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ABSTRACT 
 

Dimensionality assessment is an important component of evaluating item 

response data. Existing approaches to evaluating common assumptions of 

unidimensionality, such as DIMTEST (Nandakumar & Stout, 1993; Stout, 1987; 

Stout, Froelich, & Gao, 2001), have been shown to work well under large-scale 

assessment conditions (e.g., large sample sizes and item pools; see e.g., Froelich 

& Habing, 2007). It remains to be seen how such procedures perform in the 

context of small-scale assessments characterized by relatively small sample sizes 

and/or short tests. The fact that some procedures come with minimum allowable 

values for characteristics of the data, such as the number of items, may even 

render them unusable for some small-scale assessments. Other measures designed 

to assess dimensionality do not come with such limitations and, as such, may 

perform better under conditions that do not lend themselves to evaluation via 

statistics that rely on asymptotic theory. The current work aimed to evaluate the 

performance of one such metric, the standardized generalized dimensionality 

discrepancy measure (SGDDM; Levy & Svetina, 2011; Levy, Xu, Yel, & Svetina, 

2012), under both large- and small-scale testing conditions. A Monte Carlo study 

was conducted to compare the performance of DIMTEST and the SGDDM 

statistic in terms of evaluating assumptions of unidimensionality in item response 

data under a variety of conditions, with an emphasis on the examination of these 

procedures in small-scale assessments. Similar to previous research, increases in 

either test length or sample size resulted in increased power. The DIMTEST 

procedure appeared to be a conservative test of the null hypothesis of 
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unidimensionality. The SGDDM statistic exhibited rejection rates near the 

nominal rate of .05 under unidimensional conditions, though the reliability of 

these results may have been less than optimal due to high sampling variability 

resulting from a relatively limited number of replications. Power values were at or 

near 1.0 for many of the multidimensional conditions. It was only when the 

sample size was reduced to N = 100 that the two approaches diverged in 

performance. Results suggested that both procedures may be appropriate for 

sample sizes as low as N = 250 and tests as short as J = 12 (SGDDM) or J = 19 

(DIMTEST). When used as a diagnostic tool, SGDDM may be appropriate with 

as few as N = 100 cases combined with J = 12 items. The study was somewhat 

limited in that it did not include any complex factorial designs, nor were the 

strength of item discrimination parameters or correlation between factors 

manipulated. It is recommended that further research be conducted with the 

inclusion of these factors, as well as an increase in the number of replications 

when using the SGDDM procedure. 
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Chapter 1 
 

INTRODUCTION 
 

 Item response theory (IRT) models have garnered significant attention 

amongst both researchers and practicing psychometricians since their introduction 

in the mid-20th Century. These models have been applied in a wide variety of 

fields, perhaps most notably in the areas of psychological and educational 

assessment. Typical applications of IRT models often include both large samples 

of examinees and large item pools. Such scenarios might be characterized as 

“large-scale” testing environments. As access to these approaches increases, 

whether due to a heightened awareness of their advantages over traditional 

methods or advances in the computational resources required to estimate such 

models, practitioners are seeking to apply them in situations that may lack these 

large-scale characteristics. This may include small pilot studies, classroom or 

individual school-level assessments, or applied studies with limited participant 

access. Researchers working under such conditions may lack access to large 

participant or item pools while still harboring the same goals as those often found 

in large-scale testing scenarios.  

 An assumption underlying the use of IRT models for many applications is 

that of unidimensionality, or that a single dimension, denoted θ, drives examinee 

responses. Violation of this assumption may result in inaccurate estimates of the 

modeled parameters and incorrect interpretations of the resulting test scores (Yen, 

1993). Existing methods of assessing this unidimensionality assumption (e.g., 

DIMTEST; Nandakumar & Stout, 1993; Stout, 1987; Stout, Froelich, & Gao, 
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2001) have been shown to work well under certain conditions, such as when 

sample sizes and item pools are large and items tend to be highly discriminating. 

These methods may not, however, be robust to use under less desirable conditions. 

Other approaches, such as those that do not require partitioning items into subtests 

or that take advantage Markov Chain Monte Carlo sampling methods may prove 

more useful under small-scale testing conditions. The primary goal of the current 

work was to investigate the performance of one such method, the standardized 

generalized dimensionality discrepancy measure (SGDDM; Levy, Xu, Yel, & 

Svetina, 2012), relative to the DIMTEST approach. Though these approaches can 

be applied to item responses stemming from tests designed for use in any number 

of fields, the discussion in the following chapters will be focused on applications 

in educational assessment. 

 The remainder of this chapter is dedicated to providing an overview of the 

concepts central to the primary goal of the current study. The theory and 

assumptions underlying item response theory (IRT), as well as relevant IRT 

models will be presented first. Following that, Zhang and Stout’s (1999a; 1999b) 

conditional covariance theory will be summarized and its use in assessing 

dimensionality will be discussed. Next, the logic and process of the DIMTEST 

and model-based covariance approaches to dimensionality assessment (e.g., 

SGDDM) will be outlined. Finally, as the SGDDM approach is applied using a 

posterior predictive model-checking (PPMC) framework, a brief overview of that 

framework, as well as Bayesian approaches to inference and estimation in general, 

will be given. 
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IRT Models 

 A number of item response models with varying levels of complexity exist 

in practice. The complexity of the model may be a function of the number of item 

parameters (difficulty, discrimination, etc.) that it specifies, the number of 

underlying dimensions that it assumes, the number of item response categories 

that it is capable of accommodating, or of some other source. A brief overview of 

dimensionality and the handling of item and person parameters in IRT are 

presented in the following section(s). With respect to the nature of the item 

responses, the current work focuses, in particular, on models designed to deal 

with dichotomous item responses in which a binary outcome is hypothesized to be 

a function of a latent, or unobserved characteristic of any respondent i and a set of 

characteristics for any item j. These responses are typically denoted as Xij = 1 and 

Xij = 0, indicative of a correct or incorrect response, respectively. 

 Unidimensional IRT models. As was mentioned earlier, most IRT 

applications assume that participant responses depend on a single underlying 

dimension, θ. Figure 1 depicts this scenario graphically using conventions similar 

to those typically used structural equation modeling (see Kline, 2010 for 

examples). The circle represents a latent variable while the squares represent 

observed variables. In this case, these are representative of the latent person 

abilities and observed examinee responses, respectively. Lines through the 

observed variables indicate the thresholds that delineate the amount of the latent 

characteristic that is required to endorse (i.e., correctly answer) a particular item. 

The number of thresholds estimated is a function of the number of available 
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response categories. For dichotomous type data, only one threshold is present. 

Arrows emanating from the latent variable to the observed variables indicate the 

direction of dependency. The realized values of the observable variable(s), then, 

are a function of the examinee’s latent ability relative to the item’s location 

(difficulty), and possibly other parameters, as described below. Both the item and 

person parameters are relative to an identical scale under the IRT framework. This 

implies that, unmodeled local dependencies (e.g., unaccounted for dimensionality, 

cheating, group problem-solving, etc.) or other threats to data-model misfit 

notwithstanding, the probability of an examinee endorsing that item is a function 

of the difference between the value of the examinee’s ability on the latent scale 

and the value of the item’s location (difficulty) on the latent scales. Furthermore, 

for the vast majority of IRT models used in education, including the models 

employed here, as latent ability increases, the probability of endorsing an item 

should also increase, assuming the item parameters are held constant. 

  

Figure 1. Six-item test with a single latent dimension and dichotomously scored 
items. 

 
 The majority of dichotomous, unidimensional IRT applications utilize one 

of three hierarchically related item response functions (IRFs; see de Ayala, 2009; 
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Embretson & Reise, 2000 for examples). The most general of these is the three-

parameter logistic model (3-PL), which defines the probability of examinee i 

endorsing an item given their ability, θi, as: 

P(Xij = 1 !i ," j ,# j ,cj ) = cj + (1$ cj )
exp[D" j (!i $ # j )]
1+ exp[D" j (!i $ # j )] ,

          (1) 

where αj, δj, and cj denote the discrimination, difficulty, and lower-asymptote 

(pseudo-guessing) parameters for item j  and D is usually taken to be 1 but may 

take on other values as discussed below. Applying constraints to particular item 

parameters yields one of the more restricted models nested within the 3-PL. 

Fixing cj = 0 while allowing αj to vary for each of J items yields the two-

parameter logistic model (2-PL), while constraining αj to be equal across items, 

effectively forcing there to be a single discrimination parameter for an item set, 

yields the one-parameter (1-PL) model. 

Though the aforementioned models are the most commonly used in 

practice, the current work employs an alternate function, the two-parameter 

normal ogive model (Lord & Novick, 1968; McDonald, 1999) in order to aid in 

estimation. This model utilizes similar parameters to the logistic family of models, 

but calculates the probability of success with respect to the normal distribution. It 

is given by: 

  P(Xij = 1 !i ," j ,# j ,cj ) = cj + (1$ cj )%(" j!i + # j ) ,                         (2) 

where Φ represents the cumulative normal distribution function. Results from the 

three-parameter logistic and normal ogive IRFs closely resemble each other when 

D = 1.7 in Equation 1. According to Hambleton, Swaminathan, and Rogers 
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(1991), response probabilities between these two functional forms differ by less 

than .01 once the scaling factor has been applied. 

Multidimensional IRT models. Often times a test, or particular test item 

requires multiple abilities in order to obtain a correct response. That is to say that 

there may be more than one latent characteristic underlying the item response(s). 

A mathematics word problem, where knowledge of the mathematical concepts as 

well as an ability to read the problem are required for success, is an example of 

such a situation. Several similarities exist between models applied in this type of 

scenario and those discussed in the previous section. There is still an assumption 

of monotonicity, or that the probability of success on an item increases when the 

level of the multiple abilities being measured increases. This allows the same 

functional form to be applied to both unidimensional and multidimensional 

models. The multidimensional family of item response models can be thought of 

as extensions of their unidimensional counterparts (for examples, see McDonald, 

1997; Reckase, 1985; Reckase, 1997). Several new features apply to these models 

that were not necessary when modeling a single dimension. Of particular note is 

that each respondent is characterized by multiple person parameters instead of a 

single scalar parameter. These person parameters are often denoted θim, or the 

ability of person i on dimension m. Figure 2 provides a path diagram 

representative of a two-dimensional model. The curved line between the latent 

variables represents a relationship between them by way of a correlation or 

covariance. The dashed lines emanating from the latent characteristics to the 
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observed variables indicate items with cross-loadings, or items for which more 

than one ability influences the probability of a correct response. 

When multiple dimensions best characterize a test, it may be ideal for each 

item to represent only one of these underlying traits. Tests that exhibit such a 

structure are said to be factorially simple. This is in contrast to complex structure 

where items may be dependent on, or “load on,” multiple dimensions. Between 

these two structures lies approximate simple structure, where each item loads 

strongly on a single dimension and trivially (but still non-zero) on one, or more 

auxiliary dimensions. For the current work, the term “complex structure” will be 

used to indicate any scenario where an item exhibits a non-zero loading on more 

than one dimension.  

  

Figure 2. Six-item test with two correlated latent dimensions and dichotomously 
scored items. 
 

The most commonly used models in multidimensional IRT are the 

compensatory models (Ackerman, 1989; Bolt & Lall, 2003). The 3-PL 

compensatory MIRT model is expressed as: 

  P(Xij = 1 !i ," j ,# j ,cj ) = cj + (1$ cj )
exp( %" j!i + # j )
1+ exp( %" j!i + # j ) ,               

(3) 
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where αj = (αj1, …, αjM)′ denotes the vector of discrimination parameters, θi = (θi1, 

…, θiM)′ denotes the vector of M examinee characteristics, cj denotes the lower-

asymptote parameter, and δj represents a scalar related to item difficulty (Reckase, 

1985; 1997). As was the case with the unidimensional models, there exists a 

hierarchical relationship between the multidimensional models such that fixing 

particular parameters yields a nested model. Fixing cj = 0 yields the 2-PL MIRT 

model, and fixing all elements in the item discrimination vector (αj) as equal 

yields the 1-PL MIRT model. 

 There also exists a multidimensional extension to the normal ogive model 

presented in the previous section, the 3-PL form of which is given by: 

  P(Xij = 1 !i ," j ,# j ,cj ) = cj + (1$ cj )%( &" j!i + # j ) ,                        (4) 

where Φ denotes the standard normal cumulative function (Bock & Aitkin, 1981; 

McDonald, 1967). This model may be constrained to yield the 2-PL and 1-PL 

forms that were possible with the logistic functions. 

Conditional Independence in IRT 

 Local independence (LI), an instance of conditional independence, is a 

central assumption of item response models. Local independence stipulates that 

examinee responses to any pair of items are statistically independent when the 

parameters influencing their performance are held constant. That is to say that the 

responses are independent conditional on the model parameters. These parameters 

include the possibly vectored set of abilities θ, as well as the set of item 

parameters, denoted ωj. This assumption is often represented formally as: 
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P(Xij ,...,XiJ !i ," j ) = P(Xij !i ," j )
j=1

J

# .                                         (5) 

 Violation of the LI assumption is often referred to as local dependence 

(LD). Yen (1993) identified a host of potential sources of local dependence 

including external assistance, insufficient time to complete a task (i.e., 

speededness), fatigue, or a practice effect associated with exposure to multiple 

items of a similar type. Perhaps more importantly, evidence of local dependence 

may imply the existence of some unmodeled dimensionality. That is to say that 

some underlying characteristic may exist that is influencing examinee 

performance beyond what has been included in the model. This dimensionality 

may be of substantive interest to the researcher or may stand as nothing more than 

a “nuisance” dimension. Either way, a failure to account for said dimension may 

yield imprecise parameter estimates, which, in turn can influence the 

interpretation and use of test scores (Yen, 1993). 

 Weaker forms of LI. The assumption put forth by Equation 5 may not 

always hold in practice. Satisfaction of this assumption, often referred to as strong 

local independence (SLI), requires not only that all bivariate dependencies be 

accounted for by the model parameters, but also that all higher-order 

dependencies be accounted for as well. Isolating these higher-order dependencies 

can be difficult in practice. Furthermore, if all bivariate dependencies are well 

modeled, higher-order dependencies, though possible, are unlikely (McDonald, 

1994). Weak local independence (WLI; McDonald, 1994), also called pairwise 
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independence, focuses just on these bivariate dependencies. This assumption 

dictates that the following holds true: 

  cov(Xij ,Xi !j "i ,# j ) = 0  for all θ  and 1 ≤ j < j′ ≤ J,                      (6) 

where cov denotes a covariance. When SLI holds, then WLI will also hold, 

mathematically speaking. When WLI is true, however, SLI may not necessarily 

hold if there exists some higher-order item dependency. McDonald (1994) argued 

that WLI is an empirically sufficient assumption in place of SLI as data sets that 

exhibit these higher-order dependencies may be rare in practice (Zhang & Stout, 

1999b).  

 Stout (1987) advanced the notion of essential independence (EI), an 

assumption that is central to the DIMTEST procedure investigated in the current 

work. Essential independence is satisfied when the following holds: 

  
1! j< "j !J cov(Xij ,Xi "j # = "# )$

J
2

%
&'

(
)*

+ 0  ,                                               (7) 

for all θ′ as J → ∞. EI differs from the previous two forms of independence (SLI 

and WLI) in that it is concerned with average independence as opposed to 

independence by item-pairs. Under this assumption, the average conditional 

covariance should be small and become smaller as the number of items, J, 

approaches infinity. Secondly, EI is only concerned with dominant dimensions, as 

opposed to all dimensions. The minimum number of dominant dimensions needed 

to satisfy Equation 7 above is considered the essential dimensionality. If a single 

dominant dimension is able to satisfy the necessary conditions, then the set of 
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items is said to be essentially unidimensional (Nandakumar & Yu, 1996). As can 

be inferred from information to be presented in later sections, the DIMTEST 

procedure is predicated upon the notion of essential independence, whereas the 

SGDDM statistic utilizes the weak local independence assumption. This 

necessarily implies that the DIMTEST procedure carries with it the assumption of 

infinite, or at least sufficient test lengths. 

Conditional Covariance Approaches to Dimensionality 

 Conditional covariance theory (CCT; Zhang & Stout, 1999a; 1999b) lies 

at the foundation of the DIMTEST and SGDDM methods, which are discussed in 

forthcoming sections, as well as HCA/CCPROX and DETECT, which are 

covered briefly in the section on subtest partitioning. A more rigorous discussion 

of the DETECT and HCA/CCPROX methods can be found in Zhang & Stout 

(1999b) and Stout et al. (1996). CCT was developed as a nonparametric 

alternative to parametric approaches to assessing dimensionality. While 

parametric approaches make certain assumptions with respect to the form of the 

item response function (IRF), CCT requires only that the function be monotonic. 

That is to say that the probability of a correct response should approach one as the 

possibly vectored latent characteristics approach infinity (P(Xij =1) → 1 as θi → 

∞). Zhang & Stout (1999a) used a generalized m-dimensional compensatory 

model in their presentation of CCT. This model is given by: 

  P(Xij = 1 !i ) = H j ( " jm!m # $ j )
m=1

M

%  ,                                               (8) 
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where Hi is any non-decreasing (i.e., monotonic) function and all other notations 

take on their standard meanings. 

 Three features are central to CCT; the item, the unidimensional composite 

score for each dimension, and the total composite score for all dimensions (Stout 

et al., 1996). These features are related in that responses to the items combine to 

form item-weighted unidimensional composites for each dimension. These 

unidimensional composites, in turn, combine to form the dimensionally weighted 

total test composite. Stout and colleagues (1996) demonstrated this geometrically 

with the vector diagram presented in Figure 3. This diagram depicts a scenario 

wherein a set of items is characterized by two dimensions (θ1 and θ2). The total 

test composite is denoted θTT while the unidimensional composite scores are 

denoted by θC1 and θC2. The individual items are represented as vectors clustered 

around their respective unidimensional composites. 

 

Figure 3. Geometric representation of a two-dimensional test (Stout et al., 1996). 

 Other key features of the diagram reveal the test structure, as well as 

additional characteristics of the item(s). The direction of the individual item 

vectors is often referred to as the direction of best measurement (Stout et al., 
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1996), whereas the length of the vector indicates the discrimination of the item, 

with longer vectors representing larger magnitudes. For a test exhibiting simple 

structure and orthogonal (i.e., uncorrelated) dimensions, the vectors for all of the 

items measuring θC1 and, thus, the θC1 composite score, would align with the θ1 

axis. The same would hold for the items measuring θC2 and the θ2 axis. More 

commonly, tests exhibit more complex structures with partially overlapping (i.e., 

oblique) dimensions, as in the scenario depicted in Figure 3. In this case, the 

vectors for the unidimensional composites, denoted θC1 and θC2, deviate from their 

respective axes (θ1 / θ2), indicating the presence of correlated dimensions. 

Furthermore, the item-specific vectors do not perfectly align with the 

unidimensional composites they are intended to represent. This is indicative of 

complex structure, or items that, in this case, measure one dimension best, but 

have non-zero loadings on a second dimension. Had these item vectors aligned 

with the unidimensional composites, simple structure would still have held 

despite the presence of a non-zero correlation between the dimensions. 

 Zhang and Stout (1999a) also put forth a relationship between the 

directionality of the items vectors and the degree of multidimensionality present 

in a set of items. Conditional on the total test composite, denoted θTT in Figure 3, 

any two items with directions of best measurement on the same side of the total 

score composite will exhibit positive conditional covariances; any two items with 

directions on opposite sides of θTT will exhibit negative conditional covariances; 

and if at least one of the item vectors lies on the total score composite, the 

conditional covariance between that item and all other items will be zero. With 
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respect to the scenario depicted in Figure 3, two items taken from the same cluster 

(either θC1 or θC2) would be expected to exhibit a positive covariance, conditional 

on θTT, while two items taken from different clusters would be expected to exhibit 

a negative conditional covariance. 

DIMTEST 

 DIMTEST (Nandakumar & Stout, 1993; Stout, 1987; Stout, Froelich, & 

Gao, 2001) is a commonly used method for assessing whether a single dimension 

is sufficient to model a set of item responses. Specifically, the DIMTEST 

approach is concerned with conducting a formal test of the essential 

unidimensionality assumption. It achieves this by splitting an item pool into two 

separate clusters, then evaluating the distinctness of the responses in each cluster. 

The first of these clusters, termed the assessment subtest (AT), is chosen such that 

the items contained within the partition are dimensionally similar (i.e., 

homogenous) to one another, but as dimensionally distinct from the remaining 

items as possible. The second cluster, the partitioning subtest (PT), consists of all 

items not used in AT and is used to cluster examinees based on their total PT 

subtest score. The separation of items into these two clusters can be, and has 

historically been done using a variety of approaches ranging from those stemming 

from the factor analytic tradition (see Stout, 1987) to clustering algorithms 

employing CCT-based assessments of dimensional distinctness (see Zhang & 

Stout, 1999b). These partitioning strategies can be approached in either an 

exploratory of confirmatory manner. The current work relies on an exploratory 
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partitioning approach, a brief description of which is provided following the 

presentation of the DIMTEST procedure. 

 The null and alternative hypotheses tested by DIMTEST are given by 

Stout et al. (1996). They are: 

 H0: AT ∪	  PT	  satisfies essential unidimensionality (d = 1) 

 HA:	  	  AT ∪	  PT fails to satisfy d = 1 

Restated, the null hypothesis posits that the AT and PT partitions assess the same 

dominant underlying dimension, while the alternative implies that the items in the 

AT partition are best represented by a dimension that is distinct from that driving 

responses to the PT items. As will be seen in the next section, the distinctness of 

the dimensionality underlying these two partitions is the primary driver of the 

value of the statistic, T, utilized by DIMTEST to reach a decision as to the 

hypotheses in question. Formally, the null hypothesis of d = 1 is rejected if T ≥ Zα, 

where Zα is the critical value that separates the upper 100(1 – α) percentile of the 

standard normal distribution at the α significance level (Nandakumar & Stout, 

1993). 

 At its heart, and regardless of the bias correcting procedure being 

implemented, the DIMTEST statistic is essentially a standardized difference 

between total variability and unidimensional variability of a set of responses, 

conditional on total test score (Stout, Froelich, & Gao, 2001). Equation 1.10 in the 

aforementioned work by Stout and colleagues (2001) demonstrated that the 

difference in these two variance estimates is equivalent to the estimated 

covariance between the pairs of items in AT, again conditional on PT score. If this 
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difference is equal to zero, indicating that a single dimension adequately explains 

all of the variability in the examinee responses, then one could conclude that the 

AT and PT items measure the same single dimension. Small, yet statistically 

insignificant differences between the two variance estimates would imply 

essential unidimensionality, or that a single dominant dimension is sufficient to 

satisfy the assumption of local independence. Significantly large differences 

indicate that the two subtests represent, at minimum, two distinct dimensions, 

resulting in a rejection of the hypothesis of essential unidimensionality. 

 The process described in the previous paragraph can perhaps be more 

aptly described using graphic representations of scenarios likely to yield a 

rejection, or a failure to reject the DIMTEST hypothesis.  Figures 4a and 4b, 

taken from Froelich and Habing (2008), depict vector diagrams of poor and good 

choices for an AT/PT partition, respectively. The items denoted AT1, AT2, etc. are 

those in the AT partition. The items in the PT partition are not shown but, rather, 

the θPT composite vector is shown in their stead. The length of each item vector 

represents the magnitude of the composite item discrimination, while the angle 

from the θ1 axis indicates the composite item direction. The aforementioned 

DIMTEST procedure would be more likely to yield a rejection of the 

unidimensionality hypothesis under the scenario presented in Figure 4b than for 

Figure 4a.  
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 (a) Poor Partition   (b) Good Partition 

    

Figure 4. Examples of poor and good choices for AT and PT (Froelich & Habing, 
2008). 
 

The AT partition in Figure 4a does not comprise a set of dimensionally 

homogenous items as can be seen by the lack of any clustering of the item vectors. 

Rather, the items appear to exhibit composite directions that are distributed 

relatively uniformly through the latent variable space; some measure θ1 best while 

others measure θ2 best. Furthermore, the direction of the θAT composite vector, 

which is not shown in the diagram, would most likely fall along the θPT vector, 

indicating that the AT items do not measure a dimension that is distinct from that 

of the PT items. 

 Figure 4b, on the other hand, depicts a scenario in which the 

unidimensionality hypothesis evaluated by DIMTEST would likely be rejected. 

The θAT  and θPT composite vectors are much more distinct that what was seen in 

Figure 4a. Additionally, the items contained within the AT partition are tightly 

clustered, indicating that they are relatively homogenous with respect to their 

direction of best measurement. 
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 Calculating the DIMTEST statistic. After the AT/PT partitions have 

been chosen, examinees are separated into k subgroups based upon their score on 

the PT items. The next step, then, in arriving at the value of the DIMTEST 

statistic, as summarized by Stout et al. (2001), is to calculate the total score for 

examinee i in subgroup k as: 

  Yik = Xijk
j!AT

J

"  ,                                                                                (9) 

where Xijk denotes the response (either a “1” or a “0”) provided by examinee i in 

subgroup k to item j. The average total for the I examinees in subgroup k is then: 

  Yk =
1
Ik

Yik
i=1

Ik

! .                                                                              (10) 

Using the values obtained in Equation 9 and Equation 10, the estimate of the 

variance for the examinee scores on the AT subtest, conditional on PT score, can 

be calculated as: 

  !̂ k
2 = 1

Ik
(Yik "Yk )

2

i=1

Ik

# .                                                                  (11) 

In order to estimate the unidimensional variance for a particular subgroup, the 

difficulty for each item, j, within the subgroup, k, must first be estimated as: 

  p̂ jk =
1
Ik

Xijk
i=1

IK

! .                                                                           (12) 

For dichotomously scored items, p̂ jk  is essentially the proportion of examinees in 

a particular subgroup that got the item correct. Using this difficulty estimate, the 

unidimensional variance for the kth subgroup is given by: 
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  !U ,k
2 = p̂ jk (1" p̂ jk )

j=1

J

# .                                                                  (13) 

The difference between the total and unidimensional variance estimates for each 

subgroup is then the estimate of the conditional covariance amongst all item pairs 

for that subgroup. The logic here is that, if conditioning on total PT score is 

sufficient to satisfy the EI assumption, then all of the examinees within a 

particular subgroup should respond to a particular item in essentially the same 

manner. Should that be the case, the variance estimates should be both small, and 

similar to one another, yielding small difference between the two. This difference 

score is often denoted as TL,k. In order to conduct a statistical test of the null 

hypothesis of unidimensionality, the difference between the total and 

unidimensional variances needs to be transformed to a standard metric. This is 

done by dividing the differences by the estimate of the variance of TL,k, which is 

calculated as: 

  Sk
2 =

(û4,k ! " k
4 )! #̂4,k
Jk

,                                                                 (14) 

where 

  u4,k =
(Yik !Yk )

4
i=1

Ik"
Ik

 

and  

  !̂4,k = p̂ jk (1" p̂ jk )(1" 2 p̂ jk )
2

j=1

J

# .  

 Integrating the elements from Equations 11, 13, and 14, the DIMTEST 

statistic is given as: 
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  TL =
(!̂ k

2 " !̂U ,k
2 )

k=1

K#
Sk
2

k=1

K#
.                                                                (15) 

Stout (1987) showed that this statistic follows an approximate standard normal 

distribution under the null hypothesis for long tests and large examinee pools. The 

statistic tends to be positively biased, however, when short tests are used (Stout et 

al., 2001). This can lead to inflated Type I error rates. That is to say that the 

approach may suggest the presence of additional dimensions when the test is in 

fact unidimensional more often than is acceptable. Stout (1987) originally 

corrected for this bias via the use of a second assessment subtest, AT2. The value 

of the DIMTEST statistic was calculated for both AT1 and AT2 and a bias-

corrected test statistic was given by: 

  T = TL !TB
2

,                                                                                (16) 

where TB is the value of the DIMTEST statistic obtained using the AT2 partition. 

This bias-corrected statistic was shown to perform well under a variety of testing 

conditions (see Nandakumar & Stout, 1993; Stout, 1987). When the AT1 items 

were of a similar difficulty or had large discrimination values, however, then the 

AT2 partition tended not to remove enough of the bias in the test statistic. 

Additionally, the need for a third item partition placed an unnecessary strain on 

the available item pool. 

 The current version of DIMTEST uses a resampling, or bootstrapping 

approach proposed by Stout, Froelich, and Gao (2001). Under this procedure, the 

value of TL is calculated using the approach described above. The bias-correction 
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factor is estimated by first estimating item response functions (IRFs) for each item 

using the observed data. The method for estimating these IRFs is detailed in Stout 

et al. (2001). A series of new data sets are then generated using the IRFs. The 

DIMTEST statistic is calculated for each of these data sets. The average value of 

the statistic across all of the simulated data sets, denoted TG , is used to remove 

the bias present in TL. The value of the new, bias-corrected test statistic is given 

by: 

  T = TL !TG
1+1/ N

,                                                                            (17) 

where N is the number of data sets generated. This most recent instantiation of the 

DIMTEST procedure has been shown to exhibit both greater power and better 

control of Type I error rates than were demonstrated by previous versions (Finch 

& Habing, 2007; Froelich & Habing, 2008; Stout et al., 2001). 

Item partitioning via ATFIND. As was mentioned earlier, the current 

version of DIMTEST offers both exploratory and confirmatory methods of 

partitioning items into the AT and PT clusters. Confirmatory methods involve the 

researcher separating the items manually, usually based upon some a priori theory 

or content expert feedback. Exploratory methods may still offer advantages to 

researchers, even in situations where strong a priori beliefs about the nature of the 

items are present. These advantages might include the opportunity to find 

agreement between the statistical partition and substantive beliefs or the 

uncovering of alternative partitions that may provide new insights into the 

structure of the test (Fay, 2012). The current work utilizes the exploratory 
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approach to partition items. This approach is generally referred to as ATFIND in 

the DIMTEST literature. ATFIND employs two separate CCT-based methods, 

HCA/CCPROX and DETECT, to propose and evaluate potential item groupings 

(for a more detailed description of these methods, see Froelich & Habing, 2008; 

Roussos, Stout, & Marden, 1998; Zhang & Stout, 1999b). 

HCA/CCPROX, a procedure put forth by Roussos et al. (1998), is used to 

propose potential test partitions. Under this method, the proximity of each item to 

every other item in the test is determined using a conditional covariance-based 

approach (the CCPROX step). Next, an agglomerative hierarchical clustering 

procedure (HCA) is used to cluster items, or groups of items based upon their 

proximity. The process starts with J distinct clusters, where J is the number of 

items in the test, and is considered complete when all of the items are contained 

within a single cluster. At each step between these points, the two clusters that are 

the most similar are joined to form a single cluster. 

The HCA/CCPROX method does not include any built-in functionality for 

evaluating the test partitions that it generates in terms of their dimensional 

distinctness. To that end, the DETECT index (Zhang & Stout, 1999b) is employed. 

This index is given by: 

D(P,!) = 2
J(J "1)

# j , $j E[cov(X j ,X $j !TT )]1% j< $j %J& ,                    (18) 

where δj, j′  (not to be confused with the δj used to indicate the difficulty of item j 

in earlier sections) takes on a value of 1 if items j and j′ are in the same cluster, 

and a value of (-1) if they are in different clusters. This essentially penalizes the 
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value of the index when large, positive conditional covariances between items in 

separate clusters or large negatives for items in the same cluster are present This 

penalty is in keeping with the goal of DETECT, which is to find the partitioning 

of items that offers the largest deviation from dimensional similarity. The index, 

then, is maximized when items within a cluster exhibit strong positive 

relationships, conditional on the total score composite, and items in different 

clusters exhibit large negative relationships. Evaluated for any two cluster 

solution, the theoretical maximum, referred to as DETECTmax, would occur when 

the items in the two groups are as dimensionally distinct as possible. 

 Given the preceding descriptions of HCA/CCPROX and DETECT, the 

procedure for choosing the partitioning that best satisfies the requirements that (1) 

the items in AT be as homogenous as possible, and (2) the AT and PT clusters be 

as heterogeneous as possible, as summarized by Froelich and Habing (2008), is as 

follows: 

1. Run HCA/CCPROX. 

2. Each cluster for which 4 ≤ j  ∈	  AT ≤ J / 2 is satisfied is considered a 

potential AT partition. The PT partition is then defined as the 

remaining test items. 

3. Calculate the value of DETECT for each potential test partition from 

Step 2. 

4. The AT/PT pairing with the largest DETECT value is selected as the 

AT and PT for use in DIMTEST. 
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As Step 2 implies, the AT subtest must contain at least four items. The DIMTEST 

program also stipulates that the PT subtest contain no less than 15 items. As such, 

the commercially available version of DIMTEST cannot be implemented for tests 

containing less than 19 total items. Further complicating matters is the fact that it 

is common-practice to utilize a separate subset of the examinee pool to conduct 

AT/PT partitioning than that used for calculating the DIMTEST statistic (Socha & 

DeMars, 2013). This may reduce DIMTEST’s usefulness when only a very 

limited number of examinees are available.  

Model-Based Covariance Approaches to Dimensionality 

 One potentially limiting characteristic of DIMTEST is that it focuses only 

on positive local dependence. This is a result of the procedure conditioning on θPT 

as opposed to a total score composite comprised of the entire set of items, often 

denoted θTT. The implication of this decision is that, since the AT items are 

dimensionally homogenous and as distinct as possible from the PT items, the 

covariances between the AT item pairs will tend towards positive values. As 

Roussos and Habing (2003) pointed out, however, the existence of positive local 

dependence implies the presence of negative local dependence. Failure to account 

for these negative dependencies may hamper the performance of a method aimed 

at assessing dimensionality. This failure may be particularly bothersome in 

situations where multidimensionality manifests itself as negative local 

dependence, such as in cases where a large portion of the item pool represent 

more than one dimension; that is to say that the item composite directions are 

relatively dispersed throughout the dimensional space (Levy & Svetina, 2011). In 
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cases such as these, using an approach that is sensitive to both positive and 

negative local dependence may be more appropriate. 

 One such metric is the model-based covariance, or MBC (Reckase, 1997), 

which is given by: 

  MBC j !j =
(Xij " E(Xij #i ,$ j ))(Xi !j " E(Xi !j #i ,$ !j ))i=1

I%
I

,           (19) 

where I is the number of examinees and E(Xij !i ," j )  is the expected value of the 

item response for examinee i to item j. As is clear from Equation 19, the value of 

MBCjj′  can take on both positive as well as negative values. Values greater (less) 

than zero are indicative of positive (negative) local dependence, while a value of 

zero implies that the local independence assumption has been met. MBC 

conditions on the model-implied latent ability, θi, instead of a subtest score, as 

was the case with DIMTEST. MBC has been shown to exhibit acceptable power 

and control of Type I error rates in all but the most extreme testing conditions 

(Levy, Mislevy, & Sinharay, 2009). 

 Building off of the MBC metric, Levy and Svetina (2011) proposed the 

generalized dimensionality discrepancy measure, GDDM, defined as: 

 GDDM =
! j" #j I

$1 (Xij $ E(Xij %i ,& j ))(Xi #j $ E(Xi #j %i ,& #j ))i=1

I!
J(J $1)

,         (20) 

where J is the number of items. GDDM is essentially the average absolute value 

of MBCjj′  across all possible item pairs. Taking the absolute value of Equation 19 

allows both positive and negative local dependence to contribute to the value of 

GDDM (Levy & Svetina, 2011). GDDM can assume values ≥ 0, with equality 
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holding when McDonald’s (1994) weak local independence assumption is met. 

Using a posterior predictive model checking (PPMC) framework, Levy and 

Svetina (2011) compared the performance of GDDM to a selection of other 

dimensionality assessment approaches, and showed that near nominal Type I error 

rates can be expected when using GDDM, even with relatively strongly correlated 

dimensions and fairly subtle multidimensionality are present. Power was 

satisfactory under most analysis conditions. 

 Interpreting the realized values of the MBC and GDDM statistics can be 

difficult as their scales are metric dependent. In order to alleviate this lack of 

interpretability, Levy, Xu, Yel, and Svetina (2012) introduced revised versions of 

these two measures, termed SMBC and SGDDM, with the S indicating 

standardization. The value of SMBC is given as: 

 SMBC j !j =

(Xij " E(Xij #i ,$ j ))(Xi !j " E(Xi !j #i ,$ !j ))
i=1

I

%
I

(Xij " E(Xij #i ,$ j ))
2

i=1

I

%
I

(Xi !j " E(Xi !j #i ,$ !j ))
2

i=1

I

%
I

,        (21) 

while SGDDM is calculated as: 

 SGDDM =

!
j> "j

(Xij # E(Xij $i ,% j ))(Xi "j # E(Xi "j $i ,% "j ))
i=1

I

!
I

(Xij # E(Xij $i ,% j ))
2

i=1

I

!
I

(Xi "j # E(Xi "j $i ,% "j ))
2

i=1

I

!
I

J(J #1) / 2
  (22) 
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All four metrics, MBC, SMBC, GDDM, and SGDDM will return a value of zero 

when local independence holds. Increases in the dependencies between item pairs 

will yield increasingly positive values in all four cases. The two standardized 

metrics offer interpretability in the same manner as the usual correlation 

coefficient. As is clear from Equation 22, SGDDM is the average SMBC value 

across all unique item pairs. Levy and colleagues (2012) conducted a PPMC-

based simulation study in which SGDDM was shown to be sensitive to the 

presence of unmodeled dimensionality and to indicate adequate data-model fit 

when the dimensionality was correctly specified. It is also important to note that 

SGDDM, as well as GDDM can be implemented for tests of any length, whereas 

DIMTEST is only feasible for tests with at least 19 items. As Levy and Svetina 

(2011) pointed out, MBC or SMBC may be more appropriate for cases where one 

might have substantive interest in the sign of the coefficient, such as in the 

exploring the relationship between a single pair of items. 

As it has only recently been proposed, SGDDM is a relatively 

uninvestigated metric, though its predecessors and the conditional covariance 

theory from which it draws have been the subject of a number of publications. To 

date, no study has explored the utility of GDDM or SGDDM for the specific task 

of assessing deviation from unidimensionality. Finally, SGDDM stems from a 

line of research that has sought to investigate the applicability of the PPMC 

framework to assessing dimensionality in item response data, though no feature of 

the metric relegates it to being used exclusively in conjunction with PPMC. An 

overview of the PPMC method is presented in the next section. 
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Bayesian Parameter Estimation 

 Bayesian approaches to statistical modeling have received an increasing 

amount of attention and implementation in recent decades. This increase has been 

made more prominent by the ever-increasing amount of computing resources 

available to researchers. The methods that lie within the Bayesian family have 

been the subject of any number of books and articles, each of which varies in 

terms of their technicality and focus on practical applications. The following 

sections provide a cursory, and by no means technical overview of basic Bayesian 

inference and parameter estimation. More detailed and, in many cases, more 

technical treatments of these topics can be found in Gill (2007), Gelman, Carlin, 

Stern, and Rubin (2003), and Fox (2010; particular to Bayesian IRT models), 

amongst others. 

 To operate in a Bayesian framework doesn’t just imply the use of a 

particular modeling framework, but may also refer to a way in which one 

organizes their thinking. This organization typically consists of three central 

questions: (1) What did I believe at the onset? (2) What did I observe? and (3) 

What do I believe now, given my initial beliefs and what I observed? In practice, 

Bayesian modeling involves combining initial beliefs and uncertainties about the 

parameters of interest with the observed data to yield an updated set of beliefs 

about those parameters. As opposed to frequentist statistical traditions, unknown 

quantities, such as model parameters, are treated as random variables. These 

variables can be described via a posterior distribution, which is, again, a 

combination of the researcher’s prior beliefs and the observed data. These prior 
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beliefs, termed the prior distribution, offer an overt representation of a priori 

uncertainty regarding the model parameters. Inferences about the parameters can 

be made using the posterior distribution, which can be presented in its entirety or 

summarized in any of the ways typically used to summarize distributions (e.g., 

mean, median, mode, variance, etc.). The posterior obtained from one set of 

observations can be used as the prior distribution for the next round of data 

collection, essentially allowing for a continuous updating of one’s beliefs and the 

inferences that are drawn from them.  

 Bayes’ theorem. Bayes’ theorem provides the architecture for 

implementing the type of inference described above; combing prior beliefs with 

observations to yield an updated set of beliefs. More formally, Bayes’ theorem 

offers a mechanism for determining the probability of an unknown set of 

parameters given a particular set of data. The statistical model that is chosen by 

the researcher (e.g., 3-PL IRT model) governs the probability of the observed data 

given the unknown parameters. This is often referred to as the likelihood 

component. A probability model for the observations conditional on the 

unknowns and some prior knowledge of how those unknowns might be 

distributed (i.e., prior distributions) provide sufficient information to determine 

the probability of the unknown parameters conditional on the data via Bayes’ 

theorem, which is given as: 

  P(! X) = P(X !) P(!)
P(X)

,                                                             (23) 
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Ω  here denotes a collection of unknown parameters and X represents a collection 

of observed values. The denominator on the right side of Equation 23 serves as a 

scaling factor, ensuring unit integration on the left side of the equation, per 

Kolmogorov’s 2nd axiom of probability. This term can be excluded, which yields: 

P(! X)" P(X !) P(!)                                                               (24) 

That is to say that the probability of the unknown parameters, given the data, is 

proportional to the product of the prior probability of the unknowns and the 

likelihood from the data. This form is often applied in practice for two reasons: 

(1) it simplifies the necessary calculations and can drastically reduce computing 

time; (2) in terms of a probability density function, the rescaling only affects the 

Y-axis. Researchers are typically not interested in the density values (Y-axis), but 

rather in the scale of the parameter (X-axis) and the relative frequencies of the 

values for the parameter (the shape of the density function). 

The role of prior information. Prior distributions for unknown 

parameters afford the opportunity to encode prior beliefs before observing data. 

Often times, the choice for the prior is informed by previous observations (e.g., 

results from a pilot study) or a synthesis of existing research (i.e., meta-analysis). 

In the absence of any meaningful background or contextual information, the prior 

can be specified in such a way as to indicate a high-degree of uncertainty, 

essentially allowing the information contained in the observed data to dictate the 

posterior. In terms of estimation, the prior distribution can drastically increase 

accuracy when only limited observations are available. The influence of the prior 

distribution on the posterior is mitigated as the number of observations increases. 
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This effect is often referred to as “swamping” the prior. Many of the objections 

and/or criticisms of the Bayesian approach to statistical inference are based upon 

the perceived subjectivity or arbitrary nature of the selection of the prior. 

However, as Fox (2010) points out: 

“The prior choice can be disputable but is not arbitrary because it 

represents the researcher’s thought. In this light, other non-Bayesian 

statistical methods are arbitrary since they are equally good and there is no 

formal principle for choosing between them. (p. 16)” 

 The role of the posterior. The posterior distribution represents the 

distribution of values for the unknown parameters given the observed data and the 

prior. Each unknown entity is assigned a prior and, as such, will also have a 

posterior. The mechanics of generating the prior vary depending on the 

relationship between the distributional form of the prior and that of the likelihood. 

When the posterior is of a known form, it can be sampled from directly. In 

situations where the form of the posterior is unknown, it can first be approximated 

using Metropolis-Hastings, or other related approaches. Most software packages 

for conducting Bayesian analyses use Gibbs sampling (Casella & George, 1992; 

Gelfand & Smith, 1990; Smith & Roberts, 1993) for taking draws from the 

posterior distribution. Under this procedure, every unknown parameter is first 

assigned an initial value, usually drawn from the prior. These values are then 

updated iteratively by sampling from the full conditional distributions, or the 

distribution for each parameter conditional on all of the other variables. If certain 

regularity conditions hold then, in the limit, a draw from the full conditional 



 32 

distribution is equivalent to a draw from the posterior distribution (Gill, 2007). 

The value for a particular parameter at time t+1 is taken conditional on the values 

of the other parameters at time t. This process continues until the desired number 

of draws has been taken. The estimated posterior is then composed of the 

collection of all of these draws. The posterior distribution can be summarized and 

presented in any of the usual ways, such as reporting of the mean, median, 

standard deviation, percentile cut values, or a central credibility interval, which is 

akin to a confidence interval in the frequentist context. 

 Bayesian vs. frequentist approaches to modeling. Bayesian methods do 

not stem from the frequentist traditions of hypothesis testing, which typically aim 

to compare the value of a sample-derived statistic to what would be expected 

under null conditions. Instead, the goal of Bayesian modeling can be thought of as 

approximating the population distribution for a parameter in light of prior beliefs 

and observed data. Despite this, approaches to conducting something akin to a 

traditional null hypothesis test do exist in the Bayesian context (see Raftery, 1996 

for examples). 

 Bayesian approaches to inference and modeling offer a number of 

advantages over traditional null hypothesis significance testing methods (Gill, 

2007). These may include: 

• Parameters are treated as random and changing, not fixed values. 

• They allow the researcher to encode his/her prior beliefs into the modeling 

process. 
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• The “answer” is a distribution, not a point-estimate. This means that 

notions of uncertainty about model outcomes are built into the process. It 

also allows for flexibility in the way the parameter estimates are presented. 

• Allows for updating of beliefs in the event that new data is collected. 

• Offers an easy method of handling missing data. In the Bayesian 

framework, missing values are treated as unknown parameters, meaning 

they are assigned a prior distribution and can be evaluated using a 

posterior distribution. 

Posterior Predictive Model Checking. 

Existing investigations of the GDDM and SGDDM statistics have utilized 

a posterior predictive model-checking (PPMC) framework. PPMC focuses on 

discrepancies between the observed data and replicate sets of model-implied, or 

model-predicted data. Discrepancies between some characteristic of the observed 

and replicate data sets may be indicative of data-model misfit. The replicate 

posterior, or poster predictive distribution, is given as: 

P(Xrep X) = P(Xrep X,!)P(! X)d
!
" ! = P(Xrep !)P(! X)d

!
" ! ,          (25) 

where Ω = (θi, ωj) denotes the full collection of model parameters, P(! X)  is the 

posterior distribution for the unknown model parameters, and Xrep is a set of 

replicate data (Levy et al., 2009). Discrepancy measures, such as SGDDM, are 

used to assess the discrepancy between the data and the model. Large differences 

between the realized values of the chosen discrepancy measure, denoted D(X, Ω), 

and the model-implied values, D(Xrep, Ω) are a potential indicator of data-model 
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misfit. Gelman, Meng, and Stern (1996) recommended the use of a posterior 

predictive p value (PPP) to summarize information in PPMC. PPP represents the 

degree of overlap between the distribution of the discrepancy measure derived 

from the observed data and that of the replicate data. PPP is calculated as: 

PPP = P(D(Xrep ,!) " D(X,!) X) .                                             (26) 

PPP values near .5 indicate relative alignment of the distribution for the realized 

and model-implied discrepancy measures. Values near zero (or unity) indicate 

that the realized values are consistently much larger (smaller) than those 

stemming from the posterior predictive distribution. This indicates that the model 

is systematically underpredicting (overpredicting) the unknown quantities. 

PPMC provides a flexible platform for assessing data-model fit and 

conducting model criticism. As Levy and colleagues (2009) point out, the PPMC 

framework may offer a number of advantages over other model checking 

approaches. Specifically, PPMC does not necessarily rely on asymptotic theory, 

nor does it rely on measures with known sampling distributions. Furthermore, as 

Rubin (1984) points out, simple summary statistics can be used to monitor data-

model fit regardless of the complexity of the models themselves. 

Summary 

 Large-scale testing scenarios have been shown to be conducive to the 

success of the DIMTEST procedure, as well as most other dimensionality 

assessment approaches. These conditions may not be feasible for all researchers, 

however. Under smaller-scale testing scenarios, power and Type I error rate may 

be compromised. Furthermore, DIMTEST places restrictions on the minimum 
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number of items that can be used and exhausts a portion of the examinee pool in 

conducting subtests partitioning. As much as 75% of the examinee responses may 

be needed for partitioning under certain conditions (Socha & DeMars, 2013). The 

SGDDM via PPMC approach places no such restrictions on the number of items 

and is able to utilize all available examinee responses in achieving the goal of 

assessing underlying dimensionality. Additionally, the Bayesian modeling 

paradigm employed under the PPMC framework may be able to improve decision 

accuracy under small-scale testing conditions, particularly when the researcher 

has meaningful a priori beliefs about the parameters of interest that they would 

like to encode in the estimation process. Finally, a fundamental difference exists 

between to two methods of interest in terms the way in which they approach 

dimensionality testing. DIMTEST is explicitly presented as a formal hypothesis 

test, whereas SGDDM is a diagnostic tool. Under a typical hypothesis testing 

approach, both the statistical significance, via a p value, and the effect size are of 

importance. Although attempts have been made to formulate an effect size for 

DIMTEST (Seo & Roussos, 2010), it is not often employed in practice. Without 

information about the effect size, researchers are often left to rely on only the 

significance to make judgments about dimensionality. As with most frequentist 

hypothesis tests, significance can almost always be achieved given a large enough 

sample. To this effect, previous research has demonstrated that DIMTEST 

exhibits inflated Type I error rates under conditions of very large samples, 

particularly when combined with short tests (Fay, 2012; Finch & Habing, 2007; 

Socha & DeMars, 2013). Comparatively, SGDDM does not approach the 
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assessment of dimensionality in a traditional hypothesis testing fashion. Rather, it 

offers the researcher a tool to diagnose the degree of data-model fit (misfit). For 

those wishing to conduct something akin to a hypothesis test, the posterior 

predictive p value (PPP) generated by the SGDDM framework can be compared 

to the desired level of α in the manner of the usual upper-tail test. The goal of this 

study was to compare the performance of the DIMTEST and SGDDM approaches 

to assessing dimensionality by simulating a variety of small, moderate, and large-

scale testing conditions. Other statistics closely related to SGDDM, such as MBC 

and SMBC were not included in the current work as previous literature has 

suggested that those metrics may perform very similarly to GDDM and SGDDM. 

DIMTEST was chosen as a point of comparison over other dimensionality 

assessment methods (e.g., nonlinear factor analytic approaches such as 

NOHARM; Fraser & McDonald, 1988; McDonald, 1997) as (1) it, like SGDDM, 

is rooted in Conditional Covariance Theory, the dominant paradigm in IRT 

dimensionality assessment, and (2) it is the most widely used and accepted 

method of assessing deviations from unidimensionality within the CCT tradition.  
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Chapter 2 
 

REVIEW OF LITERATURE 
 

 This chapter consists of two separate sections, one each for the DIMTEST 

and SGDDM approaches to assessing dimensionality. These two sections are each 

organized in a similar fashion. In each, the research related to the performance of 

the approach under small-scale (i.e., relatively few subjects and/or a small number 

of items) testing conditions is reviewed. Additionally, empirical examples of the 

effect of the structure underlying the item responses (e.g., unidimensional, simple 

structure, complex structure, etc.) on the performance of each metric are presented. 

Finally, any examples of work that has been undertaken to compare the 

performance of either DIMTEST or SGDDM with other approaches are discussed. 

Although the focus of the current work is on the most recent instantiation of each 

of the approaches of interest, research that was undertaken using previous 

versions (e.g., DIMTEST using AT2/FAC, GDDM, etc.) is also presented. 

DIMTEST Performance 

 As was discussed in the previous chapter, the DIMTEST method has 

undergone a series of refinements since its initial development (see Nandakumar 

& Stout, 1993; Stout, 1987; Stout, Froelich, & Gao, 2001). At each stage of this 

development, research has been undertaken to evaluate the performance of the 

method under a variety of circumstances. The following sections review the work 

conducted at these stages, with particular focus being placed on research 

pertaining to conditions where the sample size, test length, and/or test structure 

have been manipulated. Brief discussion of literature that has sought to gauge the 
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performance of DIMTEST relative to other metrics is also presented where 

applicable. 

 Sample size, test length, test structure and DIMTEST. A variety of 

studies have been undertaken to evaluate the performance of the DIMTEST 

method via Monte Carlo simulation. In many of these simulations, sample size, 

test length, and/or test structure were included as factors hypothesized to 

influence said performance. Following Stout’s (1987) seminal work, Nandakumar 

and Stout (1993) offered refinements of the original procedure aimed at 

improving Type I error rates and power in cases of difficult items (large 

discrimination values), and the presence of guessing, as well as in automating the 

selection of the number of items to be included in the AT1 and AT2 partitions. 

These refinements were found to yield Type I error rates closer to the nominal 

value of α = .05, as well as higher statistical power than were observed in Stout 

(1987) using the original procedure. Acceptable performance was noted in 

conditions with as little as 750 participants and 25 items, though power was found 

to suffer (i.e., observed power was ≤ .80) under conditions combining low sample 

size with short tests as the correlation between dimensions increased from ρ = .5 

to ρ = .7. Only one structure was used in the investigation. That structure 

consisted of two dimensions (θ1, θ2) with approximately one-third of items 

representing only θ1, one-third representing θ2, and the remaining items 

representing a mix of both dimensions. 

 Similar recommendations as to appropriate sample sizes and test lengths 

for use with the AT2/FAC instantiations of DIMTEST were put forth by Gessaroli 
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and De Champlain (1996). Their primary interest was in comparing the 

performance of DIMTEST with the performance of their !G/D
2  statistic, a statistic 

that would also be used as a point of comparison later on by Levy and Svetina 

(2011) in their paper on the performance of GDDM. Gessaroli and De 

Champlain’s results indicated that the DIMTEST with AT2/FAC procedure 

yielded acceptable Type I error rates under conditions where the sample size was 

at least N = 1,000 and there were at least 30 items. Performance tended to suffer 

with smaller samples or shorter tests, particularly when the item discriminations 

were “weak” or “moderate,” which were defined as αj ~ N(.72, .25) and αj ~ 

N(1.07, .40), respectively. Power under the DIMTEST conditions tended to be 

most affected by test structure, represented, in this case, by the dominance of the 

second test dimension. Power tended to suffer the most with short tests (15 items1, 

in this case) and a less influential second dimension (80% of items representing θ1 

and 20% representing θ2). Increases in test length, the strength of θ2, or the 

magnitude of the item discrimination values tended to result in power being 

increased beyond commonly accepted levels (≥ .80). 

 The second notable revision to the DIMTEST procedure was introduced 

by Stout, Froelich, and Gao (2001). This revision removed the need for the AT2 

partition used to correct the positive bias in the DIMTEST statistic through a 

resampling procedure. This change effectively increased the proportion of 

available items that can be allocated to the AT1 (now just AT) and PT partitions 

                                                
1 The minimum number of items allowed by the commercially available version(s) of DIMTEST 
using ATFIND for subtest selection is 19. It is not clear how Gessaroli and De Champlain (1996), 
and later Finch and Habing (2007) were able to use only 15 items in their research. 
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and, thus, used for calculating the DIMTEST statistic. The same factor-analytic 

approach used in previous versions to choose these partitions was retained. 

Results from simulation studies presented in the same paper suggest Type I error 

rates near the nominal value of α = .05 for tests of with 40 and 80 items and 

sample sizes of at least N = 750. Inflated Type I error rates (as high as 22 

rejections out of 100) were noted using a test with only 25 items and an AT 

partition consisting of eight items. This may have been due to an insufficient 

amount of information being available in the PT partition, which is used in the 

bias-correcting resampling procedure. Exceptional power (.98 to 1.0) was noted in 

all conditions. While the results obtained by Stout et al. were not that dissimilar 

from those observed in studies using previous versions of DIMTEST (Nadakumar 

& Stout, 1993, for example), the removal of the need for a third item partition 

(AT2) provided additional flexibility, particularly in instances where defining two 

homogenous subsets of the original item pool proves difficult, such as with 

polytomously scored items. 

 The current version of DIMTEST employs the bootstrapping method for 

bias-correction and uses ATFIND which, as was discussed in the previous chapter, 

combines HCA/CCPROX and DETECT to select the items for the AT partition. 

The transition away from the factor-analytic (FAC) selection method was 

recommended by Froelich and Stout (2003), who found that the approach 

struggled to select an adequate group of dimensionally similar items for the AT 

partition, particularly when tests deviated from simple structure and when the 

correlation between dimensions were high (ρ = .7 was the largest correlation 
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investigated). Finch and Habing (2007) compared the most recent version of 

DIMTEST to NOHARM-based statistics (McDonald, 1967) designed to test the 

unidimensionality assumption. Their results indicated that DIMTEST may yield 

sufficient Type I error rates and power with as few as 15 items even when the 

correlation between dimensions is as high as 0.80. It is important to note, however, 

that the smallest sample size condition that they examined was 1,000 examinees. 

 Finally, Fay (2012) sought, amongst other things, to reexamine the sample 

size and test length minima put forth by earlier researchers (for examples, see 

Gessaroli & De Champlain, 1996; Pyo, 2000) and update them in light of the most 

recent version of the method. His findings suggested that DIMTEST may be able 

to maintain acceptable Type I error rates, if not rates slightly below the nominal 

value of α = .05, with as few as 21 items and 250 participants. Fay’s power 

analysis yielded statistical power in excess of 0.80 using DIMTEST with at least 

27 items and 500 participants when the tests consisted mainly of highly 

discriminating items. Decreases in power were noted when increasing the 

correlation between dimensions beyond ρ = .35, decreasing the strength of the 

item discrimination parameters, or increasing the complexity of the test’s 

structure. Fay recommended that, in absence of any a priori information about the 

features of the test, a conservative approach may be to use at least 750 examinees 

and 33 items. 

SGDDM Performance 

As the GDDM and SGDDM statistics constitute a relatively new line of 

research, very little literature exists that has investigated their performance in light 
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of test characteristics or as compared to other approaches. The existing body of 

literature, albeit sparse, is discussed in the following section. As was the case with 

the DIMTEST discussion, attention is given to the effects of sample size, test 

structure, and test length. A brief summary of the performance of SGDDM 

relative to other statistics is also given. Finally, some mention is made of the 

performance of Reckase’s (1997) MBC metric, as it can be considered a related 

precursor to SGDDM. 

 Sample size, test length, test structure and SGDDM. As was mentioned 

in the previous chapter the GDDM statistic can be considered an extension or 

Reckase’s (1997) model-based covariance (MBC) approach, in that it aims to 

capture the average absolute model-based covariance amongst item pairs. Levy, 

Mislevy, and Sinharay (2009) compared a variety of unidimensionality 

discrepancy approaches using a posterior predictive model checking (PPMC) 

approach. Their results indicated that MBC, as well as the related Q3 (Yen, 1984), 

tends to be both uniformly distributed and exhibit near-nominal Type I error rates 

under null (i.e., unidimensional) conditions. These approaches also exhibited 

acceptable statistical power under multidimensional conditions. Not unlike work 

done using DIMTEST, their study put forth sample size, the correlation between 

dimensions, the magnitude of item discrimination parameters, and the number of 

items as factors that may influence the performance of any method aimed at 

assessing dimensionality. 

 Building on earlier work, Levy and Svetina (2011) presented the GDDM 

statistic. They compared GDDM to other approaches empirically by generating 
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data for 1,000 examinees from a 36-item, two-dimensional test exhibiting simple 

structure (dubbed “M0”), a two-dimensional test exhibiting approximate simple 

structure, and a variety of three-dimensional tests and fitting these datasets to M0. 

Using PPMC, they showed that GDDM was able to maintain acceptable Type I 

error rates when fitting these two- and three-dimensional models in all conditions 

other than those where a large proportion of the items represented multiple 

dimensions (25% of the items loaded on θ1, 25% on θ2, 25% on θ1/θ3, and 25% on 

θ2/θ3) and the correlation between these dimensions was high (ρ = 0.5). Type I 

error rates exceed the nominal rates by roughly 60% under this condition (e.g., .08 

vs. α = .05). Power was generally high (≥ .68) when fitting M0 to data generated 

from a model where a strong auxiliary dimension was present, but decreased 

notably when fitting M0 to data generated from models where either a very subtle 

third dimension was present or a small number of items cross-loaded on more 

than one dimension. This decrease in power was exacerbated by increases in the 

correlation between dimensions. In all conditions, however, GDDM did exhibit 

sensitivity to data-model misfit. It is important to note that the authors did not 

frame their discussion in a hypothesis-testing context, but rather as a diagnostic 

approach. The current work adopts a hypothesis testing approach to facilitate 

comparisons with DIMTEST, which aims to conduct a formal test of the null 

hypothesis of unidimensionality. 

 The standardized version of the GDDM statistic, SGDDM, was put forth 

by Levy, Xu, Yel, and Svetina (2012), and was built as an extension to the 

standardized model-based covariance (SMBC). Similar to the work of Levy and 
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Svetina (2011), SGDDM was tested empirically by generating data for 1,000 

examinees on a series of 36-item tests. These tests were modeled as being either 

one-. two-, or three-dimensional and exhibited a variety of structures, including 

simple, complex, and testlet. The testlet exams contained primarily items that 

represented a single dimension, but with a small subset that represented multiple 

dimensions (see Rijmen, 2010 for further discussion). In all, seven separate test 

structure conditions were examined. As was the case with GDDM, SGDDM 

demonstrated sensitivity to both data-model fit and misfit. The proportion of 

extreme PPP values observed when fitting the correct model, akin to Type I error 

rate, ranged from .00 to .04, while the proportion of extreme PPP values observed 

when fitting a misspecified model, akin to statistical power, never deviated from 

1.0. Sample size and test length were not manipulated in either Levy et al. (2012) 

or Levy and Svetina (2011), nor was the assessment of deviations from 

unidimensionality a central focus, thus providing the impetus for the current work. 
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Chapter 3 
 

METHODOLOGY 
 

 The goal of this Monte Carlo simulation is to compare the performance of 

the DIMTEST and SGDDM statistics under both small and large-scale testing 

conditions. Factors previously shown to impact the performance of these statistics 

were manipulated. Those factors included sample size, test length, and 

dimensionality. Investigating the effect of dimensional correlation and simple 

versus complex structure was not a goal central to the study and, thus, those 

factors were held constant. 

Data Generation 

Item response data was generated via the two-parameter form of Equation 

4 (where cj = 0) using R version 2.15.2 (R Team, 2008). The data was generated 

such that Xij = 1 indicated a correct response and Xij = 0 indicated an incorrect 

response. Under conditions where unidimensional data were modeled, the 

discrimination parameters along the second dimension (αj2) were set to zero, as 

were the correlation between the dimensions.  

 Determination of sample size and test length values.  An exploratory 

approach to determining the most informative sample size (N) and test length (J) 

values was used. This approach held three goals: (1) to find a combination of N 

and J where both the DIMTEST and SGDDM approaches exhibited satisfactory 

performance in terms of their ability to assess deviations from unidimensionality, 

(2) to find a combination of N and J where one approach clearly outperformed the 

other (if possible), and (3) to find a combination of N and J where neither 
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approach performed well. As will be discussed in the results section, a condition 

wherein N = 750 and J = 24 was used as a starting point and further conditions 

were defined based on the results of that, as well as subsequent conditions. Given 

that the minimum number of items allowed by the DIMTEST program is 19, only 

the performance of the SGDDM statistic will be investigated under any conditions 

that end up containing less than 19 items. The values used in the initial condition 

were chosen to be something of a combination of the minimum recommended 

values for use with DIMTEST (Fay, 2012) and the smallest values used in 

previous SGDDM analyses (Levy & Svetina, 2011; Levy et al., 2012). 

Generation of person parameters. For each replication, person 

parameters were generated from a bivariate normal distribution such that θ = (θ1, 

θ2) ~ N(0, Σ), where Σ is a variance-covariance matrix. The variance for each 

factor was set to one, while the off-diagonal elements of Σ, representing 

correlations between factors, were set to a fixed value of ρ = 0.3, indicating a 

moderate relationship. 

 Generation of item parameters. All discrimination parameters were 

generated from a random truncated normal distribution for each replication within 

a condition such that α = (α1, α2, …, αJ) ~ N(0, ∞) (1, 0.2). Item difficulty 

parameters (δj) were randomly generated from a normal distribution for each 

replication within a condition such that δ = (δ1, δ2, …, δJ) ~ N(0, 0.7). Syntax for 

the generation of both item and person parameters is presented in Appendix A. 

 Strength of dependence of the item responses on the underlying 

dimensions may be an influencing factor on the performance of the procedures 
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relevant to this study (Levy, Mislevy, & Sinharay, 2009). Investigating that nature 

of that influence is not, however a goal of the current work and, as such, no 

conditions of systematically differing discrimination parameters (αj) were 

specified. The values employed for these parameters in the current work represent 

what are often considered “moderate” choices in such studies. This was done to 

facilitate comparison to previous literature. 

 Test structure. Degree of multidimensionality in the form of the 

proportion of items representing an auxiliary dimension was manipulated via the 

method put forward by Froelich and Habing (2008). Under this approach, a 1 x J 

vector of item discrimination parameters is first generated via the mechanism 

described in the previous paragraph. The values in this vector are then 

transformed into a 2 x J matrix via the equations: 

αj1 = αj cos(βj) and αj2 = αj sin(βj)        (25) 

where αj is the initial parameter value, αj1 and αj2 are the resulting discrimination 

parameter values, and βj is the angle between the item’s direction of best 

measurement and the θ1 axis. The current study included two test structure 

conditions: unidimensional and two-dimensional simple structure. Under the 

unidimensional condition, βj was set to 0 (measuring θ1 only), while the 

multidimensional simple structure condition included two-thirds of items with βj 

= 0 (measuring θ1 only), and one-third with βj = 90 (measuring θ2 only). 

 Number of replications. Due to computational limitations, the number of 

replications differed between the DIMTEST and SGDDM conditions. A variety 

of existing simulation studies have investigated the performance of DIMTEST 
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under conditions similar to those to be undertaken in the current work. The 

number of replications used in those studies has generally ranged from as low as 

100 (e.g., Froelich & Habing, 2008; Nandakumar & Stout, 1993; Stout, Froelich, 

& Gao, 2001) to upwards of 500 (e.g., Fay, 2012; Finch & Habing, 2007). To be 

conservative, 1,000 replicate data sets were generated and analyzed for all 

conditions involving the use of DIMTEST. 

 As MCMC estimation via Gibbs sampling can be computationally 

intensive, a smaller number of replications are generally used in simulation 

studies employing these methods. Previous studies investigating the performance 

of PPMC and the GDDM/SGDDM statistics in the context of IRT have typically 

used 50 replications (e.g., Levy, Mislevy, & Sinharay, 2009; Levy & Svetina, 

2011; Levy et al., 2012). In keeping with this work, the current study sought to 

use 50 replications for each condition as well. These replications were randomly 

selected from the 1,000 used in the DIMTEST conditions. 

DIMTEST 

 DIMTEST version 2.1 (Nandakumar & Stout, 1993; Stout, 1987; Stout, 

Froelich, & Gao, 2001) was used to conduct the analyses of interest in the current 

study. All analyses were exploratory in nature and, as such, one-third of the 

sample in each condition was used to establish the AT partition, with the 

remaining two-thirds being used to calculate the DIMTEST statistic. As no 

accommodations were being made for the possibility of guessing on the part of 

the examinee in the data generation process, the c-parameter was set equal to zero 

for all conditions. The remaining parameters, specifically those pertaining to the 
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bias-correcting bootstrap procedure (seed number, evaluation points, and 

bootstrap replications) were left at their default values.  

SGDDM 

Mplus version 6.12 (Muthén & Muthén, 2007) was used to conduct 

MCMC estimation via Gibbs sampling under the SGDDM conditions. Three 

separate MCMC chains were used using software-supplied starting values. 

Convergence of the chains was monitored using the Brooks-Gelman-Rubin 

(BGR) diagnostic (Brooks & Gelman, 1998). The first five replications in each 

SGDDM condition were used to assess convergence. Once the number of MCMC 

iterations needed for the chains to converge had been determined, that value was 

then applied to the remaining replications. A BGR value of less than 1.05 was to 

be considered sufficient for chain convergence. Trace plots were also monitored 

to ensure sufficient mixing of the draws from the chains. Any evidence of serial 

dependence (i.e., non-trivial autocorrelations) was handled by thinning these 

draws. R version 2.15.2 was used to generate replicate datasets from the Mplus-

generated MCMC draws, conduct thinning of the draws if necessary, and compute 

the SGDDM statistic presented in Equation 22. 

 Parameters. A variety of parameters settings can be customized when 

using Bayesian estimation and conducting posterior predictive model checking in 

Mplus. For the current study, initial values for the loadings and thresholds 

(analogous to item discrimination and difficulty parameters, respectively) for each 

of the indicators (J item response vectors, where J is the number of items) were 

supplied by the software. The posterior mean was used as a summary of the 



 50 

posterior distribution. Finally, 300 model-implied replicate datasets were 

generated in R using the draws from the posterior distribution for use in PPMC 

procedures. All other settings were left at their default value (see Appendix B for 

sample syntax). 

 Prior distributions for model parameters. Prior distributions for the 

unknown model parameters need to be specified for each condition in which 

Bayesian parameter estimation will be used. In the context of the current study, 

these include the person (θim), item location (δj), and item discrimination (αj) 

parameters. The latent person ability parameters were assigned standard normal 

prior distributions  

θim ~ N(0, 1). 

The item location parameters were assigned diffuse normal prior distributions 

δj ~ N(0, 10). 

As the current study was focused on assessing deviations from unidimensionality, 

the models being fit to the data assumed a single vector of item discrimination 

parameters, even though the data, under certain conditions, was generated using 

test structures that assume a 2 x J matrix of discrimination parameters. The values 

in that vector were assigned diffuse normal distributions censored with a lower-

bound of zero 

αj ~ N(0, ∞) (1, 10). 

Data Analysis 

 Figure 5 presents an overview of the DIMTEST and SGDDM simulation 

procedures. Empirical Type I error rates (α) and statistical power (1 – β, where β 
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is the Type II error rate) were used to assess performance under the 

unidimensional and multidimensional data conditions, respectively. For the 

DIMTEST condition, Type I error is defined as the proportion of analyses in 

which the null hypothesis (H0) of unidimensionality is rejected when the data 

were generated via a unidimensional model. Power, conversely, is defined as the 

proportion of replications in which H0 was rejected when the data were generated 

via a multidimensional model. Under the SGDDM conditions, H0 is considered 

rejected when extreme values of the posterior predictive p value (PPP) are 

observed such that PPP ≥ (1 – α), where α is equal to an acceptable rate of Type I 

error determined a priori. As was discussed earlier, the PPP values for each 

replication in this study were derived from a comparison of the SGDDM value 

based on a replicate data set with the SGDDM value based on a set of parameter 

draws from the posterior distributions based on the observed data. Each of these 

PPP values was based on 300 observations (i.e., 300 replicate data sets and 300 

draws from the posterior distributions of the model parameters). This criterion 

represents, essentially, a one-tailed hypothesis test. The use of a one-tailed test is 

reasonable in this context as the SGDDM statistic is constructed as a non-

directional measure reflecting the magnitude of the unmodeled associations. The 

empirical Type I error rate was compared to the nominal rate of α = .05, which 

represents a standard commonly applied in social science research. 
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Figure 5. Flow chart of the DIMTEST and SGDDM simulation study procedures. 

Hypotheses 

 Previous research in the realm of assessing a unidimensionality hypothesis, 

as well as features inherent to conditional covariance theory, suggest a number of 

factors that may influence performance. The hypotheses related to the variables of 

interest with respect to the relative performance of the DIMTEST and SGDDM 

approaches are presented below. 

 Sample size and test length. Neither sample size nor test length was 

hypothesized to influence performance under true unidimensional conditions for 

any of the values of these two variables utilized in the current study. Under 

conditions where the true structure was multidimensional, increases in either 
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sample size or the number of items should have resulted in higher statistical 

power. 

 Test structure and correlation between dimensions. The correlation 

between dimensions and the structure of the test were not manipulated in the 

current work. The constant dimensional correlation of ρ = 0.3 was not 

hypothesized to yield any differential effect on performance for any of the levels 

of the manipulated variables. All of the multidimensional conditions investigated 

utilized simple structure, wherein all items measured a single dimension. The 

proportion of items measuring θ1 and θ2 was held constant across experimental 

conditions. The use of simple structure should have yielded greater power than 

would be expected had more complex structures been applied. 

 For some researchers, thinking of models such as the two-dimensional 

type used in the current work as following a bifactor structure may be preferable. 

In a bifactor model the entire set of items are thought of as having some 

underlying trait in common, often termed a general factor, with a particular subset, 

or subsets of items sharing additional traits (specific factors). Figure 6 presents a 

depiction of a two-dimensional simple structure model with twelve items, while 

Figure 7 shows the same model as following a bifactor structure. The model in 

Figure 6 follows the structure of the data generation model used in the current 

work under the multidimensional conditions. These two representations are 

hierarchically related, in that constraining the loadings on the general factor, θg, to 

zero and freeing the factor correlation between θ1 and θ2 yields the model shown 

in Figure 6, and the parameter values from one can be translated to their 
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equivalent in the other using methods such as those discussed by Rijmen (2010) 

and Yung, Thissen, and McLeod (1999). Appendix C presents such a translation 

for a 12-item test using similar values for the item discrimination and factor 

correlation parameters as are used in the current work. 

 

Figure 6. Representation of a 12-item exam following a two-dimensional 
structure. 
 

 
Figure 7. Representation of a 12-item exam following a bifactor structure. 
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DIMTEST vs. SGDDM. Both approaches were hypothesized to perform 

comparably, as well as favorably under conditions consisting of large sample 

sizes and relatively long tests. DIMTEST may be overly conservative in terms of 

Type I error rate under null conditions (Fay, 2012) whereas SGDDM has been 

shown to yield rejections at a near-nominal rate (Levy & Svetina, 2011; Levy et 

al., 2012). Decreases in power should have been exhibited under both methods as 

sample size and test length decreased. DIMTEST was unable to function when J < 

19, therefore no comparison with SGDDM was possible under such conditions. 

DIMTEST has been shown to exhibit relatively poor power when short tests (J ≤ 

21) are combined with small sample sizes (N = 250) and moderately 

discriminating items (Fay, 2012). However SGDDM has not yet been evaluated 

under such conditions, therefore no a priori hypotheses were made with respect to 

comparative performance under these types of small-scale testing circumstances. 

Summary 

 This chapter reviewed the procedures to be used in generating data from 

two separate test structures, conducting analyses using both the DIMTEST and 

SGDDM statistics, and evaluating the performance of those statistics. 

Manipulated variables included test structure, sample size, and test length. All 

other factors were either assigned fixed values (e.g., correlation between test 

dimensions), or given randomly generated values (e.g., person ability, item 

discrimination, and item location parameters). The number of replications used 

varied by condition with 1,000 replications being used to evaluate the DIMTEST 

statistic and 50 replications being used in the SGDDM conditions. Empirical Type 
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I rate and power were defined as the criteria by which the two statistics of interest 

will be evaluated. 
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Chapter 4 
 

RESULTS 
 

The goal of this Monte Carlo simulation was to compare the performance 

of the DIMTEST and SGDDM statistics under both small and large-scale testing 

conditions.  

Exploratory Condition Search 
 
 An exploratory approach was used to determine the parameters (i.e., 

sample size and test length) of the experimental condition to be used. As was 

discussed in the previous chapter, this approach held three goals: (1) to find a 

combination of N and J where both the DIMTEST and SGDDM approaches 

exhibited satisfactory performance in terms of their ability to assess deviations 

from unidimensionality, (2) to find a combination of N and J where one approach 

clearly outperformed the other (if possible), and (3) to find a combination of N 

and J where neither approach performed well. The search began with an “anchor” 

condition chosen to represent a combination of parameters that was both of a 

smaller-scale than what is typically used in research concerning DIMTEST and 

SGDDM, yet for which both procedures might be expected to perform 

satisfactorily, thus satisfying goal (1) from above. This anchor condition utilized a 

sample size of 750 examinees and a test length of 24 items. As can be seen in 

Tables 1 and 2, and as will be discussed in a later section, both approaches 

yielded acceptable performance both when fitting the correct and incorrect models. 

It was determined that any conditions for which both N and J exceeded these 

initial values (750 and 24, respectively) would not be essential to the goals of the 
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study. One such condition was, however, added later in the process. Based on 

these initial results further conditions where N = 250 and J = 12 were added. 

Results of these conditions again proved somewhat similar where comparable, 

thus an N = 100 condition was added. This final sample size condition satisfied 

goal (3) from above, in that both approaches exhibited less-than-satisfactory 

performance under one of the N = 100 conditions. A condition where J = 18 was 

added in order to satisfy goal (2). Finally, a J = 30 condition was added as well to 

provide a second test length where SGDDM and DIMTEST could be compared. 

 In summary, three sample size conditions (N = 100, 250, 750) and four 

test length conditions (J = 12, 18, 24, 30) were used in the current work. This 

resulted in 24 total experimental conditions where SGDDM could be evaluated 

and 12 for DIMTEST. These 36 conditions were evaluated using both a properly 

specified, as well as a misspecified model, resulting in 72 total experimental 

conditions. 

MCMC Estimation Parameters 
 
 The current work required that the number of burn-in iterations, as well as 

a thinning factor be determined for each experimental condition. The total number 

of iterations for each of the three MCMC chains also needed to be specified, and 

was calculated as 

 
TI = (100 !T )+ B  ,          (27) 
 

where TI stands for total iterations, T is the thinning factor, and B is the number of 

burn-in iterations required. The value of 100 represents the number of usable sets 

of parameter values needed from each chain in order to have the desired 300 total 
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sets for use in PPMC. For the current study, the number of burn-in iterations 

ranged from 1,000 to 4,000, with the largest values being seen in the conditions 

where model estimation proved most difficult (e.g., small samples combined with 

short tests and model misfit). A thinning factor of 30 was used for all conditions 

except for use of a factor of 50 when N = 100 and J = 12 or 24. The total 

iterations ranged from 4,000 to 9,000. 

Unidimensional Data Conditions: Type I Error Rates 
 
 Table 1 below presents results obtained under the 36 conditions where the 

correct model was fit. Figure 8 below presents the same results in a graphical 

format. Each panel in Figure 8 corresponds to one combination of sample size and 

test length. The sample size values are indicated in the bar at the top of each panel 

while the test lengths are denoted by the four hash marks within each panel. The 

proportion of p or PPP values at or below .05 appears on the vertical axis. The 

dashed line cutting across each panel indicates the commonly used α = .05 

nominal rate. The results of the DIMTEST and SGDDM conditions are presented 

separately and are indicated by the solid lines within each panel. Results for the 

DIMTEST conditions are marked with a “+” sign, while SGDDM results are 

marked with a “Δ.” The results obtained for the J = 24 and J = 30 conditions 

allow for direct comparison of the two procedures as the analyses for each were 

conducted using common data sets, although the number of replications differed. 

As the commercially available version of DIMTEST using ATFIND does not 

allow for less than 19 items, no results are presented using that approach for the J 
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=18 and J = 12 conditions. A not applicable (“NA”) indicator is used to indicate 

these conditions in Table 1.  

Table 1 

Proportion of Extreme PPP/p Values when Using Data from a Unidimensional 

Model in the Analysis Conditions. 

Note. Values greater than .05 are indicated in bold. 

 

The DIMTEST approach tended to be conservative under unidimensional 

conditions, that is to say that the Type I error rate tended to be below, and, in 

some conditions, well below the nominal value of α = .05. Slight increases in 

Type I error rate were seen when moving from tests with 30 items to tests with 24 

items or when decreasing sample size, but still remained below the nominal level. 

 The proportion of extreme PPP values under the SGDDM conditions 

tended to be much closer to the nominal rate than was seen with DIMTEST under 

  PPMC using SGDDM DIMTEST 
Sample Size 

(N) 
Test Length 

(J) 
Proportion of PPP ≤ .05    

(50 replications) 
Proportion of p ≤ .05       
(1,000 replications) 

    
100 12 .060 N/A 

 18 .040 N/A 
 24 .020 .025 
 30 .040 .018 
    

250 12 .020 N/A 
 18 .040 N/A 
 24 .040 .014 
 30 .020 .008 
    

750 12 .000 N/A 
 18 .020 N/A 
 24 .020 .011 
 30 .080 .010 
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most conditions. These rates exhibited less stability than those resulting from the 

use of DIMTEST due to the substantially smaller number of replications used. 

The results seen at the limits of the experimental conditions, in particular, stand 

out. The proportion of extreme PPP values when N = 100 and J = 12 was slightly 

above the nominal rate at .06.  

 
Figure 8. Results of the analysis conditions where the correct model was fit. 
 
Multidimensional Data Conditions: Estimation of Power 

 Table 2 in below, as well as Figure 9 below present results obtained under 

the 36 conditions where a misspecified model was fit. The presentation of the 

panels is Figure 9 is the same as that of Figure 8 above with the exception being 

that the dashed line cutting across the panels now indicates a rejection rate of .80, 

a commonly applied criterion in power analyses. It should be noted that some of 

the SGDDM conditions used less than the intended 50 replications due to model 

estimation issues in Mplus. The actual number of replications used in these 
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conditions is noted under Table 2. These issues were largely a result of the way in 

which the prior distributions for the item discrimination parameters are handled in 

the Mplus language. Specifically, Mplus does not allow for the explicit use of a 

censored prior distribution. Instead, the researcher must add constraints using the 

“MODEL CONSTRAINT” subcommand (see Appendix B). In the case of the 

current work, this entailed constraining the estimates to be positive. An 

unfortunate side effect of this is that the software will occasionally fail to resolve 

the parameter estimates when the posterior distribution for one or more of the 

parameters has a lot of its mass concentrated near zero. While these issues may 

have increased the impact of any chance characteristics of the data, they are 

unlikely to have affected the overall pattern of results. Other software options 

exist for conducting PPMC (e.g., WinBUGS; Lunn, Thomas, Best, & 

Spiegelhalter, 2000), though these options tend to require more time and user 

input for automation.  
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Table 2 

Proportion of Extreme PPP/p Values when Using Data from a Two-dimensional 

Simple Structure Model in the Analysis Conditions. 

Note. Results based on 38a, 36b, or 41c, d replications. Values less than .80 are 
indicated in bold. 

 Both approaches fared well regardless of test length when N = 250 or 750; 

the proportion of extreme p/PPP values seen under these conditions were well 

above .80. A ceiling effect at 1.0 made the results of the two approaches almost 

indistinguishable under conditions where a direct comparison was possible (i.e., J 

≥ 19). The performance of the two approaches diverged when the sample size was 

lowered to N = 100. DIMTEST exhibited power below .80 under both test length 

conditions under which it was examined. Furthermore, a downward trend was 

present when the number of items was decreased from J =30 to J = 24. The 

  PPMC using SGDDM DIMTEST 
Sample Size 

(N) 
Test Length 

(J) 
Proportion of PPP ≤ .05    

(50 replications) 
Proportion of p ≤ .05       
(1,000 replications) 

    
100 12 .684a N/A 

 18 .917b N/A 
 24 1.00c .729 
 30 .976d .778 
    

250 12 .980 N/A 
 18 1.00 N/A 
 24 1.00 .998 
 30 1.00 1.00 
    

750 12 1.00 N/A 
 18 1.00 N/A 
 24 1.00 1.00 
 30 1.00 1.00 
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SGDDM statistic, conversely, demonstrated satisfactory performance (proportion 

of extreme PPP values ≥ .80) under both of the aforementioned test length 

conditions, as well as in the J = 18 condition. It was only under the J = 12 

condition that the proportion of extreme PPP values fell below the acceptable 

criterion. It is of note that, though power, from a null hypothesis testing 

perspective, was only .68 under this condition, the mean PPP value for the 38 

replications was .047. From a diagnostic perspective, a PPP value such as this 

might be construed as evidence of data-model misfit by some researchers. 

 
Figure 9. Results of the analysis conditions where a misspecified model was fit. 
  
 
Summary 
 
 This chapter has presented results for the use of unidimensional and 

multidimensional data in the analysis conditions. Type I error rates, power, and 

proportion of extreme PPP values were the primary foci of the current work. In 

general, the results suggest that both approaches are capable of identifying data-
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model fit and misfit in all but the most extreme cases when using the data 

structures employed in the current work (i.e., simple structure with moderate item 

discrimination and factor correlation parameters).  
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Chapter 5 
 

DISCUSSION AND CONCLUSIONS 
 

 Each of the manipulated variables had demonstrated an impact on Type I 

error rate and power. These outcomes are discussed separately for the 

unidimensional and multidimensional conditions. Recommendations for 

practitioners and researchers are provided in light of the findings. Finally, the 

limitations of the current study, as well as suggestions for further research, are 

presented. 

Interpretation of Results 

Unidimensional conditions. Neither of the manipulated factors (sample 

size and test length) were hypothesized to impact the performance of either 

SGDDM or DIMTEST under unidimensional conditions with the exception of 

DIMTEST not being available when J ≤ 19. This hypothesis was largely 

supported by the results in Table 1. The proportion of extreme p/PPP values were 

below the nominal rate of α = .05 for most every combination of sample size and 

test length. Many of these values under the SGDDM conditions, however, were 

too close to α to conclude that the “true” rate is significantly different from .05, 

given the relatively small and finite number of replications used. Only two of 18 

conditions yielded rates of extreme results greater than .05: SGDDM when N = 

100/J = 12 (.06) and SGDDM when N = 750/J = 30 (.08). The former could 

theoretically represent a real effect indicative of the limits of the SGDDM statistic 

to capture data-model fit, given the sample size, test length, and structure used in 

that condition. Further work using smaller sample sizes and/or shorter tests could 
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be conducted to evaluate this effect. The latter result, on the other hand, was 

likely a result of sampling variability, as no theoretical reason exists to suggest 

inflation of this value given the conditions.  Previous studies involving SGDDM 

have used larger sample sizes and longer tests than the current work, yet have 

exhibited Type I error rates at or below the nominal rate. Repeating this condition 

using more replications could potentially correct this issue. These results were in 

keeping with previous studies that used comparable sets of conditions (e.g., Fay, 

2012; Levy et al., 2012). 

In general, both approaches seem well suited to indicating data-model fit 

(rejecting the null hypothesis, in the case of DIMTEST) when the data follow 

unidimensional structure, given the conditions used in the current study. If 

anything, both approaches err on the side of caution in that they tend to be slightly 

conservative from a hypothesis testing perspective, with DIMTEST being the 

more conservative of the two. This notion is in line with the a priori hypotheses 

presented in Chapter 3. Of note is the fact that the rejection rates for the 

DIMTEST conditions did not seem to approach the nominal rate as sample size 

and test length were increased as one would have expected based on theory (Stout, 

1987). 

 Multidimensional conditions. As was hypothesized, evidence for data-

model misfit, or multidimensionality in this case, became more apparent with 

larger samples and/or longer tests (Table 2). These findings are consistent with 

previous research using DIMTEST (Fay, 2012; Finch & Habing, 2007; Froelich 

& Habing, 2008) and SGDDM (Levy & Svetina, 2011; Levy et al., 2012). They 
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are also consistent with Zhang and Stout’s (1999a) conditional covariance theory. 

Both approaches exhibited satisfactory (i.e., ≥ .80) power for all test lengths when 

a sample size of at least 250 was used. Increases in test length for conditions with 

N = 250 or 750 were met with little to no additional effect due to a ceiling of 1.0 

on power. This effect may be mitigated in future research my decreasing the 

nominal rate to α = .01. It was only under conditions where N = 100 that a 

difference in results between the two approaches was noted. The SGDDM statistic 

demonstrated a greater ability to assess data-model misfit under conditions where 

the two approaches could be compared. Potential sources of DIMTEST’s 

relatively poor performance when using such a small sample size could be the 

way in which the software handles AT/PT partitioning as well the procedure’s use 

of total score subgroups as a means of conditioning on examinee ability. As has 

been previously mentioned, DIMTEST exhausts one-third of the total examinee 

pool in the AT/PT partitioning process. When the total examinee pool consists of 

only 100 participants, this leaves only 67 cases for calculating the DIMTEST 

statistic. Perhaps more importantly is the fact that the DIMTEST procedure tests 

the assumption of essential unidimensionality given in Equation 7. This 

assumption is concerned with item pair covariances conditional on ability. 

DIMTEST uses examinee total score on the PT items as a proxy for ability. As 

calculating a covariance requires a sample of at least N = 2, all total score 

subgroups with less than two cases are excluded from the analysis. It follows, 

then, that decreases in sample sizes are met with an increased probability of any 

particular ability subgroup being excluded. In the current work, for example, as 
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much as 18% of the 67 available cases excluded in the smallest sample size 

conditions due to this issue. This left as few as 54 examinees for calculating the 

DIMTEST statistic. In comparison, the largest sample size conditions saw only 

around 4% of the examinee pool being discarded due to insufficient ability 

subgroup counts, leaving ~480 valid cases. 

Recommendations 

 The primary goal of this study was evaluate and compare the performance 

of DIMTEST and SGDDM under small-scale testing conditions. Previous 

research has indicated that DIMTEST may be able to maintain reasonable Type I 

error rates and be reasonably powered with as few as 250 examinees under certain 

conditions (e.g., simple structure, moderate discrimination and factor correlation 

parameter values), while no research has been conducted on the performance of 

SGDDM under small-scale conditions. 

Overall, the results of the current work suggest that as little as 250 

examinees with tests as short as 12 items (19 for DIMTEST) may be sufficient for 

assessing deviations from unidimensionality assuming the researcher is confident 

that any multidimensionality would exhibit factorially simple structure. Using 

samples as small as 100 examinees may be appropriate for use with SGDDM 

when combined with tests consisting of at least 18 items. If employing SGDDM 

as a diagnostic tool rather than a means to evaluate a unidimensionality 

hypothesis via traditional significance criteria, then as few as 12 items may be 

enough to yield a reliable assessment of data model fit (misfit). 
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Limitations and Opportunities for Further Research 

The obvious caveat to the recommendations above is that they only hold 

under the assumption that multidimensionality manifest itself in a factorially 

simple structure. In practice, it may be rare for this to be the case and, perhaps 

more importantly, it may be impossible for a researcher to evaluate this 

assumption with any confidence before submitting their data to the DIMTEST or 

SGDDM processes. A more conservative recommendation as to sample size and 

test length minima may be one which makes no such test structure assumptions. A 

limitation to the current work in this respect is that no factorially complex 

structures were examined. Furthermore, previous research has suggested other 

item characteristics that may affect one’s ability to reliably assess dimensionality. 

These characteristics include the magnitude of factor correlations, the strength of 

item discrimination parameters, and the skewness/kurtosis of the item difficulty 

distributions used during data generation. None of these factors were manipulated 

in the current work and, as such, the recommendations may not be generalizable 

to anything but a fairly narrow subset of testing conditions. 

 In light of these limitations, an obvious extension to the current work 

would be the inclusion of factorially complex test structures and a more expansive 

list of item characteristics as manipulated variables. Further extensions might 

include examining alternative approaches to assessing dimensionality as points of 

comparison. For example, nonlinear factor analytic approaches such as 

NOHARM have been compared to DIMTEST (Finch & Habing, 2007), but not to 
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SGDDM, though Levy and Svetina (2011) did compare GDDM to two statistics 

based on NOHARM modeling. Other approaches might include the evaluation of 

fit statistics obtained using a structural equation modeling (SEM) framework or 

an IRT-specific modeling program such as IRTPro (Cai, Thissen, & du Toit, 

2011). Finally, a logical extension of the current work would be to expand the 

dimensionality assumption to include structures other than one of a 

unidimensional nature and/or to allow for items with more than two response 

categories (i.e., polytomous). Levy et al. (2012) have examined SGDDM’s ability 

to assess the fit of data to more dimensionally complex models, such as that of a 

three dimensional model or a testlet model, but not under small-scale testing 

conditions. While DIMTEST is limited to the assumption of a unidimensional 

structure, the other approaches listed above (NOHARM, SEM, IRTPro) are not. 

Summary 
  

Similar to previous studies using DIMTEST and SGDDM, as well as other 

model-based covariance approaches to assessing dimensionality, performance 

with respect to assessing data-model fit improved with increases in either sample 

size or test length. From a hypothesis testing perspective, both approaches may be 

overly conservative in terms of Type I error rate with most of the conditions 

yielding proportions of extreme p/PPP values well below the nominal rate of .05. 

When viewed as a diagnostic tool, however, the SGDDM approach clearly 

demonstrated a high-degree of data-model fit in all 12 conditions where the 

correct model was fit. Similarly, a clear indication of data-model misfit was 

present using SGDDM when the unidimensional model was fit to the two-
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dimensional data with all but one condition yielding a proportion of extreme PPP 

values above the .80 power threshold commonly used by social scientists under a 

frequentist null hypothesis-testing framework. Even in the most extreme case (N 

= 100 and J = 12), SGDDM still suggested misfit, though the proportion of 

extreme PPP values was below .80. Power was also satisfactory when using 

DIMTEST in conditions where the sample size was at least N = 250. Power 

tended to suffer, however, when using DIMTEST under the smallest sample size 

condition (N = 100). 

In light of these results, it is recommended that sample sizes and test 

lengths of at least N = 250 and J = 19, respectively be used with DIMTEST and 

that values of at least N = 100 and J = 18 be used with SGDDM. This 

recommendation, however, assumes that the researcher be reasonably confident 

that any potential multidimensionality come only in factorially simple forms. 
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APPENDIX A 
 

DATA GENERATION CODE 
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comp.MIRT.2PL.nogive.p <- function(theta.i, a.j, d.j){ 
if(length(theta.i) != length(a.j)) print("Warning: Theta and Discrimination 
vectors of different size")   
p <- pnorm(sum(a.j*theta.i)+d.j, mean=0, sd=1, lower.tail=TRUE, 
log.p=FALSE) 

 p 
} 
 
library(MASS) 
library(msm) 
 
for(which.rep in 1:n.reps){ 
 theta.true <- mvrnorm(n=N, mu=kappa.true, Sigma=phi.true) 
 dim.angle <- runif(J, min=0, max=90)      
 a.true.rand <- alpha.structure 
  
 for(j in 1:J){ 
  if (M==1){ 

a.true.rand[j,1] = rtnorm(1, mean=1, sd=0.2, lower=0, 
upper=Inf) 

  } 
  if (M==2){ 
   if (alpha.structure[j,1]==1 & alpha.structure[j,2]==1){ 

a.true.rand[j,1] = rtnorm(1, mean=1, sd=0.2, 
lower=0, upper=Inf) 
a.true.rand[j,2] = (sin(dim.angle[j]) * 
a.true.rand[j,1]) 
a.true.rand[j,1] = (cos(dim.angle[j]) * 
a.true.rand[j,1]) 

   } 
   if (alpha.structure[j,1]==1 & alpha.structure[j,2]==0){ 

a.true.rand[j,1] = rtnorm(1, mean=1, sd=0.2, 
lower=0, upper=Inf) 

   } 
   if (alpha.structure[j,1]==0 & alpha.structure[j,2]==1){ 

a.true.rand[j,2] = rtnorm(1, mean=1, sd=0.2, 
lower=0, upper=Inf) 

   } 
  } 
 } 
 d.true.rand <- rnorm(J, mean=0, sd=0.7) 
 X <- matrix(0, nrow=N, ncol=J) 
 
 
 
 for(i in 1:N){ 
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  for(j in 1:J){ 
p.i.j <- comp.MIRT.2PL.nogive.p(theta.i=theta.true[i, ], 
a.j=a.true.rand[j, ], d.j=d.true.rand[j]) 

   if(p.i.j >= runif(1)) X[i,j]=1 
  } 
 } 
 
write.table(X, file= paste(condition.folder, "uni_n100_j12/Data/", "data.", "rep.", 
which.rep, ".dat", sep=""), sep="", col.names=FALSE, row.names=FALSE) 
 
write.table(theta.true, file=paste(condition.folder, "uni_n100_j12/Parameters/", 
"theta.", "rep.", which.rep, ".dat", sep=""), sep=" ", col.names=FALSE, 
row.names=FALSE) 
 
write.table(d.true.rand, file=paste(condition.folder, "uni_n100_j12/Parameters/", 
"d.", "rep.", which.rep, ".dat", sep=""), sep=" ", col.names=FALSE, 
row.names=FALSE) 
 
write.table(a.true.rand, file=paste(condition.folder, "uni_n100_j12/Parameters/", 
"a.", "rep.", which.rep, ".dat", sep=""), sep=" ", col.names=FALSE, 
row.names=FALSE)  
} 
 
#END 
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APPENDIX B 
 

MODEL ESTIMATION SYNTAX 
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TITLE: 
Fit a unidimensional model in Mplus  
 
DATA: 
FILE IS data.rep.1.dat; 
 
VARIABLE:   
NAMES ARE  x1 - x12;  
USEVARIABLES  x1 - x12;  
CATEGORICAL ARE  x1 - x12;  
 
ANALYSIS: 
ESTIMATOR = BAYES;   
CHAINS = 1;   
FBITERATIONS =  5000;   
POINT = MEAN;   
 
MODEL:   
f1 by  
x1*(f1x1) 
x2*(f1x2) 
x3*(f1x3) 
x4*(f1x4) 
x5*(f1x5) 
x6*(f1x6) 
x7*(f1x7) 
x8*(f1x8) 
x9*(f1x9) 
x10*(f1x10) 
x11*(f1x11) 
x12*(f1x12);  
[f1@0]; 
f1@1; 
[x1$1*](d1x1); 
[x2$1*](d1x2); 
[x3$1*](d1x3); 
[x4$1*](d1x4); 
[x5$1*](d1x5); 
[x6$1*](d1x6); 
[x7$1*](d1x7); 
[x8$1*](d1x8); 
[x9$1*](d1x9); 
[x10$1*](d1x10); 
[x11$1*](d1x11); 
[x12$1*](d1x12); 
MODEL PRIORS:   
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f1x1~N(1,10); 
f1x2~N(1,10); 
f1x3~N(1,10); 
f1x4~N(1,10); 
f1x5~N(1,10); 
f1x6~N(1,10); 
f1x7~N(1,10); 
f1x8~N(1,10); 
f1x9~N(1,10); 
f1x10~N(1,10); 
f1x11~N(1,10); 
f1x12~N(1,10); 
d1x1~N(0,10); 
d1x2~N(0,10); 
d1x3~N(0,10); 
d1x4~N(0,10); 
d1x5~N(0,10); 
d1x6~N(0,10); 
d1x7~N(0,10); 
d1x8~N(0,10); 
d1x9~N(0,10); 
d1x10~N(0,10); 
d1x11~N(0,10); 
d1x12~N(0,10); 
 
MODEL CONSTRAINT:   
f1x1>0; 
f1x2>0; 
f1x3>0; 
f1x4>0; 
f1x5>0; 
f1x6>0; 
f1x7>0; 
f1x8>0; 
f1x9>0; 
f1x10>0; 
f1x11>0; 
f1x12>0; 
 
DATA IMPUTATION: 
        IMPUTE = ALL (c); 
        PLAUSIBLE = latent.rep.1.chain.1.out; 
        SAVE = fit.rep.1.chain.1.impute.*.out; 
        NDATASETS = 100; 
OUTPUT: 
TECH1 TECH8;  
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PLOT: 
TYPE = PLOT2;  
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APPENDIX C 
 

BIFACTOR PARAMETERS 
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Table 3 
 
Translation of unstandardized parameter values from a two-dimensional simple 
structure to a bifactor model for a 12-item exam. 

 
Note. !"

2  denotes a factor variance, α an item discrimination, δ an item difficulty, 
and !"1, "2

the correlation between two factors. The loadings on θg are constrained 
to be equal for model identification purposes. 
 

 

 

 

 

 

 

 

 

 

 

 

 2DSS Bifactor 
Parameter θ1 θ2 δ θg θ1 θ2 δ 

!"
2   1 1 -- 1 1 1 -- 
α1 1 0 0 .55 .84 0 0 
α2 1 0 0 .55 .84 0 0 
α3 1 0 0 .55 .84 0 0 
α4 1 0 0 .55 .84 0 0 
α5 1 0 0 .55 .84 0 0 
α6 1 0 0 .55 .84 0 0 
α7 1 0 0 .55 .84 0 0 
α8 1 0 0 .55 .84 0 0 
α9 0 1 0 .55 0 .84 0 
α10 0 1 0 .55 0 .84 0 
α11 0 1 0 .55 0 .84 0 
α12 0 1 0 .55 0 .84 0 
!"1, "2

  0.3 0 


