electron transfer (EET) proposed and mostly accepted 

by the scientific community namely, direct electron transfer by a monolayer of cells, shuttling 

and long range electron transfer. These mechanisms can fit under two umbrellas, direct 

electron transfer (DET) and mediated electron transfer (MET) (Barton, 2010; Ferapontova 

et al., 2005).  

In DET, the microbes are said to have enzymes or other redox active structures 

overlapping to increase the probability of electron transfer to the electrode (Dominguez-

Benetton et al., 2012; Ferapontova et al., 2005). Under this broad umbrella mechanism is 

that of long-range electron transfer by way of either nanowire like proteins, pili, or redox 

active cytochromes that allow electrons to hop to the electrode (Logan et al., 2009). MET, 

on the other hand, refers to the microorganisms being able to produce soluble compounds 

acting as shuttles of electrons between the biofilm and the solid iron outside of the cell. As 

part of MET mechanism, some organisms produce chelators instead of electron shuttles for 

the sole purpose of solubilizing the solid iron into the form that the organism can now bring 

into its cell (Dominguez-Benetton et al., 2012; Marsili et al., 2008).  A schematic of these 

mechanisms is shown below with DET and MET mechanisms clearly labeled (Fig. 1.4.) 
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Figure 1.4. The three mechanisms proposed for extracellular electron transfer are outlined 

with (A) Direct contact in this case with the solid iron and (B) Microbe using nanowire like 

structures to make contact with the solid iron; representing the DET mechanisms. (C) 

Microbe producing electron shuttles represent MET.   Source:  Weber et al., 2006  

 
The Shewanella genus has been studied enough to uncover most of the EET 

mechanisms these bacteria use. Shewanella can use two out of the three mechanisms listed 

above to do EET. S. oneidensis MR-1 has been shown to primarily use shuttles (Logan, 2009; 

Marsili et al., 2008), S. putrefaciens was thought to primarily use outer membrane cytochromes 

to make contact (Kim et al.,1999; Lovley,1991; Myers and Myers,1992), and recently S. liohica 

has been explored with regards to its mechanism of electron transfer (Jain et al., 2013). In 

this study, it was shown that the mechanism could change for the same organism depending 

on the material of the electrode they respire. With the aid of few electrochemical methods, 

mainly cyclic voltammetry (CVs) and differential pulse voltammetry (DPV), the authors 

discovered the dominant mechanism to be DET when the electrode used was an indium tin 

oxide (ITO) electrode, while on graphite electrodes, a mixture of DET and MET was 

observed. The mixture of mechanisms here actually leans towards MET (Jain et al., 2013). 

A. B. C. 

MET DET 
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They attributed this difference to the roughness of the graphite electrode lending itself to the 

adhesion of compounds like flavins and quinones. 

Unlike Shewanella, the Geobacter genus has caused more controversy. Geobacter only 

uses DET, but researchers have thoroughly discussed the details of how DET is occurring. 

Some believe strongly that Geobacter indeed secrete conductive nanowires, allowing them to 

form a electrochemically active biofilms able to generate electricity as well as produce high 

current densities (Malvankar and Lovley, 2012; Reguera et al., 2005). On the other hand, 

there is another school of thought that seems to align with redox proteins participating in 

electron hopping (Liu and Bond, 2012). From a 2010 study determining kinetic processes of 

ARB depending on their EET mechanisms, it was clear that for an ARB to use direct 

contact for its EET mechanism, it cannot form thick biofilms and neither can it produce 

high current simply because it cannot accumulate enough active biomass (Torres et al., 

2010). Conversely, for ARB that produce high current and has minimum potential losses, as 

Geobacter do, solid conduction is most likely to be the EET mechanism. In Bond et al. 2012, 

many experimental evidence for Geobacter actively respiring were considered and they 

determined that the change of local pH values in the biofilm has an effect on respiration as it 

related to the fraction of oxidized cytochromes to accept electrons from cells.  This shows 

the importance of cytochromes in the EET mechanism of Geobacter.  

While much is known about Geobacter spp., there is still many unknowns about the 

outer membrane cytochromes, especially which ones are directly responsible for the electron 

transfer of these biofilms (Torres et al., 2010). Thus, a specific aim of my Thesis was to 

further characterize Geobacter sulfurreducens using electrochemical impedance spectroscopy 

(EIS).  EIS is a novel electrochemical method that separates specific electron-transfer 
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resistances through an analysis of sinusoidal AC currents.  My goal was to elucidate key 

electron-transfer processes through EIS, some of which could be associated with EET 

(Chapter 4). 

Regardless of the mechanism of electron transfer, ARB have seemingly vast 

applications through MXCs.  Unfortunately, only Geobacter strains have been shown to 

produce high current densities in MXCs, thus substantiating the feasibility of such 

applications.  The disadvantage with Geobacter is its limited set of electron donors; 

consequently, there is an important need to find more ARB to increase the functional 

diversity of the microbial communities developed in MXC anodes. While Geobacter 

sulfurreducens is a freshwater microorganism that grows at neutral pH, other potential electron 

donors in other environments, specifically saltwater, may not necessarily fit the profile of 

Geobacter.  Therefore, the MXC community should not only focus on finding different ARB, 

but on finding those that can grow under different environmental conditions and utilize a 

wide variety of electron donors.  In Chapter 5, I will discuss my work characterizing one 

such novel ARB, Geoalkalibacter, which is a halophilic ARB capable of consuming a wide 

variety of electron donors.  

In the next few chapters, I will outline and discuss my Thesis work aiming at 

characterizing electron-transport processes in Geobacter and characterizing a novel halophilic 

ARB, Geoalkalibacter subterraneus. Chapter 2 is a background of ARB currently studied, the 

anode respiration capability of which has been discovered in our lab, and the various 

electrochemical methods we use to characterize them. Chapter 3 outlines the experimental 

methods and materials used in the studies presented.   Chapter 4 presents the results and 

discussion of the G. sulfurreducens characterization using EIS. Chapter 5 details my efforts in 
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characterizing a new bacteria genus, Geoalkalibacter spp., as an ARB. Finally, I discuss some 

future directions for both organisms central to this work in Chapter 6. 
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CHAPTER 2 

BACKGROUND 

There are ARB that can generate appreciable current densities like Shewanella 

Oneidensis and Desulfuromonas spp. However, it is Geobacter sulfurreducens that is able to produce 

nearly 10 times more current densities than any other ARB characterized so far (Torres et al., 

2010). For this reason, our research group sought to find other efficient ARB and this quest 

started with mixed microbial communities. We investigated 13 different samples from 

Romania, India, Japan, United States and Puerto Rico representative of different 

environmental conditions (Miceli et al., 2012). Some of these samples came from saltwater 

areas while some came from freshwater regions. Using the enrichment technique previously 

described in an earlier work, highly efficient ARB were enriched as major components of the 

different mixed cultures. About half of these cultures were able to produce high current 

densities (>1.5 A/m2). This lends to the idea that ARBs can be isolated from these cultures 

that could potentially rival current densities produced by Geobacter and have variety of 

applications especially in different ecosystems. It is well known that although Geobacter is 

somehow ubiquitous, it is not optimized to function in high salinity regions and non-neutral 

pH conditions. Since the applications for ARB capabilities are constantly expanding, it is 

imperative that the ARB library expands to involve these otherwise extreme conditions for 

the current ARB. From the seven cultures that produced high current densities, there were 

two in particular from saltwater environments, namely Carolina Mangrove and Salt Flat, 

both from Puerto Rico. The respective current densities from these two cultures were 

approximately 11 A/m2 and 8 A/m2 respectively. These were the highest current densities 

from our samples, and among the highest current densities reported in literature (Katuri et 
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al., 2012; Parameswaran et al., 2010). Therefore, it is expected that we would want to 

investigate these cultures further.  

From the pyrosequencing data presented in this work(Miceli et al., 2012), it was 

determined from the sequences that the microorganism dominant in these culture 

enrichments were from the family Geobacteraceae, but in the genus Geoalkalibacter. Because 

these samples were obtained from saline regions, they were enriched with 2% NaCl saline 

media. From what is known about the organisms belonging to this genus, pH is an 

important factor since they are alkalitolerant/alkaliphilic. Thus, it was exciting to find other 

organisms that could respire the anode with the next steps being isolation and further 

characterization. Specific isolated species in this genus will be discussed later to thoroughly 

explain their capabilities (Chapter 5).  

There are a few electrochemical methods of characterization that have proven quite 

useful; namely, chronoamperometry, cyclic voltammogram and electrochemical impedance 

spectroscopy. These methods tend to provide information regarding possible electron-

transfer mechanisms, midpoint potentials and other processes inherent to that particular 

microbial system. In the microbial ecological analysis reviewed above, two of the methods 

were used hand in hand to obtain the effective maximum current densities (jmax) of these 

systems: chronoamperometry and cyclic voltammetry.  

• Chronoamperometry 

In any electrochemical circuit, there are only two parameters that can be varied as a 

function of time: voltage and current. Chronoamperometry is the measurement of current as 

a function of time while the potential is held constant. In the work presented, the anode 

potential was controlled with a potentiostat (VMP3, Biologic, USA) at -0.30 vs. Ag/AgCl, 
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but was interrupted to perform other electrochemical measurements. The potentiostat is an 

electronic instrument used to control an electrochemical cell, studying the processes taking 

place on the working electrode (anode in this case) without interference from the counter 

electrode. It measures and controls the voltage difference between a working electrode and a 

reference electrode.  

 

Figure 2.1. Simplified schematic of the circuitry of a potentiostat. Source: 

http://www.consultrsr.com/resources/pstats/design.htm 

A potentiostat has three important parts; a control Amplifier, an electrometer and a 

current/potential (I/E) converter. The control amplifier supplies power to control the 

potential between the working and the reference electrode while the electrometer measures 

this potential difference. The I/E converter is the part that now measures the current 

between the working and counter electrodes. This process of measuring and adjusting 

potentials is a control loop that is repeated throughout the duration of the experiment to 

keep the potential of the working electrode constant.  This control loop has a time scale of 

microseconds to milliseconds, whereas our MXC current density is measured every two 

minutes (Figure 2.2).  In MXCs, the choice of potential to set the anode is directly related to 
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the potential of the organic substrate that is used. For instance, the substrate Miceli et al., 

(2012) used was acetate with a standard reduction potential of approximately -0.550 vs. 

Ag/AgCl; therefore, it is sensible that the anode was poised at a potential higher than that of 

acetate. Maintaining a constant potential while current is recorded produces a graphical 

representation much like Figure 2.2. This data gives information regarding the performance 

of the MXC with the time progression.  

 

Figure 2.2. Chronoamperometry showing current evolution of a Geobacter sulfurreducens 

biofilm grown on a gold electrode at -0.02V using 10mM acetate as electron donor and 

media buffered with 30mM bicarbonate. 

In this case, the maximum current density is approximately 5 A/m2. Aside from this 

information, we can glean from a plot like this is that the ARB growth is exponential, as the 

current increases exponentially. Further analysis can be done to obtain other useful 

information about the microorganism such as its doubling rate. The integration of the 
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current production above provides the total electron equivalents respired by the ARB, from 

which calculations of Coulombic efficiency and recovery can be obtained.   However, 

information concerning the internal workings of the system cannot be extrapolated from a 

chronoamperometry plot. To obtain more information regarding kinetics and transport, 

more sophisticated methods must be used. In the next few sections, I will discuss two such 

methods: cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) 

• Cyclic Voltammetry (CV) 

CV is a method whereby the potential applied between the working electrode and 

the reference electrode is varied linearly with time at a predetermined rate. This ramping is 

known as the scan rate applied (V/s). As the potential is applied, the current is measured 

between the working electrode and the counter electrode.  In normal practice, the potential 

is swept back and forth between two potential limits and the current measurement is 

recorded versus the potential (Figure 2.3). In times past, this method has been used to 

characterize the catalytic activity of different electrochemical catalysts (Lau et al., 2011). In 

theory, as the waveform is generated, the forward scan should produce a current peak of the 

analytes that can be oxidized in the system in the potential range that has been set. As the 

forward scan is generated, the current increases as the potential reaches the oxidation 

potential of the analyte in solution. However, once this particular analyte consumed at the 

electrode surface, the current will decrease, creating an oxidation peak.  A steady oxidation 

current (positive) will then be observed that is the result of the rate of transport of the 

analyte to the electrode surface. On the reverse scan, this analyte will now be reduced; 

therefore, the opposite happens and another current peak shows up closer to the lower limit 

of potential range.  



 16 

 

Figure 2.3.  On the left is a graphical representation of the cycling of potentials as a cyclic 

voltammogram (CV) is obtained. The potential increases and decreases with time. On the 

right is an example of a classical CV with the forward and reverse scans. Source: O’hayre et 

al., 2009 

If the redox reaction occurring at the electrode is completely reversible, the peak 

currents shown above will be spaced by 58 mV for a one-electron reaction. A system is 

reversible when the electrochemical redox reaction is fast enough to maintain the 

concentration of oxidized and reduced species at equilibrium with each other at the electrode 

surface (Mabbott 1983).  According to the Randles-Sevcik equation, the peak current is 

directly related to the square root of the scan rate (Mabbott 1983). 

      (2.1) 

 

 

ip  = (2.69 ×  105) n3/2A D0
1/2ν1/2C0

*
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Here, ip is peak current in (Amp), n is the number of electrons involved in the redox 

reaction, A is the electrode area in (cm2), D0 is the diffusion coefficient, ν is the scan rate 

(V/s) and C0* is the bulk concentration (mol/L).  This equation relates the peak current to 

the diffusion of substrate to the anode surface.  Thus, a relationship between transport (i.e. 

diffusion coefficient) and the CV peak current can be performed. As illustrated in Figure 2.4, 

as the scan rate is increased, the peak current also increases, but not the potential. The 

different peak currents obtained as a function of the square root of the scan rate gives a line 

with a slope proportional to the diffusion coefficient. 

 

Figure 2.4. Here, a derivative CV of Glk. ferrihydriticus grown using 10mM Acetate is shown 

with peak current (minima and maxima) increasing as the scan rate is increases from 1 mV/s 

to 100 mV/s. The linear relationship between the peak current (peak height) and the square 

root of the scan rate is shown in the right corner. Source: Badalamenti et al., 2013 
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Cyclic voltammetry can be performed at both steady state and non-steady state 

conditions. Under non-steady state conditions, which are where most of the measurements 

are obtained, we get variety of information from the CVs, such as those obtained through 

the Randles-Sevcik Equation (Nicholson and Shain, 1964). In MXCs, we use the CV to 

determine different kinetic parameters of the biofilm growing on the anode and we also use 

it to observe any redox active molecules in the system that will invariably produce current 

peaks as the scan is generated. Under steady state conditions (at lower scan rates), we can 

obtain what is known as a j-V curve, providing information closely related to the conditions 

at which the MXC is being run. These plots are often sigmoidal (Figure 2.5), showing that 

there are potential losses in the system.  

 

Figure 2.5. A mixed culture of ARB biofilm grown on acetate showing a classic CV and the 

energy lost to other processes not contributing to current generation. (Torres et al., 2010) 
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To model this sigmoidal shape, our lab developed a relationship relating the Nernst 

equation and Monod kinetics to describe microbial growth. This relationship is known as the 

Nernst-Monod model and it assumes that there is a redox process determining the energy 

that an ARB can recover from respiring on the anode using a simple organic substrate.  

      (2.2) 

Here, j is current produced, E is the anode potential, is the maximum current, n is the 

number of electrons transferred, F is the faraday’s constant, R is the gas constant, T is the 

temperature and the is the potential at which j is half or also known as the midpoint 

potential. 

From steady-state CVs, we can obtain midpoint potentials (EKA) and jmax of the system. 

These can differ for the same ARB consuming different substrates. It is also possible to get 

more information about the mass transport in the system. Although, a CV is a powerful tool 

and provides an estimate of potential losses at the electrode, we cannot segregate between 

the processes that are causing these potential losses. This is the reason why another method, 

electrochemical impedance spectroscopy, is used, oftentimes in conjunction with a few of 

the ones already discussed above.   

• Electrochemical Impedance Spectroscopy (EIS) 

Electrochemical Impedance Spectroscopy (EIS) is used to understand the potential losses of 

a particular electrochemical system. It describes the behavior of an alternating voltage or 
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current as a function of frequency (Dominguez-Benetton et al., 2012). As previously 

mentioned, in a standard j-V curve, one is privy to the general performance of the fuel cell, 

but the energy lost in each reaction and electron-transfer step is not known. The EIS theory 

has been applied to many fields; however, in this discussion, we will use EIS to characterize 

the model ARB, Geobacter sulfurreducens, as it respires the anode from the oxidation of acetate. 

Below, I outline a few concepts needed to understand the usefulness of this tool.  

Impedance  

Similar to resistance, impedance is the ability of the system to resist current. The difference 

lies in the fact that impedance has time and frequency dependence.  According to Ohm’s 

Law, resistance, R, is defined in direct current (DC) circuit as R = V/i ,  the ratio of Voltage 

and current and only the resistors cause a resistance to electron flow. However, impedance, 

Z is defined to be the ratio of the same parameters but with a time dependence, Z= 

V(t)/i(t). In EIS, impedance is measured by applying a small alternate potential to an 

electrochemical cell. An alternate current (AC) is the result of this potential application. 

Here, resistors, capacitors and inductors all affect the current response, shifting the phase 

angle, Φ, of the sinusoidal response (Equation 2.2) (Orazem and Tribollet, 2008; O'hayre et 

al., 2009). The small potential applied, normally in the range of 5-20 mV, ensures the 

measurements stay in the linear region of the j-V curve. Impedance has both imaginary and 

real components as explained in the following derivation considering the time and frequency 

dependencies:  

V (t) = V0 cos (ωt)      (2.3) 

 
i (t) = i0 cos (ωt-Φ)     (2.4) 
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          (2.5) 
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          (2.6) 
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         (2.7) 

 
                                                                𝑍 = 𝑍𝜊  𝑒!" = 𝑍𝜊(𝑐𝑜𝑠𝜙 + 𝑗  𝑠𝑖𝑛𝜙)       (2.8) 

 
                                                                𝑍!"#$ = 𝑍𝜊 cos𝜙        (2.9) 

 
                                                              𝑍!"#$ = 𝑗  𝑍𝜊 sin𝜙        (2.10) 

 
Through this derivation, Euler’s formula (𝑒!" = cos 𝑥 + 𝑗 sin 𝑥) is used to separate the real 

and imaginary components of Z (Eq. 2.8). In a typical CV like that shown in Figure 2.5, the 

energy lost can be attributed to different processes, including Ohmic conduction, activation 

overpotential, and energy needed in mass transport. Most fuel cell systems can be modeled 

by a combination of simple Randles circuits where there are 3 elements, an Ohmic resistance 

between working and the reference electrode in solution, charge transfer resistance and a 

double layer capacitance; both at the interface between the electrode and the surrounding 

solution. Each of these circuits has its own contribution to the total impedance in the system 

(Orazem and Tribollet, 2008).  
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Figure 2.6. Simple schematic of Randles circuit, which includes a solution resistance, a 

double layer capacitor and a charge transfer. The double layer capacitance is in parallel with 

the charge transfer resistance. 

The data obtained from EIS is typically a graphical representation of Z’’ (Zimag) vs. Z’ 

(Zreal) referred to as Nyquist plots. These plots do not give any frequency information. The 

impedance behavior of the system is summarized over many orders of frequency 

magnitudes. The only information regarding frequency one can glean from these plots is the 

general idea that from left to right, the frequency decreases. The information given by a 

Nyquist plot can be correlated to our equivalent circuit model. The first intersection of the 

semicircle with the Zreal axis gives the Ohmic impedance. The other charge-transfer 

resistances are more difficult to determine, as they are associated to a capacitance (Figure 

2.6) that creates a frequency-dependent response in both real and imaginary Z components.  

This is exemplified by the semi-circle in Figure 2.7a, which is a typical response for a simple 

Randles circuit.  More complex systems lead to a more complex Nyquist plot.  Various 

fitting methods can be used to extrapolate the other resistances, but this method depends on 

the type of system being evaluated. This information can also be reported in a Bode plot as  
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shown in figure 2.7b. Unlike the Nyquist plot, the Bode plot has frequency and phase shift 

information. 

  

Figure 2.7. Typical impedance responses reported as (a) Nyquist plot: real impedance (Re Z) 

vs. negative of the imaginary impedance (-ImZ) and (b) Bode plot of the impedance: phase 

angle (y) and impedance modulus (|Z|) plots vs. frequency (ω) as an independent variable. 

Source: Dominguez-Benetton et al., 2012 

In order to analyze the data generated from conducting EIS, there are a few 

assumptions of the system namely, linearity of the system, causality, and stability 

(Dominguez-Benetton et al., 2012; Macdonald, 2005; Orazem and Tribollet, 2008). To 

ensure that the system meets these requirements, a mathematical method, Kramer Kronig 

(KK) transform is used to verify its validity. The KK relations connect the real and 
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imaginary elements of any complex function. With these relations, the magnitude of the 

impedance can be calculated or parts of the function can be computed from whichever one 

is known, either real or imaginary. Since, impedance is a complex function, KK transforms 

prove useful in EIS data analysis. Specifically, they are used to check the validity of 

impedance spectra obtained over a wide range of frequencies(Macdonald, 2005; Orazem and 

Tribollet, 2008). If the magnitude of the impedance is known, the polarization resistance or 

the charge transfer resistance can be calculated directly from this data. This resistance can 

also be calculated indirectly from the imaginary portion of the impedance(Macdonald, 2005). 

Although this method is useful for obtaining pertinent information about electrochemical 

systems, a limitation may exist at the low frequency range, especially after 20Hz (Macdonald, 

2005). It is important to keep in mind that the KK transforms do not provide or take into 

account any other physical properties of the system. If the above limitations are satisfied, 

then, the data generated should be correct. This is not to say that KK transforms is the only 

impedance validation technique; in fact, experimental, graphical and regression methods can 

be used to check whether the impedance data meets the KK assumptions (Dominguez-

Benetton et al., 2012).  

Till now, I have outlined how to report data from EIS measurements and also the 

importance of the information the measurements can potentially tell us about MXC systems. 

However, in our EIS studies (Chapter 4), we will expand upon the complexity of electron 

transfer in ARB through proteins. The process of transferring electron outside of the cell is 

one that is inundated with resistances from the proteins participating in the electron transfer, 

both intracellular and extracellular. These resistances lead to a complex behavior that can 

possibly be elucidated through EIS. 
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Novel ARB characterizations 

Our aim is to expand the library of novel ARB to be useful in number of 

applications. Consequently, our group decided to pursue the characterization of 

Geoalkalibacter in MXCs using some of the methods I have discussed. In some of the mixed 

community MXCs used in the microbial ecology study (Miceli et al., 2012) from our lab, we 

found an organism in the genus Geoalkalibacter as a putative ARB; however, there are also 

some previously isolated strains of this genus. Therefore, instead of isolating our very own 

strain of Geoalkalibacter from these reactors, we pursued characterizing these extensively 

microbiologically characterized strains, namely, Geoalkalibacter ferrihydriticus and Geoalkalibacter 

subterraneus (Greene et al., 2009; Zavarzina et al., 2006). As presented in these studies, these 

strains have a variety of electron donors/substrates, acceptors and different salinity as well as 

pH ranges (see the appendix A for the differences in both organisms) in which they can 

grow. Nevertheless, these strains have never been enriched in an MXC to produce current. 

We then conjectured that we should be able to use them as ARB based on their presence in 

MXCs in our enrichment studies.  In addition, this genus is in close relationship to the genus 

Geobacter as determined by phylogenetic classification.  

In embarking on this journey, these cultures, Geoalkalibacter ferrihydriticus DSM 17813 

and Geoalkalibacter subterraneus DSM 23483, were obtained from the German Collection of 

Microorganisms and Cell Cultures (DSMZ). The cultures were maintained in culture tubes 

with the media suggested by DSMZ for each organism. We made glycerol stocks of these 

organisms, stored at -80 C, for later studies. Although each organism can use a variety of 

electron acceptors, we chose Fe(III) oxide simply because we have seen that cultures grown 

on amorphous iron oxide ultimately grow on the MXC anode. Fe(III) oxides are insoluble 
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electron acceptors, just like the anode, therefore, adapting them to grow on Fe(III) in culture 

tubes makes it easier to later grow them in an MXC. Badalamenti et al., (2013) focused on 

growing Glk. ferrihydriticus in MXCs and fully characterizing it using different electron 

donors, but also generated some preliminary results for G. subterraneus. From these studies, 

some thermodynamic and kinetic parameters were determined for Geoalkalibacter ferrihydriticus 

and it was also shown that this organism produces high current densities (up to 8 A/m2). In 

the future, it may be possible that this organism rival Geobacter in the MXC community once 

it is fully characterized.  

Using chronoamperometry, anodes in experiment were poised at -0.2V vs. Ag/AgCl 

with a potentiostat and the current was measured over time. G. ferrihydriticus produced 

current in MXCs under alkaline condition of pH 9.3 when fed 20mM acetate. The maximum 

current density recorded was 8.3 A/m2 which similar to the values in the literature for 

Geobacter sulfurreducens (Katuri et al., 2012; Malvankar et al., 2012) at neutral pH. The substrate 

consumption was measured with HPLC and this revealed the Coulombic efficiency 

(percentage of electron donor being channeled to produce current) of Glk. ferrihydriticus to be 

85-95% . With a small biofilm inoculum, the doubling time of Glk. ferrihydriticus was 

measured to be about 7.5 hrs. With 10mM ethanol as the electron donor, the maximum 

current density reported was 7.1 A/m2 with an initial doubling time of 6.9 hrs. Initially, the 

maximum current density for the pure culture was much lower at 2.6 A/m2 until 

Badalamenti et al., (2013) found acetate to be a byproduct of ethanol oxidation. Therefore, 

the higher number that was reported was after a media replacement, which provided further 

proof that ferrihydriticus consumed the ethanol and the acetate produced to generate the 

current. A CE of approximately 95% was also recorded for ethanol oxidation in this MXC.  
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To determine Glk. ferrihydriticus respiration kinetics, cyclic voltammetry was carried 

out at low scan rates; thereby, allowing the biofilms to reach steady-state. CVs generated 

when acetate was fed showed a sigmoidal wave indicative of redox processes taking place. 

The midpoint potential was recorded to be -0.21V vs. SHE, a potential 60mV lower than the 

accepted midpoint potential (-0.15 V vs. SHE) for Geobacter sulfurreducens (at neutral pH) in 

the literature. This study suggests that due to the low open circuit potential (potential at 

which no current is being generated) of -0.37 V vs. SHE recorded for Glk. ferrihydriticus and 

the two-pH units difference, it is sensible that the midpoint potential be what was reported. 

With ethanol-fed biofilms the shapes of the sigmoidal CVs generated were identical to that 

generated from acetate fed biofilms; giving the same midpoint potential. The difference lies 

in their open circuit potentials. As reported in this study, the open circuit potential was -0.41 

V vs. SHE, which was not surprising considering that ethanol is a more reduced substrate 

than acetate.   

The authors also investigated Glk. subterraneus as a good comparison to Glk. 

ferrihydriticus showing the differences between the two organisms. For example, Glk. 

subterraneus grown on acetate produces lower current than its counterpart (~2 A/m2). It also 

has a midpoint potential and open circuit potential of -0.19V vs. SHE and -0.28V vs. SHE 

respectively. CVs at the early growth stages (first week) show multiple redox peaks at 

different potentials a few hundred millivolts around the midpoint potential, but these peaks 

later disappear in the CVs generated with a matured biofilm. There are glaring differences in 

both Geoalkalibacter species with Glk. ferrihydriticus preferring the alkaline pH and Glk. 

subterraneus preferring neutral pH with a high saline media. Glk. Subterraneus also seems to be 

non-discriminatory in its electron donors from acetate to propionate to glycerol and even 
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stearate, but we are unsure of how it will behave in an MXC with this variety of reduced 

organics at this point.  

I continued the investigation of Glk. subterraneus in an MXC using acetate, butyrate 

and glycerol as the electron donors (Chapter 5). In the coming chapters, these experiments 

will be discussed in further detail while providing parameters we were able to determine 

from our study. 
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CHAPTER 3 

MATERIALS AND METHODS 

MXC construction, Operation and inoculation 

• For EIS experiments (Chapter 4) 

We made use of 100 mL glassware with an opening on the side for a 2 mm diameter 

gold anode (CH instruments, CH101). We drilled holes in rubber stoppers for the media 

lines and a thin platinum cathode. This apparatus is sterilized by autoclaving at 1210C with a 

30-minute sterilization time. Upon cooling, an Ag/AgCl reference electrode (BASi, West 

Lafayette, IN) is dipped in 70% ethanol, flicked dry, and carefully inserted into the rubber 

stopper.  The reactor is then filled in a biosafety cabinet by flowing nitrogen-pressurized 

media through sterile Norprene tubing (Cole Parmer, Vernon Hills IL). The reactor is 

sparged with 0.22 µm filtered 80% N2: 20% CO2 gas mix for 30 minutes. The reactor was 

constantly agitated with magnetic stirring.  

Inoculum was always 1 mL of pure Geobacter sulfurreducens isolate from an enrichment reactor.  

• For Glk. subterraneus donor experiments (Chapter 4) 

We constructed dual-chamber H-type MECs (350 ml anode volume) with two 

graphite rod anodes (5.27cm2 total area) and sterilized them by autoclaving. We polished 

those graphite anodes to a smooth surface by sanding with 600-grit followed by 1,500-grit 

aluminum oxide-silicon carbide sandpaper (McMaster-Carr). Pieces of anion exchange 

membrane (AMI 7001; Membranes International, Inc.) were autoclaved while soaked in 3 M 

NaCl and inserted into the autoclaved assembled MEC. An Ag/AgCl reference electrode 

(BASi, West Lafayette, IN) was dipped in 70% ethanol, flicked dry, and inserted into anode 

chambers. The cathode contained a sterile, anoxic 2% NaCl solution adjusted to pH 12.5 
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with 10M NaOH. Reactors were also filled as previously stated above. Before inoculation, 

cathodes were sparged with N2 and anodes with filtered (0.22 µm pore size) 80%N2: 

20%CO2 gas. Anode chambers were agitated constantly at 150 rpm by magnetic stirring. As 

previously reported in Badalamenti et al 2013, to promote utilization of anodes as electron 

acceptors, Geoalkalibacter cells were cultured in medium containing 50 mM Fe(III) oxide, and 

3 ml of these cultures were used to inoculate MECs. To inoculate subsequent growth 

experiments, we scraped a small biofilm section using a needle into 1 ml sterile medium in an 

anaerobic chamber (Coy Laboratory Products, Grass Lake, MI) and used 0.1 ml of this cell 

suspension as the inoculum. Media replacements were performed in the anaerobic chamber 

by transferring the anode and reference electrode to a clean MEC containing sterile medium. 

Chronoamperometry and Cyclic voltammetry 

• Cyclic Voltammograms (CVs) 

Anode was poised at -0.3V vs. Ag/AgCl as previously described (Badalamenti et al., 

2013). Using a window of -0.48 V and 0.2 V, CVs were collected after the anode has reached 

open circuit potential at the early stage of growth and at saturation.  The scans started at the 

upper limit down to the lower limit of the potential window. Midpoint potentials were 

determined from these plots. For Glk. subterraneus growth experiments, anodes were poised 

at -0.2V vs. Ag/AgCl (-0.04V vs. SHE) using the VMP3 potentiostat as previously described 

(Badalamenti et al., 2013). Using a window of -0.6V and 0.1V, cyclic voltammograms were 

obtained here early and later in growth period. The channel on the potentiostat was stopped 

and the anode is allowed sufficient time to reach open circuit. The scan starts at open circuit 

towards the upper limit of the set potential window and back to the lower limit. Midpoint 



 31 

potential was obtained for this organism during growth the three different substrates 

investigated. 

• Electrochemical Impedance Spectroscopy 

EIS measurements were done as a function of growth for Geobacter sulfurreducens. At 

0.5 A/m2, 1 A/m2, 2 A/m2, 3 A/m2, 4 A/m2 and saturation, measurements were taken at 

two different potentials, -0.3V and -0.39V vs. Ag/AgCl. The first potential is the potential at 

which G. sulfurreducens was grown at and the second is close to the midpoint potential 

determined by the CVs. A few measurements were performed between these specified 

current densities when we notice a change in growth pattern (i.e, pseudo-saturation). Also, I 

took two measurements at saturation separated by approximately a day. The method used 

for these measurements has an equilibration time of 15 mins at each potential, amplitude of 

15 mV and a frequency range of 200 kHz to 50 mHz.  

To generate the resistance vs. potential graphs, EIS measurements were obtained for 

G. sulfurreducens every 20 mV between the range of -0.5V and -0.25V vs. Ag/AgCl once the 

biofilm has reached saturation (jmax). For Glk. subterraneus, EIS measurements were done also 

at saturation every 25mV between the range of -0.55V and -0.3V vs. Ag/AgCl once the 

biofilm has reached saturation. The range of potentials was determined by the CVs done 

before the EIS experiments. The CVs give us an idea of where the linear regions and the 

exponential phases are so as to truly capture all aspects of the changes in resistance in our 

MXCs. 

• HPLC Methods 

As previously reported in Parameswaran et al., 2009, samples are analyzed 

using high-performance liquid chromatography (HPLC; Model LC-20AT, Shimadzu, 
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Columbia, MD): acetate, butyrate, and glycerol consumption could be analyzed in the 

samples. An Aminex HPX-87H (Bio-Rad Laboratories, Hercules, CA, 1997) column 

separated the simple acids and alcohols, sulfuric acid at 2.5 mM was the eluent fed at 

a flow rate of 0.6 mL/min, and chromatographic peaks were detected using photo-

diode array (210 nm) and refractive index detectors. The total elution time was 50 

min, and the oven temperature was constant at 308oC. We developed a calibration 

curve for every set of analyses, performed duplicate assays, and report average 

concentrations. 

• Coulombic efficiency (CE) measurements 

A 0.5 mL sample of inoculum was filtered into an HPLC vial as well as 1 mL of 

filtered Glk subterraneus media with substrate as the time zero sample. After a sufficient 

amount of charge has been collected from the donor, a few more samples are collected 

within a few days of each other. These samples are analyzed using the HPLC along with a 

standard of substrates indicative of different concentrations that could be present in each 

sample collected. From the HPLC data of concentrations and the recorded charge 

measurements at the time of sampling, the Coulombic efficiency is calculated using this 

equation: 𝐶𝐸 =    ∆!"  (!"#$!%"%)
∆!!"#∗!∗!

. Here, total Q refers to the total charge available per substrate 

(butyrate, acetate or glycerol) and refers to the difference in mmol of substrate in 

each sample. 

 

 

 

Δmmol
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• Electron acceptor preparations 

I used 50 mM-amorphous Fe (III) Oxide as the acceptor for Glk subterraneus growth 

experiments. Specifically, we pre-adapted the cells to growing on this acceptor before we 

grew them on an MXC anode. We prepared a 1 M stock solution as follows: 

We dissolved 13.52 g FeCl3 x 6H2O in 125 mL deionized water for a final concentration of 

0.4 M. The solution was continually agitated while adjusting the pH to 7.0 with 10 M NaOH 

solution being careful not to allow the pH to rise above 7 at anytime during this preparation. 

We continued to stir for 30 mins after the pH had stabilized at 7, but adjusted the pH as 

needed. We then centrifuged the suspension at 4000 x g for 3 mins, discarded the 

supernatant and re-suspended the rest in water, then centrifuged again. This process was 

repeated 3 times until the iron oxide is re-suspended to a final volume of 45mL and 

transferred into a sterile 125 mL serum bottle. Once sealed, the content of the serum bottle 

was sparged with N2 gas for at least an hour and autoclaved for at least 20 mins at 121oC.  

 

• Media Preparations 

Geobacter EIS experiments 

We used media with 10mM acetate and 30mM sodium bicarbonate prepared as 

follows: Sequentially, the following chemicals namely, 1.5 g (28 mM) of NH4Cl, 0.60 g (4 

mM) of NaH2PO4, 0.10 g (1 mM) of KCl, 1.36 g (10 mM) of sodium acetate trihydrate, and 

10 mL of Trace Minerals **are dissolved in deionized water to total of 960 mL and 

autoclaved for at least 20 mins at 121oC. Once cooled, 30 mL of 1 M Sodium Bicarbonate 

was added aseptically to the media along with 10 mL of ATCC Vitamins. The completed 

media was then bubbled with 80% N2: 20% CO2 gas mix for approximately 45 minutes. 
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**Trace mineral mix was prepared as follows in 1L of water: 

1.5 g of Nitrilotriacetic acid (trisodium salt), 3.0 g of magnesium sulfate heptahydrate 

(MgSO4 x 7 H20), 0.5 g of manganese sulfate monohydrate (MnSO4 x H20), 1.0 g of sodium 

chloride (NaCl), 0.1 g of iron sulfate heptahydrate (FeSO4 x 7 H20), 0.1 g of calcium chloride 

dihydrate (CaCl2 x 2 H20), 0.1 g of cobalt chloride hexahydrate (CoCl2 x 6 H20), 0.13 g of 

zinc chloride (ZnCl2), 10 mg of copper sulfate pentahydrate (CuSO4 x 5 H20), 10 mg of 

AlK(SO4)2 x 12 H20, 10 mg of H3BO4, 2.5 mg of Na2Mo04 x 2 H20, 2.4 mg of nickel chloride 

hexahydrate (NiCl2 x 6 H20), and 0.25 mg of Na2W04 x 2 H20 were added to 1L of water. The 

solution was then transferred to a media bottle aseptically and stored at 40C.    

 

For Glk. subterraneus experiments 

42 mM Bicarbonate Glk. subterraneus (donor free media) was made by dissolving the 

following materials:  

17 g of sodium chloride (NaCl), 4.50 g of magnesium chloride hexahydrate (MgCl x 

6 H20), 0.35 g of calcium chloride dihydrate (CaCl x 2 H20), 1 g of ammonium chloride 

(NH4Cl), 80 mg of monobasic potassium phosphate (KH2PO4), 3.0 mL of trace mineral 

solution* and 0.5 mL of Selenite-Tungstate solution *.  

In a graduated cylinder with deionized water, the mixture was brought to a total 

948mL and autoclaved for at least 20 mins at 121oC. Then, once cooled, 42mL of a 1 M 

Sodium Bicarbonate stock and 10mL of ATCC Vitamins were added. The solution was 

bubbled with 80% N2: 20% CO2 mix for 45mins before using. 

 

 



 35 

*Trace mineral solution protocol 

In 1 L of deionized water, the following compounds were dissolved and thoroughly 

mixed in the following order:  

12.5 mL of 25% hydrochloric acid (HCl; 7.7M), 2.1 g of iron sulfate heptahydrate (FeSO4 x 7 

H20), 30mg of boric acid (H3BO3), 0.1 g of manganese chloride tetrahydrate (MnCl2 x 4 H20), 

0.190 g of cobalt chloride hexahydrate (CoCl2 x 6 H20),  

24 mg of nickel chloride hexahydrate (NiCl2 x 6 H20), 2 mg of copper chloride (CuCl2 x 2 

H20), 0.144 g of zinc sulfate heptahydrate (ZnSO4 x 7 H20), and 36 mg of Na2Mo04 x 2 H20. 

This was done aseptically and consequently stored at 40C.  

  

*Selenite Tungstate solution: 

In 1 liter of DI water, 0.5 g NaOH was dissolved and the following were added sequentially: 

6 mg sodium selenite (Na2SeO3 x 5 H2O) and 8 mg sodium tungstate (Na2WO4  x 2 H2O). 

 

Sodium Bicarbonate solution: 

1 M stock was prepared by adding the appropriate amount (10.5 g) into 125 mL of 

deionized water. Once completely dissolved, the solution was bubbled with the 80% 

nitrogen/ 20% carbon dioxide gas mix for approximately 45 mins, then transferred into a 

serum bottle in the anaerobic glove box. The headspace was exchanged with the same gas 

mix and the solution is autoclaved for at least 20 mins at 121oC.  
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Preparation of donors: 

1 M stock of each donor was prepared in a graduated cylinder by dissolving the 

appropriate amount of Sodium acetate trihydrate, Sodium butyrate or glycerol into 125 mL 

of deionized water. Once dissolved and thoroughly mixed, the mixture was transferred into a 

small media bottle and bubbled with Nitrogen until anaerobic (~45 mins). Along with butyl 

rubber stoppers, caps, a crimper and 125-mL serum bottles, the bottle containing each 

donor was taken to the anaerobic glove box where the contents were transferred to the 

serum bottles, capped and crimped. The headspace of each serum bottles containing donor 

was replaced with nitrogen and autoclaved for at least 20 mins at 121oC. Typically, these 

were added into reactors while filling them to a final concentration of 20 mM, 5 mM and 10 

mM of acetate, butyrate and glycerol respectively. 

 

Counter Chamber Solution: 

In a graduated cylinder, 20 g of NaCl was dissolved into deionized water and fill the 

cylinder close to 1 L. Concentrated NaOH was added dropwise until the pH reached 12.5; 

being careful not to overshoot past pH 12.5. Then, water was added to exactly 1L while 

making sure the pH remains at 12.5. The contents were transferred into a 1 L bottle and 

autoclaved for at least 20 mins at 121oC. After the solution was cooled, it was bubbled with 

nitrogen gas for approximately 45 mins to make it anaerobic. 



 37 

CHAPTER 4 

ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY – RESULTS AND 

DISCUSSION 

The underlying objective of the EIS study on Geobacter is to determine if extracellular 

electron transfer (EET) resistances in the ARB biofilm are rate-limiting.  For this purpose, 

we used measurements obtained as a function of growth and followed how resistances 

behave as the biofilm grows and the EET distance increases. We hypothesized that as the 

biofilm grows, the increase in EET-active proteins (e.g., cytochromes) will affect the 

resistances and the capacitances in the system. Once the biofilm is fully grown, both 

capacitances and resistances should stabilize.  Because our system is modeled after a simple 

Randles circuit, we anticipate that in the range of frequencies we have chosen for our 

measurements, the Ohmic resistance measured should not be changing (if the EET 

mechanism is primarily Nernstian in nature). On our Bode and Nyquist plots, we are able to 

differentiate between different processes taking place and the resistances corresponding to 

each process can be obtained via an analysis method, Z-fit.   These resistances and 

capacitances are normalized by surface area and by the calculated biofilm thickness, as 

determined by Robuschi et al., 2012. CVs were also performed at various growth stages and 

fitted to the Nernst-Monod model. 

The motivation for growth experiments came from our previous studies on Geobacter, 

where we obtained resistances as a function of anode potential1. In this study, we performed 

EIS measurements at potentials that are 20mV apart. For each charge transfer process 

present; we graphed the resistances vs. anode potential. This plot is representative of the 

                                                
1	  The	  experiments	  related	  to	  Figures	  4.1	  and	  4.3	  were	  led	  by	  Dr.	  Sudeep	  Popat	  and	  assisted	  by	  Rachel	  
A.Yoho	  and	  myself.	  
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total resistance in the system. We used the unique combination of CVs and EIS because 

although they are different methods, there exists an important correlation between the two. 

With the Nernst-Monod equation, we can generate the current/potential sigmoidal response 

typical of G. sulfurreducens biofilms. In Figure 4.1a, we plot  j/jmax according to the Nernst-

Monod equation with an EKA = 0 using the range of potentials specified as the value of E. 

We used two values for n in order to show the differences in the plots with this parametric 

change. According to Ohm’s Law, V = iR, it is evident that the slope of a CV is the inverse 

of resistance. Since EIS gives us the resistance information, we plot on Figure 4.1b the 

inverse of the slope of the sigmoidal CV curve in order to get the expected shape of the 

resistance vs. potential curve. I will refer to this curve as the U-shape curve throughout the 

document; this U shape is specific to the Nernst-Monod’s sigmoidal behavior. While 

increasing values of n translates into increasing slope of the CV, it translates into the 

narrowing of the U-shaped curve.  

 

Figure 4.1. (A.) Two Nernst-Monod CVs generated with EKA of 0 and jmax of 1 to show the 

effects of changing the value of n. The Nernst-Monod equation is displayed on the graph. 

(B.) The corresponding resistance vs. potential graph in the linear region of the CVs plotted 

in A. The resistances were calculated by taking the inverse of the slope of the linear region, 

which happens to be 1/R.   
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Therefore, with every EIS measurement set, we expected a U-shape relationship 

between resistance and potential, indicative of a microbial/enzymatic process. As a sigmoidal 

curve has been deemed to be a characteristic of an enzymatic process, so is the U-shape 

curve with its minima representing the midpoint potential of a particular enzyme. However, 

in our EIS experiments with G. sulfurreducens, we consistently generated a double U curve, 

suggesting that there must be more than one pathway for electron transfer, each with a 

distinct rate-limiting protein being expressed (Figure 4.3a). The relationship obtained 

suggests there are two midpoint potentials (EKA) corresponding to two different proteins.  

One of the EKA’s is closer to the potential at which the bacteria are grown, -0.02V and the 

other is more negative.  

As expected, a CV of the same biofilm (Figure 4.3b) cannot be fitted with a single 

Nernst-Monod curve; the CVs always show two inflections (Figure 4.3b), indicative of two 

possible redox processes occurring in parallel.  When using a Nernst-Monod fitting for two 

governing protein in parallel, we were able to fit both EIS and CV data, as shown in Figure 

4.3b.  This confirms that the two processes observed are in parallel, that is, there are at least 

two different pathways that operate in parallel. 

As a comparison to Geobacter, I also decided to do EIS measurements on our 

halophilic ARB, Glk. subterraneus. The purpose of these measurements is to compare the 

processes governing electron transfer. I decided to do same EIS experiments as a function of 

anode potential that produce the double U responses for Geobacter. Glk. subterraneus is grown 

at 0.04V vs SHE (standard potential to grow these in our laboratory). There are key 

differences between these two organisms physiologically as we have previously discussed, 



 40 

but there are also similarities. Rather than two redox processes (double U), I observe three 

redox processes  (Figure 4.2).   

 

Figure 4.2. EIS resistance vs. anode potential graph for Glk.subterraneus macroscopically 

showing three redox processes (triple U-response) in parallel as indicated with arrows. 

This data can later help us in understanding the electron-transfer resistances in Glk.  

subterraneus since the first report of it functioning as an ARB is rather recent (Badalamenti et 

al., 2013). Since reasonable current densities are generated, understanding its EET 

mechanism will provide a great insight into a promising organism in the applications 

associated with MXCs.  

We hypothesized that ARB cells change their preferred transport protein depending 

on their position in the biofilm. How does it change expression of its mechanism of electron 

transport?  Is this a function of a potential gradient inside the biofilm? Herein lies our 

motivation to perform growth experiment. We hypothesized that CVs done at different 

growth stages (Figure 4.4) will illuminate the potential gradient we think exists in our system. 

We decided to do CVs mainly because they are faster to obtain than EIS measurements. To 
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do EIS measurements that can give the same information will require us interrupting the 

system for close to 2 hrs at a time because each potential takes 10 minutes, and to capture 

the whole range, I will have to take measurements at 10-12 potentials. This length of time is 

considerably longer compared to approximately 30 min it takes to generate a CV.  We did 

not completely exclude EIS because we performed EIS experiments at various growth stages 

to elucidate the underlying mechanisms that are changing as a function of biofilm growth. 

However, we chose only two representative potentials for these experiments, growth 

potential and a potential closest to the midpoint as indicated by CVs. 
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Figure 4.3. (A.) Resistance vs. anode potential graph macroscopically showing the U-shape 

expected from this analysis. A zoomed in version shows the double U response with the two 

EKA values marked as 1 and 2. (B.) Our experimental data for a fully-grown G. sulfurreducens 

biofilm in blue fits the N-M model with two parallel processes shown in black. (C.) A 

representation of how two n=1 transfer processes in parallel changes the apparent n value to 

a value less than one (data not yet published). 

The CVs as a function of biofilm growth were obtained at 0.5A/m2, 2A/m2 and at 

saturation (4.8 to 5 A/m2), as shown in Figure 4.5. All CVs are sigmoidal with changing 

shape as a function of growth (Figure 4.5). The CV’s midpoint potential becomes more 

negative as the biofilm grows.  The change in the CV shapes is represented in figure 4.5B 

where CVs at the lowest and the highest current densities are reported as j/jmax. These 

normalized CVs make the change obvious.  The changes observed are consistent with a 

biofilm potential gradient. The young biofilm (0.5 A/m2) generates a high-potential signal 

A.) B.) 

C.) 
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(EKA = -0.08 V) with a n=2 Nernst-Monod fit.  However, the older biofilm shows a mixed 

Nernst-Monod fit that also includes a lower potential signal (EKA = -0.17 V). We hypothesize 

that as the biofilm grows, a potential gradient then exists for the cells further from the 

electrode that still need to make contact with the electrode. For the ARB to now overcome 

this gradient, the bacteria farther away from the anode must switch from one 

protein/cytochrome in the EET pathway to the other with lower EKA. This shift is clearly 

detrimental to their ability to harvest energy from anode respiration, since they lose ~90 mV 

by using the more negative electron-transfer process.  

This change in the CV shape supports what we have noticed with the double U 

response of resistance vs. potential curves from our earlier EIS experiments (Figure 4.3a). 

Additionally, the N-M fit for each of the CVs obtained revealed the changes in the value of n 

as well. At the lowest current density corresponding to having a thin biofilm, the value of n 

is larger than one and at saturation. This translates to a change in the slope of the CVs.  

When n>1, the slope is steeper than n=1, and when n<1, the slope is broader than n=1, but 

as shown in Figure 4.5b, n = 1 does not fit the data as well as we have seen in our previous 

experiments. This once again suggests that the EET process is more complicated than what 

we imagine it to be. The parallel processes discussed above could explain the CV 

observations.  
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Figure 4.4. The growth curve of 10mM acetate fed Geobacter obtained from the third 

replicate. EIS was performed at the end of each color segment of the growth curve. 

  

 

Figure 4.5. (A) CVs done as a function of growth. As the biofilm grew, the shapes of CVs 

changed. (B) CVs obtained when the biofilm was the thinnest (0.5 A/m2) and also thickest 

(5.1 A/m2) represented as j/jmax to show the obvious change in the CVs. As the biofilm 

became thicker, the CVs become smoother as well. The N-M fits are also shown here in 

black dotted lines and the EKA shifts slightly to a more negative potential. 
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At this junction, I reason that the potential at which we are growing the bacteria has 

much to do with the results we are obtaining. To confirm this hypothesis on the potential 

gradients causing a shift in expression of the protein/cytochrome in the EET pathway, 

experiments are underway to grow the bacteria at a lower potential comparable to the 

potential at which Geobacter has been previously grown in Torres et al., 2008 (-0.13 V vs 

SHE). We predict that at this lower potential, the resistance vs. potential curve will give a U 

response and not a double U response simply because there may only be one of those EET 

protein(s)/ cytochrome(s) preferred for the bacteria. Thereby, only one pathway will be 

predominant. 

 

Geobacter EIS results 

From the data presented above, we can conclude that there is more than one 

pathway responsible for the electron transfer. In order to elucidate the processes responsible 

for the phenomenon we are discovering at -0.02V growth potential, we performed EIS 

measurements also as a function of growth and as a function of potential. By so doing, we 

expected to be able to tease out the individual resistances in the system and use them to gain 

a better understanding of the potential gradients we see. Through EIS, we also expected to 

gain a deeper understanding towards the EET mechanism of Geobacter as it has constantly 

been a subject of contention.  

From the data collected in these experiments, we could clearly distinguish three 

resistances at work; an Ohmic resistance (R1) and two charge transfer resistances (R2 and 

R3). An example of such plots is shown in Figure 4.6 with the resistances labeled. All 

experiments presented were repeated at least three times and the results are similar. Here, I 
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will report our data from my third replicate (Reactor 3), but the other data are made available 

in the appendices.  

 

Figure 4.6. An example of Nyquist plots we generate showing the resistances we refer to as 

ohmic (R1), the first corresponding value on the x-axis, and the charge transfer resistances 

(R2 and R3), the later values once extrapolated onto the x-axis. The x-axis shows the real 

impedance values that are reported.  

One school of thought on the EET mechanism of Geobacter claims that the 

“nanowires” act as metallic-like conductors (Malvankar et al., 2011; Malvankar et al., 2012).  

If true, the Ohmic resistance should increase as the biofilm grows due to the presence of the 

nanowire resistance within the biofilm.  However, if the nanowire resistance is Nernstian in 

nature (electron hopping through cytochromes), the Ohmic resistance should not change 

significantly as the biofilm grows; instead, other Nernstian resistances (U-shapes) should 

increase. We observe an increase in Ohmic resistance, R1, within the error range of EIS 

measurements. However, as shown in Figure 4.7 this resistance does not increase 

significantly.  

R1 R3 

R2 
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The Ohmic resistance has two components, the electronic (Relec) and the ionic 

component (Rionic) (O’hayre et al., 2009). The electronic resistance comes from the path of 

electrons through electrodes, connections to electrodes, and possibly through nanowires.  

However, the majority of the Ohmic resistance comes from Rionic because of the ionic 

transport in the electrolyte, between the anode and the reference electrode. 

 

Figure 4.7. (A.) All resistances (ohm cm2) vs. time plots obtained from EIS measurements 

obtained at -0.02V vs. SHE. (B.) Zoomed in plot of Ohmic resistance at the same potential 

shows slight increase in this resistance. 

In a young biofilm, Rionic is the main Ohmic loss. The increase in Ohmic resistance as 

the biofilm grows could be the result of a “nanowire resistance”.  However, an increase in 

Rionic is also expected because the biofilm presents an added layer of ionic resistance due to 

the tortuosity of the ionic path between electrodes.  As the biofilm grows, the distance from 

the electrode remains the same, but the ions no longer have a clear path. The cells that have 

now colonized the electrode amount to a significant hindrance to ion transport. Thus, we 

cannot conclude from these results that we can quantify a “nanowire” Ohmic resistance.  

However, we can conclude that, if nanowires are indeed acting as Ohmic resistors, their 

conductivity is very high and they impart a negligible resistance to the biofilm system.  This 
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is obviously not consistent with our previous results that suggest there is a biofilm potential 

gradient due to EET resistances. 

Although this is an important discussion, this work will not focus on the Ohmic 

increase because evidently, other resistances play a much larger role in our system.  The 

other two resistances we see when we analyzed our EIS data are about 100 to 300 times 

larger than the Ohmic resistance as shown in Figure 4.8a. It is then safe to assume that the 

processes represented by these resistances dominate the limiting electron-transfer kinetics of 

our Geobacter strain.  

 

Figure 4.8: Charge resistance measurements at both potentials at which EIS measurements 

were obtained. 

All our EIS data was collected as total resistance (Ohm) and normalized per the surface 

area (Ohm cm2).  However, in order to better discuss the effect of biofilm growth on the 

resistances observed, we normalized our data with biofilm volume (Ohm cm3) using values 

reported in literature from a study that established the relationship between current density 

and biofilm thickness for G. sulfurreducens (Robuschi et al., 2012). From this study, I 

extrapolated approximate corresponding biofilm thickness measurements (Table 1.1). 

 

A. 
 

B. 
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Table 4.1: Relationship between current density and biofilm thickness for G. sulfurreducens 

Adapted from the following reference: Luciana Robuschi et al., (2012) 

Current 
Density 
(A/m2) 

0.5 0.55 1 1.2 2.1 3 3.55 4 4.7 5 5.1 5.7 5.8 6.1 

Biofilm 
thickness 
(µm) 

6 6 6 7 10 12 14 20 28 30 32 42 42 57 

 

 It became more glaring that one of these charge resistances, R3, is playing an even 

bigger role, as it is larger than the other. Since the biofilm grows in layers, we can think of 

resistance in terms of biofilm thickness. The normalization to biofilm thickness presumes 

that at every layer of growth, there should be the same cellular machinery accumulated. Even 

more interestingly, R3 does not behave the same way at the two potentials where 

measurements were taken. At -0.02V (the growth potential), R3 continues to increase even at 

saturation (Fig 4.8b) while at -0.11V, closer to the EKA, R3 remains rather constant, but still 

bigger than R2 (Fig 4.8a). Further studies need to be conducted to shed light on the details 

of these results, especially in terms of what pathway this could be representing. Since we do 

not delve into the realm of proteomics or protein film voltammetry, it is impossible to make 

any conclusions as to what component of the cell is causing the most resistance to electron 

transfer. To this end, however, there have been studies that sought to make these inferences. 

It has been proposed that a periplasmic protein is the one responsible for the biggest 

resistance (Pessanha et al., 2006) and an outer membrane cytochrome responsible for the 

second charge transfer resistance (Qian et al., 2011). While we did not seek to validate these 

findings, we can say that the behavior of R3 at both potentials is important. According to the 

CVs we have shown thus far, -0.02V corresponds to the saturation potential of our Geobacter 
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strain. The increase in R3 suggests that there is a limitation to the growth of the bacteria. 

Geobacter has been shown to grow to current densities close to 8 A/m2 (Yi et al., 2009), and 

even up to 10 A/m2 in a mixed consortium (Parameswaran et al., 2011), but we have not 

seen that in these experiments. We know that there must be some limitations to reaching 

higher current densities at the conditions of growth we specified for this strain. From our 

results, we know the resistance responsible for this limitation is R3. At the attachment phase, 

the cells are still growing and there is not any limitation to growth, hence this resistance is 

constant for the most part.  

Being that a circuit models our system, the next part of the circuit that we can 

measure from our EIS measurement is the capacitance. These values were also normalized 

by the predicted biofilm thickness from literature. We reason that the capacitance is a 

function of the redox-active proteins present in the system; thus, the normalized capacitance 

should increase as the first monolayer of cells attach to the electrode. However, we 

presumed that redox-active proteins are more densely packed closer to the anode.  From the 

perspective of the bacteria, there is an inherent gradient as it relates to the availability of 

electron acceptor, as the distance to the electrode gets larger. Hence, the cells at the topmost 

layer of the biofilm do not benefit from making more cytochromes. Consequently, as the 

biofilm grows, the normalized capacitance should decrease. In fact, this is what we observe. 

Because there are two charge-transfer resistances, there is a corresponding capacitance for 

each resistance. In Figure 4.9, I show this increase in capacitance per cubic centimeter from 

measurements taken at 0.5 A/m2 and 1 A/m2. This is indicative of the first layer of cells. 

Subsequent capacitance measurements continue to go down as we have hypothesized. This 
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is observed at both -0.02V and -0.11V, but with no real difference between the rates of 

decrease at both potentials.  

 
Figure 4.9. Capacitance measurements at both potentials at which EIS measurements were 

obtained. 

 
Summary and Concluding Remarks 

In the journey to understand the electron-transfer processes of Geobacter, we have 

discovered from our data that the simple N-M fit with n being 1 reported in literature does 

not match the actual electron-transfer phenomena.  The process is not governed simply by 

one n =1 step, but rather a few processes in parallel with one primarily having the biggest 

impact. Additionally, the Ohmic resistance does not contribute significantly to the total 

biofilm resistance. This has led us to conclude that the EET mechanism that Geobacter 

exploits is more long-range electron transfer by the help of redox-active proteins 

participating in the electron hopping process (Strycharz-Glaven and Tender, 2012). We have 

also learned that the potential at which the bacteria are grown is crucial as the cells can 

minimize potential losses by using the most favorable pathway for electron transport. This is 

supported by the potential gradient we see in the CVs done at the different growth stages at 

which evaluation and EIS measurements were carried out. Obviously, our results stress the 

A. B. 
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need to further understand Geobacter’s EET and this topic will continue to be a subject of 

discourse in the MXC community.  
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CHAPTER 5 

GEOALKALIBACTER SUBTERRANEUS CHARACTERIZATION RESULTS AND 

DISCUSSION 

My second goal was to characterize a novel ARB, Glk.subterraneus that might have 

unique capabilities for MXC applications. Earlier, it was discussed that in some of our 

saltwater enrichments, the genus Geoalkalibacter was present. In order to further understand 

these putative ARB, we studied two pure cultures that have been already microbiologically 

characterized. In the recent publication by Badalamenti et al, (2013), the authors discussed 

their efforts to characterize Glk. ferrihydriticus as an ARB. In this study, this organism was fed 

acetate and ethanol and the Coulombic efficiencies for both substrates and the current 

densities rival that of Geobacter in an MEC (Chapter 2). We now have the task of uncovering 

what substrates Glk. subterraneus can utilize when coupled to the anode respiration. Although, 

there is a long list of potential electron donors from which we can choose, not all are ideal 

for MXC use. For example, there are donors like stearate and palmitate that have low 

solubility because of their high molecular weight due to their longer hydrocarbon chains. 

Thus, we envisaged that these fundamental studies would be difficult to carry out if we were 

to use them.  

With this in mind, I ventured to compare the growth and electrochemical behavior 

of Glk. subterraneus using acetate and also two other more reduced compounds, butyrate and 

glycerol. Apart from the fact that this choice of donors provides a sample of types of 

compounds, simple acids to alcohol to longer chains, they are also significant in 

fermentation and the industrial MXC applications. Butyrate is oftentimes a dead end 

fermentation product and it will be beneficial to find an ARB to consume it directly (Torres 
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et al., 2007). Since it is a four-carbon compound with potentially more electrons for use, the 

consumption of butyrate from a fermentation effluent is essential to achieve a high CE. 

Also, butyrate has been used in our lab in the past, but in a mixed consortium (Miceli, 

personal communication). Therefore, butyrate as a donor for a pure culture MEC will be a 

feat.  

Glycerol on the other hand was chosen for a few different reasons; it is inexpensive, 

but most importantly it has a significance in the biodiesel industry. The process of taking 

animal oils and vegetable oils and converting them to biodiesel in the presence of alcohols 

not only produce the desired product, but it also produces glycerol (Chattopadhyay and Sen, 

2013; Rossi et al., 2013). In order to maximize the yield of usable fuel alternatives, efforts are 

underway to convert glycerol to products like ethanol and hydrogen (Varrone et al., 2013). 

To add to its significance, glycerol has been shown in the past to be anaerobically degraded 

by organisms such as Desulfovibrio fructosovorans and D. carbinolicus (Qatibi et al., 1998). 

Consequently, we reason that using another anaerobic organism, Glk. subterraneus, that can be 

grown in an MXC to directly produce current will be an added level of understanding to not 

only this organism, but the usefulness of this substrate. Most fortunately, it is exciting to 

delve into the inner-workings of such a new organism in the MXC community. As with 

Geobacter, Glk. subterraneus has the potential to become an important ARB in this community 

as we continue to study it to hopefully uncover its biochemical pathways for substrates of 

interest.  

To characterize this organism, we studied its current generation and its kinetic 

parameters. I also measured some electrochemical parameters for each substrate. In Chapter 

4, I discussed the results of our EIS experiments using Glk. subterrnaeus, therefore, we will 
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not delve into those results again. As shown in Figure 5.1, Glk. subterraneus couples oxidation 

of acetate to the production of current with anodes poised at the same previously reported 

value of 0.04V in a medium with pH 7.2. The cells grew within 2 days and produced 

significant current with a doubling time of 2.9 hrs. By the 6th day, a 1mV/s scan rate CV was 

done to obtain some kinetic parameters. However, when chronoamperometry resumed, the 

current started to decrease. Although the jmax is considered high (> 1A/m2), it is not 

sustained at the maximum current density. Therefore, we investigated the effects of 

continuous flow of media on the current generation. Within minutes of establishing flow, we 

saw an immediate positive response in current density, which suggested that the cells were 

limited by an unknown nutrient present in the medium. With this setup, we were able to 

achieve the highest current density, 4.5 A/m2, which the cells were able to sustain for over 

10 days. When this system was restored back to batch mode, the current steadily dropped 

but not at a fast rate, sustaining current densities between 3 A/m2 and 3.5 A/m2 for about 7 

days. This suggests that we have been able to have the cells overcome the nutrient barrier 

they experienced earlier and the true jmax was recorded to be 4.5 A/m2. The acetate 

consumption was measured to calculate CE, which ranged from upper 50% to above 100% 

as has been reported in Badalamenti et al., 2013. It is suggested that these organisms find a 

way to produce storage polymers that can then be used when needed which is why it can be 

possible to have these efficiency values (Badalamenti et al., 2013).  
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Figure 5.1. Chronoamperometry of Glk. subterraneus fed with 20mM acetate poised at 0.04V. 

At day 35, the substrate was changed to butyrate with the media replacement. The CVs are 

labeled as events 1, 2 and 3 respectively. 

I chose to investigate the effect of a different donor on the cells by doing a media 

replacement with butyrate now as the donor. Since I later perform experiments with a 

reactor inoculated with cells that have been growing on amorphous Fe(III) oxide, the media 

replacement was done to have a comparison between the two methods of investigating 

butyrate as a donor. Not only was the media replaced, one of the anodes was also scraped 

clean of bacteria to confirm that current generation is from attached cells. This particular 

experiment is shown also in Figure 5.1. At day 35, the media was replaced with butyrate and 

immediately, current generated reduced to 0.5 A/m2. However, as shown in Figure 9, the 

current later dropped to about half its value. This value was sustained for ~10 days before 

we observed an increase in current generation. There can be a few reasons for why we 

observed this. Firstly, there may have been residual acetate both in the biofilm and in the 
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media from the replacement maneuver. On the minimal acetate around, it is conceivable that 

the other untouched biofilm continued to produce current. When there is no more acetate 

around, it is understandable that the cells will have to adjust to butyrate consumption. The 

current eventually increased to 1.1A/m2. This jmax was sustained in batch mode for 

approximately 10 days. At the end of this period, a CV was performed for comparison to the 

same biofilm fed with acetate. Butyrate consumption in this case was measured as well and 

its CE ranged from 40% to 62% following the same trend we saw with acetate in terms of 

having lower efficiencies earlier in the process of forming a new biofilm.  

 This approach provided us some insight as to how this halophile ARB functions 

with different electron donors. We already know that its list of usable donors is quite large in 

comparison to other bacteria in the same family and even in the same genus. However, we 

performed the same experiment with butyrate that we have done with acetate; we inoculated 

an MEC with cells previously growing on Fe (III) oxide and fed butyrate. The anodes were 

poised at the same potential, 0.04V, and the pH of media was kept near neutral. The cells did 

not produce as much current with butyrate as a donor compared to acetate. Nevertheless, we 

saw growth in less than 2 days with a doubling time of 6.4hrs. We have repeated these 

experiments two more times from smaller biofilm inoculum, but without much success. One 

of these attempts yielded a doubling time of 26hrs, which is much slower than any ARB we 

have studied. With its challenges, these experiments generated some important information 

such as jmax and other physical observations worth mentioning. No matter the doubling time, 

when the experiments have been successful, we have been able to obtain a maximum current 

density ranging from 1.4 A/m2 to 2 A/m2 in batch mode. All these biofilms were never as 
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thick (visual observation) as those formed by acetate fed cells and they tend to accumulate 

precipitates after 7 days of running the reactors.  

The CE for butyrate experiments was ~64%, but side products like valerate, 

isovalerate and isobutyrate were common in our analysis both times we did these 

measurements. There is a possibility that one or more of these side products serve as 

inhibition to the production of current in these organisms. Since both isovalerate and 

isobutyrate are branched chain compounds and we have no metabolic information on the 

usage of any substrates with this organism, it is possible that these complex donors are 

accumulated instead. From the growth curve presented in Figure 5.2, it is evident that with 

butyrate as the donor, the current production drops rapidly and never recovers. I presume 

that another reason for this sudden drop in current is related to the concentration of 

butyrate available by day 4. Out of the 5mM butyrate fed, there remained 0.48mM which 

suggests that Glk. subterraneus must prefer butyrate to any other side products available in the 

reactor. Therefore, based on these results, it seems that, although Glk. subterraneus is able to 

consume butyrate; it is a difficult task for this particular organism.  
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Figure 5.2: Chronoamperometry of Glk. subterraneus fed with 5mM butyrate poised at 0.04V 

in batch mode.  

Glycerol, on other hand, proved to be a preferred donor for Glk. subterraneus. Once 

again everything was kept the same in the growth medium with the exception of the change, 

the donor (10 mM glycerol). Cells grow within 2 days of inoculation with a doubling time 

close to 4.8hrs. A jmax of about 2.3 A/m2 was reached by day 20, and current densities 

between 2 and 2.5 A/m2 were sustained over an 8 consecutive day period in batch mode. 

Although by day 28, current did start to drop, the cells actually resumed production of 

higher current densities by day 30, as shown in Figure 5.3.  The noise observed in the current 

density measurements is probably due to an electrical connection problem between the 

MXC and the potentiostat. The only interruption we introduced into the system was 

sampling for CE measurements. Since current production continues to resume until 

substrate concentration starts to decrease, we can assume that there must be some 

accumulation of side products that may be used as reserves during certain times as the cells 

choose. From our CE measurements, we obtained an efficiency of 38% for glycerol 

consumption, but we saw fermentation of compounds such as acetate, succinate, formate 
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and citrate. By the end of the experiment, the glycerol concentration was very minimal. The 

most interesting thing I observed was an accumulation of citrate while there was slight 

decrease in acetate concentration (2.2 mM to 1 mM) as time elapsed. This decrease is not so 

significant since the amount of acetate measured was quite small. It is possible that one or 

more of these higher order compounds became inhibitors to the system because in all the 

experiments with glycerol (2 replicates), the highest current density have never been higher 

than 2.5 A/m2. This may be as a result of our reactor design because in our EIS experiments 

with glycerol fed Glk. subterraneus, current densities as high as 3 A/m2 have been recorded. 

Through these experiments, I have increased the repertoire of ARB capable of oxidizing 

more complex substrates while producing high current densities.  However, given the 

production of by-products, there are still more questions about this organism’s mechanism 

of glycerol utilization that deserve further investigation. 
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Figure 5.3: Chronoamperometry of Glk. subterraneus fed with 10mM glycerol poised at 0.04V. 

The labels represent the three CVs performed throughout the experiments. 

 

To elucidate the kinetics involved, electrochemical measurements are paramount. The CVs I 

report here have been obtained with a low scan rate of 1 mV/s as we scanned over a range 

of potentials specified in Chapter 3. Figure 5.4 shows the variety of CVs obtained at 

different times throughout the duration of the experiments.  A CV done earlier, day 6, is 

very similar to those reported for this ARB in Badalamenti et al., 2013. There are redox 

peaks and the forward and reverse scans are slightly separated. However, as the acetate fed 

biofilm ages, the separation reduces and the peaks tend to disappear. As expected, with the 

butyrate fed biofilms, the CVs have slight similarities to the acetate counterparts. There is, 

however, a major difference in the two experiments (acetate and butyrate) in that the 

separation in the forward and reverse scans never disappears with butyrate as the donor 

(data not shown). In comparison to the CVs done with butyrate biofilms, we also performed 

 	  	  	  1 
 	  3 

 	  	  	  2 
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CVs on the acetate fed biofilm that was later introduced to butyrate via a media replacement 

(Figure 5.5). As expected, the latter has a CV indicative of mature biofilm with no redox 

peaks.  

 

Figure 5.4. CVs of Glk. subterraneus grown with 20mM acetate as the donor at early; day 6, 

middle; day 20 and later; day 28 in the lifetime of the biofilm. 

 

Figure 5.5. CV obtained from acetate fed biofilm after media replacement with butyrate as 

the donor. 

  The glycerol experiments also show the same progression in the shape of the CVs 

obtained from young to older biofilms. Redox peaks that later disappear are also present in 
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the earlier CVs. As with our EIS experiments, where CVs change shapes and slopes as time 

elapses, these CVs obtained from our glycerol fed biofilms show the same trend. Although 

the trend is not as obvious as with our Geobacter experiments (Chapter 4), it is interesting to 

see similar electrochemical responses in these ARB. Figure 5.6 shows the three CVs obtained 

from our glycerol experiments with the EKA becoming slightly more negative with time.  

 

 

Figure 5.6. CVs of Glk. subterraneus grown with 10mM glycerol as the donor at early; day 6, 

middle; day 21 and later; day 27 in the lifetime of the biofilm. 

While it is expected that the Glk. subterraneus CVs are not exactly alike to Geobacter, 

the model ARB, their behavior is similar, following a sigmoidal response with a comparable 

N-M fit. A sigmoidal curve proves that there is a biological process governing the transfer of 

electrons from the cells to the anode of the MECs in which they are grown.  As shown in 

table 5.1, the Open Circuit Potential (OCP) and EKA values for the donors are comparable to 

each other. The similar EKA values suggest that Glk. subterraneus has conserved mechanisms 

for the oxidation of each donor no matter the complexity.  



 64 

Table 5.1. A comparison between the electron donors showing changes in the OCP and the 

EKA. 

Donors        OCP v. SHE EKA 

Acetate -0.27 V to -0.29 V -0.15 V to -0.18 V 

Butyrate -0.27 V -0.17 V 

Glycerol -0.28 to -0.31 V -0.16 V to -0.21 V 

 

Summary and Concluding Remarks 

In the journey to discovering high current density producing ARB other than Geobacter, we 

have been able to characterize a halophile, Glk. subterraneus as ARB that can use a variety of 

different organic substrates as electron donor. From CE ranging from 38% to 64%, Glk. 

subterraneus was able to utilize glycerol, acetate and butyrate as donors whose reduction can 

be coupled to iron reduction or anode respiration using MXCs. I have also shown the 

importance of CVs in characterizing a novel ARB. Using CVs, a sigmoidal response was 

obtained for every donor confirming electron transfer happens via a biological process. 

Additionally, I have shown how CVs tend to evolve over the lifetime of a study as redox 

peaks appear in the beginning while the biofilm is still young and these peaks disappear, as 

the biofilm grows older. From CVs, key parameters were also discovered to be similar for all 

three donors leading us to assume that Glk. subterraneus probably has a conserved electron-

transfer mechanism independent of the complexity of the substrate. My results not only 

stress the importance of electrochemical methods outlined in Chapter 2, but also the need to 
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further understand this new ARB for applications in environments similar to that of Glk. 

subterraneus, saltwater and higher temperatures. 
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CHAPTER 6 

RECOMMENDATIONS FOR FUTURE WORK  

I have shown so far that further understanding ARB is essential for the potential 

applications in MXC. For further characterization of Geobacter, we now need to employ other 

methods aside from our well-known electrochemical methods discussed earlier. EIS and 

CVs have been able to uncover the complexity of these systems, but they have not been able 

to elucidate the molecular mechanisms of EET in ARB. To this end, I propose that the next 

step is protein film electrochemistry to investigate which cytochromes are involved in 

individual resistances limiting the growth of Geobacter to the higher current densities, as 

observed in the EIS experiments (Chapter 4). In the same vein, being able to understand and 

assign resistances to individual internal and external processes/proteins is extremely 

important to achieve a complete understanding of ARB’s electron-transfer pathways. Since 

there have been discourse as to which proteins may be responsible for certain resistances, 

work needs to continue in this direction.  

Additionally, in Chapter 4, I hinted to other measures we are taking to understand 

the potential gradients that develop in our systems namely low anode potential experiments. 

These should make clear on a macroscopic level what is taking place in our systems. We 

anticipate there will not be a potential gradient existing in these cells; hence, a CV obtained 

from these experiments should be a N-M fit of n=1 and not a sum of parallel processes. The 

goal here is to be able to understand how the anode potential affect the expression of the 

cells that ultimately colonize the anode.  

EIS should continue with Glk. subterraneus as well. I personally think the next step 

with this ARB is to do EIS as a function of growth as was done with Geobacter. If the same 



 67 

trend of potential gradient emerges, we may be able to establish a new characteristic of ARB 

in the Geobacteraceae family. Right now, the EIS we have done with Glk. subterraneus has been 

done with glycerol, as the electron donor because the cells grew better with this substrate, 

but it will be exciting if a fair comparison can be drawn between Geobacter and this halophile 

using acetate as the donor.  

A general future direction for any ARB with regards to EIS should include a biofilm 

thickness study like that which was carried out in Robuschi et al., 2012. From what I discuss 

in Chapter 4, the charge resistances are biofilm thickness dependent and it will be an 

important contribution to be able to do these same experiments with the ARBs in the lab.  

To continue our work on discovering and characterizing new ARBs, we have a 

Geoalkalibacter isolate, obtained from the work of Miceli et al., (2012) that needs to be 

microbiologically characterized. It will be a feat for an in-house isolate Geoalkalibacter to be 

able to do the same or similar exploits to the ones already known, Glk. subterraneus and 

ferrihydriticus. If this isolate can be characterized as a high current producing ARB, then, we 

would have been successful in adding to the toll of ARB than can be useful in MXC 

applications. In Chapter 5, I detailed our efforts to characterize Glk. subterraneus using 

different electron donors. This work can easily continue because unlike Geobacter, so much is 

still unknown about this organism. For example, when glycerol was used as the donor, it was 

evident from HPLC data that there are side products of glycerol metabolism and I think 

these could be used to understand this ARB’s mechanism of metabolizing substrates.  

 Ultimately, since microbes are an essential part of our world, we, as researchers have 

the responsibility to understand them as much as we can. As stated in Chapter 1, microbes 

have the capacity to potentially solve a number of human problems, mainly energy. A 
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number of processes including food-processing industries generate wastes from which 

usable energy can still be harnessed. Understanding ARB and characterizing them gives us 

more insight into the class of microorganisms that can generate electricity from our wastes. 

A constant challenge facing the MXC community comes in the form of this question: how 

can we increase the current densities generated from our systems? The answer to this 

question lies in our continued investigation of ARB and what they are potentially capable of 

achieving in terms of converting most of the energy available in a substrate to electrical 

energy.  
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APPENDIX A 

CHARACTERISTIC DIFFERENCES IN GLK. FERRIHYDRITICUS AND  

GLK. SUBTERRANEUS 
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Geoalkal ibacter  

Characteristic subterraneus f err ihydri t i cus 

 
DSMZ designation 23483 17813 

 
Temperature optimum (°C) 40 35 

 
Temperature range (°C) 30–50 18–39 

 
pH optimum 7.0 8.5 

 
ph range 6–9 7.8–10 

 
Motility + + 

 
DNA G+C content (mol%) 52.5 55.3 

 
Salinity range (% w/v NaCl) 0.1−10 0−5 

 
Salinity optimum (% NaCl) 2 0.1 

    Electron acceptors  
  

 
AQDS ND + 

 
Fe(III) oxide, amorphous + + 

 
Fe(III)-EDTA ND + 

 
Fe(III)-citrate + − 

 
Fumarate − − 

 
Mn(IV) + + 

 
Nitrate + − 

 
S0 + + 

 
Sulfate − − 

    Electron donors 
  

 
Acetate + + 

 
Butyrate + − 

 
Ethanol + + 

 
Formate + − 

 
Glycerol + − 

 
Hydrogen + − 

 
Malate − ND 

 
Malonate + − 

 
Methanol + − 

 
Palmitate + ND 

 
Peptone + − 

 
Propionate + + 

 
Pyruvate + + 

 
Stearate + ND 

 
Succinate + − 

 
Yeast extract + − 
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ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY RESULTS OF REPLICATE  

 
EXPERIMENTS  
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Here, I have outlined the results of the EIS replicate experiments, specifically reactors 1 and 

2, since results for reactor 3 have been outlined in chapter 4. The central theme here is that 

the results were similar all times the experiments were carried out. 

 
Figure 1. The growth curves obtained from experiment #1(A.) and #2 (B.) consecutively. 

EIS measurements were obtained at the end of each color segment  

 
 

Figure 2. CVs obtained at different growth stages showing the evolution of the shapes of 

both CVs as a function of growth.  

 
              

B. A. 

A. B. 
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Figure 3. Ohmic resistances as represented in experiments #1 and #2 are shown in 

comparison to other resistances in (A.) and (C.) while (B.) and (D.) show the slight increase 

in ohmic resistances. 

 
 
 
 
 
 

A. B. 

D. C. 
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Figure 4. The two charge transfer resistances, R2 and R3, obtained at both potentials, -0.02V 

and -0.11V are shown here with R3 always higher than R2. 

 
 
 

 

A. B. 

C. D. 
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Figure 5. Shown here are the capacitance measurements at both potentials at which EIS 

measurements were obtained.  
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