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ABSTRACT

Despite significant advances in digital pathology and automation sciences, current

diagnostic practice for cancer detection primarily relies on a qualitative manual inspec-

tion of tissue architecture and cell and nuclear morphology in stained biopsies using low-

magnification, two-dimensional (2D) brightfield microscopy. The efficacy of this process is

limited by inter-operator variations in sample preparation and imaging, and by inter-observer

variability in assessment. Over the past few decades, the predictive value quantitative mor-

phology measurements derived from computerized analysis of micrographs has been com-

promised by the inability of 2D microscopy to capture information in the third dimension, and

by the anisotropic spatial resolution inherent to conventional microscopy techniques that

generate volumetric images by stacking 2D optical sections to approximate 3D.

To gain insight into the analytical 3D nature of cells, this investigation explores the

application of a new technology for single-cell optical computed tomography (optical cell

CT) that is a promising 3D tomographic imaging technique which uses visible light absorp-

tion to image stained cells individually with sub-micron, isotropic spatial resolution. This

dissertation provides a scalable analytical framework to perform fully-automated 3D mor-

phological analysis from transmission-mode optical cell CT images of hematoxylin-stained

cells. The developed framework performs rapid and accurate quantification of 3D cell and

nuclear morphology, facilitates assessment of morphological heterogeneity, and generates

shape- and texture-based biosignatures predictive of the cell state. Custom 3D image seg-

mentation methods were developed to precisely delineate volumes of interest (VOIs) from

reconstructed cell images. Comparison with user-defined ground truth assessments yielded

an average agreement (DICE coefficient) of 94% for the cell and its nucleus. Seventy nine bi-

ologically relevant morphological descriptors (features) were computed from the segmented

VOIs, and statistical classification methods were implemented to determine the subset of

features that best predicted cell health.

The efficacy of our proposed framework was demonstrated on an in vitro model

of multistep carcinogenesis in human Barrett’s esophagus (BE) and classifier performance
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using our 3D morphometric analysis was compared against computerized analysis of 2D

image slices that reflected conventional cytological observation. Our results enable sensitive

and specific nuclear grade classification for early cancer diagnosis and underline the value

of the approach as an objective adjunctive tool to better understand morphological changes

associated with malignant transformation.
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Chapter 1

INTRODUCTION

1.1 Motivation

Cancer is one of the leading causes of death worldwide. A minimum of 1.6 million new

cases and half a million deaths were estimated for 2012 in the United States alone [1]. The

disease also poses a major economic burden due to medical expenses or lost productivity.

The American Cancer Society estimated an expenditure of $200 billion in 2012 [2]. The

high mortality rate associated with cancer is attributed to its complexity. In contrast to most

other diseases, cancer cannot be attributed to any single infectious microbial agent or

enzyme disorder. Instead, it is a heterogeneous conglomerate of consequences that are

triggered by myriad host and environmental factors operating over a multitude of length and

time scales.

Extensive research has been undertaken over the last several decades to unravel

the origins of cancer and characterize its pathophysiologies in an effort to develop more

efficacious treatment strategies. The widely accepted theme that has emerged from this

vast body of scientific literature describes cancer as the result of a multistep and multiscale

breakdown in biological regulatory mechanisms that damage the genome and eventually

effect a permanent alteration in normal cellular function. Hanahan and Weinberg have

excellently consolidated the vast majority of research accomplishments in the field in the

form a conceptual framework on cancer biology that describes the major functional

attributes of the disease [3,4].

Recent breakthroughs in high throughput sequencing technologies have greatly

increased domain knowledge about the molecular mechanisms of cellular function and

their aberrations in cancer [5,6]. These new discoveries have spurred the development of

numerous targeted molecular therapies that repair aberrant cellular function by modulating

specific molecular drivers [7,8]. Such therapies have been shown to provide a promising

alternative to traditional surgical resection and chemotherapeutic treatment of tumors [9].

However, the unavailability of complete information about the spatial and temporal
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dynamics of signaling mechanisms, their interactions with regulatory networks, the

existence of crosstalk between molecular pathways, inherent systemic redundancies in

function, and genotypic heterogeneity limit the efficacy of molecular diagnostics [10,11].

Research endeavors are being undertaken by way of rational combination

therapies [12,13] and pharmacokinetic modeling to unravel problems such as acquired

drug resistance [14], but several other challenges remain to be addressed before the merits

of personalized oncology can be fully realized in the clinic [15–17]. Consequently, definitive

cancer diagnosis in the clinic remains largely centered around recognizing the

morphological manifestations of the disease, often referred to as malignancy associated

changes (MACs). Malignant transformations in cells or tissue are associated with chaotic

tissue architecture, increased mitotic activity in cells, and abnormal morphology of cells,

their nuclei, and DNA packing within the nuclei [18–20]. These factors, along with ectopic

occurrence of malignant cells, constitute a major component of universally adopted grading

and staging schemes used to diagnose cancer or its precursors in various tissue and organ

systems [21,22].

The conventional procedure followed in clinics to diagnose cancer is a qualitative,

manual grading of morphological abnormalities in whole cell smears (cytology) or 5-micron

thick sections of tissue (histology) stained with absorption dyes hematoxylin and eosin

(H&E) and mounted on glass slides. Trained pathologists visually assess the specimen

using two-dimensional (2D) brightfield microscopy at magnifications of 10x, 20x, or 40x.

Common pathology practice is to first scan the sample at 10x and then proceed to

observations of intriguing cells or regions of tissue at the higher magnifications. The high

depth of field of a 10x objective lens (approximately 8.5 microns) is leveraged to infer

morphological information along the depth of the specimen. Certified pathologists develop

their domain knowledge about morphological aberrations by observing 2D staining patterns

in several thousands of H&E stained cytological or histological samples over many years.

Despite being the standard of care, current pathological practice poses several technical

problems for precise diagnosis.

2



Figure 1.1: 2D brightfield microscopy assessment of cells poses several problems (indicated
by red arrows in each sub-figure) that could skew an observer’s judgment. (A) Different focal
planes from the same cell present different morphologies. (B) Different angular orientations
of the same cell present different morphologies. Cell is stained with hematoxylin dye.

As shown in Figure 1.1, factors such as focal plane selection and sample

orientation on the slide may bias the outcome of the diagnosis due to obscuration or

incomplete feature detail. The arrows in Figure 1.1(A) highlight the changes in

morphological detail at two different focal planes within the same cell. Similarly, Figure

1.1(B) illustrates morphological variations at different viewing angles of the same cell. Intra-

and inter-personnel variations in sample preparation and judgment may further compound

the risk of biased outcomes. Sample degradation with archival or slide breakage during

transfer are other limiting concerns.

The need for precise morphological assessment in cancer diagnosis has triggered

the development of innovative 2D and 3D biomedical imaging technologies with spatial

resolutions that span a multitude of length scales ranging from millimeters to

nanometers [23–25]. Technological breakthroughs in molecular labeling enable the study

of various functional (such as metabolic, genomic, transcriptomic, and proteomic) profiles,

their heterogeneity, and temporal dynamics in biological specimens at these various length

scales. Some volumetric imaging technologies such as x-ray computed tomography (CT),

magnetic resonance imaging (MRI), positron emission tomography (PET), and ultrasound
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(US) now constitute a part of standard of care practices for screening, detection and

management of cancer [26]. Advances in automation sciences, image digitization,

visualization, archival, and retrieval have greatly enhanced the utility of biomedical imaging

methods by facilitating a comprehensive quantitative phenotypic characterization of the

underlying specimen [27]. Software commonly referred to as CAD (computer-aided

detection) tools have leveraged the advances in computer vision and data mining

techniques to perform rapid and objective detection and a quantitative annotation of target

object morphologies in a semi-automated or fully-automated manner.

Figure 1.2: Sequence of methods adopted by CAD tools.

Figure 1.2 illustrates the typical methodological sequence followed by CAD tools.

First, computer vision algorithms are applied to delineate (segment) regions of interest

(ROIs) in acquired digital images. Diagnostically relevant morphological parameters

(features) are then measured in the delineated ROIs. The procedure is repeated for all

digital images to be assessed. The resulting quantitative feature sets are subject to data

mining techniques to derive biological signatures composed of the subset of features that

best identify or stratify the specimen according to its morphology.

The development of robust CAD tools for a variety of imaging modalities has been a

subject of extensive research over the past two decades. Diagnostic radiology practice

routinely uses CAD tools optimize detection and treatment strategies for suspect or

malignant tumors [28]. The advent of digital microscopy has resulted in the development of

a plethora of CAD tools that detect and grade cancer by analyzing digitized micrographs of

H&E-stained cell or tissue samples. Methods have been proposed for numerous cancer

types including blood [29], skin [30], brain [31], oral [32], thyroid [33], esophagus [34],
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lung [35], breast [36], liver [37], kidney [38], colon [39], ovary [40], prostate [41], and

cervix [42]. Digital pathology is an integrated technological thrust that leverages the

advances in automation and CAD tool development in an effort to assist pathologists in

their morphological assessment of cytological and histological samples [43]. The

technology provides pathologists with digitized 2D whole slide images of H&E stained

samples along with CAD solutions for quantitative morphometry and objective grading.

Some platforms also provide 3D visualizations of the samples at multiple magnifications by

taking a select number of 2D focal planes through the specimen volume.

Figure 1.3: Serial-section reconstruction based 3D microscopy possess anisotropic spatial
resolution. Red arrows in the orthogonal cross-sections of a 3D image stack of a mitotic cell
fluorescently labeled with DAPI dye illustrate the decrease in resolution along the X-Z and
Y-Z image planes relative to the X-Y plane.

Digital pathology thus provides several tangible benefits relative to conventional

practice, including increased productivity, quantitative assessment, digital archival and

ease of data transfer for telepathology. However, several hurdles remain to be addressed

with regard to protocol standardization and federal regulation before digital pathology can

be incorporated into primary pathology practice [44]. In addition to regulatory policy

considerations, CAD schemes that use 2D micrographs are still limited in their efficacy by

technical constraints such choice of focal plane, sample orientation, overlapping cells, and

the lack actual information about the third dimension. To overcome the limitations

associated with 2D microscopy, CAD analysis has been undertaken using 3D microscopy
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images acquired by popular imaging techniques such as confocal microscopy [45].

Conventional volumetric microscopy techniques generate 3D images by serially stacking

2D focal plane images acquired along the vertical axis of the specimen. Volumetric images

generated by such serial-section acquisition suffer from anisotropic spatial resolution that

results in a 2-4 fold decrease in spatial resolution along the vertical (z-)axis relative to the

lateral (x-, y-) axes (see Figure 1.3). Interpolation schemes commonly used to generate

isotropic voxels in images can only approximate the actual morphological information in the

specimen and may thus decrease the sensitivity of derived morphometric signatures.

1.2 Approach

This research is motivated by the intuitive fact that accurate quantitative characterization of

cell and nuclear morphology by 3D analyses of high contrast, high resolution 3D imagery

with isotropic resolution would facilitate a better assessment of morphological changes

associated with malignancy.

Optical microscopy techniques capable of rapid volumetric imaging with isotropic

spatial resolution have just begun to be realized in prototype form [46]. Micro-imaging

methods that apply tomographic reconstruction from projections overcome the spatial

anisotropy limitation by virtue of their imaging physics and thus provide volumetric images

of whole, intact cells with isotropic spatial resolution. Optical projection tomography

(OPT) [47] was among the earliest of such methods and enables 3D imaging of

multicellular specimen with an isotropic spatial resolution of few microns. Soft x-ray

tomography (SXT) [48] produces 3D images of unstained individual cells with 60 nm

isotropic resolution. However, it requires very expensive infrastructure with a large footprint

for a low to moderate throughput, and is thus not affordable by most research labs.

Optical CT is a cellular imaging technique that uses computed tomography

principles and white light excitation to generate 3D cell images with an isotropic resolution

of 350 nm [49,50]. Each image is generated by tomographic reconstruction from 500,

equi-angular pseudoprojection images acquired over a 360 degree rotation of a stained cell

suspended in an index-matched optical gel within a glass capillary.
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A pseudoprojection image is generated by integrating widefield focal plane

information over the cell volume using a 100x, 1.3 NA, oil immersion objective lens.

Acquired pseudoprojection images are denoised, registered and subject to reconstruction

algorithms to generate the volumetric cell image. Cells are imaged either in

transmission-mode or epi fluorescence-mode depending on the dye used for staining.

The Cell-CTTM (VisionGate Inc., Phoenix, AZ) is a benchtop instrument that applies

optical CT to rapidly image cells in true 3D and thus provides a low-cost, high-throughput

alternative to SXT for 3D single-cell imaging. The Cell-CTTM is utilized to address the 3D

cell imaging requirement for this dissertation research. Precise, automated 3D analysis of

transmission-mode optical cell CT images generated using the Cell-CTTM and the

subsequent application of 3D morphological analysis for early cancer detection is the

central theme of the dissertation.

1.3 Dissertation objectives

The overarching goal of this research is to develop robust 3D morphological biosignatures

indicative of neoplastic progression in epithelial cells by analysis of volumetric cell images

generated by transmission-mode optical cell CT. This dissertation aims to develop an

efficient, automated data-processing framework that can (a) precisely quantify

three-dimensional cell and nuclear morphology from Cell-CT TM images of

hematoxylin-stained cells, and (b) compute a morphological biosignature composed of the

set of morphological parameters that can best distinguish two or more classes of cells with

differing health state.
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1.4 Summary of contributions

The following contributions are made in this dissertation:

1. A modular, automated computational framework is developed to perform

high-throughput, 3D morphological analysis of volumetric images of

transmission-mode Cell-CTTM images.

2. Custom 3D image processing methods are provided to (a) accurately delineate

volumes of interest (VOIs) in the volumetric images, and (b) compute biologically

relevant morphological and texture parameters from the segmented VOIs.

3. The efficacy of proposed segmentation techniques is validated relative to manually

traced ground truth volumes.

4. The proposed image processing sequence is applied in conjunction with data mining

techniques to investigate the existence and power of a 3D morphometric biosignature

to distinguish metaplastic, dysplastic, and adenocarcinoma esophageal epithelial

cells from normal squamous epithelial cells.

5. The relative merit of 3D morphological analysis over 2D analysis is investigated.

1.5 Dissertation organization

This chapter provided an overview of relevant theoretical background information germane

to the scope of this dissertation. The rest of this dissertation is organized as follows:

Chapter 2 provides an overview of three-dimensional optical CT imaging of individual

hematoxylin-stained cells using the Cell-CTTM instrument. Chapter 3 details the challenges

posed for precise segmentation of transmission-mode optical cell images and describes

fully-automated methods to segment the cell, nucleus, and ultra-high density (UHD) clumps

in the nucleus from the image data. The chapter also details image enhancement methods

to be applied prior to segmentation methods. Chapter 4 details the datasets and

procedures to generate ground truth volumes to assess the efficacy of proposed
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segmentation methods. It concludes with a performance analysis of the proposed

segmentation methods relative to user-derived ground truth. Chapter 5 details the set of 3D

morphological and texture features computed from the cell images. It also summarizes the

suite of methods implemented to facilitate the generation of quantitative biosignatures.

Chapter 6 describes the application of the proposed computational framework in

conjunction with statistical data mining methods to generate 3D morphological

biosignatures that can distinguish the four stages of esophageal adenocarcinoma

progression with high sensitivity and specificity. The chapter includes an analysis of the

relative efficacy of 3D morphological analysis over 2D analysis on images representative of

acquisition with a 10x objective lens. Chapter 7 summarizes this dissertation research and

provides an outlook on potential future research directions.

9



Chapter 2

3D SINGLE-CELL IMAGING BY OPTICAL CT

This chapter provides an overview of the cellular-scale optical computed tomography

technique used to image single cells in true 3D. It also details the setup, sample

preparation, and image acquisition procedures for the Cell-CTTM instrument that applies

optical CT to tomographically image stained individual cells in brightfield mode.

2.1 Optical CT

Optical CT is a cellular-scale imaging technique that incorporates computed tomography

principles into widefield optical microscopy to generate three-dimensional single-cell

images with sub-micron, isotropic spatial resolution [49–51]. The 3D cell image is

generated by mathematical reconstruction from five hundred equiangular, 2D optical

projection images of a stationary, stained cell suspended in an optical gel within a glass

capillary. Optical cell CT has been successfully demonstrated with multiple widefield

microscopy modalities such as brightfield, darkfield, phase-contrast, and epi

fluorescence [52].

2.2 The Cell-CTTM instrument
Setup

Brightfield or transmission-mode optical cell CT technology has been commercialized by

VisionGate, Inc. (Phoenix, AZ) as a diagnostic tool to perform three-dimensional

cytopathology. The instrument – Cell-CTTM, consists of an inverted optical microscope

(IX71, Olympus, San Diego, CA) fitted with a 100x, 1.3 NA, oil immersion objective lens

(UPlanFluor, Olympus, CA), a 1400×1100 pixel, monochrome CCD camera

(Prosilica1650, Burnaby, BC), and a custom mechanical assembly that incorporates a

motorized stage, gadgetry for precision injection and rotation control, and a specialized,

portable cartridge which houses the tomographic imaging chamber. A 100 μl glass syringe

(Hamilton, Reno, NV) containing stained cells embedded in a special carrier gel (SmartGel,

Nye Lubricants, Fairhaven, MA) is mechanically coupled to the injection control system at

one end and the cartridge at its other end. The cartridge is mounted on the stage with its
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imaging chamber positioned between the microscope’s condenser and piezo-actuated

objective lens. LabView software (National Instruments, Austin, TX) is used to automate

the image acquisition process.

Cartridge design

Figure 2.1: Schematic for the Cell-CTTM cartridge

The imaging cartridge (see Figure 2.1) houses a glass microcapillary (inner

diameter of 50 μm, outer diameter 150 μm) to transport cells, a proximal syringe needle to

facilitate coupling with the glass syringe, a gear to mechanically rotate the capillary, and a

distal waste reservoir to collect the extruded cell sample after imaging. A teflon gasket is

used to provide an airtight coupling between the cartridge and the syringe at the needle

end. The imaging chamber is in the middle of the cartridge and is formed by an immersion

oil or optical gel-filled glass coverslip assembly that sandwiches the capillary. The capillary

is superglued in the syringe needle orifice and the needle is rotated by the gear. The

capillary glass, the coverslip sandwich, the gel for cell transport, and the immersion oil for

the objective lens are all refractive index matched at about 1.45 to minimize spatial

distortions during projection image acquisition.

Cell sample preparation

To accomplish a scenario analogous to x-ray CT where the 3D image captures variations in

object (electron) density, biological cells need to be stained with an absorption dye that

imparts optical contrast proportional to the density of the biological material. Hematoxylin is

an absorption dye used in clinical practice that possess this capability. It predominantly

stains nuclear DNA by virtue of its affinity for acidic moieties. Standard cytological
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protocols are adopted for staining. Suspended cells are fixed for one hour with CytoLyt

(Cytyc, Malborough, MA) and then smeared onto a clean microscope glass slide (VWR,

West Chester, PA) coated with 0.01% Poly-L-Lysine (PLL) solution (Sigma Aldrich, St.

Louis, MO). Prior to coating with PLL, the slide is washed with 2% Neutrad liquid detergent

(Fisher Scientific, Fair Lawn, NJ), then rinsed with de-ionized water. Hematoxylin stain

solution is freshly prepared with filtered tap water. Cells are stained for a few minutes (cell

type dependent) in aqueous 6.25% w/w Gill’s hematoxylin (Electron Microscopy Sciences,

Hatfield, PA) solution, followed by bluing reagent (Fisher Scientific, Fair Lawn, NJ) for 30

seconds after washing thrice with filtered tap water. The cells are subsequently dehydrated

through an ethanol series (50%, 95%, and 100%) and two washes with 100% xylene.

Lastly, the stained cells are embedded in the carrier gel which is scraped off the glass slide

surface and loaded into a 100μl glass syringe (Hamilton, Reno, NV).

Hematoxylin staining results in a bluish nucleus and a lighter cytoplasm. Optimal

staining is key to precise tomographic imaging of cells. Since proper staining is highly

dependent on experimental conditions (including pH of the water used), multiple trials are

usually needed to optimize the concentrations of reagents and durations of protocol steps.

Projection image acquisition

Stained cells embedded in the carrier gel are transported through the rotating glass

capillary by forward actuation of the syringe plunger that pressurizes the gel and causes it

to flow. When a cell flows into the field of view of the microscope, pressure is released off

the gel which causes it to stop flowing and solidify. As a result, the cell becomes stationary

in the field of view. Operator-based, manual cell selection is performed to ensure that only

well-stained, intact interphase cells are imaged. For every selected cell, 500 projection

images are acquired at angular intervals of 0.72◦ around the cell (see Figure 2.2) by

rotating the capillary at a constant speed with the gear assembly that is coupled to the

cartridge. At each angular increment, an optical projection image is generated by sweeping

the objective lens through the cell volume and integrating the resultant infinite focal plane

information on the camera chip [49]. The carrier gel that transports cells in the capillary
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also supports them to avoid tumbling or drift as the capillary is rotated during image

acquisition. To account for the precession of the capillary due to mechanical wear and tear,

a registration step is performed track the cell’s trajectory prior to projection acquisition to

ensure the objective lens correctly sweeps the cell volume at every angular increment.

After projection acquisition, a spatially registered stack of well-focused images spanning

the entire cell is acquired for subsequent 2D cytological assessment. The imaged cell is

finally transported to the distal waste reservoir by advancing the syringe plunger, and the

next cell is moved into the field of view.

Figure 2.2: Optical path for transmission-mode projection image acquisition in the Cell-CTTM

3D cell image generation by tomographic reconstruction

The acquired projection image data aligned and subject to mathematical reconstruction

algorithms to generate the 3D image of each cell. Prior to alignment, a background

subtraction routine is performed to eliminate pattern noise emanating from inconsistent

illumination intensity, optical path discrepancies, and imperfections in the detector (CCD

camera). Projection images are aligned based on center of mass and the aligned

projections are subject to filtered back projection reconstruction using a custom ramp filter

to obtain the volumetric cell image having an isotropic spatial resolution of 350 nm.

Reconstructed volumes are stored as 2D image stacks at bitdepths of 8 and 16 bits.

Intensities in the image inversely correlate with hematoxylin stain density in the cell.
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Chapter 3

ALGORITHMS FOR 3D IMAGE SEGMENTATION

Image segmentation refers to process of accurately delineating regions of interest (ROIs)

from images. Although manual segmentation is considered as the gold standard to identify

an object, computerized methods are becoming increasingly popular accessories to enable

faster and repeatable segmentation of ROIs. The goal of this dissertation is to develop

rapid, fully-automated algorithms to accurately segment volumes of interest (VOIs) from

optical cell CT images. Target VOIs are the cell (VOI 1), nucleus (VOI 2) and ultra-high

density (UHD) clumps inside the nucleus (VOI 3). We define UHD clumps as regions with

high intensity. These include nucleoli and dense agglomerations of chromatin, since the

hematoxylin dye stains both of them. Optimal segmentation of these VOIs is a crucial

precursor for accurate morphological analysis.

A common useful practice prior to segmentation is to pre-process the images to

either reduce noise or enhance the target object. The terms “denoising” or “enhancement”

are used, often interchangeably, to refer to the process of reinforcing voxel intensities of the

target object relative to the background. Numerous techniques exist to enhance images,

and the efficacy of a technique depends on the application at hand.

3.1 Related prior work

Algorithm development for segmentation of biological images remains a subject of active

and extensive research since the last twenty five years. A vast number of interactive and

fully-automated segmentation techniques have been proposed for numerous imaging

modalities. Segmentation algorithms are broadly divided into either intensity-based,

edge-based, or region-based methods. For purposes of brevity, this section will focus on

segmentation methods developed for delineation of cellular ROIs in volumetric microscopy

images.

Numerous semi- and fully automated segmentation schemes have been developed

for a multitude of microscopy modalities. To enable optimal performance, methods for cell
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and nuclear segmentation from 3D microscopy images are usually customized to the

imaging mode (transmission or fluorescence) and image characteristics such as

signal-to-noise ratio (SNR), number of volumes of interest (VOIs) in the imaged volume,

and their proximity to one another. Li et al. automatically segmented fluorescently labeled

cell nuclei from 3D confocal image stacks by adaptively thresholding similar intensity

regions of the image after gradient vector flow diffusion and clustering [53]. Zanella et al.

proposed a method based on subjective surfaces guided by predefined parameters to

automatically segment fluorescently labeled cell and nuclear membranes from 3D

time-lapse confocal images of zebrafish embryos [54]. Chinta et al. automatically

segmented cell nuclei from 3D confocal images of live drosophila cells by evolving multiple

narrow band level set surfaces [55]. Initial masks for nuclei were computed by a

combination of K-means classification and a weighted 2-class expectation-maximization

(EM) algorithm. Nandy et al. applied an automated multistage watershed segmentation

followed by supervised artificial neural networks to accurately identify fluorescently labeled

nuclei from 3D widefield images of cancerous breast tissue sections [56]. Electron

tomography images pose a relatively greater challenge for segmentation due to their

inherently low signal to noise ratios (SNRs). Bartesaghi et al. segmented HIV particles

from electron tomographic images of human macrophages using a semi-automated

method that essentially determined optimal minimum energy surfaces around manually

selected seed points in the image volume [57]. Nguyen and Ji automatically segmented

biological membranes from electron tomographic images using a shape-driven 3D

watersnake method [58]. Moussavi et al. proposed an automated slice-wise recursive

algorithm based on a global shape model and shape-dependent features to recover cell

volumes from cryo-electron tomographic images [59]. Rigort et al. performed automated

template matching with a predefined cylindrical element followed by a custom tracing

algorithm on the resulting template field to segment actin filaments from cryo-electron

tomographic images of eukaryotic cells [60].
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3.2 Challenges for segmentation of transmission-mode optical cell CT images

Little is known about optimal segmentation strategies for single-cell optical CT images.

Segmentation methods used for soft x-ray tomography (SXT) images are not extendable

since they determine threshold intensity values for an VOI based on the extent of energy

absorption by the molecules in that VOI [61]. Transmission-mode optical cell CT images

pose the following challenges that complicate the segmentation procedure:

• Hematoxylin stain biochemistry and the cell staining procedure:

Absorption stains serve as the source of signal for image reconstruction in

transmission-mode optical cell CT. Assuming faithful reconstruction, voxel intensities

in the cell directly depend on the stain density. We use hematoxylin dye to impart

stain contrast to cells, primarily motivated by its widespread use in diagnostic

pathology. Hematoxylin binds to acidic moieties in the cell. Consequently, it

preferentially stains the cell nucleus relative to the rest of the cell due to the

abundance of acidic components in DNA. However, hematoxylin is a

non-stoichiometric stain, which implies that stain density may not correlate with the

amount of its binding target. Artifactual (over or under) staining of cells due to

operator inconsistency would result in an incorrect representation of optical densities

in the reconstructed image which in turn could bias the segmentation. The

non-specific binding tendency of hematoxylin may contribute to artifacts similar to

partial volume effects in conventional CT or MRI imaging.

• Factors related to imaging system:

Optical CT imaging is a relatively nascent imaging modality compared to conventional

volumetric options such as widefield or confocal microscopy. The unique physics of

image formation from optical projections in optical cell CT precludes the application of

noise models used in conventional widefield microscopy.
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Signal degradation in transmission-mode optical cell CT images may be attributed to

the following reasons:

– Optical path noise:

Several components in the optical setup may contribute to the degradation of the

optical signal that ultimately constitutes projection images. Particulate debris

along the optical path, fluctuations in the excitation source, misalignments of

mechanical components along the optical path, improperly functioning imaging

cartridges that cause excessive capillary precession, and dark noise in the CCD

camera are common factors that may decrease signal intensities in the acquired

projection images.

– Unavailability of a point spread function (PSF):

The availability of a PSF for an optical microimaging setup greatly improves the

ability to mitigate optical path discrepancies through the process of

deconvolution. However, in contrast to conventional microscopy, the unique

image formation process in optical cell CT poses technical challenges that

greatly complicate the computation of a consistent analytical or experimental

PSF. Micron-scale calibration phantoms would facilitate a better estimation of

system noise but the design and fabrication of such phantoms is beyond the

scope of this dissertation.

– Image reconstruction artifacts:

The generation of volumetric cell images from 2D optical projections involves

mathematical algorithms to subtract the background, align projections, and

finally reconstruct from projections. Errors in the algorithm sequence will

hamper faithful reconstruction of the imaged cell. Errors in background

subtraction or projection alignment propagate through the reconstruction

algorithm, and result in increased image noise and reconstruction artifacts. The

choice of reconstruction algorithm and its constituent filters also govern the

noise pattern and its magnitude in the reconstructed volume.
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– Sub-optimal staining of cellular specimen:

The efficacy of optical cell CT largely depends on the contrast derived by

staining the cellular specimen to distinguish it from its background. Despite the

application of the best available reconstruction algorithm, poorly stained cells

result in noisy reconstructions due to their low contrast relative to the

background.

• Choice of reconstruction algorithm:

Although the reconstruction algorithm aims to faithfully reproduce optical densities in

the cell, the type of reconstruction algorithm applied in optical cell CT governs the

complexity of segmentation. Analytical reconstruction algorithms such as filtered

backprojection differ from one another in their ability to retain or accentuate low or

high frequency components. Iterative reconstruction methods tend to be sensitive to

high frequency components.

• Cellular specimen under investigation: Despite a faithful reconstruction, the

underlying cell biology of the specimen also influences the efficacy of segmentation

in several ways. Notable biological factors are:

– Variation in cell and nuclear morphology as a function of cell cycle: Cellular

structure and content dynamically changes according to the cell’s current phase

(G1-, S-, G2-, or M-) in the cell cycle. For instance, protein production changes

cytoplasmic volume. Increases in DNA content during progression from G1

phase to G2 directly alter nuclear morphology. Hematoxylin staining thus differs

from cell to cell as a result of these variations.

– Variation in cell morphology as a function of malignancy: Cells exhibit numerous

variations in their structure as a consequence of abnormalcy. In addition to the

widely known shape and size variations with cancer progression, cells have

been observed to become softer and more motile. Altered cell elasticity causes

changes in the thickness of the cell membrane and nuclear envelope.

18



Non-nuclear organelles and proteins undergo changes in their abundance and

localization. The position of the nucleus within the cell (referred to as polarity)

changes with the onset of malignancy. These biological variations directly

influence hematoxylin staining and consequently, the reconstructed image.

Since a complete three-dimensional annotation of such biological traits is not yet

available due to technological limitations, statistical shape models commonly

adopted for segmentation may have limited efficacy.

– Phenotypic cellular heterogeneity: It refers to cell-cycle independent variations

observed in the physical attributes of cells sharing the same genome.

Heterogeneity in the 3D shape of cell nuclei, especially upon observation with

images generated using the Cell-CTTMfurther limit the efficacy of popular

segmentation methods that use statistical shape priors or machine learning

techniques.

– Suspended cell morphology used for optical cell CT: Epithelial cells typically

exhibit a scrambled egg morphology while growing in their native state.

However, cells used for optical cell CT need to be resuspended in solution prior

to the staining procedure. Resuspension of cells predominantly results in a

spherical morphology, which in turn causes a realignment of non-nuclear

organelles such as mitochondria, endoplasmic reticulum, or golgi bodies in the

cytoplasm. Spherical cell morphology may also affect nuclear structure, but this

has not yet been definitively established. The altered cytoplasmic localization of

non-nuclear organelles that are also stained with hematoxylin may hinder

accurate segmentation of the nucleus.

3.3 Approach

To overcome the limitation of non-existent prior work on segmentation methods for

transmission-mode optical CT image data, an extensive manual exploration of the images

was first undertaken to understand hematoxylin staining patterns, its variation across cell

type, and the effects of different reconstruction algorithms on cell images. The overall
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strategy was to develop algorithms suitable for the target application rather than

exhaustively test algorithms from literature solely on the basis of their popularity. The

following observations were made and leveraged to develop segmentation algorithms for

the target VOIs:

• High signal to background in correctly reconstructed images: Cursory manual

interrogation of the image data with Volview software (Kitware, Clifton Park, NY)

revealed that images with minimal errors in the reconstruction process exhibited a

high intensity gradient between the stained cell and its background.

• Sequential segmentation of VOIs: Although hematoxylin is a non-stoichiometric dye,

its extent of staining a cellular region is loosely proportional to the voxel intensities of

that region. Thus, nucleus is preferentially stained relative to the cytoplasm and cell

membrane, and UHD clumps within the nucleus are preferentially stained over other

nuclear regions. Consequently, boundary intensities of target VOIs increased in the

order: cell < nucleus < UHD clumps. Therefore, an incremental segmentation

strategy was adopted to delineate our target VOIs in every cell (see Figure 3.1).

Accordingly, the cell membrane was first delineated, then the nuclear envelope from

the cell VOI, and finally the UHD clump boundaries from the nucleus VOI.

• Correlation between VOI boundary delineation and intensity histogram profile:

Manual interrogation of the image data revealed that intensity thresholds sufficed to

accurately segment the cell and UHD clump VOIs with the caveat that the threshold

values varied from cell to cell. Additionally, optimal thresholds for these VOIs were

observed to be located proximal to dominant peaks (modes) of the intensity

histogram of the 3D image. The existence of a single cell per volumetric image

implied that all the information in the intensity histogram corresponded to information

about only that cell and its background.

• Correlation between image contrast and nucleus VOI boundary delineation: Manual

interrogation of the image data also revealed a correlation between the ease of
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Figure 3.1: Sequential segmentation strategy for target VOIs in optical CT images.

nucleus VOI delineation and the contrast between the nucleus and cytoplasm

resulting from hematoxylin staining. Intensity thresholds sufficed to segment the

nucleus in cells exhibiting high contrast but were inadequate for cells with low

contrast between nucleus and cytoplasm.

• Similarity in intensity histogram profile across bitdepth: The observations above on

correlation between histogram profiles and VOI characteristics were roughly

consistent across 8- and 16-bit reconstructions of the cell (see Figure 3.2). Hence, a

decision was made to operate on the 8-bit image for the segmentation process due to

its relatively smooth profile and its smaller size.
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Figure 3.2: Intensity histogram profile of cell volume is similar between 8-bit (A) and 16-bit
(B) grayscale images. Top images illustrate histogram profile of the segmented cell vol-
ume. Bottom images are manual renderings of the cell volume to further indicate similar
morphologies

Based on the above observations, the proposed strategy was to first determine

optimal intensity thresholds for the target VOIs sequentially from the intensity histogram

and then refine the VOI boundaries using region-based techniques based on contrast

considerations. Two options were utilized to rapidly identify optimal thresholds for the VOIs:

• The three orthogonal 2D maximum intensity projection (MIP) images of the 3D

image: A MIP image along a particular direction is formed by preserving the highest

intensity value along each parallel ray traversing the image volume (see Figure 3.3).

The motivation for using MIP images is attributed to their inherently high SNR that

naturally deemphasizes background noise. MIP images also tend to naturally

accentuate VOI boundaries. The intensity threshold for each VOI in the 3D grayscale

image was the minimum among the values computed in the 3 MIP images.
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Figure 3.3: Illustration of orthogonal 2D MIP image formation from the 3D image

• The original 3D grayscale image: The motivation for this approach was its proximity

to reality than the 2D MIP images.

For each VOI, a binary segmentation mask was generated by performing connected

component labeling with a 26-neighbor connectivity constraint followed by a

postprocessing step that smoothed the mask after removing spurious volumes based on

an empirically-determined size constraint.

3.4 Image enhancement prior to segmentation

Caution is necessary during manipulation of tomographically reconstructed images due to

the inherent connection between voxel intensity and the density at that location in the

actual specimen. The micron order length scale of biological objects in optical CT images

necessitates further discretion with the use of filters. For example, large filter sizes may

obliterate thin structures such as the nuclear envelope or minute agglomerations of DNA

inside the nucleus. The motivation for the application of image enhancement techniques

was to only accentuate the VOIs for purposes of accurate segmentation. Operations were

performed on the original grayscale image for feature computation after computing the

necessary segmentation masks.

Traditional filtering techniques such as Gaussian, median, or mathematical

morphology were not effective for segmenting target VOIs in optical CT images since they

only caused a further blurring of object boundaries despite judicious choice of filter size.
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Traditional image sharpening methods such as contrast stretching, log tranformation, or

power transformation were relatively more effective in enhancing the cell relative to the

background in properly reconstructed images. However, their efficacy was mitigated in

noisy reconstructions due to their sensitivity to noise. Elevated noise streaks in noisy

reconstructions would also get enhanced along with actual object voxels. Anisotropic

diffusion is a pre-processing technique based on partial differential equations [62,63] and

is used to smooth image regions while retaining objects of interest such as edges. The

extent of diffusion and its strength can be tailored to the object characteristics in the image.

Therefore, anisotropic diffusion was adopted, followed by image sharpening to accentuate

the target VOIs prior to segmentation. Since the log transform and power transform

provided similar results, contrast stretching (CS) and power transform (PT) methods were

evaluated in conjunction with anisotropic diffusion (AD). For optical CT images, 3 iterations

of the anisotropic diffusion process with a diffusion coefficient of 5 sufficed to smooth

background noise. To accomplish contrast stretching adaptively, the lower limit was set as

the value obtained by applying Rosin’s method [64] to the unfiltered image. The upper limit

was set to the highest intensity of the image. The power law transformed version of the

original image was obtained as follows:

IPT = I1.5 (3.1)

The power coefficient(1.5) was estimated empirically to suppress the background in optical

CT images.

Figure 3.4: Comparison between image enhancement techniques on 2D slice of recon-
structed image. (A) Original image, (B) 5 × 5 × 5 Gaussian, (C) Anisotropic Diffusion, (D)
Anisotropic Diffusion + Contrast stretching, (E) Anisotropic Diffusion + power law transfor-
mation
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Figure 3.4 illustrates the effect of image enhancement techniques on a

reconstructed image.

3.5 Proposed algorithms to segment the cell VOI

Figure 3.5: Distinct unimodal histogram profile of 3D image

Precise tomographic reconstruction of stained cells provides images with a marked

contrast between the cell and its background. The distinct unimodal profile of the intensity

histogram in the cell image (see Figure 3.5) motivated the application of Rosin’s

method [64] to identify the intensity threshold for the cell boundary.

2D MIP-based adaptive threshold

Rosin’s method was applied to the intensity histograms of all 3 orthogonal MIP images and

the minimum among the three values was selected as the intensity threshold for the 3D

grayscale image.

3D intensity histogram-based adaptive threshold

The increased contrast inherent to MIP images tended to oversegment the cell boundary.

Hence the analysis was modified to directly operate on the original 3D image. The image

histogram was first smoothed using a 1D Gaussian filter, the mode of the histogram was

identified, all intensities below the mode were thresholded out, and then Rosin’s method

was applied on the remainder of the histogram to obtain the threshold intensity for the cell

boundary.
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3.6 Proposed algorithms to segment the nuclear volume
2D MIP-based adaptive threshold

The threshold intensity for the nuclear envelope was computed using a gradient-based

method on the cell segment of each MIP. The grayscale 2D MIP image was first normalized

by the highest intensity value. The gradient magnitude was then computed at each point in

the image from the x− and y− gradients. The resulting gradient magnitude image exhibited

a distinct bimodal histogram. Otsu’s thresholding method [65] is a technique that provides

an optimal threshold for bimodally distributed data. Hence, it was applied and the gradient

magnitude image was thresholded at the computed value to obtain the boundary of the

nuclear envelope.

This boundary was superposed on the 2D grayscale MIP image and then then

threshold intensity was calculated to be the average of all pixel intensity comprising the

boundary. The minimum among the three threshold intensities (one per MIP) was set as

the intensity threshold for the nucleus VOI.

Generalized Otsu threshold on 3D image histogram

The 2D MIP based method provided limited effectiveness in segmenting nuclei with low

contrast or boundary inhomogeneities. To avoid oversegmentation of nuclei, techniques

that utilized information from the original 3D image were evaluated. In light of the

observations of intensity thresholds being proximal to the modes of the intensity histogram,

the first intuition was to apply a threshold computed as a generalized formulation of the

bimodal method originally proposed by Otsu.

Liao et al have provided such a method as part their proposed multi-level

thresholding scheme [66]. First, the intensity histogram corresponding to the segmented

grayscale cell volume was computed. A typical histogram has multiple (≥ 2) peaks or

modes, depending on cell type (see Figure 3.6). The histogram was smoothed with a 1D

Gaussian filter and then the intensity threshold for the nucleus VOI was set as the highest

value determined by the method proposed by Liao et al.
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Figure 3.6: Multimodal histogram profile of cell volume

Heuristic k-means clustering on 3D image histogram

The generalized Otsu method was better than the 2D MIP option but still caused an

oversegmentation of nuclei due to its inherent dependence on the variance of

subpopulations in a mixture model. To circumvent this problem, a strategy was designed to

be biased to the modes of the histogram. The heuristic k-means method (see Figure 3.7)

seeks to locate the minima of the histogram by iteratively finding the geometric mean of the

modes of the intensity histogram. The intensity histogram corresponding to the grayscale

cell volume was computed, smoothed with a 1D Gaussian filter, the histogram modes were

identified, and then the heuristic k-means clustering method was applied to determine the

optimal threshold for the nucleus VOI. Iterations for the algorithm were discontinued when

the limit ε became lesser than 0.5.

Heuristic contrast-driven adaptive thresholding

The heuristic k-means method was effective for cells with high contrast between the

nucleus and cytoplasm, but it also resulted in oversegmentation of nuclei in low contrast

images. The cause of this problem was identified as the insensitivity of these methods to

contrast between the nucleus and cytoplasm, since contrast is directly reflected in the width

of the histogram modes. This observation prompted the incorporation of additional
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Figure 3.7: Flowchart illustrating k-means clustering method to determine threshold intensity
for nucleus VOI

complexity by explicitly incorporating contrast into the proposed thresholding scheme.

However, there is no straightforward quantitative metric to robustly define contrast between

the nucleus and the cytoplasm. The problem is further complicated by the fact that the

contrast varies from cell to cell. Therefore, a heuristic binary contrast function based on the

histogram profile was defined as follows. First, the grayscale cell volume was derived by

superimposing the binary cell mask onto the grayscale cell image. Then the graylevel

intensity histogram was computed for the segmented cell VOI, smoothed with a

one-dimensional Gaussian filter of size 10, and bin locations corresponding to the

dominant peaks and minima were identified. A binary contrast function CF (CF=1⇒ high

contrast) was then derived from the histogram profile. For a histogram with m modes, CF

is governed by three conditions C1, C2, and C3 that effectively reflect contrast between the

nucleus and cytoplasm with information solely from the histogram.
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Conditions C1, C2, and C3 are defined as follows:

CF =

⎧⎪⎪⎨
⎪⎪⎩
1, C1 ∧ C2 ∧ C3 = 1

0, C1 ∧ C2 ∧ C3 = 0

(3.2)

where,

C1 =

⎧⎪⎪⎨
⎪⎪⎩
1, max[histminima] > max[mlevel Otsu]

0, otherwise

(3.3)

C2 =

⎧⎪⎪⎨
⎪⎪⎩
1, max[histpeak] > max[mlevel Otsu]

0, otherwise

(3.4)

C3 =

⎧⎪⎪⎨
⎪⎪⎩
1, counts[histpeakm−1]

counts[histminimam] > 1

0, otherwise

(3.5)

Parameters histpeak and histminima denote one-dimensional integer arrays of bin

locations corresponding to the peaks and valleys of the intensity histogram. m− levelOtsu

denotes the Otsu thresholds for a histogram with m peaks.

The flowchart in Figure 3.8 illustrates the heuristic thresholding scheme proposed

to segment the nucleus VOI. As described in the lower-right section of figure 3.8, the

proposed method essentially identifies the bin location with the minimum count which

precedes the highest intensity mode of the smoothed cell histogram. The heuristic was

designed to threshold cell volumes more aggressively if high contrast existed between the

nucleus and cytoplasm. A conservative definition was adopted to segment images with low

contrast between the nucleus and the cytoplasm.

The intuition behind the use of conservative thresholds was to prevent an

oversegmentation of the nucleus VOI. For cell volumes with low contrast but with more than

2 modes in their histograms, the histogram minimum in the vicinity of the 2-level Otsu

threshold was identified. Cell volumes with low contrast and 2 dominant modes in their

histogram are most segmented most conservatively in light of the difficulty in delineating

the nuclear envelope.
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Figure 3.8: Flowchart describing the heuristic to segment the nucleus VOI using the 3D
image histogram

Hybrid segmentation using heuristic adaptive thresholding and 2D GVF snake

Intensity thresholding schemes do not always succeed in correctly segmenting cell nuclei.

Figure 3.9) illustrates a classic instance of this problem. There is no single intensity that

can provide an accurately segmented mask. The problem was empirically observed to

consistently arise in cell images that exhibit low contrast between nucleus and cytoplasm,

and such cells as referred to as “problematic” cells.

Model-based segmentation techniques are better suited than adaptive thresholding

schemes to accurately segment the nuclei of “problematic cells”. Model-based techniques

for biological imaging applications have been a subject of extensive research since the 90s,

especially after the development of the interactive active contour method (known as

’snake’) by Kass et al. [67]. Numerous classes of model-based segmentation methods

have been developed for a variety of bioimaging modalities. Active contour methods and
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Figure 3.9: Representative image panel demonstrates the limitations of thresholding
schemes to precisely delineate the nucleus boundary. (A) shows a 2D slice from a cell
image. (B) is a volumetric rendering of conservative (under) segmentation. (C) is the volu-
metric rendering of aggressive (over) segmentation

their higher dimensional equivalents are the most commonly applied model-based

techniques to segment ROIs in images. These methods accomplish segmentation by

essentially letting a closed object (contour or a surface) modify itself within its physical

constraints and under the influence of the underlying image characteristics. 3D or

higher-dimensional images can be segmented either in a slice-wise manner using 2D

models or by directly modifying surfaces or solid volumes. The latter options provide the

advantage of smoothness but at the cost of markedly increased computational complexity.

Active contour methods are broadly classified as either parametric or geometric methods

depending on their formulation. A segmented mask using parametric techniques is the end

result of an iterative procedure that minimizes the total energy of the model, wherein the

total energy is expressed as a weighted sum of internal and external energy terms.

Traditional energy-based formulations for parametric active contour segmentation are

limited by their need to be initialized close to the actual object boundary and their inability

to negotiate boundary concavities.

One popular alternative to circumvent these limitations is the Gradient Vector Flow

(GVF) snake method proposed by Xu et al. [68]. GVF snakes use a force field-based

formulation for the external energy term and is extendable to multi-dimensional images.
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Despite their distinct advantages over traditional GVF-based techniques still require the

right numerical coefficients for the constituent terms to achieve accurate segmentation.

Further, 3D GVF snake models are not suitable for “problematic” cell nuclei due to intensity

inhomogeneities over the nucleus boundary that are in turn caused by variations in the

underlying staining. Hence, the propagation of a 2D GVF snake contour that deforms to

arrive at the final segmentation mask for the cell nucleus was adopted. The segmentation

result derived by the contrast-based heuristic described in section 3.6 was used as the

initial mask.

Figure 3.10: Flowchart describing the methodology to better segment the nucleus of low
contrast cells using the 2D GVF snake

Figure 3.10 illustrates the proposed fully-automated segmentation methodology

using 2D GVF snakes. For each image slice, the initial nucleus boundary mask was first

refined to bring it in closer proximity to the actual nucleus boundary. This step was

accomplished by thresholding the slice at the integer gradient value above which a

contiguous closed contour does not exist i.e. when the actual nuclear membrane is

breached. Checks were incorporated to ensure a stable but conservative refined boundary

contour. The next challenge was to automatically identify the parameters for the GVF

snake. Since the emphasis is on deforming the snake, the only requirement was to define

the parameters for the external force terms and the number of iterations. Our hypothesis

was that the values for these variables were related to the strength of the actual nucleus
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boundary for that slice. Hence, the coefficients for the external forces were set to the

gradient threshold T , and the number of iterations as T 2. The parameters associated with

the internal forces were set to a constant value of 0.1 to ensure that the contour itself has

maximum flexibility while still maintaining continuity.

Figure 3.11: Hybrid fully-automated segmentation scheme to segment cell nuclei

The flowchart in Figure 3.11 illustrates the proposed strategy to segment cell nuclei

based on their stain contrast relative to their cytoplasm. Adaptive histogram-based intensity

thresholding schemes sufficed for nuclei with high contrast while a slice-wise 2D GVF

snake propagation was necessary to segment nuclei that exhibited low contrast.

3.7 Proposed algorithms to segment ultra high density (UHD) clumps in the nucleus

Preliminary manual exploration of images indicated that UHD clumps typically assumed

intensity values in the highest quartile of the image’s dynamic range but differed in their

individual threshold values (see Figure 3.12). Gradient-based segmentation methods are

ineffective for this problem due to the low contrast between UHD clumps and the rest of the

nucleus. Therefore, a conservative adaptive thresholding scheme was designed to ensure

inclusion of the UHD clump with the lowest intensity value. To circumvent the possibility of

spurious UHD clump segments, a size filter was applied to the initial binary mask. Only

those clumps that contained more than 100 voxels (empirically determined) were retained

as UHD clumps.
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Figure 3.12: Intensity histogram of a segmented nucleus volume. UHD clumps typically
exhibit intensities in the circled region

Two methods were developed to delineate UHD clumps.

2D MIP-based adaptive threshold

The grayscale nucleus segment in each MIP image was first computed, the intensity image

was then inverted so that the UHD clumps were represented by intensities lower than the

remainder of the nucleus. The intensity histogram of the resulting inverted image exhibited

a distinct bimodal profile. A temporary intensity threshold was then computed for UHD

clumps in the inverted MIP image by applying Otsu’s method [65] to the histogram of the

inverted image. The actual threshold intensity for UHD clumps was then calculated by

subtracting the temporary threshold value from the maximum intensity of the MIP image.

This procedure was performed for all MIP images and the threshold intensity for UHD

clump VOI in the 3D grayscale image was defined as the minimum among the three

threshold intensities.

3D intensity histogram-based adaptive threshold

The 2D MIP method for UHD clumps resulted in occasional oversegmentation, similar to

the case with the cell and nucleus VOIs. Hence, the 3D image histogram was directly used

to obtain a threshold for the UHD clumps. First, the intensity histogram of the nucleus

volume was computed and smoothed with a 1D Gaussian filter. The mode of the histogram

was identified, all intensities below the mode were thresholded out, and Rosin’s method

was applied on the remainder of the histogram to obtain the threshold intensity for the cell

boundary.

34



Chapter 4

PERFORMANCE EVALUATION OF PROPOSED 3D SEGMENTATION ALGORITHMS

The efficacy of segmentation algorithms is typically evaluated by comparing their output to

manual delineation of the same region(s) of interest by domain experts. Manually traced

boundaries are collectively referred to as “ground truth”. A vast amount of ground truth data

is available for conventional 2D and 3D microscopy techniques but was required to be

generated for optical CT imaging. This chapter briefly outlines the establishment of ground

truth data for transmission mode optical CT and then details the quantitative evaluation of

proposed 3D segmentation algorithms developed in this dissertation research.

4.1 Establishment of ground truth
Image datasets for ground truth

A set of twenty faithfully reconstructed images comprising 20 correctly stained normal and

cancer cells from either the human esophagus or breast epithelium were randomly

selected to assess the efficacy of proposed segmentation techniques.

Ground truth establishment

A collaborative endeavor spearheaded by a laboratory colleague was undertaken to

develop software to facilitate the establishment of volumetric ground truth for optical CT

images acquired in transmission mode. The custom, interactive software interface was

developed in Visual C# to record and archive tracings drawn with a stylus on a tablet

display (Cintiq 12wx, Wacom, Vancouver, WA).

The software provided users with the choice of drawing contours along any of the

three orthogonal axes (XY, YZ, XZ ) of the 3D image along with options for manipulating

image brightness and contrast. Volumetric ground truth data was generated by three

domain experts who independently traced boundary contours of the target VOIs in every

selected image. The exercise was restricted to the cell and nucleus VOIs since the complex

3D shape and spatial localization of UHD clumps posed significant technical challenges for

accurate tracing and archival. The three users were initially trained on the software prior to

the start of the exercise. To reduce the time consumed for establishing ground truth, the
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gradual variation between VOI boundaries was leveraged and all users were instructed to

mark contours on every alternate slice along the chosen orientation except at the perceived

beginning or end of VOI boundaries. At these junctions, they were instructed to contour

every slice. The software then approximated the intermediate (untraced) contours for the

VOI by linearly interpolating neighboring contours. Lastly, the software generated binary

masks for every VOI by setting all voxels enclosed within boundaries to 1 and archived the

volumetric ground truth data in the form of binary image stacks.

Six of the twenty datasets were eliminated upon observing either errors or

significant inter-user variability in their ground truth contours. The remaining 14 datasets

were composed of 7 normal and 7 cancer cells. Cell and nucleus VOI volumes and their

inter-user variability in the 14 ground truth datasets are listed in Tables 4.1 and 4.2.

Inter-user variability was observed to be considerably larger for the cell than the nucleus.

Table 4.1: Inter-user variance in ground truth assessment of cell VOI

Cell Index Cell VOI volume (μm3)
User1 User2 User3 Mean Standard deviation

1 2228.8 1499.8 2296.2 2008.5 441.9
2 2413.8 2385.9 2201.6 2333.8 115.3
3 1933.7 1372.0 1528.3 1611.3 289.9
4 1540.0 1041.3 1300 1293.8 249.4
5 2883.4 2285.9 2516.2 2561.8 301.3
6 2706.1 2119.4 2330.6 2385.4 297.1
7 1119.3 887.6 1077.7 1028.2 123.5
8 892 876.8 900.1 889.6 11.8
9 1572.2 1067 1243 1294 256.5
10 1566.7 1441.0 1623.8 1543.8 93.5
11 815 630 656.2 700.4 100.1
12 1123.8 1107.8 1110.4 1114 8.6
13 1408.1 1361.4 1584.2 1451.2 117.5
14 844.3 729.9 848 807.4 67.1
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Table 4.2: Inter-user variance in ground truth assessment of nucleus VOI

Cell Index Nucleus VOI volume (μm3)
User1 User2 User3 Mean Standard deviation

1 689.8 627 646.3 654.3 32.2
2 602.2 668.4 669.1 646.2 39
3 472.5 491.5 451.7 471.9 19.9
4 414.9 422.2 419.9 419.1 3.7
5 465.8 558.2 546.4 523.5 50.3
6 740.4 658.8 724.8 708 43.3
7 330 353.5 358 347.1 15.0
8 240.7 281.2 298.5 273.5 29.7
9 321.7 313.2 313.9 316.3 4.8
10 338.2 359.9 442.3 380.1 54.9
11 266.2 249.3 263.9 259.8 9.1
12 475.9 488.8 494.7 486.5 9.6
13 633.9 638.6 643.3 638.6 4.7
14 308.2 321.1 324.3 317.9 8.6

Generation of maximum likelihood VOI masks to accommodate inter-user variability

To manage the variability in the shortlisted fourteen datasets, a maximum likelihood (ML)

strategy was developed to define a ground truth volume representative of the individual

user traces of every VOI. The representative binary mask was called the ‘MLMask’ and it

was computed using a majority voting scheme. A voxel in the MLMask was assigned a

value of 1 if the corresponding voxels in two or more user masks had a value of 1.

Otherwise, the voxel was assigned a value of 0. The method is summarized in Equations

4.1 and 4.2.

Given volumetric binary masks Masku,u ∈ 1, 2, 3 for any VOI,

UnionMask(i,j,k) =

3∑
u=1

Masku(i, j, k) (4.1)

MLMask(i,j,k) =

⎧⎪⎪⎨
⎪⎪⎩
1, UnionMask(i,j,k) ≥ 2

0, otherwise

(4.2)

where, i,j, and k are voxel indices along the x−,y− and z directions respectively of the

image.
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The cell and nucleus VOI volumes derived from the maximum likelihood masks for

the 14 datasets are listed in Table 4.3.

Table 4.3: Cell and nuclear volumes from maximum likelihood (ML) VOI masks

Cell Index ML cell volume (μm3) ML nuclear volume(μm3)
1 2176.9 637.1
2 2323.1 636.5
3 1551.2 472.3
4 1314.5 417.3
5 2526.3 532.8
6 2336.7 702.8
7 1054.2 348.2
8 889.4 272.1
9 1247.5 313.8
10 1556.9 370.0
11 666.7 256.8
12 1112.8 489.2
13 1407.7 641.9
14 825.1 311.3

4.2 Performance evaluation of 3D segmentation algorithms
Metrics for performance evaluation

Numerous quantitative metrics are available to evaluate the agreement between

segmentation algorithms and ground truth data [69]. For brevity, the DICE coefficient was

used in this investigation to assess the efficacy of proposed segmentation algorithms. The

metric is defined in Equation 4.3:

DICE =
2× |Gt ∩ Sa|
|Gt|+ |Sa| (4.3)

where Gt is the ground truth segmentation, Sa is the algorithmic segmentation, |.|
denotes the number of voxel elements in the set. A DICE value of 1 represents perfect

agreement with ground truth.
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Evaluation of algorithms for cell segmentation

To identify the best segmentation method, DICE coefficients were evaluated between the

ML ground truth volume and cell masks derived from the unfiltered image. Subsequently,

the effect of image enhancement techniques was tested on the accuracy of the best

performing segmentation technique. The segmentation results for the two methods

proposed to segment the cell VOI are summarized in Table 4.4.

Table 4.4: Performance evaluation of 3D segmentation methods for cell VOI (unfiltered im-
age, 14 cells)

Segmentation method Average DICE coefficient (%)
2D MIP-based method 89.8

3D histogram-based method 90.9

The 3D histogram-based method was observed to provide a relatively better

segmentation of the cell boundary. The disagreement between algorithmic and

user-defined boundaries was primarily attributed to the conservative estimation by the

algorithm. While users defined the boundary based on visual contrast, the algorithmic

threshold was in a shell just outside the perceivable visual contrast. The application of

image enhancement methods prior to segmentation reduced the disagreement.

Table 4.5: Performance assessment (% DICE) of 3D histogram-based method on cell VOI
after image enhancement

Unfiltered Gaussian Median AD ADCS ADPT
90.9 91.1 90.9 90.1 94.5 93.2

The performance of the 3D histogram-based method after the application of image

enhancement techniques is summarized in Table 4.5. A significant improvement was

achieved in segmentation accuracy by applying conjunctive enhancement methods instead

of traditional methods such as Gaussian or median methods. Contrast stretching (CS) and

power transform (PT) after anisotropic diffusion (AD) were abbreviated as ADCS and ADPT

respectively. The improvement in segmentation accuracy by application of image

enhancement methods is illustrated in Figure 4.1.
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Figure 4.1: Effect of image enhancement on cell segmentation accuracy. 2D boundary
contours overlaid on original image slice (A) after running segmentation algorithm on unfil-
tered (cyan) and filtered (green) images (B). Algorithm performance relative to ground truth
contour (red) is shown in (C).

Evaluation of algorithms for nucleus segmentation

The accuracy of proposed methods for segmenting the nucleus VOI before and after image

enhancement are summarized in Table 4.6. The presented results are focused on the

proposed 3D segmentation methods since they performed better than the 2D MIP-based

method. All four proposed methods provided a segmentation accuracy of at least 90% on

Table 4.6: Performance evaluation of 3D segmentation methods for nucleus VOI (% DICE
averaged over 14 cells)

Segmentation method Unfiltered 3D Gaussian AD ADCS ADPT
Generalized Otsu 93.1 93.1 93.4 92.5 71.4

Heuristic k-means clustering 92.5 92.8 93 92.8 88
Heuristic contrast-driven 90 90 89.7 91.3 94.1

2D GVF snake 92.9 92.4 93.5 93.1 93.6

the unfiltered images. The generalized Otsu and heuristic k-means techniques had

relatively higher DICE coefficients for unfiltered image but their performance decreased

with the use of ADCS or ADPT image enhancement procedures. In contrast, the

contrast-driven heuristic method had relatively lower DICE coefficient with the unfiltered

image but its performance improved with the use of ADCS or ADPT enhancements. The

performance of the 2D GVF snake method did not vary significantly with the use of

enhancement techniques.
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Figure 4.2: Overlaid algorithm boundary contours relative to ground truth (red) illustrate
performance and oversegmentation errors of methods proposed for nucleus segmentation
before (cyan) and after (green) image enhancement. (A) is the original image slice. (B), (C),
(D), and (E) are results from Generalized Otsu, heuristic k-means clustering, contrast-driven
heuristic method, and 2D GVF snake-based hybrid method respectively.

Comparative overlays of the four proposed methods relative to user-defined ground

truth are shown in Figure 4.2. The 2D GVF snake method provided good performance with

unfiltered and filtered images. Close observation of the segmentation overlays revealed the

oversegmentation vulnerabilities of the generalized Otsu and heuristic k-means methods,

especially in cells exhibiting low contrast between nucleus and cytoplasm. On the other

hand, the contrast-driven heuristic method provided a conservative initial boundary which

is then refined by the application of image enhancement methods. The limitation posed by

oversegmenting methods is masked by the DICE metric since it is less sensitive to

oversegmentation than undersegmentation.
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Chapter 5

3D FEATURE COMPUTATION AND STATISTICAL ANALYSIS

This chapter details the 3D numerical descriptors (features) that were computed to

characterize morphology in the reconstructed 3D cell images and the suite of classification

and feature selection methods that were implemented for biosignature discovery.

5.1 Feature computation

The choice of features to be quantified was motivated by their intuitive correlation with the

underlying structural biology and their relevance to clinical cytopathology assessment.

Thus, the focus of this research was primarily on features that characterize nuclear shape,

structure and texture. All features were implemented in Matlab (Mathworks, Natick, MA),

and integrated into the automated computational software framework. The framework

automatically computed feature data from the segmented VOI volumes and archived the

data in Microsoft Excel spreadsheet files at a specified location. The framework also

provided an option for computing and archiving equivalent 2D features (derived from a 2D

grayscale image) for the list of 3D features.

Morphological features

Morphological features characterized structural and geometric aspects of VOIs. Computed

features included the volume and surface area of the cell, nucleus, and ultra-high density

(UHD) nuclear clumps.

Table 5.1: List of morphological features

Feature type Features

Morphological

cell volume, cell surface area, nuclear
volume, nuclear surface area, nucleus to
cytoplasm (NC) volume ratio, number of
UHD clumps, total volume, average
volume, and variance in volume of UHD
clumps, average margination and
variance in margination of UHD clumps
from nucleus center, nuclear sphericity,
eccentricity, aspect ratio, major axis
length and minor axis length of nucleus
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The volumetric nucleus to cytoplasm (NC) ratio was determined from the cell and

nuclear volumes. Cell polarity was implemented as the physical distance between the

geometric centroids of the cell and nucleus. The structural geometry of the nucleus was

characterized by computing its sphericity, largest eccentricity, aspect ratio, and the longest

major and minor axis lengths. Lastly, the number and size of UHD clumps were computed

and the heterogeneity in their size and spatial location was estimated using descriptive

statistics (see Table 5.1).

Texture features

Texture features characterized the organization of coarse chromatin within the nucleus.

Three types of texture features were implemented: descriptive, discrete and Markovian.

Descriptive texture features

Table 5.2: List of descriptive texture features

Feature type Features

Descriptive

integrated optical density, mean optical
density, variance in optical density, skew
in optical density, kurtosis in optical
density

Descriptive texture features characterized nuclear content heterogeneity by

computing global statistics from the nuclear voxel intensity histogram. The total, mean, and

higher order moments were computed to serve as descriptive texture features (refer Table

5.2).

Discrete texture features

Discrete texture features characterized the variations in density of nuclear regions and their

relative spatial locations. To compute these features, the nuclear interior was divided into

three distinct regions representing low, medium and high optical density. The intensity

thresholds separating low- and high-density regions from medium-density regions were set

at a single standard deviation around the mean nuclear intensity. The number, size

(volume), compactness, relative proportion, and localization of each density region relative
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to the other were also computed. The relative spatial location of density regions were

estimated by their geometric centroids and corresponding inter-centroidal distances. The

complete list of discrete texture features is presented in Table 5.3.

Table 5.3: List of discrete texture features

Feature type Features

Discrete

number of objects in low, medium and high condensation states (3),
volume fraction of each condensation state (3), content (optical
density) fraction of each condensation state (3), smoothness of
transition between condensation states (3), compactness of each
condensation state (3), fractal dimension of each condensation
state (3), total surface area of each condensation state (3), total
volume of each condensation state (3), heterogeneity in volume of
each condensation state (3),average distance of center of each
condensation state from the nucleus center (4)

Markovian texture features

Markovian features characterized the directional variations in intra-nuclear densities at

different granularities. In this research, Markovian features were derived using the method

based on gray level co-occurence matrices (GLCM) proposed by Haralick [70]. For a

grayscale image with bit depth k, a GLCM is of size 2k × 2k and annotates the frequency of

occurrence at a physical distance ’d’ (voxels) of all voxel intensities spanning the range

i ∈ [0, 2k]. ’d’ represents the granularity of the texture. Eleven Markovian features (see

Table 5.4) were computed from 26 gray level co-occurrence matrices (GLCMs)

(corresponding to the 26-voxel neighborhood) centered at the geometric center of mass of

every segmented nucleus. The 26 values were averaged to obtain one representative

value for each feature at the selected offset. Voxel offsets of 7 and 14 were used to capture

coarse density variations.

Table 5.4: List of Markovian texture features

Feature type Features

Haralick
energy, contrast, correlation, homogeneity, sum of squares
variation, sum average, sum variance, sum entropy, difference
variance, difference entropy, information measures of correlation (2)
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5.2 Classification and feature selection

Classification and feature selection are critical computational components necessary to

define robust biosignatures. In this dissertation, classification refers to the process of

predicting a cell type on the basis of its numerical feature set computed from optical CT

images. It involves the development of predictive computational models from the given

feature data. Feature selection is the process of identifying the subset of features that

possess the most discriminatory power when used in a classifier. It eliminates redundant

features and thus facilitates the development of efficient classifier models.

Methods for classification and feature selection have been the subject of extensive

research in the past decade. Classification methods are broadly divided into supervised or

unsupervised learning methods, depending on the strategy used to build the predictive

model from the feature data. An additional, more recent taxonomy among supervised

learning methods is the use of stand-alone versus ensemble strategies. While the

stand-alone strategy utilizes a single learning method for classification, ensemble methods

use an array of individual classifier models to perform classification. Feature selection

methods are also broadly divided into either filter, wrapper, or embedded techniques

depending on their mode of operation [71]. Filter methods select features purely on the

basis of some correlation metric on the feature data prior to classification. Their

performance is thus independent of the classification technique with which they are

applied. Wrapper methods select features on the basis of their performance with a

classifier (usually assessed by computing the misclassification error). Embedded methods

are hybrid strategies that utilize classifiers to select features as part of the learning

process. Wrapper and embedded feature selection methods require more computational

power and time than filter methods.

This dissertation applied a suite of popular statistical classification and feature

selection methods that have been shown to perform excellently for a wide variety of

biological applications. For classification, the focus was predominantly on stand alone and
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ensemble supervised learning methods. The option of building classifier models with either

k-fold crossvalidation or leave N out methods are provided in the computational framework.

The methods currently available in the computational framework are listed in Table 5.5 and

Table 5.6.

Table 5.5: List of classification methods implemented for biosignature discovery

Stand-alone methods Ensemble methods
Naive Bayes Decision trees

Discriminant analysis Bagged trees
Support vector machines Boosted trees

neural networks
logistic regression
K nearest neighbor

Table 5.6: List of feature selection methods available for biosignature discovery

Method type Method list
Filter methods mRmR, mutual information criterion, T-test

Wrapper methods forward and backward feature selection with stand-alone learners
Embedded methods forward and backward feature selection with ensemble learners

Numerous performance metrics to evaluate the efficacy of classifiers were also

implemented. These are listed below:

1. Global metrics: mean accuracy, sensitivity, specificity, positive predictive value (PPV),

negative predictive value (NPV) and their respective standard deviations

2. ROC-based metrics: ROC plot with 95% confidence intervals, area under the curve

(aROC or AUC) with 95% confidence intervals, and optimal ROC point determination.

The optimal ROC point is calculated as the 2D point located on the ROC plot and

which is most proximal to the ideal ROC point of (0,1).
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Chapter 6

3D MORPHOLOGICAL BIOSIGNATURES FOR ESOPHAGEAL ADENOCARCINOMA

PROGRESSION

6.1 Motivation

Esophageal adenocarcinoma (EA) is among the fastest growing cancers in the western

world [72]. The poor survival rate associated with the disease necessitates robust early

detection for a good prognosis. The most well-known precursor for EA is Barrett’s

Esophagus (BE): a condition characterized by replacement of normal squamous epithelium

by metaplastic columnar epithelium in the distal esophagus [73]. The onset of BE has

primarily been attributed to factors such as gastroesophageal reflux disease (GERD),

obesity, and smoking [74]. Patients with BE are considered to be at a considerably high risk

for EA. Neoplastic progression in BE typically proceeds from non-dysplastic metaplasia to

low-grade and high-grade dyplasia, and finally to invasive adenocarcinoma. Endoscopic

examination of the esophagus is the most commonly adopted screening method to identify

BE. Patients with BE are usually recommended to regular endoscopic surveillance

programs that check for potential progression to adenocarcinoma. A major translational

research objective is to determine the subset of metaplastic BE patients who will progress

onto dysplasia or EA. The definitive diagnostic procedure to determine the existence of BE

or EA in patients is still slide-based pathology of tissue biopsied by a surgical endoscopist.

The limitations of this approach have been detailed in chapter 1. Further, cost-effective

alternatives to endoscopy are required for surveillance and patient management.

Computer-aided 2D morphometric analysis of digitized H&E stained BE tissue

samples has been pursued in the past to predict progression from metaplasia to

dysplasia [34] and adenocarcinoma [75]. These studies reported variations in nuclear area,

shape and texture with progression. This dissertation aims to derive sensitive and specific

three-dimensional morphological biosignatures predictive of progression in BE by 3D

image analysis of optical cell CT data. The research also aims to investigate the relative

efficacy of 3D biosignatures over 2D morphological signatures derived from digital images
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that approximate conventional pathological observation with a lens having an optical

magnification of 10x. Optical CT imaging was applied and the computational framework

developed as part of this dissertation to were used to facilitate the investigation.

6.2 Methods
Cell culture

Immortalized esophageal epithelial cell lines representative of normal squamous

(EPC2, [76]), metaplastic (CPA) and dysplastic (CPD) BE [77], and adenocarcinoma

(FLO-1, [78]) were used in this study. All cell lines were grown per prescribed protocols as

monolayers to approximately 85% confluence in 25-cm2 flasks with vented caps (BD

Falcon, San Jose, CA). Serum-free keratinocyte medium was used to grow EPC, CPA, and

CPD cells. FLO-1 cells were grown in DMEM. Cultured cells were trypsinized with trypsin

(Mediatech, Manassas VA) and then resuspended in PBS in preparation for optical cell CT

imaging. EPC2, CPA, and CPD cells needed 0.05% trypsin while FLO-1 cells required

0.25% concentration.

Sample preparation and tomographic imaging

The procedure detailed in chapter 2 was followed to prepare stained cell samples and

image them individually by optical CT. Briefly, suspended cells from all four lines were fixed,

stained with Gill’s 1 hematoxylin (Electron Microscopy Sciences, Hatfield, PA), and imaged

individually by optical CT using the Cell-CTTM(VisionGate, Inc., Phoenix, AZ). 250 images

were acquired for every cell type and used for morphometric analysis.

3D image processing

The combination of best performing methods detailed in chapter 3 were used to segment

the cell, nucleus, and UHD clumps in reconstructed 3D images. Prior to segmentation, the

images were enhanced using anisotropic diffusion and power transformation in sequence

(refer chapter 4). 79 numerical features (refer chapter 5) were computed to characterize

the 3D morphology of each cell and its nucleus.
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2D image processing

Since it was not feasible to retrieve the exact cells that were imaged with the Cell-CTTM, a

2D image was simulated to approximate acquisition using a 10x objective lens in brightfield

mode. A 2D image was derived from the reconstructed 3D image by averaging intensity

information over a distance equal to the depth of field (8.5 microns) provided by a 10x lens.

The 8.5 micron depth of field in a 10x lens corresponded to an averaging of a slab of 115

image slices that was centered at the center of mass (centroid) of the nucleus in the

reconstructed image.

Figure 6.1: Comparison between a 74 nm thick 2D slice in a reconstructed 3D cell image
(A) and a 2D slice simulating widefield acquisition with a 10x objective lens (B).

A representative 10x simulation alongside a slice of the reconstructed image is

shown in Figure 6.1. The simulated 2D image is considerably blurred compared to the 3D

image. The poor contrast in the simulated image precluded the development of computer

vision methods that could reliably segment the target regions of interest (ROIs). Therefore,

the 3D segmentation masks derived earlier were leveraged to obtain 2D masks for target

ROIs in the simulated 2D image. To obtain segmentation masks for each 2D ROI, the 3D

binary masks were averaged over the 115 slices and then binarized the resulting image at

a value of 0.1 which was empirically determined by manual exploration. Lastly, 79 2D

features were computed from the segmented VOIs in the 2D images. These 2D features

were equivalent to the 3D features estimated from the volumetric images.
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Statistical analysis for biosignature discovery

The supervised learning and feature selection methods listed in chapter 5 were

investigated to derive morphological biosignatures that distinguished normal squamous

(EPC2), metaplastic (CPA), dysplastic (CPD), and EA (FLO-1) cells with the highest

sensitivity and specificity. The most sensitive and specific 2D and 3D biosignatures were

derived for each of the following eight pairwise comparisons between the four cell types:

1. Normal squamous (EPC2) versus adenocarcinoma (FLO-1)

2. Normal squamous (EPC2) versus dysplastic Barrett’s (CPD)

3. Normal squamous (EPC2) versus metaplastic Barrett’s (CPA)

4. Normal squamous (EPC2) versus all abnormal cells (CPA + CPD + FLO-1)

5. Control (EPC2 + CPA) versus diseased (CPD + FLO-1)

6. Metaplasia (CPA) versus dysplasia (CPD)

7. Metaplasia (CPA) versus adenocarcinoma (FLO-1)

8. Dysplasia (CPD) versus adenocarcinoma (FLO-1)

For each of the above comparisons, the best classifier models was first identified

using all 79 morphological features. A total of 16 classifier models were derived from

corresponding sets of 2D and 3D morphological feature data.

The best classifier model was defined as the one which provided the highest

combination of accuracy, sensitivity, specificity and area under the ROC curve (aROC or

AUC) averaged over the 10 cross-validation runs. The positive and negative predictive

values (PPV, NPV) were also computed for each comparison to assess comparisons where

the other metrics did not suffice to enable a clear decision. Feature selection methods were

then applied to the best performing classifier models in order to further streamline their
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performance and concurrently identify the set of most discriminatory features between two

given cell types. The minimum-redundancy maximum-relevance (mRMR) method [79] was

applied with the best classifiers that were derived for each comparison. The mRMR

method is a filter-based technique that essentially ranks features according to their

relevance after eliminating redundant feature data. The method has been shown to be very

effective for a wide variety of biomedical applications. To determine the best set of most

powerful features for each comparison, the best classifier previously identified for that

comparison was incrementally trained using the set of k (k ∈ [1, 5, 10, 15...75, 79]) best

features identified by the mRMR method. The value of k that maximized classification

accuracy was selected to be the optimal feature set for that comparison. The resulting

streamlined classifier would have the minimum number of most discriminatory features

necessary to obtain the best classification accuracy. This procedure was repeated for all 16

classifiers to determine the variation in the degree of learning required for 2D and 3D

morphological analysis. Lastly, the effect of sample size on classifier performance was

analyzed as a form of retrospective power analysis to estimate the minimum number of

cells required for good classification performance.

6.3 Results
Measurable alterations in 3D cell and nuclear structure accompany progression to

esophageal adenocarcinoma

Appreciable differences were observed in 3D cellular morphology between EPC2, CPA,

CPD, and FLO-1 cell lines (see Figure 6.2). Cell size, nuclear size, nucleus-to-cytoplasm

(NC) ratio, and the clumpiness of nuclear content within the nucleus differed as cells

progressed from normal to cancer. Histograms of some visually appreciable and

diagnostically relevant morphological features are shown in Figure 6.3. As evidenced by

the histogram distributions, single-cell optical CT enabled a better appreciation of the

marked intra-population phenotypic heterogeneity in measured morphological parameters.

Normal squamous cells expectedly exhibited the smallest cell and nuclear size among the

four cell types. Similarly, cancer cells exhibited the highest NC ratio, followed by dysplastic

cells. The large size of metaplastic cells could be an artifact from immortalization.
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Figure 6.2: Cellular morphology varies with progression from normal squamous to
esophageal adenocarcinoma. (Left to right) Pseudocolor volume renderings show distinct
changes in three-dimensional cell and nuclear structure that accompany progression from
normal squamous through metaplasia, dysplasia and to esophageal adenocarcinoma. Top
row shows a surface rendering with the cytoplasm in gray and the nucleus in blue. Bottom
row illustrates corresponding transparent views to provide information about the nuclear in-
terior. Increasing density of intra-nuclear content is color coded from green to red. Scale
bar = 5 microns.

Figure 6.3: Histograms of visually apparent 3D morphological features illustrates the appre-
ciable intra-population phenotypic heterogeneity.
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Development of morphological biosignatures

Quantitative 3D morphological analysis indeed provided sensitive and specific

biosignatures to distinguish normal, metaplastic, dysplastic, and cancer cells. The best

classifier models for each comparison are listed in Table 6.1. Linear discriminant analysis

(LDA) was observed to work well for our application, especially for the 2D analysis. This

result indicated the existence of gaussian or near gaussian distribution in feature data.

Ensemble methods such as Adaboot or logistic boost also proved to be useful classifiers

for a subset of the comparisons.

Table 6.1: Best classifier models for each comparison

Comparison 3D analysis 2D analysis
EPC vs FLO-1 LogitBoost LDA
EPC vs CPD LDA LDA
EPC vs CPA LDA LDA

EPC vs Abnormal LDA LDA
(EPC,CPA) vs (CPD,FLO) LDA LDA

CPA vs FLO LDA LDA
CPA vs CPD LogitBoost LDA
CPD vs FLO Adaboost LDa

Performance statistics using the best classifier models are detailed in Table 6.2.

Normal squamous cells could clearly be distinguished from cancer(99% sensitivity and

97% specificity) and dysplastic cells (95% sensitivity and 96% specificity). Fairly robust

classification was also achieved to independently distinguish cancer cells from metaplastic

(94% sensitivity and 93% specificity) and dysplastic cells (94% sensitivity and 92%

specificity). Metaplastic cells could be distinguished from dysplastic cells with fairly good

accuracy (91% sensitivity, 93% specificity) as well. The poorest performance was observed

between squamous and metaplastic cells (91% sensitivity, 86% specificity). This result

reinforces our qualitative visual observations of the cells and could be a fall out of their

immortalization. Normal cells could be distinguished from metaplastic, dysplastic and

cancer cells with high specificity (95%) and moderate sensitivity (86%). The high specificity

indicates the efficacy of this comparison for screening applications. The relatively low
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sensitivity could be attributed to the class imbalance and the weak classification between

normal and metaplastic cells. The comparison between the more clinically relevant

combination of normal and metaplastic cells versus dysplastic and cancer cells yielded

good classification (93% sensitivity, 91% specificity). Similar trends were observed with 2D

analysis. However, the results in Table 6.2 indicate that 3D morphological analysis

consistently outperformed the equivalent 2D analysis for all eight comparisons. Figures 6.4

and 6.5 illustrate comparative ROC plots along with their upper and lower 95% confidence

intervals (CIs), mean area under the ROC curve (AUC) and optimal operating point for

each of the 8 comparisons. The 95% CIs are plotted in dotted lines. Results from the ROC

plots reinforce the conclusions drawn from Table 6.2 about the relative merit of 3D analysis

over 2D analysis to distinguish the four cell types. The 95% CIs for the ROC plots

associated with 3D analysis were relatively tighter than the corresponding 2D plots. Tight

CIs (especially the lower interval) indicate low variance in performance and thus show

promise for clinically relevant tests. The weak classification between normal and

metaplastic cells is also evident from the ROC plot of Figure 6.4C.
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Figure 6.4: Comparative ROC plots of best classifier models between normal squamous and
(A) cancer cells, (B) dysplastic cells, (C) metaplastic cells, and (D) metaplastic, dysplastic,
and cancer cells using 3D (red) and 2D (blue) morphological data. The mean ROC points
lie on the solid curve. The corresponding 95% confidence intervals are indicated by dotted
lines. All 79 features were used to train the classifier model.

Feature selection using the mRMR method reduced the training time required to

derive best classifier models for all 3D analysis and a majority of the 2D analysis. A concise

summary in Table 6.3 indicates that the reduction in features was more appreciable for the

3D features in most of the comparisons. With the exception of the normal-metaplasia and

normal-dysplasia comparisons, morphological analysis using 3D features required lesser

number of features than analysis on equivalent 2D features. Feature selection did not

improve classification with 2D features for comparisons among metaplastic, dysplastic, and

cancer cells. Table 6.4 details the classifier performance for each comparison after feature

selection. ROC plots for classifier models derived after feature selection are shown in

Figures 6.6 and 6.7. These results show that 3D morphological analysis continued to
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Figure 6.5: Comparative ROC plots of best classifier models between (A) metaplastic Bar-
rett’s and cancer cells, (B) dysplastic Barrett’s and cancer cells, (C) metaplastic and dysplas-
tic cells, and (d) normal and metaplastic cells versus dysplastic and cancer cells. Red curve
represents analysis using 3D morphological data and blue curve indicates analysis with 2D
data. The mean ROC points lie on the solid curve. The corresponding 95% confidence
intervals are indicated by dotted lines. All 79 features were used to train the classifier.

outperform 2D analysis even with a reduced feature set. The 95% CIs for the ROC plots

associated with 3D analysis remained relatively tighter than the corresponding 2D plots.
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Table 6.3: Effect of applying mRMR feature selection

Comparison Number of features required for best performance
3D feature data 2D feature data

EPC vs FLO-1 5 60
EPC vs CPD 65 45
EPC vs CPA 50 50

EPC vs Abnormal 45 55
(EPC,CPA) vs (CPD,FLO-1) 60 65

CPA vs FLO-1 50 75
CPA vs CPD 45 79
CPD vs FLO-1 40 79

Figure 6.6: Comparative ROC plots of best classifier models after feature selection. Plots
comparing 3D analysis (red) and 2D analysis (blue) are shown between normal squamous
and (A) cancer cells, (B) dysplastic cells, (C) metaplastic cells, and (D) metaplastic, dys-
plastic, and cancer cells. The mean ROC points lie on the solid curve. Corresponding 95%
confidence intervals are indicated by dotted lines.
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Figure 6.7: Comparative ROC plots of best classifier models after feature selection. Plots
comparing 3D analysis (red) and 2D analysis (blue) are shown between (A) metaplastic
Barrett’s and cancer cells, (B) dysplastic Barrett’s and cancer cells, (C) metaplastic and
dysplastic cells, and (d) normal and metaplastic cells versus dysplastic and cancer cells.
The mean ROC points lie on the solid curve. Corresponding 95% confidence intervals are
indicated by dotted lines.
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The results of feature selection provide numerous insights on the relevance of

morphological features for each comparison. Table 6.5 lists the set of five highest ranked

features obtained with 2D and 3D analysis for every comparison. The results show the

differences between features across comparisons. The table also indicates that the most

powerful 2D features do not always translate to 3D. Another important outcome of the

feature selection process was the consistent high ranking of Markovian texture descriptors

(reflective of DNA packing and spatial localization) for all comparisons. Texture descriptors

performed better than most of the morphological parameters used for conventional

diagnosis. Similar trends on relevance of texture features were obtained with 2D analysis

even though the variations were not readily apparent to the eye.

Analysis of sample size on classifier performance

Figure 6.8: Comparative plots showing the effect of sample size on performance of best clas-
sifier models using 3D features (red curve) and 2D features (blue curve). Plots are shown
comparing normal squamous and (A) cancer cells, (B) dysplastic cells, (C) metaplastic cells,
and (D) metaplastic, dysplastic, and cancer cells.
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Table 6.5: A comparison of the highest ranked feature to distinguish cell types on the basis
of 2D and 3D analysis

Comparison Most powerful feature
3D feature analysis 2D feature analysis

EPC vs FLO-1 Total volume of UHD
clumps, Markovian texture
at 1μm intervals

Total area of UHD clumps,
Markovian texture at 1 μm
intervals

EPC vs CPD Integrated nuclear content
(volume), Markovian
texture at 1μm intervals

Integrated nuclear content
(area), Markovian texture
at 1μm and 0.5 μm
intervals

EPC vs CPA volume of high density
regions in nucleus

Integrated nuclear content
(area)

EPC vs Abnor-
mal

volume of high density
regions in nucleus,
Markovian texture at 1 μm
intervals

Nuclear area, Markovian
texture at 1 μm intervals

(EPC,CPA) vs
(CPD,FLO-1)

NC ratio (volume), Marko-
vian texture at 1 μm inter-
vals

NC ratio (area), Markovian
texture at 1 μm intervals

CPA vs FLO-1 NC ratio (volume), Marko-
vian texture at 1 and 0.5
μm intervals

NC ratio (area), Markovian
texture at 1 μm intervals

CPA vs CPD NC ratio (volume), Marko-
vian texture at 1 and 0.5
μm intervals

NC ratio (area), Markovian
texture at 1 and 0.5 μm in-
tervals

CPD vs FLO-1 Total volume of UHD
clumps, Markovian texture
at 1 μm intervals

Nuclear content per pixel,
Markovian texture at 0.5
μm intervals

Figures 6.8 and 6.9 illustrate the effect of sample size on classifier performance for

each of the 8 comparisons. The plots show that the approximate saturation in classifier

performance corresponds to roughly 200 cells of each cell type. The normal-cancer

comparison (Figure 6.8A) expectedly required much fewer samples (approximately 50) to

reach maximum performance. With the exception of the normal-metaplasia comparison,

analysis with 3D features required relatively fewer samples for a better classification than

the equivalent 2D analysis.
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Figure 6.9: Comparative plots showing the effect of sample size on performance of best
classifier models using 3D features (red curve) and 2D features (blue curve). Plots are
shown comparing (A) metaplastic Barrett’s and cancer cells, (B) dysplastic Barrett’s and
cancer cells, (C) metaplastic and dysplastic cells, and (D) normal and metaplastic cells
versus dysplastic and cancer cells.

Choice of optimal ROC operating point

Practical considerations associated with clinical relevance drive the selection of the optimal

ROC operating point on the ROC plot. A diagnostic test usually maximizes sensitivity while

a screening test maximizes specificity. We discuss this subject using the comparison:

non-metaplastic cells vs abnormal cells (dysplastic or cancer). Figure 6.10 illustrates the

variation in optimal ROC operating points depending on whether the requirement is for the

best possible diagnosis (Fig. 6.10A) or the best possible screening (Fig. 6.10B). For both

cases, it is clear that 3D morphometric analysis performs significantly better than

equivalent 2D analysis. Figure 6.10 underscores the importance of 3D morphometric
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analysis over 2D analysis. Figure 6.10A shows that a diagnostic test can achieve a

sensitivity in 3D of 98% with a 22% false positive rate, while the same sensitivity in 2D is

compromised with a 47% false positive rate. In other words, at the same high sensitivity,

the 2D approach more than doubles the number of false positives compared to the 3D

approach. Likewise, Figure 6.10B shows that a screening test can achieve a specificity in

3D of 98% with a sensitivity of 80%, while the same specificity in 2D is compromised with a

lower sensitivity of only 42%. In screening, the 2D approach would triple the number of

false negatives. Thus, 3D analysis is vastly superior to 2D analysis in either diagnostic

applications or screening applications.

Figure 6.10: Comparative ROC plots illustrating the dependence of ROC operating point on
the application at hand. (A) Diagnostic test that maximizes sensitivity, and (B) Screening
test which maximizes specificity

6.4 Conclusions and discussion

Quantitative three-dimensional morphological biosignatures have been defined for an in

vitro model of esophageal adenocarcinoma progression using automated 3D image

analysis of single-cell optical CT images. The results of 3D morphological analysis were

compared against equivalent 2D analysis of 2D images which simulated the depth of field

of a 10x objective lens. The results of this study demonstrated that 3D morphological

analysis of optical CT images provides significantly more sensitive and specific signatures

to distinguish cell types than equivalent 2D analysis. Statistical analysis of the
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morphological data revealed that 3D analysis required fewer morphological descriptors to

achieve a similar or better performance than the equivalent 2D analysis. The ROC plots for

3D analysis also consistently exhibited relatively tighter 95% confidence intervals,

indicating low variance in performance. Errors in 2D classification did not always

correspond to errors with 3D classification i.e. the set of cells misclassified by 3D

classifiers was not always a subset of misclassifications produced by 2D classifiers.

Further, sample size estimation analysis revealed that fairly high classification performance

required 175 to 200 cells per type and it saturated at that sample size.

This study revealed numerous novel insights about the morphologies of normal

squamous, metaplastic, dysplastic, and cancer cells and their variation with progression.

Marked intra-population morphological heterogeneity was observed in all cell types, and it

increased from normal to cancer. Cancer cells could be clearly distinguished from normal

squamous, metaplastic, and dysplastic cells. 3D analysis also revealed the higher

relevance of intra-nuclear texture and the total volume of high density intra-nuclear regions

instead of parameters that are conventionally known to have diagnostic relevance (for ex.

nuclear size, NC ratio, nuclear polarity). In contrast to previous reports based on 2D

analysis, nuclear pleomorphism was not found to be significantly altered in progression.

However, the nucleus to cytoplasm volume ratio was found to be a powerful feature to

distinguish metaplasia from dysplasia and cancer. The occasional difference between the

most powerful 2D and 3D features for a given comparison is another result worthy of

translational relevance. The relatively weak classification performance between normal

squamous and metaplastic Barrett’s cells could be attributed to the immortalization

process. This postulate has been strengthened by recent observations in dissociated

patient biopsies where normal squamous and metaplastic Barrett’s cells show clearly

different morphologies.

Although the results of this study were derived from immortalized cell lines, the

marked distinctions in 3D morphometrics between precancerous stages (metaplasia,

dysplasia) and adenocarcinoma and their improvements over equivalent 2D analysis show
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promise for the application of optical CT imaging in clinical settings. For this study, an

analytical approximation to 2D images acquired using a 10x objective lens in widefield

mode was synthesized from the reconstructed 3D images. The good performance

observed with 2D analysis could be attributed to the fact that the approximated 2D image is

still better than a conventional 2D image acquired with a 10x lens. 3D analysis

predominantly required a relatively fewer number of cells and features than 2D analysis to

achieve an equivalent or better classification performance.

The experimental results demonstrate the potential of optical CT imaging and

quantitative 3D image analysis for precise 3D cytopathological evaluation of cells. This

approach could potentially serve as an adjunctive tool for 3D cytopathological assessment

of cells for diagnosis or screening purposes. Multiple prior studies have been performed to

compare the utility of 2D automated cytology relative to standard clinical cytopathology

practice [80,81], and have reported an improvement in reproducibility, reduction in

assessment times, and relatively better sensitivity. A similar study could be pursued using

optical CT technology. VisionGate Inc. – the manufacturer of the Cell-CTTM – is already in

the process of evaluating the efficacy of automated 3D cytopathology relative to standard

cytopathology using lung cancer samples. A similar study could be performed for the

diagnosis of Barrett’s dysplasia.
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Chapter 7

DISSERTATION SUMMARY AND FUTURE DIRECTIONS

7.1 Dissertation summary

Accurate quantitative characterization of the three-dimensional structure of cells and their

nuclei provides crucial supplementary information for accurate detection of malignancy.

Optical CT is a breakthrough imaging technique that generates individual cell images with

an isotropic spatial resolution of 350 nm by performing computed tomography with white

light excitation. The isotropy in spatial resolution obtained using optical CT enables a

precise quantitative characterization of morphology that cannot be achieved by

conventional microscopy modalities that generate 3D images by serially stacking 2D optical

sections. The Cell-CTTM optical CT platform enables a precise characterization of cellular

morphology and its heterogeneity. Optical CT images pose a challenge for automated

analysis given the unique imaging physics underlying their formation. This dissertation

provided a modular computational framework to automatically generate sensitive and

specific 3D morphological biosignatures indicative of cell health by volumetric image

analysis of hematoxylin-stained cells imaged with the Cell-CTTM. The dissertation research

additionally optimized sample preparation, image acquisition, and data archival, and thus

established a comprehensive foundation to facilitate the discovery of morphological

biosignatures for cancer.
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7.2 Primary dissertation contributions

1. A modular, automated computational framework has been designed, implemented,

and optimized to perform high-throughput, 3D morphological analysis of volumetric

images of transmission-mode Cell-CTTMimages. The capabilities of the framework

can be seamlessly extended without affecting the current setup. The framework also

provides automatic archival of results for future reference. Thus, it facilitates ease of

use by biologists or any other users who may not be familiar with software

programming or technical details related to computer vision or statistical analysis.

2. Custom, fully-automated 3D image processing methods have been developed to

accurately delineate the cell, the nucleus and ultra-high density clumps within the

nucleus. Prior to segmentation, a combination of anisotropic diffusion and power law

transformation was applied to enhance the VOIs in the image. Adaptive intensity

thresholding schemes then sufficed for the cell and UHD clumps. A hybrid method

composed of a contrast-based heuristic followed by automated 2D GVF snake

propagation was proposed to segment the nucleus. The efficacy of proposed

segmentation techniques has been validated relative to manually traced ground truth

volumes and achieved an average accuracy of 94% relative to user-defined ground

truth. Methods were also developed to compute 79 biologically relevant

morphological and texture parameters from the segmented VOIs.

The developed framework allows a direct comparison of 3D morphological data with

its 2D equivalent by computing the same 79 morphological features on a 2D slice that

simulates a digital image acquired with a 10x objective lens.

3. The proposed image processing sequence was applied in conjunction with data

mining techniques to investigate the existence and relative merit of a robust 3D

morphological biosignature over known 2D signatures to distinguish normal

squamous, metaplastic, dysplastic, and esophageal adenocarcinoma epithelial cells

from each other. The data mining suites contains methods for supervised and
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unsupervised learning, feature selection, and numerous metrics such as sensitivity,

specificity, accuracy, positive predictive value (PPV), negative predictive value (NPV),

ROC plots, and area under the ROC curve (AUC) to evaluate the performance of

classifier models. The results from this research indicated that 3D biosignatures

indeed exist to distinguish every combination of cell type in the progression model.

As evidenced from the ROC plots and their tight 95% confidence intervals,

adenocarcinoma cells could be distinctly distinguished from normal squamous,

metaplastic and dysplastic cells. 3D morphological analysis consistently provided

better classifier performance than the equivalent 2D analysis of the same cells.

Further, 3D analysis required fewer features to yield a better classification

performance. The relatively weak classification performance between normal

squamous and metaplastic Barrett’s cells and the distinct variations between the two

cell types in patient samples reinforced the limitations of immortalized cell lines.

4. 3D analysis of optical CT images revealed several novel insights on phenotypic

heterogeneity and progression in Barrett’s Esophagus. Markovian texture features

were found to have markedly high discriminative power. The most powerful 3D

features did not always correspond to the most powerful 2D counterparts. While

some conventional diagnostic parameters such as nucleus to cytoplasm ratio were

found to be effective to distinguish metaplastic from dysplastic cells, others such as

nuclear pleomorphism were not found to be significantly altered with progression in

Barrett’s Esophagus.
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7.3 Potential avenues for future research

The groundwork provided by this dissertation research enables numerous interesting

extensions to enhance its utility for automated biosignature discovery. A subset of future

possibilities are discussed according to their thrust (technology or biology).

Potential technological advancements

1. Assessment of the effect of the point spread function (PSF) on the accuracy of

feature measurement: The smallest measurable morphological feature in a

micrograph directly depends on the size of the optical system’s PSF. Morphological

features smaller than the PSF would be blurred to approximately the size of the PSF

by the process of convolution. Thus, the size and shape of the PSF dictate the

measurement accuracy of a morphological feature. Tomographic reconstruction from

projections produces a spherical (3D Gaussian) PSF. However, the PSF stemming

from the projection image acquisition also needs to be factored in along with the

reconstruction PSF. Conventional volumetric microscopies possess a non-spherical

PSF which is elongated along the z-axis relative to the x- and the y- axes.

Consequently, an orientation bias or dependence is introduced in the feature

measurement, especially if the feature has a prominent z-axis component. Imaging

techniques with a spherical PSF (as in the case of optical CT) would preclude any

orientation dependence and thus result in more accurate measurement.

Hence, a useful future study would be to compare the effects of spherical and

non-spherical PSFs on the measurement accuracy of a feature as a function of its

size and shape. Experiments using sub-micron order phantoms would further help

validate the utility of optical CT imaging.

2. Comparison between morphological analysis using optical CT data and virtual 3D

microscopy: In addition to 2D whole slide imaging used in digital pathology platforms,

virtual 3D widefield microscopy [82] is another avenue that is being explored to

leverage three-dimensional information about specimens used for pathological
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inspection. Virtual 3D microscopy involves the digital acquisition followed by manual

inspection of a select number of 2D widefield focal planes over the specimen volume.

The process captures the pathologists’ practice of focusing through the specimen to

get a better understanding of morphological variations. Although virtual 3D

microscopy of cells may provide more information than what is available in a single

focal plane, it is still a pseudo-3D method (since the 3D image is synthesized by the

person), and is thus far less informative than the corresponding optical CT image. An

interesting study to validate this assertion would be to quantitatively compare the

performance of 3D morphological analysis on the same cells by using optical CT data

and virtual 3D microscopy data. Image data simulating virtual 3D microscopy can be

easily acquired by the Cell-CTTMsince it provides the ability to acquire digital widefield

2D focal planes through the cellular volume.

3. Improvements to image analysis capabilities: Image analysis toolkit development for

quantitative characterization of cellular phenotype is a subject of intensive

investigation in the biomedical research community. Our computational framework

currently contains the classical constituents necessary for volumetric image analysis.

Its capabilities could be augmented by the addition of innovative analytical methods

germane to morphological biosignature discovery. Alternative segmentation methods

based on fast evolving 3D deformable models could be explored to segment the

nucleus and ultra-high density clumps within the nucleus. Although this avenue is

promising, it requires careful tailoring to be effective for optical CT data. A few other

exemplar options are implicit methods [83] to detect the width of the nuclear

envelope, spherical harmonic analysis for nuclear shape characterization [84],

transport theory to quantify alterations in distribution of chromatin [85], and methods

based on stability selection [86] to select morphological features with best

discriminatory power. A pilot study on quantifying 3D nuclear shape [87] by spherical

harmonic analysis has shown promising results. A short-term future effort will be to

integrate this methodology into the computational framework reported here.
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A related future work would be to extend current image processing capabilities to

analyze images generated by fluorescence-mode optical CT. Fluorescence image

data could pose new challenges due to their low signal to noise.

4. Streamlined and user-friendly automation software: A graphical user interface

(GUI)-driven and user-friendly software tool would greatly facilitate the utility of the

developed computational framework among non-engineers. A first step in this

direction is to integrate the computational tools developed in this dissertation with

data visualization tools being developed in our laboratory.

Interesting future biological investigations

1. Evaluation of consistency in biosignatures between immortalized cell lines and

patient samples: This dissertation provided one exemplar application of 3D

biosignature discovery using immortalized cell lines representative of progression in

esophageal adenocarcinoma. An important research question commonly

encountered in cancer biology is the real-world relevance of quantitative models

derived from immortalized cells grown in monolayer. A related ongoing effort in our

laboratory is the culture of primary esophageal epithelial cells derived from patient

samples. The primary cells span the same progression spectrum as our immortalized

model and would thus ideally facilitate objective investigations on the subject of

consistency between immortalized cells and patient-derived primary cells.

2. Organ specific 3D morphological biosignatures: An interesting future project would

be to leverage the proposed computational framework to investigate organ-specificity

in 3D morphological biosignatures. A related pursuit is to probe the morphological

differences between cancer cells in the primary tumor site and cells that have

metastasized to another location. A third line of inquiry would be to identify the

morphological correlates of a cancer’s molecular classification. The outcomes of this

research could ultimately have a far-reaching impact on the accuracy of diagnostic
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pathology. Biological data in the form of normal-cancer cell line pairs for breast,

pancreas, and colon epithelium is available to initiate this investigation.

3. Quantifying 3D cellular architecture in tissue: The current version of the Cell-CTTM is

tailored to perform optical CT on individual cells. A useful future avenue would be

modify the technology to facilitate 3D imaging of thicker specimen such as clusters of

cells or small pieces of tissue. This additional capability could enable isotropically

resolved, micron scale volumetric imaging of entities that possess high biological and

translational relevance. Tissue architecture is an important criterion for cancer

diagnosis. Understanding the three-dimensional organization of cells in

micrometastases or circulating tumor cells (CTCs) may provide vital clues about their

function. Additionally, organoid models grown in 3D culture [88] have been shown to

mimic in vivo conditions much better than immortalized cell lines grown in monolayer.
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