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ABSTRACT  

   

A fundamental gap in geomorphic scholarship regards fluvial terraces in small 

desert drainages and those terraces associated with integrating drainages.  This 

dissertation analyzes four field-based case studies within the Sonoran Desert, south-

central Arizona, with the overriding purpose of developing a theory to explain the 

formative processes and spatial distribution of fluvial terraces in the region.  Strath 

terraces are a common form (Chapters 2, 3, 4) and are created at the expense of bounding 

pediments that occur on the margins of constraining mountainous drainage boundaries 

(Chapters 1, 2, 3). Base-level fluctuations of the major drainages cause the formation of 

new straths at lower elevations. Dramatic pediment adjustment and subsequent regrading 

follows (Chapter 3), where pediments regrade to strath floodplains.  This linkage between 

pediments and their distal straths is termed the pediment-strath relationship.  Stability of 

the base level of the major drainage leads to lateral migration and straths are carved at the 

expense of bounding pediments through an erosional asymmetry facilitated by 

differential rock decay between the channel bank and bed. Fill terraces occur within the 

Salt River drainage basin as a result of the integration processes that connect formerly 

endorheic basins (Chapter 4).  The topographic, spatial, and sedimentologic relationship 

of the Stewart Mountain terrace (Chapter 4) points to a different genetic origin than the 

lower terraces in this basin.  The high Stewart Mountain fill terrace records the initial 

integration of this river.  The strath terraces inset below the Stewart Mountain terrace are 

a result of the pediment-strath relationship. These case studies also reveal that the under-

addressed drainage processes of piracy and overflow have significant impacts in the 

evolution of drainages the lead to both strath and fill terrace formation in this region. 
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Chapter 1 

INTRODUCTION 

 The focus of this dissertation is to explicate the formation and spatial distribution 

of arid fluvial terraces within the Sonoran Desert, south-central Arizona. An 

accumulation of over two centuries of literature exists regarding fluvial terraces. Within 

that literature a fundamental understanding of the significance, scientific utility and 

nature of the terrace form has developed. The significance of the fluvial terrace is far 

reaching beyond just the earth sciences and includes fields interested in mineral resource 

potential, building/construction materials, agriculture, irrigation, archeology, etc. 

(Pazzaglia 2013). However, the fundamental 40 year old observation of a desert fluvial 

geomorphologist, Asher P. Schick, point to an immense gap in our understanding of this 

landform: 

―the study of fluvial terraces of small watersheds in the arid zone seems 

    to have been neglected‖ (Schick 1974). 

 

 Upon reviewing the vast literature on fluvial terraces I have found that it is not 

only the terraces in small arid watersheds that have been neglected, but arid terraces as a 

whole that are poorly understood. This is not meant to infer that our understanding of arid 

rivers is lacking, as an abundance of research focuses on fluvial systems in drylands (e.g.  

Bull and Schick 1979; Yair and Kossovsky 2002; Flerchinger and Cooley 2000; Lange 

2005; Graf 1982, 1988, 2000; Chowdhury and Sharma 2009; Ma, Wang, and Edmunds 

2005; Taylor and Hudson-Edwards 2008; Genxu and Guodong 1999).  However, the 

majority of terrace studies focus, as Schick (1974) posits, on large regional scale 

drainages. Even more apparent is that the vast majority of these papers investigate fluvial 
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systems in any combination of the following settings – temperate or high precipitation 

regime climates (e.g. Pazzaglia and Gardner 1993; Pazzaglia and Gardner 1994; 

Montgomery 2004; Bookhagen et al. 2006), tectonically active regions (e.g. Wegmann 

and Pazzaglia 2002, 2009; Scharer et al. 2006; Robustelli 2009; Lave and Avouac 2000; 

Hsieh and Knuepfer 2001; Gao et al. 2005; Formento-Trigilio et al. 2003; Dortch et al. 

2011; Colombo et al. 2000), and drainages adjusting from direct impacts from post-

Pleistocence glacial epochs (e.g. Knox 1995; Trowbridge 1954; Flock 1983; Johnson, 

Davie, and Pedersen 1998; Knox and Attig 1988; Davis 1902; Quinn 1957; Rittenhour, 

Blum, and Goble 2007; Erkens et al. 2009). There are many more categories that the 

immense terrace literature could be subdivided into, but the fact remains that the 

overwhelming majority of terrace research has ignored the formation of fluvial terraces in 

the desert/arid setting, and particularly within Arizona‘s Sonoran Desert (e.g. Pope 1974; 

Kokalis 1971; Pewe 1978; Larson et al. 2010; Huckleberry et al. 2012; House et al. 

2005). 

 The purpose of this dissertation is to build on the fundamental work of past 

terrace researchers, by contributing case studies from the perspective of a fluvial 

geomorphologist within the Sonoran Desert. The purpose of this chapter is to introduce 

the fluvial terrace and summarize our current understanding of the form.  In so doing, this 

chapter will provide the conceptual background understanding for the case studies in the 

remaining chapters of this work. A complete and comprehensive review of the 

voluminous literature on fluvial terraces is beyond the scope of this dissertation. 

Therefore, this introductory chapter will attempt to explain the terrace form highlighting 

seminal works and reviews that have synthesized and constructed my current 
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understanding of fluvial terraces. 

 The first section of this chapter will discuss the history of fluvial terrace research 

and how our modern idea of the form has developed. It will also describe the different 

classifications of fluvial terraces and how they are distinguished from one another.  The 

next section will discuss the processes responsible for the incision and the subsequent 

formation of fluvial terraces.  The last section will highlight the four studies within this 

dissertation, the objectives of each research project, and how each of these studies 

furthers our understanding of arid/desert fluvial terrace formation. 

 

THE FLUVIAL TERRACE 

 The history of fluvial terrace literature spans approximately two centuries where 

Miller (1883) suggests that Playfair (1802) was likely first to recognize the significance 

of the terrace form within a landscape:  

―When the usual form of a river is considered, with the trunk divided into 

many branches which rise at a great distance from one another, and these 

again subdivided into an infinity of smaller ramifications, it becomes 

strongly impressed on the mind that all these channels have been cut by 

the water themselves. The changes which have taken place in the courses 

of rivers are to be traced in many instances by successive platforms of flat 

alluvial land, rising one above another, and marking the different levels on 

which the river has run at different periods of time.‖ 

 

The prevalence of fluvial terrace research dramatically began its ascent during the mid to 

late 19
th

 century where a variety of researchers began to describe and take note of the 

form (e.g. Lesley 1878; Dana 1881; Nelson 1893; Miller 1883; Hitchcock 1833, 1857; 

Darwin 1846; Prestwich 1864; Home 1875; Upham 1877; Whitaker 1875).  This resulted 

in wide variety of explanations for the origin of the form. Miller‘s (1883) summary of 
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some of this early literature exemplifies the inadequate understanding early researchers 

had in regards to the significance of the fluvial terrace:  

 – Summary of possible origins of terraces – 

 1. Ancient sea margins  

 2. Ancient river flats deserted on the account of elevation (tectonic uplift)  

 3. Ancient river flats, episodically incised in response to climate change  

 4. Relics of former monstrous floods  

 5. Shorelines of former spasmodically tapped lakes  

 6. Uplifted fluvio-marine banks  

 7. Morainic debris banked against melting glaciers  

 8. Submarine deposits  

9. Features produced by river action during down cutting, when impulses of erosion 

    took effect 

 

 Early terrace research clearly created the backbone for our contemporary 

understanding of the landform, but struggled to define exactly what a terrace represents 

and its origin. It was not until the fundamental works of G.K. Gilbert and W.M. Davis 

(Davis 1902; Gilbert 1877) that our contemporary understanding of the term emerged 

(Pazzaglia 2013, p. 2). Presently, we understand fluvial terraces as a landform that 

represents the former floodplain of the current river that has been abandoned at a level 

higher than the modern channel (Leopold, et al. 1964, Schumm 1977, Petts and Foster 

1985, Bull 1990, Ritter, et al. 2002, Hugget 2003, Harden 2004, Charlton 2008).  

 The surface of the former floodplain is known as the terrace tread, while the slope 

that rises to the tread is generally referred to as the terrace scarp, berm, or riser (Campbell 

1929, Ritter, et al. 2002). Fluvial terraces are mapped/correlated as either paired or un-

paired terraces. Paired terraces match elevation and theoretically have the same 

geochronologic significance on both sides of the river valley (Leopold, et al. 1964, 

Schumm 1977, Ritter, et al. 2002). Paired terraces occur when vertical stream incision is 
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greater than lateral migration of the stream channel (Schumm 1977). These terraces can 

record a single incision event or multiple events that lead to uniform incision and terrace 

formation. Un-paired terraces do not match in elevation on either side of the river valley. 

They often have a staggered topography from valley side to valley side and likely form 

when lateral migration coincides with some degree of vertical incision (Leopold, et al. 

1964, Schumm 1977, Charlton 2008). These terraces can represent a combination of 

episodic incision and lateral planation, being created as the river both incises slowly and 

migrates laterally through its valley. It is also possible to have unpaired terraces as the 

result of the erosive lateral migration of the river obliterating remnants as well. 

 Terraces can be classified as either depositional or erosional. The most common 

depositional terraces are fill terraces (Bull 1990) and require an aggradational event 

within the stream valley, a period of floodplain formation and subsequent incision of the 

stream channel abandoning that floodplain (Ritter, Kochel, and Miller 2002). Another 

form of a depositional terrace is a nested-fill terrace that forms when a valley fills–

incises–and fills again, but with a different fill source being nested inside the older fill. 

Erosional terraces include strath (Bucher 1932) and fill-cut terraces. Particular emphasis 

is placed on explaining strath terraces as they are the most prevalent terrace form 

observed during the case studies in this dissertation. Bull (1990) suggests that beveling of 

bedrock straths and the strath terrace are the ―fundamental tectonic stream-terrace 

landform‖ and they are often found where streams have tectonically induced 

downcutting. However, within the Sonoran Desert tectonics has been dormant for eight 

million years.  This necessitates a more thorough look at strath terrace formation. The 

difficulty in understanding strath terraces is exemplified by Montgomery (2004): 
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―Models of the processes governing the formation of erosional, 

bedrock-cored river terraces…are not as well established as models of 

processes responsible for the formation of constructional alluvial river 

terraces.‖ 

 

 Recent research suggests that the conditions for major strath carving (Bull 1990) 

occur when rates of lateral erosion exceed rates of vertical incision, during a period of 

vertical stability (Yokoyama 1999; Montgomery 2004; Wohl 2008; Pazzaglia 2013; 

Hancock and Anderson 2002; Gilbert 1877; Mackin 1937). Formation of the erosional 

strath is followed by channel incision, leaving behind the strath terrace (Mackin 1937). 

An adequately thick veneer of resistant alluvium may be necessary to preserve the strath 

as a terrace (Montgomery 2004; Garcia 2006; Garcia and Mahan 2009).  Processes 

leading to strath formation have long been thought to occur when a stream reaches a 

graded condition, where it drains to a static base level, and neither aggradation nor 

degradation occurs along its reach (Bull 1990; Hancock and Anderson 2002; Leopold and 

Bull 1979; Gilbert 1877; Mackin 1937, 1948; Knox 1975; Bull 1991). Pazzaglia (2013) 

indicates that straths develop when the stream has achieved either a profile of steady state 

or grade, drawing a careful distinction between the two. Steady state profiles do not 

change in elevation even when extrinsic properties, like base level, fluctuate. Steady state 

streams strive to incise synchronously with uplift in tectonically active regions 

(Pazzaglia, Gardner, and Merritts 1998; Pazzaglia and Brandon 2001). This does not 

necessarily require a lengthy period of a static longitudinal profile. In the case of the 

Truckee River, Nevada, a suite of six erosional terraces formed within a 44 year time 

span as the result of minor fluctuations in base level (Born and Ritter 1970). Controls on 

the oscillations to and from grade/steady-state include: fluctuations in climate (Pan et al. 
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2003; Fuller et al. 2009; Molnar et al. 1994; Ferrier, Hupper, and Perron 2013)— 

sometimes involving eustatic sea-level change (Blum and Tornqvist 2000; Tebbens et al. 

2000; Pazzaglia and Gardner 1993; Merritts, Vincent, and Wohl 1994); tectonic uplift 

and base level subsidence (Lave and Avouac 2001; Cheng et al. 2002; Rockwell et al. 

1984; Born and Ritter 1970; Reneau 2000; Merritts, Vincent, and Wohl 1994); changing 

relationships between discharge and sediment supply (Wegmann and Pazzaglia 2002; 

Pazzaglia and Brandon 2001; Hancock and Anderson 2002; Hasbargen and Paola 2000); 

and intrinsic fluvial system processes such as drainage piracy (Garcia 2006; Stamm et al. 

in Press; Lee et al. 2011)  

 Once a stream reaches a steady-state or grade, recent research suggests different 

conditions can facilitate strath formation: (1) climate-driven and/or basin intrinsic 

increases in sediment flux (Personius 1995; Personius, Kelsey, and Grabau 1993; Pan et 

al. 2003; Fuller et al. 2009; Hancock and Anderson 2002; Formento-Trigilio et al. 2003); 

(2) reaching a drainage area threshold (Merritts, Vincent, and Wohl 1994; Garcia 2006); 

(3) a weakened/erodible substrate exposed in the channel banks (Montgomery 2004; 

Wohl 2008); and (4) inherent instability triggered by meander growth and cutoffs 

(Finnegan and Dietrich 2011).  

 An increase in sediment supply may be a dynamic control on channel behavior, 

resulting in an alluvial cover that, in effect, armors the channel and protects the bed from 

vertical incision (Fuller et al. 2009; Hancock and Anderson 2002). This is further 

supported by research that indicates erosion of bedrock through plucking, abrasion and 

cavitation (Whipple, Hancock, and Anderson 2000; Chatanantavet and Parker 2009; 

Hancock, Anderson, and Whipple 1998) and channel slope largely depend on rates of 
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channel bed exposure to erosion (Sklar and Dietrich, 2001; Stock et al, 2005). A change 

in the nature of sediment flux may also allow for channel morphology to shift to a 

braided form, thus facilitating widening of its valley and these two process may work in 

harmony.  

 A sufficiently large drainage area is also thought to be a factor in strath 

development (Merritts, Vincent, and Wohl 1994; Garcia and Mahan 2009; Garcia 2006). 

Merrits et al. (1994) found that straths occur where drainage area provides enough stream 

power for lateral erosion, but far enough upstream to be independent of fluctuations in 

regional base level. Garcia (2006) tested this hypothesis, revealing that the intrinsic 

process of drainage piracy can increase the drainage area sufficiently to facilitate the 

formation of straths over graded time scales. Drainage evolutionary processes associated 

with basin overflow (e.g.  Reheis, Miller, and Redwine 2007; Reheis and Redwine 2008; 

Meek 1989a, 1989b; Larson et al. 2010) may also result in the creation and subsequent 

incision of straths.  

 The influence of channel slope on strath formation may be controlled, to a large 

degree, by the resistance of the underlying lithology (Gilbert 1877). Because streams 

flowing over resistant rocks form steepened, narrow channel reaches and those flowing 

over a weak substrate form wide, low sloped channel reaches, weak substrate allows for 

valley widening and a sediment load sufficient to protect the bed from erosion. 

Montgomery (2004) applied this conceptual understanding to the relative erodibility of 

channel banks as compared to the channel floor.  He found that perennial streams flowing 

over weak sedimentary lithologies developed a distinct ―asymmetry in bedrock 

erodibility‖ (p.464) resulting from mechanical weathering via wetting and drying (or 
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freeze-thaw) of the channel banks over time.  Montgomery (2004) specifically noted that 

strath formation did not require a bed protected by alluvium if this asymmetry exists – 

but a positive feedback would occur where alluvium covers the strath.  Others have 

suggests that bedrock discontinuities (i.e. horizontal/subhorizontal jointing and shear 

zones) could also facilitate bank erosion and strath development in more resistant 

lithologies (Wohl 1998; Wohl 2008) 

 Fill-cut terraces are similar although they do not bevel the bedrock ―strath.‖ The 

stream valley has filled with alluvium and the alluvium is first eroded to form an 

erosional surface, followed by incision into this floodplain. It is important to note that the 

highest terrace in a valley filled with alluvium is likely a fill terrace and is depositional in 

origin. Fill-cut terraces are inset within the fill terrace and represent progressive incision 

events within a stream valley. 

 

THE CAUSE OF FLUVIAL TERRACE FORMATION 

 Incision mechanisms resulting in the fluvial terrace form can result from changes in 

intrinsic or extrinsic variables in the fluvial system, ultimately influencing the balance 

between sediment discharge (Qs) and stream fluid discharge (Q). Working under the 

paradigm that streams tend towards grade (Mackin 1948; Gilbert 1877; Davis 1902; Bull 

1990; Schumm 1977), a steam‘s Q transports all Qs in a state of equilibrium (Baker and 

Ritter 1975; Mackin 1948; Bull 1979; Schumm 1977). A concave-upwards graded 

longitudinal profile is a function of the Q/Qs relationship, or competence of the stream 

(Gilbert, 1877), as the fluvial system tends to steadily increase in discharge and bed load 

grain size decreases downstream.  For grade to establish, base level must remain 
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stationary (Bull 1991; Knox 1975; Gilbert 1877; Leopold and Bull 1979), unless in a 

steady-state form that allows the river profile to remain stationary (Pazzaglia 2013). 

However, graded streams rarely occur in natural settings, because of the truly dynamic 

and variable nature of streams (Marcus and Fonstad 2010; Fonstad and Marcus 2010). 

For the purpose of understanding terrace formation, however, a major alteration of grade 

can generate a response of aggradation or incision of the channel and this concept can be 

used to better understand the system in terms of incision and aggradation. 

 Tectonism, uplift and/or subsidence can significantly alter grade and result in 

terrace formation. Stream terraces, therefore, have the potential to generate insight into 

the tectonic history of a drainage basin (Berryman et al. 2000; Bull 1990; Holbrook and 

Schumm 1999; Carcaillet et al. 2009; Leopold and Bull 1979; Merritts, Vincent, and 

Wohl 1994; Peters and Balen van 2007; Zuchiewicz 2011; Pewe 1978; Westaway et al. 

2004; Maddy 1998; Westaway 2003; Hsieh and Knuepfer 2001). When tectonism alters 

the streams gradient (or slope), it influences the ability the stream to transport sediment 

downstream. For example, tectonic uplift in the headwaters increases stream gradient, 

giving that stream a greater ability to transport sediment. If the sediment load does not 

change, the stream incises into its channel, abandoning its former floodplain as a terrace. 

Base level subsidence generates a similar effect, increasing the stream gradient and 

causing incision which results in terrace formation.  A drop in base level can result from 

tectonic subsidence or eustatic sea level lowering. 

 Climatic oscillations have long been recognized as an important factor in stream 

incision (Kock et al. 2009; Brigland and Westaway 2008; Knox 1995; Molnar et al. 1994; 

Bull 1991, 1990; Leopold, Wolman, and Miller 1964; Houben 2003; Hsieh and Knuepfer 
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2001; Tebbens et al. 2000; Bestland 1997; Fuller et al. 1998; Knox 1983). Changes in 

precipitation influence the streams ability to transport sediment. Vegetation change alters 

the sediment input into a stream as well (Quinn 1957; Bull 1991; Huntington 1907; 

McDonald, McFadden, and Wells 2003; Throckmorton and Reheis 1993; Wells, 

McFadden, and Dohrenwend 1987). Climate also influence eustatic sea level change, that 

raises and lowers base level of an entire drainage basin (Blum and Tornqvist 2000; 

Tebbens et al. 2000).  

 Lithologic differences also impact incision (Ritter, Kochel, and Miller 2002; 

Colombo et al. 2000; Garcia 2006). As a drainage basin evolves it often erodes headward 

and laterally across a landscape. This may alter the materials mined by a stream and its 

tributaries. For example, changes that produce larger or smaller clasts can result in 

aggradation or incision. Changes in particle size can also impact the autogenic processes 

within a drainage network, where streams originating in mountains have a steeper 

gradient and higher elevation than neighboring tributaries that may originate over softer 

lithologies in the piedmont.  This can lead to drainage captures by the lower 

elevation/gradient piedmont stream, that would cause aggradation; subsequently incision 

into the channel results from readjustment of the longitudinal profile (Ritter 1972). 

 

CASE STUDIES FROM THE SONORAN DESERT, SOUTH-CENTRAL ARIZONA 

 In order to address the fundamental gap in our understanding of the nature of 

fluvial terraces in arid/desert environments, and particularly within the Sonoran Desert, 

several important concepts were addressed in the following research.  First, drainages of 

varying scales were analyzed to determine if the nature of fluvial terraces change 
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between a variety of watershed scales. As Schlick (1974) suggests, ―The study of fluvial 

terraces of small watersheds in the arid zone seems to have been neglected,‖ therefore it 

is important to address the issue of scale to determine if a model can be developed 

throughout all of the regions drainage basins.  The smaller drainages of South Mountain, 

an isolated range in south-central Arizona, were investigated along with significantly 

larger drainages of the Salt and Verde River system.  Second, drainages that contained 

both fill and strath terraces were investigated to determine the driving mechanisms in the 

formation of both fundamental types of fluvial terrace.  Both fill and strath terraces exist 

within the Salt and Verde River systems however, they are predominantly strath for the 

smaller South Mountain drainages. Third, a study of pediment evolution in response to 

the Salt River drainage adjustment was conducted.  Pediments serve as functional 

components of the drainage basin and reflect the nature of adjustment within the fluvial 

system. It was observed that strath terraces reside upon these surfaces and this 

observation suggests a relationship between the terrace and pediment forms that is not 

clear at present. A series of four pediment surfaces were analyzed along the Salt River to 

evaluate these complex response mechanisms to dynamic river adjustment.  Lastly, often 

overlooked intrinsic drainage processes were evaluated as possible terrace forming 

mechanisms.  Within each drainage investigated recently established deterministic 

criteria (Douglass et al. 2009a, 2009b; Douglass 2005) were applied, as well as other 

field interpretations, to determine the impact of intrinsic drainage processes. The 

dissertation addressed each of these issues through a series of case studies, highlighted 

below: 
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           The alluvial fan-cut terrace: A review and criteria to differentiate from fluvial 

terraces.– As prominent landforms in many geomorphic settings, alluvial fans and fluvial 

terraces often coexist within a single drainage basin. This juxtaposition, in some 

instances, has proved problematic for researchers who have not clearly or successfully 

distinguished fluvial terraces from truncated tributary fans. This confusion could relate 

the lack of a clear definition of the landform, since fan-cut terrace, truncated alluvial fan, 

toe-cut alluvial fan, alluvial terrace, and incision of the lower end of a fan piedmont all 

refer to the same genetic landform. This paper presents criteria to aid in the identification 

of an alluvial fan-cut terrace as an abandoned alluvial surface formed by the truncation of 

tributary alluvial fans by streams flowing perpendicular to the fan surface.  Truncation 

occurs through lateral erosion (‗toe cutting‘) or through vertical incision by the axial 

drainage lowering base level. A case study from the Basin and Range province in central 

Arizona illustrates the criteria, where a sequence of abandoned alluvial surfaces strongly 

resembles fluvial terraces, but use of the proposed criteria reveals them to be fan-cut 

terraces.  

 Strath development in small arid watersheds: Case study of South Mountain, 

Sonoran Desert, Arizona.– Analyses of modern straths and strath terraces in small arid 

drainages of <5 km
2
 reveal two previously undocumented processes that appear to be 

responsible for carving bedrock erosional floodplains in granitic lithologies of the South 

Mountain metamorphic core complex, central Arizona. The first process involves an 

asymmetry of erosion due to enhanced rock decay along channel banks, compared to 

channel bottoms. Ephemeral washes flowing in topographic lows between bedrock 

pediments cut straths through lateral migration into the pediment‘s weathering mantle, a 
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process observed during several flash floods. This process is further facilitated by 

bedrock decay through abiotic processes like biotite oxidation that is subsequenty 

enhanced by mycorrhizal fungi associated with the roots of plants growing along stream 

banks. A second process of strath formation relates to aggradational piracy along the 

margins of the range. Piracy leads to an increase in drainage area and regrading of the 

stream‘s longitudinal profile. The increased drainage area accessed during long profile 

adjustment forms a bedrock strath immediately downstream of the capture point, while 

post-piracy adjustments form straths upstream of the capture. Erosional floodplains 

produced by these processes experienced subsequent incision, forming strath fluvial 

terraces. The mechanisms for incision, however, remain unclear. Those drainages flowing 

into the Salt River incised at the onset of the last glacial maximum, according to 
14

C and 

VML ages, and this could relate to a shift in the position of the Salt River towards South 

Mountain or incision of the Salt River itself.  In contrast, the pirated drainage flows south 

towards the Gila River incised into its highest strath between Heinrich Events 1 and 2 — 

suggesting a possible link to climatic change.  The causes of Holocene strath incision 

events ~4100 cal BP and ~300-650 cal BP possibly correlate with regional fluvial 

adjustments seen in larger southwestern USA rivers. 

 The control of base level on pediment processes, a case study from the lower Salt 

River Valley, central Arizona.– The scholarly research on granitic rock pediments 

includes very little discussion on the role base level fluctuations.  This study investigates 

the controls of base level on granitic rock pediments flanking inselberg mountain ranges 

in south-central, Arizona. When base level is lowered, terrace incision occurs and 

pediments respond by regrading to strath floodplains of the Salt and Verde rivers.  
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Pediments regrade through different mechanisms working in concert: headward erosion; 

stream piracy; and lateral migration. Headward erosion of pediment drainages begin at 

the base of the pediment in response to base level lowering. The largest drainages erode 

headward more efficiently and create a local base level on the pediment surface. The 

largest pediments respond with the greatest erosion rate (averaging ~90mm/ka) while the 

smallest pediments have erosion rates an order of magnitude lower (~ 7-8mm/ka). 

Tributaries retreating from these master drainages incise into the remnant pediment 

surfaces and can capture pediment streams on the former surface. Stream piracy 

processes resulting from headward eroding drainages work to increase drainage area of 

the capturing stream and lowering the relict pediment surface over time. Finally, lateral 

erosion occurs predominantly in the distal reach of the master pediment drainages.  It also 

occurs when large pediment drainages converge, suggesting a drainage area relationship 

facilitating lateral erosion. Each of these processes resulting in planation down to a new 

pediment surface adjusted to a lowered base level.   

 Stewart Mountain Terrace: A new Salt River terrace with implications  for 

landscape evolution of the lower Salt River valley, Arizona.– Stream terraces of the Salt 

River form the interpretive backbone of Plio-Pleistocene landscape evolution of central 

Arizona, because they represent the base level of all tributary streams.  This paper 

presents a new addition to T.L. Péwé‘s Salt River Terrace sequence (in decreasing 

topographic position and age: Sawik, Mesa, Blue Point, and Lehi) that has been unrefined 

for the last thirty years.  The existence of an older, higher terrace was predicted by 

research suggesting that the lower Salt River originated by lake overflow from an 

ancestral Pliocene lake in the Tonto Basin.  Field reconnaissance, aerial photo 
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interpretation, and sedimentological analysis revealed this terrace on the north side of the 

Salt River, named here the Stewart Mountain Terrace (SMT).  Where exposed, the fluvial 

sediments of SMT overlay Tertiary basin fill unconformably. SMT sediments are 

characterized by ~50 m thick fluvial gravels found more than 70 meters above remnants 

of the Sawik Terrace. Although the gravels are distinctly Salt River in origin, Stewart 

Mountain gravels differ from the lower and younger Salt River Terraces. The clast sizes 

are much larger on average and host a significantly different lithology.  Because of these 

differences the SMT has profound implications for the understanding of regional 

drainage reorganization after basin and range extension. The existence of this terrace and 

its distinct gravels are consistent with, but do not prove, a lake overflow mechanism for 

the initiation of through flowing drainage in the Salt River valley.   
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Chapter 2 

 

THE ALLUVIAL FAN-CUT TERRACE: A REVIEW AND CRITERIA TO 

DIFFERENTIATE FROM FLUVIAL TERRACES 

 

 

 

ABSTRACT.    As prominent landforms in many geomorphic settings, alluvial fans 

and fluvial terraces often coexist within a single drainage basin. This juxtaposition, 

in some instances, has proved problematic for researchers who have not clearly or 

successfully distinguished fluvial terraces from truncated tributary fans. This 

confusion could relate the lack of a clear definition of the landform, since fan-cut 

terrace, truncated alluvial fan, toe-cut alluvial fan, alluvial terrace, and incision of 

the lower end of a fan piedmont all refer to the same genetic landform. This paper 

presents criteria to aid in the identification of an alluvial fan-cut terrace as an 

abandoned alluvial surface formed by the truncation of tributary alluvial fans by 

streams flowing perpendicular to the fan surface.  Truncation occurs through 

lateral erosion (‘toe cutting’) or through vertical incision by the axial drainage 

lowering base level. A case study from the Basin and Range province in central 

Arizona illustrates the criteria, where a sequence of abandoned alluvial surfaces 

strongly resembles fluvial terraces, but use of the proposed criteria reveals them to 

be fan-cut terraces.  
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INTRODUCTION 

 Alluvial fan-cut terraces (fig. 1) form as a result of the interaction between a 

drainage basin‘s axial stream and alluvial fans debouching from tributary drainages 

(Leeder and Mack 2001). They often form through lateral erosion of a non-incising axial 

stream, a process referred to as ‗toe-cutting‘ (Leeder and Mack 2001). They also develop 

when incision of the axial incises lowers the base level of the tributary fan (Colombo, et 

al. 2000, Colombo 2005). Fan-cut terraces are important features, in part, because of their 

broader implication for stratigraphic basin analysis and groundwater studies (Leeder and 

Mack 2001).  

 Fan-cut terraces occur frequently in many geomorphic settings, leading to their 

study in the Andes Mountains (Colombo, et al. 2000, Colombo 2005), Death Valley 

(Blair and McPherson 2009), Big Lost River Basin of Idaho (Leeder and Mack 2001), 

along numerous rivers in northern India (Bedi 1980, Chatterjee and Sarkar 1982, Chopra 

1990, Jana and Dutta 1996, Kumar and Aravindan 2007, Uniyal, et al. 2010, Kesari 

2011), the UAE and Oman (Al-Farraj and Harvey 2005), and New Zealand (Carryer 

1966) to name a few. Within the Basin and Range of western North American they exist 

as a dominant landscape feature (Gile, et al. 1981, Pederson 1981). For example, 

Pederson‘s (1981) classification of landforms for soil scientists includes alluvial fans 

whose lower surfaces have been truncated by the main trunk stream of a basin axial 

drainage. These fan-cut terraces remain distinct from fluvial terraces that often co-occur 

above modern axial washes. Directly above the fluvial terraces, however, erosion of the 

lower end of a fan piedmont mimics the appearance of a fluvial terrace (fig. 2).   
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Fig. 1. Idealized diagram of morphologic relationship between a fluvial terrace and a fan-

cut terrace. While the fluvial terrace scarp remains parallel to the axial drainage, the fan-

cut terrace scarp bounds both the tributary and the edge of the fan, which has been 

truncated by the axial drainage.  Viewed from the channel, a fan-cut scarp appears to 

parallel the axial stream. 

 

 

 Within geomorphic scholarship the term ‗fan-cut terrace‘ is predominantly used in 

research conducted in India (Bedi 1980, Chatterjee and Sarkar 1982, Chopra 1990, Jana 

and Dutta 1996, Kumar and Aravindan 2007, Uniyal, et al. 2010, Kesari 2011). In 
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addition, we have found five other descriptions used to describe this landform: toe-cut 

alluvial fans (Mack and Leeder 1999, Leeder and Mack 2001, Florsheim 2004, Suresh, et 

al. 2007, Mack, et al. 2008, Blair and McPherson 2009, Harvey 2010), toe-trimmed 

alluvial fans (Al-Farraj and Harvey 2005), truncated alluvial fan (Young, et al. 1986, 

Manville 2010, Sanchez-Nunez, et al. 2012), the eroded distal end of alluvial piedmonts 

(Pederson, 1981), and alluvial terraces (Colombo, et al. 2000, Colombo 2005, Gao, et al. 

2005). No single accepted term, however, exists for the basic landform (fig. 1). We, thus, 

suggest that fan-cut terrace be the commonly accepted term — defined as follows: an 

abandoned alluvial surface that forms by the truncation of tributary alluvial fans by an 

axial drainage flowing obliquely or perpendicular to the alluvial fan surface. 

 
 

Fig. 2. Pederson (1981, p. 35) diagrammed several ―cycles‖ of dissection and deposition 

in a typical basin within the Basin and Range, North America. This adaptation of 

Pederson‘s original diagram emphasizes the distinction between small isolated true 

fluvial terraces and the more dominant alluvial fans that have been truncated by an 
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incising main wash. The truncation of alluvial fans results in fan-cut terrace formation. 

 

 

 The lack of a commonly accepted term may have led to potentially confusing 

wording in Colombo et al.‘s (2000) research on the Rio San Juan of Argentina. Flights of 

abandoned alluvial and fluvial benches sit as markers of the geomorphic landscape 

evolution of this area. Tributaries of the San Juan Valley empty into the Rio San Juan, 

resulting in alluvial fans that have been progressively incised (fig. 3). Cycles of alluvial-

fan sedimentation blocking or intruding into the Rio San Juan has been followed by 

subsequent overtopping and down-cutting by the river (Colombo, et al. 2000, Colombo 

2005); this axial stream incision then lowered the base level of the tributary alluvial fans. 

The authors collectively refer to ―alluvial terraces‖ to describe the treads above the Rio 

San Juan  — landforms that are clearly fan-cut terraces. Although correctly identifying 

the alluvial nature of the sedimentology, we think the term alluvial terraces is often used 

synonymously with fluvial terraces and leads to potential confusion. 
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Fig. 3. The Rio San Juan Valley, Argentina exhibits classic examples of the truncation of 

alluvial fans, creating fan-cut terraces through the process of axial stream incision 

lowering the base level of the tributary fans (Colombo et al., 2000). (A) Two separate 

incision events by the Rio San Juan formed two distinct fan-cut terraces, with the 

younger one (white line) inset an older fan-cut terrace (black arrows. (B) A broader view 

where fan-cut terraces appear to form a laterally continuous riser that looks strikingly 

similar to a fluvial terrace. In reality, these are coalesced fans have been truncated by the 

Rio San Juan (Colombo et al., 2000). Photos by Phil Larson. 
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A more serious issue is that the process of an axial stream truncating the distal end of a 

tributary alluvial fan can sometimes produce a landform that looks like an abandoned 

floodplain, or a fluvial terrace. It is possible that the lack of an accepted terminology for 

fan-cut terraces led to a basic misinterpretation of landforms above the Mojave River 

system at Afton Canyon, Mojave Desert, California. Meek (1989) proposed that Afton 

Canyon underwent a rapid incision as a result of the basin overflow of Pleistocene Lake 

Manix. In contrast, others (Wells and Enzel 1994, Enzel, et al. 2003) identified features 

inside Afton Canyon as fluvial terraces that would suggest a slow down cutting of the 

Mojave River. Some of these features along Afton Canyon, in reality, are fan-cut 

terraces. The existence of these claimed fluvial terraces was then used as evidence that 

Afton Canyon did not undergo a rapid incision (Enzel 2003). Meek rejected this view and 

argued that the surfaces identified in Afton Canyon are all below the level of the lake 

basin floor and hence have no relevance to how fast Lake Mojave drained (Meek 2004). 

Meek‘s interpretation of the various surfaces inside Afton Canyon, as the explanation of 

lake overflow to cut Afton Canyon, was later verified by U.S. Geological Survey research 

(Reheis and Redwine 2008). Similarly, the lack of a clear definition could have generated 

the misidentification of fan-cut terraces as wave-cut recessional terraces (Wells and Enzel 

1994). Research by the U.S. Geological Survey (Reheis, et al. 2007) explained that the 

―scarps are not at a constant elevation, making another suggested interpretation of the 

scarps as wave-cut features (Wells and Enzel, 1994) unlikely‖ (p. 20).  

 The confusion over terminology, the ease of incorrectly identifying fan-cut terraces, 

and the potential complications misidentification can cause in understanding drainage 

basin history all highlight the need for a retrospective analysis of this basic landform. The 
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second section of this paper starts this analysis by reviewing the literature on fan-cut and 

fluvial terraces.  The third section of the paper presents well-known criteria to be used in 

distinguishing fan-cut terraces from fluvial terraces. We then use these criteria in a case 

study from a non-controversial central Arizona drainage, where the basic landform looks 

very much like a fluvial terrace at first glance – but is truly a fan-cut terrace. 

 

THE TERRACE FORM 

 Fluvial Terraces.– Since fan-cut terraces have been confused with fluvial terraces, 

any literature review must start with fluvial terraces. The history of fluvial terrace 

literature spans approximately two centuries where Miller (1883) suggested that Playfair 

(1802) was likely first to recognize their importance. The modern framework of fluvial 

terraces, however, largely stems from the fundamental works of G.K. Gilbert and W.M. 

Davis (Gilbert 1877, Davis 1902, Pazzaglia 2013). Fluvial terraces represent the former 

floodplain of the current river that has been abandoned at a level higher than the modern 

channel (Leopold, et al. 1964, Schumm 1977, Petts and Foster 1985, Bull 1990, Ritter, et 

al. 2002, Hugget 2003, Harden 2004, Charlton 2008).  

 The surface of the former floodplain is known as the terrace tread, while the slope 

that rises to the tread is generally referred to as the terrace scarp, berm, or riser (Campbell 

1929, Ritter, et al. 2002).  Fluvial terraces are mapped/correlated as either paired or 

un-paired terraces. Paired terraces match elevation and theoretically have the same 

geochronologic significance on both sides of the river valley (Leopold, et al. 1964, 

Schumm 1977, Ritter, et al. 2002). Paired terraces occur when vertical stream incision is 

greater than lateral migration of the stream channel (Schumm 1977). These terraces can 
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record a single incision event or multiple events that lead to uniform incision and terrace 

formation. Un-paired terraces do not match in elevation on either side of the river valley. 

They often have a staggered topography from valley side to valley side and likely form 

when lateral migration coincides with some degree of vertical incision (Leopold, et al. 

1964, Schumm 1977, Charlton 2008). These terraces can represent a combination of 

episodic incision and lateral planation, being created as the river both incises slowly and 

migrates laterally through its valley. It is also possible to have unpaired terraces as the 

result of the erosive lateral migration of the river, obliterating remnant surfaces, very 

similar to the ‗toe-cutting‘ processes altering alluvial fans (Leeder and Mack, 2001). 

 Terraces can be classified as either depositional or erosional. The most common 

depositional terraces are fill terraces, and they require an aggradational event within the 

stream valley, a period of floodplain formation and subsequent incision of the stream 

channel abandoning that floodplain. Another form of a depositional terrace is a nested-fill 

terrace.  

 Erosional terraces include strath (Bucher 1932) and fill-cut terraces. Bull (1990) 

suggests that beveling of bedrock straths and the strath terrace are the ―fundamental 

tectonic stream-terrace landform‖ and they are often found where streams have 

tectonically induced downcutting. However, more recent research suggests strath terraces 

form through lateral planation of weakened or highly erodible banks (Montgomery 2004) 

leaving behind a thin veneer of alluvium overlying a beveled bedrock surface. Formation 

of the erosional strath is followed by channel incision, leaving behind the strath terrace 

(Mackin 1937).  Fill-cut terraces are similar although they do not bevel the bedrock 

―strath.‖ The stream valley has filled with alluvium and the alluvium is first eroded to 
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form an erosional surface, followed by incision into this floodplain. It is important to note 

that the highest terrace in a valley filled with alluvium is likely a fill terrace and is 

depositional in origin. Fill-cut terraces are inset within the fill terrace and represent 

further incision events within a stream valley. 

 Incision Mechanisms.– Incision mechanisms resulting in the fluvial terrace form — 

as well as subsequent incision of tributary alluvial fans —can result from changes in 

intrinsic or extrinsic variables in the fluvial system, ultimately influencing the balance 

between sediment discharge (Qs) and stream fluid discharge (Q). Working under the 

paradigm that streams tend towards grade (Gilbert 1877, Davis 1902, Mackin 1948, 

Schumm 1977, Bull 1990), a steam‘s Q transports all Qs in a state of equilibrium 

(Mackin 1948, Baker and Ritter 1975, Schumm 1977, Bull 1979). A concave-upwards 

graded longitudinal profile is a function of the Q/Qs relationship, or competence of the 

stream (Gilbert, 1877), as the fluvial system tends to steadily increase in discharge and 

bed load grain size decreases downstream.  For grade to establish, base level must remain 

stationary (Gilbert 1877, Knox 1975, Leopold and Bull 1979, Bull 1991). However, 

graded streams rarely occur in natural settings, because of the truly dynamic and variable 

nature of streams (Fonstad and Marcus 2010, Marcus and Fonstad 2010). For the purpose 

of understanding terrace formation, however, a major alteration of grade can generate a 

response of aggradation or incision of the channel.  

 Tectonism, uplift and/or subsidence can significantly alter grade and result in 

terrace formation. Stream terraces, therefore, have the potential to generate insight into 

the tectonic history of a drainage basin (Pewe 1978, Leopold and Bull 1979, Bull 1990, 

Merritts, et al. 1994, Maddy 1998, Holbrook and Schumm 1999, Berryman, et al. 2000, 
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Hsieh and Knuepfer 2001, Westaway 2003, Westaway, et al. 2004, Peters and Balen van 

2007, Carcaillet, et al. 2009, Zuchiewicz 2011). When tectonism alters the streams 

gradient (or slope), it influence the ability the stream to move sediment downstream. For 

example, tectonic uplift in the headwaters increases stream gradient, giving that stream a 

greater ability to transport sediment. If the sediment load does not change, the stream 

incises into its channel, abandoning its former floodplain as a terrace. Base level 

subsidence generates a similar effect, increasing the stream gradient and causing incision 

that results in terrace formation.  A drop in base level can result from tectonic subsidence 

or eustatic sea level lowering. 

 Climatic oscillations have long been recognized as an important factor in stream 

incision (Leopold, et al. 1964, Knox 1983, Bull 1990, Bull 1991, Molnar, et al. 1994, 

Knox 1995, Bestland 1997, Fuller, et al. 1998, Tebbens, et al. 2000, Hsieh and Knuepfer 

2001, Houben 2003, Brigland and Westaway 2008, Kock, et al. 2009). Changes in 

precipitation influence the streams ability to transport sediment. Vegetation change alters 

the sediment input into a stream as well (Huntington 1907, Quinn 1957, Wells, et al. 

1987, Bull 1991, Throckmorton and Reheis 1993, McDonald, et al. 2003). Climate also 

influence eustatic sea level change, that raises and lowers base level of an entire drainage 

basin (Blum and Tornqvist 2000, Tebbens, et al. 2000).  

 Lithologic differences also impact incision (Colombo, et al. 2000, Ritter, et al. 

2002). As a drainage basin evolves it often erodes headward and laterally across a 

landscape. This may alter the materials mined by a stream and its tributaries. For 

example, changes that produce larger or smaller clasts can result in aggradation or 

incision. Changes in particle size can also impact the autogenic processes within a 
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drainage network, where streams originating in mountains have a steeper gradient and 

higher elevation than neighboring tributaries that may originate over softer lithologies in 

the piedmont.  This can lead to drainage captures by the lower elevation/gradient 

piedmont stream, that would cause aggradation; subsequently incision into the channel 

results from readjustment of the longitudinal profile (Ritter 1972).  

 Fan-cut terraces.– In contrast to the extensive literature on fluvial terraces and 

mechanisms of their formation, relatively little scholarship exists on processes 

responsible for fan-cut terraces. Most literature that references the term ‗fan-cut terrace‘ 

deals with mapping research in India (Bedi 1980, Pederson 1981, Chatterjee and Sarkar 

1982, Chopra 1990, Jana and Dutta 1996, Kumar and Aravindan 2007, Uniyal, et al. 

2010, Kesari 2011). More extensive research covers the truncation of alluvial fans 

through a conglomeration of terms and processes responsible for their truncation, with 

less attention paid directly to fan dynamics or how fan-cut terraces relate to other 

depositional landforms (Table 1).  

 Leeder and Mack (2001) stress that research on this landform has been neglected. 

They use the term ‗toe-cutting‘ to explain one process responsible for the development of 

the fan-cut terrace form: an axial drainage migrating laterally erodes the distal end of 

tributary fans. They point to three allocyclic mechanisms - climatic oscillations, tectonic 

tilting, and fault propagation - as possible processes to cause an axial drainage to 

overtake distal fan aggradation. They also differentiate toe-cutting from axial stream 

incision, that can also result in fan-cut terrace formation. They point to numerous 

examples in Gile et al. (1981) and Bull (1991). The causes of axial stream incision, thus, 

are treated here as similar to those that create fluvial terraces. 
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TABLE 1 

 

Literature discussing alluvial-fan truncation organized into different processes. 

 

Process of 

Truncation 

Summary Citation 

Glacial  The role of glaciers is directly inferred, but 

not explicitly. 

(Carryer 1966) 

Fluvial  Large flooding events initiated by natural 

dam failure causes drainage incision and 

truncation of the fan surface.  

 

Erosion of the distal reach of tributary 

alluvial fans by lateral migration (and/or 

incision) of main drainage 

(Colombo, et al. 2000, 

Colombo 2005, Le Roux, et 

al. 2008) 

 

(Pederson 1981, Leeder and 

Mack 2001, Knudsen, et al. 

2002, Given 2004, Al-Farraj 

and Harvey 2005, Sanchez-

Nunez, et al. 2012) 

Coastal  Erosion of alluvial fans by wave action from 

a transgressing sea or land subsidence 

 

Erosion of the distal ends of alluvial fans by 

wave action in a coastal/lacustrine setting. 

(Rudberg 1986) 

 

 

(Young, et al. 1986, Nemec 

and Postma 1993, Harvey, 

et al. 1999) 

Outburst 

Floods 

Sudden outbursts that spill out of their 

constraining basin erode the base of alluvial 

fans 

(Knudsen, et al. 2002, 

Wolfe and Beget 2002, 

Manville 2010) 

Faulting/ 

Tectonics 

Faulting offsets the fan surface, creating a 

truncation of fan aggradation and the 

abandonment of that surface. 

(Ritter, et al. 1995, Ginat, et 

al. 1998, Dudash 2006, 

Kargaranbafghi, et al. 2011) 

 

 

 The fluvial system of the axial stream can generate both fluvial terraces and fan-

cut terraces through toe-cutting or through lowering the base level in a drainage basin. 

The focus here rests in drawing a distinct difference between fan-cut terraces and fluvial 

terraces and how these differences manifest in a field setting. 
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CRITERIA-BASED APPROACH TO DISTINGUISH FLUVIAL AND FAN-CUT 

TERRACES 

 We propose several criteria to help field researchers distinguish fluvial terraces 

from fan-cut terraces in locations like the Basin and Range Province of western North 

America.  While these criteria are not new, we believe that there is a need to compile 

them in one place to help future field investigators distinguish these very different, but 

potentially similar looking, landforms.  

 Shape of the surface.– One of the most efficient ways to distinguish between fan-

cut terraces and fluvial terraces is by reconstructing the tread of the terrace back to the 

alluvial fan tributary. These surfaces can be reconstructed through aerial photograph 

interpretation, remote sensing techniques, ground truthing via differentially corrected 

global positioning systems and other ground survey approaches. However, 

Reconstructing these deposits on a morphological basis may prove initially difficult in 

areas of relatively low relief. 

 Consider the fan-cut terrace in figure 4. While the fan-cut terrace looks similar to 

the fluvial terrace as it parallels the axial drainage at the distal end of the fan, this riser 

wraps around the corner and is a topographically continuous surface that rises in relief 

towards the head of the fan. Figure 4 illustrates a case where a tributary wash has eroded 

a portion of the fanglomerate, a process that helps produce the illusion of a fluvial terrace 

form. Alluvial fans may have been dissected since deposition by subsequent erosive 

processes, but an abandoned surface should not be assumed as a fan-cut terrace unless the 

surface can be reconstructed back to an original alluvial fan tributary.  
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Form of deposition on the surface.– Where debris-flow processes dominate alluvial fan 

aggradation, the morphology of the fan surface can differ substantially from terraces 

deposited by fluvial processes. Bar- 

 
Fig. 4. The topography of the fan-cut terrace (identified above the dashed line) parallels 

the trunk stream where the toe has been cut by the axial wash. However, riser of the fan-

cut terrace also parallels the incised tributary wash — as exemplified by two different 

perspectives (A and B) of the Pyramid trail fan, South Mountain. Image C provides an 

oblique aerial view unencumbered with annotations. 

 

and-swale topography (fig. 5A) is often the morphological result of debris flows on 
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alluvial fans (Frankel and Dolan 2007). This contrasts with a relatively smoother 

topography resulting from fluvial deposition (fig. 5B). While desert pavement-forming 

processes (Dixon 2009) will tend to obscure these distinctions in pre-Holocene deposits, 

this basic morphological distinction provides one way to distinguish fan from fluvial 

deposits. 

 Sedimentology of the deposit.– If the underlying alluvial sediments are 

fanglomerate in nature and show no interruption by the truncating stream, then it is likely 

that the landform is a fan-cut terrace (fig. 6C). There may be a few emplaced fluvial 

clasts from the axial drainage an exposure, but fanglomerate deposits should be the 

dominant form and are usually distinguished by coarser clasts within a finer-grained 

matrix.  The coarse clasts are subangular to subrounded and more poorly sorted than 

normal fluvial deposits. The surficial expression of fanglomerate deposits results in a bar 

and swale topography (fig. 6A). In contrast, fluvial deposits tend to be better sorted and 

more rounded if they are boulders and cobbles (fig.  6B) or will show sorting between 

sandy and gravel facies (fig. 6D). 
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Fig. 5. The surface morphology of an ambiguous landform can be compared to nearby 

features. For example,  (A) The alluvial fans at South Mountain, Arizona, are 

characterized by pronounced heavily varnished bars separated by lower and less 

varnished swales. Debris flows produce this basic topography of alternating bars and 

swales. (B) In contrast, the stream terraces at South Mountain are typified by low relief 

and relatively planar surfaces.  Saguaro (Carnegiea gigantea) and Paloverde 

(Parkinsonia microphylla) trees provide scale. 
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Fig. 6. Alluvial fan and fluvial terraces are often strikingly different in regards to their 

surface morphology and sedimentological characteristics. In a surficial setting, 

fanglomerate often takes the shape of bar and swale deposits (A), while river boulders 

and cobbles tend to show rounding and imbrication (B). In exposed cuts, fanglomerate 

exhibits poor sorting and more angular clasts (C), whereas fluvial deposits exhibit 

sorting, such as sandy lenses and gravel lenses of rounded clasts (D). All images from 

South Mountain, Arizona. 

 

 Provenance.– Provenance can sometimes serve as a useful tool in distinguishing 

the landforms.  This is particularly significant in large drainage basins like those 

investigated by Colombo et al. (2000). Alluvial fan sediments entering a drainage from a 
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tributary basin derive from a local source (Brierley, et al. 1993, Hereford, et al. 1996). On 

the other hand, the major trunk drainage will host a mix of rock types from throughout 

the upstream portions of its drainage basin.  Sedimentological provenance is best applied 

with larger drainage basins or if the geology of a tributary drainage is particularly 

complex/unique (Mather 2000, Duk-Rodkin, et al. 2001). 

 Longitudinal profiles.– A common method for investigating fluvial terraces 

compares the longitudinal profiles of terraces to the modern fluvial channel.  This 

comparison reveals insight into the nature of incision, local tectonics, and underlying 

bedrock (e.g. Merritts, et al. 1994, Pazzaglia, et al. 1998, Zuchiewicz 2011). Long 

profiles can also prove useful in distinguishing fan-cut from fluvial terraces.  Convexities 

may exist along the long profile. If these convexities correspond with the physical 

location of tributary drainages, then they could represent the topographic effect of 

alluvial fan material derived from side tributaries.   

 Another way that long profiles may distinguish a fan-cut from a fluvial terrace 

involves whether profiles of the modern channel converge downstream or remains 

parallel to the terrace form. In many drainages in the Basin and Range of the western 

USA, the long profiles of contiguous fan-cut terraces merge with the modern channel. 

The reason has to do with the width of the valley form. As the axial valley widens, 

progressively more distal fan sediments reach the trunk drainage. If the valley widens 

enough, the fan surfaces merges with the modern channel. In contrast, fluvial terraces 

remain parallel and topographically above the modern channel. The one caveat in using 

this criteria involves uplift of the range that will also produce downstream convergence; 

however, if tectonic activity can be ruled out based on independent geoscience studies, 
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then convergence would indicate that the abandoned alluvial surface is likely a fan-cut 

terrace.  

 Comparisons with adjacent drainages.– Drainages rarely exist in isolation.  The 

forms found in the basin under study typically exist next to adjoining drainages. 

Examination of these adjacent drainages can help provide a broader perspective, in that a 

slightly wider or narrower adjacent drainage could display more classic fan-cut or fluvial 

terrace forms. The clarity of forms in nearby drainages with similar lithologies and 

slightly different geometries can provide a fresh perspective to clarify the basin under 

study. 

 Another strategy involves comparing the chronology of events between drainages, 

either through relative (i.e. superposition, fossils, etc) or more quantitative chronometric 

techniques (i.e. optical stimulated luminescence, radiocarbon dating, cosmogenic nuclide 

burial dating). Fluvial terraces may have a very different chronology than fan-cut 

terraces, and a comparison of ages in a local range or region can help distinguish fluvial 

from alluvial fan deposits.  

  

CENTRAL ARIZONA CASE STUDY AT BURSERA VALLEY 

 Physical Geography setting of the study area.– The Bursera Valley at South 

Mountain (fig. 7) rests entirely within the South Mountain Metamorphic Core Complex 

(SMCC) of central Arizona. South Mountain stretches approximately 29 km and is a city 

preserve located in south Phoenix, Arizona. Metamorphic core complexes are early 

extensional structures that stretch in a discontinuous band of mountain ranges from north 

to south through the North American Cordillera (Coney 1980, Armstrong 1982, Coney 
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and Harms 1984, Reynolds 1985).  South Mountain is almost entirely dominated by two 

distinct rock types that divide the range, physiographically, into two separate units. The 

western half consists predominantly of Precambrian gneiss, while the eastern portion 

consists of mid-Tertiary plutonic rock types.  

 
Fig. 7. The studied Bursera drainage basin rests within the Gila Range of South Mountain 

Park, the largest city park in the USA (circled location in inset map of Arizona). 

Precambrian metamorphic gneiss dominates all tributaries entering this drainage. The city 

of Phoenix, Arizona, completely surrounds this natural preserve. 

 

 Typical of most metamorphic core complexes, this mountain exhibits classic 

elongated drainages that flow out from the center of the range (Pain 1985, Pain 1986, 

Spencer 2000, Pelletier, et al. 2009).  The Bursera Valley resides within one such 

structural drainage called a corrugation — analogous to the corrugations in some roof 

styles.  The western corrugated drainages contain only alluvial fans, while the eastern 

corrugations host semi-continuous fluvial terrace surfaces (fig. 8).  
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Fig. 8. Drainage basins in the western portion of the SMCC (A,B) are elongated, 

structurally confined drainages, but are developed over gneissic rocks and host alluvial 

fans. In contrast, drainage basins on the eastern portion of the SMCC (C,D) developed 

over granitic lithologies. These basins contain fluvial terraces as the dominant alluvial 

landform.   

 This Bursera Valley case study is part of ongoing broader research investigating the 

geomorphological significance of alluvial landforms within South Mountain. Bursera 

Valley was selected for this case study because the terrace forms in the valley look very 

much like fluvial terraces (fig. 9). This is despite previous work (Dorn 2010, Dorn 2011, 

Moore, et al. 2012) that studied the dominance of alluvial fans within eastern gneissic 

portion of South Mountain.  

 Just as in the Pederson (1981) idealized model of landforms in the Basin and Range 

(fig. 2), fluvial terraces exist along the axial channel (fig.10). The two lowest fluvial 

terraces occur towards the topographically lower western end of the Bursera drainage — 

named by convention T1 for the lowest abandoned floodplain, and then T2 for the next 
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highest fluvial terrace (fig. 9A).  Isolated remnants of a topographically higher fluvial 

terrace T3 exist in the middle section of the drainage (fig. 10B). The issue of contention 

rests with the genesis of the terrace forms that exists above these fluvial terraces (fig. 9, 

11 and 13).  

 

 
Fig. 9  Bursera Canyon displays abandoned alluvial surfaces that look very much like 

fluvial terraces upon first inspection. The linear dashes show the position of the axial 

stream. The sinuous dashes identify the incised wash of a tributary alluvial fan that 

actually produced the fan-cut terrace above the axial stream. 

 

APPLYING CRITERIA TO BURSERA VALLEY 

 All but one of the aforementioned criteria could be used to analyze the high 

Bursera Valley surface. Provenance could not be used, because the Bursera basin has the 

same Xm (Precambrian metamorphic) gneissic lithology throughout.  

 Shape of the surface.– Perspective matters a lot in viewing landforms. Bottom-up, 

side-ways, and top-down views reveal different perspectives.  
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In many views, fan-cut terraces can look like fluvial terraces (for example, fig. 11A). 

However, a different perspective can reveal the origin of a tread and rise derives from a 

tributary drainage (fig. 11B and 10C). Following surfaces around the corner, and tracing 

them up an alluvial fan, however, is not always possible. 

 
Fig. 10.  The Bursera Valley contains both fan-cut and fluvial terraces.  The fan-cut 

terrace surface clearly creates the prominent high terrace surface within the valley, while 

T3 (B), T2 and T1 (A).  These terraces are spatially isolated to the lower half of the 

Bursera Valley where valley width and increased discharge allows for more lateral 

migration of the axial stream. The abandonment of the fan-cut terrace within Bursera 

Valley also corresponds with the abandonment of alluvial fans found elsewhere within 

South Mountain (FCT) and is chronologically older than the terrace surfaces inset within 

it. 
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Fig. 11. The terrace surfaces marked by F1 and F2 both appear to fluvial terraces, while 

the gray shading presents an incised alluvial fan in Image (A). A different perspective (B) 

shows the F1 surface to be the result of a small side drainage that generated a small inset 

alluvial fan. The higher F2 surface is contiguous with the alluvial fan, better seen in the 

perspective in image C.  
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One of the conundrums associated with the terrace forms in Bursera Valley is that many 

surfaces do not wrap around a fan-head trench and follow the shape of an alluvial fan — 

as presented in figure 4. Instead, the forms exist as risers and treads plastered on the side 

of Bursera Valley (fig. 12A). Thus, the terrace-like feature must have been a part of the 

alluvial fan seen in figure 12B. When the axial stream incised, this piece of the alluvial 

fan became a fan-cut terrace. 

 
Fig. 12. The terrace surface above the dashed line in image A on the south side of the 

valley, appears to be a fluvial terrace from this perspective. In reality, however, the 

alluvial fan on the north side of the valley seen in image B once reached across the 

unincised valley and deposited fanglomerate against the south side of the valley. Then, 

once the axial wash incised, the terrace form emerged. 
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 Form of deposition on the surface.– The T1 fluvial terrace surface of Bursera 

Valley consists of a smooth sandy surface with isolated pebbles (fig. 10A).  Desert 

pavements comprised of mostly gravels and pebbles rest atop the T2 (fig. 10A) and T3 

(fig. 9B) fluvial terraces. In contrast, the surface of high terrace form (fig. 9, 11, and 13) 

contains a bar-and-swale topography (fig. 6) that mimics the bar-and-swale forms seen on 

tributary canyon alluvial fans (fig. 5). 

 Sedimentology of the deposit.– Unlike the sorted sandy and gravel lenses that 

occur in the fluvial terrace T1, T2 and T3 deposits (fig. 10A and 10B), the higher terrace 

form consists of classic sequences of fanglomerate deposition (fig. 13). While it is 

certainly possible that the upper Bursera basin generated debris flows, the orientation of 

the fanglomerate bedding planes are consistent with origins in side tributary canyons. 

 
Fig. 13.  This fanglomerate is typical of most cut exposures within the Bursera Valley.  

Note the poor sorting and subangular clasts within this 5 m high exposure.   
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 Longitudinal profiles.– A Trimble GeoXH differential corrected global 

positioning system (dGPS) measured elevation data to compile longitudinal profiles of 

both the high terrace feature and the modern channel. The high terrace is a semi-

continuous surface that appears to continue the entire reach of Bursera Valley.  

 The convergence of the high terrace with the modern channel low down in the 

drainage basin (fig.  14) could have a tectonic cause. However, tectonic uplift is no longer 

active in this region (Reynolds 1985, Reynolds and Bartlett 2002). An alternative 

explanation for convergence could be that Bursera Valley widens progressively 

downstream. Valley widening allows the distal sections of alluvial fans to converge with 

the modern channel. In contrast, a narrower valley in the upper reaches means that toe-

cutting occurs upon lowering of the base level.   

 
Fig. 14. A detailed longitudinal profile revealing convexities related to tributary alluvial 

fans. Those noted as ―possible‖ correspond to locations where tributary streams input into 

the axial drainage, but the dGPS precision was slightly above the mean PDOP used to 

collect data. The variability in the channel profile in the upper most portion of the 

Bursera Valley is also a result of high deviations in PDOP. 
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 Another set of features associated with the longitudinal profile of the terrace also 

support the fan-cut terrace genesis of the high terrace. The terrace profile reveals five 

prominent convexities (fig. 14) associated with the larger tributary valleys that feed 

alluvial fan material towards the valley axis.  

 Comparisions with adjacent drainages.– Alluvial fans appear to be the dominant 

form throughout the western half of South Mountain. A parallel valley, San Juan Valley, 

displays large alluvial fans that debouch from the Ma Ha Tuak and Gila Ranges (fig. 15).  

These alluvial fans are In turn eroded at their toe by the main San Juan modern channel. 

The strikingly similar morphology of the San Juan and Bursera drainages certainly would 

not disprove a fluvial origin for the Bursera drainages. Instead, the contextual point is that 

the patterns in adjacent drainages can aid in determining whether or not the feature is a 

fan-cut or fluvial terrace. 

 Another available tool would be to apply chronometric tools. Varnish 

microlamination dating (VML) reveal that the abandoned upper alluvial surface within 

Bursera Valley host a pattern identified as LU-3 – deposited between 16.5 ka and 24 ka 

(fig. 10). This LU-3 VML signal is the most common age for extensive alluvial fan 

deposits found at South Mountain (Dorn 2010, Moore, et al. 2012). In contrast, the fluvial 

terraces in Bursera Valley are progressively younger.  The T3 highest fluvial terrace 

surface was abandoned before or during VML event WH9 (8100 cal yr BP); the middle 

T2 terrace was abandoned before or during WH5 (4100 cal yr BP); and the lowest T1 

terrace was abandoned during the Little Ice Age‘s WH1 event (300-650 cal yr BP).   
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These ages correlate regionally with other fluvial terraces, such as the post-Lehi incision 

event of the Salt River between 940 and 300 cal yr BP (Huckleberry, et al. 2012). The 

older T2 and T3 terrace VML ages match up with events in the cumulative probability 

density function (CPDF) plot for rivers with the southwestern USA (Harden, et al. 2010).  

 
Fig. 15. The San Juan Valley is a classic setting for fan-cut terraces. Alluvial fans emerge 

from tributary fans on both sides of the axial drainage. San Juan wash has both incised 

and ‗toe-cut‘ the distal reach of these fans resulting in fan-cut terraces. Bursera Canyon 

has a similar lithology of metamorphic gneiss and small steep basins that generate 

alluvial fans. This east-looking perspective reveals that the similar gneissic lithologies 

and a similar geologic setting to an adjacent canyon would be one piece of evidence in 

favor of a fan-cut interpretation. The image follows Google Earth usage guidelines 

[http://www.google.com/permissions/geoguidelines.html]. 

 

 In summary, the ages of the fluvial terraces in Bursera Valley correspond with 

other fluvial terraces in the region. In contrast, the age similarity of the Bursera terrace 

form with other alluvial fans in the range (Dorn, 2010; Moore et al., 2012) does not prove 
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a fan-cut origin. However, the age similarity provides one more type of evidence that 

aligns with a fan-cut terrace interpretation.  

 Analysis of adjudicating criteria.– In the context of the Bursera Valley study site, 

all available criteria pointed to the fluvial terrace forms (fig. 9, 11, and 12) being fan-cut 

terraces.  Despite appearances to the opposite, none of the criteria support a fluvial 

terrace interpretation.  

 These fan-cut terraces formed as a result of first, aggradation of an alluvial fan 

surface, followed by base level lowering of the axial wash. This base level change then 

resulted in a wave of fan incision.  Some small toe cutting has occurred; for example the 

cut exposing the fanglomerate in image figure 5A likely involved some lateral erosion by 

the axial wash. However, the fan-cut terrace form‘s genesis relates mostly to base-level 

lowering by the incising axial drainage. 

 

CONCLUSION 

 Alluvial fans commonly feature scarps at their distal end produced when a stream 

erodes into the fan. Researchers currently use six different terms to describe an 

abandoned alluvial surface that forms by the truncation of tributary alluvial fans by an 

axial drainage flowing obliquely or perpendicular to the alluvial fan surface. Thus, we 

propose that future research employ the term ‗fan-cut terrace‘. This terminological 

confusion may have been responsible for misinterpretations of fan-cut terraces as fluvial 

terraces.  To help minimize the potential for future problems, we propose several criteria 

to help distinguish between fan-cut and fluvial terraces within a drainage basin. 

Employment of these criteria  in the Bursera Valley, central Arizona, illustrates their 
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potential in the context of landforms that look very much like a fluvial terrace, but in 

reality are fan-cut terraces. 
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Chapter 3 

 

 

STRATH DEVELOPMENT IN SMALL ARID WATERSHEDS: CASE STUDY OF 

SOUTH MOUNTAIN, SONORAN DESERT, ARIZONA 

 

ABSTRACT. Analyses of modern straths and strath terraces in small arid drainages 

of <5 km
2
 reveal two previously undocumented processes that appear to be 

responsible for carving bedrock erosional floodplains in granitic lithologies of the 

South Mountain metamorphic core complex, central Arizona. The first process 

involves an asymmetry of erosion due to enhanced rock decay along channel banks, 

compared to channel beds. Ephemeral washes flowing in topographic lows between 

bedrock pediments cut straths through lateral migration into the pediment’s 

weathering mantle, a process observed during several flash floods. This process is 

further facilitated by bedrock decay through abiotic processes like biotite oxidation 

that is subsequently enhanced by mycorrhizal fungi associated with the roots of 

plants growing along stream banks. A second process of strath formation relates to 

aggradational piracy along the margins of the range. Piracy leads to an increase in 

drainage area and regrading of the stream’s longitudinal profile. The increased 

drainage area accessed during long profile adjustment forms a bedrock strath 

immediately downstream of the capture point, while post-piracy adjustments form 

straths upstream of the capture through headward knickpoint migration. Erosional 

floodplains produced by these processes experience subsequent incision, forming 

strath fluvial terraces. The mechanisms for incision, however, remain unclear. 
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Those drainages flowing into the Salt River incised at the onset of the last glacial 

maximum, according to 
14

C and VML ages, and this could relate to a shift in the 

position of the Salt River towards South Mountain or incision of the Salt River 

itself.  In contrast, the pirated drainage flows south towards the Gila River and 

incised into its highest strath between Heinrich Events 1 and 2 — suggesting a 

possible link to climatic change.  The causes of Holocene strath incision events ~4100 

cal BP and ~300-650 cal BP possibly correlate with regional fluvial adjustments seen 

in larger Southwestern USA rivers. 

 

INTRODUCTION 

 

 The scholarly literature examining the varied processes resulting in fluvial terraces 

dates back more than 150 years (for example, Hitchcock, 1824; Hitchcock, 1833; Darwin, 

1846; Hitchcock, 1857; Gilbert, 1877; Lesley, 1878; Dana, 1881; Miller, 1883; Nelson, 

1893; Davis, 1902; Born and Ritter, 1970; Schumm, 1977; Bull, 1990; Merritts and 

others, 1994; Ritter and others, 2002; Pazzaglia, 2013). Still, the fundamental observation 

of Asher P. Schick, nearly 40 years ago, remains true today: ―the study of fluvial terraces 

of small watersheds in the arid zone seems to have been neglected‖ (Schick, 1974). This 

is not meant to infer that our understanding of arid rivers is lacking, as an abundance of 

research focuses on fluvial systems in drylands (for example, Bull and Schick, 1979; 

Graf, 1982; Graf, 1988; Genxu and Guodong, 1999; Flerchinger and Cooley, 2000; Graf, 

2000; Yair and Kossovsky, 2002; Lange, 2005; Ma and others, 2005; Taylor and Hudson-

Edwards, 2008; Chowdhury and Sharma, 2009). However, Schick‘s (1974, p. 81) 

observation becomes increasingly relevant when investigating processes responsible for 
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strath carving and strath terrace formation in the arid environment (for example, fig. 1).  

  

 
Fig. 1. Downtown Phoenix, Arizona, serves as a distant backdrop for Kiwanis Canyon, 

South Mountain. A thin veneer of gravels cap a typically small strath terrace cut into 

Tertiary granite.  Paloverde trees (Parkinsonia microphylla) ~3m in height provide scale. 

   

 Despite eight decades of ‗strath‘ (Bucher, 1932) terrace research, there exists an 

ongoing struggle to understand processes responsible for the formation of beveled strath 

floodplains (Formento-Trigilio and Slingerland, 2002; Montgomery, 2004; Pazzaglia, 

2013).  Montgomery (2004, p. 454) summarized this difficulty: 

 ―Models of the processes governing the formation of erosional, bedrock-cored river 

 terraces…are not as well established as models of processes responsible for the   

         formation of constructional alluvial river terraces.‖  

Major strath carving (Bull, 1990) occurs when rates of lateral erosion exceed rates of 



52 

vertical incision, during a period of vertical stability (Gilbert, 1877; Mackin, 1937; 

Yokoyama, 1999; Hancock and Anderson, 2002; Montgomery, 2004; Wohl, 2008; 

Pazzaglia, 2013). Strath terraces form once vertical incision resumes, abandoning the 

strath above the modern channel. When both vertical incision and lateral erosion 

coincide, unpaired, minor-strath terraces can result (for example, Garcia, 2006). An 

adequately thick veneer of resistant alluvium may be necessary to preserve the strath as a 

terrace (Montgomery, 2004; Garcia, 2006; Garcia and Mahan, 2009).  Processes leading 

to strath floodplain formation have long been thought to occur when a stream reaches a 

graded condition, where it drains to a static base level, and neither aggradation nor 

degradation occurs along its reach (Gilbert, 1877; Mackin, 1937; Mackin, 1948; Knox, 

1975; Leopold and Bull, 1979; Bull, 1990; Bull, 1991; Hancock and Anderson, 2002). 

 Pazzaglia (2013) indicates that straths develop when the stream has achieved either 

a profile of steady state or grade, drawing a careful distinction between the two. Steady 

state profiles do not change in elevation even when extrinsic properties, like base level, 

fluctuate. Steady state streams strive to incise synchronously with uplift in tectonically 

active regions (Pazzaglia and others, 1998; Pazzaglia and Brandon, 2001). This does not 

necessarily require a lengthy period of a static longitudinal profile. In the case of the 

Truckee River, Nevada, a suite of six erosional terraces formed within a 44 year time 

span as the result of minor fluctuations in base level (Born and Ritter, 1970). 

 Controls on the oscillations to and from grade/steady-state include: fluctuations in 

climate (Molnar and others, 1994; Pan and others, 2003; Fuller and others, 2009; Ferrier 

and others, 2013)— sometimes involving eustatic sea-level change (Pazzaglia and 

Gardner, 1993; Merritts and others, 1994; Blum and Tornqvist, 2000; Tebbens and 
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others, 2000); tectonic uplift and base level subsidence (Born and Ritter, 1970; Rockwell 

and others, 1984; Merritts and others, 1994; Reneau, 2000; Lave and Avouac, 2001; 

Cheng and others, 2002); changing relationships between discharge and sediment supply 

(Hasbargen and Paola, 2000; Pazzaglia and Brandon, 2001; Hancock and Anderson, 

2002; Wegmann and Pazzaglia, 2002); and intrinsic fluvial system processes such as 

drainage piracy (Garcia, 2006; Lee and others, 2011; Stamm and others, in Press)  

 Once a stream reaches a steady-state or grade, recent research suggests different 

conditions can facilitate strath formation: (1) climate-driven and/or basin intrinsic 

increases in sediment flux (Personius and others, 1993; Personius, 1995; Hancock and 

Anderson, 2002; Formento-Trigilio and others, 2003; Pan and others, 2003; Fuller and 

others, 2009); (2) reaching a drainage area threshold (Merritts and others, 1994; Garcia, 

2006); (3) a weakened/erodible substrate exposed in the channel banks (Montgomery, 

2004; Wohl, 2008); and (4) inherent instability triggered by meander growth and cutoffs 

(Finnegan and Dietrich, 2011).  

 An increase in sediment supply may be a dynamic control on channel behavior, 

resulting in an alluvial cover that, in effect, armors the channel and protects the bed from 

vertical incision (Hancock and Anderson, 2002; Fuller and others, 2009). This is further 

supported by research that indicates erosion of bedrock through plucking, abrasion and 

cavitation (Hancock and others, 1998; Whipple and others, 2000; Chatanantavet and 

Parker, 2009) and channel slope largely depend on rates of channel bed exposure to 

erosion (Sklar and Dietrich, 2001; Stock et al, 2005). A change in the nature of sediment 

flux may also allow for channel morphology to shift to a braided form, thus facilitating 

widening of its valley and these two processes may work in harmony.  
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A sufficiently large drainage area is also thought to be a factor in strath development 

(Merritts and others, 1994; Garcia, 2006; Garcia and Mahan, 2009). Merrits et al. (1994) 

found that straths occur where drainage area provides enough stream power for lateral 

erosion, but far enough upstream to be independent of fluctuations in regional base level. 

Garcia (2006) tested this hypothesis, revealing that the intrinsic process of drainage 

piracy can increase the drainage area sufficiently to facilitate the formation of straths over 

graded time scales. Drainage evolutionary processes associated with basin overflow (for 

example, Meek, 1989a; Meek, 1989b; Reheis and others, 2007; Reheis and Redwine, 

2008; Larson and others, 2010) may also result in the creation and subsequent incision of 

straths.  

 The influence of channel slope on strath formation may be controlled, to a large 

degree, by the resistance of the underlying lithology (Gilbert, 1877). Because streams 

flowing over resistant rocks form steepened, narrow channel reaches and those flowing 

over a weak substrate form wide, low sloped channel reaches, weak substrate allows for 

valley widening and a sediment load sufficient to protect the bed from erosion. 

Montgomery (2004) applied this conceptual understanding to the relative erodibility of 

channel banks as compared to the channel floor.  He found that perennial streams flowing 

over weak sedimentary lithologies developed a distinct ―asymmetry in bedrock 

erodibility‖ (p.464) resulting from mechanical weathering via wetting and drying (or 

freeze-thaw) of the channel banks over time.  Montgomery (2004) specifically noted that 

strath formation did not require a bed protected by alluvium if this asymmetry exists – 

but a positive feedback would occur where alluvium covers the strath.  Others have 
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suggests that bedrock discontinuities (i.e. horizontal/subhorizontal jointing and shear 

zones) could also facilitate bank erosion and strath development in more resistant 

lithologies (Wohl, 1998; Wohl, 2008). 

 Understanding processes that create a strath and subsequent strath terrace have 

become increasingly relevant as numerous studies have employed straths to determine 

uplift rates, climatic driven sediment variability, erosion rates, incision rates, drainage 

basin evolution, and more (for example, Burnett and Schumm, 1983; Pazzaglia and 

Gardner, 1993; Merritts and others, 1994; Burbank and others, 1996; Chadwick and Hall, 

1997; Pazzaglia and others, 1998; Reneau, 2000; Barnard and others, 2001; Hsieh and 

Knuepfer, 2001; Pazzaglia and Brandon, 2001; Wegmann and Pazzaglia, 2002; 

Formento-Trigilio and others, 2003; Barnard and others, 2006; Garcia and Mahan, 2009). 

Thus, understanding strath development is not only pertinent to fluvial geomorphology, 

but to other earth systems as well. 

 The purpose of this paper rests in proposing and evaluating two new process 

models responsible for fluvial strath terrace formation observed in small arid drainages 

within an isolated, tectonically quiescent mountain range in the Basin and Range. The 

next section of this paper provides the geological setting of the South Mountain study 

area and introduces our hypotheses for strath formation in small arid watersheds. The 

methods and results from this case study will then be used to evaluate the hypothesized 

mechanisms of strath and strath terrace formation.   

 

GEOLOGIC SETTING AND STUDY AREA 

 



56 

 South Mountain metamorphic core complex (SMCC) stretches approximately 29 

km and is located within a city preserve in south Phoenix, Arizona. Metamorphic core 

complexes (MCC) occur throughout the North American Cordillera, forming a 

discontinuous belt of uplifted structures stretching from northwestern Mexico to 

southwestern Canada (Coney, 1980; Armstrong, 1982; Coney and Harms, 1984; 

Reynolds, 1985). While geomorphic research carried out in MCCs has covered such 

topics as drainage-basin evolution (Pain, 1985; Pain, 1986; Spencer, 2000), hillslope 

stability (Applegarth, 2002), debris flows (Dorn, 2010; Dorn, 2012), and joint 

exploitation, tectonic tilting, and structurally controlled knickpoints influencing drainage 

development (Pelletier and others, 2009), we have not found prior research on strath 

floodplain and strath terrace formation in MCCs.  

 Additionally, SMCC was investigated because previous research (Reynolds, 

1985) had suggested: (1) the presence of fluvial terraces within structurally controlled 

drainages; (2) that the SMCC is relatively ‗geologically simple‘; (3) SMCC has been 

tectonically quiescent for over ~8 ma; (4) and SMCC is almost entirely dominated by two 

types of lithology (fig. 2). The western half of SMCC consists mainly of Precambrian 

gneiss where alluvial fans are the predominant alluvial landform. In contrast, the eastern 

portion consists of mid-Tertiary plutonic lithologies that host isolated and semi-

continuous strath terraces. The drainages in which the strath terraces reside have drainage 

areas <5km
2
. Thus, the entirety of SMCC serves as a natural laboratory to contribute to 

Schick‘s (1974) challenge of better understanding fluvial terraces in small arid drainage 

basins. SMCC also enables the testing of strath terrace process models in a field setting 
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with somewhat limited overall variability (i.e. limited tectonism and lithologic variation) 

in these drainages.  

 
Fig. 2. A simplified geologic map of South Mountain Metamorphic Core Complex, with 

a distinct contrast of Tertiary granitic lithologies (Tg) in the eastern section of the range 

and the Precambrian metamorphics and rarely exposed granitiods (Xm, Xg) in the 

western half.  The inset diagram is an idealized cross-section in granitic rocks of the 

SMCC, connecting geological features to topography with the following annotations:  A) 

zone of upper plate rocks-sometimes covered with alluvium; B) microbreccia ledge; C) 

mountain front rising to dome facets; and D) deeply incised valleys following axial 

structural-corrugations. Corrugations are incised into a broad low-relief upland in 

plutonic lithologies, while incising into high relief narrow uplands in the metamorphics 

(modified from Pain, 1985). The base image is used following permission guidelines for 

Google Earth [http://www.google.com/permissions/geoguidelines.html] 

 

HYPOTHESES OF STRATH FORMATION  

 

 Field observations carried out over hundreds of site visits to SMCC led to two 

different hypothesized mechanisms of bedrock strath formation (fig. 3). The two 

hypothesized processes are, as far as we can surmise, not previously discussed in the 

literature regarding arid/desert watersheds.  
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Fig. 3. This paper presents two hypothesized mechanisms of strath formation in small 

granitic drainages of South Mountain, central Arizona: (A) lateral migration eroding 

adjacent pediments, facilitated by enhanced rock decay on strath margins; and (B) 

aggradational drainage piracy leading to a sequence of straths and strath terraces 

generated through ongoing adjustment of the longitudinal profile. The original the 

drainage flowing west to east (gray arrow) aggraded in response to an earlier piracy 

event, causing the drainage to flow over its former bounding bedrock range (red arrow). 

The increase in drainage area allowed for strath carving downstream of the point of 

capture similar to that of Garcia (2006). Meter-tall Creosote (Larrea tridentata) bushes 

provide scale in A, and mansions provide scale in B. 
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Hypothesis #1 Enhanced rock decay along stream banks fosters strath widening.– The 

literature on stream erosion of granitic materials contains the conceptual model of 

stepped topography (Wahrhaftig, 1965). Thus, we start with Wahrhaftig‘s (1965) premise 

that small stable washes carrying grus erode vertically into relatively unweathered 

granitic rock at very slow rates. This is due to the inability of grus to serve as an erosional 

tool on fresh granite. Our hypothesis is that the floodplains of small ephemeral washes 

widen straths during flash floods at the expense of decayed granitic rock present in 

channel banks (fig. 4). This hypothesis expands on research conducted in Taiwan that 

revealed high magnitudes floods have a larger impact on channel widening than vertical 

incision (Hartshorn and others, 2002) and on Montgomery‘s (2004) asymmetry of 

erodibility in strath formation. During high magnitude precipitation events, the decayed 

granitic rock is stripped from the exposed bank and transported downstream. These 

widening locations occur where the channel bed consists of relatively fresh granite often 

overlain by thin accumulations of grus bedload. 

 The presence of decayed granitic rock in the channel banks is the function of two 

processes. First, pediments and associated inselberg slopes are a common piedmont 

landform in Arizona and the Basin and Range (Tuan, 1959; Kesel, 1977; Oberlander, 

1989; Applegarth, 2004; Dohrenwend and Parsons, 2009). Central Arizona pediments 

form in granitic rocks, schist, breccia and ignimbrite. They are most commonly studied at 

the scale of kilometers fronting isolated ranges typical of the Basin and Range. However, 

pediments also occur on the scale of meters in small arid drainages like those in SMCC 

(Reynolds, 1985). Washes flow down the topographic low in these small arid basins at 

the intersection of adjoining pediments.  
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 Granitic pediments are typified by the existence of a variably thick weathering 

mantle at the surface formed by subaerial weathering processes interacting with the rock 

surface (Mabbutt, 1966; Twidale, 1968; Cooke and Mason, 1973; Moss, 1977). These 

pediments grade to the base level of the main axial drainage, and the weathering mantle is 

exposed in channel banks. Ephemeral washes are able to migrate laterally into their banks 

and erode the weathered distal end of these small pediments forming bedrock straths — 

that later form strath terraces after an episode of vertical incision (fig. 3A).  

 Lateral widening at the expense of an already decayed bedrock pediment is 

enhanced further through decay on channel banks resulting from root and mycorrhizal 

fungi weathering. Additional decay may result from water storage in channel silt and 

sand deposited at the foot of banks, taken from concepts of granite landform evolution 

proposed by Oberlander (1972; 1974; 1989). Subsurface water flow, trapped by the 

silt/sand, enhances contact time between capillary water and the bedrock granite 

accelerating grussification. 
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Fig. 4. Hypothesis of strath formation via lateral erosion into granitic pediments.  

Bedrock straths form due to an erosional asymmetry in ephemeral channels underlain by 

a granitic substrate.  Pediments bound ephemeral channels in these drainages and the 

partially decayed granitic rock of the pediment mantle is exposed along channel banks. 

Ongoing contact with capillary water under a cover of silt/sand, as well as the 

biochemical action of roots and associated mycorrhizal fungi, lead to further decay of 

channel banks. Over time, ephemeral streams erode laterally into the relatively weaker 

channel banks, where the channel bottoms consist of relatively fresh granite. Strath 

continue to widen at the expense of the pediment until vertical incision results in strath 

terrace formation.   

 

 Hypothesis #2 Aggradational drainage piracy leading to strath development.– 

Studies of drainage evolution in MCCs suggest that stream piracy is a common intrinsic 

process that plays an important role in drainage reorganization over time (Pain, 1985; 

Pain, 1986; Spencer, 2000; Douglass, 2012). Pain (1985) explained the general process at 

SMCC: drainages initially form in structural corrugations that parallel the axis of the 

range. Eventually younger drainages flowing off the steeper flanks of SMCC erode 

headward and capture the older, structurally controlled drainages. Similarly, low-

elevation drainages along the margins of SMCC are confined by smaller bedrock 

structures that determine flow direction, paralleling the upland SMCC corrugations. 
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Aggradational piracy along these marginal drainages starts when the flanks of SMCC, 

hosting steeper drainages, capture headwaters of the elongated structurally-controlled 

drainages (fig. 5). Capture of segments of the larger axial drainage then leads to a wave 

of alluvial fan aggradation on the flanks of SMCC.  Aggradation resulting from fan 

growth on the SMCC margins raises the bed of lowland channels high enough to spill 

over the lowest point of the confining bedrock structure, similar to a hypothesis originally 

suggested by John Douglass (personal comm.) in alluvial fans in the metamorphic 

lithologies of SMCC.  

 We hypothesize that a fan aggradation event at the current location of the 

Warpaint Fan resulted in aggradational piracy at three different locations (fig. 5). The 

initial phase in capture resulted in knickpoint migration through the bounding range, 

resulting in small strath floodplain development just downstream of the point of capture 

in Piracy Canyon (fig. 3B), further facilitated by the substantial increase in drainage area 

(Garcia, 2006; Stamm and others, in Press). Subsequent headward knickpoint migration 

into the pre-capture drainage excavated the accumulated grus, leading to dynamic 

downstream aggradation filling the valley and burying the strath. As the knickpoint 

progressed upstream, the pre-capture floodplain was abandoned resulting strath terrace 

development behind the point of capture (Seidl and Dietrich, 1992; Seidl and others, 

1997; Finnegan and Dietrich, 2011). The middle spillover became a windgap, as a result 

of its relatively small drainage area. However, the Warpaint spillovers had a sufficient 

drainage area to maintain headward knickpoint migration and drainage reorganization 

resulting in a series of small bedrock straths behind the point of capture.  
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 We note that aggradational piracy is a singular triggering event, while the 

proposed pediment erosion and enhanced decay of channel banks represent a long-term 

ongoing process inherently tied to base level fluctuation. Thus, we propose our first 

hypothesis leads to subsequent strath formation inset below the straths formed during 

capture adjustment within pirated drainages. 

 

 

           
Fig. 5. Pain (1985) proposed that headward eroding streams on the flanks of the SMCC 

eventually capture (red arrow) larger, structurally controlled drainages flowing along the 

axis of the range (solid white arrow).  In this example near the Warpaint trailhead, the 

resulting aggradation of the Warpaint fan raised the bed of the original flank drainage 

(dashed white arrow), resulting in three aggradational piracy events from spillovers 

across the small bounding range. Knickpoints (K) were thus created at Warpaint wash 

(Kw), a windgap (Kg), and Piracy Canyon (Kp). The upper image is used following 

permission guidelines for Google Earth. 

[http://www.google.com/permissions/geoguidelines.html] 
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METHODS  

 

 Assessing enhanced bank decay and aggradational piracy as strath and strath 

terrace forming mechanisms required a mix of different methods: field mapping; direct 

field observations of flash flooding and its effect on bed and bank stability; digital image 

processing of electron microscopy to measure porosity and to observe the biochemical 

processes taking place along bed and bank; and radiocarbon and varnish microlamination 

dating to constrain the timing of strath incision. 

 Mapping and Topographic Profiles.– Because no comprehensive geomorphic 

landform map exists for SMCC, field mapping of semi-continuous fluvial terraces 

involved field observations, aerial reconnaissance, and data collection utilizing 

differentially corrected global positioning systems (dGPS). dGPS provides both spatial 

and topographic data, the latter consistently displaying resolutions of sub half-meter 

accuracy (average accuracy of 33 cm).  

 The mapping of isolated strath terraces is complicated by varying degrees of 

uncertainty as to whether a planar bedrock landform was once a part of the floodplain of 

a desert wash — as opposed to the alternative of a truncated pediment (fig. 6A and 6B). 

We placed isolated terraces in three categories. Isolated straths were mapped in the 

category of high confidence if: they contain gravels with a provenance that occurs up-

basin (fig. 6D); they exhibit morphological floodplain evidence (for example, a chute 

cutoff in fig. 7A); or if they exhibit geochemical evidence of being in a floodplain 

position, such as presence of groundwater calcrete at the contact with the strath surface 

(fig. 7B).  Isolated straths were assigned a medium confidence if there exists a clear 
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morphological break between the strath terrace and the adjoining pediment (for example, 

fig. 3A). Low confidence straths morphologically merge into the adjacent pediment (fig. 

6C). These low confidence sites are likely strath terraces, but the evidence is not 

absolute. These isolated terraces often exist in the most upstream portions of the drainage 

basin where valley width and drainage area dramatically decreases. 

 

 

 
Fig. 6. Images from the same area of an upland corrugation of SMCC illustrate the 

difficulty of distinguishing a truncated pediment from a strath fluvial terrace. In each 

image, arrows indicate the direction of overland flow down the pediment towards the 

wash. In image A, the colluvial cover has been stripped by trail erosion, revealing the 

bedrock platform of the pediment as it slopes gently towards the axial wash. Image B 

presents the same site but from a different angle (the left arrow in B is the same position 

as the lower arrow in A). Image C shows this upland corrugation with a broader view, 

where the position of the incised axial channel exists in the topographic low between 

pediments. We are confident that the terrace form in image D is fluvial, indicated by ‗sg‘ 

for surface gravels that have a provenance up-basin. The particular patterning of epidote 

and quartz veins is distinctive and can be traced to a bedrock outcrop several hundred 

meters upstream. 
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Fig. 7. Certain features provide convincing evidence that a beveled bedrock platform 

above a modern wash is a fluvial strath terrace and not a truncated pediment. (A) 

Groundwater calcrete forms along the wash bottoms in small ephemeral drainages with 

very low relief — allowing groundwater to pond on top of the bedrock. Its preservation 

records evidence that the location once supported a wash. (B) A meandering wash 

(arrows) isolate a strath terrace with an abandoned chute cutoff (where the first author 

stands).  

 

 To better understand the morphologic distinction and genetic relationships 

between pediment and strath we collected data on cross-sectional topographic profiles of 

strath terraces, adjacent pediments, and inselberg slopes — similar to the classic 

―pediment association‖ (Cooke, 1970). We only gathered these data in locations where 

we could observe and map the exposed bedrock surface. This is possible where 

anthropogenic activity (for example, abandoned roads or trails) stripped the colluvial 

cover.  

 Field observations of strath widening.– Direct observations of the widening of 

straths in modern ephemeral wash floodplains took place during flash floods at single-site 

locations along several washes at SMCC: Kiwanis (N 33.33444 W 112.07543); Pima (N 

33.36177 W 112.00549); Beverly (N 33.36832 W 111.98903); Warpaint (N 33.32630 W 

112.02227); Javelina (N 33.36978 W 111.99380) and Upper Corona del Loma (N 
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33.33640 W 112.05286) washes. Poor lighting conditions, unfortunately, did not 

facilitate clear photography. 

 Direct observations were possible because of the small travel time between 

Arizona State University and field sites, when it became clear that an extensive Arizona 

monsoon mesoscale convective complex was likely heading to SMCC. Each site was 

surveyed prior to the initiation of flow. Automated rain gauges operated by the Flood 

Control District of Maricopa County (2012) are within a kilometer of each observation 

site. Pre-flood surveying consisted of fixing a meter stick perpendicular to the bedrock 

bank of the wash, carefully marking the edge of the bank prior to flow initiation. In 

addition, the channel bottom was spray painted in spots prior to flow initiation. 

 Despite a large number of storms experienced in the field without observed flow, 

three events enabled direct observation of the process of strath widening through bank 

erosion: a precipitation event of 5.4cm in 6 hours on 8/03/05 with return interval of 32 

years; an event of 3.6cm in 3 hours on 7/24/11 with a return interval of 8 years; and 

2.1cm of precipitation in 15 minutes on 6/20/00 with a return interval of 15 years (Flood 

Control District of Maricopa County, 2013). While it is unlikely that the rain gauge 

accurately reflects the exact precipitation received in each of the studied drainages, 

available gauge data provide an approximation and valuble insight into the intensity of 

each observed event. 

 Rock decay as a limiting process on strath widening.– In order to assess the role 

of rock decay as a process enabling strath widening, rock samples were collected from 

three different positions at the sites where bank erosion was directly observed during 

ephemeral flooding. However, samples were first impregnated in the field with epoxy 
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prior to collection in order to preserve in situ relationships for the electron microscope 

study. 

 Each bank position sample came from the very edge of the bedrock; these are the 

same locations where field observations indicated erosion in response to ephemeral 

flooding. Each bank sample was collected 3 cm above the channel. The mid-channel 

position samples came from granitic bedrock, sometimes underneath a few cm of grus 

sand. The bedrock interior position was collected as deep as possible into the bedrock 

bank adjacent to a channel; depths of sample collection into the bank ranged from 80 cm 

to 100 cm. 

 The samples were polished for study with backscattered electron (BSE) 

microscopy. Using methods detailed elsewhere (Dorn, 1995), digital image processing of 

BSE imagery at a scale of 1000x determines the porosity of a sample.  For each sample 

position, from the five different collection sites, the measured porosity is based on a 

cross-sectional area of 2 mm
2
. The reported porosity includes intra-mineral pores and 

pores along mineral-grain boundaries. 

 In addition to this quantitative study of porosity, images were acquired to assess 

the action of roots at these bank positions. Secondary electron microscopy, combined 

with energy dispersive X-ray (EDX) analysis, shows the qualitative condition of quartz 

and plagioclase minerals that have been in contact with roots and associated mycorrhizal 

fungi.  

 Radiocarbon analysis of pedogenic carbonate to constrain the age of strath 

incision.– Exposures of terrace edges were dug back 0.5 m to extract course cobbles that 

occur in a Stage 2 Bk soil horizon.  Stage 2 starts when the cobbles are coated on the top 
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and the bottom with calcium carbonate, and carbonate is starting to fill in the interstices 

(Gile and others, 1966). Extracted cobbles from Pima, Javelina, and Beverly Wash 

terraces were sectioned and polished as cross-sections normal to the carbonate coating. 

BSE evaluated the textures of the carbonate coatings on the undersides of cobbles. Most 

of the cobbles had a non-laminated texture for the innermost rind; these were discarded. 

All of the cobbles collected from the Pima Canyon terrace lacked a laminar texture for 

the innermost rind. Further processing continued only for the Javelina and Beverly 

Canyon samples. 

 Those cobbles with a laminar texture in BSE for the innermost rind were prepared 

in three stages. First, a Dremel drill with a tungsten-carbide needle mechanically removed 

the non-laminated outer texture. Second, the drill then slowly removed carbonate until the 

color of the underlying rock could be seen through the rind. Third, this lowermost 

laminar carbonate was then extracted, and it is this innermost carbonate rind that was 

counted by conventional radiocarbon dating. 

 Varnish microlaminations to constrain the age of strath incision.– Rock varnish is 

a mixture of manganese, iron and clay minerals that darkens exposed rock surfaces 

(Potter and Rossman, 1977). Varnish in drylands contain a layered microstratigraphy in 

so long as acid-producing organisms, eolian abrasion and other erosional processes do 

not affect varnish processes. Slowly accreting coatings forming at rates of microns/ka 

display relatively simple varnish microlaminations (VML), and those varnishes accreting 

in more mesic locates can accrete at rates of tens of µm/ka to produce detailed VML 

sequences.  
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Both slow and more rapidly formed VML sequences have been calibrated for the Great 

Basin (Liu and others, 2000; Liu, 2003; Liu and Broecker, 2007; Liu and Broecker, 

2008b; Liu and Broecker, 2008a). Subsequently, VML has been used at various sites 

globally (Diaz and others, 2002; Lee and Bland, 2003; Dietzel and others, 2004; Zerboni, 

2008) and in the Sonoran Desert (Dorn, 2010; Dorn, 2012; Dorn and others, 2012).    

 VML samples were collected from bedrock (for example, fig. 8) exposed by 

fluvial terrace incision.  VML samples were then turned into polished ultra-thin sections 

(5-10 µm thick), because the typical way of making geological sections produces thin 

sections too thick to reveal VML microstratigraphy.  The VML thin sectioning technique, 

developed by Tanzhuo Liu and described elsewhere (Liu and Dorn, 1996) reduces failure 

rates and facilitates inter-comparisons. The VML sections were then compared to the 

Holocene and Pleistocene calibrations established by Liu and colleagues (Liu and others, 

2000; Liu, 2003; Liu and Broecker, 2007; Liu and Broecker, 2008b; Liu and Broecker, 

2008a). 
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Fig. 8. This Javelina Canyon VML collection site consists of resistant fine-grained and 

quartz-rich granitic body surrounded by grussified granodiorite containing more biotie. 

This site was exposed to varnishing only after incision abandoned the strath terrace. Since 

the sampling location is slightly below the height of the terrace tread, exposure to 

varnishing would not have occurred until after the start of incision. The channel is 

bedrock with locations of contemporary strath widening.  

 

RESULTS 

 

 Mapping strath terraces and adjacent pediment topographic profiles.– Strath 

terraces occur in the majority of drainages within the granitic lithologies of SMCC. The 

terraces are most continuous in the downstream portion of the largest drainages in terms 

of drainage area (fig. 9).  
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Fig. 9. The eastern granitic portion of SMCC contains the most extensive fluvial terraces, 

while the western portion is dominated by alluvial fans.  Inset A (Piracy Canyon) and B 

(Javelina, Unnamed, Beverly, and Pima Washes) display the most extensive terraces. A 

predominant high terrace (red colored T2) exists in each drainage with a lower inset 

strath terrace (blue colored T1).   

 

 The headwaters of the largest drainages and the downstream portions of smallest 

watersheds contain dozens of isolate strath terraces (for example, fig. 1 and 10), 

suggesting a drainage area threshold exists (for example, Merritts and others, 1994) 

although analysis of this is beyond the scope of this research and being combined with 

ongoing work elsewhere by the authors. Over 60 locations of isolated strath terraces were 

identified and their locations are indicated in the local vicinity of each pin displayed in 

figure 10. This map has been formatted as a KML file for ease of access (fig 10; 

temporary location for KML file: 

http://alliance.la.asu.edu/temporary/strath/Larson_Figure10.kml).  This map is our most 

complete effort to map all strath terrace remnants within SMCC. Although we explored 

these drainages over hundreds of investigations, it is probable that we missed several 

http://alliance.la.asu.edu/temporary/strath/Larson_Figure10.kml
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locations of isolated strath terraces. That said, the broader pattern evident in Fig. 10 is 

that while isolated strath terraces are ubiquitous in the granitic eastern portion of SMCC, 

they are spatially sporadic and often exist in isolation. They are also most often preserved 

on the inside of meander bends within these drainages. Often the most continuous strath 

terrace sequences are those in the distal portion of the largest drainage basins, which 

typically are those developing within the structural corrugations (i.e. Pima, Javelina, and 

Beverly Washes). 

The more extensive terrace surfaces (fig. 9) and isolated terrace remnants (fig. 10) 

typically abut small pediments (for example, figs. 3A, 6D, 7B, 11). The presence of 

eroded old roads and trails (for example, fig. 6A) make it possible to study how bedrock 

topography and the gradational relationship between hillslope (inselberg), pediment and 

strath terrace pertains to overall landscape development. Fig. 11 illustrates a typical 

bedrock cross-sectional profile. The steep inselberg face merges into the gently sloping 

pediment, which then transitions into the beveled strath terrace.  The topography seen on 

the strath terrace in fig. 11 comes from the incision of small washes cutting down in 

response to local base level lowering of the trunk drainage during incision. 
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Fig. 10. Locations of identified isolated strath terrace remnants in SMCC in a Google 

Maps format, where a supplemental .kml file (temporary location 

http://alliance.la.asu.edu/temporary/strath/Larson_Figure10.kml  ) allows the reader to 

explore locations at the resolution of Google Earth.  H identifies the isolated remants 

where we have a high confidence that the terrace form represents a former floodplain, M 

symbol a medium confidence level, and L simple a lower confidence. The arrow on the 

south side of the range indicates the location of Warpaint wash that hosts a series of 

discontinuous strath terraces; the question mark is where the aggradational piracy event 

would have overflowed the bounding range perhaps producing a downstream strath 

where houses were built. The base image is used following permission guidelines for 

Google Earth [http://www.google.com/permissions/geoguidelines.html] 

 

   

http://alliance.la.asu.edu/temporary/strath/Larson_Figure10.kml
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Fig. 11. An abandoned road at Beverly Canyon (to the left of the arrow) led to stripping 

of the colluvial cover. This facilitated measurement of a cross-sectional topographic 

profile along the bedrock surface from the strath terrace up to the top of the inselberg. 

Slope breaks between the strath, pediment and local inselberg are consistent with the 

hypothesis that ephemeral washes widen straths through lateral migration into banks 

composed of more highly decayed rock.  

 

 Direct observations of strath widening during flash floods.– The upper Corona del 

Loma, Warpaint and Pima Wash banks eroded laterally 21 mm, 12 mm and 5 mm, 

respectively in response to the 8/03/05 storm. The Kiwanis and Beverly wash banks 

eroded laterally 6 mm and 4 mm respectively during the 7/24/11 event. The Javelina 

wash bank experienced 9 mm of channel widening during the 6/20/00 event (table 1). In 

contrast, isolated fragments of the spray paint on the exposed bedrock of the channel bed 

could be seen at each of these sites after each flash flood. The presence of spray paint 

fragments on the channel bed indicates that no detectable bedrock incision occurred 
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during these ephemeral flows.  In each case, the ephemeral flow saltated medium sand 

grains (grus) that abraded most of the spray paint off the channel bedrock and wear 

exposed the granite often appear polished, likely from this process. Grussified grains 

were ejected into the flow through the impact of saltating grains on the grus covered 

portions of the channel bed. In contrast, each of the bedrock channels were widening 

through erosion of thoroughly decayed granite. Although these observations of six flash 

floods are anecdotal, the observed process of preferential widening of strath floodplains 

in each wash (at the expense of highly decayed bedrock bank material) is undoubtedly 

prevalent. 

 

TABLE 1 

 

Field observations of strath widening during high magnitude precipitation events 

 

Wash Precipitation Event Bank 

Erosion 

Strath 

Incision 

Event Date 

Corona del Loma 5.4 cm/6 hr 21 mm not detectable 08/03/05 

Warpaint 5.4 cm/6 hr 12 mm not detectable 08/03/05 

Pima 5.4 cm/6 hr 5 mm not detectable 08/03/05 

Kiwanis 3.6 cm/3 hr 6 mm not detectable 07/24/11 

Beverly 3.6 cm/3 hr 4 mm not detectable 07/24/11 

Javelina 2.1 cm/15 min 9 mm not detectable 06/20/00 

 

 Rock decay as a limiting process on strath widening.– The granitic bedrock banks 

of the six small washes that experienced erosion during ephemeral flooding show double 

to triple the porosity found in control samples from the interior of the bedrock (80-100 

cm into the bank) and from mid-channel bed bedrock (table 2).   
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These porosity measurements combine intra-grain and inter-grain pores that are visible in 

1000x BSE images. The direct inference is that chemical decay processes that occur 

along the bedrock banks of ephemeral washes aid in the decomposition and disintegration 

of the granitic bedrock — turning the material into friable grus. 

 

TABLE 2 

 

Percent porosity in 2 mm
2
 samples of granodiorite collected from three different 

positions at locations where strath widening was directly observed in association with 

ephemeral flooding: midchannel, bank, and bedrock interior. 

 

Sampled Wash % Porosity at 

Bank 

% Porosity in 

Bedrock Interior 

% Porosity Mid-

channel 

Upper Corona del Loma 25.2 13.9 12.2 

Warpaint 22.7 9.4 6.7 

Pima 15.9 6.8 5.8 

Kiwanis 12.1 4.3 3.5 

Beverly 16.7 6.8 3.5 

Javelina 13.0 4.6 5.1 

 

 Electron micrographs provide a visual sense of the greater degree of rock decay 

found along the banks of these dry washes (fig. 12). Whereas the mid-channel (fig. 12A), 

and bedrock interior (fig. 12D) do show evidence of some porosity from ongoing 

discongruent dissolution, these positions are much less decayed than samples collected 

along the wash banks (fig. 12B and 12C) where there exists minimal physical contact 

between different pieces of decayed minerals. 
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Fig. 12. Backscatter (A&C) and secondary (B&D) electron microscope imagery of 

granitic weathering associated with the widening of a strath at Pima Wash, South 

Mountain. Energy dispersive X-ray spectroscopy aided mineral identification of quartz 

(q), biotite (b), hornblende (h) plagioclase (p) and magnetite (m). Dashed lines in B, C, 

and D identify mineral boundaries. All images are 400µm in width. Image A shows 

relatively undecayed granodiorite sampled in the middle of the channel, where the grain-

to-grain attachment remains strong. Image B captures the very surface of the exposed 

bedrock on the edge of the channel, collected 3 cm up from the channel surface. 

Although the quartz grain is relatively undecayed, the plagioclase shows no cohesion.  

Image C typifies a thoroughly decayed sample of grussified granite at the margin of the 

channel, where there is little evidence of grain-to-grain adherence. Image D exemplifies 

samples collected from within bedrock adjacent to a channel — in this case collected 80 

cm in from the channel margin — where the porosity shows some dissolution occurred 

inside the bedrock prior to exposure to the subaerial environment.  
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The net effect of the greater porosity along channel banks can be seen in fig. 13, where 

the gray relatively fresh granitic strath contrasts with the thoroughly grussified bank. 

These grussified banks are often temporarily covered with silt and sand, deposited at the 

waning of a flash flooding event. This cover can store moisture, theoretically enhancing 

decay rates — a qualitative conjecture made in the pediment literature (Oberlander, 1974; 

Oberlander, 1989). However, our direct electron microscope observations also point to 

another process — root decay associated with the enhanced growth of vegetation along 

wash banks. 

 

 
Fig. 13. This scene replicates throughout SMCC, where a gray-colored and relatively 

resistant modern strath abuts a thoroughly grussified bank. The banks of SMCC dry 

washes often host a dense cover of perennial plants — due to the greater availability of 

moisture retained along wash margins. 
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The banks of washes at South Mountain logically display a more extensive vegetation 

coverage than adjacent hillslopes because of proximity to water. The bank vegetation 

cover includes Parkinsonia microphylla, Ambrosia deltoide, Encelia farinosa, Acacia 

greggiim, Lycium andersonii, Hyptis emoryi, and Ziziphus obtusifolia. Roots and 

associated mycorrhizal fungi penetrate into the granitic bedrock. This biotic decay results 

in enhanced decay of the bedrock along the channel banks (fig. 14). The notion that 

mycorrhizal fungi might play a key role in weakening channel banks should come as no 

surprise. Research over the past few years, using new micro-analytical techniques, 

reveals the power of roots and their associated fungi to decay bedrock (Landeweert and 

others, 2001; Hoffland and others, 2004; Bonneville and others, 2009; Smits and others, 

2009; McMaster, 2012; Viles, 2013).  



81 

 

 
Fig. 14. Secondary electron images of rock decay along banks fronted by hard-rock 

straths. The images all show the effects of mycorrhizal fungi (image A) and roots (B). 

Mineralogy (q= quartz; p=plagioclase) is based on EDX analyses.  Most of the effect 

appears to be the decay plagioclase grains to the point where they have very little internal 

cohesion. Image C highlights this where the relatively in tact quartz contrasts with the 

thoroughly disintegrated plagioclase. However, quartz also decays, as exhibited by 

dissolution pits in image D, where the pits are visible because the mycorrhizal fungi were 

removed. The lines on the quartz surface have the same EDX Si and O signature as the 

quartz, and thus they could reflect redeposition of silica. Image E shows that the process 

of decay can involve physical force breaking apart minerals, as evidenced by the angular 

particles (arrows) of quartz found in abundance in physical proximity to the root. 
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 Radiocarbon dating of pedogenic carbonate.– The Javelina strath terrace 

innermost laminar rind yielded a conventional radiocarbon age of 30140±150 BP (Beta 

322777) yielding a calibrated 1 sigma age range of 34820 to 34680 cal BP. The strath 

Beverly terrace innermost laminar rind yielded a conventional radiocarbon age of 

30140±150 BP (Beta 322778) yielding a calibrated 1 sigma age range of 35310 to 35060 

cal BP. The Pima strath terrace samples did not have a laminar-textured rind appropriate 

for radiocarbon dating in our sampling.  

 It is certainly possible that some older carbonate moved into the pedogenic system 

in the form of dust. Soil carbonate studies from Southwestern USA found atmospheric 

deposition of CaCO3 to be a major source of pedogenic carbonate (Capo and Chadwick, 

1999). If this dust was simply cemented together on the undersides of the cobbles, some 

older carbon could have contaminated these ages.  

 However, a more likely issue involves the open nature of the pedogenic carbonate 

system. Radiocarbon dating of pedogenic carbonate is notoriously difficult and fraught 

with uncertainties (Callen and others, 1983; Stadelman, 1994; Wang and others, 1994) 

associated with the remobilization of carbonate giving ages that are younger than the 

geomorphic deposit. Thus, because of the open nature of the carbonate system, we think 

these 
14

C results are best interpreted as minimums and must be correlated with VML 

dating to be considered accurate. 

 VML dating.– Table 3 summarizes the VML minimum age estimates for the 

different SMCC strath fluvial terraces discussed in the paper.  Figures 15-22 provide 

examples of both the geomorphic context and VML ultrathin section results. Note in 

figures 15-17 how the strath terrace merges topographically into the adjacent pediment. 
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TABLE 3 

 

VML pattern and minimum age ranges for South Mountain incision events discussed in 

the paper. T2 is the higher strath terrace, and T1 refers to the lower inset strath terrace. 

 

Landforms and Locations Minimum Calibrated Calendar 

Age 

Related Figures 

Piracy Cyn Upstream Inset 

Terrace 

N 33.32466 W 112.04377 

WH1, 300-650 years ago (Little 

Ice Age) 

Fig. 20 

Pima Cyn T1 

N 33.36237 W 111.98821 

WH5 (4.1 ka) Fig. 17 

Piracy Cyn T1 

N 33.32357 W 112.03212 

WH5 (4.1 ka) Fig. 19 

Piracy Cyn T2 

N 33.32325 W 112.03220 

LU-3, 24-16.5 ka Fig. 19 

Beverly Cyn T2 

N 33.36690 W 111.99080 

Between WP3 and WP4, 39-30 ka Fig. 11 

Pima Cyn T2  

N 33.36319 W 111.99732 

Between WP3 and WP4, 39-30 ka Fig. 16 

Javelina Cyn T2 

N 33.37186 W 111.99374 

Between WP3 and WP4, 39-30 ka Fig. 8, 15 

Piracy Cyn Wall 

N 33.32309 W 112.03273 

LU-5, >74 ka, recording a 

minimum age for the piracy event 

Fig. 18 
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Fig. 15. Granitic Javelina Canyon on the eastern end of South Mountain incised into its 

former floodplain and exposed resistant bedrock. This event exposed bedrock that was 

then coated by varnish with a VML signal between the WP3 and WP4 (Wet Pleistocene) 

events. The period between WP3 and WP4 has a calibrated age range between 39-30 ka. 

 

 
Fig. 16 Pima Canyon is the largest drainage in the granitic eastern end of South Mountain 

that contains the most extensive terraces that are the highest elevations above the current 

wash. Incision into this terrace exposed bedrock that has a VML signal between WP3 and 

WP4 or between 39-30 ka.  
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Fig. 17. Pima Canyon‘s inset T2 strath terrace exists sporadically along the lower reaches 

of the drainage. The VML pattern formed on the bedrock face just underneath the strath 

surface, of  WH5 establishes a minimum age of WH5 (4.1 ka) for the incision event. 

 

 

 

 
Fig. 18. The eroded hillslope at the overflow point at Piracy Canyon (sampling site) 

displays a VML sequence with an age of >75 ka. This is a minimum age for the piracy 

event, because the hillslope continues to erode. While homes occupy most of the higher 

strath terrace (T2), unconstructed locations exist for study of the T2 and T1 strath 

terraces.  
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Fig. 19. Piracy Canyon hosts two strath terraces.  The lower T1 strath terrace has course 

boulders with a VML signal that is older than WH4.  The ultrathin VML section was a bit 

too thick to clearly discriminate WH4 (2800 cal BP) from WH 5 (4100 cal BP), but it is 

likely that the very lowest laminae is WH5. The upper strath T2 terrace hosts varnish 

with a basal layer of  LU-3, calibrated to be between 24 and 16.5 ka 

 

 

 
Fig. 20. Small isolated strath terraces occur upstream of the capture location. In this 

particular location, the terrace was abandoned during the Little Ice Age, calibrated to be 

between 300 and 650 years before present. Rock varnish shows the pollution signal from 

the 20th century in the uppermost portion, and end microlaminations that formed at the 

end the Little Ice Age microlaminations (WH1a and 1b) form the basal layer of the 

varnish and represent a minimum age for terrace abandonment. 
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DISCUSSION 

 

 The discussion starts with an evaluation of the proposed new hypotheses for strath 

formation in arid/desert granitic terrains: the first hypothesis of enhanced rock decay 

along bedrock banks; and the second hypothesis of the increase in drainage area and 

adjustment of the longitudinal profile associated with aggradational piracy. Then, we 

speculate on possible causes of strath incision at South Mountain, leading to strath terrace 

formation. The last portion of the discussion section turns more broadly to the issue of 

strath terrace formation in arid/desert granitic terrains and metamorphic core complexes. 

 

 The pediment-strath relationship and strath widening by enhanced rock decay 

along bedrock banks.– Granite‘s tendency to decay to grus through biotite decay 

(Isherwood and Street, 1976; Hoskin and Sundeen, 1985), discongruent dissolution (fig. 

12), and biotic processes (fig. 14) means that granitic terrains tend to produce biomodal 

sediment: core stones of boulder size that are not easily transportable by ephemeral desert 

washes and sand-sized grus.  This means that streams carrying only grus are able to erode 

into beds of undecayed granite only at very slow rates (Wahrhaftig, 1965). Thus, when a 

small arid wash encounters undecayed granite (for example, fig. 13) rates of vertical 

incision slow, especially when a stream is near a steady-state (Pazzaglia, 2013) or graded 

(Leopold and Bull, 1979) condition that is not conducive for vertical incision. 

 While no prior published data are available on incision rates of small granitic 

desert washes in undecayed bedrock, direct observations of erosive processes during 

ephemeral flooding reveal that flash flooding preferentially erodes grussified banks and 

not bedrock channels.  This is also supported by research in Taiwan by Hartshorn et al., 



88 

(2002) who note that high magnitude, low frequency floods are more significant in 

increasing bedrock channel width than in vertical incision. High magnitude precipitation 

events, with return intervals on the order of decades, led to far greater rates of bank 

erosion of the granite exposed in the channel walls as compared to that of the undecayed 

channel floors (table 2). 

 As a proxy for the degree of rock decay, porosity was measured in the channel 

banks, channel floor, and bedrock interior. An asymmetry between bed and bank 

resistance to erosion (Montgomery, 2004) exists in all study sites, where channel banks 

are nearly 2-3x more porous than control positions in the bedrock interior and channel 

bottom (table 2). This enhanced mineral decay reduces grain-to-grain contact (figs. 12 

and 14) that appears to have facilitated the observed strath widening during flash 

flooding. Thus, the relative efficiency of bank decay as compared to that of the channel 

floor/interior of the bedrock (80-100 cm into the bank) and the topographic/morphologic 

relationships observed in the study reach lend support to the strath forming mechanisms 

proposed in hypothesis #1.  

 Therefore, three general factors in our study area would facilitate strath carving in 

granitic terrains in arid regions: 1) the pediment-strath relationship; 2) enhanced rock 

decay from biological processes along the banks; and 3) enhanced rock decay by silt and 

fine sediments stored along the base of channel banks after ephemeral floods. 

 The existence of small pediments within the SMCC has been noted for some time 

(Reynolds, 1985). These small pediments are morphologically related to strath terrace 

remnants, as they grade smoothly to a strath terrace surface. We, herein, suggest the term 

pediment-strath relationship to describe this association. We observed the pediment-
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strath relationship in nearly all drainages underlain by granitic rocks (for example, figs. 

3A, 6D, 7B, 11, 16). Furthermore, sites in SMCC where strath terrace remnants are not 

present contain pediments that grade to approximate to the modern strath channel (figs. 

6A and 6B). This is not an isolated relationship only observed in the SMCC. For 

example, pediments in southwest Montana have been noted to transition smoothly into 

strath surfaces (Sears, 2009). We have similarly observed this relationship throughout 

central Arizona. This suggests that both pediment development and strath formation are 

conducive to conditions of geomorphic stability, where the control of base level may be 

highly significant.  

 The relevance of pediment-strath relationship to this dicussion rests in preparing 

the landscape for strath carving in two ways.  First, pediments already have very gradual 

slopes (Cooke, 1970). Therefore, it does not take a significant excavation of mass to 

develop a strath across this surface. Second, pediments in granitic terrain often contain a 

highly decayed regolith/soil layer, or ‗weathering mantle‘ (Mabbutt, 1966; Cooke and 

Mason, 1973; Moss, 1977). The weathering mantle exposes highly decayed granitic rocks 

in the channel banks that are susceptible to channel bank erosion.  

 The prevalence of bank-side vegetation (for example, figs. 1, 8, 13, 15, 16, 20), 

due to a greater abundance of water in desert washes, results in enhanced bank decay 

through biochemical and biophysical processes acting on the granitic rocks exposed. 

Electron microscope imagery of roots (Phillips and others, 2008; Gabet and Mudd, 2010) 

and mycorrhizal fungi (Landeweert and others, 2001; Hoffland and others, 2004; 

Bonneville and others, 2009; Smits and others, 2009; McMaster, 2012; Viles, 2013) 

reveal roots can physically crack rock and that plagioclase minerals in granite lose all 
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cohesion; mycorrhizal fungi even pit quartz (fig. 14). When combined with the abiotic 

processes of biotite oxidation and plagioclase discongruent dissolution (fig. 12) and the 

action of lithobionts (Danin and Garty, 1983; Eckhardt, 1985; Viles, 1995) seen on 

banks, the net effect increases porosity of the bedrock along channel banks (table 2) and 

further enables the strath widening observed directly during ephemeral storms (table 1).  

 We speculate that a third factor might be important to the development of straths 

in arid granitic terrains: the temporary storage of silt and fine sediment deposited at the 

base of channel banks. Dry desert washes store silt at the contact of the strath and 

adjacent channel bank (fig. 21A-D). Our direct observations of flooding events at SMCC 

reveal that this silt deposits on the margin of a channel as an ephemeral flood pulse 

recedes. We speculate that this silt behaves similar to the mantle at the base of a classic 

pediment-inselberg slope. Just as the overland flow generated by an inselberg sinks into 

the pediment mantle and enhances granite decay at the slope break (Oberlander, 1974; 

Oberlander, 1989), water flowing down the banks and down the wash permeates into the 

silt and enhances moisture contact with bedrock channel walls. The ephemeral nature of 

these silt deposits make it difficult to test this hypothesis through a controlled electron 

microscope study of silt-covered and non-silt covered positions. Our observations reveal 

that these silt deposits can be remobilized even in small annual events. 
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Fig. 21. Strath widening could be enhanced through water retention in silt that deposits at 

the bottom of the bank (arrows in images A-D). The growth of lichen and bryophuyte 

lithobionts in image D also likely play a role in enhancing rock decay along banks. Scale 

in images A-C can be inferred from the 3 m tall Paloverde trees (Parkinsonia 

microphylla). The width of image D is approximately 6 m. 

 

 We hypothesize that the erosional asymmetry (for example, Montgomery, 2004) 

observed at SMCC may be relevant to other locations in the Sonoran Desert portion of 

the Basin and Range province. For example, the much larger Verde River (Pope, 1974) 

and Salt River (Kokalis, 1971; Pewe, 1978; Larson and others, 2010) terraces are often 

strath cut into granitic bedrock and the remnants of these strath terraces rest above 

modern pediments graded to the local base level of these rivers. We suggest these straths 

form the base level of the pediments that have graded to terrace levels — representing the 

pediment-strath relationship (Larson, in Prep). Sufficient drainage area has commonly 

been invoked as being important to the formation of strath terraces (for example, Merritts 

and others, 1994; Garcia, 2006). Since the SMCC research reported here illustrates that 

small arid drainages (<5 km
2
 ) are of sufficient size to develop strath terraces, we 

hypothesize that drainages underlain by granitic rocks throughout the Sonoran Desert, 
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and perhaps in other arid regions, could develop straths and strath terraces in this fashion. 

While our anecdotal observations in the region confirm the existence of the pediment-

strath relationship in regards to strath terraces in other drainage basins, a full treatment of 

the extent of arid straths in granitic terrains is beyond the scope of this research. 

 Strath formation through drainage piracy.– Merritts et al. (1994) concluded that 

strath formation may depend on a sufficient drainage area upstream; within their study 

reach straths reside sufficiently downstream of the headwaters where a large enough 

drainage area exists to provide the stream power needed to laterally incise. Garcia (2006) 

tested this hypothesis using a case study of Pancho Rico Creek, California; a capture 

event greatly increased the drainage area and, in part, resulted in strath development 

downstream of the elbow of capture.  Piracy and its corollary of drainage area also 

influences strath development within the Missouri River watershed (Stamm and others, in 

Press).  

 Piracy is a common process at South Mountain (Pain, 1985; Pain, 1986; 

Douglass, 2012). Piracy Canyon (fig. 3B) displays many of the criteria indicative of 

drainage piracy (Douglass and others, 2009a; Douglass and others, 2009b). Figure 3B, 5 

and 22 present oblique aerial imagery where a paleoflow direction, elbow of capture, and 

the low sill controlling the location of the capture all indicate aggradational piracy as the 

cause of the transverse drainage. Notably, gravels preserved just behind the sill reflect the 

paleo-flow direction (fig. 22B). 
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Fig. 22. Piracy Canyon. The arrow in image A indicates the location of image B, that 

illustrates ~1m of fluvial gravels preserved at the elbow of capture — providing evidence 

of the paleo-flow direction parallel with the bedrock ridge.  Image A also presents T2 

strath and T1 strath terraces of the drainage that cuts a transverse path through a bedrock 

ridge. 

 

 Aggradational piracy occurs in watersheds when drainage capture within the 

SMCC results in significant fan aggradation on the margins of the range. Fan aggradation 

raises the bed of marginal, low-elevation washes paralleling the range axis (fig. 5).  When 

the channels reach the height of the foothill ranges that control their flow direction, they 

spill over, resulting in capture by a much smaller drainage. 
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 The increase in drainage area following the spillover may provide sufficient stream 

power to initially carve the strath floodplain downstream of the point of capture (fig 9A). 

In the case of Piracy Canyon, the capture more than doubled the drainage area from the 

pre-capture drainage (1,769,700 m
2
) to the post-capture drainage (4,109,900 m

2
). 

 After capture the knickpoint created at the capture point erodes headward through 

the transverse range — excavating an increasing amount of stored sediment. This leads to 

a substantial wave of aggradation downstream — capping the strath surface and 

preserving it. The headward erosion of the knickpoint upstream also results in strath 

terrace formation upstream of the capture point (fig. 9A) during longitudinal profile 

adjustment — through processes described elsewhere (Seidl and Dietrich, 1992; Seidl 

and others, 1997; Finnegan and Dietrich, 2011).  

 Evaluating Causes of Strath Incision.– The techniques used to estimate the age of 

strath terrace formation include relative dating based on inset morphologic relationships, 

radiocarbon dating of laminar calcrete on cobble rinds, and varnish microlamination 

(VML) dating. The 
14

C and VML techniques only provide minimum ages for strath 

abandonment. Thus, it is not possible to make clear correlations between strath formation 

and paleoclimatic records. These data, however, do permit speculation about plausible 

relationships between our data and chronologies for incision events collected by other 

researchers in the region.  

 The oldest recorded incision event involves the T2 terraces along the largest 

drainages of Pima, Javelina and Beverly canyons, in the eastern portion of SMCC (fig. 



95 

9B). The broad time frame for T2 incision in Pima, Beverly, and Javelina Canyons is 39-

30 ka based on the VML age and ~35 ka for the innermost laminar calcrete 
14

C calibrated 

ages (table 3). These minimum ages indicate that incision occurred after major eustatic 

sea level decline at ~32 ka (Lambeck and others, 2002). However, the ~330 km distance 

to the Gulf of California suggests that eustastic sea level lowering is unlikely as a cause 

of incision of the T2 terraces.  

 One hypothesis explaining terrace formation involves incision of the Salt River in 

this time frame. Javelina, Beverly and Pima drainages all empty northeastwards into the 

Salt River (fig. 2), that forms the local base level control for these drainages. Incision 

creating the Blue Point (Pewe, 1978) terrace east of Phoenix likely occurred ~33 ka based 

on a single 
14

C age from laminar calcrete on Blue Point Terrace cobbles (Larson and 

others, 2010). However, there is no evidence that the Blue Point terrace existed along the 

Salt River in this area. Thus, incision of the Salt River is not a testable hypothesis at this 

time. 

 Another explanation for incision into the T2 terraces of Pima, Beverly and 

Javelina Canyons would involve lateral migration of the Salt River shifting closer to 

South Mountain. The current distance to the Salt River is ~5 km (fig. 2), but little relief 

exists for about 2 km south of the present-day Salt River channel. Southward movement 

of the Salt River would have steepened the longitudinal profile drainages flowing from 

South Mountain, especially in the lower sections of the drainages. Unfortunately, the city 

of Phoenix encroached on most of the northern flank of SMCC, making it impossible to 

trace profiles continuously to the Salt River in the area where we would predict the 

greatest divergence between terrace and wash. This explanation would predict that the 
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middle sections would show roughly parallel profiles of wash and terrace, and that the 

uppermost part of the profile would begin to merge. The portion of the Javelina T2 

terrace and channel available for dGPS surveying is consistent with a lateral shift of the 

Salt River. Longitudinal profiles of the Javelina Terrace and its modern channel in South 

Mountain reveal roughly parallel profiles that appear to coalesce in the upstream 

direction (fig. 23). 

 

 
Fig. 23. A shift in the position of the Salt River towards South Mountain could explain 

the observed longitudinal profiles, exemplified here for Javelina Canyon.   

 

 Incision of the Salt River, or its lateral shift closer to South Mountain, are both 

consistent with the observed asynchrony of the oldest terraces on the north and south 

sides of the range. Piracy Canyon drains south towards the Gila River (fig. 2 and 9A). 
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Javelina, Pima, and Beverly canyons drain north to the Salt River (fig. 2 and 9B). The T2 

terraces of the south and north draining canyons do not have the same age, which is 

consistent with the notion that changes to the Salt River would not have influenced Piracy 

Canyon‘s behavior.  

 The next strath incision event observed at SMCC resulted in the T2 terrace of 

Piracy Canyon (fig. 19; table 3), falling in the broad time range between 24 and 16.5 ka. 

The basal layer of varnish on the T2 terrace at Piracy Canyon has the LU-3 VML pattern 

that falls between Heinrich Events 2 and 1. This same minimum age is found on the most 

extensive abandoned alluvial fan deposits in the western portion of SMCC (Dorn, 2010; 

Moore and others, 2012). While a major climatic or meteorological event could have led 

to incision at Piracy Canyon (and the alluvial fans on the western end of South 

Mountain), there exists no evidence in either the available pollen or packrat midden 

literature that a major climatic change — wet, dry, transition from wet to dry or from dry 

to wet —clearly correlated with the T2 incision at Piracy Canyon.  

 The pollen and packrat midden evidence for the Sonoran Desert and adjacent 

uplands suggests the region was cooler and wetter during this time frame (Van Devender, 

1990; Anderson and Shafer, 1991; Anderson and others, 2000; Lozano-García and others, 

2002). Pollen records in northern Baja California remained similar from 44 to 13 ka —a 

combination of pines, junipers and sagebrush in that area indicating more humid and 

cooler conditions (Lozano-García and others, 2002). This is consistent with pollen 

records from Potato lake on the Mogollon Rim, Arizona (Anderson and Shafer, 1991) a 

mixed forest of Engelmann Spruce and other conifers existed from 35 to 21 ka indicating 

a climate that was as much as 5
o
C degrees cooler than modern; cooling was even more 
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pronounced 21 – 10.4 ka when Engelmann Spruce dominated (Anderson and Shafer, 

1991). Packrat midden sequences in the Sonoran Desert suggest that dwarf conifer 

vegetation of Juniper osteosperma and Pinus monophylla grew in the lower Sonoran 

Desert with elevations similar to South Mountain in this same late Pleistocene time range 

(Van Devender, 1990; Allen and others, 1998; McAuliffe and Van Devender, 1998). 

Thus, the paleoclimatic data available this region between 24 and 16.5 does not contain 

evidence of a major change that could explain the incision into the T2 terrace at Piracy 

Canyon. It is more likely that incision is the result of ongoing knickpoint propagation 

following stream capture.  

 The third observed strath incision event took place before ~4.1 ka recorded by the 

WH5 VML pattern (figs. 19; table 3). The T1 strath terraces at Pima and Piracy Canyons 

have the same minimum age. The 4.1 ka time frame corresponds to proposed episodes of 

enhanced flooding in the Southwest from 4550-3320 cal BP (Harden and others, 2010). A 

climatic control would be consistent with penecontemporaneous incision of drainages 

flowing towards the Salt (Pima) and the Gila (Piracy Canyon) Rivers. 

 The youngest strath incision event took place towards the end of the Little Ice 

Age (fig. 20; table 3). If ongoing adjustment of Piracy Canyon‘s topographic profile has 

been very inefficient, it is possible the Little Ice Event could be caused by headward 

migration of a knickpoint retreating upstream. Still, the relative youth of this terrace 

makes us extremely skeptical of a mechanism related to drainage evolution. We think it 

more likely that this minor incision relates to climatic oscillations. A period of intense 

regional flooding at 300 cal BP in the southwestern USA may be the mechanism of this 

incision (Harden and others, 2010). This period also corresponds to incision along the 
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Salt River between 940 cal BP and 300 cal BP (Huckleberry and others, 2012).  

 In summary, the various incision events causing strath abandonment at South 

Mountain have no clear cause. Longitudinal profile adjustments from intrinsic changes in 

a drainage, base level change, and climatic change could be invoked for different terrace-

forming events. However, we have not found compelling evidence to explain any strath 

terrace. 

 Connection South Mountain and other drainages within the Basin and Range.– 

The two proposed mechanisms of strath formation at South Mountain may have broader 

implications for future fluvial research in metamorphic core complexes, as well as 

granitic terrains within the broader Basin and Range province.  

 The tendency of granitic rocks to undergo grussification (Isherwood and Street, 

1976) and to develop pediments in arid climates (Dohrenwend, 1984; Dohrenwend and 

Parsons, 2009) suggests that the proposed erosional asymmetry mechanism of greater 

bank erosion in the decayed granite would not be unique to metamorphic core complexes. 

It may be a process facilitating strath widening in any arid Basin and Range drainage 

underlain by granitic lithologies. In particular, the occurrence of isolated strath terraces 

(for example, fig. 10) could be a product of the way that granite decays; accidental 

exposure (cf. Warhaftig, 1965) of the subsurface weathering front creates a fresh granitic 

channel bottom that facilitates strath widening at the expense of decayed granite along 

channel banks (fig. 4). Anecdotally, we have observed spatially sporadic granitic straths 

in small and large drainages throughout central Arizona — a research agenda beyond the 

scope of this paper. 

 Drainage capture events within drainages facilitate strath formation from 
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increases in drainage area after capture (Garcia, 2006; Stamm and others, in Press). The 

research conducted at South Mountain documents the first known case of aggradational 

piracy leading to strath formation in a small desert drainage. Since South Mountain is a 

metamorphic core complex (MCC) undergoing extensive drainage piracy as a part of its 

drainage evolution (Pain, 1985; Pain, 1986; Spencer, 2000; Douglass, 2012), it is 

distinctly possible that small deserts drainages in other MCCs could similarly contain 

straths and strath terraces.  

CONCLUSION 

 Nearly 40 years ago Asher P. Schick (1974) challenged desert and fluvial 

geomorphologists to develop a better understanding of terraces in small arid watersheds; 

in the intervening four decades research has largely been lacking on strath terrace 

development along small desert washes. This study, thus, analyzes the formation of strath 

terraces in small watersheds (<5 km
2
) within an isolated mountain range of South 

Mountain in the Basin and Range province of central Arizona.  Two proposed mechanism 

facilitate strath formation within these watersheds – 1) aggradational piracy and 2) an 

asymmetry of erosion in ephemeral channels underlain by granitic lithologies.   

 Aggradational piracy occurs within low-elevation drainages flowing across the 

margins of the South Mountain metamorphic core complex (MCC).  Fan aggradation 

derived from sediment transport off the flanks of the range raises the bed of these 

marginal drainages.  Subsequently, the marginal drainages overtop their constraining 

ranges at the lowest point and are captured.  The increase in drainage area after capture 

facilitates strath carving downstream of the point of capture. Headward propagating 

knickpoints abandon strath floodplains behind the point of capture as the longitudinal 
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profiles adjusts to capture.  Since MCCs occur widely in the desert southwestern USA, 

we think it unlikely that South Mountain is unique in drainage capture generating straths 

in small arid drainages. 

 An asymmetry of erosion in the ephemeral channels of South Mountain results 

from more highly decayed granitic rocks exposed on the channel banks as compared to 

largely fresh granitc rocks of the channel floor.  The asymmetry exists as a result of the 

bounding pediment weathering mantle being exposed in the channel banks.  This 

asymmetry is further enhanced by the action of roots, mycorrhizal fungi, and perhaps 

moisture retention in fine sediments preserved along the banks. Since granitic rocks 

underlay large areas of desert in the southwestern USA and elsewhere, we think that the 

process of strath formation by erosional asymmetry should be widespread in places like 

the Sonoran and Mojave Deserts. 
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Chapter 4 

 

THE INFLUENCE OF BASE LEVEL LOWERING ON GRANITIC ROCK 

PEDIMENT DEVELOPMENT 

 

 

ABSTRACT.   The scholarly research on granitic rock pediments includes very little 

discussion on the role base level fluctuations.  This study investigates the controls of 

base level on granitic rock pediments flanking inselberg mountain ranges in south-

central, Arizona. When base level is lowered, terrace incision occurs and pediments 

respond by regrading to strath floodplains of the Salt and Verde rivers.  Pediments 

regrade through different mechanisms working in concert: headward erosion; 

stream piracy; and lateral migration. Headward erosion of pediment drainages 

begin at the base of the pediment in response to base level lowering. The largest 

drainages erode headward more efficiently and create a local base level on the 

pediment surface. The largest pediments respond with the greatest erosion rate 

(averaging ~90mm/ka) while the smallest pediments have erosion rates an order of 

magnitude lower (~ 7-8mm/ka). Tributaries retreating from these master drainages 

incise into the remnant pediment surfaces and can capture pediment streams on the 

former surface. Stream piracy processes resulting from headward eroding 

drainages work to increase drainage area of the capturing stream and lowering the 

relict pediment surface over time. Finally, lateral erosion occurs predominantly in 

the distal reach of the master pediment drainges.  It also occurs when large 
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pediment drainages converge, suggesting a drainage area relationship facilitating 

lateral erosion. Each of these processes resulting in planation down to a new 

pediment surface adjusted to a lowered base level.   

 

INTRODUCTION 

 

 William Morris Davis helped found the Association of American Geographers 

(AAG) and was its first president in 1904 and 1905 (Daly 1944). Davis‘ initial and most 

extensive research focused on the importance of base-level change (Powell 1875) in 

setting off a ―cycle of erosion‖ (Davis 1902, Davis and Snyder 1898). Later in his life 

Davis developed a fascination with granitic rock pediments as a desert landform (fig. 1) 

and their development (Davis 1933). Ironically, base-level change was one of the few 

potential factors affecting pediments not addressed by Davis (1933). For more than 100 

years, AAG journals have published numerous papers on pediments and related processes 

(Twidale and Mueller 1988, Friend 2000, Von Engeln et al. 1940, Meyerhoff 1940, 

Ongley 1974, Tuan 1962, Rahn 1967, Tator 1952, Tator 1953, Ruhe 1964), but with little 

concern over the influence of base-level change. Similarly, the role of base level has 

received very little examination in the larger pediment literature; the only explicit 

attention relates to the numerical modeling research of Strudley et al., (2006) and 

Strudley and Murray (2007). 
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Figure 1. The Bush pediment, grading to the modern-day Salt River in central Arizona, 

presents the classic rock pediment form described throughout the literature. However, 

this field site demonstrates that the Bush pediment once graded to several different base 

levels in the past: T4 (Stewart Mountain terrace, age unknown), T3 (Sawik terrace, age > 

1.2 ma), T2 (Mesa terrace, age ca. 440 ka), and T1 (Blue point terrace, age ca. 33 ka). 

 

 In this chapter, I postulate that base level lowering can play a vital role in granitic 

rock pediment development. I formally address the following questions: 

 

1. What landforms characterize granitic rock pediments in central Arizona, where 

substantial base-level lowering has taken place in the last half-million years? 

2. What factors influence pediment adjustment to base-level lowering? 

3. What processes appear to be involved in pediment adjustment to base-level 

lowering? 

4. How does this case study of base-level lowering shed light on prior theoretical 

discussions about pediments? 

  

 I posit that granitic rock pediments are not landforms ‗inherited‘ from a past wet 

climate, as advocated by many. Rather, granitic rock pediments actively adjust to base-

level lowering, displaying a wide array of landforms associated with processes of 

stripping the former pediment mantle, regolith carbonate, and tors. Then, after a period of 

active erosion, the graded pediment form develops — all during the Quaternary period of 

relative aridity, as opposed to a wet tropical climate during some period in the Tertiary. 
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This research also tests the modeling result that pediments respond to base level incision 

(Strudley and Murray 2007, Strudley, Murray and Haff 2006), but I propose they will 

regrade when base level is stable in a cyclical process tied to strath floodplains and the 

major river controlling basin wide base level. I further posit that lateral erosion by 

pediment drainages and headward drainage piracy on the pediment surface (Cooke, 

Warren and Goudie 1993, Gilbert 1877, Howard 1942, Johnson 1932, Sharp 1940, Rahn 

1967, Warnke 1969) play a significant role in the process of pediment regrading. The 

next section briefly summarizes the pediment literature, revealing the need to evaluate 

role of base level change. 

 

THEORETICAL BACKGROUND 

 

 G.K. Gilbert analyzed planation surfaces in the Henry Mountains, Utah (1877). 

Ever since, geomorphologists have exhibited a fascination over the pediment landform of 

beveled bedrock (fig. 1) and it‘s genesis (for example, Twidale 1981, Oberlander 1989, 

Dohrenwend 1994, Dohrenwend and Parsons 2009, Twidale 1978b, Oberlander 1997, 

King 1953, Whitaker 1979, Cooke and Warren 1973, Tator 1952, Tuan 1959, Birot and 

Dresch 1966, Weise 1978). Despite an expansive body of work, last thoroughly reviewed 

by Dohrenwend and Parsons (2009), pediment formation remains unclear. Oberlander 

(1989: p. 56) and Nichols et al. (2002: p. 122) call this uncertainty the ‗pediment 

problem‘. 

 As with most lengthy academic debates, classification systems vary (Cooke and 

Mason 1973, Bourne and Twidale 1998, Twidale 1982, Oberlander 1989), which tends to 

cloud discussions. Pediment types include: apron pediments (Cooke and Warren 1973, 
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Cooke 1970); pediment domes (Davis 1933), exposed crystalline rock pediments 

(Twidale 1978a); mantled pediments, allochthonous debris-covered pediments (Twidale 

1982, Twidale 1983, Bourne and Twidale 1998); terrace pediments (Cooke and Warren 

1973, Plakht, Patyk-Kara and Gorelikova 2000); and rock pediments that have a uniform 

lithology with the mountain front (Oberlander 1989, Oberlander 1997). 

 In particular, this research focuses on the classic (Davis, 1933) ―rock pediment‖ 

form (fig. 1) (Oberlander, 1989; Pelletier, 2010) that is a low gradient (<0.2˚ – 11.3˚, 

Strudley and Murray 2007) piedmont. While fluvial transport dominates, pediments host 

only relatively (Applegarth 2004) thin (max 2-4m, Strudley and Murray 2007) veneers of 

alluvium. While they develop in a variety of climatic and lithologic conditions 

(Oberlander 1989, Dohrenwend and Parsons 2009, Ritter, Kochel and Miller 2002, 

Twidale 1982, Strudley and Murray 2007, Pelletier 2010, Cooke 1970), the granitic 

pediments explored here are found in region explored in the classic literature: the 

Sonoran Desert. 

 An abundance of core concepts have emerged in the thirteen decades of pediment 

scholarship. table 1 assembles many of key ideas debated in the granitic rock pediment 

literature. In summary, pediments are fluvial transport surfaces that balance sediment 

supply and transport. Granitic rock pediments exist between small ranges (inselbergs) and 

a local base level (fig. 2). They tend to occur in regions of relative tectonic quiescence or 

where vertical erosion rates roughly equal uplift or isostatic rebound. A dramatic slope 

break exists at the inselberg-pediment interface, and some argue that this piedmont 

junction is a relic of formation during a wetter period of time. Still others present 

compelling evidence of active processes operating on inselberg debris slopes supplying 
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sediment to the top of the pediment, and that the sudden slope break results from the 

particle-size transition from large spheroidally weathered boulders on inselberg slopes to 

sandy grus on the pediment. Early scholars tended to favor sheet flooding or lateral 

stream migration as beveling processes, while researchers in the latter half of the 20
th

 

century stressed the importance of subsurface weathering at the base of the inselberg in a 

moist (non-desert_ climate as a basic cause of the sudden slope break.  

  

 
Fig. 2. Pediment surfaces exist in a continuum of associated landforms (Dohrenwend and 

Parsons, 2009). In the field context of this study (fig. 1), a former pediment surface once 

graded to the Mesa strath terrace level ~440ka. The adjusted pediment has since regraded 

to the Blue Point strath terrace that was abandoned ~33ka.  Thus, we add the concept of a 

relict pediment surface (RPSR) and adjusted pediment surface (APSR). 

 

TABLE 1 

Core concepts discussed in scholarship on rock pediments. 

 

 

Concept 

 

Brief Explanation 

 

Balancing sediment 

supply and 

transport 

Pediments display a balance between critical power and stream 

power (Bull 1979), that may be necessary to maintain the 

pediment form (Cooke and Warren 1973). For example, a high 

sediment supply may sufficiently bury the erosional pediment 

surface (Applegarth, 2004) to the point where it can no longer be 

classified as a pediment (Pelletier 2010). Pediments tend to 

occur where relatively small catchments exist (Applegarth, 
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2004), and this is likely relates to a sediment transport/supply 

relationship (Dohrenwend and Parsons 2009).   

Stability-Steady 

State 

The common perception is that extensive pedimentation requires 

vertical stability or relative tectonic quiescence (Dohrenwend 

1994, Pelletier 2010, Dohrenwend and Parsons 2009, 

Dohrenwend et al. 1991, Dohrenwend et al. 1996, Blackwelder 

1929). The issue of base level has received attention in recent 

modeling research (Strudley and Murray 2007, Strudley et al. 

2006), however little is discussed regarding pediment response 

to progressive fluctuations in base level.  Many researchers 

(Dohrenwend, 1994; Pelletier, 2010; Dohrenwend and Parsons, 

2009; Dohrenwend et al., 1991; Dohrenwend et al., 1996; 

Blackwelder, 1929) point to geomorphic stability as necessary 

for pediments to form, thus it must be implied that base level and 

tectonics must be stable for pediments to form.  

In a steady state condition, vertical erosion roughly equals uplift or 

isostatic rebound (for example, Pazzaglia 2013). This 

relationship is consistent with the spatial distribution of 

pediments within the Basin and Range — predominantly 

bounding smaller, low relief ranges with small drainage areas 

(Lustig 1969). This contrasts with ranges of relief that host 

depositional piedmonts of alluvial fans (Pelletier 2010, Bull 

1977, Bull and McFadden 1977). 

Hillslope/Hydraulic 

Processes 

In granitic lithologies, weathering produces bimodal detritus within 

the pediment association and this relationship may explain the 

sharp contrast in slope at the piedmont junction – hillslopes will 

break down into boulders, thus requiring a steep slope for 

transport, while the pediments weather into grus (or sand) sized 

sediment requiring a low slope for transport.  Abundant research 

has shown that processes acting on the hillslopes and mountain 

mass are active processes (Parsons and Abrahams 1987, Parsons 

and Abrahams 1984)  

Inselberg-Pediment 

Linkage 

Many pediment formation models connect processes of degradation 

in the mountain mass and pediment development (Dohrenwend 

and Parsons 2009) because of the abrupt change in angle at the 

mountain front. Some suggest the problem lies in understanding 

‗parallel rectilinear slope retreat‘ (Oberlander 1989).  Although 

linear mountain fronts exist in some locations, most mountain 

fronts undulate as a result of the varying degree of drainage 

development within the mountain mass and pediment (Parsons 

and Abrahams 1984). Furthermore, the sinuosity of the mountain 

front increases with time in a geomorphically stable system (Bull 

and McFadden 1977). 

Isostacy The idea of exhumation of a suballuvial bench (Paige 1912, 

Lawson 1915, Cooke 1970) has been recently rejuvenated by 
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(Pelletier 2010) invoking flexural-isostatic uplift as an 

explanation for the tilting involved in pediment exhumation 

around the pediment/inselberg boundary. 

Lateral migration 

of streams 

Those favoring beveling of the pediment surface via erosion of 

laterally migrating streams (Gilbert 1877, Johnson 1932, 

Howard 1942, Warnke 1969, Sharp 1940, Johnson 1931) often 

point to sheet floods (Howard 1942), weathering, rain splash, 

and rill wash (Johnson 1932) that erode the mountain front 

(Parsons and Abrahams 1984). Still others argue that rectilinear 

escarpments cannot be explained by this process (e.g. Ruxton 

1958, Ruxton and Berry 1957, Mabbutt 1966), because lateral 

erosion would require streams to flow parallel the piedmont 

junction (Lustig 1969, Strudley et al. 2006, Pelletier 2010, Ritter 

et al. 2002) and cannot explain the distinct piedmont angle 

(Oberlander 1989).  While it is ‗unrealistic‘ (Cooke and Warren 

1973) that lateral erosion is an exclusive process (Parsons and 

Abrahams 1984), the anastomosing to braided nature of many 

pediment channels could have a laterally erosive effect, 

especially in an erodible substrate (Denny 1967, Sharp 1940).  

Pediment 

Association 

Cooke (1970) and Dohrenwend and Parsons (2009) note that 

pediments exist in a continuum of associated landforms (fig. 2), 

where they typically exist in the zone of fluvial transport 

(Dohrenwend 1994, Strudley et al. 2006). 

Pediment mantles Mantles of decayed granitic material and soils can extend up to a 

few meters in depth on active pediment surfaces. Mantles have a 

fairly planar surface, but the contact with bedrock is usually 

irregular suggesting differential subsurface weathering (Cooke 

and Warren 1973, Mabbutt 1966). Numerical modeling 

(Strudley and Murray 2007, Strudley et al. 2006) applied 

Heimsath et al‘s soil production models (Heimsath et al. 2000, 

Heimsath et al. 1999) suggests that mantles are in an equilibrium 

where erosion rates, soil production, and bedrock weathering are 

in balance. The rate of bedrock weathering is inversely 

proportional to soil production; where bedrock weathering is 

greatest with thin soil.  In this model, pediments form when an 

appropriately thin soil is present.  Any shift from this 

equilibrium would result in deviation from the pediment form.  

Piedmont Junction A large body of research focuses on the piedmont junction (fig. 2) 

in an attempt to determine how pediments extend and mountains 

degrade over time (e.g. Ruxton 1958, Ruxton and Berry 1957, 

Twidale 1967, Twidale 1968, Mabbutt 1966, Kirkby and Kirkby 

1974, Denny 1967, Selby 1982, Parsons and Abrahams 1984). 

Working in badlands, Schumm (1962) found that the piedmont 

junction is not a zone of deposition and that the slopes of the 

mountain front and pediment are able to transport the supplied 
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sediment size; the pediment extends as the steep upland slope 

retreats. Similar processes may work in granitic lithologies 

(Cooke and Warren 1973). Granitic rocks tend to form a distinct, 

sharp increase in slope where the pediment meets the inselberg 

mountain front. This thin zone of drastically increased slope 

could be a function of structural and lithologic controls (Denny 

1967, Twidale 1967, Cooke and Reeves 1972).  

Relict form Many have suggested that pediments and associated landscapes are 

forms inherited from previous periods of different 

climatic/geomorphic regimes (Oberlander 1989, Oberlander 

1972, Oberlander 1974, Mabbutt 1965, Moss 1977). Oberlander 

(1989), for example, argued that Mojave and Sonoran Desert 

pediments primarily formed under Miocene vegetative and 

climatic regimes (Oberlander 1974).  Quaternary periods of 

aridity then stripped a former cover of soil and regolith, 

exposing the pediment erosion surface and tors. 

Sheet flooding Early researchers emphasized the role of sheet flooding (McGee 

1897, Davis 1938, King 1949), where this process may be a 

consequence of the pediment rather than its cause (Cooke and 

Warren 1973, Lustig 1969, Rahn 1967). 

Subsurface 

weathering 

Enhanced subsurface weathering at the piedmont junction may aid 

slope retreat (e.g. Twidale 1968, Twidale 1967, Mabbutt 1965, 

Mabbutt 1966). Some argue that enhanced rock decay at the base 

of the inselberg is a primary pediment forming process (e.g. 

Twidale 1968, Twidale 1967, Mabbutt 1965, Mabbutt 1966, 

Bryan 1925). 

  

 

 Given disparate observations from a wide variety locations (table 1), no single 

formative model seems to apply to all granitic rock pediments. Thus, our approach starts 

with the premise that location-dependent factors could yield new insight into pediment 

processes. In particular, we work in the classic arid climate of the Sonoran Desert, with 

the classic granitic lithology, and in a classic geological setting of tectonic quiescence in 

central Arizona. What we vary is base level — a topic only previously explored in 

numeral modeling (Strudley and Murray 2007, Strudley et al. 2006). Certainly, many 

prior pediment studies note the occurrence of ―incised pediments‖ (e.g. Davis 1933, 

Oberlander 1989, Tuan 1962, Dohrenwend and Parsons 2009, Young 1992, Amoroso and 
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Miller 2012), but the connection between incised pediments and base-level change has 

not yet received systemic study in the rock pediment literature. 

  

SETTING OF THE STUDY AREA 

 The purpose of this section is to provide an overview of the geological history 

near the junction of the Salt and Verde rivers. This history is speculative, because it is 

based on preliminary research. Still, this background sets the stage for the base level 

change that is being studied here. 

 Central Arizona, near the junction of the Salt River and Verde River (fig. 3), 

formerly hosted the Pemberton closed basin with extensive playa deposits that intercalate 

red clays and gypsum (Pope 1974, Skotnicki et al. 2003). The Pemberton basin originated 

from Basin and Range faulting that terminated approximately eight million years ago. 

Still, the basin remained closed throughout the Miocene and Pliocene as alluvial-fan 

deposits debouching from the Mazatzal Mountains deposited at rates faster than playa 

aggradation (fig. 3). Thus, the Pemberton playa formed the original base level of the 

eastern McDowell and Usery pediments. 
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Fig. 3. The Salt and Verde watersheds supply a major portion of the water supply for 

metroPhoenix. The two incising pediment systems are just upstream of the junction of 

these rivers. The Usery Mountain pediments are to the south of the Salt River, and the 

McDowell Mountains pediment is to the west of the Verde River. The Pemberton playa 

shifted in position as it slowly accumulated in a closed basin created by Basin and Range 

faulting, but most of the red clays of the Pemberton formation can be found in the shaded 

area. Sediments deriving from the Matazal Mountains in the east dominated the basin‘s 

sediment budget — pushing the playa towards the McDowell Mountains and closing off 

the basin‘s southern side.  

 

 The sill of the Pemberton closed basin breached when a paleolake in the position 

of present-day Tonto Basin overflowed (Douglass et al. 2009a, Douglass et al. 2009b).  

Subsequent knickpoint recession and excavation of sediment resulted in aggradation of 

the massive Stewart Mountain terrace of the Salt River (Larson et al. 2010). The timing 

of this overflow event that produced an integrated the Salt River is not known, although it 

before the >1.2 ma aged Sawik Terrace of the Salt River (Larson et al. 2010).  

 The Salt River‘s integration dramatically changed the composition of sediment 

accumulating in Phoenix, according to research near the Phoenix airport. 
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 ―The contact between the Salt River Gravels and the underlying basin fill is 

generally very sharp in the logs, cores, and cuttings… There is a surprising lack of 

soil development along the contact, which can be explained by (1) no large age 

difference between the two units, or (2) scouring of the contact by the Salt River 

prior to deposition of the lowest Salt River Gravels‖ (Reynolds and Bartlett 

2002).   

 

The lake overflow model (Douglass et al. 2009a, Douglass et al. 2009b) would be 

consistent with a scouring event by a newly formed Salt River, following by deposition 

of the observed gravels.  

 Integration of the Salt River dropped the base level of piedmont washes flowing 

into the Salt River from the Usery Mountains. Usery-sourced washes first adjusted to the 

base level of the >1.2 ma aged Sawik terrace (fig. 1). At the same time, lowering of the 

Salt River resulted in dissection of the Pemberton Playa by local washes derived from the 

eastern McDowell Mountains.  That incision continued until the Lousley Hills gravels 

were deposited on top of the eroding playa (fig. 4). Gravels derived from the eastern 

McDowell Mountains then deposited on top of the truncated playa, in response to the 

sudden rise in base level to the level of the Lousley Hills.  Figure 5 illustrates a location 

west of the Lousley Hills along Stoneman Wash (see fig. 4), where gravels were sampled 

for cosmogenic burial dating.   
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Fig. 4. The lower Verde River displays a complex sequence of events.  First, the playa 

sediments eroded in response to integration of the Salt River (white line). Second, the 

Lousley Hills gravels deposited — forming a fill terrace. Third, gravels derived from the 

McDowell Mountains began to accumulate behind the Lousley Hills terrace. Fourth, 

transverse drainages crossed the Lousley Hills terrace. Fifth, these drainages adjusted to 

the Mesa River terrace (identified by M), and the eastern McDowell pediment graded to 

this terrace. Then lowering of the Verde river resulted in a pediment that is undergoing 

erosion due to knickpoint recession of washes (identified by white arrows).  
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Fig. 5. The top of the Pemberton playa deposit is now an unconformity, where locally 

derived gravels preserve the landscape after the Lousley Hills terrace raised the base level 

of these washes. This is a collection site for burial cosmogenic nuclide dating, where the 

truncated top of the playa sediment is informally named the ―Pewe Surface‖. 

 

 Cosmogenic burial dating samples along the Verde River reveal some insight into 

the timing of events, even though these ages are preliminary. The gravels collected at 

figure 5 at ~1.3 ma (fig. 6) reflect a McDowell Mountains-derived drainage that is 

undergoing active incision in response to lowering of the Verde River‘s base level. 

Larson et al. (2010) speculated that the Sawik Terrace‘s >1.2 ma age does not reflect a 

stable base level, but rather ongoing incision of the Salt River. Thus, it is possible that as 

the Salt River incised during ―Sawik time‖, the Verde responded in turn — and the ~1.3 

ma age for the Pewe Surface gravels (fig. 6) provides a minimum age for Lousley Hills 

deposition and also this ongoing adjustment to the lowering base level of the Salt River. 
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Fig. 6. Burial dating ages for the Pewe Surface gravels (see fig. 5 and Mesa terrace 

gravels (fig. 4). These ages are preliminary. 

 

 In summary, the gradual base level lowering of the Salt River from the Stewart 

Mountain terrace to the Sawik terrace and then to the Mesa terrace (fig. 1) resulted in a 

corresponding lowering of the base level of the Verde River eventually to the Mesa 

terrace equivalent (fig. 4). This period of adjustment to the strath floodplain appears to 

have been sometime between ~1.3 ma and the ca. 440 ka age for the Mesa terrace. Figure 

7 diagrams this adjustment along both the Verde and Salt rivers.  
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Fig. 7. A physiographic diagram produced by the Salt River Project, on which Péwé 

(1978) indicated the three strath terraces of Sawik, Mesa, and Blue Point along the Salt 

River. Two terraces were drawn for the Verde River. Note that Péwé pinches out the Blue 

Point terrace in east Mesa, Arizona.  The lower diagram shows the idealized Salt River 

terrace system as envisioned by Péwé (1978). 

 

 Pewe (1978) suggested that the Salt River‘s Mesa terrace (~440 ka) represented a 

long-term period of base level stability for local tributaries and bounding pediments 

(Larson et al. 2010).  I agree that the Salt River system reached the level of the Mesa 

terrace fairly quickly, because the basin fill— derived from the Matzatzal Mountains — 

consists of fanglomerate gravels that have very little cementation.  
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Thus, it is possible that the pediments of the eastern McDowell Mountains (fig. 8) and 

Usery Mountains (fig. 9) had several hundreds of thousands of years to adjust to the base 

level of what is now the Mesa river terrace.  Thus, the starting point for the research 

presented here is formation of the pediments that are graded to the Mesa river terrace 

level (e.g. Mesa pediment in fig. 9).  

  Pewe‘s (1978) sequence of Salt River terraces (fig. 7) provides a record of 

episodic incision and periodic base level stability as controls for the tributaries flowing 

into the Salt River basin (Larson et al. 2010, Scarborough 1981). Thus, our test of base 

level control in this study is tied directly to fluctuations of vertical incision and relative 

stability in areas with well-established geomorphic relationships.  Of particular 

importance is the relationship between the Mesa terrace and the pediment transition in 

response to base level lowering to the lower terraces (Blue Point) and the modern 

floodplain/Lehi terrace. Since the formation of the Mesa terrace the Salt River lowered to 

the Blue Point terrace level and then again to the Lehi/Modern floodplain. 

 The Mesa river terrace level was abandoned ca. 440 ka according to 
36

Cl burial 

ages for the Mesa terrace of the Salt River (439±63 ka minimum age; Campbell, 1999). 

The preliminary Al-Be burial age for the Mesa terrace along the Verde River at ca. 500 

ka (fig. 6) is consistent with the age for the Mesa terrace along the Salt River. This 

research utilizes the incision event  ~ 440 ka that resulted in the abandonment of the 

Mesa river terrace level down to the Blue Point terrace (figs. 1 and 7). 
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Fig. 8.  East McDowell Pediment. The arrows correspond with the arrows in Figure 5. 

The collection site for the Pewe Surface gravels roughly corresponds with the right 

arrow. 
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Fig. 9. Low angle aerial photograph of five Usery pediments: Bush, Twisted Sister, Mine, 

Hawes and Mesa.  Note the varied topography on each pediment with varying levels of 

incision and regrading in response to the base level lowering of the Salt River.  The Mesa 

pediment grades to the Mesa terrace level west of this photograph.  The other pediments 

have responded to the base level lowering of the Salt River and have varying degrees of 

incision, with the Bush pediment being almost completely regraded to the Blue Point 

terrace.  Also, note the escarpment at the base of the pediments resulting from lateral 

migration of the Salt River into the pediment basins.   

 

  Since this research focuses on the Usery pediments, the basic geology of the 

Usery Mountains provides useful background information. The Usery Mountains, an 

approximately east-west trending range (Willis 1934), uplifted during late-Cenozoic 

extensional orogenic events in Arizona. Although two narrow shear zones exist within 

the Usery Mountains, they are relatively simple geologically. Two mineralogically 

similar lithologic units of early to middle Proterozoic age dominate the Usery Mountains. 

The first is a porphyritic coarse-grained granite to quartz monzonite and the second is a 

coarse-grained granite to syenite (Skotnicki and Ferguson 1996).  These lithologies form 
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the majority of the substrate upon which the pediments have developed. In the far distal 

portions of the Mine and Hawes drainages isolated outcrops of metamorphosed granitic 

rocks constrain channels. 

METHODS 

 The methods employed in this study occurred in four stages. The first stage 

identified and delineated four different pediment systems around the Usery Mountains. 

The second stage documented landforms associated with an eroding granitic pediment 

system that would provide minimum heights of the pediment graded to the Mesa terrace. 

The second stage then mapped features that provide minimum elevations of the Mesa 

pediment system.  Third, the relict Mesa pediment systems had to be reconstructed for the 

different pediments through GIS. The fourth stage measured longitudinal profiles of the 

different pediment systems. Lastly, volumes of sediment lost between the reconstructed 

Mesa pediment and the present-day surface allowed calculation of erosion rates for the 

different pediments around the Usery Mountains. 

 Identifying and Delineating the Pediment Basins.–  Delineating the boundaries 

between adjacent pediments is not a straight forward task and is fraught with difficulties 

(Cooke and Warren 1973).  This is due to the fact that pediments surrounding a mountain 

mass can have indistinct boundaries without any clear morphological distinction. 

Fortunately, the pediment basins in this study (fig. 9) tend to have quite clear 

morphological boundaries. This is because they are incising to adjust to the lowered base 

level. 

 Still, for the modern pediment basins in this study we used the suggestion of 

Cooke and Warren (1973) to map them in relation to the Pediment Association. Fluvial 
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processes and sediment transport drive this association from the mountain mass to the 

zone of accumulation, therefore, longitudinal constraints on pediment surface mapping 

were between the zone of degradation (mountain mass) and zone of aggradation (base 

level). Latitudinal boundaries were constrained by drainage pattern breaks and 

morphologic contacts. If sudden hydrologic breaks in pediment wide flow direction 

existed we would map a boundary at that location. For example, running north and south 

between the Salt River and Usery Mountains (N 33.52895 W 111.64298), between the 

Bush and Twisted Sister pediments, an area of high, undulating relief exists from which 

pediment drainages appear to flow in opposing directions. For lack of a better term, we 

have described this as a pediment interfluve. This pediment interfluve location delineated 

the westernmost boundary of the Bush pediment (fig. 9).   

 Documenting Forms Associated with Eroding Pediments.– Since little research on 

pediments focuses on the influence of base-level change, no prior research has 

documented the basic sorts of forms associated with eroding granitic pediments. The 

exception is the numerical modeling work (Strudley and Murray 2007, Strudley et al. 

2006) that appropriately uses the exposure of tors as evidence of base level fall.  

 The identification and documentation of forms associated with eroding pediments 

involved several very different types of methods: electron microscopy to analyze the 

nature of carbonate deposits and the characteristics of granitic mineral decay; field 

observations; and low-angle aerial photography.  

 The process of sample preparation for imaging with back-scattered electrons 

(BSE), high resolution transmission electron microscopy (HRTEM), and analysis with 

energy dispersive X-rays (EDX) started with a polished cross-section. Polished cross-
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sections imaged with BSE facilitate an understanding of both carbonate textures and 

granitic mineral decay, because atomic number is imaged by contrast. EDX helps identify 

likely minerals through identification of elemental peaks. HRTEM helps understand the 

detailed nature of mineral decay at the nanoscale.  

 Fieldwork involved over forty different trips to the McDowell-Verde and Usery-

Salt field areas. Fieldwork included the use of dGPS to locate different geomorphic 

features and measure longitudinal profiles of washes with spatial and vertical resolutions 

of sub-half meter accuracy. Much of the fieldwork, however involved just thinking about 

the various geomorphic features and how they might relate to the relict pediment graded 

to the Mesa terrace and also base level adjustment of the Salt and Verde Rivers. The 

fieldwork was complemented by low-angle aerial photography that generated a different 

perspective on field-identified forms. 

 Reconstructing Paleo-Pediment Surfaces.–  Kriging techniques generated the 

relict pediment surfaces that once graded to the Mesa river terrace, where the ArcGIS 

Geostatistical Analyst toolbox facilitated clipping of the digitized boundaries of each 

drainage basin. Kriging techniques generate a continuous surface by using known points 

of reference and associated attribute values (e.g., elevation), and interpolation values 

between these known points (Oliver and Webster 1990). 

 The Mesa river terrace forms the lower boundary of each Mesa-aged 

reconstructed pediment. Because the Mesa terrace is discontinuous, some pediments 

required interpolation between terrace remnants. In these cases, Mesa terrace elevations 

were estimated by using longitudinal slope profile analysis of the Mesa terrace tread and 

verified by dGPS measurements of the nearest Mesa terrace remnant. 
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 The remainder of the data used to reconstruct the Mesa-age pediment only 

provides minimum elevations for the relict surface. This is because remnants of the 

former pediment were all buried when the Mesa-age pediment was active. For example, 

remnants of the original pediment mantle have been eroding.  In another example, the 

regolith calcrete forms at the contact between the inselberg and the very top of the 

pediment mantle — and the regolith calcrete remants mapped in this study formed under 

a completely eroded pediment mantle. Thus, the reconstructed surface provides only a 

minimum height for the Mesa-age pediment. This minimum-height reconstruction was 

generated at a 10 m resolution. This matches the existing digital elevation model (DEM) 

of the present-day topography.  

 Several Kriging techniques in ArcGIS Geostatistical Analyst generate different 

types of surfaces. Each option provides slightly different outputs that would change 

calculated volumes lost and erosion rates. The goal of the interpolation rested in 

standardizing interpolation surfaces for all basins to the greatest degree possible. This is 

to maintain a simplistic model of the relict pediment. Thus, three key criteria had to be 

met before accepting a surface for later analysis. 

 

1. The surface must represent a minimum erosion rate. This conforms to nature of 

the evidence. 

2. The surface must be as smooth as possible, minimizing unnecessary transverse 

undulations. This is because the present-day Mesa pediment (fig. 9) has a 

relatively smooth surface. Furthermore, pediments typically have little internal 

relief (<0.2˚ – 11.3˚, Strudley and Murray 2007). 

3. The surface must minimize areas of volume ―gain‖ between old surface and new. 

This is because no area should truly have a gain in elevation. 
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Pediment Longitudinal Profiles.– Pediments are fluvial transport surfaces 

(Dohrenwend 1994, Strudley et al. 2006). As such, long profiles can provide useful 

insights into fluvial processes (e.g. Merritts, Vincent and Wohl 1994, Pazzaglia, Gardner 

and Merritts 1998, Snyder et al. 2000). Thus, longitudinal profiles were created along 

transects that bisected both the relict and modern pediment surfaces in all pediment 

basins investigated.  These profiles were taken from the exact center of the pediment 

surface across both the relict and modern DEMs.  Data used to generate the longitudinal 

profiles came from the modern 10m DEM and relict surface 10m DEM.  

 Calculating Minimum Erosion Rates.– The first step in calculating minimum 

erosion rates for each pediment involved first calculating the volume of material between 

the present-day topography and the reconstructed Mesa-age pediment. This volume 

would be a minimum value. Then, volume divided by area provides an average minimum 

amount of erosion for a pediment system. Lastly, this minimum erosion value is divided 

by the age of the Mesa terrace.  

 Previous research (Campbell 1999) analyzed 
36

Cl gravels on the surface of a Mesa 

terrace remanant and then at depth — revealing a minimum exposure age of 439,000 +/-

63,000. This age is consistent with the Al-Be burial dating age for the Mesa terrace along 

the Verde River (fig. 6).  

 Dividing a minimum erosion value in mm by the minimum age for a terrace 

yields an erosion rate of mm/ka that requires an error analysis. Certainly, the 2 sigma 

error associated with the 
36

Cl age of ± 63ka (or 14%) should propagate into the overall 

erosion rate.  Because the reconstructed surface is most certainly below the elevation of 

the original Mesa-age pediment, the calculated erosion rate is likely less than the true 
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erosion rate.  However, the cosmogenic ages are also minimums; thus, since the true age 

could be older, the calculated erosion rate could be higher than the true erosion rate.  

There is no way to know the magnitude of these off-setting effects given available data. 

Thus, erosion rates are presented with just the error of 14%. However, the true error is 

larger. I speculate that the erosion rate is probably a minimum, because the cosmogenic 

age could be correct; however, the reconstructed Mesa-age pediment surface is most 

definitely lower than the original. 

RESULTS 

 Forms associated with eroding granitic pediments.– The emergence of tors from 

mantle stripping during readjustment to a lowered base level has been previously 

identified landform associated with pediment erosion (Strudley et al. 2006). Certainly, 

tors are ubiquitous in the eastern McDowell pediment (fig. 8) and Usery pediments (fig. 

9) that are undergoing erosion. However, tors can occur well beneath the former 

pediment surface. Consider the current knickpoint of Stoneman Wash in the eastern 

McDowell Pediment (fig. 10). This knickpoint is retreating into the Mesa-age pediment 

(fig. 4, 8, 10A, 10B). The pediment surrounding this knickpoint still has a mantle of grus 

sand that is underoing erosion, and stripping of this mantle reveals the presence of tors 

(fig. 10C, 10D). Another reason why tors provide a problematic source of elevation for a 

paleo-pediment surface is that they can stick out of contemporary pediments adjusted to a 

base level.   
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In contrast, the pediment mantle (Mabbutt 1966) of transported and decayed grus 

(fig. 10C and 10D) does provide a reliable minimum height for the paleo-surface. 

Furthermore, remnants of pediment mantles can stretch for several hundred meters from 

the base of an inselberg to partway down a pediment (fig. 11). This preservation is 

possible between incising washes, because the sandy nature of the mantle promotes 

infiltration as opposed to runoff. Thus, where they occur, former pediment mantles 

provide minimum heights for a paleo-pediment surface. 

 Geomorphologists working the western USA most commonly associate carbonate 

accumulates with pedogenesis. In particular, they most often identify stages of calcrete 

development as a relative age indicator (Gile, Hawley and Grossman 1981). However, 

there are many other forms of carbonate that occur outside of a pedogenic environment. 

One particular type of regolith carbonate is particularly useful in reconstructing a paleo-

pediment surface; laminar carbonate forms along the contact between the pediment 

mantle and the bedrock inselberg (fig. 12). This laminar regolith carbonate has been 

preserved in many locations in the eastern McDowell and Usery pediments. However, the 

best circumstance for pediment reconstruction is where the laminar carbonate reaches its 

highest extent: right at the base of the inselberg (fig. 12). 
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Fig. 10. Stoneman Wash incises into the Mesa-age pediment of the eastern McDowell 

Mountains.  The right arrow in figures 5 and 9 identify the position of the knickpoint 

identified in images A, B and D. As the pediment surrounding this knickpoint erodes, the 

pediment mantle of grus erodes into a series of washes and interfluves. Erosion of this 

mantle then leads to the exposure of formerly buried tors, as seen in image C. 

   

 
Fig. 11. The Usery Mine pediment (Figure 10) still retains a remnant of its mantle cover. 

This  4 m thick remnant stretches over 100 m and almost reaches the base of the present-

day inselberg.   
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 One particular type of regolith carbonate is particularly useful in reconstructing a 

paleo-pediment surface; laminar carbonate forms along the contact between the pediment 

mantle and the backing bedrock inselberg (Figure 12). This laminar regolith carbonate 

has been preserved in many locations in the eastern McDowell and Usery pediments. 

However, the best circumstance for pediment reconstruction is where the laminar 

carbonate reaches its highest extent: right at the base of the inselberg (fig. 12). 

 

 
Fig. 12. A remnant of laminar regolith carbonate occurs a few meters north of the 

remnant of pediment mantle (fig. 12). This is at the top of the Usery Mine pediment (fig. 

10). This laminar carbonate forms where water flowing down the inselberg slope 

infiltrates into the sandy pediment mantle.  Even though the granitic bedrock can be 

thoroughly decayed, the sandy pediment mantle is much more porous and permeable. 

Thus, gravity water seeps down to the base of the sandy mantle, and water flows along 

the mantle-bedrock contact. Laminar carbonate precipitates under these conditions. A 

remnant of this regolith carbonate can be seen, just above the zone of enhanced decay.    
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 Highly decayed granitic rock is another form associated with an eroding pediment 

system. Intense zones of decay commonly occur at a current piedmont junction (Twidale 

1967, Twidale 1968, Oberlander 1989). Stripping of the former mantle cover exposes this 

zone of intense decay at the base of an inselberg (e.g. fig. 12). In some cases, as in figure 

12, the laminar regolith carbonate is preserved above this zone of enhance decay. In such 

circumstances, the regolith carbonate provides a closer minimum elevation for the paleo-

pediment. However, sometimes, the regolith carbonate has eroded — leaving behind just 

the zone of enhanced decay. Of course, these zones of decay are often not preserved, 

because they are more susceptible to erosion. Thus, where they are seen, they are most 

often capped and preserved by the laminar regolith carbonate.  

 In summary, three different forms provide minimum elevations for paleo-

pediment reconstruction: the tops of pediment mantles; the highest elevation of an 

exposure of regolith carbonate at the pediment/inselberg piedmont angle; and zones of 

enhanced decay at the base of an inselberg. Tors are not used, because they occur both 

above and well below the surface of a pediment. 

 Field Mapping Paleo-elevation Indicators.– The use of dGPS and high resolution, 

low angle aerial photography facilitated detailed mapping of forms that provide minimum 

elevations of a relict pediment surface. Where pediment mantles are continuous, transects 

of elevation points could be gathered. However, regolith carbonate occurrences are 

typically not continuous, resulting in specific points. Figure 13 provides an example of 

such mapping for the Twisted Sister pediment. Similar maps exist for the other Usery 

pediments.  
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Fig. 13. Points and lines identify locations of regolith carbonate (purple) and pediment 

mantle (red and yellow) sites in the Twisted Sister pediment. The present-day Salt River 

floodplain is in the upper left corner, and the Bush Highway road provides a sense of 

scale. Smaller points in the lower left are on the neighboring Mine Pediment. 

 

 Delineation of the Pediments and Kriging Relict Surfaces.– Figures 14 and 15 

present the boundaries of the four Usery pediments that are adjusting to the lowered base 

level of the Salt River. Only the Mesa pediment is not shown (see fig. 9), because it 

represents the ‗control‘ condition of a pediment still graded to the Mesa river terrace.  
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Fig. 14. Red lines delineate the Bush (A) and Twisted Sister (B) pediments. In mapping 

the paleo-surfaces, red areas indicate locations where the Kriging generated elevations 

higher than the present-day topography. Blue colors map out the most reasonable paleo-

surface for the Bush (C) and Twisted Sister (D) pediments that fits the three criteria 

specified in the methods section.  
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Fig. 15. Red lines delineate the Hawes (A) and Mine (B) pediments. In mapping the 

paleo-surfaces, red areas indicate locations where the Kriging generated elevations higher 

than the present-day topography. Blue colors map out the most reasonable paleo-surface 

for the Hawes (C) and Mine (D) pediments that fits the three criteria specified in the 

methods section. 

 

 Pediment Longitudinal Profiles and Observations of Varied Incision.– The 

longitudinal profiles for each incising Usery pediment (fig. 16) reveal a concave upward 

profile for both modern and paleosurfaces. The relatively smooth paleo-long profiles is 

probably an artifact of distribution of the data — even if the paleo-surface was probably 

fairly smooth. The much greater variability of the modern profiles reflects an abundance 

of knickpoints at various locations. In contrast, the Mesa pedment (fig. 17) is the 

‗control‘ for this study. It still grades to the Mesa river terrace. The pre-construction 10 m 



134 

DEM shows a relatively smooth profile, interrupted only by such features as large 

inselbergs that dot the pediment. I note a variety of specific observations on the 

longitudinal profiles of the four Usery pediments: 

 

• The Mine pediment has a dramatic concave-upward profile.  This sharp increase in 

slope in the proximal portion of the pediment correlates to the location of pediment 

relict surfaces where little adjustment has occurred.  

 

• The modern Bush pediment is experiencing significant incision only in the far distal 

end, around the Blue Point terrace. This incision results from lowering base level 

from the Blue Point terrace level to the modern floodplain or the historically flooded 

Lehi terrace (fig. 21).  

 

• The Mesa-time reconstruction of the Bush pediment dips beneath the present-day 

mountain front. This is a result of the kriging models interpolation. Relatively few 

remnant data points were observed at the top of the Bush pediment, and most of the 

Mesa age relict surface has been eroded.  Thus, interpolation of this surface is less 

certain.  

 

• The modern surface sometimes undulates above the reconstructed Mesa-time 

reconstruction in the Mine and Bush pediments. This is due to the interpolation 

methods used and the resolution of the 10 m DEM surfaces utilized. 

 

• The Twisted Sister pediment appears to have the least divergence of any pediment 

profile.  This is the result of the strongly undulating topography on the modern 

surface as a result of incision.  The undulations are clearly seen in the modern profile 

where it often contacts the reconstructed relict pediment level.  In these locations it is 

often a location of the preserved pediment relict that is incorporated into the modern 

profile. 
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Fig. 16. Longitudinal profiles of Usery pediment systems that are adjusting to the 

lowered base level of the Salt River. Red lines delineate the paleo-pediment surface 

reconstructed to grade to the Mesa river terrace. The blue lines indicate the modern 10 m 

DEM. 

 

 
Fig. 17. The smooth longitudinal profile of the Mesa pediment, generated from the pre-

construction 10m DEM, accords with the reality seen in the aerial photograph. The Mesa 

pediment does not exhibit the incision morphology that is typical of the other pediments. 

There are no relict pediment surface remnants in this basin and it grades to the Mesa river 

terrace. The topography comes from isolated inselbergs. The Mesa terrace grades 

westward into the Mesa river terrace.  
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 Erosion Rates and Pediment Morphometry.– Table 2 summarizes the basic length 

and area dimensions of the four incising Usery pediments.  Table 2 also presents the 

calculation of the mass of granitic bedrock eroded between the reconstructed Mesa-time 

pediment and the modern surface. The average erosion rate for each pediment system is 

based on the cosmogenic 
36

Cl age for the Mesa River terrace and its statistical 2 sigma 

uncertainty. 

 This is not to infer that the average erosion rate reflects the rate at any given point 

along a pediment. The minimum erosion rate for the entire pediment integrates the entire 

area. Still, it is useful to compare the overall rate with particular locations. For example, 

at the 
36

Cl sampling site, the erosion rate is about 39±5 mm/ka (fig. 18). Put more 

conservatively, this particular site has a half the erosion rate of the entire pediment 

system – likely because of its relative proximity to an inselberg of resistant metamorphic 

rocks just to the northwest. 

 

 
Fig. 18. This road cut through a remnant of the Mesa strath terrace is the sampling site 
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for 
36

Cl dating of the Mesa terrace (Campbell, 1999).  At this particular site, the erosion 

rate is 39±5 mm/ka.  

 

 

TABLE 2 

 

Pediment morphometry and erosion rates for different pediment basins of the Usery 

Mountains. The uncertainty term is based only on the 2 sigma error for the cosmogenic 

age of the Mesa river terrace. 

 

 

Basin 

 

Length 

 

Area 

 

Volume Eroded 

 

Minimum Erosion 

Rate 

 

Hawes 1785m 443,000 m
2
 1,306,395 m

3
  6.7±0.9   mm/ka 

Mine 1593m 209,800 m
2
 759,891 m

3
  8.3±1.2   mm/ka 

Twisted 

Sister 

2519m 1,005,200 m
2
 12,559,758 m

3
 28.1±3.9  mm/ka 

Bush 4764m 13,182,100 m
2
 518,789,589 m

3
 89.7±12.6 mm/ka 

 

 An apparent correlation occurs between both pediment area (Log10) and 

pediment length (Log10) and average erosion rate of the four studied pediment systems 

(fig. 19 and 20). Higher erosion rates are associated with more extensive pediments. 

 

 
Fig. 19. A linear-log plot of erosion rate and drainage area of the four Usery pediments 

suggests a basic linear relationship.   A logarithmic ―best fit‖ line emphasizes an apparent 

correlation between pediment area and erosion rate.  



138 

 

 
Fig. 20. A linear-log plot of erosion rate and length of the four Usery pediments suggests 

a basic linear relationship.   A logarithmic ―best fit‖ line emphasizes an apparent 

correlation between pediment and erosion rate. 

 

DISCUSSION 

 

 The organization of this discussion section is structured to transition from some of 

the broader issues in the granitic rock pediment literature towards insights that are more 

focused on the specifics of the Usery and McDowell field areas of the Sonoran Desert.  

 Active or Relict?– The contention that rock pediments are landforms inherited 

from a past climate of greater moisture (Oberlander 1989, Oberlander 1972, Oberlander 

1974, Mabbutt 1965, Moss 1977) is incompatible with the results gathered here. Four 

lines of evidence support this position: (a) regrading of the Bush pediment in ~400 ka 

during the Quaternary period of relative aridity; (b) regrading of 5% of the Bush 

pediment since incision into the Blue Point terrace in the last ~33 ka; (c) active 

modification of the piedmont angle in adjusting pediment systems; and (d) the range of 

erosion rates that depend on pediment size being consistent with active pedimentation 

processes. 
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 The Bush pediment has the classic pediment form (fig. 1), even though its 

longitudinal profile is more concave upward (fig. 16) than the Mesa pediment (fig. 17). 

This classic granitic rock pediment completely regarded in about ~400ka. The last 400 ka 

in the southwestern USA has seen a mixture of climatic periods slightly more arid than 

today (e.g., Medieval Warm Period) and slightly more moist (e.g. during last full glacial). 

Thus, pedimentation did not take place during some Tertiary tropical climate (Oberlander 

1989, Oberlander 1972, Oberlander 1974, Mabbutt 1965, Moss 1977).  

 The lowest end of the Bush pediment has been actively responding to the 

lowering of base level from the Blue Point terrace in the last ~33ka (Larson et al. 2010), 

as seen in the longitudinal profile (fig. 21). Headward erosion has regarded about 5% of 

the Bush pediment to the modern floodplain of the Salt River. This headward erosion also 

involves subsequent channel widening by washes with the largest drainage areas. 

 The piedmont angle is the slope transition between inselberg and pediment. For 

those favoring the position that pediments are relicts, the piedmont angle should simply 

represent stripping of the former weathered regolith (Oberlander 1989, Oberlander 1972, 

Oberlander 1974, Mabbutt 1965, Moss 1977). Figure 22 contrasts the uppermost 

headward extending parts of the Hawes pediment system with the Mesa pediment.  The 

extensive gullying that takes place at the top of pediments that flow to the modern Salt 

River‘s floodplain suggests that the piedmont angle is not a relict landform. 

 Yet another perspective on why the relict conceptual model for granitic pediments 

is inconsistent with these results comes from a comparison of the four pediment systems. 

The log-linear relationship between drainage area (or pediment length) and erosion rate 
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(fig. 19 and 20) should not exist pediments were relict systems. There should be minimal 

erosion of the pediment, and the only process would be a slow transport of grus.  

 The remaining pediments have all experienced differential responses to incision 

and have felt pronounced base level impacts due to their proximity to the Salt River. The 

Bush pediment surface is largely graded to the Blue Point terrace level, inset below the 

Mesa surface (fig. 3), and very few remnants of the Mesa level remain. This indicates that 

the Bush pediment was able to nearly ‗repedimentize‘ the entire surface between ~440 ka 

and 33 ka (Blue Point terrace age).  The surface of the Bush pediment largely consists of 

alluvial anastomosing channels dominated by grus (medium sand) sized sediment, all of 

which are characteristic of the classic pediment form in granitic lithologies (fig. 1). The 

efficiency of the Bush pediment‘s re-pedimentation is not only evident through its surface 

appearance (fig. 1), but also a significantly higher erosion rate (table 2).  

 In contrast, the other studied Usery pediments still retain substantial portions that 

are remnants of the Mesa pediment, graded to the Mesa terrace. Mantle remnants and 

degrading interfluves that have yet to be beveled by pedimentation processes mean that 

these smaller pediments have lower average erosion rates. Figures 19 and 20 suggest 

that the thoroughness of re-pedimentation is a function of the size of pediment drainages 

— whether measured by pediment basin area and pediment basin length. Larger pediment 

systems appear to be more efficient at reestablishing a pediment surface.   

That pediments with different morphometric characteristics respond so differently to the 

base level change speaks to the importance of the usual controls on fluvial systems as 

opposed to some relict climatic condition.  
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Fig. 21.  The upper 95% of the modern Bush pediment grades to the Blue Point strath 

terrace. However, the incision event ~33ka that created the Blue Point terrace resulted in 

a base level drop of the lower 5% of the Bush pediment. A combination of knickpoint 

headward erosion and drainage expansion is beveling the Blue Point strath and associated 

pediment surface.   
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Fig. 22. The pediment-inselberg junction for the Hawes pediment system and the Mesa 

pediment presents a contrast in terms of the degree of gullying.  The upper image 

juxtaposes the uppermost portion of the Hawes pediment drainage area with the piedmont 

angle of the Mesa pediment. The lower image illustrates an abundance of gullying at the 

top of the Hawes system, where the gullying is accessing intensely decayed granite – in 

accordance with prior thinking that water flows down the inselberg and into the former 

pediment mantle (cf. Oberlander, 1989). This contrasts with the more classic piedmont 

angle seen in figure 17.   

 

 Pediments and Base Level.– Base level remains a fundamental control on streams 

(e.g. Schumm 1977, Leopold and Bull 1979, Harvey 2002, Begin, Meyer and Schumm 

1981, Ouimet, Whipple and Granger 2009, Mather 2000b, Mather 2000a, Yoxall 1969), 

including small desert washes (Schick 1974). While fluvial transport occurs across rock 

pediments (Dohrenwend 1994, Strudley et al. 2006) and pediments are a ―fundamental 
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component of a drainage basin‖ (Cooke et al. 1993), no prior empirical research has 

explored rates of change when base level lowers. Certainly, numerical modeling research 

suggests that tors can emerge as base level lowers (Strudley and Murray 2007, Strudley et 

al. 2006), and this is consistent with our observations (fig. 10). The exception is Pewe 

(1978), who argued that the Bush pediment of the Usery Range once graded to the stable 

Mesa level and subsequently responded to base level lowering. Otherwise, base level has 

not received much attention in the pediment literature. Unlike many of the granitic rock 

pediment systems in the Mojave Desert that grade to playa in a closed basin, those in the 

Sonoran Desert largely grade to integrated drainages such as the Gila, Salt, Aqua Fria, 

Verde, and others. Thus, ongoing stream incision throughout the Sonoran Desert has led 

to a lowering of base level of corresponding pediments washes.  

 Figures 4 and 9 present broad aerial views of the eastern McDowell and Usery 

pediments illustrating how knickpoints associated with larger drainages on a pediment 

system retreat faster towards the inselberg than smaller washes. Figure 9 (aerial) and 

figure 10 (ground) illustrate how the knickpoint of Stoneman Wash — the largest 

drainage on the eastern McDowell pediment — retreated most rapidly. As base level falls 

the pediment drainages respond by incising into the current pediment surface due to the 

increase in gradient. This generates a wave of knickpoints that retreat headward into the 

pediment.  
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Small drainages that are tributary to the headward eroding drainages also develop 

knickpoints, which erode back into the channel walls capturing drainages on the relict 

surface and neighboring headward eroding drainages. Figures 23 and 24 illustrates for 

the Usery pediments that smaller washes then respond to incision of the larger pediment 

drainage with knickpoint retreat. 

  

 
Fig. 23.  As the larger pediment drainage responds to lowering base level, its tributaries 

washes respond in turn.  This image shows a tributary on the Twisted Sister pediment 

eroding headwards by means of knickpoint retreat. 
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Fig. 24. The lower Twisted Sister pediment illustrates one site of typical headward 

erosion and knickpoint retreat — incising and elongating the profiles of larger drainages 

on the pediment.  In response, tributaries then erode back in to the remnant pediment 

surface (A and C). Often this results in capture of a drainage flowing on the remnant 

pediment surface (B and D). In (A) the white arrow delineates the master drainage and its 

significant incision, while the red arrow represents the retreat of a tributary drainage, 

which will possibly capture the low gradient drainage in (B). The white and red arrows in 

A correspond to those on the oblique aerial photograph. The yellow dashed line 

represents the drainage being captured in (B).  The blue dashed line is another tributary 

drainage eroding headward from the master drainage (white line). 
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 The Role of Piracy.– Recently published research on pediments developed in ―soft 

basin rocks‖ reveal that incised pediments readjust to a new equilibrium condition based 

on drainage capture processes intrinsic in the fluvial system (Pastor et al. 2012). 

Similarly, drainage piracy appears to be endemic to the Usery pediments, occurring near 

the inselberg (fig. 25), in the middle of a pediment (fig. 26), and nearer to the base level 

of the Salt River (fig. 19 and 27). 

  

 
Fig. 25. Upper drainages of the Usery pediments, in this case the Bush pediment, have 

several examples of a headward retreating knickpoint being at a lower elevation a small 

drainage divide. Such a location appears to be a future elbow of capture. 
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Fig. 26. The largest area of preserved pediment mantle occurs between the Mine and 

Hawes pediments. A rolling topography of incised washes currently drains to a larger 

wash on the Hawes pediment (lower dashed line). However, the upper dashed line 

identifies a wash with a steeper gradient that has pirated the upper sections of this rolling 

topography. 

 

 Two different types of drainage piracy appear to dominate. One is driven by 

steeper-gradient washes (fig. 25-28). Another, less common process, occurs where 

extensive areas off former pediment mantle once covered bodies of rock less resistant to 

grussification. Most of these in the Usery pediments are metamorphics that do not decay 

to grus.  The pediment mantle formed a ramp over these resistant lithologies, leading to 

superimposition (fig. 28). 
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Fig. 27. The lower Twisted Sister pediment once flowed northwestward towards the Salt 

River floodplain (dashed line). An incising drainage‘s knickpoint detached this section of 

wash from its headwaters on the relict pediment surface. 
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Fig. 28. The relict eroding mantle of the Mine pediment served as a covermass on top of 

a relatively resistant body of reddish metamorphic rock.  Several superimposed transverse 

drainages (to the right of TD1, TD2, TD3, and TD4) used the mantle as a ramp. 

Transverse drainage TD1 is in the process of capturing the headwaters of TD2, TD3 and 

TD4, because of its steeper gradient. Also, below the metamorphics, small washes appear 

to be in the middle of a small drainage capture. 

 

 Pediment-Strath Relationship.– Research presented in a previous chapter 

documented the pediment-strath relationship in small granitic rock pediments of South 

Mountain, central Arizona. A similar morphologic relationship occurs along the Salt 

River. Figure 21 reveals the gradational form of the Bush pediment and Blue Point strath 

floodplain. The Blue Point terraces served as the base level for the Bush pediment, until 

incision generated the Blue Point strath terrace (fig. 29). Figure 30 illustrates the same 

process for the Twisted Sister pediment.  
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 This relationship demands understanding of the dynamics of the axial drainage 

that created the fluvial terraces in order to investigate the dynamics of base level control 

on pediment systems. Some researchers have invoked base level as a control in numerical 

models (Strudley and Murray 2007, Strudley et al. 2006). Others have investigated 

―terrace pediments‖ that are defined by their formation in soft, or weak sedimentary 

lithologies (Plakht et al. 2000, Royse and Barsch 1971, Barsch and Royse 1972, Howard 

1942) controlled by a major base level (Cooke et al. 1993). However, little research has 

focused on field sites investigating the role of base level in crystalline lithologies. Figure 

31 generalizes how the pediment-strath relationship along large through-flowing streams 

influences landscape evolution of the adjacent pediment system. 
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Fig. 29. The Usery pediment that once graded to the Mesa strath terrace, regarded to the 

Blue Point (BP) strath terrace. The arrow annotated on the aerial photo identifies the 

strath cross-section in the lower image at Blue Point along the Salt River. 
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Fig. 30. A morphologic relationship observed at South Mountain in small granitic rock 

pediment systems, termed pediment-strath relationship in a previous chapter, also occurs 

along the much larger Salt River. The labeled mantle remnants rest on a pediment that 

graded to the Mesa strath terrace. Incision down to the level of the Blue Point led to a 

readjustment of the pediment to this lowered base level. At this ‗Blue Point time‘, the 

Salt River enlarged its strath floodplain by lateral migration and the Twisted Sister 

pediment graded to the Blue Point strath floodplain. Subsquent incision of the Blue Point 

strath at ~33 ka led to a corresponding incision of small washes. 
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Fig. 31. The base level of drainages flowing through basins containing granitic rock 

pediments exert a major influence on the level of activity on a pediment. A stable base 

level of a strath fosters a relatively flat pediment surface, often hosting chaotically 

arranged washes. A declining base level generates strath stream terraces remnants (TR) 

and causes the pediment to incise, with faster rates of knickpoint retreat occurring along 

washes accessing larger drainage areas. Remnants of the former pediment are best 

preserved in smaller pediment drainages. Figure 1 and figure 29 displays this idealized 

landscape in the context of the Usery pediments. 

 

I speculate that pedimentation processes are inherently tied to strath floodplain 

and strath terrace development. Yoxall (1969) showed that drainages elongate and 

establish a profile near equilibrium lateral migration subsequently commenced in the 

distal channel reach.  Consider figure 21, and note how washes graded to the modern 

flooplain have widened greatly at the expense of the strath terrace remnants. This 
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widening can also be seen in figure 22. Pediment drainages in lower reaches have wider 

channels and begin to develop braided-anastomosing channel networks that are 

recognized morphological characteristics of laterally migrating streams. In a study of a 

very different setting in Taiwan, Hartshorn et al. (2002) noted that ―rare large floods are 

more important in widening the bedrock channel than they are in driving down the base 

level‖ (p. 2038).  Bank-weakening processes may also aid channel widening. I 

hypothesized in a precious chapter that an erosional asymmetry exists, where banks 

decay and erode faster than channels similar to those discussed in nearby ephemeral 

granitic drainages.  

 Strath floodplain development may occur as a result of lateral erosion of the Salt 

River into to pediment surface (fig. 30). A previous chapter discussed similar processes 

in granitic rocks based on the pediment-strath relationship. It is clear that pediments are 

being laterally eroded into in many locations (for example, fig. 9, 28, 30) and that strath 

terraces reside both on (fig. 18) and at the base (fig. 29) of pediments.  I hypothesize that 

the Salt River migrates laterally into the pediment when the river is near graded 

conditions. At a graded or steady state, the Salt River‘s rates of vertical incision is 

inhibited by stability and also by the coarse bedload on the channel floor.  Thus, stream 

power is not focused on the channel bed, but on the channel banks. Since the Salt River is 

a perennial stream with a much larger drainage area then those discussed in Larson and 

Dorn (Submitted), a slightly different mechanisms needs to be invoked to explain this 

process.  
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 I hypothesize that a combination of wetting and drying (e.g. Montgomery 2004) 

of the exposed pediment channel bank, bank undercutting and ground water return flow 

weaken the banks and facilitate lateral erosion, although more research is necessary to 

verify these mechanisms.  

 Relative Role of Base Level and Isostacy.– Isostacy has been hypothesized to play 

a role in pediment development in the Sonoran Desert, where isostatic uplift generates 

exhumation at the pediment-inselberg junction (i.e. Pelletier 2010). The Usery Mountains 

offer new insights into this hypothesis. figures 17 and 32 present two examples where 

the graded Mesa pediment contains proximal incision at the piedmont junction. It is 

distinctly possible that this minor proximal incision could relate to isostatic uplift. 

Alternatively, it is also possible that the proximal incision in figure 17 and 32 could have 

been produced by extreme meteorological events, leading to incision of the inselberg. I 

do not believe it is possible to falsify either isostacy or an extreme storm event. 

  

 
Fig. 32. The northern side of the Usery Mountains grade towards the Mesa River terrace. 

This view of the gun club pediment shows relatively minor proximal incision at the 

inselberg-pediment piedmont junction. 

  

 However, this study reveals that base level causes far greater proximal incision 

than either isostacy or an extreme storm event.  Figures 22 and 25 illustrate that far 
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greater mountain front incision occurs in pediments impacted by the base level declines 

of the Salt River. A broader view of this issue can be seen in figure 33, where the 

proximal incision associated with base level change of the Hawes pediment contrasts the 

Usery inselberg fronted by the Mesa pediment. These examples suggest that uplift and 

exhumation (i.e. Pelletier 2010) is at most a minor pedimentation mechanism — at least 

for the eastern McDowell and Usery pediments impacted by the base level fall of the Salt 

and Verde rivers.  

 

 
Fig. 33. The Mesa pediment grades to the Mesa fluvial terrace. However, knickpoints are 

retreating headward towards the Mesa pediment. Distance from the Salt River has 

delayed its inicision. White arrows in the oblique aerial photograph correspond to the 

small red arrows identifying incising washes. The lower image follows Google Earth 

usage guidelines: [http://www.google.com/permissions/geoguidelines.html]  

  

 Pelletier (2010) notes that the treatment of uplift and base level lowering as a 

value independent of pediment processes (in the Strudley models) does not hold true in 

the Sonoran Desert. He argues that tectonic activity has largely ceased and uplift is now 

the result of flexural-isostasy due to erosional unloading of the mountain mass.  Although 

Pelletier‘s argument about uplift may be correct and may be producing minor proximal 
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incision, base level in this portion of the Basin and Range is often controlled by basin 

axial drainages, that have integrated endorheic basins through which they flow — for 

example, the Salt River, Verde River, Gila River, Agua Fria River, and San Pedro River. 

In these integrated drainages, base level should be considered an extrinsic variable in 

explaining proximal incision. 

 Revisiting the Role of Lateral Stream Migration.– Numerous researchers have 

invoked erosion via lateral migration of pediment streams as a mechanism responsible for 

pediment formation (Gilbert 1877, Johnson 1932, Howard 1942, Warnke 1969, Sharp 

1940, Johnson 1931). Criticism of lateral stream processes stem from Lustig (1969) who 

suggested that drainages would have to debouche the mountain front and swing laterally, 

against gravity, in order to abut the mountain front to explain the characteristic piedmont 

angle (Oberlander 1989). This opposition continues into recent literature where lateral 

stream migration is largely ignored (Pelletier 2010, Strudley et al. 2006).  However, 

Parsons and Abrahams (1984) discovered that 3 to 51 percent of the piedmont junction at 

classic Mojave Desert pediments are being influenced by channel processes, while the 

remainder of the inselberg front results from hillslope processes. Howard (1942) and 

Johnson (1931, 1932) did explain that the piedmont junction evolution may be modified 

by rillwash, sheetwash, and rainsplash. It has also been suggested that weathering at the 

piedmont junction may be important (i.e. Twidale, 1968).  Thus, these works collectively 

suggest lateral stream erosion should not be discarded from future modeling and should 

not be treated as mutual exclusive to any other processes acting on the piedmont junction.  
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Fig. 34. Washes along the northern front of the Usery Mountains, at the western end of 

the Hawes pediment, illustrate flowing somewhat parallel to the mountain front. Washes 

to the upper right of the double arrows exemplify this tendency. The mountain front 

parallel orientation is being controlled by the lowered base level locking these drainages 

in place. 

 

 Based on observations made at the Usery pediments (for example, fig. 34), I 

support the hypothesis that lateral erosion can influence repedimentation. Base level 

induced knickpoint migration in these systems leads to narrowly incised channels that 

retreat headward in an attempt to establish stable longitudinal profiles. Experimental 

modeling shows that streams will continue to grow headward as a result of base level 

lowering until an equilibrium profile can be established (Yoxall 1969, Leopold and others 

1964). Elongation of the long profile will retreat to the mountain front increasing local 

slope and enhancing hillslope processes and embayment growth. This would increase 

sinuosity of the mountain front where larger pediment drainages would command the 

largest drainage areas and thus, the largest embayments. Once a stream approaches 
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equilibrium conditions headward erosion ceases and lateral erosion begins downstream 

(Yoxall 1969), as vertical incision is no longer the focus of stream power at stable base 

level.  

 In the actively adjusting Usery pediments the widest portions and most significant 

areas of re-pedimentation often occur where: 1) the largest pediment drainages coalesce 

(fig. 35) and/or 2) in the far distal reach of the largest drainages (fig. 36). Wider areas 

occur Immediately down stream drainage convergence. This suggests a positive 

relationship between drainage area and the efficiency of lateral erosion. Progressive 

capture processes and the increased elongation of the drainages may supply sufficient 

drainage area allowing for adequate stream power to erode laterally in the distal portion 

of regrading pediments. Research presented in an earlier chapter on South Mountain  

shows that an erosional asymmetry, based on differential weathering characteristics 

between the channel bed and banks, can facilitate lateral erosion in granitic rocks. It is 

possible that a similar phenomenon facilitates lateral erosion in the distal portion of these 

pediments. 
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Fig. 35. Locations immediately downstream of where large pediment drainages 

convergence often have significantly wider channels.  The larger in drainage area leads to 

higher stream power and more efficient lateral erosion, that in turn results in planation of 

the pediment.  Two different views of the same site offer an example on the Twisted 

Sister pediment. Red arrows point to the same location.   
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Fig. 36. In this view of the upper end of the Mine pediment, the black arrows identify 

locations where significantly wider and planar channel reaches are actively responding to 

base level lowering.  These black arrows reside in areas where the largest (in terms of 

drainage area) pediment drainages flow.  Direct evidence of cut banks and anastomosing 

channel reaches are observed in these areas.  The red dotted line outlines the boundary of 

incised and actively adjusting portions of the Mine Pediment.  

 

CONCLUSIONS 

 The majority of research on granitic rock pediments has focused on understanding 

the piedmont junction and degradation of the mountain mass. Very little research, other 

than numerical modeling, has focused on the quantitative and qualitative aspects of base 

level change on granitic rock pediments.  
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 The granitic rock pediments of the Usery and McDowell Mountains show a strong 

linkage to base level fluctuations.  Pediments that have not yet experienced base level 

impacts are still graded to older terrace and basin fill surfaces, while pediments proximal 

to the Salt River have experienced varying degrees of incision and re-pedimentation.  The 

degree of pediment adjustment (via erosion rate) correlates directly to the pediment area 

and pediment length.  This suggests that drainage area may control the efficiency of 

pedimentation processes. 

 Pediments regrade, in the study site, through differential headward propagation of 

knickpoints.  Small pediment drainages are controlled by larger master drainages that 

incise more efficiently and become the local base level control on the pediment. Tributary 

drainages will erode headward into the relict pediment surface and capture other 

drainages upstream or neighboring headward eroding drainages.  This results in an 

overall widening of a planar pediment surface and a lowering of the relict surface to the 

master drainage. 

  Lateral migration and erosion by the distal portions of headward eroding streams 

facilitate pedimentation.  The far distal reaches of pediment drainages have wider 

channels that begin to take an anastomosing form. This also occurs where the largest 

pediment drianages coalesce. Recent research (Larson and Dorn, Submitted) in nearby 

ephemeral drainages shows that an erosional asymmetry can exist facilitating lateral 

erosion in granitic rocks.  Similar conditions exist in this study suggesting lateral 

migration may be responsible for the efficiency of pedimentation in the distal pediment 

reach. 
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 An earlier chapter proposed the pediment-strath relationship. This relationship 

suggests pediments grade to fluvial strath surfaces within the Sonoran Desert.  These 

pediments contain the classic weathered mantle discussed in pediment literature.  The 

weathered mantle is exposed in the channel walls of the main basin axial stream, which 

creates a less resistant bank that facilitates lateral erosion. In the case of the Salt River, 

the river laterally erodes at the expense of the bounding pediments. Since the Salt River is 

perennial and a significantly larger drainage, periodic wetting and drying of the channel 

walls, undercutting of the exposed pediment, and ground water return flow may further 

enhance the weakness of the channel banks and facilitate lateral erosion. Many of the 

older terrace remnants now lay upon active pediment surfaces. This morphological 

relationship suggests that previous straths were carved upon the pediment surface. I 

suggest that the strath terraces of the Salt River were carved at the expense of these 

pediments and subsequently abandoned when the Salt River incised, similar to the model 

proposed in a previous chapter for small ephemeral drainages at South Mountain.  
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Chapter 5 

 

STEWART MOUNTAIN TERRACE: A NEW SALT RIVER TERRACE WITH 

IMPLICATIONS FOR LANDSCAPE EVOLUTION OF THE LOWER SALT RIVER 

VALLEY, ARIZONA.  

 

 

ABSTRACT.  Stream terraces of the Salt River form the interpretive backbone of 

Plio-Pleistocene landscape evolution of central Arizona, because they represent the 

base level of all tributary streams.  This paper presents a new addition to T.L. 

Péwé’s Salt River Terrace sequence (in decreasing topographic position and age: 

Sawik, Mesa, Blue Point, and Lehi) that has been unrefined for the last thirty years.  

The existence of an older, higher terrace was predicted by research suggesting that 

the lower Salt River originated by lake overflow from an ancestral Pliocene lake in 

the Tonto Basin.  Field reconnaissance, aerial photo interpretation, and 

sedimentological analysis revealed this terrace on the north side of the Salt River, 

named here the Stewart Mountain Terrace (SMT).  Where exposed, the fluvial 

sediments of SMT overlay Tertiary basin fill unconformably. SMT sediments are 

characterized by ~50 m thick fluvial gravels found more than 70 meters above 

remnants of the Sawik Terrace. Although the gravels are distinctly Salt River in 

origin, Stewart Mountain gravels differ from the lower and younger Salt River 

Terraces. The clast sizes are much larger on average and host a significantly 

different lithology.  Because of these differences the SMT has profound implications 
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for the understanding of regional drainage reorganization after basin and range 

extension. The existence of this terrace and its distinct gravels are consistent with, 

but do not prove, a lake overflow mechanism for the initiation of through flowing 

drainage in the Salt River valley.   

INTRODUCTION 

Fluvial or stream terraces are remnants of ancient floodplains that rest 

topographically above modern floodplains to create relatively flat bench-like landforms.  

The former floodplain surface, or terrace tread, represents a period of relative stability 

within the fluvial system. The abandonment of that surface is represented by incision into 

the former floodplain.  A stream can incise as the result of any combination of several 

processes: 1) a drop in base level (lowest point in a fluvial system) to which all the 

drainages respond, 2) an increase in discharge generating an increase capacity for stream 

erosion, 3) tectonic and/or isostatic uplift in the headwaters that increase stream gradient 

resulting in incision, and/or 4) a reduction in sediment load into the stream.  Because 

terraces represent a shift from periods of stability and floodplain formation to a period of 

instability and steam incision, each terrace and incision event records key geomorphic 

and geo-chronologic evidence of how the fluvial landscape has changed over time 

(Leopold and Bull, 1979; Pazzaglia et. al 1998; Ritter et. al 2002; Schumm, 1973). 

Recognizing the significance of stream terraces, Professor Troy L. Péwé and his 

students at Arizona State University mapped and analyzed Plio-Pleistocene stream 

terraces along the Salt River of central Arizona in the 1970s (fig. 1; Kokalis, 1971; Pope, 

1974; Péwé, 1978).  They documented four former floodplains that were successively 
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abandoned each time the Salt River incised (fig. 2). The oldest three (Sawik, Mesa, and 

Blue Point) are strath stream terraces. The term strath connotes that a river incised in its 

floodplain and into the underlying bedrock, leaving behind only a few meters of alluvial 

gravel cover.  The Lehi Terrace, is a fill terrace, reflecting the Salt River‘s incision into 

its own fluvial deposits. 

 

Fig. 1.  Digital elevation model of Maricopa County, Central Arizona and the location of 

the Stewart Mountain Terrace study reach within. 
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Little data exist as to when the Salt River eroded into its former floodplains 

leaving behind the sequence of stream terraces. Campbell (1999) analyzed the 

accumulation of cosmogenic 
36

Cl in multiple cobbles from one Sawik Terrace location 

near the TRW plant in Mesa (N 33.49030 W 111.70840). Campbell (1999) found that 

cobbles from the Sawik Terrace are close to or at secular equilibrium.  Thus, the sampled 

strath Sawik Terrace exposure was eroded into bedrock and then abandoned more than 

1.2 million years ago. Péwé (personal communication) thought the Sawik was as old as 

2.2 Ma because of its apparent correlation with a terrace surface on the Gila River that is 

overlain by a 2.2 Ma basalt flow. More dating is needed to determine the precise age of 

the Sawik Terrace.  The Sawik-age course of the Salt River did not mirror its modern day 

course, but instead flowed on the southern side of the South Mountains, Phoenix, AZ 

(Hoyos-Patino, 1985; Arrowsmith, 2001; Block, 2007). 

 

 
Fig. 2. Diagrammatic profile view of terraces of the lower Salt River Valley, after Péwé 

(1978).  This depicts the previously known sequence of four paired terraces within the 

Salt River Valley. 

 

 The Mesa River Terrace is the most extensive of all four known terraces. It forms 

a continuous surface from west of the Arizona State University‘s Campus in Tempe, AZ, 

eastward into the city of Mesa, with more sporadic remnants continuing up the Salt River 

Valley (Péwé, 1978; fig. 3).  The Mesa River Terrace represents a period of base level 

stability in the Salt River system after incision into the Sawik Terrace.  As such, 
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numerous pediments and local tributary streams were graded to this surface (Péwé, 

1978).  Campbell (1999) analyzed 
36

Cl in multiple cobbles from a road cut along the 

Bush Highway (Marked A on fig. 5) and calculated a minimum exposure age of 439± 63 

thousand years for the Mesa Terrace gravels.  This half-million year estimate is roughly 

consistent with the Stage III-IV soil carbonate development observed at multiple 

locations in Mesa Terrace soils (Péwé, 1978).   

Fig. 3. A physiographic diagram produced by the Salt River Project, on which Péwé 

(1978) indicated the three strath terraces of Sawik, Mesa, and Blue Point along the Salt 

River. Two terraces were drawn for the Verde River. Note that Péwé pinches out the Blue 

Point terrace in east Mesa, Arizona. Péwé also used this figure to indicate his assumption 

of regional correlation of the terraces in each of the tributary watersheds of the Salt-Gila 

system, central Arizona. 

 

Radiocarbon dating of pedogenic carbonate is notoriously difficult and fraught 

with uncertainties (Callen and others, 1983; Wang et al., 1994; Stadelman, 1994), but a 

radiocarbon age on the innermost carbonate rind around Blue Point terrace cobbles 

yielded a calendar age of 33,100 ± 380 years (14C age of 30,980±290) (Beta 51401).  

This age is roughly consistent with the Stage I soil carbonate development seen in Blue 

Point soils (Péwé, 1978). 
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Fig. 4. Southwest-looking photograph taken from approximately 1860‘on the north side 

of the Salt River (Marked as B on fig. 5), looking down at remnants of the Sawik and 

Mesa terraces on the south side of the River.  The newly recognized terrace is identifiable 

by the rounded gravels seen here. Rounded gravels reflect fluvial transport and 

subsequent deposition of alluvium, preserved as the oldest and highest stream terrace of 

the Salt River. 

 

The Lehi Terrace is just above the modern floodplain and has been historically 

flooded (Péwé, 1978). Unlike the other terraces, the Lehi was not eroded into bedrock 

and consists of alluvium deposited by the Salt River floods.  The presence of an early 

Holocene turtle shell, reported by Péwé (1978) and Archer (1989) suggests the Lehi 

Terrace is approximately 5-10 thousand years old.  Lehi Terrace fill represents a long 

sequence of Holocene flooding deposits confined by the higher Blue Point Terrace 

remnants.  
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METHODS: A DEDUCTIVE APPROACH 

 Transverse drainages are streams that cut across mountain ranges or significant 

topographic barriers to flow.  A transverse drainage represents a dramatic change in the 

fluvial system that can be attributed to only four possible processes: antecedence, 

superimposition, piracy, and overflow (Douglass et al., 2009a).  Antecedent streams drain 

across and erode a channel into a bedrock structure that uplifts beneath the stream, thus 

the stream is older than the uplifted structure.  Superimposed streams originate flowing 

atop a covermass of easily erodible material. As the stream incises into the covermass it 

is essentially locked in place by the underlying bedrock structure. Pirated streams are 

captured by another drainage that has a steeper stream gradient. Streams that result from 

lake overflow are originally ponded in endoheic, or interior-drained, basins that 

eventually overspill at the sill, or lowest point of the basin rim, eroding a canyon across 

the bedrock structure downstream of overflow apex.  

 The Salt River flows across several mountain ranges and topographic barriers, 

hence it contains many transverse sections.  The most dramatic transverse section starts at 

the location of today‘s Roosevelt Dam, where the Salt River tranverses the Mazatzal 

Mountains (Fig 3). Recent research developed a new methodology to analyze the origin 

of transverse drainages.  This research suggests the Salt River‘s presence downstream of 

today‘s Roosevelt Dam is likely due to overflow of an ancestral Lake Roosevelt that 

existed in the Tonto Basin (see Fig. 3; Douglass et al., 2009a; Douglass et al., 2009b: Pp. 

49-51). This conclusion was based on matching geological and geomorphological 

evidence against objective criteria developed through physical modeling.   
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 As suggested in Douglass et al. (2009b; p. 49-51), a lake overflow event would 

have distributed Salt River gravel downstream of the overflow apex into basins that 

formerly lacked deposits from this major river.  Concomitantly, Reynolds and Bartlett‘s 

(2002) examination of subsurface sediment near Sky Harbor Airport, Phoenix, AZ, 

records the sudden arrival of ―Salt River Gravels‖ which suggests the possibility of an 

overflow origin to the through flowing Salt River (cf. Reynolds and Bartlett, 2002, their 

figure 19).   

 However, a key piece of evidence for a lake-overflow origin of the lower Salt 

River was missing. A lake overflow event should have produced large gravel deposits on 

top of an ancestral landscape that would have lacked a major through-flowing drainage 

prior to this overflow event. This would be analogous to events that occurred during the 

birth of the lower Colorado River (House et al., 2005). The ancestral landscape of the 

area now occupied by the Salt River Valley consisted mostly of fanglomerate deposits 

derived from the Mazatzal and other local mountain ranges.  These fanglomerates were 

previously mapped as ―Valley Fill Sediments‖ (Pope, 1974; Péwé, 1978) just north of the 

Salt River (Fig. 3). These were similarly mapped as ―younger sedimentary basin-fill 

deposits‖ of late Tertiary age by Skotnicki and Leighty (1997). Mazatzal Mountains-

derived valley-fill fanglomerate sediments can be seen in cliffs along the north side of the 

Salt River. 

 The methodological approached here practiced deduction. The first step involved 

field reconnaissance investigating sites for the predicted overflow gravels.  Once the 

predicted gravels were identified, comprehensive mapping of all locations of previously 

unidentified Salt River gravels was conducted.  Also, particle sizes were measured and 
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compared between the predicted gravels and the gravels of the younger Salt River 

terraces along randomly-located line transects. This data was then placed in the context of 

prior research to begin to reinterpret the drainage evolution of the Salt River. 

RESULTS 

  The largest deposit of previously unmapped Salt River gravels occurs at 

the topographically highest exposures of previously mapped ―valley fill sediment‖. The 

highest gravels are found at 1870‘ on the north side of the Salt River (Fig. 5). Clasts 

consist of gravel, cobbles and boulders with the largest boulders exceeding 2 meters in 

the intermediate axis— significantly larger than those on the lower Salt River Terraces.  

Rock types include granite, quartzite, Proterozoic meta-conglomerate, basalt(s), schist, 

and other lithologies found in the Salt River basin.  These gravels occur approximately 60 

m above the Sawik Terrace on the south side of the Salt River (Fig. 4).  

 This deposit, herein called the Stewart Mountain terrace (SMT), is named after 

the nearby prominent bedrock mountain that may have played a role in preservation of 

the terrace remnants. The same gravel deposit exists on top of the valley fill on preserved 

terraces for about 6 kilometers along the north side of the Salt River (Fig. 5).   
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Fig. 5. Map of the locations of Stewart Mountain terrace remnants (SM) on the north side 

of the Salt River, and of rounded quartzite and basalt gravels on the south side of the Salt 

River — all previously unrecognized.  The dashed line indicates the likely boundary of 

the Stewart Mountain terrace on the Fort McDowell Indian Reservation, as inferred by 

topography, examination of aerial photographs and binocular examination.  Location A 

marks a 
36

Cl date on the Mesa Terrace.  Location B marks the location of fig. 4. The base 

map consists mostly of figures modified from Péwé (1978) showing the locations of 

Sawik (S), Mesa (M) and Blue Point Terrace (BPT) remnants. 

  

 Currently, the age of SMT is unknown.  Its topographic prominence in relation to 

the other terraces (fig. 6 and 7) indicates that it is the oldest in the Salt River terrace 

sequence. One gully exposure reveals a Stage IV+ calcrete underneath the terrace gravels, 

but the presence of a calcrete duricrust is not diagnostic of any particular age beyond a 

half-million years. Resolving its age will require cosmogenic nuclide analyses.  

 The thickness of the SMT gravels is difficult to determine because of the lack of a 

clean exposure at the base of the deposit.  The best insight comes from the easternmost 

terrace remnant, because gravels are found directly on top of granite bedrock and on top 
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of >3 meter diameter granite core stones that could potentially have been moved by 

flooding.  This contact appears to be about 50 meters underneath the top of the gravels.  

 
Fig. 6. Generalized profile of the revised Salt River terrace sequence, from South to 

North, approximately where Usery Pass Rd. meets the Bush Highway.  The lower 

boundary of the Stewart Mountain terrace is a rough estimate. The Lehi terrace does not 

exist this far east, so the indicated elevation is where Péwé (1978) mapped this inset fill 

terrace a few kilometers to the west. 

 

Péwé (1978) and Kokalis (1971) concluded that the basic rock types and size 

distributions of the Sawik, Mesa and Blue Point terrace gravels were virtually 

indistinguishable.  In contrast, the SMT gravels — while clearly Salt River in provenance 

— are much larger (Table 1).  In addition, the lithologies of the SMT gravels are 

substantially different from the younger terrace gravels.  Kokalis (1971) undertook an 

extensive study of clast lithology on the different terraces of the Salt River in the area of 

Figure 5, where Kokalis examined hundreds of clasts. A video of the collection process 

has been archived: 

(http://www.azgs.az.gov/VISUALIZE/VIDEO/Pewe%20Collection/pewe2.mp4). 
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Figure 7.  Two topographic profiles across the new terrace sequence.  The profiles have 
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been exaggerated 10x and were created in ArcMap using high-resolution DEM elevation. 

 

In addition, Kokalis also examined the composition of clasts in a location he 

identified as valley fill — but we identify as a remnant of SMT.  We are perplexed why 

Kokalis did not correctly identify this geomorphic feature as belonging to the Salt River 

terrace sequence. Still, it is significant that the composition of the Sawik and Stewart 

Mountain terraces are distinct and significantly different from the younger surfaces 

(Table 1 and Fig. 8). 

TABLE 1 

Particle sizes and percent lithology of randomly sampled clasts on different Salt River 

Terrace. Particle sizes were measured as a part of this study, but the lithology data 

derives from Kokalis (1971). 

 

 

Particle sizes  Blue Point Mesa Sawik 

Stewart 

Mountain 

Number of clasts  314 354 360 160 

Average (cm)  3.5 3.7 4.9 77.1 

Median (cm)  3 3 3 66.5 

Largest (cm)  22 21 34 258 

Rock Type Lehi Blue Point Mesa Sawik 

Stewart 

Mountain 

Andesite 5 1 4 1 4 

Arkose sandstone 3 4 3 15 3 

Basalt 9 8 3 0 3 

Dacite 3 3 2 6 1 

Diabase, vein quartz 

and others 13 12 8 1 2 

Granite 9 12 10 0 2 

Meta-basalt 3 2 1 0 3 

Meta-sedimentary 13 14 13 3 6 

Orthoquartzite 14 18 24 43 21 

Quartz monzonite 5 3 4 1 9 

Rhyolite 6 8 8 10 40 



177 

Siltstone and shale 10 7 10 13 3 

Subarkose sandstone 8 6 10 7 3 

 

 

 Because river terraces can have pairs on the other side of a valley, we investigated 

the reach between 1600‘ and 1900‘parallelling SMT on the south side of the Salt River 

and found only one location that contains anomalous quartzite and basalt cobbles. This 

location lies between 1600‘ and 1820‘ just west of the Usery Pass Road (labeled basalt 

and quartzite gravels; Fig. 5 and Fig. 7). These clasts do not form a river terrace, but 

represent the base of an anomalous old gravel deposit resting on granodiorite bedrock.   

 
Fig. 8. The Stewart Mountain terrace hosts an abundance of boulders with intermediate 

axes larger than 2 meters in diameter.  In contrast, it is difficult to find boulders with the 

axis more than a half-meter in diameter on the lower Salt River terraces. 
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DISCUSSION 

The general model (e.g., Péwé, 1978 and personal communication) for the past 

thirty years has been that the lithology, and hence source areas, of the Salt River terrace 

gravels has remained relatively similar.  This model also suggested that the slope of the 

terraces, which decreases from Sawik to Lehi, reflects epeirogenic uplift of the transition 

zone in Arizona and possibly subsidence of the Phoenix Basin, resulting in the passive 

rotation of the terrace surfaces over time (fig. 9).  

 
Fig. 9.  Model of neotectonic uplift resulting in present terrace slope and morphology 

along the Salt River, based on ideas presented by Péwé (1978, personal communication). 

This model would produce similar rock types for each terrace, since the source areas 

would be similar. This model also reflects the characteristic change in slope that can be 

observed in Salt River terraces. As suggested, uplift of the transition zone and subsequent 

subsidence of the Phoenix Basin may have allowed for the terraces to passively rotate 

establishing their present change in slopes.  This diagram is modified from Block (2007). 
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Following Péwé (1978, personal communication), available data are consistent 

with similar source areas for the Lehi, Blue Point, and Mesa terrace gravels. However, 

the Sawik and SMT gravels appear to have somewhat different lithologies, a finding that 

indicates a shift in the provenance of Salt River gravels (table 1). A full understanding of 

the potential source areas of these gravels is a project beyond the scope of this research; 

however, at this point, the substantial change in observed gravel rock types justifies 

reinvestigating the Salt River terraces fig. 9.  

The observed change in terrace slope over time (Péwé, 1978, personal 

communication; fig. 3) and the change of rock types would be consistent with an 

alternative explanation for the older terraces having progressively steeper longitudinal 

profiles.  Enlarging the drainage area of the Salt River would alter its longitudinal profile 

(fig. 10). At any given location along the Salt River, the gradient would be lowered every 

time the Salt River‘s drainage area increased.  Headward extension of the Salt River 

could be relatively rapid, through the initiation of through-flowing drainage by lake 

overflow (e.g. Douglass et al., 2009a, 2009b).  Alternatively, headward extension of the 

drainage up into the Mogollon Rim could also be gradual.  Either process of headward 

extension could produce the observed change in lithology and progressively increasing 

slopes of older terraces. 
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Fig. 10.  Enlargement of the Salt River‘s drainage area generates increasingly steep 

slopes of older Salt River Terraces through headward extension of the Salt River‘s long 

profile.  Extension of the long profile would result in a decrease in local slope at any 

given location.  In this conceptual model, the initiation of through-flowing drainage 

would lengthen the long profile of the Salt River over time. 

 

The model, tentatively favored here, for initiation/localization of through flowing 

drainage of the Salt River and the occurrence of the SMT is the overflow hypothesis of 

Douglass et al. (2009a, 2009b).  Further supporting this model is previous research 

suggesting lacustrine sediments from a large Pliocene lake exist in the Tonto Basin 

upstream from the SMT (Peirce, 1984).  Using the analog of the inception of the Lower 

Colorado River (House et al., 2005), lake overflow first results in extensive erosion of the 

preexisting fanglomerate fill, followed by river aggradation (possibly the SMT gravels) 

and finally punctuated by dramatic incision until a new base level is reached. The meter-

plus diameter gravels of the SMT and underlying calcrete have formed an effective 

caprock that has preserved the underlying valley-fill sediments. The presence of these 
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large erosion resistant gravels and calcrete could potentially explain the prominent 

topographic ridge that extends westward from the granite bedrock of Stewart Mountain 

that separates the lower Salt and lower Verde River valleys (fig. 11).  

Because the SMT gravels represent the highest known position of the Salt River, a 

corollary question is how much fanglomerate eroded from the basin before the SMT 

gravels were deposited. The highest recorded position of basin-fill deposits come from 

Skotnicki and Leighty (1997, p. 11) who write: 

"Projection of the basin-fill deposits on the north side of the [Salt] river southward 

suggests that the piedmont south of the river was also once buried by basin-fill deposits.  

South of the map area in the Apache Junction quadrangle, a high remnant of these 

deposits rests on the northeast side of Pass Mountain about 2400 feet (T2N, R7E, S25). 

This means that at least 1000 feet of basin-fill sediments were removed prior to 

deposition of the Sawik terrace -- prior to about the latest Pliocene."  

 We have not yet been able to confirm this observation, but there is only about 161 

m between the highest SMT position and this remnant.  Thus, the overflow event would 

have had to remove about 161 m of prior valley fill before the onset of aggradation and 

gravel deposition.  Such initial incision is an expectation of the lake overflow process 

(e.g. House et al., 2005). 

Lake area and height of retreating knickpoints determine the severity of the initial 

overflow event.  Initially the overflow water only transports sediment sourced 

downstream from the lake, as upstream sediment is trapped in an endorheic basin. If an 

overflow event occurred it would start out by eroding a channel in the pre-existing rocks, 

because the pre-existing lake would have to be drained completely before a through-



182 

flowing stream could transport up-basin gravels.  We speculate that erosion of these pre-

existing rocks could possibly explain the substantially different lithology of SMT gravels. 

Floodwaters rapidly incising into pre-existing bedrock and channels would accelerate 

removal of valley fill sediment.   

 
Fig. 11. East-looking Google Earth view of the Salt River Terraces mapped in Figure 4. 

The Stewart Mountain gravels rest on top of a prominent ridge. The image is used 

following permission guidelines for Google Earth. 

[http://www.google.com/permissions/geoguidelines.html] 
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Following the hypothesized overflow event, accumulated sediment stored in the 

previously closed Tonto Basin would mobilize along the newly lengthened Salt River.  

The high sediment discharge forces the river to rapidly aggrade in order to steepen the 

channel and increase the river‘s slope. The Stewart Mountain gravels could represent this 

aggradational event.  The steeper slope supplies the shear stress or stream power 

necessary to move the large influx of sediment (Ritter, 2002; Bagnold, 1973; Bagnold, 

1977).  As the amount of stored sediment supplied to the Salt River wanes, the river no 

longer requires the steeper slope and will then more gradually establish a shallower 

gradient approaching a graded state through periodic incision (Schumm, 1965; Schumm, 

1977).    

We speculate that the Mesa Terrace may represent this return toward equilibrium, 

and we speculate that the Sawik gravels could represent the Salt River‘s slow adjustment 

towards this equilibrium.  It is also possible that SMT gravels did not herald the 

breaching of the Tonto Basin and that the Stewart Mountain Terrace similarly represents 

the Salt River‘s adjustment towards equilibrium however the existence of the SMT is 

strongly consistent with the overflow hypothesis, but neither is proof of the other. 

CONCLUSION 

 Stream terrace sequences provide vital evidence in studies of the evolution of 

drainage basins. The newly discovered Stewart Mountain Terrace, introduced here, 

represents a significant addition to scholarship on the Salt River‘s drainage. The unique 

position, lithology, and particle sizes of Stewart Mountain gravels suggest that the 
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previous neotectonic uplift model proposed by Péwé (1978) and modified by Block 

(2007) may require revision. The existence of the Stewart Mountain terrace reveals a 

need to reinterpret the Plio-Pleistocene evolution of Salt River fluvial system in central 

Arizona. Although chronometric studies will be needed to analyze the newly discovered 

sequence of events in the landscape evolution of the Salt River Valley, we note that lake 

overflow model proposed by Douglas et al. (2009a, 2009b) predicted the occurrence of a 

feature such as the Stewart Mountain Terrace. While available data are consistent with 

lake overflow as the process responsible for initiating the through-flowing Salt River 

fluvial system, many questions surrounding a lake-overflow mechanism remain to be 

answered.  
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Chapter 6 

CONCLUSION 

“the study of fluvial terraces of small watersheds in the arid zone seems 

to have been neglected.” (Schick 1974) 

 

 Summary.- This dissertation assembles four field-based case studies of drainage 

basins containing fluvial terraces within the Sonoran Desert, south-central Arizona.  Each 

studies purpose contributes insights that perhaps will help lead to a broader conceptual 

model regarding the formation and distribution of fluvial terraces in arid environments.  

These studies were conducted at varied drainage basin scales, over different lithologies, 

and in hydrologically different fluvial systems.  

The “alluvial fan-cut terrace: A review and criteria to differentiate from fluvial 

terraces,” was the first study in this work.  This research was conducted to determine the 

relationship between fluvial terraces and alluvial fans in a single basin.  Alluvial fans and 

fluvial terraces often form within a single drainage basin within the Basin and Range.  

These forms can often be misinterpreted from one another toward the axis of a drainage 

basin, where basin axial drainage incision can leads to incision into a floodplain or into 

distal alluvial fan deposits graded toward the basin center.  The confusion that can result 

can also be compounded by the lack of a single definition for the incised fan unit.  In this 

study, it is purposed that the term fan-cut terrace be used and a criteria is established for 

future researcher to differentiate this form from fluvial terraces. This criteria was then 

applied to a case study in the Bursera Valley of South Mountain, Arizona, and using 

these criteria a fan-cut surface was discovered as well as isolated inset fluvial terrace 

remnants. 
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 The second study, “Strath development in small arid watersheds: Case study of 

South Mountain, Sonoran Desert, Arizona,” was conducted to shed light on the nature 

of small drainage basins that contained abundant strath terrace remnant surfaces.  Within 

these drainages two mechanisms are responsible for strath development: piracy and strath 

cut at the expense of weathered bounding pediments. Strath grow at the expense of 

pediments due to an asymmetry of erosion with greater weathering concentrated on the 

channel banks, compared to channel bottoms. This process was observed in several flash 

floods. Aggradational piracy along the margins of the range also can result in strath 

formation. Piracy leads to an increase in drainage area and regrading of the stream’s 

longitudinal profile. The increased drainage area accessed during long profile adjustment 

forms a bedrock strath immediately downstream of the capture point, while post-piracy 

adjustments form straths upstream of the capture. This is later followed by incision 

abandoning the strath as a terrace. The timing of this incision is discussed in Chapter 3 

and the various incision events are possibly tied to climate and base level fluctuations.

 The third study conducted, “The control of base level on pediment processes, a 

case study from the lower Salt River Valley, central Arizona,” investigated the 

interaction of pediments, terraces and the major basin drainage (i.e. the Salt River) to see 

determine how piedmont surfaces respond to fluctuations in base level, indicated by 

fluvial terraces. The scholarly research on granitic rock pediments includes very little 

discussion on the role base level fluctuations.  This study investigates the controls of base 

level on granitic rock pediments flanking inselberg mountain ranges in south-central, 

Arizona. When base level is lowered, terrace incision occurs and pediments respond by 
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regrading to strath floodplains of the Salt and Verde rivers, this morphologic relationship 

is termed the pediment-strath relationship.  Beginning with headward knickpoint 

regression, pediments regrade through different mechanisms working in concert: 

headward erosion; stream piracy; and lateral migration. The effectiveness of re-

pedimentation is tied to the size and length of the pediments. Stream piracy processes 

resulting from headward eroding drainages work to increase drainage area of the 

capturing stream and lowering the relict pediment surface over time. Finally, lateral 

erosion occurs predominantly in the distal reach of the master pediment drainages when 

drainage area is sufficient.  It also occurs when large pediment drainages converge, also 

suggesting a drainage area relationship facilitating lateral erosion.  

 The last study, “Stewart Mountain Terrace: A new Salt River terrace with 

implications for landscape evolution of the lower Salt River valley, Arizona, “ was 

conducted in order to investigate the nature of integration processes and fill terraces 

within this regions. Troy Pewe’s work on the Salt River established the backbone of 

this research. This study builds upon his classic terrace sequence.  A topographically 

higher, sedimentologically different terrace was discovered along the lower Salt River.  It 

is hypothesized herein that initial integration and overflow of the Salt River from the 

Tonto Basin is reflected in this Stewart Mountain Terrace (SMT). SMT sediments are 

characterized by ~50 m thick fluvial gravels found more than 70 meters above remnants 

of the Sawik terrace. Because of sedimentological difference of the SMT, the SMT  has 

profound implications for the understanding of regional drainage reorganization after 

basin and range extension. The existence of this terrace and its distinct gravels are 
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consistent with, but do not prove, a lake overflow mechanism for the initiation of through 

flowing drainage in the Salt River valley.   

 Future Research.- South-central Arizona is a region of the Basin and Range 

physiographic province with particular significance, because it represents the future of 

the province that has not yet experienced drainage integration. The case studies within 

this dissertation, thus, provide a conceptual framework for fluvial terrace development 

and drainage basin evolution within this region.  To verify whether or not these 

phenomenon are Basin and Range wide processes in reaction to basin evolution and 

responsible for fluvial terrace development, future research will be conducted on 

integrated drainages (i.e. Verde River and Mojave River) to see if similar processes can 

be identified and described.   

Using the Verde River as an example, Mapping strath terraces will further assess of the 

validity of the pediment-strath relationship using aerial photography, differentially 

corrected global positioning systems, and remote sensing techniques. Cosmogenic 

nuclide analyses on terrace deposits and on incised pediment surfaces will establish a 

geochronology of these processes.  Ground penetrating radar will examine the subsurface 

sedimentological contacts within the Verde Basin.  Detrital zircons will be applied to the 

terraces within the Verde River to understand the nature of the integration and post-

integration deposits.  Further analysis of pediments bounding the Verde River will 

facilitate a further understand the dynamics of pediment surfaces.  

In all, the research herein combined with the proposed future work should paint a 

picture for how drainage basins evolve post-integration within the Basin and Range. The 
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far reaching goal is to develop a detailed hypothesis that fully describes these processes, 

along with numerical and physical models to test this hypothesis. 

Intellectual Merit.- Ultimately, this dissertation advances theoretical 

understanding about four fundamental topics within geomorphology. First, the nature of 

fill terraces discussed in Chapter 4 (Lousley Hills) and Chapter 5 (Stewart Mountain 

terrace) in this region appear to be tied to process and recording processes of lake 

overflow integrating drainages in the Basin and Range.  Although the hypothesis 

proposed by House et al. (2005) is for a much different river system, the lower Colorado, 

I hypothesize that lake overflow and integration is the key mechanism by which 

drainages integrate in the Basin and Range province.  

Hypotheses developed in this work on strath terraces represent the second major 

contribution to geomorphology. Asher Schick (1974) suggested that a theoretical 

understanding of arid stream terraces in small drainage basins is largely lacking . 

Montgomery (2004) stated that the understanding of strath terraces is far inferior to that 

of their fill terrace counterparts. Therefore, I investigated strath terraces at two varied 

scales of drainage size in this dissertation- one large (Salt River-Chapter 4 and 5) and one 

small (South Mountain-Chapter 3).   

I observed a morphologic and genetic relationship between strath terraces and the 

pediments that bound them termed here the pediment-strath relationship.  Strath terraces 

form at the expense of the adjacent pediments through the erosion by a laterally migrating 

stream.  This relationship was observed in both scales: along the Salt River and in 

drainages less than five square kilometers in area.  A weathering asymmetry in these 

systems facilitates the lateral erosion.  For the small drainages of South Mountain, 
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channel banks were much more highly weathered than channel floors.  Based on a few 

observations, this weathering asymmetry appears to exist along the Salt River, although 

future research will be needed to test this hypothesis. 

A third theoretical contribution relates to the minimal research previously 

conducted on the impact of base-level fluctuations on pediment development.  Since the 

pediment-strath relationship requires pediments that roughly grade to strath surfaces, 

pediments must respond to changes in the river level over time.  I, thus, hypothesized that 

pediments actively respond as alluvial landforms, both aggrading and degrading in 

response to base level change.  Base level lowering results in suite of headward eroding 

processes that bevel the pediment over time including: capture, lateral planation, and 

knickpoint recession.  The efficiency of the pedimentation processes roughly correlates to 

pediment basin size and length.  Using field evidence, relict pediments were 

reconstructed using kriging methodologies in ArcGIS; the volume of material between 

these reconstructed ancient surfaces and the modern surface were used to estimated 

erosion rates. 

These first three contributions (fill terraces as a response to basin integration, the 

pediment-strath relationshiop, the importance of base level on pediment evolution) all tie 

into the much larger contribution of this work - to begin to understand the connection 

between  drainage basin evolution and landform development in the Basin and Range 

province.  

Broader Impacts.- In addition to the intellectual merits of this dissertation, there 

are several far reaching impacts for society.  First, local Arizona residents, winter 

snowbirds, and visitors to the Sonoran Desert exhibt basic intellectual curiosity about the 
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natural history of south-central Arizona and the Sonoran Desert. Visitation to parks, 

trails, and natural history museums exhibit this interest. This area is a mecca for outdoor 

recreation enthusiasts. From campers, mountain bikers, rock climbers, boaters, and 

hikers, these many visitors are curious about the unique landscape they see here.  This 

work can help provide background information to those who visit these areas.  For 

example, county parks like the McDowell Mountains Regional Park sits within the lower 

Verde Valley and display many of the features seen in this dissertation.  The thousands of 

users of the lower Salt River valley float by many of the terraces and pediment features I 

discuss. 

Engineering and construction projects could benefit from this research. Engineers 

developing roads and other infrastructure projects may not realize the nature of the 

pediment-strath relationships or the active nature of the pediment form and channel 

banks.  For example, construction along the banks of rivers bounded by pediment 

surfaces may not be a safe housing choice given that the formation of strath floodplains 

occurs at the expense of bounding pediments. The same holds true for bridge construction 

and roads where erosion can cause failure or collapse of these structures.  

Sedimentary basins are often utilized as sources of ground water, fossil fuels and mineral 

resources.  Use of these resources connects to the history of how these basins evolved.  

The hypothesis tested here on how basins evolve over time could lead to advancements in 

the search for resources within the Basin and Range province. 

Lake overflow appears to be a common process at many locations across the 

globe, whether the lake forms by landslide dam, by volcanic action, or artificially.  This 

research supports the hypothesis that lake overflow is a prominent mechanism by which 
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basins integrate. The previous research conducted by House et al. (2005) and the research 

I conducted here could lead to insights into the risk potential and landscape response 

associated with lake overflow processs.  Furthermore, the removal of dams produces an 

effect similar to lake overflow; thus the landscape response to lake overflow in the 

Sonoran Desert could help develop a better understanding of the future of drainages 

impacted by dam removal. 
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