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ABSTRACT

Electrical neural activity detection and tracking have many applications in medical research and

brain computer interface technologies. In this thesis, we focus on the development of advanced

signal processing algorithms to track neural activity and on the mapping of these algorithms onto

hardware to enable real-time tracking. At the heart of these algorithms is particle filtering (PF), a

sequential Monte Carlo technique used to estimate the unknown parameters of dynamic systems.

First, we analyze the bottlenecks in existing PF algorithms, and we propose a new parallel PF

(PPF) algorithm based on the independent Metropolis-Hastings (IMH) algorithm. We show that

the proposed PPF-IMH algorithm improves the root mean-squared error (RMSE) estimation per-

formance, and we demonstrate that a parallel implementation of the algorithm results in significant

reduction in inter-processor communication. We apply our implementation on a Xilinx Virtex-5

field programmable gate array (FPGA) platform to demonstrate that, for a one-dimensional prob-

lem, the PPF-IMH architecture with four processing elements and 1,000 particles can process input

samples at 170 kHz by using less than 5% FPGA resources. We also apply the proposed PPF-IMH

to waveform-agile sensing to achieve real-time tracking of dynamic targets with high RMSE track-

ing performance.

We next integrate the PPF-IMH algorithm to track the dynamic parameters in neural sensing

when the number of neural dipole sources is known. We analyze the computational complexity

of a PF based method and propose the use of multiple particle filtering (MPF) to reduce the com-

plexity. We demonstrate the improved performance of MPF using numerical simulations with both

synthetic and real data. We also propose an FPGA implementation of the MPF algorithm and show

that the implementation supports real-time tracking.

For the more realistic scenario of automatically estimating an unknown number of time-varying

neural dipole sources, we propose a new approach based on the probability hypothesis density fil-

tering (PHDF) algorithm. The PHDF is implemented using particle filtering (PF-PHDF), and it is

applied in a closed-loop to first estimate the number of dipole sources and then their corresponding

amplitude, location and orientation parameters. We demonstrate the improved tracking perfor-

mance of the proposed PF-PHDF algorithm and map it onto a Xilinx Virtex-5 FPGA platform to

show its real-time implementation potential.
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Finally, we propose the use of sensor scheduling and compressive sensing techniques to re-

duce the number of active sensors, and thus overall power consumption, of electroencephalography

(EEG) systems. We propose an efficient sensor scheduling algorithm which adaptively configures

EEG sensors at each measurement time interval to reduce the number of sensors needed for accu-

rate tracking. We combine the sensor scheduling method with PF-PHDF and implement the system

on an FPGA platform to achieve real-time tracking. We also investigate the sparsity of EEG sig-

nals and integrate compressive sensing with PF to estimate neural activity. Simulation results show

that both sensor scheduling and compressive sensing based methods achieve comparable tracking

performance with significantly reduced number of sensors.
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Chapter 1

Introduction

1.1 Motivation

Detection and tracking of electrical neural activity can improve our understanding of how the hu-

man brain functions. Neural tracking techniques have been established as powerful tools for study-

ing both normal and abnormal neural activity [1]. For instance, neural activity tracking techniques

have helped to improve the understanding and treatment of serious neurological disorders such

as epilepsy and Parkinson’s disease. More specifically, these techniques are used to distinguish

between different kinds of seizures based on the location and orientation of the seizure foci, thus

resulting in improving the outcomes of epilepsy surgery [2]. For patients with Parkinson’s dis-

ease, the techniques are used to identify and locate the area of the brain where the symptoms are

generated in order to improve the performance of deep brain stimulation treatments [3].

In addition to clinical use, neural tracking has applications in brain computer interface (BCI)

and augmented cognition [4]. The brain exhibits measurable changes in electrical activity when

responding to certain stimulus. Using neural tracking techniques, these changes can be detected

and used to control a computer system, for example, to direct a cursor or control a robot arm [5].

In augmented cognition, accurately tracking brain neural activity can be used to determine whether

a person is asleep, awake, tired or angry and can be applied to prevent people from falling asleep

behind the wheel [6].

Such advances in neural activity tracking have been possible partly because of advances in

brain scanning technology, including magnetoencephalography (MEG) and electroencephalogra-

phy (EEG) [7, 8, 1]. The human brain consists of a large number of neurons that have a resting state

characterized by a cross-membrane voltage difference. When an electromagnetic signal is trans-

ferred from one neuron to another, a chemical postsynaptic potential is created that can be modeled

as a localized current dipole [9]. When thousands of neighboring neurons are simultaneously in

this postsynaptic excitation state, localized current is generated that creates an electromagnetic field

outside the skull. The magnetic field can be recorded as an MEG signal using a superconducting

quantum interference device; the corresponding electric potential can be recorded as an EEG signal

using multiple electrodes placed at different locations on the scalp.
1



Among the available functional imaging techniques, MEG and EEG have temporal resolutions

below 100 ms [10]. The excellent time resolution allows us to explore the timing of basic neural

processes at the level of cell assemblies. However, the spatial resolution of an EEG/MEG system is

limited by the relatively small number of spatial measurements (a few hundred versus tens of thou-

sands in functional magnetic resonance imaging (fMRI)) [7]. Achieving high spatial resolution

requires accurate solution to the EEG/MEG inverse problem; the inverse problem is the estimation

of the localized current dipole model from EEG/MEG measurements. In this study, we develop ad-

vanced signal processing algorithms and hardware architectures to accurately solve the EEG/MEG

inverse problem in real-time. Added to this complexity is the portability constraints of the device

when used in the wearable ambulatory EEG (AEEG) mode that is used to improve the quality and

accuracy of brain disorder tests [4, 11, 12, 13]. In this study, we propose sensor scheduling and

data compression methods to reduce the number of sensors required and thus reduce the power

consumption due to these devices.

1.2 Problems addressed

Several methods have been applied to solve the EEG/MEG inverse problem, including the multiple

signal classification (RAP MUSIC) approach [14, 15], spatial filters or beamformers [16], and

Bayesian methods [17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27]. As Bayesian methods have been

extensively used for tracking multiple objects, they provide suitable candidates for online tracking

of current dipole sources [24, 26] and are investigated in this study. Among sequential Bayesian

estimation techniques, Kalman filtering (KF) can provide optimal parameter estimates for linear

systems under additive Gaussian noise [28]. Although KF was used to solve the EEG inverse

problem in [18, 19], KF is not applicable for highly nonlinear and non-Gaussian systems.

Particle filtering (PF) is a sequential Bayesian technique that provides more accurate perfor-

mance for estimating parameters of nonlinear and non-Gaussian dynamic systems [29, 30, 31, 32].

Since the EEG/MEG measurement model is highly nonlinear, PF is more suitable for solving the

EEG/MEG inverse problem. In [19, 20, 21], PF was applied to estimate the locations of neu-

ral dipole sources. In an effort to improve estimation performance, a Rao-Blackwellized PF and

beamforming PF were applied in [22, 23]. However, these systems are based on software imple-

mentations and cannot meet the stringent requirements of real-time processing. In this work, we
2



develop efficient implementations of PF that map well onto a parallel hardware platform and enable

real time tracking of neural dipole sources. Specifically, we address the following 5 problems.

1. Parallel PF for real-time performance

There are three major operations in PF processing: particle generation, weight calculation, and

resampling. As shown in [33, 34], the bottleneck in real-time PF implementation is the resam-

pling operation. Several modifications of the resampling algorithm, such as residual-systematic

resampling and threshold based resampling, were proposed to reduce computational complexity

[35, 36, 37]. The threshold based resampling algorithm in [35] was modified to obtain the com-

pact resampling algorithm that helped improve tracking performance in [38, 39, 40]. A systematic

resampling algorithm with non-normalized weights was proposed in [37] to enable pipelined im-

plementation of PF. In [41], a particle-tagging quantization scheme was used to make the number

of particles a power of two and thus reduce the hardware complexity of the PF residual resampling

algorithm. The aforementioned resampling algorithms are all modified versions of the systematic

resampling algorithm [31] or residual resampling algorithm [42]. For both algorithms, resampling

cannot be computed unless knowledge of all particle weights is available, and thus poses a consid-

erable challenge for pipelined implementation. In order to eliminate this bottleneck, independent

Metropolis-Hastings (IMH) resampling can be employed as it can start as soon as the first particle

weight is available [43, 44]. In this work, we propose a parallel algorithm for PF that integrates

the parallel PF (PPF) algorithm in [45] with the IMH sampler. When mapped to hardware, this

algorithm reduces the communication between the parallel processing element and the central unit

significantly. We present a pipelined and parallel architecture to implement the proposed PPF-IMH

algorithm and map it onto a Xilinx field-programmable gate array (FPGA) hardware platform to

show its ability for supporting real-time processing.

2. Application of PPF-IMH to waveform agile sensing

An important application of particle filtering is waveform-agile sensing, where the waveform is

adaptively configured at each time [46, 47, 48]. When waveform-agility is integrated into particle

filtering, the computational complexity increases significantly. However, if PF can be implemented

in parallel, real-time implementation of adaptive waveform design schemes is indeed possible. We

demonstrate this by applying the proposed PPF-IMH to waveform-agile sensing. We improve the

3



dynamic target tracking performance in terms of root mean-square error (RMSE). We also imple-

ment the proposed integrated waveform-agile PPF-IMH system on an FPGA platform and show

that it can be used for real-time processing applications.

3. Application of PPF-IMH to neural activity tracking for a known number of sources

We model the neural activity as a stochastic process and apply PPF-IMH to track the positions

and moments of neural dipole sources. The number of dipole source parameters to be estimated

increases considerably when tracking multiple neural activities. This can result in a significant

increase in the PF computational complexity as the number of particles required must be increased

to maintain certain level of tracking performance. In this study, we propose the use of multiple PFs

[49] to reduce the computational complexity of the multiple dipole sources tracking problem. The

algorithm uses separate, parallel and interactive sub-particle filters to track each dipole, thus di-

viding the high-dimensional, multiple-dipole source model system into multiple, low-dimensional,

single-dipole source model systems [50]. Each sub-particle filters can then operate on fewer par-

ticles, so that the overall integrated system has a much higher implementation efficiency. We map

the resulting algorithm on a Xilinx FPGA platform to demonstrate its applicability to real-time

neural activity tracking. This work has resulted in the development of the first hardware prototype

of a neural activity tracking system [50].

4. Development of PF-PHDF for tracking unknown number of neural dipole sources

The approaches mentioned thus far typically assume that neural activity can be represented by a

fixed and known number of current dipole sources. However, this is not a realistic assumption:

neural activity varies with time, so current dipole source models and their parameters should also

vary with time. In [25, 26, 27], an approach was used to dynamically estimate the number of

dipoles and their parameters at each time step by modeling them as random finite sets (RFS) [51].

In particular, the authors first estimated the number of sources by maximizing the marginal distri-

bution of the current dipole set posterior density and then tracked their locations as the maxima

of the RFS first moment or probability hypothesis density. This system was implemented using

a PF, and each particle was sampled from a point process, resulting in particles with varying di-

mensions. The multiple PF tracker algorithm was thus impractical as it used a very large number

of particles (in the order of 105 particles for five dipoles [25]). In this study, we propose a new

4



algorithm for estimating both the unknown number of neural dipole sources and their parameters

for real EEG/MEG data, with significantly fewer particles, using the probability hypothesis density

filter (PHDF). The PHDF was used in [51] to recursively estimate the number of objects and their

parameters in order to overcome the PF bottleneck. However, the use of the PHDF for solving

the EEG/MEG inverse problem is more challenging. Specifically, the PHDF requires that each

measurement is generated exclusively from a single object. However, each EEG/MEG sensor mea-

surement consists of contributions from all dipole sources. Also, the PHDF propagation equations

are complex. Extending our initial work in [52], we propose a computationally less expensive al-

gorithm in order to overcome these limitations. In particular, we first reduce the dimension of the

EEG/MEG measurements using a threshold-based eigenvalue distilling algorithm; this is needed to

facilitate separating the measurements into independent components corresponding to the different

dipole sources [53]. We then use the PF implementation of the PHDF (PF-PHDF) [54] to estimate

the time-varying number of dipoles at each time step before estimating their unknown parameters.

This method simplifies the dual estimation problem to a known-number of dipole sources estima-

tion problem and decreases the number of required particles, thereby reducing the computational

complexity. Furthermore, use of windowing along with parallelization helps speed up processing.

The algorithm is implemented on a Xilinx Virtex-5 FPGA platform. For a 4-processor architecture,

the processing time for one iteration of PHDF was shown to be 48.52 µs, and the processing time

for a windowed data segment of 100 samples, obtained using a 1 kHz sampling rate, took only

5.1 ms. Thus our EEG/MEG tracking system has enough computing power to perform real-time

processing for up to 10 kHz sampling rate.

5. Efficient design of EEG tracking system

A typical EEG system contains hundreds of sensors, and these sensors consume a lot of power. In

[55, 56], low power EEG sensors with power consumption of about 10 milliWatts per sensor were

designed. In this study, we focus on reducing the number of sensors required in an EEG system in

an effort to reduce the power cost. Our objective is to achieve comparable tracking performance

using a reduced number of EEG sensors. We propose two methods to achieve this objective: sen-

sor scheduling [57, 58] and compressive sensing [59, 60]. First, we propose a sensor scheduling

algorithm which adaptively configures the EEG sensors at each time step using the minimum pre-
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dicted mean-squared error (PMSE) or maximum signal-to-noise ratio (SNR) as the performance

metric. Optimization is performed globally by searching over all available sensors. We show that

the proposed sensor scheduling algorithm significantly reduces the number of sensors required with

minimum estimation performance degradation. For example, using only 15 out of 32 sensors, the

RMSE slightly increases from 6.28 mm to 6.41 mm. Next, we analyze the EEG data sparsity in the

spatial domain and integrate compressive sensing technique with PF to track the parameters of the

neural dipole sources. The RMSE tracking results of the proposed compressive PF are comparable

with those of conventional methods. However, the number of required EEG sensors is now reduced

from 238 to 50, resulting in significant reduction in the sensor power consumption.

1.3 Thesis Organization

The rest of the thesis is organized as follows.

In Chapter 2, we first introduce PF and then analyze the bottlenecks of the hardware imple-

mentation of PF. We present a new parallel PF with IMH sampler (PPF-IMH) which can achieve

real-time processing without performance degradation. Next, we implement the PPF-IMH algo-

rithm on an FPGA platform and demonstrate its real-time performance.

In Chapter 3, we apply the PPF-IMH to waveform-agile sensing application and map the pro-

posed sensing system onto an FPGA platform. We also demonstrate its tracking performance in

terms of RMSE and present the hardware implementation results.

In Chapter 4, we apply the proposed PPF-IMH to track neural activity. We assume that the

number of neural dipole sources is known and use PPF-IMH to estimate the parameters of dipole

sources. Then, we propose the use of multiple PF to reduce the computational complexity of the

multiple-dipole tracking problem. Estimation of the neural dipole parameters are shown for both

synthetic and real MEG data, and hardware implementation results are presented to demonstrate

the real-time processing capacity of the proposed multi-dipole tracking system.

In Chapter 5, we propose a new algorithm to track an unknown number of dipole sources. We

model the dipole sources as RFS and propose a new PF-PHDF algorithm to estimate the number of

dipole sources and their parameters in real-time. Software and hardware implementation results are

presented to show the performance of the proposed system in terms of estimation error, processing

time and hardware resource utilization.
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In Chapter 6, sensor scheduling and compressive sensing are used to design an efficient EEG

neural activity tracking system. Numerical simulation results show that the required number of

EEG sensors for accurate neural source localization is significantly reduced by using both methods.

We conclude the report with a summary of our work along with a discussion on future directions

in Chapter 7.
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Chapter 2

Particle Filtering and Its Parallel Implementation

The particle filtering (PF) algorithm is a technique for implementing a recursive Bayesian filter by

sequential Monte Carlo simulations. It yields high performance for estimating nonlinear and/or

non-Gaussian dynamic system parameters. However, the PF algorithm is iterative and computa-

tionally complex. As a result, its real-time implementation is quite challenging. In this chapter,

we analyze the bottlenecks of existing parallel PF algorithms, and we propose a new approach that

integrates parallel PFs with independent Metropolis-Hastings (PPF-IMH) resampling algorithms.

We also implement the PPF-IMH algorithm onto a field-programmable gate array (FPGA) platform

and analyze its performance.

2.1 Bayesian tracking

Bayesian tracking techniques are a group of algorithms that can recursively estimate a set of pa-

rameters for a dynamic system, given noisy measurements and some prior knowledge. A dynamic

system consists of two mathematical models. The first model, known as the state model (also

known as the system model or dynamic model), describes the evolution of the state with time.

The second model relates the noisy measurements to the state of the system and is called the mea-

surement model. Generally, the state and measurement models for discrete-time systems can be

expressed as,

xk = f (xk−1)+νk−1 (2.1)

zk = h(xk)+nk (2.2)

where xk is the vector of unknown system parameters at time step k, zk is the vector of measure-

ments at time step k, f (·) is a (possibly) nonlinear state evolution function, h(·) is a (possibly)

nonlinear function that relates the state vector with the measurement vector, νk is the state mod-

eling error vector, and nk is the measurement noise vector. The tracking problem is to recursively

estimate xk from a set of measurements z1:k = {z1,z2, · · · ,zk} up to time k. From a Bayesian per-

spective, the tracking problem is to recursively construct the posterior probability density function
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of the state p(xk|z1:k), given the sequentially obtained measurements. It is assumed that the initial

probability density function or the prior of the state vector p(x0|z0) = p(x0), is available.

The iterative Bayesian approach consists of two steps to obtain the posterior probability den-

sity function p(xk|z1:k): prediction and update. Assuming that the probability density function

p(xk−1|z1:k−1) at time k − 1 is available, the prediction step uses the state model in Equation

(2.1) to obtain the prior probability density function of the state at time k following the Chapman-

Kolmogorov equation [29]

p(xk|z1:k−1) =
∫

p(xk|xk−1)p(xk−1|z1:k−1)dxk−1 (2.3)

where p(xk|xk−1) represents the probabilistic evolution model of the state and is given by the state

model in Equation (2.1).

At time step k, the update stage involves using the new available measurement zk to obtain the

posterior probability density function p(xk|z1:k) via the Bayes theorem [29]

p(xk|z1:k) =
p(zk|xk)p(xk|z1:k−1)

p(zk|z1:k−1)
(2.4)

where p(zk|xk) is the likelihood function defined by the measurement model in Equation (2.2) and

p(zk|z1:k−1) =

∫
p(zk|xk)p(xk|z1:k−1)dxk (2.5)

The prediction and update Equations (2.3) and (2.4) form the basis for the Bayesian tracking

algorithm. Solutions to these equations are available only if the system and measurement models

satisfy some conditions, as summarized next.

• When the state and measurement models of a system are linear and the modeling error and

noise processes are Gaussian, then the Kalman filtering (KF) can provide optimal solutions

to this problem [28].

• When the state-space of the system is a finite, discrete-valued sequence, then grid-based

search methods can be used to estimate the unknown system state [32].

• When the posterior probability density function of a nonlinear dynamic system has a suffi-

cient statistic, Benes [61] and Daum filters [62] can be applied to estimate the probability

density of the system state.
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However, in practice, these restrictive conditions are not always satisfied, and analytical ap-

proximations and suboptimal Bayesian methods can be employed to obtain the posterior proba-

bility density function, such as the extended Kalman filtering (EKF), unscented Kalman filtering

(UKF) and approximate grid-based methods [32]. More generally, when the models are nonlinear

and/or the processes in the models are non-Gaussian, the posterior probability density function can

be estimated using particle filtering [29].

2.2 Particle filtering

The PF algorithm is a technique for implementing a recursive Bayesian filter by Monte Carlo (MC)

simulations. It is a sequential MC method that is used to estimate the dynamic state parameters of

nonlinear and/or non-Gaussian systems [29, 30]. The estimation is performed by approximating

the posterior probability density function of the unknown state parameters at each time step given

measurements up to that time step. Specifically, for a dynamic system described in Equations (2.1)

and (2.2), the PF approximates the joint posterior probability density function of xk at time k using

a set of N random samples or particles, x(ℓ)k and their corresponding weights, w(ℓ)
k , ℓ= 1, . . . ,N, as:

p(xk|zk)≈
N

∑
ℓ=1

w(ℓ)
k δ (xk −x(ℓ)k ) .

where δ (·) is the Dirac delta function. Using this approximation, the estimated state parameter

vector can be obtained as x̂k ≈ ∑N
ℓ=1 w(ℓ)

k x(ℓ)k .

There are different PF algorithms, depending on the choice of importance density used to com-

pute the weights [31, 30]. One of the most commonly used algorithms is the sequential importance

resampling (SIR) PF that consists of the following basic three steps:

1. Particle generation. The particles x(ℓ)k are drawn from an importance density function

q(xk|x
(ℓ)
k−1,z1:k),

where z1:k = {z1, . . . ,zk}.

2. Weight computation. The corresponding weights are calculated as

w(ℓ)
k ∝ w(ℓ)

k−1

p
(

zk|x
(ℓ)
k

)
p
(

x(ℓ)k |x(ℓ)k−1

)
q
(

x(ℓ)k |x(ℓ)k−1,z1:k

)
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and then normalized so that ∑N
ℓ=1 w(ℓ)

k =1. Note that the importance density is often chosen

to be the prior density function q(xk|x
(ℓ)
k−1,z1:k) = p(xk|x

(ℓ)
k−1). This simplifies the weight

computation to w(ℓ)
k ∝ w(ℓ)

k−1 p(zk|x
(ℓ)
k ).

3. Resampling. The particles are resampled to avoid particle degeneracy, which occurs when

most particle weights are close to zero, resulting in a poor representation of the posterior

probability density function [30]. Resampling avoids degeneracy by eliminating particles

with low importance weights and replicating particles with high importance weights.

Even with the simplified weight computation, the SIR PF can be very computationally inten-

sive as the number of particles required is large. For example, in a radar tracking problem, a PF

using N ≈ 1,000 particles requires about 30N additions, 20N multiplications, and N exponential

calculations per iteration. Thus, the overall computational complexity is very high.

Real-time implementation of the SIR PF is only possible through the use of pipelining and par-

allel processing. In [35], the authors investigated the hardware implementation of the SIR PF, and

they pointed out that the main challenges are accelerating the process of resampling and reducing

the computational intensity of the algorithm. In [33, 34], the authors also concluded that the sys-

tematic resampling step is the bottleneck of hardware implementation of the SIR PF. Since particle

generation and weight calculation do not have any data dependencies, they can be easily pipelined.

However, systematic resampling requires the knowledge of all normalized weights which makes it

hard to be pipelined with other steps. In [37], the authors proposed a parallel architecture for the

SIR PF, and they indicated that reducing the communication amount among different processing

elements was the main issue of their parallel architecture.

2.3 Parallel PF with independent Metropolis-Hastings sampling

In this section, we propose a new particle filtering algorithm which makes use of Metropolis-

Hastings sampling. As we demonstrate, the algorithm yields high tracking performance compara-

ble to the PF with systematic resampling, and it also supports parallel and pipelined processing.
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Algorithm 1 Metropolis-Hastings algorithm [44]

Choose a starting point
(

x(0)k ,w(0)
k

)
for ℓ= 1 to N do

From x(ℓ)k , draw samples (and compute corresponding weights) (x∗k ,w
∗
k) from q

(
x∗k |x

(ℓ)
k

)
Compute probability α

(
x(ℓ)k ,x∗k

)
= min

{
p(x∗k) q

(
x(ℓ)k |x∗k

)
p
(

x(ℓ)k

)
q
(

x∗k |x
(ℓ)
k

) ,1
}

(
x(ℓ+1)

k ,w(ℓ+1)
k

)
=

(x∗k ,w
∗
k), with probability α

(
x(ℓ)k ,x∗k

)(
x(ℓ)k ,w(ℓ)

k

)
, with probability 1−α

(
x(ℓ)k ,x∗k

)
end for

2.3.1 Metropolis-Hastings Algorithm

We use the Metropolis-Hastings (MH) algorithm to perform PF resampling in order to overcome

the bottleneck caused by systematic resampling. The MH resampling computation can start as soon

as the first particle weight becomes available [44]. Specifically, the MH algorithm does not require

all the particles as it can generate a Markov chain in which the current state x(ℓ)k depends only on

the previous state x(ℓ)k−1 [63]. In particular, the MH algorithm can draw samples from a desired

probability density function p(xk) given a proposal probability density function q(xk). The steps

of the MH algorithm are provided in Algorithm 1.

In Algorithm 1, the step of accepting the sample x∗k can be implemented by first generating the

uniform random variable u, taking values between 0 and 1, and then performing

(
x(ℓ+1)

k ,w(ℓ+1)
k

)
=


(
x∗k ,w

∗
k

)
, i f u ≤ min

{
w∗

k/w(ℓ)
k ,1

}
(

x(ℓ)k ,w(ℓ)
k

)
, i f u > min

{
w∗

k/w(ℓ)
k ,1

} .

The independent Metropolis-Hastings (IMH) algorithm can be obtained when q(x∗k |x
(ℓ)
k ) is inde-

pendent of x(ℓ)k in Algorithm 1. Note that, as there is no need to wait for all the particles and their

weights to become available [43], the IMH algorithm is suitable for pipelined hardware implemen-

tation.
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2.3.2 PPF-IMH hardware implementation

We propose a parallel PF algorithm which can be mapped into a multiple processing element ar-

chitecture. The processing elements (PEs) perform the major PF computational workload (particle

generation, weight evaluation and resampling), and a central unit (CU) performs global computa-

tions and coordinates the activities of the PEs. If the PF is implemented by computing the system-

atic resampling in the CU, all the importance weights would have to be transferred, resulting in a

huge communication overhead. In [45], a method to significantly reduce the amount of data com-

munication overhead was proposed. The main idea was to divide the particles into several groups

in each PE and use the average of each group as the new particle. However, this method results

in an estimation performance degradation. To improve estimation performance while keeping the

communication overhead low, we propose to use the IMH resampling in each PE before commu-

nication with the CU. Using the IMH resampling, the particles x̃(ℓ)k , ℓ = 1, . . . ,N, are resampled

to obtain x(ℓ)k in order to more accurately represent the posterior probability density function. The

information of the resampled particles is then sent to the CU. Also, since the IMH resampler can

be easily pipelined with the other steps, the processing period is not increased.

The new PPF-IMH algorithm is described next in detail. We distribute M particles to P PEs , so

N=M/P particles are assigned to each PE. The mth PE, m = 1, . . . ,P, executes the processing steps

in Algorithm 2 (sampling, weights computation, and IMH resampling) to generate the resampled

particle set x(ℓ)k,m, ℓ= 1, . . . ,N. Note that in Algorithm 2, we use (N +Nb) particles since at the end

of the processing, we discard Nb samples from the start of the sequence as they may not converge

to a good estimate [44].

Next, we present the one-dimensional grouping method or Algorithm 3 that is used to reduce

the communication overhead. First, we find the local minima and local maxima of the mth PE as

xmin,m = minℓ x(ℓ)k,m and xmax,m = maxℓ x(ℓ)k,m, respectively, and then transmit them to the CU. The CU

then finds the global maxima xMax and global minima xMin, and sends them back to all the PEs.

Based on xMax and xMin, the particles in each PE are divided into G = ⌈(xMax − xMin)/δ⌉ groups

where ⌈a⌉ represents the smallest integer greater than a [45]. The parameter δ provides the range

of each group; if δ is large, then the number of groups in each PE is small and thus the algorithm
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precision is low. The mth PE calculates the average particle value xmean, j,m and particle weight

wmean, j,m of group j , j = 1, . . . ,G, and transmits them to the CU. The CU uses these values to

compute the particle replication factor ρ j . It also ensures that the replication factor is an integer

number by simple rounding-off operations and that ∑G
j=1 ρ j = N.

This grouping method can be extended to multi-dimensional problem by operating Algorithm 3

on each of the dimensions of the particles. Assuming x(ℓ)k = [x(ℓ)1,k x(ℓ)2,k . . . x(ℓ)D,k]
T is a D dimensional

particle, then minℓ x(ℓ)k = [minℓ x(ℓ)1,k minℓ x(ℓ)D,k]
T and maxℓ x(ℓ)k = [maxℓ x(ℓ)1,k maxℓ x(ℓ)D,k]

T . Local

extrema xmin,m = minℓ x(ℓ)k,m and xmax,m = maxℓ x(ℓ)k,m of the mth PE are transmitted to the CU. They

are used to compute the global extrema xMax and xMin which are sent back to the PE. Here, xmin,m,

xmax,m, xMax and xMin are all D dimensional vectors. For each dimension, particles are divided into

G groups based on xMax and xMin, and thus there are G×D groups. Then the average particle value

xmean, j,m and particle weight wmean, j,m of group j, j = 1, . . . ,G×D, are calculated and transmitted

to the CU for calculating the particle replication factor ρ j.

The PPF-IMH algorithm has advantages both in terms of algorithm and hardware performance.

In each PE, the particles x(ℓ)k , ℓ = 1, . . . ,N are resampled using the IMH; thus, particles with high

weights are replicated and particles with low weights are discarded. As a result, the remaining

particles represent the posterior probability density function more accurately, resulting in improved

performance. The PPF-IMH also results in reduced communication overhead. Specifically, in a

traditional parallel architecture, M weights and M index factors have to be shared between the PEs

and the CU, and, in the worst case scenario, there could be M/2 inter-PE communications [35].

For comparison, in the PPF-IMH, only the mth PE range factors xmin,m, xmax,m, xMin, and xMax, the

average weights wmean, j,m, j = 1, . . . ,G×D, and the replication factors ρ j, j = 1, . . . ,G×D need

to be transferred between the mth PE and the CU. Also, there is no inter-PE communication. As a

result, the communication is reduced to (2G×D×P)+(4×P), where G is the number of groups

in each PE, D is the vector dimension and P is the number of PEs. Also, since the IMH resampler

does not need all the normalized weights, resampling can start once the first weight is computed.

Thus, the computation time of the PPF-IMH method increases very mildly when compared to the

parallel PF (PPF) algorithm in [45].
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Algorithm 2 Parallel Particle Filtering with IMH

Input zk and initial set x(ℓ)0 ∼ p(x0), ℓ= 1, . . . ,N

for k = 1 to K time step do

Sampling {Generate particles and weights}
for ℓ= 1 to (N +Nb) do

J(ℓ)∼ U [1,N] {Sample from a discrete uniform distribution between 1 and N}
x̃(ℓ)k ∼ p

(
x(ℓ)k |x(J(ℓ))k−1

)
Calculate w̃(ℓ)

k = p
(

zk|x̃
(ℓ)
k

)
end for

IMH resampling
Initialize the chain

(
x̄(1)k , w̄(1)

k

)
=
(

x̃(1)k , w̃(1)
k

)
for ℓ= 2 to (N +Nb) do

u ∼ U (0,1)

α
(

x̄(ℓ−1)
k , x̃(ℓ)k

)
= min

{
w̃(ℓ)

k /w̄(ℓ−1)
k , 1

}
(

x̄(ℓ)k , w̄(ℓ)
k

)
=


(

x̃(ℓ)k , w̃(ℓ)
k

)
, u ≤ α

(
x̄(ℓ−1)

k , x̃(ℓ)k

)(
x̄(ℓ−1)

k , w̄(ℓ−1)
k

)
, u > α

(
x̄(ℓ−1)

k , x̃(ℓ)k

)
end for

Assign
{(

x(ℓ)k ,w(ℓ)
k

)
, ℓ= 1, . . . ,N

}
to
{(

x̄(ℓ)k , w̄(ℓ)
k

)
, ℓ= (Nb +1), . . . ,(N +Nb)

}
end for

2.3.3 PPF-IMH FPGA implementation

The overall block diagram of the proposed PPF-IMH hardware implementation architecture is

shown in Figure 2.1 which consists of four PEs and one CU. Local PF processing steps, such

as particle generation, weight evaluation and IMH resampling, are executed in each PE. Global

processing steps, such as computing global range and replication factors, are executed in the CU.

Each PE communicates with the CU, but there is no communication among PEs. Figure 2.1 also

shows the data that is transferred between the PE and the CU.
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Algorithm 3 Grouping method

Given particles and weights of the mth PE
(

x(ℓ)k,m,w
(ℓ)
k,m

)
, m = 1, . . . ,P

Find the local extrema at the mth PE
for m = 1 to P do

xmin,m = minℓ x(ℓ)k,m

xmax,m = maxℓ x(ℓ)k,m
Transmit xmin,m and xmax,m to the CU

end for

Find global extrema in the CU
xMin = minm xmin,m
xMax = maxm xmax,m
Send xMin and xMax back to the PEs

Divide particles into groups based on global extrema
Calculate the averages for each group in the PEs
for j = 1 to G do

xmean, j,m = 1
N j

∑ℓ∈Group j
x(ℓ)k,m

wmean, j,m = 1
N j

∑ℓ∈Group j
w(ℓ)

k,m

Send wmean, j,m to the CU
Calculate replication factor ρ j based on wmean, j,m
Send ρ j to each PE (operate in the CU)

end for

2.3.4 Processing element architecture

The PE block diagram is shown in Figure 2.2. The PE processes the input particles and executes

the sampling, weighting and IMH sampling steps. After sampling, the particles are stored in the

particle memory (PMEM), and the replicated particle index factors are stored in the replicated par-

ticle index memory (RMEM). Using the index from RMEM, each PE reads the resampled particles

from PMEM, computes the local range factors xmax,m, xmin,m and transmits them to the CU. After

receiving the global range factors xMin, xMax, the resampled particles are divided into G groups,

and the average particles xmean, j,m and average weights wmean, j,m for the jth group are calculated.

Next, the average weights of each group wmean, j,m are sent to the CU to compute the replication

factor ρ j. The mean particles xmean, j,m are read from the mean particle memory (MPMEM) and

sent to the sampling unit for generating particles in the next time step.
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Figure 2.1: PPF-IMH architecture with four PEs: PE1, PE2, PE3, and PE4. The mth PE, m =
1, . . . ,4 sends the average weights wmean, j,m, local minima xmin,m, local maxima xmax,m to the CU
and CU sends global minima xMin, global maxima xMax and replication factor ρ back to the PEs.

Figure 2.3 shows the IMH sampler architecture. When computing the acceptance probability, we

use the modified method in [64] to avoid division computation. In particular, in our case, we accept

particles following the procedure

(
x(ℓ)k ,w(ℓ)

k

)
=


(

x̃(ℓ)k , w̃(ℓ)
k

)
, uw(ℓ−1)

k ≤ w̃(ℓ)
k(

x(ℓ−1)
k ,w(ℓ−1)

k

)
, uw(ℓ−1)

k > w̃(ℓ)
k ,

where u is a uniform random variable between 0 and 1. Specifically, the weight of a newly gener-

ated particle is first compared with the product of the uniformly distributed random variable u and

the weight of the last accepted particle in the chain. If the new particle weight is larger, it remains

in the chain and its index is assigned to a new replicate index labeled ri; otherwise, it is replicated

once more, and the replicate index ri remains unchanged.

The group-and-mean unit is used to divide the particles into different groups, based on the

global ranges, and to calculate particle and weight averages in each group. For the one-dimensional

problem, the architecture of this unit is shown in Figure 2.4. First, using the global range factors
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xMin, xMax, and the number of groups G, the range for each group, δ = (xMax − xMin)/G is com-

puted. Then, the thresholds γ of each group are generated based on δ as γ j = xMin +( j − 1)δ ,

j = 1, . . . ,G. Each particle is then compared to the thresholds and placed in the corresponding

group. The particle values are accumulated, and the number of particles is counted in each group.

Finally, the mean value xmean, j and the mean weight wmean, j are computed for each group. For the
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multi-dimensional problem, since the computations for each dimension are independent, we apply

this procedure to each dimension in dimension in parallel.
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Figure 2.4: Block diagram of the group-and-mean unit.

2.3.5 Central unit architecture

The CU executes global computations such as global range and replication factor computations.

Its architecture is shown in Figure 2.5. Two comparators and multiplexers (MUXs) are used to

generate xMin and xMax. If the new local range xMin is smaller than the last accepted global range

xMin, we assign xmin,m to xmin, or keep the last value of xMin; a similar procedure is used to find

xMax. We use an accumulator and a multiplier to compute the replication factor. The accumulator

inputs, wmean, j,m, are normalized to guarantee that ∑G×D
j=1 ρ j = N. Thus, after each iteration, the

number of PE particles is unchanged.

2.4 Algorithm performance results

We demonstrate the performance of our proposed PPF-IMH system using two dynamic state-space

examples that have been previously used in the literature for comparison. The first system, state-

space Model 1, depends on a one dimensional (1-D) dynamic state parameter xk and is described
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by the following equations [65]

xk+1 = 1+ sin(0.04πk)+0.5xk + vk

zk =


0.2x2

k +nk, if k ≤ 30

0.5xk −2+nk, if k > 30
. (2.6)

Here, vk is a random process modeled by a Gamma random variable with shape parameter 3 and

scale parameter 2, and nk is a zero-mean, additive white Gaussian noise random variable with

variance 10−5. The second example, state-space Model 2, is also a 1-D state space system that is
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described by [30]

xk+1 = 0.5xk +25
xk

1+ x2
k
+8cos(1.2k)+ vk

zk =
1

20
x2

k +nk (2.7)

where vk and nk are zero-mean, Gaussian random variables with variances σ 2
v = 10 and σ2

n = 1,

respectively.

The estimation performance is computed using the root mean-squared error (RMSE) as

RMSE =

(
1
K

K

∑
k=1

1
MC

MC

∑
l=1

(x̂k,l −xk)
2

)1/2

.

Here, K = 30 is the simulation path length, MC = 100 is the number of Monte Carlo simulations,

xk is the true state k and x̂k,l is the estimated state parameter in the lth Monte Carlo iteration at time

k.

2.4.1 Effect of number of groups

In the proposed PPF-IMH algorithm, we divide the particles in each PE into G groups and use the

average of each group as the new particle. The choice of G is crucial as it impacts the estimation

accuracy. Figure 2.6 shows the RMSE tracking performance with respect to G for Model 1. Here

the number of particles is chosen to be 1,000 and 2,000, and the number of PEs is chosen to be 1,

2 and 4. In all cases, we can see that as G increases, the RMSE decreases. But when G is greater

than an optimal value Gopt, then there is no significant improvement in the RMSE. The Gopt value

depends on the number of particles in each PE. From Figure 2.6, we can see that for N=1,000

particles, when P=4 PEs, then Gopt ≈ 10, when P=2 then Gopt ≈ 15 and when P=1 then Gopt ≈ 20.

For N=2,000 particles, when P=4 then Gopt ≈ 15; this is similar to the case of N=1,000 and P=2.

Furthermore, since for large G the hardware resource utilization is also higher, here we choose

G=10.

2.4.2 Estimation performance

We use a parallel architecture with P=4 PEs for numerical simulations, where each PE processes

250 particles. We apply the parallel algorithm in [45] and also the new PPF-IMH algorithm to

the systems described by Model 1 and Model 2. The corresponding estimation results are shown

21



0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Number of Groups G

R
M

S
E

 

 

1,000 4PE

1,000 2PE

1,000 1PE

2,000 4PE

Figure 2.6: RMSE performance for varying number of groups G and number of PEs.

in Figure 2.7 and Figure 2.8. Table 2.1 shows the RMSE performance for the two models. We

can see that the RMSE performance of the PPF-IMH algorithm is significantly better than the

parallel algorithm in [45] for both models. In addition, the RMSE performance of the PPF-IMH is

close to the PF with systematic resampling, which means that the performance degradation due to

parallelization in [45] is compensated by IMH resampling.
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Figure 2.7: Comparison of estimation performance for Model 1 using the PPF algorithm in [45]
and the proposed PPF-IMH algorithm.

Table 2.1: Comparison of RMSE performances.

Algorithms RMSE for RMSE for
Model 1 Model 2

Systematic resampling 0.24 4.06
Parallel algorithm in [45] 0.36 6.19
Proposed PPF-IMH algorithm 0.26 4.34

2.5 Hardware performance results

The PPF-IMH hardware architecture for the system state estimation in Model 1 was implemented

using Verilog HDL and synthesized on Xilinx Virtex-5 device (XC5VSX240T). The design was

verified using Modelsim. Both the P=1 PE serial architecture and the P=4 PE parallel architectures
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Figure 2.8: Comparison of estimation performance for Model 2 using the PPF algorithm in [45]
and the proposed PPF-IMH algorithm.

were implemented. The RMSE values for the P=1 and P=4 PE architectures are 0.2686 and 0.3172,

respectively. The RMSE is higher than the MATLAB generated numerical results which is 0.26 for

P=4 because of the 14 bits fixed-point FPGA implementation.

2.5.1 Resource utilization

Table 2.2 summarizes the P=1 and P=4 PE architecture resource utilization. The sinusoidal and

exponential functions in the system equations described by Model 1 and Model 2 are implemented

using CORDIC units, and the rest of the units are implemented using DSP cores. For the P=4 PE

implementation, the PE and CU occupied slice utilizations are 408 (1%) and 420 (1%), respectively.

Our resource usage is fairly low; for example, only about 5% of the slice resource is used in a Xilinx

Virtex-5 FPGA. Thus, such an implementation can support a much larger number of particles or
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multiple PFs which are required in biomedical signal processing applications [50].

Table 2.2: Resource utilization comparison.

Unit Occupied Slice Slice Block DSP48Es
Slices Registers LUTs RAM

P=1 398 1,292 1,363 5 10
processing (1%) (1%) (1%) (1%) (1%)
element
P=4 2,052 5,749 6,352 18 46
processing (5%) (3%) (4%) (3%) (4%)
elements

2.5.2 Execution time

Figure 2.9 shows the timing for one iteration of the proposed method for a system using N=1,000

particles and P=4 PEs. For our implementation, Ls = 21 cycles is the sampling step delay deter-

mined by the sinusoid calculation time, Lw = 24 cycles is the weighting latency determined by

the time for calculating the exponential functions, Lr = 2 cycles is the latency of the global range

calculation, Lm = 18 cycles is the time for computing the average value, and Lρ = 20 cycles is the

time for calculating the replication factor. Thus, one PPF-IMH iteration takes Ls +Lw +N +Lr +

N +Lm +Lρ = 585 cycles. For a system clock rate of 100 MHz, the total processing period for one

iteration is Ttotal=5.85 µs.

IMH sampler

Sampling

Weight computing

Global 

ranging

Group

Mean

ρ

Ls Lw N Lr N Lm

Compute     

Lp

Figure 2.9: Execution time of proposed PPF-IMH method.
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2.5.3 Communication overhead

The communication overhead of the proposed algorithm for a system using N=1,000 particles,

P=4 PEs and G=10 groups is 96 bytes. This is a significant reduction compared with the traditional

algorithm whose communication overhead is 2,500 bytes.

2.5.4 Scalability

Figures 2.10a and 2.10b show the execution time and communication overhead, respectively, for

one processing iteration with respect to P, the number of PEs in the proposed parallel architecture.

The processing period curve saturates when P is large because there is no significant speedup when

M/P approaches the constant latency L. In this case, the latency is given by L = Ls +Lw +Lr +

Lm +Lρ = 85 cycles. From Figure 2.6, the RMSE performance slightly decreases as P increases.

Thus, for a PF with N = 1,000 particles, the P=4 PE architecture yields high performance.

In many applications such as in biomedical signal processing, the dimension of the state space

can be very large [50]. Consequently, a very large number of particles is required for satisfactory

performance. In such cases, the processing time can be further reduced by using more PEs. Fig-

ure 2.10a shows the processing period for N=2,000 and N=4,000 particles. For these cases, an

architecture using P=8 PEs provides a better choice.

From Figure 2.10b, we can see that the communication overhead curve increases linearly with

respect to P, and the slope is equal to 2G+4, where G is the number of groups in each PE. Thus,

a lower value of G is more desirable for lower communication overhead. Unfortunately, a lower

value of G results in degraded RMSE performance, and thus the choice of G is a a compromise

between RMSE performance and communication overhead.
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Figure 2.10: Scalability of the proposed parallel architecture.
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Chapter 3

Application of Parallel Particle Filtering to Waveform-agile Sensing

An important application of the particle filtering (PF) algorithm is waveform-agile sensing, where

the waveform is adaptively configured at each time step. The sensing performance has been shown

to increase when the parameters of transmitted waveforms (in active sensing) are adaptively de-

signed or the parameters of observed waveforms (in passive sensing) are optimally selected at each

time step [46, 47, 48]. However, as the waveform parameters need to be adaptively updated at each

time step, the computational complexity of waveform design can be very high. When waveform-

agility is integrated into particle filtering, the computational complexity can become unmanage-

able. However, if the PF can be implemented in parallel, then real-time implementation of adaptive

waveform design schemes will become feasible. In Chapter 2, we proposed a new parallel PF

with independent Metropolis-Hastings (PPF-IMH) sampling which enables real-time processing

of the traditional PF. In this chapter, we apply the proposed PPF-IMH to waveform-agile sensing

to achieve real-time tracking of targets with high RMSE tracking performance.

3.1 Waveform-agile sensing algorithm

The dynamic system described by the state-space Equations (2.1) and (2.2) assumes that mea-

surements zk are observed at time step k. In certain applications, these measurements could be

determined by transmitted waveform sk(t;θ k) with known fixed parameters θ k. One possible way

to improve the estimation performance of the state parameters is to adaptively control the transmit

waveform parameters θ k at each time step k. Specifically, waveform-agile sensing is a closed-loop

feedback optimization procedure that allows adaptive selection of the waveform parameters to be

transmitted at the next time-step in order to optimize a cost function [46, 47, 48]. As our objec-

tive here is to accurately estimate the dynamic state xk, we can choose the cost function to be the

mean-square error (MSE) for the next time step.

We assume that the waveform sk(t;θ k) to be transmitted at time step k has a parameter vector

θ k that can be adaptively selected. The received waveform is analyzed to obtain the measurement

vector zk in Equation (2.2), and, consequently, the measurement noise vector nk in Equation (2.2) is

assumed to have a covariance matrix R(θ k) that depends on θ k. Using zk, we can obtain an estimate
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of the target state, x̂k; thus the estimation error depends on the choice of θ k. The proposed PPF-

IMF approach can be applied to provide an efficient implementation of waveform-agile sensing. In

particular, we will use the proposed PPF-IMF formulation to draw particles x(ℓ)k from an importance

density q(xk|x
(ℓ)
k−1,zk,θ 0, . . . ,θ k), estimate the posterior probability density function and adaptively

choose the waveform parameter θ̂ k that optimizes the predicted MSE in estimating xk [47].

The covariance matrix for the target state estimate at time step k is given by

P(θ k) = Exk,zk|z1:k−1 [(xk − x̂k)
T (xk − x̂k)]

where E[·] is the expectation operator and x̂k is the estimate of xk given the measurement sequence

z1:k−1. The covariance matrix of error estimation can be approximated by the posterior Cramér-Rao

lower bound (PCRLB) [66, 67, 68, 69]

P(θ k)≈ PCRLB(θ k) (3.1)

that depends on the waveform parameter vector θ k. The PCRLB can be computed from the pre-

dicted Fisher information matrix Ik using [66]

PCRLB(θ k) = I−1
k (θ k).

For a system with linear state-transition model, Equation (2.2) can be rewritten as xk = F xk−1+νk

and the process noise νk has covariance matrix given by Q. In this case, the predicted Fisher

information matrix Ik can be represented as

Ik(θ k) = Q−1 +E
[
H̃T

k R−1(θ k)H̃k

]
−Q−1F

(
Ik−1(θ k−1)+FT Q−1F

)−1 FT Q−1

=
(
Q−1 +FT I−1

k−1(θ k−1)F
)−1

+E
[
H̃T

k R−1(θ k)H̃k

]
.

Here, H̃k+1 = [∇xk+1hk+1(xk+1)]
T , where h(·) is the measurement function given in Equation (2.2)

and ∇ denotes gradient operation. The specific representation of the measurement noise covariance

R is related to the waveform type parameters, and will be describe in Equation (3.5). Thus, the

covariance matrix of error estimation can be calculated iteratively as

P(θ k)≈
((

Q−1 +FT P(θ k−1)F
)−1

+E
[
HkR−1(θ k)Hk

])−1
(3.2)

where Hk = ∇xk hk(xk).
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The optimal waveform to be transmitted at the next time step is then obtained by optimizing

the predicted MSE using P(θ k) in Equation (3.2). The waveform-agile sensing problem can thus

be stated as the selection of the waveform parameter

θ̂ k = argmin
θ k

Tr
(
P(θ k)

)
,

where θ̂ k is the optimally chosen waveform parameter vector and Tr(·) is the matrix trace.

3.2 Waveform-agile tracking application

We consider a waveform-agile tracking application problem, where a target’s position and velocity

in a two dimensional (2-D) Cartesian coordinate system need to be estimated. The target is tracked

using a phased-array radar system, transmitting waveforms from a class of generalized frequency-

modulated (GFM) waveforms with Gaussian envelope [70]. A Gaussian-windowed GFM wave-

form, at time step k, is given by

sk(t;θ k) = (πα2
k )

−1/4 e−0.5(t/tr)2/α2
k e j2πβkξ (t/tr), (3.3)

where αk is the shape parameter of the Gaussian envelope, βk is the frequency modulation (FM)

rate, ξ (t/tr) is the time-varying phase function, and tr = 1 s is a reference time. The waveform

parameter vector that can be configured is given by θ k = [αk βk]
T . An example of waveforms we

use are linear FM (LFM) waveforms; these are waveforms with quadratic phase function ξ (t/tr) =

(t/tr)2.

The target state at time k can be represented as xk = [xk yk ẋk ẏk]
T , where (xk,yk) and (ẋk, ẏk) are

the position and velocity of the target, respectively, in 2-D Cartesian coordinates. For this system,

the state-transition is linear, so Equation (2.1) can be rewritten as xk = F xk−1 + νk. Here, the

process noise νk has covariance matrix given by Q. The state transfer function F and Q are given

by

F =



1 0 δt 0

0 1 0 δt

0 0 1 0

0 0 0 1


and Q = q



δ 2
t /3 0 δ 2

t /2 0

0 δ 2
t /3 0 δ 2

t /2

δ 2
t /2 0 δt 0

0 δ 2
t /2 0 δt


(3.4)
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where δt is the step interval and q is the intensity factor. If the radar is located at position (0, 0),

the nonlinear relation between xk and zk is given by

zk = [rk ṙk φk]
T +nk = h(xk)+nk

=
[(

x2
k + y2

k
)1/2

(ẋk xk + ẏk yk)/rk arctan(yk/xk)
]T

+nk

where nk is measurement noise with zero mean and covariance matrix Rk(θ k).

In order to compute the covariance matrix of error estimation in (3.2), we first compute H̃k =

[∇xk hk(xk)]
T as

∇xk hk(xk) =



∂yk
∂xk

∂ ṙk
∂xk

∂φk
∂xk

∂yk
∂yk

∂ ṙk
∂yk

∂φk
∂yk

∂yk
∂ ẋk

∂ ṙk
∂ ẋk

∂φk
∂ ẋk

∂yk
∂ ẏk

∂ ṙk
∂ ẏk

∂φk
∂ ẏk


=



2xk

cyk

2 fc

c

(
ẋk

yk
− ṙkxk

y2
k

)
−yk

y2
k

2yk

cyk

2 fc

c

(
ẏk

yk
− ṙkyk

y2
k

)
xk

y2
k

0
2 fc

c
(xk/yk) 0

0
2 fc

c
(yk/yk) 0


where fc is the carrier frequency of the waveform and c is the waveform speed of propagation in

the medium. Assuming high signal-to-noise ratio (SNR), the noise covariance matrix R(θ k) can

be approximated by the CRLB, which corresponds to a 3×3 matrix that for the GFM waveform in

(3.3) is given by [70]

R(θ k) = ηk


1

2α2
k
+g(βk) 2πd(βk) 0

2πd(βk) (2π)2α2
k /2 0

0 0 ψ

 . (3.5)

Here, ηk is the SNR, ψ is determined by the radar array properties and is independent of waveform

parameter θk and

g(βk) = (2πβk)
2
∫ ∞

−∞

1
αk

√
π

exp(−t2 ξ 2(t)/α2
k )dt

d(βk) = (2πβk)
2
∫ ∞

−∞

t
αk

√
π

exp(t2 ξ ′(t)/α2
k )dt .

We can optimally choose the waveform parameter θ k to minimize the predicted MSE (PMSE)

using the following three steps.
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Figure 3.1: Block diagram of tracking with waveform design.

• Prediction: Predict the target state at time k as x̃k = Fx̂k−1, where x̂k−1 is the estimated state

at time (k−1) using the PPF-IMH algorithm.

• Optimization: Use x̃k to calculate E[H̃T
k R−1(θ k)H̃k]≈ HT

k (x̃k)R−1(θ k)Hk(x̃k), where Hk =

∇xk hk(xk) .. Calculate PMSE(θ k) for every possible waveform parameter and choose θ opt
k ,

which minimizes PMSE(θ k).

• Updating: Update observation noise covariance R(θ opt
k ).

We can see that the computational complexity of the waveform design method is fairly high

as 2 matrix additions, 5 matrix multiplications and 5 matrix inversions (including a 4× 4 matrix

inversion) are included for each waveform parameter set. In the next section, we will modify the

algorithm and make it amenable for FPGA hardware implementation.

3.3 FPGA implementation of waveform design

The overall block diagram of the hardware architecture for waveform design is shown in Figure 3.1.

It consists of a PPF-IMH PF unit (described in Section 2.3.2) and a waveform design unit. At each

time step k, we use the PPF-IMH to obtain x̂k, which is the estimation of xk given measurements

z0 to zk. Waveform design steps such as prediction, optimization and updating, are operated in the

waveform design unit.

The waveform design block diagram is shown in Figure 3.2. The most computationally inten-

sive step is the optimization. In the original optimization method, we find R(θ opt
k ) by

θ opt
k = min

θ k
Tr
{(

(Q−1 +FT I−1
k−1(θ k−1)F)−1 + H̃T

k R−1(θ k)H̃k

)−1
}
.
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Figure 3.2: Architecture of waveform design unit.

This involves a 4×4 matrix inversion, which is difficult to implement in hardware. Using Wood-

bury’s matrix identity [71], we modify the algorithm in order to reduce the computational com-

plexity as

θ opt
k = min

θ k
Tr
{((

Q−1 +FT I−1
k−1(θ k−1)F

)−1
+ H̃T

k R−1(θ k)H̃k

)−1
}

= min
θ k

Tr
{

C+CH̃T
(
−R(θ k)− H̃kCH̃T

k

)−1
H̃kK

}
= min

θ k
Tr
{

CH̃T
k D−1H̃kC

}
.

Here, C is a symmetric matrix that is given by

C = Q−1 +FT I−1
k−1(θ k−1)F =



a 0 b 0

0 a 0 b

b 0 d 0

0 b 0 d


,

where a, b and d do not depend on θ k and D =−R(θ k)−H̃kCH̃T
k is a 3×3 matrix. As a result, we

simplify the 4×4 matrix inverse problem into a 3×3 matrix inverse problem. Furthermore, using

H̃k+1CH̃T
k+1 =


4a/c2 4b fc/c2 0

4b fc/c2 4d fc
2/c2 0

0 0 a/r2
k+1

 ,

and by substituting R(θ k), and simplifying the matrix computation, we obtain

D =−


A11 A12 0

A21 A22 0

0 0 B

=−


2/αk +4a/c2 4b fc/c2 0

4b fc/c2 2αk +4d f 2
c /c2 0

0 0 ψ +a/y2
k

 .
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The inverse matrix can be represented as

D−1 =−


A22/ζ −A12/ζ 0

−A12/ζ A11/ζ 0

0 0 1/B


where ζ = |A11A22 −A2

12|. Thus, the 3×3 matrix inversion requires only 13 multipliers, 5 adders

and 2 dividers.

3.4 Waveform target tracking algorithm simulation

The simulation setup consists of a single target moving in a 2-D plane. The initial position and

velocity of the target are x0 = [5000 5000 100 100]T . We set the waveform parameters to

106 < αk < 1014 and βk = 0. For the case without waveform design, we choose mid range value

αk = 109. We use N=1,000 particles to track the target. The tracking results with and without

waveform design for the x and y positions are shown in Figures 3.3a and 3.3b, and Table 3.1

compares the tracking RMSE. We can see that the tracking performance with waveform design is

much better and the RMSE is improved by about 10 times for the x and y position estimations.

Table 3.1: Comparison of RMSE performances.

State Parameter Numerical simulation Numerical simulation FPGA implementation
without with with

Waveform-agility Waveform-agility Waveform-agility
x-position 141.82 15.12 37.57
y-position 161.52 13.91 33.27
ẋ-velocity 30.53 17.46 22.56
ẏ-velocity 37.00 16.18 20.23

3.5 Target tracking hardware synthesis results

The waveform radar tracking hardware architecture described in Section 3.2 is implemented using

Verilog HDL and synthesized on a Xilinx Virtex-5 device (XC5VSX240T). The design was also

verified using Modelsim. Here, we use a P=4 PEs PPF-IMH parallel architecture for a N=1,000

particle system. The particle weights are represented using 18-bit fixed-point. The target tracking

result of the FPGA implementation is shown in Figure 3.4 to match well with the simulation results.
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The RMSE results from hardware experiments are shown in Table 3.1. Use of fixed-point data

format degrades the performance since extremely small values are determined to be zero.

3.5.1 Resource utilization

Table 3.2 summarizes the resource utilization for the waveform design unit and the P = 4 PEs

parallel architecture. The sinusoidal and exponential functions are implemented using CORDIC

units, other calculations are implemented using DSP cores. We can see that the hardware resource

utilization rate is fairly low; only about 10% of the total hardware resource is used. Thus, 10 such

architectural units should be able to fit onto a single Xilinx Virtex-5 platform.

Table 3.2: Resource utilization on Xilinx XC5VSX240T.

Unit Occupied Slice Slice Block DSP48Es
Slices Registers LUTs Ram

Waveform 673 735 2229 3 45
design part (1%) (1%) (1%) (1%) (4%)
P=4 3,261 7,590 10,710 48 96
processing (8%) (5%) (7%) (9%) (9%)
elements

3.5.2 Execution Time

Figure 3.4 shows the timing chart for one iteration of the proposed radar target tracking system.

We can see that additional LWA cycles are needed to obtain the optimal waveform parameter. In our

design, LWA = 59. In addition, Ls = 4 is the latency of the sampling step, Lw = 56 is the weighting

latency determined by the computing cycles of the exponential functions, Lr = 2 is the latency of

the global range calculation, Lm = 29 is the time to compute the average value and Lρ = 34 is the

latency for calculating the replication factor. Thus, one iteration takes Ls+Lw+N+Lr +N+Lm+

Lρ + LWA=684 cycles. For a system clock rate of 100 MHz, the total processing period for one

iteration is Ttotal = 6.84 µs.

35



0 10 20 30 40 50 60 70 80 90 100
0

50

100

150

200

250

300

350

Time step

R
M

S
E

 X

 

 

With WD
Without WD
FPGA

(a)

0 10 20 30 40 50 60 70 80 90 100
0

50

100

150

200

250

300

350

400

450

500

Time step

R
M

S
E

 Y

 

 

With WD
Without WD
FPGA

(b)

Figure 3.3: RMSE of the (a) x-position and (b) y-position at each time step, demonstrating the
improvement in performance when the waveform is adaptively selected at each time step.
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Figure 3.4: Execution time of waveform radar tracking problem.
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Chapter 4

Tracking Neural Activity Using Particle Filtering

In Chapter 2, we proposed a new PPF-IMH algorithm to estimate the state of dynamic system in

real-time. In this chapter, we investigate the application of PPF-IMH in biomedical signal process-

ing, especially in tracking the positions and moments of neural sources.

EEG and MEG are two techniques used to measure the neural activities in the brain. Compared

to fMRI, EEG and MEG offer superior temporal resolution which allows study of the dynamics of

neural activities that occur on the order of tens of milliseconds [10]. Localizing and tracking local-

ized current dipoles using EEG/MEG measurements can provide very useful information during

brain surgery for patients with medically uncontrolled partial seizures [2]. Although EEG/MEG

yield high temporal resolution, high spatial resolution can be achieved by finding an accurate solu-

tion to the EEG/MEG inverse problem which is the estimation of the localized current dipole model

from EEG/MEG measurements. In this chapter, we present a real-time solution of the EEG/MEG

inverse problem based on the PPF-IMH algorithm. The proposed algorithm has good RMSE track-

ing performance and also increased processing speed. We also implement the resulting algorithm

on a Xilinx Virtex-5 FPGA platform to demonstrate its applicability to real-time EEG/MEG track-

ing in systems.

4.1 EEG and MEG inverse problems and dipole source model

EEG and MEG have had success as clinical tools in localizing neural electrical activities by solving

the so-called ”electromagnetic inverse problem”. Given a set of EEG or MEG signals from an array

of external sensors, the inverse problem is to estimate the properties of the current sources in the

brain that produced these signals. In this section, the dipole source model for EEG and MEG

inverse problem is presented.

Analytic solutions for the MEG/EEG source localization problem, based on current dipole

source models, can be obtained when the head is assumed to consist of nested concentric spheres

of constant conductivity [1, 15, 19, 20, 21]. Following this model, the primary current Ik(r) at time
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k can be represented in terms of Nd current dipoles as [72]

Ik(r) =
Nd

∑
j=1

mk, j δ (r− rk, j) ,

where rk, j = [r(x)k, j r(y)k, j r(z)k, j]
T and mk, j = [m(x)

k, j m(y)
k, j m(z)

k, j]
T are the three-dimensional (3-D) location

and moment vectors, respectively, in Cartesian coordinates, of the jth current dipole, j = 1, . . . ,Nd ,

at time k, k = 1, . . . ,K. The moment of the jth dipole is given by

mk, j = qk, j sk, j,

where qk, j = [q(x)k, j q(y)k, j q(z)k, j]
T and sk, j are the orientation vector and amplitude of the dipole . The

MEG/EEG signals acquired by M sensors can be represented as [1]

zk = h(xk)+nk = Ak sk +nk, (4.1)

where zk = [zk,1 zk,2 . . . zk,M]T and nk = [nk,1 nk,2 . . . nk,M]T are the M × 1 signal and measurement

noise vectors, respectively, from the M sensors, xk = [xTk,1 xTk,2 . . . xTk,Nd
]T is the Nd ×1 dipole source

parameters vector, and xk, j = [rTk, j qT
k, j sk, j]

T is the 7-D parameter vector consisting of the 3-D lo-

cation rk, j, 3-D orientation qk, j and 1-D amplitude sk, j of the jth dipole source. We assume that

the dipole sources are mutually independent of each other and statistically independent of the noise

nk, and that the noise components nk,m, m = 1, . . . ,M, are mutually independent as in [1]. Also in

Equation (4.1), sk = [sk,1 sk,2 . . . sk,Nd ]
T is the amplitude vector corresponding to the Nd dipoles and

Ak is the M×Nd lead-field matrix that depends on the jth dipole location rk, j and orientation qk, j.

Note that MEG/EEG systems have different lead-field matrices. Specifically, the (m, j)th element

ak,m, j, j = 1, . . . ,Nd , m = 1, . . . ,M, of the lead-field matrix Ak at time step k of an EEG model is

given by [8]

ak,m, j =
1

4πσ
cos(αk, j)

[
2

d3
k,m, j

(
|rk, j| cos(γk,m, j)− r

)
+
(
dk,m, j |rk, j|

)−1 −
(
r |rk, j|

)−1

]

+
1

4πσ
sin(αk, j)cos(βk, j)sin(γk,m, j)

[
2r

d3
k,m, j

+
dk,m, j + r

r dk,m, j (r−|rk, j|+dk,m, j)

]
. (4.2)

The corresponding dipole source model is given in Figure 4.1. Here r is the radius of the head

model, dk,m, j is the distance between the jth dipole source and the mth sensor, γk,m, j is the angle

between the vector pointing to the mth sensor and the vector pointing to the jth dipole location, αk, j
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is the angle between the jth dipole orientation and the vector pointing to the jth dipole location,

βk, j is the angle between the plane formed by the jth dipole and the origin, and σ is the head tissue

conductivity constant. Also, |rk, j|=
[
(r(x)k, j)

2 +(r(y)k, j)
2 +(r(z)k, j)

2
]1/2 in Equation (4.2).

r

dk,(m, j)

"k, j "k,(m, j) m th

EEG

sensor

j th dipole source model

d r
"

Figure 4.1: Equivalent current dipole model for EEG/MEG localization for the jth dipole source
and the mth EEG/MEG sensor. Here, d = dk,m, j, γ = γk,m, j, and α = αk, j, as defined in Equation (4.2).

For an MEG system, the (m, j)th lead-field matrix element for the mth sensor, with position rm

and orientation qm, is given by [8]

ak,m, j =

[
µ0

4πg2(rk, j,rm)
rk, j ×

(
g(rk, j,rm)qm − fT(rk, j,rm)qm rm

)]T
qk, j, (4.3)

where (a×b) denotes the cross product between vectors a and b. The scalar g(rk, j,rm) and the

vector f(rk, j,rm) are obtained as

g(rk, j,rm) = dk,m, j
(
dk,m, j |rm|+ |rm|2 − rTk, jrm

)
f(rk, j,rm) =

(
d2

k,m, j

|rm|
+ηk,m, j +2dk,m, j +2 |rm|

)
rm −

(
dk,m, j +2|rm|+ηk,m, j

)
rk, j

where ηk,m, j = (rk, j − rm)
Trm/dk,m, j, µ0 is the permitivity of free space, and dk,m, j is defined in

Equation (4.2).

The MEG/EEG inverse problem is to dynamically estimate the dynamic parameters, sk, j, rk, j

and qk, j, of the jth dipole source at time step k from the MEG/EEG signal zk defined in Equation

(4.1).
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4.2 State-space model of the dipole source tracking problem

First, we build the state-space model (Equation (2.1) and (2.2)) for single dipole source tracking

problem. The dynamic evolution model of the jth EEG/MEG dipole sources is given by

xk, j = f (xk−1, j)+νk−1 = xk−1, j +νk−1 , (4.4)

where xk, j = [rTk, j qT
k, j sk, j]

T is the 7-D state vector to be estimated and νk is the modeling error.

Based on Equation (4.1), the measurement model of the jth dipole source can be represented as

zk, j = h(xk, j)+nk = Ak, j(rk, j,qk, j) sk, j +nk , (4.5)

where Ak, j is lead field of the jth dipole source which is a function of rk, j,qk, j. nk is the measure-

ment noise that is independent of the modeling noise νk in Equation (4.4).

Using the state-space model in Equations (4.4) and (4.5), the PF algorithm described in Chap-

ter 2 provides an iterative approach to sequentially compute the posterior probability density func-

tion of the state xk, j at every time step k, conditioned on the MEG/EEG measurements z1:k, j,

p(xk, j|z1:k, j). The parameters of dipole source can be estimated by x̂k, j ≈ ∑N
ℓ=1 w(ℓ)

k x(ℓ)k, j. Since

there are only 7 unknown parameters for the jth dipole, the PF can achieve good tracking perfor-

mance with a fairly small number of particles. However, when tracking multiple dipole sources,

the dimension of state vector increases. Consequently, the number of particles required for accu-

rate tracking also increases, resulting in a significant increase in the PF computational complexity.

Next, we propose tracking multiple dipole sources using multiple particle filtering (MPF) to reduce

the number of particles required.

4.3 Tracking multiple neural dipole sources using MPF

In the state-space model (Equation (2.1)), if the dimension Dx of the state vector xk is large, a large

number of particles would be required to accurately estimate the state.In this case, multiple particle

filtering (MPF) [49, 50] can be used to reduce the number of particles required.

4.3.1 Multiple particle filtering

The main idea of MPF is for Dx > 1, the state vector can be represented by xT
k = [xT

k,1 xT
k,2 . . . xT

k,J],

where each subvector xk, j is of dimension L =Dx/J (with L assumed to be an integer). Therefor
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the state update equation can be rewritten as

xk,1 = f1(xk−1,1)+νk−1,1

xk,2 = f2(xk−1,2)+νk−1,2

...

xk, j = f j(xk−1, j)+νk−1, j

...

xk,J = fJ(xk−1,J)+νk−1,J

where νk, j is the jth modeling error process of dimension L.

A different PF needs to be used for each sub-vector xk, j, using N particles x(ℓ)k, j with corre-

sponding weights w(ℓ)
k, j, ℓ = 1, . . . ,N and j = 1, . . . ,J. When implementing the MPF, the particle

propagation and resampling steps are the same as with the SIR PF. However, the weight updating

step is different and given by [49]

w(ℓ)
k, j ∝ w(ℓ)

k−1, j

p(zk|x
(ℓ)
k, j, x̃k,− j) p(x(ℓ)k, j|x

(ℓ)
k−1, j, x̂k−1,− j)

q j(x
(ℓ)
k, j|x

(ℓ)
k−1, j, x̂k−1,− j,zk)

where x̃k,− j and x̂k−1,− j are predicted and estimated values of all the states at time step k except of

the jth state vector xk, j, respectively. If the same importance density is used by all sub-vectors, that

is, q j(xk, j|xk−1, j,zk) = p(xk, j|xk−1, j), then the weight update function is reduced to

w(ℓ)
k, j ∝ w(ℓ)

k−1, j p(zk|x
(ℓ)
k, j, x̃k,− j) , (4.6)

where the predicted values are obtained from

x̃k, j =
N j

∑
ℓ=1

w(ℓ)
k, jx

(ℓ)
k, j . (4.7)

The sub-vector state-space formulation suggests that, at each time step k, the jth PF obtains a

prediction of its state and provides the information to the remaining J − 1 PFs. The PFs use the

exchanged information for computing the weights of their particles and eventually for generating

new particles.
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4.3.2 Tracking a known number of dipole sources using MPF

To efficiently track multiple dipole sources, we divide the high-dimensional multiple-dipole state

space model into multiple, low-dimensional single-dipole state space models that can be solved

using MPF with smaller number of particles. We assume that the number of dipoles is constant

and known to be Nd . Then, for the MPF formulation, we divide the 7Nd×1 vector xk into Nd

single-dipole 7×1 vectors xk, j, j = 1, . . . ,Nd . As before, xk, j includes the location, orientation and

amplitude of the jth dipole source. The state-space model can be written as



xk,1

xk,2

...

xk,Nd


=



xk−1,1 +νk−1

xk−1,2 +νk−1

...

xk−1,Nd +νk−1


(4.8)

zk =
Nd

∑
j=1

zk, j = Ak sk +nk (4.9)

Then, we use Nd sub-PFs to track the Nd different dipole sources. The particle generation and

resampling step of each sub-PF are implemented using the sampling importance resampling (SIR)

PF [30]. However, the weight update step for the jth sub-PF is modified to [49]

w(ℓ)
k, j ∝ w(ℓ)

k−1, j p
(

zk|x
(ℓ)
k, j, x̃k,− j

)
, ℓ= 1, . . . ,N

where x(ℓ)k, j and w(ℓ)
k, j are the ℓth particle and ℓth weight of the jth sub-PF.

x̃k,− j = [x̃Tk,1 . . . x̃Tk, j−1 x̃Tk, j+1 . . . x̃Tk,Nd
]T

are the predicted dipole parameters, excluding x̃k, j, and

x̂k,− j = [x̂Tk,1 . . . x̂Tk, j−1 x̂Tk, j+1 . . . x̂Tk,Nd
]T

are the estimated dipole parameters, excluding x̂k, j. Thus, the predicted values of the jth dipole

parameters are obtained as x̃k, j = ∑N
ℓ=1 w(ℓ)

k−1, j x(ℓ)k, j. Note that the overall number of required particles
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can be significantly reduced since we use the predicted value x̃k,− j instead of a set of random

particles x(ℓ)k,− j to calculate the likelihood function

p(zk|x
(ℓ)
k ) = p(zk|x

(ℓ)
k, j, x̃k,− j).

By using the multiple PF, the 7Nd dimensional estimation problem is reduced to multiple 7

dimensional estimation problems. Compared to traditional PF, this method can achieve better

tracking performance in terms of mean square error (MSE) using the same number of particles

or achieve same MSE with much less particles as shown in Section 4.3.3.

When applying the MPF to track neural activity, we make the critical assumption that the

number of dipole sources is fixed and known at any given time step. However, in real scenarios,

the number of dipoles is unknown and changing over time. As a result, the number of dipoles has

to be estimated together with their location, orientation, and amplitude at each time step.

4.3.3 Neural activity tracking results of MPF

Synthetic data results: The RMSE performance results are first demonstrated for both the single-

dipole and the multiple-dipole neural activity tracking problem using synthetic data. The data

was created by inserting current dipoles into the sphere head model and calculating the resulting

magnetic field using Equation (4.3) with Gaussian noise. Figures 4.2a and 4.2b compares the true

location and moment of the x Cartesian coordinate of the dipole with the estimated ones obtained

using both the SIR PF (SPF) tracker and the MPF tracker. Note that the SPF used 5,000 particles,

and each of the two sub-PFs of the MPF used 1,000 particles each. For the Nd=2 multi-dipole case,

the tracking results are shown in Figures 4.2c-4.2f. The MPF used two SPFs with 5,000 particles

each, and the PF used 20,000 particles.

The estimation performance in terms of RMSE for both dipole cases is summarized in Ta-

bles 4.1 and 4.2. 100 Monte Carlo runs were performed to get the RMSE. Here, we also include

RMSE of the Beamforming algorithm [73, 74] for comparison. We can see that although PF and

MPF both provide reasonable estimates of the dipole sources, the MPF tracker needs significantly

fewer number of particles. When the MPF tracker uses the same number of particles as the PF,

it results in improved RMSE performance. For example, the RMSE performance improves from

0.398 mm to 0.253 mm for the single-dipole model and from 0.576 mm to 0.377 mm for the two-
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dipole model. Furthermore, the RMSE of MPF is also smaller than the Beamforming algorithm

when using 5,000 particles for single dipole and 20,000 for two dipoles as shown in Table 4.1 and

4.2.

Table 4.1: Comparison of RMSE for single-dipole model

Approach Beamforming PF Multiple PF
Number of particles NaN 5,000 2,000 5,000
3-D Location RMSE 3.12 mm 3.98 mm 3.63 mm 2.53 mm
3-D Moment RMSE 2.41 nA 3.32 nA 2.95 nA 2.06 nA

Table 4.2: Comparison of RMSE for two-dipole model

Approach Beamforming PF Multiple PF
Number of particles NaN 20,000 10,000 20,000

Dipole1 Location RMSE 4.16 mm 5.76 mm 4.91 mm 3.77 mm
Dipole2 Location RMSE 4.22 mm 5.47 mm 4.86 mm 3.59 mm

Real data results: The performance the new MPF approach is also compared with the SPF

using real data from a language study experiment that was done in [74]. In this experiment, 87

incongruent sentences were given to the subjects sequentially. After a 300 ms warning tone, fol-

lowed by a 1,200 ms pause, a sentence was presented. The time lapse between two sentences was

4,100 ms. MEG signals were recorded with a 151 sensor CTF Omega System, lowpass filtered at

100 Hz, and digitized at 300 Hz. The MEG data was averaged from 87 trials to increase the signal-

to-noise ratio (SNR). The tracking trajectory results using single PF and MPF are shown in Figure

4.3. Figure 4.4 compares the tracking performance of the PF and the MPF with the Beamforming

algorithm [73, 74]. Here, we used 10,000 particles for the PF and 5,000 particles for each of the

sub-PFs of the MPF. Note that for real data, we do not have the true location of the dipole sources,

however, we can see that the tracking results of MPF and Beamforming are close to each other.

4.4 Hardware implementation of proposed neural dipole tracking system

The overall block diagram of the proposed hardware architecture is shown in Fig. 4.6(a). It consists

of J=Nd processing elements (PE) connected by a global bus, where Nd is the number of current

dipoles and also the number of sub-PFs. Each PE implements the computation steps for one sub-PF

concurrently as shown in Fig. 4.6(a). The inter-PE communication is quite small: PE j transmits
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the predicted value x̃ j,k to other PEs and receives x̃− j,k from other PEs to update the weights, where

x̃ j,k can be calculated using (4.7).

Here, we employ the parallel PF independent Metropolis-Hastings (PPF-IMH) architecture [75]

which can significantly reduce processing time and communication overhead. The block diagram

of each PE is given in Figure 4.6(b). Each PE consists of four computing engines (CE) which

operate in parallel and one central unit (CU). The M particles are equally distributed among four

CEs, and the local PF processing steps, such as particle generation, weight evaluation and IMH

resampling, are executed in each CE.

In order to reduce the communication overhead, the particles in each CE are distributed into

groups based on the global range XL and XH computed in the CU. The average value µ x̃ and

average weight µw of the particles in the group are used to form the new particles. This method

may affect the estimation accuracy since the average value in each group is replicated. To improve

estimation performance while keeping the communication overhead low, we use IMH resampling

in each CE and transmit the range of the resampled particles to the CU. The resampled particles

represent the posterior probability density function more accurately, thereby improving the esti-

mation performance. In addition, since the IMH sampler can be easily pipelined, the processing

period is not increased.

The MPF PPF-IMH hardware architecture is implemented using Verilog HDL and synthesized

on the Xilinx Virtex-5 device (XC5VSX240T). The design was verified using Modelsim.

Resource utilization: Table 4.3 summarizes the architecture resource utilization for a two-dipole,

8,000 particle system. Each dipole is processed by a sub-PF, each sub-PF consists of 4 CEs, and

each CE processes 1,000 particles. The exponential functions are implemented using CORDIC

units, and the rest of the units are implemented using DSP cores.

Table 4.3: Resource utilization on Xilinx XC5VSX240T for MPF system

Unit Occupied
slices

Slice
Reg.

Slice
LUTs

Block
Ram

DSP48Es

4-CE 25,820
(68%)

81,837
(54%)

84,164
(56%)

247
(47%)

606
(57%)

Execution Time: Figure 4.5 shows the timing for one iteration of the proposed method. For our
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implementation, M/4=1000, Ls=2 is the sampling step delay, Lw=78 is the weighting latency de-

termined by the calculation period of the exponential functions, Lr=12 is the latency of calculating

the global ranges, and Lρ=23 is the computing time for the replication factor. Thus, one iteration

takes Ttotal=(Ls +M/4+Lw +M/4+Lr +M/4+Lρ)×Tclk=3,115 cycles. We choose the system

clock rate as 100 MHz. The total processing period for one iteration is only Ttotal=31.15 µs.
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Figure 4.2: Comparison between the true (red) and estimated, using SIR PF or SPF (black) and
MPF (blue), x Cartesian coordinate of (a) single dipole location; (b) single dipole moment; (c)
Dipole 1 location; (d) Dipole 2 location; (e) Dipole 1 moment; and (f) Dipole 2 moment.
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Chapter 5

Tracking Unknown Number of Dipole Sources Using PHD Filtering

The approaches mentioned in Chapter 4 assume that neural activity can be represented by a fixed

and known number of current dipole sources. However, this is not a realistic assumption: neural

activity varies with time, so current dipole source models and their parameters should also vary with

time. In this chapter, we propose a new algorithm based on the probability hypothesis density filter

(PHDF) for estimating both the unknown number of neural dipole sources and their parameters for

real EEG/MEG data, with much fewer particles.

5.1 Problem formulation

In order to realistically model neural activity, the number of dipole sources Nk is unknown and

changes with time. Under this scenario, the multiple dipole source state and measurements are

modeled as random finite sets (RFS) [76, 51]. Thus, the problem under consideration is to estimate

Nk as well as the parameters of the Nk dipole sources at each time step k.

Using the RFS formulation, the multiple dipole source state RFS is given by

Xk = {xk,1, . . . ,xk,Nk},

where xk, j = [rTk, j qT
k, j sk, j]

T is the state vector of the jth dipole source in Equation (4.4). Specifi-

cally, the multiple dipole source state RFS Xk is a finite-set-valued random vector whose elements,

xk, j, j = 1, . . . ,Nk, are jointly characterized by a discrete probability distribution. Similarly, the

multiple sensor measurement RFS is given by Zk = {zk,1, . . . ,zk,Mk} where zk,m is the mth measure-

ment in Equation (4.1) and Mk is the number of measurements at time step k; the measurements

could also include false alarm measurements due to the presence of clutter. Since both the number

of sources Nk and the number of measurements Mk can vary randomly in time, it is difficult to esti-

mate both Nk and Xk at each time step k, given all measurements, up to time k, Z1:k = {Z1, . . . ,Zk}.

It is also not known a priori which source has generated a given measurement. As dipole sources

generate neural activity independently of one another, the PHDF has been shown to provide an

efficient approach towards solving this problem [52, 51].
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5.2 Probability hypothesis density Filtering

Assuming a state RFS Xk, with xk ∈ Xk, and a measurement RFS Zk, integrating the probability

hypothesis density or complexity function ζ (xk|Zk) on a given region R, provides the expected

number of sources present in region R. Also, the locations of the peaks of the density provide

estimates of the parameters of the sources in the region R [51]. To formulate the PHDF for the

dipole source estimation problem, we use the method in [51] to first describe an RFS model for

time evolution of the multiple dipole source state and an RFS model for the sensor measurements.

Specifically, given the dipole source state Xk−1 at time step k − 1, the dipole source state Xk is

formed by combining: (a) dipole sources still present from the previous time step, Xprev
k|k−1; (b)

dipole sources that are new at the present time step, Xnew
k ; and (c) dipole sources spawning from

sources from the previous time step, Xspn
k|k−1. For the RFS measurement model, we consider the

likelihood p(Zk|xk) for each possible dipole source state xk ∈ Xk.

The PHDF assumes that the predicted multiple dipole source posterior density p(xk|Z1:k−1)

can be completely characterized by its first moment that can be represented by the multiple dipole

source RFS probability hypothesis density or intensity function ζ (xk|Z1:k−1) [51]. Thus, given the

posterior intensity ζ (xk−1|Z1:k−1) at time step (k−1), the predicted intensity ζ (xk|Z1:k−1) can be

obtained as [51]:

ζ (xk|Z1:k−1) = ζ (xnew
k |Z1:k)+

∫ [
Prk|k−1(x̃k−1) p(xk|x̃k−1)+ (5.1)

ζ (xspn
k |Z1:k−1)

]
ζ (x̃k−1|Z1:k−1)dx̃k−1

where xnew
k ∈Xnew

k , xspn
k ∈Xspn

k|k−1, and Prk|k−1(xk−1) is the probability that a dipole source that was

present at time step (k−1) will still be present at time step k. The posterior intensity is given by

ζ (xk|Z1:k) = (1−Prdet
k (xk))ζ (xk|Z1:k−1)+ (5.2)

∑
Zk∈Z1:k

Prdet
k (xk) p(Zk|xk) ζ (xk|Z1:k−1)

ζ (Zclt
k )+

∫
Prdet

k (x̃k) p(Zk|x̃k)ζ (x̃k|Z1:k−1)dx̃k

where Prdet
k (xk) is the probability of detecting a dipole source at time step k. As the received multi-

ple measurement RFS Zk can also include clutter, Zclt
k , due to possible false alarms, ζ (Zclt

k ) is used

to denote the clutter intensity; it is assumed that the clutter RFS is independent of the dipole source
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measurement RFS and that the dipole source measurement RFS elements are mutually indepen-

dent.

5.3 PHDF implementation using particle filtering

The PHDF prediction and update equations in Equation (5.1) and (5.2) involve multiple integrals

that do not have computationally tractable closed form expressions, even for the simple linear

Gaussian dynamic case. One possible implementation of the PHDF is using particle filtering [54].

Specifically, assuming that the intensity function ζ (xk−1|Z1:k−1) at time step (k − 1) can be ap-

proximated by a set of Np particles x(ℓ)k−1 and their corresponding weights w(ℓ)
k−1, ℓ= 1, . . . ,Np,

ζ (xk−1|Z1:k−1) =
Np

∑
ℓ=1

w(ℓ)
k−1δ (xk−1 −x(ℓ)k−1). (5.3)

where δ (·) is the Dirac delta function, then substituting (5.3) into (5.1), we obtain

ζ (xk|Z1:k−1) = ζ (xnew
k |Z1:k)+

Np

∑
ℓ=1

w(ℓ)
k−1

[
Prk|k−1(x

(ℓ)
k−1) p(xk|x

(ℓ)
k−1)+ζ (xspn

k |Z1:k−1)
]
. (5.4)

A particle approximation of ζ (xk|Z1:k−1) can be obtained by applying importance sampling to each

term in (5.4). Specifically, the samples x(ℓ)k , ℓ= 1, . . . ,Np, are drawn from the importance density

function qk(x
(ℓ)
k |x(ℓ)k−1,Zk)= p(x(ℓ)k |x(ℓ)k−1), and the samples x(ℓ)k , ℓ= Np +1, . . . ,(Np +Nq) are drawn

from the importance intensity function ξk(x
(ℓ)
k |Zk)= ζ (xnew

k |Z1:k). Here Nq is the additional number

of particles that are needed to represent the new dipole sources. Then, the prior intensity function

ζ (xk|Z1:k−1) can be approximated by particles x(ℓ)k and their weights w(ℓ)
k|k−1, ℓ= 1,2, . . . ,(Np +Nq)

as

ζ (xk|Z1:k−1) =
Np+Nq

∑
ℓ=1

w(ℓ)
k|k−1δ (xk −x(ℓ)k ) (5.5)

where

w(ℓ)
k|k−1 =


w(ℓ)

k−1

(
Prk|k−1(x

(ℓ)
k−1)+

ζ (xspn
k |Z1:k−1)

p(x(ℓ)k |x(ℓ)k−1)

)
, ℓ= 1, . . . ,Np

1/Nq , ℓ= Np +1, . . . ,(Np +Nq)

(5.6)

Substituting Equation (5.5) into Equation (5.2), we obtain the particle approximation of the

posterior intensity function as

ζ (xk|Z1:k) =
Np+Nq

∑
ℓ=1

w(ℓ)
k δ (xk −x(ℓ)k ), (5.7)
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where

w(ℓ)
k = w(ℓ)

k|k−1

(
1−Prdet

k (x(ℓ)k )+ ∑
Zk∈Z1:k

Prdet
k (x(ℓ)k ) p(Zk|x

(ℓ)
k )

ζ (Zclt
k )+Ck(Zk)

)
(5.8)

and

Ck(Zk) =
Np+Nq

∑
ℓ=1

w(ℓ)
k|k−1 Prdet

k (x(ℓ)k ) p(Zk|x
(ℓ)
k ) .

Based on Equations (5.1) and (5.2), a particle approximation of the posterior intensity ζ (xk|Z1:k)

can be obtained at time step k from its particle approximation at the previous time step k−1. Using

this particle approximation, both the number of targets in a given region and the targets’ parameters

can be estimated. The particle implementation of PHD filtering (PF-PHDF) is robust and compu-

tationally inexpensive compared to existing multiple target tracking techniques, and it has been

successfully used in radar and sonar tracking [77, 78]. However, there are significant challenges

in applying the PF-PHDF to solve the MEG/EEG inverse problem. Whereas each measurement in

radar is generated from a single target, MEG/EEG sensor measurements are due to contributions

from all dipole sources; thus, the observed data must be decomposed before it can be used by the

PF-PHDF. We next introduce the independent component analysis (ICA) algorithm which can de-

compose the measurements into independent components such that each component corresponds

to one dipole source.

5.4 Independent Component Analysis

Independent Component Analysis (ICA) [79, 80] is a signal processing technique used to express

a set of random variables as a linear combination of statistically independent components.

Assume that the measurement vector z = [z1,z2, ...,zm]
T is a linear mixture of the source signal

s = [s1,s2, . . .sn]
T . Then the ICA model is written as

z = As (5.9)

where both z and s are random vectors and A is called the mixing matrix. Here we assume that

s1,s2, . . . ,sn are independent components and cannot be directly observed. Without loss of gener-

ality, we can assume that both the mixture variables and the independent components have zero

mean.
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The objective of ICA is to estimate both A and s using the measurement z. This must be done

under two assumptions [81]

1. The components si are statistically independent;

2. The independent components must have nonGaussian distributions or just one of the inde-

pendent components is Gaussian.

5.4.1 Principles of ICA

Let us now assume that the data vector z is a mixture of independent components according to

the ICA data model in Equation (5.9). For simplicity, we also assume that the dimension of the

measurement vector m is equal to the number of independent components n. Under this assumption

the mixing matrix A is square (this assumption can be relaxed, as explained in Section 5.4.3). To

estimate one of the independent components, we consider a linear combination of zi:

y = wT z =
n

∑
i=1

wizi, (5.10)

where w is the vector to be determined. If w was one of the rows of A−1, y would equal one of the

independent components. In practice, we cannot determine such a w exactly, because we have no

knowledge of matrix A, but we can find an estimator that gives a good approximation. This leads

to the basic principle of ICA estimation.

Equation (5.10) can be rewritten as

y = wT z = wT As = uT s

where u = AT w. Scalar y is thus a linear combination of si, with weights given by ui. Based on the

Central Limit Theorem, the distribution of a sum of independent random variables tends toward a

Gaussian distribution. Thus, a sum of two independent random variables usually has a distribution

that is closer to Gaussian than any of the two original random variables. As a result, y is more

Gaussian than any of the si. y becomes least Gaussian when it equals one of the si, in which case,

only one of the elements ui of u is nonzero.

Therefore, we could take w as a vector that maximizes the nonGaussianity of y = wT z. Such a

vector would necessarily correspond a u which has only one nonzero component. This means that
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wT z = uT s equals one of the independent components. Maximizing the nonGaussianity of wT z

thus gives us one of the independent components.

5.4.2 Solution of ICA

In order to maximize the nonGaussianity, first we must have a quantitative measure of nonGaus-

sianity of a random variable. To simplify the problem, we assume that the random variable y is

zero-mean and has variance equal to one. This can be achieved by preprocessing.

The classical measure of nonGaussianity is kurtosis or the fourth-order cumulant. The kurtosis

of y is classically defined by

kurt(y) = E{y4}−3(E{y2})2 (5.11)

= E{y4}−3

This shows that kurtosis is simply a normalized version of the fourth moment E{y4}. For a Gaus-

sian random variable, the kurtosis is zero. While for a nonGaussian random variable, the kurtosis

is nonzero. Kurtosis can be both positive or negative. Random variables that have a negative kur-

tosis are called subGaussian, and those with positive kurtosis are called superGaussian. Typically

nonGaussianity is measured by the absolute value of kurtosis.

The independent components can be found by kurtosis minimization or maximization. An al-

gorithm based on gradient descent or ascent has been used in [82, 83]. However, for this algorithm,

a bad choice of the learning rate can destroy the convergence. Therefore, a fixed-point iteration

algorithm (FastICA) is proposed to make the learning radically faster and more reliable [53].

5.4.3 FastICA algorithm

FastICA is a fixed-point iteration used to find the maxima or minima of the kurtosis kurt(y) =

kurt(wT z). The steps of FastICA can be shown as follows [53]

1. Take a random initial vector w(0) of norm 1. Let k = 1.

2. Let w(k) = E{z(w(k−1)T z)3}−3w(k−1). The expectation can be estimated using a large

sample of z vectors (say, 1,000 points).
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3. Divide w(k) by its norm.

4. If |w(k)T w(k− 1)|is not close enough to 1, let k = k+ 1 and go back to step 2. Otherwise,

output the vector w(k).

The final w(k) given by the algorithm is a vector that maximizes the kurtosis of y = wT z. Such

a vector equals one of the rows of the inverse of A. This means that w(k) separates one of the non

Gaussian source signals in the sense that w(k)T x equals one of the source signals. In addition, a

very small number of iterations, usually 5−10 seems to be enough to obtain the maximal accuracy

allowed by the sample data [53].

To estimate n independent components, we run this algorithm n times. To ensure that each

time we estimate a different independent component, we only need to add a orthogonalizing pro-

jection [53] inside the loop. After ICA, the mixed measurement z is separated into n independent

components and these components can be used as the inputs of the PF-PHDF to track the unknown

number of targets. Bsed on the ICA and PF-PHDF, next, we will proposed the neural activity

tracking system which can estimate both the unknown number of neural dipole sources and their

parameters for EEG/MEG data.

5.5 Proposed algorithm for tracking an unknown number of dipole sources

Figure 5.1: Block diagram of proposed unknown number of dipole sources tracking system.

The overall block diagram of the proposed system is shown in Figure 5.1. The steps of the

proposed system are

1. Prewhiten the EEG/MEG measurement. This reduces the size of the measurement matrix

and simplifies computation.
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2. Decompose the pre-whitened measurement into independent components; each component

corresponds to only one dipole source or clutter.

3. Apply the PF-PHDF to estimate the number of dipole sources and their parameters.

Next we will describe each of the stages in more detail.

5.5.1 Efficient pre-whitening of measurements

The PF-PHDF algorithm requires each measurement vector to be generated by a single object.

However, for the EEG/MEG dipole model, the EEG/MEG measurement zk = Aksk in Equation (4.1)

is generated by multiple neural sources. Thus, we first need to decompose the EEG/MEG measure-

ments into individual components, with each component corresponding to an individual neural

source. The decomposition can be simplified by first performing a preliminary pre-whitening

of the EEG/MEG data zk = [zk,1 zk,2 . . . zk,M]T. Specifically, the data is linearly transformed to

vk = Uzk = UAksk whose elements are mutually uncorrelated with unit variance, E[vkvTk ]= I [53],

where I is the identity matrix and U is a linear transformation matrix. An example of such a linear

transformation can be obtained using eigenvalue decomposition U = Λ−1/2ΨT of the measurement

covariance matrix Σcov = E[zkzTk ] , where Λ is a diagonal matrix whose elements are the eigenvalues

of Σcov and Ψ is a matrix whose columns consist of the corresponding eigenvectors. In particular,

assuming M EEG/MEG measurement sensors, the eigenvalues of the M ×M covariance matrix

Σcov need to be obtained. Although there are many algorithms to calculate eigenvectors from a co-

variance matrix, when the size of M > 5, most of them can hardly be mapped into an efficient VLSI

architecture. In most EEG/MEG systems, the number of sensors is between M = 30 and M = 150,

and so the challenge is to find an efficient approach to calculate the eigenvalues of a large matrix. In

our previous work [52], we used channel decomposition to solve this problem. The channels were

divided into several groups and ICA was applied to each group. However, that approach resulted

in estimation performance loss, and, despite the fact that the computational intensity was reduced,

this step was still the bottleneck of our implementation.

Here we consider a different approach, where we assume that only a small set of patches of the

human brain are activated at a time [1, 17, 24, 84]. Under this assumption, the number of dipoles

Nd is much smaller than the number of sensors M, Nd << M. Thus instead of calculating all the
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Algorithm 4 Threshold-based leading-only eigenvalue-eigenvector distilling algorithm [85]

Choose eigenvalue threshold Vthr and number of iterations r; compute covariance matrix Σcov
Calculate the leading eigenvector matrix Ψ and eigenvalues λ
Set i = 1 and Ψ(0)

i = 0
Initialize eigenvector Ψ(0)

i randomly with norm 1
for j = 1 : r do

Ψ( j)
i =

1

||Φ( j)
i ||

Φ( j)
i where Φ( j)

i = ΣcovΨ( j−1)
i −

i−1

∑
l=0

([
ΣcovΨ( j−1)

i

]T
Ψl

)
ΣcovΨ( j−1)

i

end for
Set Ψi = Ψ(r)

i and λi =
1

ΨT
i Ψi

(ΣcovΨi)
TΨi

if λi >Vthr then
Store λi and Ψi and set i = i+1

else
Stop

end if

eigenvalues and eigenvectors, we only need to find the leading eigenvalues and eigenvectors cor-

responding to the Nd active dipoles. We propose an efficient leading eigenvector and eigenvalue

calculation approach based on the eigenvector distilling algorithm [85]. The steps of the proposed

method are described in Algorithm 4. In order to obtain the ith largest eigenvector Ψi, we first

initialize Ψ(0)
i randomly with norm 1 and then update it using r iterations to obtain Ψi. Its corre-

sponding eigenvalue λi is obtained and compared to the threshold Vthr. If λi >Vthr, this eigenvector

is retained and the same procedure is used to calculate the next one. Note that the leading eigen-

vectors are calculated one by one, in reducing order of dominance. As the number of dipoles is

unknown, the number of eigenvalues and eigenvectors to be distilled is unknown as well. So we use

a threshold to pick the eigenvalues to be computed. We will analyze the influence of this threshold

on algorithm performance in Section 5.6.2.

5.5.2 Component analysis of pre-whitened measurements

After pre-processing, the new data vector vk has reduced dimensionality and reduced noise power.

Since distinct neural sources are mutually independent [1], the ICA algorithm introduced in Section

5.4 can be used to decompose the pre-processed MEG/EEG data. Here, we assume that in a short

time window the location and orientation of dipole sources are fixed. As a result, the lead-field

matrix A doesn’t change with time in this period. The window length is a critical parameter which
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will be analyzed in Section 5.7.2. For the EEG/MEG data in one window, we use the FastICA, a

free Matlab software package that implements a fast fixed-point ICA algorithm [53], to obtain a

de-mixing matrix, W = UA. Using this matrix, we can obtain J estimated independent sources as

ŝk = WTvk = [ŝk,1 . . . ŝk,J]
T. The estimated mixing matrix Â = [â1 . . . âJ], where â j is the jth column

of Â, can be obtained as Â = U−1W. Using â j, the MEG/EEG signal that contributed from the jth

individual source is given by

ẑk, j = â j ŝk, j , j = 1, . . . ,J . (5.12)

After this stage, the decomposed unmixed MEG/EEG measurement vectors are given by

ẑk = [ẑk,1 . . . ẑk,J].

Thus, each new measurement ẑk, j is assumed to have originated either from a single dipole source

or an artifact (non-brain) activity (false alarm).

5.5.3 Multi-dipole estimation using PF-PHDF

The decomposed pre-whitened MEG/EEG measurement RFS Ẑk = {ẑk,1, ẑk,2, . . . ẑk,J} can now be

directly used as the input to the PF-PHDF algorithm to estimate the number of dipole sources and

their unknown parameters. The corresponding state-space RFS model for the MEG/EEG source

estimation problem is given by

Xk = Xk−1 +νk−1 (5.13)

Ẑk = h(Xk)+nk . (5.14)

The specific PF-PHDF algorithm steps are described next; Figure 5.2 demonstrates the PF-PHDF

framework for the MEG/EEG dipole source estimation problem.

Step 1-Initialization: At time step k = 0, the particles x̃(ℓ)0 , ℓ= 1, . . . ,N0, are drawn from the initial

intensity function ζ (x0), where N0 = N Nd0 , Nd0 is the initial number of dipoles and N is the number

of particles used for each dipole, and the corresponding weights are obtained as w(ℓ)
0 = Nd0/N0,

ℓ= 1, . . . ,N0.

Step 2-Prediction: At time step k, particles x̃(ℓ)k , ℓ= 1, . . . ,Nk−1, . . . ,Rk, where Rk = Nk−1 +Nq, are

sampled and, assuming no dipole source spawning, the corresponding weights are evaluated using
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Equation (5.6)

w̃(ℓ)
k|k−1 =


w̃(ℓ)

k−1 Prk|k−1(x̃
(ℓ)
k−1) , ℓ= 1, . . . ,Nk−1

1/Nq , ℓ= Nk−1 +1, . . . ,Rk

(5.15)

Step 3-Updating: Using (5.8), the weights are updated to

w̃(ℓ)
k = w̃(ℓ)

k|k−1

(
1−Prdet

k (x̃(ℓ)k )+
J

∑
j=1

Prdet
k (x̃(ℓ)k ) p(ẑk, j|x̃

(ℓ)
k )

ζ (Zclt
k )+Ck(ẑk, j)

)
,

where

Ck(ẑk, j) =
Rk

∑
ℓ=1

w̃(ℓ)
k|k−1 Prdet

k (x̃(ℓ)k ) p(ẑk, j|x̃
(ℓ)
k ) .

Step 4-Resampling: The number of dipole sources is estimated as N̂dk = ∑Rk
ℓ=1 w̃(ℓ)

k ; the particles x̃(ℓ)k

are resampled and their corresponding weights w̃(ℓ)
k , ℓ= 1, . . . ,Rk are computed to obtain x̃(ℓ)k and

w̃(ℓ)
k = N̂dk/Nk, ℓ= 1, . . . ,Nk. Here, Nk = N round(N̂dk), where round(N) denotes the nearest integer

to N.

Step 5-Estimating dipole state: The resampled particles are clustered and the state parameters are

estimated. The clustering is performed in 3-D using the k-means clustering algorithm.

Using the PF-PHDF, the number of particles changes over time and is proportional to the num-

ber of dipoles, i.e., at time k, Nk ∝ N̂dk . Unlike standard PF, there is a summation among sub-

measurements ẑk, j, j = 1, . . . ,J, corresponding to individual sources, when updating the weights in

Step 3. After Step 3, the posterior intensity ζ (xk|Ẑk) at time k is approximated using particles x̃(ℓ)k

and weights w̃(ℓ)
k , ℓ= 1, . . . ,Rk, that contain all available dipole source information. For example,

the number of dipoles can be obtained by integrating the posterior intensity, which is equal to the

summation of the weights; and the dipole source parameters can be estimated from the peaks of

the intensity. In the resampling step, the new weights are not normalized to 1, but sum to N̂dk , the

estimated number of dipole sources.

5.6 Algorithm performance results for tracking unknown number of dipoles

In order to demonstrate the tracking performance, we apply the proposed PF-PHDF algorithm to

track the unknown number of neural sources using both synthetic and real EEG data.
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Figure 5.2: Framework of the proposed neural activity tracking system based on PF-PHDF.

5.6.1 Simulation set up

First we use synthetic data from a previous study in [25] with three dipoles localized at V 1 (1.11,

5.34, 4.98), V 5R (4.36, 3.68, 4.44) and V 5L (3.37, 4.85, 4.81) in an example where the brain

volume hemisphere has a radius of 10 cm. The measurement noise is Gaussian with 0 mean and

variance σ = 10−5. For this simulation, we used uniformly distributed particles with N = 1,000

particles for each dipole. For a three dipole system, the maximum number of particles is 3N +

Nq = 3,200, which is much less than the 100,000 particles used in [25]. With xk = [rTk qT
k sk]

T, the

dipole state transition model in Equation (5.13) is a random walk model with Gaussian transition

kernel p(rk|rk−1)= N (rk−1,σr) and p(qk|qk−1)= N (qk−1,σq), with σr = 1 cm and σq = 2 nA.
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Each existing dipole has a probability of survival Prk|k−1(xk−1)= 0.8 and a probability of detection

Prdet
k (xk)= 0.95.

5.6.2 Eigenvalue threshold selection
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Figure 5.3: Eigenvalues of EEG covariance matrix for simulated data.

In Section 5.5, we discussed that eigenvalue decomposition can be used to reduce the dimension

of EEG data by choosing several leading eigenvalues instead of all the eigenvalues. Eigenvalue

selection method is crucial since it determines the number of independent components and the

reconstruction error of ICA. A threshold based method is used to select the leading eigenvalues.

Figure 5.3 shows the amplitudes of all the eigenvalues of the covariance matrix.

In order to find the optimal threshold for leading eigenvalue selection, we use the root mean

square error (RMSE) of the reconstructed EEG data as the cost function. The RMSE is defined as

the difference of estimated individual EEG data ẑk, j obtained using Equation (5.12) and the true
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Table 5.1: RMSE of reconstructed EEG data for different threshold values.
Threshold 500 150 130 100 50
Dipole1 2.68 µV 2.91 µV 4.97 µV 7.45 µV NaN
Dipole2 2.67 µV 2.87 µV 5.08 µV 8.35 µV NaN
Dipole3 2.53 µV 2.79 µV 4.16 µV 7.95 µV NaN

EEG data zk, j

RMSErec
j =

[
1
K

K

∑
k=1

1
M
(zk, j − ẑk, j)

T(zk, j − ẑk, j)

]1/2

where K is the number of time steps and M is the number of sensors. Table 5.1 shows the RMSE

of the reconstructed EEG data for different threshold values. We can see that as the threshold value

decreases, the RMSE increases and that there is a significant RMSE degradation when the threshold

is smaller than 150. In addition, with thresholds smaller than 100, we can hardly distinguish dipole

signals with noise which causes the FastICA algorithm to fail. Based on these results, we choose a

threshold value of 500 for the rest of the simulations.

5.6.3 Window length selection

The choice of window length Lw is crucial as it greatly impacts the estimation results. Table 5.2

shows the reconstruction RMSE with respect to different Lw. We can see from the table that if the

window length is too long (much longer than the duration of dipole), the independent component

analysis cannot capture the changing information of the dipole. As a result, the reconstruction error

is large. If the window length is too small, the samples in the window cannot statistically represent

the whole data, which also leads to larger reconstruction error. Based on these results, we choose a

window length Lw = 100 samples with sampling rate 1 kHz.

Table 5.2: RMSE of reconstructed EEG data for different window lengths.
Window length 50 100 250 500

Dipole 1 2.78 µV 2.16 µV 2.33 µV 4.22 µV
Dipole 2 2.68 µV 2.21 µV 2.42 µV 4.51 µV
Dipole 3 2.60 µV 2.13 µV 2.44 µV 4.13 µV

5.6.4 Estimation results

The eigenvalue selection threshold was chosen as 500 and the window length as Lw = 100. We

used 1,000 particles for each existing dipole and 200 particles for the new dipoles. The estimation
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results for the amplitudes of three dipoles are shown in Figure 6.3. The RMSE for the dipole

current amplitude is 2.07 nA. Figure 6.4 shows the estimation results for the dipoles 3-D location;

the position RMSE is 6.93 mm. The orientation estimation results are demonstrated in Figure 5.6.

We compared the performance of the proposed tracking algorithm with those in [20, 22, 25], as

shown in Table 6.2. Compared to [20] which has the best tracking performance, the proposed

PF-PHDF based system has a tracking error of 1.5 mm. However, the PF-PHDF only uses 3,200

particles (compared to 100,000) and also does not require knowledge of the number of dipoles.

Compared to [25] which also tracks an unknown number of dipoles, the tracking error is only 0.7

mm but the number of particles used is only 3,200 compared to 100,000. In summary, the proposed

system obtains comparable estimation results with significantly reduced computational complexity

for tracking unknown number of dipoles.

Table 5.3: Comparison of neural activity tracking for synthetic data.
Approach Number of

particles
Number of
dipoles

Knowledge of
dipole number

RMSE of
location

PF [20] 100,000 4 Known 5.4 mm
RB-PF [22] 50,000 2 Known 6.3 mm
D-PF [25] 100,000 3 Unknown 6.2 mm
PF-PHDF 16,000 3 Unknown 6.2 mm
PF-PHDF 3,200 3 Unknown 6.9 mm
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Figure 5.4: Amplitude tracking result of three dipoles for synthetic EEG data.
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triangle–estimated location).
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Figure 5.6: Orientation estimation results of three dipoles for simulated EEG data.

5.6.5 Real EEG data tracking results

We applied the proposed PF-PHDF algorithm to a real EEG data set from a visual experiment

described in [86]. This experiment tracks brain activity when the subject reacts to green squares

appearing on the screen. We first used the EEG data from one trial as training data and found

the threshold for eigenvalue selection. The result in Figure 5.7 is similar to the one in Figure 5.3.
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Figure 5.7: Eigenvalues of EEG covariance matrix for real data.

As there is a significant drop when the eigenvalues are smaller than 500, we choose the threshold

as 500; this is the same value used for the synthetic data simulation. The sampling rate of this

experiment is 128 Hz. Since the frequency of the stimuli is once every 3 s and the subject pushes

the button about 1 s after the stimuli, we assume that the states and number of dipoles will change

every 1 s. As a result, we choose the window length to be Lw = 128 samples.

We show the estimation results for one trial spanning 3 s. The EEG data for 5 (out of 32)

channels is shown in Figure 5.8. Figure 5.9 shows the estimation result of the 3-D location for

the dipoles. Since the true location of the dipoles is unknown, we use the estimation result of a

standard dipole fitting procedure [87] as the ground truth. The RMSE of the proposed PF-PHDF

for the 3-D dipole location calculated with respect to [87] is 2.1 mm. From Figure 5.9, we can

see that during the first second, there is only one dipole which means that in this period most of

the brain is in the inactive state. During the next two seconds, the number of dipoles increased to

three. At 0.78 s, the subject received a stimulus from the screen and made a response by pushing

the button at 1.13 s. As a result, certain neurons located in the posterior of the brain were activated
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which led to the increase in number of dipoles.
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Figure 5.8: One typical cycle of the EEG data (5 channels and 3 seconds).

5.7 Hardware implementation of proposed PF-PHDF

In this section, we describe an efficient multi-processor architecture for the PF-PHDF. Pre-whitening

and FastICA can be implemented using the architecture in [85, 88] and are not described here.

5.7.1 Architecture overview

The high level block diagram of the proposed PF-PHDF architecture is shown in Figure 5.10. It

consists of P processing elements (PE) and one central unit (CU) connected by a global bus. Local

processing steps, such as initialization (Step 1), prediction (Step 2) and part of updating (Step 3)

are conducted in each PE. Global processing steps, such as computing normalization factors Ck,

estimating the number of dipoles (Step 3), resampling (Step 4) and clustering (Step 5), are executed

in the CU. Each PE communicates with the CU, but there is no communication among PEs.

The operation flow for the PF-PHDF is shown in Figure 5.11. Each PE processes Rk/P parti-

cles, where Rk is the number of particles at time step k. First, the particles x(i)k−1 are processed in the

prediction unit to generate the new particles x̃(i)k by sampling the transition density pk|k−1(·|x
(i)
k−1).

The predicted weights w̃(i)
k|k−1 are calculated in the prediction unit. Next, the likelihoods ψk,z j(x̃

(i)
k )

are calculated for each individual measurement zk, j, for each particle x̃(i)k . Since the calculations of
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Figure 5.9: 3-D dipole location estimation result for the EEG data. (a) dipole location for the 1st
second (top three); (b) dipole location for the 2nd second (middle three); (c) dipole location for the
3rd second (bottom three).

ψk,z j(x̃
(i)
k ), j = 1, . . . ,J are independent, they are implemented in parallel. After obtaining the likeli-

hoods for all particles, ψk,z j(x̃
(i)
k ), i= 1, . . . ,Rk, the sum of the likelihoods ∑i ψk,z j(x̃

(i)
k ) is sent to the

CU by each PE. Then, the central unit calculates the normalization factor, Ck(z j) =∑p ∑i ψ p
k,z j

(x̃(i)k )

and sends it back to each PE; each PE then computes the final weights w̃(i)
k based on Equation (5.15)

in the final weight unit.

Since the resampling step is operated in the CU, the weights of all the particles have to be

transferred from the PEs to the CU, which results in a large communication overhead. In order to

reduce this overhead, we employ the grouping method in [50] and add the group-and-mean unit

in each PE. The main idea is as follows. The particles x̃(i)k and their corresponding weights w̃(i)
k

are divided into G groups based on the range of the particles; the averages of each group, x(g)k,mean,

g = 1, . . . ,G, are used as the new particles, and only the average weights w(g)
k,mean, g = 1, . . . ,G,

are transmitted to the CU to be used as input to the resampling step. These particles are stored in

the mean particle memory (MPMEM) for future use. Before the resampling step, we estimate the
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Table 5.4: Hardware operators for each block in Figure 5.11.

Unit Block Additions Multiplications Divisions Square Roots Exponentials
Sampling 6 0 0 0 0

PE Likelihood 88 93 1 2 1
Group mean 52 0 1 0 0
Final weight 6 1 1 0 0

Global 6 0 0 0 0
CU Normal 9 0 0 0 0

Resampling 2 3 1 0 0
Clustering 6 3 1 1 0

number of dipole sources by summing the final weights, N̂dk = ∑i ŵ(i)
k . During the resampling step,

the replication index ρ is calculated at the CU based on the average weights. After the resampling

step, the group averaged particles are read from MPMEM and sent to the prediction unit for the

computations in the next iteration. These particles are also sent to the clustering unit at the CU,

and are used to estimate the dipole parameters.

This procedure significantly reduces the communication between the PEs and the CU. Fig-

ure 5.11 depicts eight data transactions (DT): DT 1 corresponds to the local extremum, xmin and

xmax, transmitted from the PEs to the CU; DT 2 is the summation of the likelihoods, ∑i ψk,z j(x̃
(i)
k )

that is sent by the PEs to the CU; DT 3 corresponds to the normalization factors, Ck(z j), sent by

the CU to the PEs; DT 4 corresponds to the updated weights, w̃(i)
k , sent by the PEs to the CU; DT

5 corresponds to the global extremum, xMin and xMax, from the CU to the PEs; DT 6 corresponds

to the weights with the average values, w(g)
k,mean, sent by the PEs to the CU; DT 7 corresponds to the

replication index, ρ , sent by the CU to the PEs; and DT 8 corresponds to the updated particles, x(i)k ,

sent by the PEs to the CU. The hardware resource for each block in Figure 5.11 is shown in Table

5.4. Note that the likelihood computation unit is the most demanding part in terms of resources.

5.7.2 Data windowing for on-line processing

Most methods process MEG/EEG data off-line, after all of the data has been collected [89]. Our

proposed algorithm can be used to process MEG/EEG data on-line by windowing the data and then

applying the algorithm on each windowed data segment in a pipelined fashion. Figure 5.12 shows

how we pre-whiten and run FastICA on the data from Window 1, while obtaining data in Window

2. The length of the window, Lw, is a critical parameter because the processing time and tracking
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Figure 5.10: Parallel PF-PHDF architecture with four processing elements: PE1, PE2, PE3, and
PE4.

accuracy both depend on it. If Lw is small, the computations take less time. Unfortunately, the data

in a short window do not provide an accurate statistical representation of neural activity and result

in a large estimation error (see Table 5.2). We also require the window length to be larger than the

execution time of pre-whitening and FastICA, as shown in Figure 5.12.

5.7.3 Computational complexity analysis

Even with the computational complexity reduction due to the use of eigenvalue distilling, the pro-

posed estimation system is still computationally intensive. Table 5.5 lists the number of computa-

tional operations for the case when M = 32 sensors, Nd = 3 dipole sources, and we choose a window

length Lw = 100 samples and 3,200 particles for processing. The pre-whitening step includes the

computation of of the measurement covariance matrix, which is computationally intensive. The

PF-PHDF computational complexity is the largest, creating a system bottleneck. In the next sec-

tion, we describe a hardware implementation of the PF-PHDF which makes use of pipelining and

parallel processing to reduce the computation time.
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Figure 5.12: Pipelined window processing of MEG/EEG data.

Table 5.5: Number of computational operations used in the proposed dipole source estimation
system in Figure 5.2

Block Additions Multiplications Divisions Square roots Exponentials
Pre-whitening 107,680 107,680 11 10 0

FastICA 3,070 8,070 10 10 0
PF-PHDF 560,000 320,000 16,000 9,600 3,200

5.7.4 Hardware implementation results

The proposed PF-PHDF hardware architecture is implemented using Verilog HDL and synthesized

on the Xilinx Virtex-5 device. The design is verified using Modelsim.

Resource Utilization: Table 5.6 summarizes the architecture resource utilization for the 4 PE par-
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allel architecture for the PF-PHDF. Since the total number of particles is 3,200, each PE processes

800 particles. For the likelihood calculation in the updating step, the exponential functions are

implemented using CORDIC units, and the rest of the units are implemented using DSP cores.

Table 5.6: Resource utilization for PF-PHDF on Xilinx XC5VSX240k

Unit Occupied
slices

Slice
Reg.

Slice
LUTs

Block
Ram

DSP48Es

PF-
PHDF

14,291
(39%)

43,637
(30%)

42,383
(29%)

134
(26%)

283
(27%)

Execution Time: Figure 5.13 shows the timing performance for one iteration of the proposed PF-

PHDF; the actual number of cycles is given in Table 5.7. One iteration takes Ntotal=(Ns +Ng +

Ngm +Nc)=4,852 cycles. We choose a system clock rate of 100 MHz and so the processing time

for one iteration is only Ttotal = Ntotal Tclk = 48.52µs. Based on the pre-whitening and FastICA im-

plementation in [85, 88], the execution time for preprocessing is about 265 µs. Thus, for a window

with 100 samples spanning 1 s, the total processing time is 265+(48.52× 100) = 5,117 µs or

5.1 ms.

Table 5.7: Execution cycles for each block
Unit Ns Nl Ng Nn Nw Ngm Nk Nr Nc

Cycles 804 827 5 4 818 832 4 53 3211

Sampling

Group and mean

Likelihood

Global 

Normalize Final weight Estimate 
ˆ
t p
T w=∑ %

Resampling

Clustering

sN gN gmN cN

nN wN tN rNlN

Figure 5.13: Execution time breakdown for one PF-PHDF iteration.

Scalability: For the proposed tracking system, the number of particles used for each dipole N is a
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critical parameter as it impacts the estimation accuracy and processing time. Figure 5.14 shows the

tracking performance in terms of RMSE for dipole location and the processing time for PF-PHDF

with respect to N. Here we choose the number of PEs P = 4. From Figure 5.14, we can see that as N

increases, the RMSE decreases and the processing time increases. However, when N is greater than

1000, there is no significant improvement in the RMSE but the processing time increases rapidly.

A good tradeoff between RMSE and processing time is obtained at N = 1000.

For the real data case corresponding to the visual experiment of a person tracking green squares,

the maximum number of dipoles was small (less than 5). From the FPGA timing results, we project

that if the maximum number of dipoles is 3, the proposed system can perform real-time processing

at sampling rates of up to 10 kHz for window length Lw = 100 samples. However, for epilepsy

patients, the number of dipoles during seizures can be greater than 10 [84]. Figure 5.15 shows the

timing performance of the proposed system with respect to the maximum number of dipoles for

1,000 particles per dipole and P = 4. From Figure 5.15, we can see that as the maximum number

of dipoles increases, the processing time for a window grows, as expected. Even when the number

of dipoles is as large as 15, our system can still support real-time tracking with sampling rate of

about 1.5 kHz.
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Chapter 6

Efficient EEG/MEG Tracking System Design

In Chapters 4 and 5, we proposed advanced signal processing algorithms to estimate the parameters

of neural dipole sources in EEG/MEG systems. In this chapter, we focus on increasing the hardware

efficiency of an EEG system though similar techniques can be used for our MEG system.

A typical EEG system contains tens and hundreds of sensors. Even low power EEG sensors

that have been designed to make wearable EEG systems feasible, have a power consumption of 10

mW per sensor [55, 56]. In this chapter, we focus on reducing the number of sensors required in

an EEG system without affecting the tracking performance. We propose two methods to achieve

this objective: sensor scheduling [57, 58] and compressive sensing (CS) [59]. Sensor scheduling

is implemented by adaptively configuring the EEG sensors at each time step using the minimum

predicted mean squared error (PMSE) or maximum signal-to-noise ratio (SNR) as the performance

metric. Compressive sensing uses the sparsity of EEG signal to compress the EEG data and then

tracks the parameters of neural dipole sources using the compressed EEG data.

6.1 Sensor scheduling of EEG/MEG system

In this section, we propose a sensor scheduling algorithm that enables adaptive use of sensing

resources for neural activity tracking. Our goal is to develop an algorithm that has good tracking

performance with fewer number of active sensors. Since the power consumption of each EEG

sensor is about 10 mW [55, 56], such an algorithm can reduce the total power consumption, making

wearable EEG devices common place.

Sensor scheduling is a closed-loop feedback optimization procedure that allows adaptive selec-

tion of the sensors to be used for obtaining measurements at the next time-step in order to optimize

the cost function of interest. Here we consider two cost functions: (a) minimization of the PMSE in

estimation, and (b) maximization of the SNR of the measurements, and optimize them with respect

to the sensor configurations.
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6.1.1 Sensor scheduling based on minimization of PMSE

Minimum predicted mean squared error (PMSE) has been used as a cost function for sensor

scheduling [57, 58]. The PMSE in dipole state estimation at time k can be written as

J P(yk) = Exk,zk [(xk − x̂k)(xk − x̂k)
T ]

=
∫ ∫

(xk − x̂k)(xk − x̂k)
T p(zk|xk,yk)p(xk|zk−1,yk−1)dxkdzk, (6.1)

where xk denotes the dipole state at time k and yk is the sensor configuration at time k. Here,

we consider the sensor configuration problem with M sensors. The sensor configuration vector

yk = [yk,1 yk,2 . . . yk,M]T is comprised of binary values yk,m ∈ {0,1}, with yk,m = 1 indicating that the

mth sensor is selected and yk,m = 0 indicating that the mth sensor is not selected. The measurement

zk is related to yk and zk(yk) = zk,M , where M = {m : yk,m = 1}. x̂k is the estimate of xk at time k

computed using the measurement zk. Using Monte Carlo integration, J P(yk) can be approximated

as

J P(yk)≈
Nk

∑
ℓ=1

w(ℓ)
k

1
J

J

∑
j=1

(x(ℓ)k − x̂k(z
( j,ℓ)
k ))(x(ℓ)k − x̂k(z

( j,ℓ)
k ))T , (6.2)

where x(ℓ)k and w(ℓ)
k , ℓ = 1, . . . ,Nk, are the particles and weights in the PF representation of the

predicted state distribution p(xk|zk−1,yk−1), z( j,ℓ)
k ∼ p(zk|x

(ℓ)
k ,yk), j = 1, . . . ,J, are i.i.d. samples

drawn from the measurement model, and x̂k(z
( j,ℓ)
k ) is the estimate of xk computed using the pre-

dicted measurement z( j,ℓ)
k with a secondary PF. The approximation error is small for large Nk and

J. The PMSE J P(yk) can now be optimized by searching through all sensor configurations. For

M sensors, the total number of possible sensor configurations is R = 2M , which can be quite large.

We impose a constraint to limit the total power concumption to P as shown below

M

∑
m=1

yk,mCm ≤ P, (6.3)

where Cm is the power consumption of the mth sensor. A block diagram of the dipole state estima-

tion and sensor scheduling method is shown in Figure 6.1. The key steps of the sensor scheduling

algorithm, performed at each time k, are as follows:
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Figure 6.1: Block diagram of the state estimation and sensor optimization method.

1. State prediction: Compute the distribution p(xk|zk−1,yk−1) of the predicted state at time k

by propagating the PF-PHDF posterior distribution p(xk−1|zk−1,yk−1) at time k−1 using the

state evolution model p(xk|xk−1).

2. Measurement sampling: For each particle x(ℓ)k and sensor configuration yk, draw predicted

measurements z( j,ℓ)
k from the measurement distribution p(zk|x

(ℓ)
k ,yk).

3. Inner estimation: For each measurement z( j,ℓ)
k , estimate the state x̂k(z

( j,ℓ)
k ) using a sec-

ondary PF.

4. Error calculation: Calculate the PMSE J P(yk) using the approximation in Equation (6.2).

5. Optimization: Find the optimum sensor configuration y∗k which minimizes the PMSE based

on the power constraint in Equation (6.3).

The scheduled sensor configuration y∗k is then used to obtain the measurement zk(y∗k) at time k and

estimate the state x̂k using the PF-PHDF algorithm.
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For M sensors, there are a total of R = 2M possible sensor configurations, making the opti-

mization problem very difficult to solve directly unless M is small (e.g. M = 10). For large M, the

current best methods for solving such problems include branch and bound methods [90] (which

provide global optima at the expense of computational cost) or other convex relaxation based tech-

niques [91] (which are fast but only provide approximate solutions). Even so, sensor scheduling

based on the direct computation and optimization of the PMSE remains computationally demand-

ing and not suitable for real-time implementation. As a result, in this study, we did not implement

this sensor scheduling method. In the next section, we propose another sensor scheduling method

based on maximization of SNR which has lower computational complexity and is much easier to

implement.

6.1.2 Sensor scheduling with maximum SNR

We now describe a sensor scheduling algorithm that relies on maximization of the signal-to-noise

ratio (SNR) of the measured sensor data. This approach leads to significant reduction in the number

of required sensors for accurate tracking performance, with a computational complexity that is

much lower than the minimum PMSE based sensor scheduling method discussed earlier.

The proposed method is as follows. Suppose that at some time step k the parameters of the

dipole sources (rk,qk,sk) are given and fixed. From Equations (4.1) and (4.2), the SNR of the

measurement from the mth sensor can be represented by

SNRk,m =
(Ak,m sk)

2

σ 2
n

=
(∑Nd

i=1 ak,(m,i) sk,i)
2

σ 2
n

∝ (
Nd

∑
i=1

ak,(m,i) sk,i)
2, (6.4)

where Ak,m is the mth row of the gain matrix, σ 2
n is the variance of measurement noise and Nd is the

number of dipole sources. After ICA, the measurement is decomposed to independent components

where each component corresponds to an individual dipole source. The SNR of the mth sensor for

the ith dipole source can be represented as

SNRk,(m,i) ∝ (ak,(m,i) sk,i)
2, (6.5)

where ak,(m,i) is a function of the distance dk,(m,i) between the mth sensor and ith dipole source.

Figure 6.2 shows the relationship between |ak,(m,i)| and dk,(m,i). From Figure 6.2 we can see that as

dk,(m,i) increases, |ak,(m,i)| decreases and so does the corresponding SNR. Since the MSE is expected
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to be lower with higher SNR measurements, using sensors with smaller dk,(m,i) can provide better

neural tracking performance. The sensors are therefore scheduled by adaptively selecting the ones

with smallest dk,(m,i) to form the final sensor configuration used for obtaining the measurements.

The steps of the sensor scheduling method, performed at each time k, are as follows:

1. State prediction: Calculate the predicted state of the dipole source x̃k at time k using the

particles x(ℓ)k−1 and weights w(ℓ)
k−1 at time k−1 based on the state model

x̃k =
Nk

∑
ℓ=1

pxk−1|xk(x
(ℓ)
k−1)w(ℓ)

k−1,

where Nk is the number of particles and pxk−1|xk(·) is the state updating equation. Extract the

predicted dipole location r̃k from x̃k.

2. Distance calculation: For each sensor, calculate the distance between the sensor location rm

and the predicted dipole source location r̃k as

d̃k,m = ||rm − r̃k||, m = 1, . . . ,M,

where || · || denotes Euclidean distance.

3. Optimization: Sort the sensors in increasing order of d̃k,m. Choose the first Ns sensors to

estimate the dipole states, where Ns is the number of sensors to be used depending on power

constraint in Equation 6.3.

As before, the scheduled sensor configuration y∗k is then used to obtain the measurement zk(y∗k) at

time k and estimate the state x̂k using the PF-PHDF algorithm.

6.1.3 Algorithm performance results for sensor scheduling

The number of sensors Ns after sensor scheduling impacts the power consumption of the EEG

system and the tracking performance of the proposed algorithm. Table 6.1 shows the position

tracking result in terms of RMSE for different number of sensors. As expected, use of fewer

sensors result in higher RMSE but lower sensor power consumption. Thus, Ns should be chosen

based on the power constraint or the RMSE constraint depending on the application. Since the

most important bottleneck of wearable EEG instruments is the battery size [11, 4], here Ns is
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Figure 6.2: Amplitude of the EEG sensor signal as a function of the distance between the sensor
and dipole source.

chosen based on the power constraint. In this paper, the power consumption of each wireless EEG

sensor is set as Cm = 10mV [55, 56] and the total power constraint is set as P = 150 mW . Based

on Equation (6.3), Ns is chosen to be 15.

Table 6.1: Position RMSE for different number of sensors Ns.

Number of sensors 6 9 15 24 32
RMSE 9.98 mm 6.95 mm 6.41 mm 6.33 mm 6.28 mm

6.1.4 Estimation results with sensor scheduling

In this section, we show the estimation results for synthetic EEG data. Here we choose the eigen-

value selection threshold as 500 and the window length Lw = 100. We use 2,000 particles for each

existing dipole and 400 particles for the newborn dipole. The tracking result for the amplitudes

of three dipoles are shown in Figure 6.3. The RMSE for the dipole current amplitude is 1.83 nA.

Figure 6.4 shows the estimation results for the 3-D location of the three dipoles; the position RMSE

is 6.41 mm.
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We compare the performance of the proposed tracking algorithm with the results in [20, 22, 25]

and the comparison is shown in Table 6.2. From Table 6.2, we can see that the proposed PF-PHDF

algorithm has comparable tracking performance, with significantly reduced number of particles

(only 6,400 compared to 100,000 in [51]). Furthermore, by using the proposed sensor scheduling

technique, the number of sensors is reduced from 32 to 15, which means about 50% reduction in

sensor power consumption.
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Figure 6.3: Amplitude tracking result of three dipoles for synthetic EEG data.

Table 6.2: Comparison of neural activity tracking for synthetic data.

Approach Number of
particles

Number of
dipoles

Knowledge of
dipole number

RMSE of
location

PF [20] 100,000 4 Known 5.4 mm
RB-PF [22] 50,000 2 Known 6.3 mm
D-PF [25] 100,000 3 Unknown 6.2 mm

PF-PHDF (with SS) 6,400 3 Unknown 6.4 mm

6.1.5 Hardware architecture for sensor scheduling

The overall block diagram of the hardware architecture for sensor scheduling is shown in Fig-

ure 6.5. At each time step k, we use the PF-PHDF to obtain the predicted dipole position r̃k, and

feed r̃k as input to the sensor scheduling unit. First, the square of the predicted distance d̃2
k,m is

calculated using three subtractors, three multipliers and two adders. Next, the sensors are sorted
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Figure 6.4: Estimated 3-D locations of dipoles for synthetic EEG data.

based on the predicted distance d̃2
k,m in the SORT unit. After sorting, the top n sensors are picked

as the optimized sensor configuration for the next time step. Since we only need to find n sensors

with the smallest d̃2
k,m, we maintain a sorted list of n elements and use the insertion-deletion sort

algorithm [92] to update the list.

The architecture of the SORT unit is shown in Figure 6.6. It consists of n processors, one adder

tree that adds n 1-bit numbers and one rank register. All processors consist of one data register to

store the distance value, one comparator to compare with the new distance and one rank register

to store the parameter used to calculate the rank of new distance. The rank of the new distance is

calculated by the adder tree and stored in the new rank register.

6.1.6 Hardware implementation evaluation of proposed sensor scheduling

The hardware implementations of PF-PHDF and ICA have been described in Section 5.7.4. Here,

we show the hardware resource utilization and processing time for the sensor scheduling module.

The sensor scheduling algorithm was implemented using Verilog HDL and synthesized on Xilinx
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Virtex-5 device (XC5VSX240T). The design was verified using Modelsim.

Resource Utilization: Table 6.3 summarizes the resource utilization for the sensor scheduling ar-

chitecture shown in Figure 6.5 and 6.6. The square root functions are implemented using CORDIC

units. Our resource usage is fairly low, for instance, only about 1% of the regular slices and 2% of

the DSP slices in a Xilinx Virtex-5 FPGA (XC5VSX240T).

Execution time: Figure 6.7 shows the timing performance for one iteration of the proposed system;

the actual number of cycles is given in Table 6.4. Since some of the computations can be over-
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Table 6.3: Resource utilization on Xilinx XC5VSX240T for sensor scheduling

Unit Occupied
slices

Slice
Reg.

Slice
LUTs

Block
Ram

DSP48Es

SS 623
(1%)

1,714
(1%)

1,792
(1%)

3
(1%)

20
(2%)

lapped, the PF-PHDF takes NPF-PHDF=(Ns +Ng +Ngm +Nc)=9,150 cycles. We choose a system

clock rate of 100 MHz and so the processing time for PF-PHDF is TPF-PHDF = NPF-PHDF ×Tclk =

91.5 µs. Based on the pre-whitening and FastICA implementation in [85, 88], the execution time

of the preprocessing step for 15 sensors is about 66 µs. The processing time for sensor scheduling

is TSS = (Nd +Nsort)×Tclk = 4.5 µs. Thus, for a window with 100 samples, the total processing

time with sensor scheduling is 96×100+66 = 9,666 µs.
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Figure 6.7: Execution time breakdown for one iteration.

Table 6.4: Execution cycles for each block in Figure 5.13

Unit Ns Nl Ng Nn Nw Ngm Nk Nr Nc Nd Nsort

Cycles 1608 1654 5 4 1636 1664 4 53 5873 111 338

6.2 Data compression of EEG/MEG system

In this section, we propose an efficient spatial domain EEG CS technique, which results in a sig-

nificant reduction in the amount of EEG data that needs to be stored and processed. Sequential

Bayesian estimation techniques, such as the particle filtering algorithm [30], have been used to

track neural activity dipole sources [93, 94]. However, as the number of dipole sources increases,

the computation complexity of the PF tracking algorithm grows proportionally. In order to avoid
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this high computational complexity, we first analyze the EEG data sparsity in the spatial domain

using equivalent current dipole source representations. We then compressively sense the multiple

channel EEG signals using independent and identically distributed Gaussian basis functions. Fi-

nally, we apply the PF on the spatial compressed EEG data to localize the neural activities with

reduced computational complexity.

6.2.1 Compressive sensing

Compressive sensing (CS) can reduce the number of measurements required to reconstruct a signal

since a small set of linear projections of a sparse signal contains enough information for recon-

struction. Let z ∈ Rdz denote a vector with dz elements; then z is said to be K-sparse if z can

be represented by z = Ωθ , where the columns of Ω ∈ Rdz×dθ constitute a basis function and θ is

a vector with at most K non-zero elements and K << dθ [60]. CS theory states that it is highly

probable that θ and z can be exactly recovered from the measurements y = Φz , where Φ ∈Rdy×dz

is a projection matrix and dy < dz [59]. It has been shown that the signal can be recovered from

its measurements when the projection matrix Φ is incoherent with the basis Ω over which the sig-

nal is sparse. A typical choice for the projection matrix, Φ, is a random matrix with independent

and identically distributed Gaussian or Bernoulli entries. The vector z can be recovered from the

measurement y by solving the following optimization problem [59]

arg min
θ

||θ ||1 subject to ΦΩθ = y, (6.6)

where || · ||i denotes the ℓi norm. When dy << dz, CS theory can be used to reduce the dimension-

ality of vector z.

6.2.2 Spatial sparsity of EEG signal

At time k, we assume that a small patch of activated cortex can be represented by an equivalent

current dipole with three-dimensional (3-D) location rk and 3-D moment mk = sk qk, where qk is a

3-D orientation vector and sk is the current amplitude of the dipole [95]. Using the dipole source

model, EEG signals acquired by M sensors are represented as

zk = Ak sk +nk. (6.7)

where zk = [z1
k z2

k . . .z
M
k ]T is the M channel EEG signal at time k, sk = [s1

k s2
k . . .sNd

k ]T is the amplitude

of Nd dipoles at time k, nk is the measurement noise, and Ak is the M ×Nd gain matrix. The jth
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column of this matrix is given by a j
k = F(r j

k)q
j
k, where the lead field F(r) is represented by an M×3

matrix and is a nonlinear function of the dipole location r [15].

In order to show the spatial sparsity of the EEG signal, we constrained the dipoles to G grids

in a 3-D Cartesian coordinate enclosing the brain volume. For the fixed Cartesian coordinate y, the

grid is shown in Figure 6.8. Given this constraint, the M-channel EEG signal can be approximated

as,

zk = Ωθ k +nk (6.8)

where Ω = [F(r1) F(r2) . . . F(rG)] is an M×3G matrix, F(ri) is the M×3 lead field of the ith grid

located at ri, θ k is a 3G×1 vector with elements [m1
k . . . mG

k ]
T, and mi

k = [mi,x
k mi,y

k mi,z
k ] represents

the moment of a dipole concentrated on the ith grid at time k. Since there are Nd dipoles, only

Nd grids have non-zero moments. As a result, at most 3×Nd elements in θ k are non-zero, where

Nd ≪ G. Thus, according to CS theory, the EEG signal zk is 3×Nd-sparse in the spatial domain.

Ω

grid

Dipole 1

Number of grids = G

Number of dipoles = Nd

Nd << G

Dipole 2
Dipole Nd

Figure 6.8: Sparse current dipole signals.

We define the L-dimensional compressed measurement as

yk = Φzk + εk = ΦΩθ k + εk (6.9)

where L ≪ M, Φ is the L×M projection matrix uncorrelated with Ω, and ε is the projected noise.

CS theory ensures that the compressed measurement yk has all the information of zk and θ k. As a

result, we can use yk as our new measurement in tracking neural dipole sources.
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6.2.3 Spatial compressed particle filtering

Using the new compressed measurement vector, we can re-formulate the state-space model for the

neural dipole source tracking problem as

xk+1 = xk +νk, (6.10)

yk = Φh(xk)+nk, (6.11)

where xk is the state of a dipole at time k including its 3-D location rk and 3-D moment mk, h(·)

is the nonlinear measurement function obtained from Equation (6.7), νk is the modeling error,

and nk is a combination of measurement noise and projection noise εk. Based on this model, we

use a particle filtering (PF) algorithm to track the state x of the neural dipole source; the spatial

compressed measurements y is used as the PF input. The steps of the proposed algorithm are as

follows.

Initialization: The samples {x(ℓ)0 }N
ℓ=1 are drawn from the initial density p(x0), where N is the

number of particles and p(x0) is a uniform distribution of samples in the sphere head model. The

weights are assigned to be initially equal, w(ℓ)
0 = 1/N.

Prediction: For k = 1, . . . ,K, the particles x(ℓ)k are drawn from the probability density p(xk|x
(ℓ)
k−1).

Then the prior density p(xk|y1:k−1) can be approximated by p(xk|y1:k−1) = ∑N
ℓ=1 w(ℓ)

k−1δ (xk −x(ℓ)k ).

Update: The weights w(ℓ)
k are updated based on the new compressed measurement yk using w(ℓ)

k ∝

w(ℓ)
k−1 p(yk|x

(ℓ)
k ). We also normalize the weights w(ℓ)

k = w(ℓ)
k /∑N

ℓ=1 w(ℓ)
k .

Resampling: The particles are resampled based on their weights to obtain {x(ℓ)k ,w(ℓ)
k }N

ℓ=1. The

posterior density p(xk|y1:k) can be approximated by

p(xk|y1:k) =
N

∑
ℓ=1

w(ℓ)
k δ (xk −x(ℓ)k ).

Thus, the measurement yk is the spatial compressed version of the original measurement zk,

yk = Φzk +nk. Typically, the elements of the projection matrix are random variables drawn from

independent and identically distributed Gaussian distributions or Bernoulli distributions to make

sure that Φ is uncorrelated with Ω. After the spatial compressive sensing, the dimension of the

measurement reduces from M to L, where L ≪ M. As a result, the amount of EEG data that

is needed to be stored can be reduced from M ×K to L×K bytes. The likelihood p(yk|xk) is
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now an L-dimensional Gaussian density function instead of an M-dimensional density function.

This results in a significant reduction in the computational complexity of the signal processing

operations that are a function of the number of EEG channels L.

This algorithm can be extended to multiple dipole source tracking problem by using the mul-

tiple particle filtering framework [50]. In our simulation results, we use one PF for each dipole

source. The jth sub-PF uses the same prediction and resampling steps as the ones just just de-

scribed. However, the weight update step is modified to w(ℓ)
j,k ∝ w(ℓ)

j,k−1 p(yk|x
(ℓ)
j,k, x̃− j,k), where

x̃− j,k = [x̃T1,k . . . x̃Tj−1,k x̃Tj+1,k . . . x̃TNd ,k]
T are the predicted values of all the states, excluding x̃ j,k

and x̃ j,k = ∑N
ℓ=1 w(ℓ)

j,k−1x(ℓ)j,k.

6.2.4 Algorithm performance results for compressive sensing

We compared our proposed spatial compressive particle filtering (SCPF) with the multiple particle

filtering (MPF) [50] using simulated and real EEG data. For our simulations, we draw each element

of the projection matrix Φ from a zero-mean, additive white Gaussian random process with unit

variance elements.

Simulated data results. The synthetic data was created by inserting three current dipoles into a

sphere head model and calculating the resulting EEG signals using Equation (6.7) with Gaussian

noise. The three dipoles are localized at V 1 (1.11, 5.34, 4.98), V 5R (4.36, 3.68, 4.44) and V 5L (3.37,

4.85, 4.81) from a previous study. For this simulation, we used 1,000 particles for each dipole. The

particles are initially uniformly distributed in the hemisphere representing the brain with a radius of

85 mm. The dipole evolution model in Equation (6.11) is a random walk with Gaussian transition

kernel pk+1|k(pk+1|pk)= N (pk,σp) and pk+1|k(mk+1|mk)= N (mk,σm), with σp=1 cm and σm=2

nA, where p and m are the 3-D dipole location and moment vector, respectively.

In Figure 6.9, we show the estimation results, averaged over 50 independent runs, in terms of

RMSE for the proposed SCPF using 1,000 particles. For comparison, we also show the estimation

results for the MPF [50] using all 238 EEG measurements and also 1,000 particles. From Fig-

ure 6.9, we can see that as the number of compressed sensors increases, the RMSE decreases as

expected. When the number of compressed sensors is smaller then 50, there is a significant per-

formance degradation in term of RMSE. When the number of compressed channels is greater than
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50, there is no noticeable improvement in the RMSE. Thus, we choose the number of compressed

sensors to be 50 and the corresponding projection matrix Φ to be 50×238.

For this case when the number of sensors is 50, the location and amplitude estimation RMSE

for SCPF and MPF are compared in Table 6.5. Assuming that there are 100 time steps in this simu-

lations, the amount of EEG data needed to be stored has been reduced from 238×100 ≈ 24 kbytes

to 50× 100 = 5 kbytes. Table 6.6 shows a comparison of the two competing methods in terms of

computing operations. Note that SCPF has reduced number of additions and multiplications.

0 50 100 150 200 250
0

1

2

3

4

5

6

7

8

Number of compressed channels

R
M

S
E

 o
f d

ip
ol

e 
lo

ca
tio

n

 

 

SCSPF
MPF

(a) RMSE, dipole location

0 50 100 150 200 250
0

1

2

3

4

5

6

Number of compressed channels

R
M

S
E

 o
f d

ip
ol

e 
am

pl
itu

de

 

 
SCSPF
MPF

(b) RMSE, dipole amplitude
Figure 6.9: RMSE estimation performance comparison.

Real EEG data results. Next we apply the proposed SCPF to real EEG data that is publicly available

[96]. In this experiment, the subject’s screen showed 5 empty boxes arranged horizontally above

the screen center. At the screen center, there was a plus sign which was used as the fixation
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Table 6.5: RMSE comparison of SCPF and MPF for synthetic data (For SCPF, we used 1,000
particles and 50 sensors; for MPF, we used 1,000 particles and 238 sensors).

Algorithm Location Amplitude
MPF 2.25 mm 1.17 nA
SCPF 2.42 mm 1.43 nA

Table 6.6: Operations per particle for SCPF and MPF (For SCPF, we used 1,000 particles and 50
sensors; for MPF, we used 1,000 particles and 238 sensors).

Algorithm Block + × ÷ √ exp
MPF 323 341 1 2 1
SCPF CS 73 91 0 0 0

PF 69 74 1 2 1

point throughout the experiment. When the task began, a white disc would appear in any one of

the boxes for 100 ms. The location of the box is called the attended location. The subject was

instructed to press the response button whenever the disc appeared at the attended location. Data

were collected from 238 scalp, neck, face and eye locations using the Biosemi Active Two system.

Data is referenced with respect to the electrode located in the right mastoid.
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Figure 6.10: Estimation of the amplitudes of three dipoles.

First, we preprocess the real EEG data based on the methods in [87]. The preprocessing steps

include bandpass filtering, event extraction and independent component analysis. Next we apply

the SCPF and MPF on the preprocessed EEG data. Here, we choose the projection matrix Φ

as an 50 × 238 matrix with elements drawn from standard Gaussian distribution. We estimate

the locations and amplitudes of three dipoles and for each dipole we use 1,000 particles for both

the SCPF and MPF algorithms. We also compare the estimation results with the dipole fitting

method in [87]. Since the true locations and amplitudes of the dipoles are unknown in the real
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data case, we set the dipole fitting results in [87] as the ground truth. The estimation results are

shown in Figure 6.10 and Figure 6.11 and the RMSE is shown in Table 6.7. From Figure 6.10 and

Figure 6.11, we can see that the amplitudes and locations of the dipoles estimated by SCPF and

MPF match with the results given in [87]. Table 6.7 indicates that the SCPF can give comparable

RMSE performance with the MPF. However, since for SCPF we use only 50 compressed channel

measurements instead of the 238 original channel measurements, the amount of EEG data needed

to be stored and processed is significantly reduced. For one hour of EEG data acquisition with 1

kHz sampling rate, the amount of EEG data needed to be stored has been reduced from 857 MB to

180 MB.
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Figure 6.11: Estimation of the locations of three dipoles.

Table 6.7: RMSE comparison of SCPF and MPF for real data (For SCPF, we used 1,000 particles
and 50 sensors; for MPF, we used 1,000 particles and 238 sensors).

Algorithm Location Amplitude
MPF 5.17 mm 2.63 nA
SCPF 5.62 mm 2.85 nA
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Chapter 7

Conclusions and Future Work

In this study, we developed advanced statistical signal processing algorithms to automatically track

dynamic neural activities and designed efficient hardware architectures to implement the tracking

systems in real-time.

7.1 Summary

First, we proposed an efficient parallel architecture for implementing the particle filtering algo-

rithm. This architecture achieves both high speed and accurate estimation performance by using

the independent Metropolis-Hastings sampler along with the parallel PF implementation (PPF-

IMH). The proposed method was implemented on a Xilinx Virtex-5 FPGA platform. For a one-

dimensional problem with 1,000 particles, the PPF-IMH architecture with four processing elements

uses less than 5% of a Virtex-5 FPGA’s resources and takes 5.85 µs for one iteration.

Next, we used the PPF-IMH algorithm in waveform agile sensing to adaptively increase dy-

namic state estimation performance. Simulations demonstrated that the estimation performance is

significantly improved and the processing speed is faster due to the PF parallelization.

We also applied the PPF-IMH for neural activity tracking and proposed the use of multiple

particle filtering (MPF) for tracking multiple neural dipole sources. First, we considered the case

when the number of dipole sources was known. We demonstrated the tracking performance of the

proposed MPF system using both synthetic and real data. This method achieves better tracking

performance in terms of MSE using the same number of particles as the SIR PF. When using lower

number of particles for each sub-PF (compared to SIR PF), it achieves the same MSE but with

a highly reduced computational complexity. The proposed method was also implemented on the

Xilinx Virtex-5 FPGA platform. The processing time for one iteration using 8,000 particles was

shown to be only 31.15 µs.

When the number of neural dipole sources is unknown, we used PF-PHDF to estimate both

the number of dipoles and their parameters. We demonstrated its performance using numerical

simulations for both synthetic and real EEG data. The proposed method achieves good performance

in terms of RMSE using significantly fewer number of particles compared to existing approaches.

92



We also presented a window based processing method and a threshold based eigenvalue distilling

algorithm to enable real-time processing. The proposed method was implemented on the Xilinx

Virtex-5 FPGA platform. The processing time for a window with 100 samples using 3,200 particles

for a system with 3 dipoles was shown to be only 5.1 ms. Thus, this implementation is also capable

of real-time processing of systems with larger number of dipoles and/or larger number of samples

per second.

Finally, we considered sensor scheduling and compressive sensing methods to reduce the num-

ber of required sensors of an EEG system. By using the proposed sensor scheduling method,

the system achieved comparable tracking performance in terms of RMSE (6.4 mm compared to

6.3 mm) with only half the number of sensors (15 out of 32 sensors). Then, we proved the sparsity

of EEG signal and integrated compressive sensing technique with PF to track the dipole parameters.

The RSME tracking results of the proposed algorithm are comparable with those of conventional

methods. While the number of required EEG channels is reduced from 238 to 50. Thus, both

methods significantly reduced the number of active sensors and hence the power consumption of

the EEG system without increasing the tracking error.

7.2 Future work

There are still a number of issues that need to be addressed.

1. In Chapter 5, we assumed that in a short time window the location and orientation of dipole

sources are fixed. Under this assumption, the measurement vector zk can be represented as

zk = Ask and ICA can be used to decompose the mixed measurement. Actually, this assump-

tion can be removed if other blind signal separation (BSS) algorithms, such as Bayesian

Nonlinear Independent Component Analysis (BICA) in [97] are used.

2. The state evolution model (Equation (4.4)) for neural dipole sources is a random walk model.

It is a general model which includes little information of how the neural dipoles evolve with

time. However, in order to further improve the tracking performance, a more accurate state

evolution model is needed. This model is likely to be different for each type of disease. So

one method could be to use a set of training data to find the trajectory of the moving dipole

and build a state evolution model for a specific brain disease based on the trajectory.

93



3. In Chapter 6, we proposed two sensor scheduling methods with different cost functions:

(a) minimization of the predicted mean squared error (PMSE) in estimation, and (b) max-

imization of the signal-to-noise ratio (SNR) of the measurements. In this study, we only

showed the software and hardware evaluation results for the second method. When the num-

ber of sensors is large, the computational complexity of minimization of the PMSE is very

high. Convex optimization [91] can be used to solve this minimization problem with low

computational complexity. Thus sensor scheduling with minimization PMSE can also be

implemented to reduce the number of sensors required.
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