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ABSTRACT 

5-HT2A receptor (R) antagonists and 5-HT2CR agonists attenuate reinstatement of 

cocaine-seeking behavior (i.e., incentive motivation). 5-HT2Rs are distributed throughout 

the brain, primarily in regions involved in reward circuitry, including the prefrontal 

cortex (PFC), caudate putamen (CPu), and basolateral (BlA) and central (CeA) amygdala. 

Using animal models, we tested our hypotheses that 5-HT2ARs in the medial (m) PFC 

mediate the incentive motivational effects of cocaine and cocaine-paired cues; 5-HT2ARs 

and 5-HT2CRs interact to attenuate cocaine hyperlocomotion and functional neuronal 

activation (i.e, Fos protein); and 5-HT2CRs in the BlA mediate the incentive motivational 

effects of cocaine-paired cues and anxiety-like behavior, while 5-HT2CRs in the CeA 

mediate the incentive motivational effects of cocaine. In chapter 2, we infused M100907, 

a selective 5-HT2AR antagonist, directly into the mPFC and examined its effects on 

reinstatement of cocaine-seeking behavior. We found that M100907 in the mPFC dose-

dependently attenuated cue-primed reinstatement, without affecting cocaine-primed 

reinstatement, cue-primed reinstatement of sucrose-seeking behavior, or locomotor 

activity. In chapter 3, we used subthreshold doses of M100907 and MK212, a 5-HT2CR 

agonist, to investigate whether these compounds interact to attenuate cocaine 

hyperlocomotion and Fos protein expression. Only the drug combination attenuated 

cocaine hyperlocomotion and cocaine-induced Fos expression in the CPu, but had no 

effect on spontaneous locomotion. Finally, in chapter 4 we investigated the effects of a 5-

HT2CR agonist in the BlA and CeA on cocaine-seeking behavior and anxiety-like 

behavior. We found that CP809101, a selective 5-HT2CR agonist, infused into the BlA 

increased anxiety-like behavior on the elevated plus maze (EPM), but failed to alter 
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cocaine-seeking behavior. CP809101 infused into the CeA attenuated cocaine-primed 

reinstatement and this effect was blocked by co-administration of a 5-HT2CR antagonist. 

Together, these results suggest that 5-HT2ARs in the mPFC are involved in cue-primed 

reinstatement, 5-HT2A and 5-HT2CRs may interact in the nigrostriatal pathway to 

attenuate cocaine hyperlocomotion and Fos expression, and 5-HT2CRs are involved in 

anxiety-like behavior in the BlA and cocaine-primed reinstatement in the CeA. Our 

findings add to the literature on the localization of 5-HT2AR antagonist and 5-HT2CR 

agonist effects, and suggest a potential treatment mechanism via concurrent 5-HT2AR 

antagonism and 5-HT2CR agonism.  
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Chapter 1 

General Overview 

Drug addiction is a serious social and financial problem, with an estimated 37% of 

the population having used illicit drugs and over $25 billion spent in 2012 to combat this 

disorder (Office of National Drug Control Policy, 2013). In a recent analysis, 2.4 million 

Americans self-reported current cocaine abuse (SAMHSA). Despite the prevalence of 

cocaine addiction and decades of research, treatment remains inadequate. Psychotherapy 

utilized for some cocaine addicts is often insufficient for long-term abstinence (Alterman 

et al., 1996; K. M. Carroll et al., 2004; Kampman et al., 2001) and there are no approved 

pharmacological treatments available. 

Typically cocaine abuse involves binges during which cocaine is repeatedly taken for 

its psychoactive effects, followed by a period of voluntary abstinence during which 

craving is usually absent initially but then gradually emerges and is thought to motivate 

another binge. Even after prolonged periods of abstinence, cocaine craving can be 

triggered by stress, exposure to cocaine-related cues, or sampling cocaine (Childress, 

McLellan, Ehrman, & O'Brien, 1988; Jaffe, Cascella, Kumor, & Sherer, 1989; Sinha, 

Catapano, & O'Malley, 1999). Though the definition is controversial, craving is thought 

to reflect incentive motivation for cocaine (Stewart, 1983), which in turn, is a major 

factor contributing to relapse.  

The extinction/reinstatement model is used to measure incentive motivation for 

cocaine in animals trained to lever press for cocaine reinforcement (de Wit & Stewart, 

1981). These animals undergo extinction sessions during which cocaine is withheld and 

operant responding under this condition is referred to as cocaine-seeking behavior. 
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Initially, animals exhibit robust cocaine-seeking behavior, which declines as extinction 

progresses. Once the behavior is extinguished, it can be reinstated by cocaine priming or 

presenting cues previously associated with cocaine. The reinstatement is thought to be a 

measure of the incentive motivation for cocaine elicited by these stimuli, similar to cue- 

or drug-primed craving in humans (de Wit & Stewart, 1981; Markou et al., 1993; 

Neisewander & Acosta, 2007). 

Cocaine and Serotonin 

In the brain, a primary action of cocaine is blockade of 5-HT transporters, resulting in 

enhanced synaptic levels of 5-HT (Koe, 1976; Koob, Sanna, & Bloom, 1998; Woolverton 

& Johnson, 1992). 5-HT plays a complex role in cocaine reinforcement and incentive 

motivation for cocaine. In rats, increasing 5-HT neurotransmission via indirect agonists 

fluoxetine and d-fenfluramine attenuates cue-primed reinstatement, cocaine self-

administration, progressive ratio breakpoint, and reward threshold (Baker, Tran-Nguyen, 

Fuchs, & Neisewander, 2001; Burmeister, Lungren, Kirschner, & Neisewander, 2004; M. 

E. Carroll, Lac, Asencio, & Kragh, 1990; Lee & Kornetsky, 1998; Peltier & Schenk, 

1993; Richardson & Roberts, 1991), and chronic fluoxetine administration decreases 

sensitivity to the rewarding effects of cocaine (Baker, et al., 2001; Lee & Kornetsky, 

1998) and decreases cocaine-seeking behavior during extinction (Baker, et al., 2001). 

Interestingly, 5-HT depletion with a tryptophan hydroxylase inhibitor para-

chlorophenylalanine (p-CPA) or the 5-HT-selective neurotoxin 5,7-dihydroxytryptamine 

(5,7-DHT) also attenuates cocaine-seeking behavior (Tran-Nguyen, Baker, Grote, 

Solano, & Neisewander, 1999; Tran-Nguyen, et al., 2001). Similarly in humans, 

increasing 5-HT with fluoxetine (Batki, Manfredi, Jacob, & Jones, 1993; Walsh, Preston, 
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Sullivan, Fromme, & Bigelow, 1994) or decreasing 5-HT via tryptophan depletion 

(Aronson et al., 1995; Batki, Washburn, Delucchi, & Jones, 1996; Satel, Krystal, 

Delgado, Kosten, & Charney, 1995) decreases self-reports of cocaine craving and “high” 

and craving. Collectively, these findings suggest that either low or high levels of 5-HT 

can inhibit cocaine-related behaviors.  

Serotonin Receptor Subtypes 

5-HT is involved in many aspects of behavior and is implicated in many mental 

health disorders including depression, anxiety, and addiction. The wide-ranging role of 5-

HT is likely due to a complex receptor system. Since the discovery of different 5-HT 

receptors in the brain (Peroutka & Snyder, 1979), over 20 receptor subtypes organized 

into 7 families have been identified (Hoyer et al., 1994; Pytliak, Vargova, Mechirova, & 

Felsoci, 2011), all of which are G-protein coupled metabotropic receptors aside from the 

5-HT3R which is a ligand-gated ion channel (Barnes & Sharp, 1999).   

A brief review of the 5-HTR subtypes reveals that the 5-HT1AR is most implicated in 

anxiety (Klemenhagen, Gordon, David, Hen, & Gross, 2006), with a 5-HT1AR agonist 

buspirone a notable treatment for generalized anxiety disorder, as well as aggression (de 

Boer & Koolhaas, 2005; Rickels, 1983). The 5-HT1BR is also involved in aggression 

(Groenink, van Bogaert, van der Gugten, Oosting, & Olivier, 2003) and anxiety 

(Benjamin, Lal, & Meyerson, 1990), in addition to addiction (Groenink, et al., 2003; 

Pentkowski, Acosta, Browning, Hamilton, & Neisewander, 2009) and migraine (Buzzi & 

Moskowitz, 1991). 5-HT1D, 5-HT1E, and 5-HT1FRs are less studied but thought to be 

involved in anxiety, memory, and vasoconstriction, respectively (Pytliak, et al., 2011). In 

the 5-HT2R family, the 5-HT2AR is involved in hallucinations (Glennon, 1990) and 
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addiction (Fletcher, Grottick, & Higgins, 2002; Nic Dhonnchadha, Fox, Stutz, Rice, & 

Cunningham, 2009; Pockros, Pentkowski, Swinford, & Neisewander, 2010), with 5-

HT2AR agonists including hallucinogenic drugs lysergic acid diethylamide (LSD) and 

mescaline. 5-HT2BR ligands have more of an effect peripherally than in the brain 

(Borman et al., 2002; Ellis et al., 1995), however some findings suggest that 5-HT2BRs 

are involved in anxiety (Kennett et al., 1998). 5-HT2CRs are highly involved in appetite 

(Sargent, Sharpley, Williams, Goodall, & Cowen, 1997) and addiction (Neisewander & 

Acosta, 2007; Pentkowski et al., 2010), with a 5-HT2CR agonist loraserin recently FDA-

approved for the treatment of obesity (Halford, Harrold, Boyland, Lawton, & Blundell, 

2007). The 5-HT3R is the only ligand-gated ion channel receptor of the 7 families, and is 

most involved in nausea and vomiting (Gyermek, 1995), with 5-HT3R antagonists used to 

treat the side effects of chemotherapy, as well as a few studies suggesting a connection to 

anxiety and addiction (Rodd et al., 2007; Thompson & Lummis, 2007). 5-HT4Rs are 

mostly studied for their peripheral effects on the gastrointestinal tract (De Ponti & Crema, 

2002), though one study suggests a role in memory and addiction (Reynolds et al., 1995). 

While 5-HT5Rs have not been studied extensively, they may be involved in locomotion 

and sleep (Pytliak, et al., 2011; Thomas, 2006). 5-HT6Rs have been implicated in 

memory, cognition, and mood (Johnson, Ahmed, & Miller, 2008; Woolley, Marsden, & 

Fone, 2004). Finally, 5-HT7Rs appear to be involved in depression and sleep (Hedlund & 

Sutcliffe, 2004; Mnie-Filali, Lambas-Senas, Zimmer, & Haddjeri, 2007). 

While several 5-HTR subtypes have been implicated in addiction, this dissertation 

will focus on the 5-HT2A and 5-HT2CRs. Both receptors are known to play a role in 

cocaine-seeking behavior, with a consistent pattern suggesting that manipulations of 
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these receptors have opposite effects (Fletcher, et al., 2002; Neisewander & Acosta, 

2007; Nic Dhonnchadha, et al., 2009). The 5-HT2AR plays an excitatory role in cocaine-

related behaviors while the 5-HT2CR plays an inhibitory role.  

Peripheral injections of the 5-HT2AR selective antagonist M100907 decrease cocaine 

hyperlocomotion as well as cue- and cocaine-primed reinstatement of cocaine-seeking 

behavior, but have no effect on cocaine self-administration (Fletcher, et al., 2002; Nic 

Dhonnchadha, et al., 2009). Systemic administration of M100907 also attenuates cocaine 

discriminative stimulus effects (McMahon, Filip, & Cunningham, 2001) and stimulant-

induced hyperlocomotion (Fletcher, et al., 2002; McMahon, et al., 2001). Furthermore, 

blocking 5-HT2ARs attenuates MDMA-induced DA release (Schmidt, Fadayel, Sullivan, 

& Taylor, 1992; Schmidt, Sullivan, & Fadayel, 1994) and decreases c-Fos expression in 

the nucleus accumbens (NAc) shell and caudate-putamen (CPu) (Szucs, Frankel, 

McMahon, & Cunningham, 2005).  

Conversely, the 5-HT2CR plays an inhibitory role in cocaine-related behaviors. For 

instance, a selective 5-HT2CR antagonist enhances cocaine self-administration, as well as 

cocaine-primed reinstatement of cocaine-seeking behavior and cocaine-induced 

locomotor activity (Fletcher, et al., 2002; McMahon, et al., 2001). 5-HT2CR agonists also 

inhibit cue- and cocaine-primed reinstatement of cocaine-seeking behavior, effects that 

are blocked by pre-administration of 5-HT2CR antagonists, indicating that they are 5-

HT2CR-mediated (Fletcher, Rizos, Sinyard, Tampakeras, & Higgins, 2008; Neisewander 

& Acosta, 2007; Pentkowski, et al., 2010). Further, 5-HT2CR agonists attenuate 

morphine-induced DA release in the NAc (Willins & Meltzer, 1998), and antagonists 

enhance amphetamine-induced DA release in the NAc and CPu (Porras et al., 2002). 
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Unpublished data from our laboratory also suggests that a 5-HT2C agonist administered 

into the vmPFC also decreases cocaine hyperlocomotion as well as cocaine-induced Fos 

expression in the dorsolateral caudate-putamen. 

 The 5-HT2A and 5-HT2CR are both G-q protein coupled receptors which activate 

phospholipase C (PLC) and continue their signaling pathway through diacylglycerol 

(DAG), inositol triphosphate (IP3), and protein kinase C (PKC), to increase calcium 

(Ca2+) release. These receptors share approximately 51% of their amino acid sequences 

(Hoyer, Hannon, & Martin, 2002), making them fairly homologous in structure, though 

there are some differences in their localization and signaling properties (Berg et al., 1994; 

Grotewiel & Sanders-Bush, 1999). Both receptors are found throughout the brain 

(Doherty & Pickel, 2000; Pompeiano, Palacios, & Mengod, 1994), but their 

concentrations differ and the 5-HT2AR is also found peripherally, predominantly in the 

digestive tract (Leysen, 2004). Both primarily activate PLC, but also phospholipase A2 

(PLA2), which increases arachidonic (AA) release, and phospholipase D (PLD), which 

increases phosphatidic acid (PA) formation. There are some differences in the degree to 

which these pathways are activated by constitutive activity and ligand binding at the 

receptors (Cunningham et al., 2013). These differences may be due to alterations in the 

receptors over time, as they can undergo trafficking to relocate the receptor on a neuron 

and the 5-HT2CR is the only 5-HT receptor to undergo RNA editing (Niswender et al., 

2001), which may contribute to the different behavioral effects seen when they are 

activated. 
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5-HT2R and Brain Reward Pathway 

The mesolimbic DA system, which includes dopaminergic projections from the 

ventral tegmental area (VTA) to the NAc, plays a critical role in reward learning and is 

certainly involved in addiction, and the mesocortical and nigrostriatal DA systems are 

also implicated (Wise, 2009). The mesocortical DA pathway projects from the VTA to 

the prefrontal cortex (PFC), and the nigrostrial DA pathway projects from the substantia 

nigra (SN) to the CPu. While it was initially thought that the rewarding effects of drugs 

of abuse were due to increased dopamine (DA) in the nucleus accumbens (NAc), research 

has shown that the addiction circuitry is much more complex.  

5-HT affects these DA reward pathways as well (Alex & Pehek, 2007). 5-HT2A and 

5-HT2CRs are found in several regions of the reward circuitry involved in addiction 

(Doherty & Pickel, 2000; Pompeiano, et al., 1994). 5-HT2R manipulations can directly 

influence DA release in the mesolimbic, mesocortical, and nigrostriatal pathways (Alex 

& Pehek, 2007). The nonselective 5-HT2AR agonist, 2,5-dimethoxy-4-iodoamphetamine 

(DOI), has been shown to increase single unit recordings of VTA DA neuron firing as 

well as microdialysis measures of DA release in the PFC, effects which were reversed 

with co-administration of a 5-HT2AR antagonist (Bortolozzi, Diaz-Mataix, Scorza, 

Celada, & Artigas, 2005; Pehek, McFarlane, Maguschak, Price, & Pluto, 2001). 5-HT2AR 

antagonists also decrease cocaine- and amphetamine-induced DA release in the NAc 

(Auclair, Blanc, Glowinski, & Tassin, 2004; Broderick, Olabisi, Rahni, & Zhou, 2004). 

In the nigrostriatal pathway, 5-HT2AR antagonists attenuate phasic DA release in the CPu 

(De Deurwaerdere & Spampinato, 1999; Gobert & Millan, 1999; Ichikawa & Meltzer, 

1995; Lucas & Spampinato, 2000; Porras, et al., 2002; Schmidt, et al., 1992). Conversely, 
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5-HT2CR agonists attenuate both tonic and phasic DA activity (Di Giovanni et al., 1999; 

Di Matteo, Di Giovanni, Di Mascio, & Esposito, 2000; Gobert et al., 2000; Porras, et al., 

2002). For example, a 5-HT2CR agonist decreases VTA DA neuron firing rates (Di 

Giovanni, Di Matteo, Di Mascio, & Esposito, 2000; Di Matteo, et al., 2000) as well as 

DA release in the NAc (De Deurwaerdere & Spampinato, 1999; Di Giovanni, et al., 

1999; Di Matteo, Di Giovanni, Di Mascio, & Esposito, 1999). Further, a 5-HT2CR 

antagonist increases DA release in the PFC (Pozzi, Acconcia, Ceglia, Invernizzi, & 

Samanin, 2002) and cocaine-induced DA in the NAc (De Deurwaerdere, Navailles, Berg, 

Clarke, & Spampinato, 2004). 5-HT2CR inverse agonists also increase DA release in the 

CPu, and this can be reversed with concurrent administration of a 5-HT2CR agonist (Alex, 

Yavanian, McFarlane, Pluto, & Pehek, 2005).  

Aims of Research 

 The goals of the research in this dissertation were to explore the treatment 

potential of 5-HT2R manipulations and to expand upon the knowledge of the localization 

of the effects of systemic 5-HT2R manipulations within the brain reward pathways. In the 

second chapter of this dissertation, I investigated the effects of a 5-HT2AR antagonist in 

the medial subregion of the mPFC on reinstatement of cocaine-seeking behavior. The 

PFC is a key region in the mesocorticolimbic DA pathway and is involved in impulsivity 

and decision-making (Bechara, Damasio, Damasio, & Anderson, 1994; Damasio, 

Grabowski, Frank, Galaburda, & Damasio, 1994; Puumala & Sirvio, 1998). In addiction, 

it is thought that repeated drug taking leads to dysfunction of the PFC in which non-drug 

rewards become less salient and drug rewards become overly salient, thus leading to a 

loss of control and continued drug taking despite consequences (Childress et al., 1999; 
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Goldstein & Volkow, 2002). The medial (m) PFC is further divided into the prelimbic 

(PrL) and infralimbic (IL) regions. The PrL PFC sends projections to the basolateral 

amygdala (BlA) and NAc core, while the IL PFC connects to the CeA via GABA 

inhibitory neurons in intercalated cell masses in the amygdala as well as the NAc shell 

(Brog, Salyapongse, Deutch, & Zahm, 1993; McFarland & Kalivas, 2001; Pare & Smith, 

1993; Sesack, Deutch, Roth, & Bunney, 1989). Similar to their roles in fear conditioning 

(Quirk, Garcia, & Gonzalez-Lima, 2006; Vidal-Gonzalez, Vidal-Gonzalez, Rauch, & 

Quirk, 2006), the PrL PFC is thought to initiate conditioned cocaine-seeking (Kalivas & 

O'Brien, 2008; Peters, Kalivas, & Quirk, 2009), while the IL PFC is necessary for 

extinction of conditioned cocaine-seeking behavior (Peters, et al., 2009). 

Pharmacological inactivation of the PrL PFC attenuates context-, cue-, cocaine-, and 

stress-primed reinstatement as well as cocaine conditioned place preference (CPP) 

(Capriles, Rodaros, Sorge, & Stewart, 2003; Fuchs et al., 2005; Peters, et al., 2009; 

Zavala, Weber, Rice, Alleweireldt, & Neisewander, 2003). Inactivation of the IL PFC 

fails to affect reinstatement of cocaine-seeking (McFarland & Kalivas, 2001), though one 

study showed an increase in cocaine-seeking (Peters, LaLumiere, & Kalivas, 2008); 

however it has also been shown to attenuate cue-primed reinsatement of morphine-

seeking behavior as well (Rocha & Kalivas, 2010).  

Both the PrL and IL regions of the mPFC are densely packed with 5-HT2ARs 

(Doherty & Pickel, 2000; Lopez-Gimenez, Mengod, Palacios, & Vilaro, 1997; 

Pompeiano, et al., 1994), and 5-HT2CRs in these regions have been shown to be involved 

in cue- and cocaine-primed reinstatement (Pentkowski, et al., 2010). My study examined 

the effects of intra-mPFC injections of M100907, a selective 5-HT2AR antagonist, on cue- 
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and cocaine-primed reinstatement as well as locomotor activity and sucrose-seeking 

behavior. This chapter is published in Psychopharmacology.  

In the third chapter of this dissertation, I examined the effects of concurrent 5-

HT2AR antagonism and 5-HT2CR agonism on cocaine hyperlocomotion and cocaine-

induced Fos protein expression in the CPu. Systemically, both 5-HT2AR antagonists and 

5-HT2CR agonists attenuate cocaine hyperlocomotion; we used subthreshold doses of 

each type of ligand, predicting that they would produce a greater effect when given 

together. Research suggests that 5-HT2AR antagonists and 5-HT2CR agonists may have 

therapeutic potential in treating addiction; however since both drugs have side-effects, 

this type of combination therapy may be beneficial in producing a therapeutic effect 

while minimizing potential side effects produced at the respective receptors.  

We measured Fos protein expression in the CPu, as this is the terminal region in 

the nigrostriatal DA pathway involved in motor activity and habitual behaviors (Brown, 

Robertson, & Fibiger, 1992; Naylor & Olley, 1972; White, Doubles, & Rebec, 1998; 

Zimmerberg & Glick, 1974). Some researchers believe that the transition from voluntary 

to habitual drug use is a reflection of a shift of neural control from the ventral to dorsal 

striatum, which includes the CPu in rats (Belin-Rauscent, Everitt, & Belin, 2012; B. J. 

Everitt & Robbins, 2005). After prolonged cocaine self-administration, expected cocaine 

and cue administration increases DA release in the CPu, rather than the ventral striatum 

as in the beginning stages of drug-taking (B. J. Everitt et al., 2008; Ito, Dalley, Howes, 

Robbins, & Everitt, 2000; Ito, Dalley, Robbins, & Everitt, 2002). Additionally, lesions to 

the CPu do not affect cocaine self-administration (Roberts, Koob, Klonoff, & Fibiger, 

1980), but prevent amphetamine-induced stereotypy (Creese & Iversen, 1974; Kelly & 
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Iversen, 1976). In humans, exposure to cues activates the dorsal striatum in experienced 

cocaine addicts (Garavan et al., 2000; Volkow et al., 2006). This chapter of the 

dissertation is published in Synapse.  

 Finally, in chapter 4 I hypothesized that 5-HT2CRs in the amygdala mediate the 

incentive motivational effects of cocaine and cocaine-paired cues. 5-HT2CR agonists 

attenuate cue- and cocaine-primed reinstatement of cocaine-seeking behavior (Fletcher, et 

al., 2008; Neisewander & Acosta, 2007; Pentkowski, et al., 2010) and also increase 

anxiety-like behavior on several paradigms (Nic Dhonnchadha, Bourin, & Hascoet, 

2003). 5-HT2CRs are found throughout the brain (Pompeiano, et al., 1994), including the 

amygdala, a part of the mesolimbic DA pathway known to be involved in reinstatement 

of cocaine-seeking behavior (Alleweireldt, Hobbs, Taylor, & Neisewander, 2006; 

McFarland, Davidge, Lapish, & Kalivas, 2004; See, 2005) as well as stress and anxiety 

(Blanchard & Blanchard, 1972). 

Generally, the amygdala is involved in emotional learning (Bechara et al., 1995) 

and memory (Cahill, 2000), notably the recognition of facial expressions of emotion in 

humans (Adolphs, Tranel, Damasio, & Damasio, 1994; A. W. Young et al., 1995). 

Another role of the amygdala is in regulating fear (Kluver, 1938), in particular Pavlovian 

fear conditioning (Blanchard & Blanchard, 1972; Pribram, Reitz, McNeil, & Spevack, 

1979) and avoidance learning (Weiskrantz, 1956). The amygdala is also involved in 

appetitive conditioning (Cahill & McGaugh, 1990; B. J. Everitt, Morris, O'Brien, & 

Robbins, 1991; Hamann, Ely, Grafton, & Kilts, 1999; Kesner, Walser, & Winzenried, 

1989), which lead to discovering its role in addiction (B. J. C. Everitt, R. N.; Hall, J.; 

Parkinson, J. A.; Robbins, T. W., 2000).  
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The amygdala is made up of distinct nuclei, primarily the basolateral (BlA) and 

central (CeA) regions, which have been differentially implicated in addiction. The BlA is 

highly involved in associating environmental stimuli and reward (B. J. C. Everitt, R. N.; 

Hall, J.; Parkinson, J. A.; Robbins, T. W., 2000). The BlA has an important role in 

reinstatement of cocaine-seeking by drug-associated contextual and discrete cues (B. J. 

Everitt et al., 1999; Fuchs & See, 2002; Fuchs, Weber, Rice, & Neisewander, 2002; 

Kufahl et al., 2009; McLaughlin & See, 2003; Neisewander et al., 2000). The CeA 

projects to brainstem regions to control expression of emotional behaviors (Lanuza, 

Moncho-Bogani, & Ledoux, 2008) and is implicated in stress-reinstatement and primary 

reinforcement effects of cocaine (Koob & Le Moal, 2005; Koob & Nestler, 1997; 

Neisewander, et al., 2000; O'Dell, Sussman, Meyer, & Neisewander, 1999; Wurtz & 

Olds, 1963).  

 To investigate my hypothesis, we examined the effects of a 5-HT2CR agonist 

CP809101 administered directly into the basolateral amygdala (BlA) and the central 

amygdala (CeA) on cue- and cocaine-primed reinstatement of cocaine-seeking behavior. 

We also evaluated the effects of CP809101 in these regions on anxiety-like behavior, as 

5-HT2CR agonists have been shown to affect anxiety (Heisler, Zhou, Bajwa, Hsu, & 

Tecott, 2007; Kimura et al., 2009; Strong, Greenwood, & Fleshner, 2009), and the 

amygdala is an important region in the neurocircuitry of anxiety (M. Davis, 2000).   
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Chapter 2 

Blockade of 5-HT2A Receptors in the mPFC attenuates cue-primed reinstatement of 

cocaine-seeking behavior in rats  

(Master’s thesis, published 2011) 

 Previous work with 5-HT2A selective antagonists found that peripheral 

administration decreases cocaine-induced locomotor activity as well as cue- and cocaine-

primed reinstatement, but has no effect on cocaine self- administration (Fantegrossi, 

Ullrich, Rice, Woods, & Winger, 2002; Filip, Bubar, & Cunningham, 2006; Fletcher, et 

al., 2002; Nic Dhonnchadha, et al., 2009; Orejarena, Lanfumey, Maldonado, & Robledo, 

2010). It is believed that 5-HT action at 5-HT2A receptors may oppose its action at 5-

HT2C receptors (Bubar & Cunningham, 2006; Higgins & Fletcher, 2003). For example, in 

contrast to the inhibitory effects of the 5-HT2A receptor antagonist on cocaine- seeking 

behavior, the 5-HT2C receptor antagonist was found to enhance cocaine-primed 

reinstatement of extinguished cocaine-seeking behavior, as well as cocaine self- 

administration and cocaine-induced locomotor activity (Fletcher, et al., 2002; Nic 

Dhonnchadha, et al., 2009). Furthermore, 5-HT2C receptor agonists inhibit cue-elicited 

and cocaine-primed reinstatement of extinguished cocaine- seeking behavior when 

injected systemically (Fletcher, et al., 2002; Neisewander & Acosta, 2007) or directly 

into the ventral medial prefrontal cortex (vmPFC), which includes the prelimbic and 

infralimbic subregions (Gabbott, Warner, Jays, Salway, & Busby, 2005; Pentkowski, et 

al., 2010). 

 The vmPFC plays a critical role in cue-elicited and cocaine-primed reinstatement of 

extinguished cocaine- seeking behavior, as well as cocaine reinforcement (Di Pietro, 
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Mashhoon, Heaney, Yager, & Kantak, 2008; Goeders & Smith, 1983; McGregor, Baker, 

& Roberts, 1996; Olsen & Duvauchelle, 2006). Exposure to drug-associated cues causes 

an increase in activity-related gene expression in the infralimbic, prelimbic, anterior 

cingulate, and orbitofrontal subregions of the prefrontal cortex (PFC) (Hearing, Miller, 

See, & McGinty, 2008; Kufahl, Zavala, et al., 2009; Neisewander, et al., 2000; Zavala, 

Osredkar, Joyce, & Neisewander, 2008). Furthermore, excitoxic lesions or reversible 

pharmacological inactivation of these subregions of the PFC prevents cue-elicited 

reinstatement of extinguished cocaine-seeking behavior (Di Pietro, Black, & Kantak, 

2006; Fuchs, Evans, Parker, & See, 2004; McLaughlin & See, 2003; Weissenborn, 

Robbins, & Everitt, 1997). Conversely, cocaine injections directly into the mPFC are 

reinforcing (Goeders & Smith, 1983; Guzman, Moscarello, & Ettenberg, 2009) and 

reinstate cocaine self-administration (Goeders, Dworkin, & Smith, 1986). Given our 

recent findings that stimulation of 5-HT2C receptors in the vmPFC attenuates cue-elicited 

and cocaine-primed reinstatement of extinguished cocaine-seeking behavior (Pentkowski, 

et al., 2010) together with research demonstrating opposing roles of 5- HT2C and 5-HT2A 

receptors in modulating cocaine-seeking behavior (Fletcher, et al., 2002; Nic 

Dhonnchadha, et al., 2009), we hypothesized that blockade of 5-HT2A receptors in the 

vmPFC would attenuate cue- and cocaine-primed reinstatement of extinguished cocaine-

seeking behavior. 

 Additional rationale for this hypothesis is that 5-HT2A receptors are densely 

distributed throughout the cortex including the vmPFC, as well as the ventral tegmental 

area (VTA), substantia nigra, and the striatum which have also been implicated in 

addiction (Doherty & Pickel, 2000; Lopez-Gimenez, et al., 1997; Pompeiano, et al., 
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1994). The highly selective 5-HT2A receptor antagonist, M100907, has been shown to 

decrease extracellular dopamine levels in the vmPFC and striatum when infused directly 

into these regions (Pehek, et al., 2001; Schmidt, et al., 1992; Schmidt, et al., 1994). 

Furthermore, elevated glutamate release in the PFC is thought to excite outputs to the 

nucleus accumbens (NAc) resulting in potentiation of cue- and cocaine-primed 

reinstatement of extinguished cocaine-seeking behavior (Di Ciano & Everitt, 2001; 

McFarland, Lapish, & Kalivas, 2003), and increases in glutamate in the vmPFC are 

attenuated by systemic injections of M100907 (Ceglia et al., 2004). These findings are 

consistent with the idea that 5-HT2A receptors in the vmPFC may mediate the inhibitory 

effects of M100907 on cue- and cocaine-primed reinstatement of extinguished cocaine-

seeking behavior. 

This study investigated the hypothesis that 5-HT2A receptor stimulation in the 

vmPFC contributes to the incentive motivational effects of cocaine-conditioned cues and 

cocaine itself. To test this hypothesis, we examined the effects of localized 

microinjections of M100907 on reinstatement of extinguished cocaine-seeking behavior 

elicited by cocaine-paired cues or cocaine-priming injections. The effects of M100907 on 

cocaine self-administration, cue- elicited reinstatement of sucrose-seeking behavior, and 

spontaneous and cocaine-induced locomotor activity were also examined in order to 

assess the specificity of the effects for cocaine-seeking behavior.  
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Methods 

Animals 

Adult male Sprague-Dawley rats weighing 300-325 g at the start of the 

experiments were used in this study.  Animals were housed in a climate-controlled colony 

room with a 12-h reversed light/dark cycle (lights off at 7:00AM) and were cared for in 

accordance with the 'Guide for the Care and Use of Laboratory Animals' (Institute of 

Laboratory Animal Resources on Life Sciences, National Research Council 1996). 

Surgery  

Animals were handled for at least 6 days before implanting catheters into the right 

jugular vein.  Catheters were connected to a bent 22 gauge metal cannula within a plastic 

screw connector (Plastics One, Roanoke, VA) attached to a 10 cm Silastic tube (inner 

diameter 0.012 x outer diameter 0.025 inches, Dow Corning, Midland, MI) with a small 

ball of aquarium sealant ~ 4 cm from the other end.  Animals were anesthetized with 

approximately 3% isoflurane throughout surgery.  Incisions were made in clean, shaven 

areas on the head to expose the skull and on the neck to expose the right jugular vein.  A 

small incision was made in the jugular vein, the catheter was then inserted until flush 

with the ball of aquarium sealant, and the catheter was secured to the vein with sutures on 

either side of the ball.  The catheter was then pulled through a burrow made 

subcutaneously between the two incisions and the rat was then placed into a stereotaxic 

instrument.  Connective tissue was removed from the skull surface and four small screws 

were drilled into the skull to serve as an anchor.  Small holes were then drilled into the 

skull and stainless steel guide cannulae were lowered to a point 1 mm above the targeted 

site of the medial prefrontal cortex (n=59) or the Cg2 region of the anterior cingulate 
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cortex (n=9).  The coordinates for the medial prefrontal cortex were selected based on 

previous research (Filip & Cunningham, 2003; Pentkowski, et al., 2010) and were as 

follows: AP = + 2.7 and ML = +/- 0.75 mm relative to bregma; DV = -3 mm from skull 

surface (Paxinos, 2007). The coordinates for the Cg2 were the following: AP = + 2.0 and 

ML = +/- 0.75 mm relative to bregma; DV = -3 mm from skull surface (Paxinos, 2007).  

The guide cannulae were secured to the skull along with the metal end of the catheter and 

the anchor screws using dental acrylic cement.  Metal stylets were inserted with the 

cannulae during surgery.  All incisions were sutured and treated with a topical antibiotic.  

Catheters were flushed with a solution of 0.1 ml saline containing heparin sodium (70 

U/ml; APP Pharmaceuticals, Schaumburg, IL), Abbokinase (20 mg/ml; ImaRx 

Therapeutics, Tucson, AZ) and Timentin (66.7 mg/ml; GlaxoSmithKline, Research 

Triangle Park, NC) for 5 days after surgery.  Throughout the rest of self-administration 

training and testing, catheters were flushed daily with a solution containing only the 

Timentin and heparin sodium in order to maintain catheter patency.  Animals were given 

at least 7 days of recovery from surgery before beginning self-administration training.  

Catheter patency was tested periodically by administering 0.05 ml Brevital (16.6 mg/ml, 

Jones Pharma Inc., St. Louis, MO), which briefly anesthetizes the animal only if 

delivered i.v. 

Cocaine Self-administration Training 

Cocaine self-administration training took place during daily 2-h sessions, 6 days 

per week.  Animals were trained in operant conditioning chambers (28 x 10 x 20 cm; 

Med Associates, St Albans, Vermont, USA) each containing an active lever, a cue light 4 

cm above the active lever, an inactive lever, a tone generator (500 Hz, 10 dB above 
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ground noise), and a house light on the wall opposite the levers.  Upon pressing the active 

lever to complete a schedule of reinforcement, the light and tone cues were 

simultaneously activated and followed 1 s later by a 0.1 ml cocaine infusion delivered 

over 6 s.   The house light was then activated for a 20-s timeout period, during which 

active lever presses were recorded but had no effects.  Responses on the inactive lever 

were recorded but had no effects.  

 For the first 5 days of training, all animals began on a fixed ratio (FR) 1 schedule 

of reinforcement with the capability to progress to a variable ratio (VR) 2, VR3, and 

finally VR5 schedule.  After ending the session on a VR5 schedule for 5 consecutive 

days, animals then began the remaining sessions on a VR5 schedule.  In this experiment, 

all animals were starting on a VR5 schedule by day 14 and were on a VR5 schedule 

exclusively for at least the last 5 days of self-administration.  All animals were restricted 

to 16 g of food to facilitate acquisition of self-administration (M. E. Carroll, France, & 

Meisch, 1981) and remained food-restricted until they ended on a VR5 schedule for three 

consecutive sessions.  Animals were then given food ad libitum for the rest of the 

experiment.   

Intracranial Drug Infusions 

M100907 (RTI International, Research Triangle Park, NC) was dissolved in 

phosphate buffered saline containing hydrochloric acid, titrated to pH 6.9.  

Microinjections were delivered over a 1-min period using a 30-gauge injector (Plastics 

One) connected via polyethylene 50 tubing (Becton Dickinson, Sparks, MD) to a 25 µl 

syringe (Hamilton Co., Reno, NV) housed in an infusion pump (CMA Microdialysis, 

North Chelmsford, MA). Injection cannulae extended 2 mm below the guide cannulae for 
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the mPFC and 1 mm below for the Cg2.  Successful infusion of the drug was confirmed 

by movement of an air bubble through the drug infusion line.  After the infusion was 

complete, the injectors remained for 1 min to ensure thorough diffusion.  After removing 

the injectors, metal stylets and caps were replaced before the animal was placed into the 

conditioning chamber for the test sessions. 

Cocaine Self-Administration Testing  

 A subset of animals (n=23) with mPFC cannulae were tested for the effects of 

M100907 on cocaine self-administration once they reached a self-administration stability 

criterion of less than 15% variability of infusions per session for 3 consecutive days 

without any upward or downward trends.  Rats were assigned to one of four dose groups 

(0.1, 0.3, 1.0, or 1.5 µg/0.2 µl/side).  All animals were tested twice for self-

administration, once with a vehicle microinjection into the mPFC and once with their 

assigned dose of M100907, with order counterbalanced.  At least 3 additional self-

administration sessions were given in between each test in order to re-establish stable 

self-administration baseline rates.  The bilateral microinjections of M100907 or vehicle 

into the mPFC were administered 5-min before testing.  Three additional sessions of self-

administration were conducted after these tests were completed.  Test sessions lasted for 

2 hours; however data is presented for only the first hour as drug effects do not likely 

persist beyond that time. 

Extinction Phase 

Upon completing self-administration training, and testing if applicable, all 

animals began receiving daily 1-h extinction sessions.  Rats were placed into the self-

administration chambers as before and lever presses were recorded, but produced no 
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consequences (i.e., no infusions or cues were presented).  Catheters were connected to the 

infusion lines during extinction, as well as during all reinstatement tests, even though no 

cocaine was infused.  Extinction sessions continued for 10-14 days and until there was an 

80% reduction in active lever pressing from the animals’ highest response rate during 

extinction or to less than 20 active lever presses. 

Cue Reinstatement of Cocaine-Seeking Behavior 

Following extinction training, a subset of animals with mPFC (n=59) cannulae 

were assigned (or re-assigned if they had undergone self-administration testing) to one of 

four M100907 dose groups (0.1, 0.3, 1.0, or 1.5 µg/0.2 µl/side), counterbalanced based 

on the amount of cocaine intake during self-administration, as this has been shown to 

affect reinstatement response rates (Deroche et al., 1999; Baker et al, 2001).  Another 

subset of animals with anterior cingulate cannulae (n=9) were assigned to receive 

1.5µg/0.2 µl/side M100907 or vehicle.  Animals underwent two tests for the effects of 

M100907 on cue reinstatement of extinguished cocaine-seeking behavior, receiving a 

vehicle microinjection prior to one test and their assigned dose of M100907 prior to the 

other test, with the order of these pretreatments counterbalanced.  Animals were given a 

minimum of 3 extinction days between tests to allow extinction baseline rates to stabilize.  

If animals failed to meet a reinstatement criteria of doubling extinction baseline response 

rates and at least 10 responses on the active lever on both of the 2 test days, they were 

considered ‘nonreinstaters’ and excluded from the analysis.  

Five min after receiving their assigned microinjection, animals were tested for 1 

hr with the same stimulus complex as that paired with cocaine during training available 

response-contingently on an FR 1 schedule; however no cocaine was delivered during 
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cue tests.  The FR 1 schedule was used in place of the VR 5 training schedule because we 

have previously shown that under tests for cue reinstatement the FR1 schedule yields 

higher response rates, and thus greater sensitivity for detecting the predicted decrease, 

than the training schedule (Acosta, Thiel, Sanabria, Browning, & Neisewander, 2008).  A 

noncontingent cue presentation was delivered if the animal did not receive a response-

contingent cue within the first 5 min of the session to minimize the possibility that 

animals would fail to press the lever leaving them unaware that cues were available.   

Cocaine-Primed Reinstatement of Cocaine-Seeking Behavior 

 After the two cue reinstatement tests, a subset of animals with mPFC cannulae 

(n=55) received at least 5 extinction sessions to re-establish a stable baseline extinction 

rate of responding.  They were then given two tests for cocaine-primed reinstatement of 

extinguished cocaine-seeking behavior.  Prior to one test, they received the same dose of 

M100907 as they had received during cue reinstatement testing (0.1, 0.3, 1.0, or 1.5 

µg/0.2 µl/side).  For the other test, they received a vehicle microinjection.  The order of 

the 2 pretreatments was counterbalanced within a group.  Five min after the 

microinjection, animals received a priming injection of cocaine (10 mg/kg, i.p.) and were 

then immediately placed into the conditioning chamber.  Lever presses were recorded, 

but produced no consequences (i.e., no cues or cocaine were delivered).  To control for 

injection stress, animals were given saline i.p. injections on the day preceding their 

cocaine reinstatement tests and the average response rates during these sessions were 

used as the extinction baseline.  Animals were given a minimum of 3 extinction sessions 

between tests to allow extinction baseline rates to stabilize.  If animals failed to meet the 

reinstatement criteria of doubling baseline and at least 10 responses on the active lever 
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during both of the reinstatement tests, they were considered ‘nonreinstaters’ and were 

excluded from the analysis.  All animals were tested for cue reinstatement before cocaine 

reinstatement.   

M100907-Primed Reinstatement of Cocaine-Seeking Behavior 

 After cocaine reinstatement testing, a subset of animals with mPFC cannulae 

(n=44) was given a minimum of 5 extinction sessions to allow extinction baseline 

response rates to stabilize.  Animals were then given two reinstatement tests with a 

microinjection of M100907 (0.1, 0.3, 1.0, or 1.5 µg/0.2 µl/side) prior to one test and 

vehicle prior to the other test, counterbalanced for order of pretreatment.  Animals 

received the same assigned dose of M100907 that they had received for cue and cocaine-

primed reinstatement testing.  Animals were placed into the self-administration chambers 

5 min after the microinjection for a 1-h test.  Responding on neither the active nor the 

inactive lever had any consequences during these test sessions.   

Cue Reinstatement of Sucrose-Seeking Behavior 

After cocaine-primed reinstatement tests, a subset of animals with mPFC 

cannulae (n=10) were food-restricted to approximately 18 g of food/day for two days 

prior to beginning sucrose reinforcement training.  The animals were also given 

approximately 30 sucrose pellets (45 mg, Bio-Serv, Frenchtown, NJ) in their home cage 

to familiarize them with the pellets.  Animals were trained in a different room with a 

different set of operant conditioning chambers than those used for cocaine self-

administration training.  These chambers were each equipped with a food pellet dispenser 

and a food well located between 2 levers.  The location of the active and inactive levers 

from cocaine self-administration was reversed for sucrose reinforcement training.  In all 
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other respects, the training was similar to that used for cocaine self-administration.  Upon 

completion of a schedule of reinforcement, a cue light was presented above the active 

lever that oscillated on for 1 s and off for 1 s for 7 s total and a 45 mg sucrose pellet was 

delivered 1 s after the onset of the light.  The house light remained on during the session 

aside from when the cue light was on as well as a 20-s timeout period after completion of 

a schedule during which active lever presses had no effects.  Rats were given daily 30-

min sessions beginning on an FR 1 schedule of reinforcement with the capability to 

progress to a VR3 and then a VR5 schedule.  Once animals ended the session on a VR5 

schedule, they began the next session on a VR3 schedule.  If they ended on a VR5 

schedule again, they began the next session on a VR5 schedule and stayed on this 

schedule for the remainder of training.  Animals remained food restricted until they ended 

three sessions on a VR5 schedule, at which point they were given food ad libitum for the 

rest of the experiment.  All animals began on a VR5 schedule during the last 7 sessions of 

training and all were given a total of 14 sucrose training sessions.   

Next, animals underwent a total of 14 days of 1-hr extinction training sessions, 

during which there was at least an 80% reduction in lever pressing from the animals’ 

highest response rate during extinction.  Subsequently, animals were tested twice for cue 

reinstatement.  They received a 1.5 µg/0.2µl/side M100907 microinjection prior to one 

test and a vehicle microinjection prior to the other test, counterbalanced for order of 

pretreatment.  5-min after receiving a microinjection, animals were tested for 1-hr with 

the same stimulus complex as was paired with sucrose during training on an FR 1 

schedule; however no sucrose was available.  A noncontingent cue was delivered if a rat 

did not receive a response-contingent cue within the first 5 min of the test session.  
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Animals were given a minimum of 3 extinction sessions between tests to allow extinction 

baseline rates to stabilize. 

Locomotor Activity 

 A subset of animals with mPFC cannulae (n=24) that had a history of cocaine 

intake from the previous experiments were assigned to receive a microinjection of 

M100907 at an effective dose from cue-primed reinstatement testing (1.0 µg/0.2µl/side) 

or vehicle.  For two days before testing, animals received 1-h habituation sessions in the 

locomotor activity chambers. They were then tested twice, receiving either an injection of 

cocaine (10 mg/kg, i.p.) or saline, counterbalanced for order, immediately after receiving 

their assigned microinjection.   Rats were then placed into Plexiglas locomotor chambers 

(44 x 24 x 20 cm high) and were tested for 90 min.  A computer-automated video 

tracking system (Clever Systems, Reston, VA) was used to measure the distance traveled 

by each animal.  Animals were given 5 rest days in their home cages between the two 

tests.  

Statistical Analyses 

Data were analyzed using mixed-factor analyses of variance (ANOVAs) with 

session (e.g. extinction baseline, vehicle test, and M100907 test) as a within-subjects 

factor and dosage group (0.1, 0.3, 1.0, or 1.5 µg/0.2 µl/side) as a between-subject factor.  

A Greenhouse-Geisser correction was used to correct for heterogeneity of variance in the 

data.  Subsequent post-hoc comparisons were made using tests of simple main effects.  In 

addition, planned t-tests were used to test the prediction that cocaine-seeking behavior is 

attenuated after M100907 relative to vehicle pretreatment.  Baseline values were 
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calculated as the average of the two sessions that occurred before each test day (e.g. the 

day before cue testing with M100907 and the day before cue testing with vehicle). 

Histology 

Animals were deeply anesthetized with 3% isoflurane and given intracranial 

infusions (0.2 µl/side) of 1% methylene blue to verify cannulae placements.  Animals 

were then decapitated and the brains were removed, cryoprotected, frozen, and stored at -

20°C.  Brains were sliced in coronal sections (40 µm), stained with thionin, and examined 

under a microscope by observers unaware of group assignment who determined the point 

of drug infusion. 

Timeline of testing and summary of attrition 

 All 68 animals, 59 with mPFC and 9 with Cg2 cannulae, were trained to self-

administer cocaine and underwent extinction training followed by cue reinstatement 

testing. Although this study was conducted using 4 different cohorts of rats, each cohort 

included rats tested at each of the M100907 doses, except for the highest dose which was 

included only in the last cohort.  The cue reinstatement tests were the only tests that 

animals with Cg2 cannulae underwent. During cue reinstatement tests, 2 animals with 

mPFC cannulae and 1 animal with a Cg2 cannula failed to meet reinstatement criteria of 

double baseline or at least 10 lever presses, and so these animals were omitted from the 

data analysis for these tests.  Almost all animals with mPFC cannulae (n=55) underwent 

cocaine-primed reinstatement testing following the cue reinstatement tests, and of these, 

2 animals failed to meet the reinstatement criteria and were omitted from the data 

analyses for these tests.  One animal with mPFC cannulae given the 1.5 µg dose of 

M100907 prior to cocaine-primed reinstatement was considered an outlier (3+ standard 
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deviations above the mean) and was also excluded from the analysis.  A subset of 23 

animals with mPFC cannulae underwent self-administration testing prior to extinction 

training, and a different subset of 10 animals with mPFC cannulae underwent testing for 

cue reinstatement of sucrose-seeking behavior. Finally, 24 animals with mPFC cannulae 

were also tested for the effects of M100907 on locomotor activity after reinstatement 

testing had been completed.    In summary, animals with mPFC cannulae received a total 

of 6 to 8 microinfusions, whereas animals with anterior cingulate cannulae received a 

total of 2 microinfusions. The order of specific test types is summarized in Table 1. 

Results 

Figures 1A and 1B show the representative cannula tip placements for each 

region.  None of the animals had misplaced cannulae. All descriptive statistics given 

below are presented as the mean ± SEM. 

Effects of M100907 on Cocaine Self-Administration 

There was no significant difference between groups for total cocaine intake before 

testing.  The average number of infusions ± SEM across the last 5-days of self-

administration training for the groups ranged from 24.7 ± 0.37 to 29.9 ± 0.72.  Figure 2 

illustrates the effects of mPFC M100907 infusions on the number of reinforcers obtained 

during self-administration testing.  The ANOVA of number of reinforcers/h showed that 

there was a main effect of test day [F(2,38)=5.23, P<0.05] but no main effect of group or 

interaction with test day on self-administration behavior.  When collapsed across doses 

(see Figure 2B) there was a significant decrease in reinforcers obtained on the M100907 

test day versus baseline [t(22)=3.29, P<0.05]. 
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Extinction 

Active and inactive lever presses during the first session of extinction training are 

shown in Table 2.  All animals had at least 13 extinction sessions before reinstatement 

testing began.  For animals with mPFC cannulae, ANOVAs of the number of active and 

inactive lever presses/h on the first day of extinction versus the last day of extinction 

before testing showed main effects of day [F(1,54)=144.70 and 18.79, respectively, 

P<0.01] but no dose effect or interaction with dose.  Similarly for animals with Cg2 

cannulae, the ANOVA of number of active lever presses/h during the first extinction 

session versus the last  extinction session before testing showed only a main effect of day 

[F(1,7)=29.45, P<0.01].  In each case, the main effects indicated a significant drop in 

responding across training sessions.  There were no significant effects for inactive lever 

presses/h in animals with Cg2 cannulae, likely because initial response rates during the 

first sessions were low.  

Effects of M100907 on Cue Reinstatement of Cocaine-Seeking Behavior 

Figure 3 shows the effects of M100907 infusions into mPFC on cue-elicited 

reinstatement of cocaine-seeking behavior.  The ANOVA of responses/h on the active 

lever for animals with mPFC cannulae indicated a significant interaction between test 

session and M100907 dosage group [F(6,104)=2.20, p<0.05].  Tests of simple main 

effects indicated that all groups exhibited cue reinstatement evident as an increase in 

responding on the vehicle pretreatment test day relative to the extinction baseline 

(p<0.05).  In addition, M100907 pretreatment significantly decreased responding in 

animals receiving the 1.0 and 1.5 µg doses relative to their vehicle pretreatment 
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[t(13)=2.00, P<.05 and t(16)=3.56, P<.05, respectively], demonstrating a decrease in cue 

reinstatement at these doses.     

Figure 4 illustrates the effects of M100907 infusions on cue reinstatement of 

cocaine-seeking behavior in animals with Cg2 cannulae.  The ANOVA of responses/h on 

the active lever indicated a significant main effect of test day [F(2,14)=9.242, p<0.05]. 

Tests of simple main effects indicated that animals exhibited cue reinstatement evident as 

an increase in responding on the vehicle pretreatment test day relative to the extinction 

baseline (p<0.05), however there were no significant differences between vehicle and 

M100907 test days.  Table 2 shows inactive lever presses on M100907 test days for all 

groups. There were no significant differences for inactive lever presses. 

Effects of M100907 on Cocaine-Primed Reinstatement of Cocaine-Seeking Behavior 

 Figure 5 illustrates the effects of intra-mPFC infusions of M100907 on cocaine-

primed reinstatement of cocaine-seeking behavior.  There were 2 animals out of 55 that 

failed to meet the reinstatement criteria and were excluded from the analyses.  The 

ANOVA of responses/h on the active lever indicated a significant main effect of test day 

[F(1.6,76.6)=42.2, P<0.001] but no interaction with dose or main effect of dose.  The 

planned comparisons also failed to show any differences between vehicle and M100907 

test days for any of the groups.  Also shown is the main effect of M100907 on cocaine-

primed reinstatement collapsed across all four doses.  Tests of simple main effects 

indicated an increase in responding relative to the extinction baseline on both the vehicle 

and M100907 test days (p<0.001).  There was also a significant decrease in responding 

on M100907 test day compared to vehicle test day (p<0.05).  There were no differences 

in inactive lever presses (see Table 2).  Because these results were contrary to our 
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hypothesis, we examined whether effects occurred during the first 30 min when the drug 

effects should be maximal.  Responses/30 min showed a similar pattern across groups as 

the 1-h analysis (data not shown) with a main effect of test day [F(1.6,78.6)=35.2, 

P<0.001) but no dose or interaction effects. 

Effects of M100907 on Reinstatement of Cocaine-Seeking Behavior 

Figure 6 illustrates that M100907 priming injections infused into mPFC prior to 

testing failed to alter responding relative to extinction baseline.  The ANOVA of 

responses/h indicated that there were no significant effects on response rates on either the 

active or inactive levers (see Table 2).    

Effects of M100907 on Cue Reinstatement of Sucrose-Seeking Behavior 

Figure 7 shows the effects of intra-mPFC infusions of 1.5 µg M100907 on 

reinstatement of sucrose-seeking behavior.  The ANOVA of responses/h on the active 

lever indicated a significant main effect of test day [F(2,18)=6.87, p<0.05] but no 

interaction with dose or main effect of dose. Tests of simple main effects indicated that 

animals exhibited cue reinstatement evident as an increase in responding on the vehicle 

pretreatment test day relative to the extinction baseline (p<0.05), however reinstatement 

was also evident on the M100907 test day and there was no significant difference 

between vehicle and M100907 test days.  There were no differences in inactive lever 

presses (see Table 2). 

Effects of M100907 on Locomotor Activity 

 Figure 8 shows the effects of 1.0 µg/0.2 µl/side M100907 infused into mPFC on 

spontaneous and cocaine-induced locomotor activity.  The ANOVA indicated a 

significant effect of test session [F(1,22)=76.292, P<.05], but no M100907 dose effect or 
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test by dose interaction.  Tests of simple main effects indicated that animals exhibited 

significantly more distance traveled when given cocaine as compared to saline, but there 

was no difference in distance traveled in animals pretreated with vehicle versus 

M100907.  

Discussion

The present findings are the first to demonstrate that a 5-HT2A receptor antagonist 

infused into the mPFC dose-dependently decreases cue-elicited reinstatement of cocaine-

seeking behavior.  These results are consistent with the findings that peripheral injections 

of M100907 attenuate cue-elicited reinstatement of cocaine-seeking behavior (Nic 

Dhonnchadha, 2009).  Furthermore, the findings support our hypothesis that stimulation 

of 5-HT2A receptors in the mPFC modulates incentive motivational effects of cocaine-

paired cues.  In contrast to the effects on cue reinstatement, intra-mPFC infusions of 

M100907 failed to dose-dependently alter cocaine self-administration or cocaine-primed 

reinstatement.  There appeared to be a mild attenuation of these behaviors as there was a 

main effect of test day in both cases; however, there was no significant difference 

between numbers of reinforcers obtained or number of active lever presses following 

vehicle pretreatment relative to M100907 pretreatment at any given dose of M100907.  

For this reason, we suggest that the attenuation of both cocaine self-administration and 

cocaine-primed reinstatement that was detected when the data were collapsed across dose 

(i.e., main effect of test day) is likely due to some nonspecific effect rather than 

antagonism of 5-HT2A receptors.  The lack of effect of M100907 on cocaine self-

administration was expected given that systemic administration of M100907 does not 

affect this behavior (Nic Dhonnchadha, 2009; Fletcher et al, 2002).  In contrast, we had 
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predicted that M100907 infusions into mPFC would attenuate cocaine-primed 

reinstatement, similar to its systemic effects (Nic Dhonnchadha, 2009; Fletcher et al, 

2002). 

Out control manipulations provide support for the anatomical and behavioral 

selectivity of M100907 effects on cue reinstatement.  For instance, intra-mPFC infusions 

of M100907 did not alter spontaneous or cocaine-induced locomotor activity at the 1.0 

µg dose, which was a dose that effectively reduced cue reinstatement, suggesting the 

latter effect was not due to motor impairment.  Furthermore, the higher effective dose of 

1.5 µg/side did not affect cue reinstatement of sucrose-seeking behavior.  These findings 

further mitigate the possibility that the infusions interfered with the animals' ability to 

respond and also suggest that memory was intact.   The 1.5 µg/side M100907 infusions 

into the neighboring Cg2 subregion of the anterior cingulate cortex failed to alter cue 

reinstatement, suggesting anatomical specificity of the mPFC infusions. 

It seems likely that the attenuating effect of M100907 on cue reinstatement was 

due to the antagonism of 5-HT2A receptors in the mPFC.  M100907 has a >1000-fold 

selectivity for 5-HT2A receptors vs. 5-HT2C receptors (Kehne et al., 1996) and several 

studies have demonstrated that doses of 0.005-0.4 mg/kg M100907 reverse the behavioral 

effects of 5-HT2A, but not 5-HT2C, receptor agonists (Dekeyne, Girardon, & Millan, 

1999; Gresch, Barrett, Sanders-Bush, & Smith, 2007; Hitchcock, Lister, Fischer, & 

Wettstein, 1997; McCreary, Filip, & Cunningham, 2003; Vickers et al., 2001; Wettstein, 

Host, & Hitchcock, 1999).  We chose not to investigate the effects of a 5-HT2A agonist in 

the present study because these drugs have hallucinogenic effects, which would cloud 

interpretation.  If M100907 was acting on another receptor subtype, the most likely 
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candidate is the closely related 5-HT2C receptor.  This is unlikely, however, because prior 

research has shown that peripheral injections of the selective 5-HT2C receptor antagonist 

SB242084 do not affect cue reinstatement (Burbassi & Cervo, 2008; Burmeister, et al., 

2004), and in fact, this antagonist reverses the attenuation of cue reinstatement observed 

with 5-HT2C receptor agonists and enhances cocaine-primed reinstatement (Burmeister, et 

al., 2004; Fletcher, et al., 2002; Neisewander & Acosta, 2007).  Furthermore, SB242084 

infused into the mPFC has no effect on cue- or cocaine-primed reinstatement, whereas 

the selective 5-HT2C agonist MK212 attenuates both behaviors (Pentkowski, et al., 2010).  

Thus even though it is doubtful M100907 infusions antagonized 5-HT2C receptors, if such 

an effect had occurred that may explain why only attenuation, and not complete reversal, 

of cue reinstatement was observed.  Specifically, as the dose of M100907 is increased, 

antagonism of additional 5-HT2A receptor may be accompanied by antagonism of 5-HT2C 

receptors with the latter functionally opposing any additional reduction of cue 

reinstatement by 5-HT2A receptor antagonism. 

The region-specific effect of M100907 in attenuating cue reinstatement is 

consistent with literature suggesting that the mPFC plays a critical role in drug abuse-

related behavior.  It is thought that repeated psychostimulant administration decreases 

activity in the PFC, resulting in compulsive drug taking behavior (Jentsch & Taylor, 

1999; Volkow, Fowler, Wang, & Goldstein, 2002).  Although activation of mPFC may be 

reduced in drug-dependent individuals relative to controls, when drug-experienced 

humans or rats are exposed to drug-associated cues, the PFC exhibits increased activity 

(Childress, et al., 1999; Ciccocioppo, Sanna, & Weiss, 2001; Grant et al., 1996; Maas et 

al., 1998; Neisewander, et al., 2000).  Furthermore, the mPFC has been shown to be 
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involved in the incentive motivational effects of drug-paired cues through other 

pharmacological manipulations as well (Bossert, Ghitza, Lu, Epstein, & Shaham, 2005; 

Kalivas & McFarland, 2003; McLaughlin & See, 2003).   

Our findings that only cue and not cocaine-primed reinstatement was affected by 

mPFC infusion of M100907 suggest the intriguing possibility that different mechanisms 

within the mPFC may be involved in these types of reinstatement.  It has been 

hypothesized that there is a "final common pathway" for the neurocircuitry involved in 

stress-, cocaine-, and cue-primed reinstatement (Capriles, et al., 2003; Kalivas, 2008; 

Neisewander, et al., 2000) that likely involves glutamateric projections from the mPFC to 

the NAc (Feltenstein & See, 2008; Kalivas & McFarland, 2003; Kalivas, Peters, & 

Knackstedt, 2006; Shaham, Shalev, Lu, De Wit, & Stewart, 2003).  To our knowledge, 

this study is the first to find differential effects of a given manipulation of the mPFC 

across the different types of reinstatement, suggesting that there may be independent 

circuitries involving the mPFC that mediate the effects of cue and cocaine-primed 

reinstatement.   This hypothesis is equivocal presently, however, given that the general 

attenuation of cocaine-primed reinstatement by M100907 does not allow us to completely 

rule out the possibility of mPFC 5-HT2A receptor involvement in the incentive 

motivational effects of cocaine priming.  Indeed it is possible that cocaine-primed 

reinstatement may be altered at different doses of either the cocaine prime or intra-mPFC 

M100907 infusions.  It should be noted that the doses used in the present study were 

based on previous literature indicating behavioral effects of intracranial infusions 

approximating the dose range.  For instance, microinjections of M100907 into the VTA 

attenuate cocaine-induced (10 mg/kg) locomotor activity at doses lower (0.1-0.3 µg/0.2 
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µl/side) than those we found to be effective (McMahon, et al., 2001).  Further, infusions 

of 0.1-0.5 µg M100907 into the NAc were found to decrease impulsive responding on a 

5-choice serial reaction time task, though the higher dose was thought to possibly impair 

the animals’ functioning on the task (Robinson et al., 2008).  Thus, the doses of M100907 

that we tested were within an effective range based on localized infusions into other 

regions; however this drug has not been used extensively for intracranial injections so we 

cannot rule out the possibility that effects may occur at lower or higher doses.   

Other possible reasons for the lack of M100907 effects on behaviors were 

considered.  For instance, we believe it is unlikely that tolerance to M100907 occurred 

with repeated administration based on our unpublished observation that 1.0 µg M100907 

significantly attenuated headshakes induced by the 5-HT2A receptor agonist DOI after 

animals had undergone three other test phases (M100907-, cue- and cocaine-primed 

reinstatement testing).  We also found no effect of M100907 on cocaine-primed 

reinstatement during the first 30 minutes of testing, so it is unlikely that M100907 effects 

were obscured by testing beyond a period of maximal drug levels.  Finally, while we did 

not observe any effects of M100907 on cue reinstatement of sucrose-seeking behavior, 

our data cannot completely rule out the possibility that the mPFC is involved in the 

incentive motivational effects of other reinforcers given the difficulties of equating the 

motivational value of the different reinforcers.  Thus, it will be important to further test 

the role of mPFC 5-HT2A receptors in order to draw firm conclusions as to whether these 

receptors modulate the incentive motivational effects of cocaine priming injections and/or 

sucrose-associated cues.  Presently it appears that at the very least, 5-HT2A receptors in 
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mPFC may be more sensitive to modulating motivational effects of cocaine-associated 

cues relative to other cocaine-related behaviors. 

Future research will be needed to determine the specific neuroanatomical 

pathways involved in the attenuation of cue-elicited reinstatement of cocaine-seeking 

behavior that we observed in this study.  In the mPFC, 5-HT2A receptors are located 

postsynaptically, primarily on apical dendrites of pyramidal neurons with a minority 

found on GABA interneurons (Cornea-Hebert, Riad, Wu, Singh, & Descarries, 1999; 

Hamada et al., 1998; Jakab & Goldman-Rakic, 1998; Santana, Bortolozzi, Serrats, 

Mengod, & Artigas, 2004; Willins, Deutch, & Roth, 1997).  5-HT has an excitatory effect 

on glutamate release from pyramidal cells originating in the mPFC (Aghajanian & 

Marek, 1997).  Studies showing activation of the mPFC by cocaine-paired cues 

(Childress, et al., 1999; Grant, et al., 1996; Kilts et al., 2001) and attenuation of cue-

primed reinstatement of cocaine-seeking behavior by an α-amino-3-hydroxy-5-methyl-4-

isoxazolepropionic acid (AMPA) antagonist in the NAc core (Di Ciano & Everitt, 2001) 

have lead to the hypothesis that glutamate transmission from the PFC to NAc core is 

involved in reinstatement (McFarland, et al., 2003).   Therefore, one potential effect of 

blocking 5-HT2A receptors in the mPFC is a decrease in the activity of glutamatergic 

projection neurons to the VTA and NAc. 

Another potential mechanism for M100907 effects is via modulation of 

dopamine, as 5-HT2A receptor antagonism decreases mesocortical dopamine release 

(Alex & Pehek, 2007) and is thought to inhibit excitatory inputs from the mPFC to the 

VTA (Vazquez-Borsetti, Cortes, & Artigas, 2009).  Furthermore, systemic injections 

have shown that M100907 attenuates DOI-elicited increases in dopamine in the mPFC 
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(Gobert & Millan, 1999; Pehek, et al., 2001) and dorsal raphe stimulated release of 

dopamine in the NAc (De Deurwaerdere & Spampinato, 1999).  These findings lead to 

the conclusion that 5-HT2A receptors in the mPFC modulate phasic, but not tonic, 

dopamine release in the mPFC and striatum (De Deurwaerdere & Spampinato, 1999; 

Gobert & Millan, 1999; Lucas & Spampinato, 2000; Zhang et al., 2000).  Blocking 5-

HT2A receptors in the mPFC may decrease activation of excitatory projections to the 

VTA, thereby attenuating glutamate receptor stimulation in the VTA and decreasing 

dopamine release in the PFC and NAc (Alex & Pehek, 2007). 

Overall, our results indicate that selectively blocking 5-HT2A receptors in the 

mPFC dose-dependently reduced cue-elicited reinstatement of drug-seeking behavior.  

The lack of a dose-dependent effect of M100907 on cocaine self-administration and 

cocaine-primed reinstatement of cocaine-seeking behavior suggests that the attenuation 

of these behaviors regardless of M100907 dose is not likely receptor-mediated.  Further, 

M100907 in the mPFC did not affect locomotor activity or cue reinstatement of sucrose-

seeking behavior, suggesting the effects on cue reinstatement were not due to general 

performance or a memory deficit.  Therefore, we conclude that 5-HT2A receptors in the 

mPFC play a role in mediating the incentive motivational effects of cocaine-paired cues.  

The findings contribute novel information about the neural circuitry underlying the 

incentive motivational effects of cocaine cues and further suggest that 5-HT2A receptor 

blockade may be a potential therapeutic mechanism to treat cocaine craving and relapse.   
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Chapter 3 

Interaction between 5-HT2A receptor blockade and 5-HT2C receptor activation on 

cocaine hyperlocomotion and Fos protein activation in the caudate-putamen 

(Published in Synapse, 2012) 

Structurally, 5-HT2C and 5-HT2ARs are very similar (Hoyer, et al., 2002; Raymond et 

al., 2001), and are found to coexist in many brain regions involved in addiction circuitry 

(Bubar & Cunningham, 2007; Doherty & Pickel, 2000; Pompeiano, et al., 1994), 

including the mesolimbic pathway originating in the ventral tegmental area (VTA) and 

projecting to nucleus accumbens (NAc) and the nigrostriatal pathway originating in the 

substantia nigra (SN) and projecting to the caudate-putamen (CPu). Functionally, 5-HT2A 

and 5-HT2CRs play opposing facilitative and inhibitory roles, respectively, in cocaine-

related behaviors. For instance, peripheral injections of the 5-HT2AR selective antagonist 

M100907 decrease cocaine hyperlocomotion (Fletcher, et al., 2002; McMahon, et al., 

2001) as well as cue- and cocaine-primed reinstatement of cocaine-seeking behavior, but 

have no effect on cocaine self-administration (Fletcher, et al., 2002; Nic Dhonnchadha, et 

al., 2009). Systemic administration of M100907 also attenuates cocaine discriminative 

stimulus effects (McMahon, et al., 2001). Further, systemic or intra-striatal injections of 

M100907 attenuate MDMA- and amphetamine-induced DA release in the NAc and CPu 

(Porras, et al., 2002; Schmidt, et al., 1992; Schmidt, et al., 1994). Conversely, a selective 

5-HT2CR antagonist enhances cocaine hyperlocomotion as well as cocaine-primed 

reinstatement and cocaine self-administration (Fletcher, et al., 2002; McMahon, et al., 

2001). 5-HT2CR agonists RO-60-0175 and MK212 inhibit cue- and cocaine-primed 

reinstatement of cocaine-seeking behavior, effects that are blocked by pre-administration 
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of 5-HT2CR antagonists, indicating that they are 5-HT2CR-mediated (Fletcher, et al., 

2008; Neisewander & Acosta, 2007; Pentkowski, et al., 2010). Systemic administration 

of 5-HT2CR antagonists has been found to increase amphetamine-induced DA release in 

the NAc and CPu (Porras, et al., 2002), while agonists attenuate morphine-induced DA 

release in the NAc (Willins & Meltzer, 1998).  

Despite the oppositional relationship between behavioral effects mediated by 5-HT2A 

versus 5-HT2CRs, to date, no research has investigated a potential interaction between 

these two receptor subtypes. By contrast, behavioral pharmacology studies of the DA 

system have revealed that interactions between D1-like and D2-likeR families mediate 

effects of psychostimulants. For instance, D2R-mediated stereotypy is observed only 

when there is also tonic stimulation of D1Rs, even though stimulation of D1Rs alone has 

little, if any, effect (Missale, Nash, Robinson, Jaber, & Caron, 1998). Furthermore, D1 

and D2R antagonists synergistically decrease discriminative stimulus properties of 

cocaine and amphetamine (Callahan, Appel, & Cunningham, 1991), and D1 and D2R 

agonists administered together produce qualitatively more intense stereotypy than either 

one alone (Feldman, 1997; Jackson & Westlind-Danielsson, 1994). Investigating whether 

similar interactions exist between the 5-HT2A and 5-HT2CRs is an important research 

question that may suggest a novel approach to developing treatments for psychostimulant 

dependence (Whitten, 2007). 

One way to examine potential interactive effects of 5-HT2AR antagonists and 5-

HT2CR agonists is by measuring Fos activation. Fos protein expression is a commonly 

used measure of functional neuronal activity (Harlan & Garcia, 1998; Herrera & 

Robertson, 1996). Region-specific patterns of Fos expression are associated with acute 
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cocaine administration (Robertson, Paul, Moratalla, & Graybiel, 1991; Torres & Rivier, 

1994; Zahm et al., 2010) and exposure to cocaine-paired cues (Kufahl, Zavala, et al., 

2009; Neisewander, et al., 2000; Zavala, Biswas, Harlan, & Neisewander, 2007) or a 

cocaine-associated context (Brown, et al., 1992; Crawford, McDougall, Bolanos, Hall, & 

Berger, 1995; Hamlin, Clemens, & McNally, 2008; Hotsenpiller, Horak, & Wolf, 2002). 

The 5-HT2AR antagonist, M100907, has been found to decrease cocaine-induced Fos 

expression in the NAc shell and CPu (Szucs, et al., 2005). On the other hand, 5-HT2CR 

antagonists enhance Fos expression in the subthalamic nucleus and CPu (De 

Deurwaerdere, Le Moine, & Chesselet, 2010). We have also found that a 5-HT2C agonist 

administered into the ventromedial PFC decreases cocaine hyperlocomotion as well as 

cocaine-induced Fos expression in the dorsolateral CPu (Pentkowski, et al., 2010; 

Pockros, Pentkowski, Weber, & Neisewander, 2011). Thus, it seems that 5-HT2A 

antagonists and 5-HT2C agonists both decrease cocaine-induced Fos expression in the 

CPu, as well as attenuate cocaine hyperlocomotion. 

In the present study, we hypothesized that concurrent 5-HT2A antagonism and 5-HT2C 

agonism would interact to attenuate the effects of cocaine on locomotion and Fos 

expression. We first examined dose-dependent decreases in cocaine hyperlocomotion by 

M100907 and MK212 given alone. From these experiments, we identified subthreshold 

doses of each drug that produced no effect on cocaine hyperlocomotion when given 

alone. We then tested the effects of a combination of these subthreshold doses of 

M100907 and MK212 on cocaine-induced and spontaneous locomotion. We also 

conducted Fos immunohistochemistry in several brain regions to investigate the effects of 
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concurrent 5-HT2A antagonism and 5-HT2C agonism on cocaine-induced neuronal 

activation. 

Methods 

Animals  

Adult male Sprague–Dawley rats weighing 250–350 g at the start of the experiments 

were used in this study. Animals were housed in a climate-controlled colony room with a 

14-h reversed light/dark cycle (lights off at 7:00 a.m. and on at 9 p.m.) and were cared for 

in accordance with the “Guide for the Care and Use of Laboratory Animals” (Institute of 

Laboratory Animal Resources on Life Sciences, National Research Council 1996).  The 

animals were given food and water ad libitum except during the testing sessions. 

Drugs 

 M100907 (RTI International, Research Triangle Park, NC, USA) and MK212 

(Tocris Cookson Inc., Ellisville, Missouri, USA) were dissolved in a 0.9% saline 

containing 3% tween. Cocaine-HCl (RTI International, Research Triangle Park, NC, 

USA) was dissolved in 0.9% saline. Euthasol (Hospira, Lake Forest, IL, USA) was used 

to deeply anesthetize animals before perfusions. 

General procedures 

 Animals were handled daily for 1 week and were given saline injections to 

habituate them to injection stress on each of the 2 days prior to the start of the 

experiments. All animals were tested in Plexiglas locomotor activity chambers (44 × 24 × 

20 cm high) in a soundproof, dimly lit room for 60-min sessions. A computer-automated 

video tracking system (Clever Systems, Reston, VA, USA) used the orientation of the 

animal’s body (e.g. center of body) to measure the total horizontal distance traveled. All 
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testing was conducted during the animals’ dark cycles.  In experiments testing cocaine 

hyperlocomotion, animals were placed into the test chambers for 1 h prior to any drug 

injections in order for them to habituation to the chamber, thus providing a low baseline 

level of locomotion from which to detect cocaine-induced increases. 

Dose-dependent effects of M100907 and MK212 on cocaine hyperlocomotion  

 Separate cohorts of animals were randomly assigned to groups that received i.p. 

injections of either M100907 (0.025, 0.05, or 0.1 mg/kg) or MK212 (0.125, 0.25, or 0.5 

mg/kg) (n=8/dose) prior to one test; both cohorts received vehicle prior to the other test 

with the order of the drug versus vehicle tests counterbalanced within groups. Following 

habituation on the test day, the animals were given an injection of their assigned drug, put 

back into their home cage for 5-min, and then given an injection of cocaine (15 mg/kg, 

i.p.) immediately before being placed back into the test chambers for the 1-h test. 

Effects of M100907 + MK212 on cocaine hyperlocomotion  

Subthreshold doses of M100907 (0.025 mg/kg, i.p.) and MK212 (0.125 mg/kg, 

i.p.) that failed to alter cocaine-induced locomotor activity on their own in the above 

experiments were then combined as a cocktail to examine potential receptor interactions. 

Animals were randomly assigned to receive 2 drug injections given 5 min apart following 

the habituation period as follows, respectively: saline + saline, saline + cocaine (15 

mg/kg, i.p.), 0.025 mg/kg M100907 + cocaine, 0.125 mg/kg MK212 + cocaine, or 

cocktail + cocaine (n=6-7/group). Rats were placed into their home cage following the 

first injection and were placed back into the locomotor activity chambers for a 1-h test 

following the second injection. This experiment utilized a between-subjects design, as 
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animals were sacrificed after testing and their brains were extracted for Fos analysis as 

described below.  

Effects of M100907 + MK212 on spontaneous locomotion 

Drug-naïve rats were randomly assigned to receive saline, M100907 (0.025 

mg/kg, i.p.), MK212 (0.125 mg/kg, i.p.) or a cocktail of the latter two drugs. Five min 

after injection of their assigned drug, the rats were placed into the locomotor activity 

chambers for a 1-h test. There was no habituation period in this experiment in order to 

avoid having a floor effect that would obviate detection of drug effects on locomotion. 

Tissue preparation 

 To allow 90-min after drug injections for optimum Fos expression, animals 

remained uninterrupted in the locomotor chambers for 30-min after the 1-h test. They 

were then deeply anesthetized with Euthasol (100 mg/kg, i.p.) and perfused transcardially 

with 300 ml of ice-cold 0.1 M phosphate-buffered saline (PBS), pH 7.4, followed by 300 

ml of ice-cold 4% paraformaldehyde in 0.1 M PBS, pH 7.4. The brains were removed, 

postfixed overnight at 4 °C in 4% paraformaldehyde, and then transferred to 15% sucrose 

for 24 h and then to 30% sucrose for an additional 24 h while continuously being stored 

at 4 °C. Coronal sections (40 µm) were collected using a freezing microtome at levels 

corresponding to 3.2, 1.6, 2.56, 5.6 mm relative to bregma (Paxinos and Watson, 1998). 

The tissue sections were then frozen and stored at 20 °C in a cryoprotectant solution 

comprised of 0.02 M PBS (pH 7.2), 30% sucrose, 10% polyvinyl pyrrolidone, and 30% 

ethylene glycol. 
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Fos protein immunohistochemistry 

Tissue sections were first washed in 0.1 M PBS (6×10 min) to remove the 

cryoprotectant. Sections were then incubated in 0.3% H2O2 for 30 min and rinsed with 

0.1 M PBS (3×10 min), followed by incubation in 0.1 M PBS containing 5% normal goat 

serum (NGS) (Vector Laboratories, Burlingame, CA, USA) and 0.2% Triton X-100 

(Sigma, St. Louis, MO, USA) for 1 h. Sections were then incubated for 48 h at 4 °C in 

0.1 M PBS containing anti-Fos rabbit polyclonal antibody (SC-52; 1:2,000; Santa Cruz 

Biotechnology, Santa Cruz, CA, USA), 0.1% Triton X-100 and 1% NGS, and then rinsed 

in 0.1 M PBS (3×10 min). Sections were then incubated in 0.1 M PBS containing 

biotinylated goat anti-rabbit IgG (1:500; Vector Laboratories, Burlingame, CA, USA) 

and 1% NGS for 1 h, and then rinsed in 0.1 M PBS (3×10 min). Subsequently, 

horseradish peroxidase activity was visualized with nickel diaminobenzidine and glucose 

oxidase reaction as described in Dielenberg et al. (2001). This reaction was terminated 

after 10 min by rinsing the tissue in 0.1 M PBS (3×10 min). Sections were then mounted 

onto gelatin-coated slides, dried, and dehydrated before cover slipping. 

Fos immunoreactivity analysis 

 Sections were taken at +3.2 mm, which contained the prelimbic (PrL) and 

infralimbic (IL) cortices; sections taken at +1.6 mm contained the NAc core (NAcC) and 

shell (NAcS), and the dorsolateral CPu. Care was taken to ensure that the sections that 

were labeled came from the same anatomical level within each plane for each subject. 

Quantification of Fos immunoreactivity was examined using a Nikon Eclipse E600 

(Nikon Instruments, Melville, NY, USA) microscope set at 20X. For all regions, the 

sample area counted was 0.26 mm2 and there were a total of six sample areas counted for 
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each subject (i.e., 1 sample area/2 hemispheres/3 sections) that were then averaged to 

provide a mean number of immunoreactive cells per sample area. An observer blind to 

treatment conditions identified Fos immunoreactivity as a blue-black oval-shaped nucleus 

distinguishable from background using size and optical density criteria set using the 

Image Tool software package (Version 3.0, University of Texas Health Sciences Center, 

San Antonio, TX, USA). Regions analyzed and representative sample areas are shown in 

Figure 9. These images were captured using SPOT Advanced software (Version 3.5 

Sterling Heights, MI, USA) and no modifications were made to the images. 

Statistical analyses 

Because the purpose of the dose-effect experiments was to identify subthreshold 

doses of M100907 and MK212, locomotor activity data at each dose were analyzed 

separately using repeated measures analyses of variance (ANOVAs) with time (e.g. 15-

min time bins) and test (e.g. saline or cocaine) as within-subject factors. For drug 

interaction experiments, spontaneous and cocaine-induced locomotor activity data were 

analyzed using mixed-factor ANOVAs with time as a repeated measure within-subject 

factor and drug group as a between-subject factor. For all tests of cocaine 

hyperlocomotion, the last 15-min of habituation served as a baseline. Fos data were 

analyzed by region using one-way ANOVAs with drug as a between-subject factor. In 

order to focus analyses of Fos on group differences in response to cocaine standardized 

across regions, raw data was converted to a percent of saline control and analyzed using 

one-way ANOVAs with drug as a between-subject factor. A Greenhouse–Geisser 

correction was used to correct for heterogeneity of variance in the data. Significant 
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effects were further analyzed using smaller ANOVAs and post hoc comparisons were 

made using Tukey’s HSD test. All statistics were run using SPSS, version 20. 

Results 

Dose-Effect Function of M100907 on Cocaine Hyperlocomotion 

Figure 10 shows the dose-effect function of M100907 on cocaine 

hyperlocomotion. For the lowest dose of 0.025 mg/kg, the ANOVA of distance traveled 

showed a main effect of time [F(1.51,10.60)=10.92, p<0.01], but no effect of test nor test 

by time interaction demonstrating that locomotion was similar regardless of vehicle 

versus M100907 treatment. Post hoc tests on the main effect of time showed that cocaine 

increased locomotor activity relative to baseline, and locomotor activity remained 

elevated for the first 30-min of testing (p<0.05). 

For the 0.05 mg/kg dose, the ANOVA of distance traveled showed an interaction 

of time by test [F(4,28)=3.30, p<0.05], as well as a main effect of time 

[F(1.76,12.33)=9.06, p<0.01]. Post hoc tests showed a difference between baseline and 

the first 15-min of testing only when animals were pretreated with vehicle (p<0.05). On 

the vehicle test day, locomotor activity remained elevated at the 30-min time point 

compared to baseline (p<0.05). On the M100907 test day, there was no difference 

between any of the time points, consistent with a failure to observe cocaine 

hyperlocomotion. However, the M100907 attenuation of cocaine hyperlocomotion was 

not due to a change at a particular time as there were no differences between test days 

any time points.  

For the 0.1 mg/kg dose, the ANOVA of distance traveled showed a main effect of 

time [F(4,28)=14.69, p<0.01] as well as a main effect of test [F(1,7)=9.06, p<0.05], with 
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the latter indicating less distance traveled overall during the M100907 test than during the 

vehicle test. Post hoc tests on the main effect of time showed that cocaine increased 

locomotor activity relative to baseline for the first 15-min of testing regardless of 

pretreatment (p<0.01). Collectively, these findings suggest that cocaine hyperlocomotion 

was slightly attenuated at this dose of M100907. 

Dose-Effect Function of MK212 on Cocaine Hyperlocomotion 

 Figure 11 shows the effects of MK212 on cocaine hyperlocomotion. For the 

lowest dose of 0.125 mg/kg, the ANOVA of distance traveled showed a main effect of 

time [F(4,28)=35.95, p<0.01], but no effect of test nor test by time interaction 

demonstrating that locomotion was similar regardless of vehicle versus MK212 

treatment. Post hoc tests on the main effect of time showed that cocaine increased 

locomotor activity relative to baseline, and locomotor activity remained elevated for 45 

min regardless of test day (p<0.05). 

For the 0.25 mg/kg dose, the ANOVA of distance traveled showed an interaction 

of time by test [F(4,28)=3.40, p<0.05], as well as a main effect of time [F(4,28)=23.17, 

p<0.01], and a main effect of test [F(1,7)=17.07, p<0.01). Post hoc tests showed a 

difference between baseline and the first 15 min of testing on both test days (p<0.05). On 

the vehicle test day only, locomotor activity remained elevated at the 30-min time point 

compared to baseline (p<0.05). There was also a significant difference between vehicle 

and MK212 test days at the 30-min time point (p<0.05). 

For the 0.5 mg/kg dose, the ANOVA of distance traveled showed an interaction 

of time by test [F(4,28)=11.77, p<0.01], as well as a main effect of time [F(4,28)=37.35, 

p<0.01], and a main effect of test [F(1,7)=9.98, p<0.05]. Post hoc tests showed a 
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difference between baseline and the first 15 min of testing on the vehicle test day 

(p<0.05), and locomotor activity remained elevated compared to baseline (p<0.05) until 

the last 15-min of the test. On the MK212 test day, there was no difference between 

baseline and the first 15-min of testing, however there was a significant decrease in 

activity compared to baseline at all other time points (p<0.05). There were also 

significant differences between vehicle and MK212 test days at the last three time points 

(p<0.05). 

M100907/MK212 Interaction Effects on Cocaine Hyperlocomotion  

 The effects of the M100907/MK212 cocktail on cocaine-induced locomotor 

activity are shown in Figure 12. The ANOVA of distance traveled showed a significant 

time by drug interaction [F(6.95,45.20)=2.49, p<0.05] as well as a main effect of time 

[F(1.74, 45.20)=40.29, p<0.01] and a main effect of drug [F(4,26)=4.97, p<0.01]. Post-

hoc comparisons indicated a significant difference between the saline + saline and saline 

+ cocaine groups (p<0.05, Tukey HSD), as well as the saline + cocaine and cocktail + 

cocaine groups (p<0.01, Tukey HSD). There were no differences between the cocaine + 

saline and cocaine + M100907 or cocaine + MK212 groups (p=0.474 and p=0.463, 

respectively). 

At each 15-min time-bin during testing, the one-way ANOVAs of distance 

traveled showed a significant effect of drug group [Fs(4,30)=5.491-3.751, p<0.05]. 

Across all post-cocaine time bins, the cocktail + cocaine group exhibited less locomotion 

than the saline + cocaine group (p<0.05, Tukey HSD), whereas the saline + saline group 

exhibited less locomotion at the 30 (p<0.01, Tukey HSD) and 60 min time bins only 

(p<0.05, Tukey HSD). In contrast, the M100907 + cocaine and MK212 + cocaine groups 
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did not differ from either the saline + saline or saline + cocaine groups at any time point. 

There was no difference in baseline between groups. 

M100907/MK212 Interaction Effects on Spontaneous Locomotion  

The effects of the M100907/MK212 cocktail on spontaneous locomotor activity 

are shown in Figure 13. The ANOVA of distance traveled showed a main effect of time 

[F(3,84)=138.551, p<0.01], but no effect of drug or drug by time interaction, suggesting 

that none of the drug treatments altered spontaneous locomotion. Post-hoc tests showed a 

difference between the first 15-min and each of the 30-min, 45-min, and 60-min time 

points (p<0.01), as well as a difference between the 30-min and 45-min time points 

(p<0.01). 

M100907/MK212 Interaction Effects on Cocaine-induced Fos Activation 

  The effects of the M100907/MK212 cocktail on cocaine-induced Fos activation in 

striatal subregions are shown in Figure 14. Fos data are from the same animals whose 

behavioral data are shown in Figure 12. The ANOVA of percent control of Fos-positive 

nuclei in the dorsal CPu (Panel a) showed a significant between-group effect 

[F(4,30)=3.859, p<0.05]. Post-hoc comparisons showed significant differences between 

the saline + saline and saline + cocaine (p<0.05, Tukey HSD) groups, indicating that 

cocaine increased Fos expression in this region. There were also significant differences 

between saline + saline and MK212 + cocaine (p<0.05, Tukey HSD) and saline + saline 

and M100907 + cocaine (p<0.05, Tukey HSD) groups, suggesting neither drug alone 

reversed the effect of cocaine on Fos expression. In contrast, there was no significant 

difference between the saline + saline and cocktail + cocaine groups, indicating that the 

cocktail significantly attenuated cocaine-induced Fos expression. ANOVAs of percent 
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control of Fos-positive nuclei in the NAc core (Panel b) and shell (Panel c) and the 

infralimbic (Panel d) and prelimbic (Panel e) PFC failed to reveal any between-group 

effects. 

Discussion 

Results from the present study support our hypothesis that 5-HT2A and 5-HT2CRs 

interact to decrease cocaine-induced locomotor activity and Fos expression. We 

determined from dose-response experiments that the doses of 0.025 mg/kg M100907 and 

0.125 mg/kg MK212 had no effect on cocaine hyperlocomotion when given alone but 

these doses given in combination significantly attenuated cocaine hyperlocomotion, 

consistent with receptor interaction effects. The interaction effect was specific for cocaine 

hyperlocomotion as this dose combination had no effect on spontaneous locomotor 

activity. This dose combination also region-specifically attenuated cocaine-induced Fos 

expression in the dorsolateral CPu. It is likely that the effects of M100907 and MK212 

observed in the present study were in fact due to actions at 5-HT2A and 5-HT2C receptors, 

respectively. M100907 has >1000-fold selectivity for 5-HT2A vs. 5-HT2C receptors 

(Kehne, et al., 1996) and several studies have demonstrated that doses of 0.005-0.4 mg/kg 

reverse the behavioral effects of 5-HT2A agonists, but not those of 5-HT2CR agonists 

(Dekeyne, et al., 1999; Gresch, et al., 2007; Hitchcock, et al., 1997; McCreary, et al., 

2003; Vickers, et al., 2001; Wettstein, et al., 1999). MK212 binds to 5-HT2CRs with the 

highest affinity compared to other receptors, but it does have affinity for 5-HT2A, 5-HT2B 

and 5-HT3Rs (Cussac, Newman-Tancredi, Duqueyroix, Pasteau, & Millan, 2002; 

Glennon et al., 1989; Porter et al., 1999). It is unlikely that 5-HT2B receptors were 

involved in the effects observed in this study since previous research has found that 
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neither 5-HT2BR agonists nor antagonists have any effect on cocaine hyperlocomotion 

(Filip, Bubar, & Cunningham, 2004). Further, we have shown that the locomotor activity 

effects of even higher doses of MK212 (0.32-1.0 mg/kg), which should be less selective 

for 5-HT2CRs than the low doses used in the present study, are reversed by a selective 5-

HT2CR antagonist, SB242084 (Neisewander & Acosta, 2007; Pentkowski, et al., 2009; 

Pentkowski, et al., 2010).  The hypolocomotive effects of MK212 itself are also reversed 

by SB242084 (Stiedl et al., 2007). Thus it is likely that the low dose effects observed here 

are 5-HT2CR-mediated. 

Our findings fit with the existing literature, which clearly shows that both 5-

HT2AR antagonists and 5-HT2CR agonists given alone decrease cocaine hyperlocomotion, 

as well as reinstatement of cocaine-seeking behavior (Grottick, Fletcher, & Higgins, 

2000; McMahon, et al., 2001; Neisewander & Acosta, 2007; Nic Dhonnchadha, et al., 

2009; Pentkowski, et al., 2010; Pockros, et al., 2011). Similar results have been found in 

the nicotine literature as well, with 5-HT2AR antagonists decreasing nicotine self-

administration (Fletcher et al., 2012; Levin et al., 2008) and 5-HT2CR agonists attenuating 

nicotine self-administration as well as nicotine-induced locomotion, sensitization, 

conditioned place preference, and discriminative stimulus effects (Fletcher, et al., 2012; 

Grottick, Corrigall, & Higgins, 2001; Zaniewska, McCreary, Przegalinski, & Filip, 2007). 

5-HT2AR antagonists and 5-HT2CR agonists have also been shown to attenuate premature 

responding on a five-choice serial reaction time test with and without cocaine, suggesting 

a role in drug-induced impulsivity (Fletcher, Tampakeras, Sinyard, & Higgins, 2007). 

While there is ample evidence that 5-HT2A antagonists and 5-HT2C agonists have 
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opposing effects, to our knowledge the present study is the first to demonstrate an 

interaction between these two serotonin receptor subtypes. 

Interestingly, the middle dose (0.05 mg/kg) of M100907 appeared to have a 

stronger effect than the highest dose (0.1 mg/kg). Previous research has shown that a 

higher dose of 0.5 mg/kg attenuates cocaine hyperlocomotion (Fletcher, et al., 2002), 

suggesting that there may be an inverted U-shaped dose-effect function for M100907 

effects on this behavior. The dose-effect function of M100907 on methamphetamine 

hyperlocomotion is similar, with a higher dose producing less robust attenuation than an 

intermediate dose (Steed, Jones, & McCreary, 2011). Some studies have shown dose-

dependent effects of M100907 on impulsivity (Agnoli & Carli, 2012) and reinstatement 

of nicotine-seeking behavior (Fletcher, et al., 2012), whereas M100907 effects on cue-

primed reinstatement of cocaine-seeking behavior (Nic Dhonnchadha, et al., 2009) do not 

appear to vary dose-dependently. 

The effects of M100907 and MK212 on cocaine-induced Fos expression in the 

dorsolateral CPu mimicked the behavioral data, where low doses of M100907 and 

MK212 had no effect on cocaine-induced Fos expression when given alone, but produced 

a significant decrease when given in combination. Although this study did not include 

control groups for possible effects of M100907 or MK212 alone on Fos expression, it is 

unlikely that these drugs altered Fos expression on their own given previous findings. For 

instance, it has been shown that M100907 (0.2-0.8 mg/kg) has no significant effect on 

Fos activation in the CPu after saline pretreatment (Szucs, et al., 2005). The effects of 

MK212 on Fos expression have not been examined, although another 5-HT2CR agonist, 

RO-60-1057, fails to alter Fos expression in the CPu at doses (1-3 mg/kg) that attenuate 
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cocaine-primed reinstatement (Beyeler et al., 2010; Grottick, et al., 2000). Furthermore, 

studies have previously found that cocaine-induced Fos expression in the CPu is altered 

by 5-HT2R manipulations. For instance systemic injections of M100907 attenuate 

cocaine-induced Fos in the CPu (Szucs, et al., 2005), and our laboratory has found that 

intra-mPFC infusions of MK212 also attenuate cocaine-induced Fos in the CPu (Pockros, 

et al., 2011). Thus, it is unlikely that these drugs induce Fos expression on their own, but 

instead selectively attenuate cocaine-induced Fos expression, similar to their selective 

attenuation of cocaine-induced hyperlocomotion without producing any effect on 

spontaneous locomotion. 

It is surprising that cocaine hyperlocomotion was associated with increased Fos 

expression only in the CPu and not in the NAc or PFC because several previous studies 

have found that acute injection of cocaine produces hyperlocomotion and increases Fos 

protein expression in all of these regions (Graybiel, Moratalla, & Robertson, 1990; Szucs, 

et al., 2005; S. T. Young, Porrino, & Iadarola, 1991). However, cocaine-induced Fos 

expression in the striatum exhibits a rostral to caudal increasing gradient. For instance, 

Szucs et al. (2005) found no effects of cocaine on Fos expression in the anterior NAc 

core or shell at +1.7 mm from Bregma, consistent with the lack of cocaine-induced Fos 

expression in the present study at +1.6 mm from bregma. However, in contrast to Szucs 

et al. (2005) who found only a nonsignificant trend toward an effect of cocaine on Fos 

expression in the CPu at +1.7 mm from Bregma, we found that cocaine significantly 

increased Fos in the CPu at +1.6mm from Bregma. This difference may be due to 

different slicing angles or staining or counting techniques. It is possible that we may have 

observed cocaine-induced Fos expression if we had analyzed tissue from the caudal 
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regions of the NAc core and shell because Szucs et al. (2005) only found significant 

effects at a more caudal level (i.e., +1.0 mm from Bregma). Contrary to our results, 

several studies have shown that cocaine (2 mg/kg, i.v. or 25 mg/kg) increases Fos 

expression in the medial PFC (Graybiel, et al., 1990; Kufahl, Pentkowski, Heintzelman, 

& Neisewander, 2009). However, differences in cocaine dose or different routes of 

administration may account for differences across studies. 

The similar pattern of changes in locomotion and Fos expression in the CPu 

suggests that this region is involved in the observed behavioral changes. Although, site-

specific injections will be necessary to determine the brain regions and cellular 

mechanisms involved in the functional receptor interaction, the CPu is likely involved 

given its role in stimulant-induced motor activities, including locomotion, repetitive 

stereotypic and habitual behaviors (Brown, et al., 1992; Naylor & Olley, 1972; White, et 

al., 1998; Zimmerberg & Glick, 1974). The dose of cocaine used in the present study (15 

mg/kg, i.p.) does not typically produce stereotypic behaviors, however slightly higher 

doses (20 mg/kg, i.p.) have been found to produce stereotopies typically manifesting as 

headbobbing (Bhattacharyya & Pradhan, 1979; Budygin, 2007; O'Dell, Khroyan, & 

Neisewander, 1996; White, et al., 1998). Repetitive stereotypic behaviors may compete 

with expression of cocaine hyperlocomotion; however, if stereotypy occurred in this 

study, the drugs co-administered with cocaine would likely have attenuated rather than 

exacerbated this behavior. Indeed 5-HT2AR antagonists, including M100907, have been 

found to attenuate stereotopy produced by other drugs (Barwick, Jones, Richter, Hicks, & 

Young, 2000; Higgins, Enderlin, Haman, & Fletcher, 2003; Ninan & Kulkarni, 1998). 

Similarly, 5-HT2CR mutant mice exhibit enhanced DAT antagonist-induced stereotypic 
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behavior (Abdallah et al., 2009), suggesting that stimulation of these receptors inhibits 

dopamine-induced stereotypy. Thus, it is unlikely that the reduction of cocaine 

hyperlocomotion was due to competing stereotypic behavior. 

Although the cellular mechanisms by which M100907 and MK212 produced their 

combined effect on cocaine hyperlocomotion and Fos expression remain to be elucidated, 

one possibility is via a decrease in DA release in the nigrostriatal pathway. Acute 

injection of cocaine has been shown to stimulate Fos expression (Neisewander, et al., 

2000; Zahm, et al., 2010) and increase DA in the CPu (Hurd & Ungerstedt, 1989; Hurd, 

Weiss, Koob, & Ungerstedt, 1990). 5-HT2A and 5-HT2CRs have been found to regulate 

amphetamine- and morphine-induced DA release in the CPu in opposing manners; 5-

HT2AR blockade attenuates phasic DA release (De Deurwaerdere & Spampinato, 1999; 

Gobert & Millan, 1999; Ichikawa & Meltzer, 1995; Lucas & Spampinato, 2000; Porras, 

et al., 2002; Schmidt, et al., 1992), while 5-HT2CR activation decreases both tonic and 

phasic DA activity (Di Giovanni, et al., 1999; Di Matteo, et al., 2000; Gobert, et al., 

2000; Porras, et al., 2002). Cellular localization of 5-HT2A and 5-HT2CRs in the dorsal 

CPu has yet to be determined, although the majority of 5-HT2AR-labeled cells in this 

region contain parvalbumin, indicative of γ-Aminobutyric acid (GABA) interneurons 

(Bubser, Backstrom, Sanders-Bush, Roth, & Deutch, 2001). In the mesolimbic pathway, 

5-HT2A and 5-HT2CRs are expressed on both DA and GABA neurons in the VTA, and on 

GABA neurons in the NAc. In the SN pars compacta, 5-HT2CRs are found on 

GABAergic neurons and 5-HT2CR agonists stimulate GABA release in the SN (Eberle-

Wang, Mikeladze, Uryu, & Chesselet, 1997; Invernizzi et al., 2007). Intra-CPu 

administration of a 5-HT2CR inverse agonist increases DA release in the CPu, an effect 
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that can be reversed by concurrent administration of a 5-HT2CR agonist mCPP (1.0 

mg/kg, i.p.) (Alex, et al., 2005). Thus, the 5-HT2A and 5-HT2CR interactive effects on 

cocaine hyperlocomotion and Fos expression in the CPu may be due to direct modulation 

of DA release from nigrostriatal neurons, or indirect modulation of DA release via an 

increase in GABA inhibition either within the dorsal CPu itself or within the SN. While 

we did not observe effects of M100907 and/or MK212 on Fos activation in the terminal 

regions of the mesocorticolimbic dopamine pathway, this does not rule out the possibility 

that this pathway is involved in the interaction effects.  

  We chose to test our hypothesis by examining effects of subthreshold doses of 

M100907 and MK212 on cocaine-induced locomotion to establish proof or principle that 

5-HT2A and 5-HT2CRs interact. Although this method of combining subthreshold doses is 

an approach that has been used to detect synergistic interactions (Brown, Finlay, Wong, 

Damsma, & Fibiger, 1991; Gotoh et al., 2006; Thiel, Sanabria, & Neisewander, 2009), 

there are some limitations. First, although statistically our findings are consistent with a 

synergistic interaction, the non-significant tendency of both drugs to attenuate cocaine 

hyperlocomotion when given alone raises the possibility that their interactive effect may 

be additive rather than synergistic. Thus, more sophisticated isobolographic analyses will 

be needed to precisely determine the nature of the 5-HT2A and 5-HT2CR interaction.  

Second, it remains unclear whether pharmacokinetic interactions between these drugs are 

involved in the interaction effect observed.  Future research will be needed to address 

these issues. 

In conclusion, the findings from this study provide support for the idea that a 

combination of 5-HT2A antagonist and 5-HT2C agonist may offer potential therapeutic 
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advantages for development of treatment for cocaine dependence. For instance, relatively 

low doses of two drugs could be used instead of a high dose of a single drug. These lower 

doses would likely be less disruptive than a high dose to various systems throughout the 

body involving these receptors, resulting in fewer side-effects. In support of this idea, the 

present findings indicate that combined subthreshold doses that decreased cocaine 

hyperlocomotion without disturbing spontaneous locomotion. 5-HT2CR agonists with 

greater selectivity have recently been developed that may improve upon therapeutic 

efficacy and used at a lower dose range in combination with 5-HT2AR antagonists. 

Clinical trials are currently investigating the effectiveness of 5-HT2AR antagonists in 

treating depression and insomnia and 5-HT2CR agonists in treating obesity (NIH, 2010), 

supporting the potential clinical utility of these drugs for treating addiction. Ideally, 

pharmacological treatments aimed at cocaine dependence should not only curtail the 

reinforcing effects of cocaine, but also drug craving and relapse (Washton, 1988). To 

further explore the potential clinical utility of a combination treatment with a 5-HT2AR 

antagonist and a 5-HT2CR agonist, future research is needed to determine whether the 

combination would reduce cocaine self-administration and drug-seeking behavior while 

not interfering with unconditioned behaviors (i.e. locomotion and feeding). 
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Chapter 4 

Effects of a 5-HT2CR agonist in the amygdala on reinstatement of cocaine-seeking 

behavior and anxiety on the elevated plus maze 

Increasing or decreasing 5-HT levels in the brain has been found to attenuate 

craving and cocaine-seeking behavior in humans (Aronson, et al., 1995; Batki, et al., 

1993; Satel, et al., 1995; Walsh, et al., 1994) and animals (Baker, et al., 2001; 

Burmeister, Lungren, & Neisewander, 2003; Tran-Nguyen, et al., 1999), respectively. 

This paradoxical relationship is thought to be due to activation of different 5-HT 

receptors in the brain that are involved in addiction, including the 5-HT2C receptor (R). 5-

HT2CR agonists attenuate cue- and cocaine-primed reinstatement of cocaine-seeking 

behavior, (Fletcher, et al., 2008; Neisewander & Acosta, 2007; Pentkowski, et al., 2010) 

while 5-HT2CR antagonists enhance cocaine hyperlocomotion as well as cocaine-primed 

reinstatement and cocaine self-administration (Fletcher, et al., 2002; McMahon, et al., 

2001).  

 5-HT2CRs are found throughout the mesolimbic DA pathway (Doherty & Pickel, 

2000; Pompeiano, et al., 1994), including the amygdala, which is a key region in the 

neurocircuitry of cocaine addiction (Alleweireldt, et al., 2006; O'Dell, et al., 1999; See, 

2005). Generally, the amygdala is involved in emotional learning (Bechara, et al., 1995) 

and memory (Cahill, 2000), fear conditioning (Blanchard & Blanchard, 1972; M. Davis, 

2000; Lieblich, Yitzhaky, & Cohen, 1976; Pribram, et al., 1979), avoidance learning 

(Weiskrantz, 1956), and appetitive conditioning (B. J. Everitt, Cardinal, Parkinson, & 

Robbins, 2003; Parkinson, Robbins, & Everitt, 2000).  The role of the amygdala in 

emotional conditioning and memory using natural reinforcers led researchers to 
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investigate involvement of the amygdala in drug abuse (B. J. C. Everitt, R. N.; Hall, J.; 

Parkinson, J. A.; Robbins, T. W., 2000; Grant, et al., 1996). 

The amygdala is a heterogenous region composed of subnuclei, including the 

basolateral and central amygdaloid nuclei (i.e., BlA and CeA respectively, (Gloor, 1955; 

Wood, Schottelius, Frost, & Baldwin, 1958). The BlA is responsible for assigning 

incentive value to a conditioned stimulus (CS) based on its association with an 

unconditioned stimulus (US, (B. J. C. Everitt, R. N.; Hall, J.; Parkinson, J. A.; Robbins, 

T. W., 2000), as well as for processing fear and anxiety (M. Davis, 2000; Sananes & 

Davis, 1992). For instance, the BlA has been implicated in processing the incentive 

motivational effects of drug-associated contextual and discrete cues (B. J. Everitt, et al., 

1999; Fuchs & See, 2002; Fuchs, et al., 2002; McLaughlin & See, 2003). 5-HT2CRs are 

found throughout the amygdala, with higher levels in the BlA than CeA (Clemett, 

Punhani, Duxon, Blackburn, & Fone, 2000; Lopez-Gimenez, et al., 1997; Pompeiano, et 

al., 1994). Although it is presently unclear whether 5-HT2CRs in the BlA play a role in 

processing the significance of cocaine-associated cues, they are involved in anxiety-like 

behavior. Transgenic mice overexpressing 5-HT2CR mRNA show enhanced anxiety on 

the elevated plus maze (EPM, (Kimura, et al., 2009), while 5-HT2CR knockout mice 

exhibit a reduction in anxiety on the EPM (Heisler, Zhou, et al., 2007). Systemic 

pretreatment with a 5-HT2CR agonist induces learned helplessness behaviors (Strong, et 

al., 2009), and 5-HT2CR agonists infused into the BlA potentiate anxiety-like behavior in 

open-field and social exploration tests (Campbell & Merchant, 2003; Christianson et al., 

2010). Further, the anxiogenic effects of a 5-HT2CR agonist can be reversed by intra-BlA 

infusion of a 5-HT2CR antagonist (de Mello Cruz et al., 2005). 
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The CeA is a part of the extended amygdala (Alheid & Heimer, 1988; Heimer & 

Alheid, 1991; Johnston, 1923), which is implicated in some of the unconditioned effects 

of drugs of abuse, including reward (O'Dell, et al., 1999), reinforcement (Caine, 

Heinrichs, Coffin, & Koob, 1995), stress, and drug withdrawal (Koob & Le Moal, 2005; 

Koob & Nestler, 1997). Inactivation of the CeA eliminates stress-primed reinstatement in 

both CPP (Ma, Xu, Yang, & Yang, 2008; Wang, Luo, Ge, Fu, & Han, 2002) and self-

administration models (McFarland, et al., 2004). Some studies suggest a role for the CeA 

in responding for cocaine-paired cues (Kruzich & See, 2001; Thiel et al., 2010), though 

selective inactivation of the CeA does not affect acquisition of (Kruzich & See, 2001), or 

responding with (Burns, Annett, Kelley, Everitt, & Robbins, 1996; Robledo, Robbins, & 

Everitt, 1996), conditioned reinforcement. The CeA appears to amplify conditioned 

responses, including the “incubation effect” in which cue-primed reinstatement 

intensifies during abstinence (Grimm & See, 2000; Y. Q. Li et al., 2008; Lu et al., 2005; 

Tran-Nguyen et al., 1998). Although the distribution of 5-HT2CRs in the CeA is not well 

characterized, it has been shown that 5-HT2CR knockout mice exhibit lower levels of Fos 

activation in the CeA following social-defeat stress (Heisler, Zhou, et al., 2007) and that 

5-HT2CR agonists increase Fos expression in the CeA (Singewald, Salchner, & Sharp, 

2003; Somerville, Horwood, Lee, Kennett, & Clifton, 2007). Further, there is a positive 

correlation between 5-HT2CR levels in the CeA and anxiety-like behavior on the EPM (Q. 

Li, Luo, Jiang, & Wang, 2012); however, other studies failed to find effects of 5-HT2CR 

agonists in the CeA on anxiety-like behavior (Campbell & Merchant, 2003; Christianson, 

et al., 2010). 
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In the present study, we hypothesized that 5-HT2CRs in the BlA play a role in the 

inhibitory effects of systemic 5-HT2CR agonists on cue reinstatement of extinguished 

cocaine-seeking behavior based on the known involvement of the BlA in the incentive 

motivational effects of cocaine-paired cues and the presence of 5-HT2CR in the BlA. We 

further hypothesized that 5-HT2CRs in the CeA play a role in the inhibitory effects of 

systemic 5-HT2CR agonists on cocaine-primed reinstatement based on the known 

involvement of the CeA in unconditioned effects of cocaine. To examine this hypothesis, 

we used the selective 5-HT2CR agonist, CP890101. This agonist has >500-fold selectivity 

for 5-HT2C over other 5-HT2Rs and EC50 values of 0.11, 153, and 65.3 nM for 5-HT2C, 

5-HT2A, and 5-HT2BRs, respectively (Fletcher et al., 2009; Siuciak et al., 2007). We 

predicted that CP809101 microinfused into the BlA would attenuate cue-primed 

reinstatement of cocaine-seeking behavior and increase anxiety-like behavior on the 

elevated plus maze (EPM), while having no effect on cocaine-primed reinstatement or 

extinction responding. Conversely, we predict that CP809101 infused into the CeA would 

attenuate cocaine-primed reinstatement of cocaine-seeking behavior, and may affect cue-

primed reinstatement or anxiety-like behavior on the EPM.  



	   	   	  

61 

Methods 

Animals  

Adult male Sprague–Dawley rats weighing 275–325 g at the start of the 

experiments were used in this study. Animals were housed in a climate-controlled colony 

room with a 14-h reversed light/dark cycle (lights off at 7:00 a.m.) and cared for in 

accordance with the “Guide for the Care and Use of Laboratory Animals” (Institute of 

Laboratory Animal Resources on Life Sciences, National Research Council 2011).  

Surgery  

Animals were handled daily for at least 6 days before implanting catheters into 

the right jugular vein. Catheters were implanted using the same protocol as Pockros et al., 

2011. Stainless steel guide cannulae were lowered through small holes drilled into the 

skull to a depth 2.5 mm above the targeted site of the BlA and 2.7 mm above the targeted 

site of the CeA. The coordinates were selected based on previous research (Christianson, 

et al., 2010; Fuchs & See, 2002; Thiel, et al., 2010) as well as our own pilot surgeries, 

and were as follows: for the BlA the AP=-2.5, the ML= 5.0 mm to the left and 4.9 mm to 

the right relative to bregma, and the DV=-8.2 mm from the skull surface; for the CeA the 

AP=-2.5, the ML= 4.2 mm to the left and 4.1 mm to the right relative to bregma, and the 

DV=-8.2 mm from the skull surface (Paxinos, 2007). The guide cannulae and the metal 

end of the catheter were secured to the skull using dental acrylic cement and anchor 

screws. Metal stylets were inserted into the cannulae to maintain patency. All incisions 

were sutured and treated with a topical antibiotic. Catheters were flushed daily with a 

solution of 0.1 ml saline containing heparin sodium (70 U/ml; APP Pharmaceuticals, 

Schaumburg, IL, USA) and Timentin (66.7 mg/ml; GlaxoSmithKline, Research Triangle 
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Park, NC, USA) for 5 days after surgery and throughout the rest of self-administration 

training and testing. Animals were given at least 7 days of recovery from surgery before 

beginning self-administration training. Catheter patency was tested periodically by 

administering 0.05 ml Brevital (16.6 mg/ml, Jones Pharma Inc., St. Louis, MO, USA), 

which briefly anesthetizes the animal only if delivered i.v. 

Intracranial drug infusions 

 CP809101 (Tocris, Ellisville, MI, USA) was dissolved in artificial cerebral spinal 

fluid (aCSF). Microinjections were delivered over a 1-min period using a 30-gauge 

injector (Plastics One) connected via polyethylene 50 tubing (Becton Dickinson, Sparks, 

MD, USA) to a 25-µl syringe (Hamilton Co., Reno, NV, USA) housed in an infusion 

pump (CMA Microdialysis, North Chelmsford, MA, USA). Injection cannulae extended 

2.5 mm below the guide cannulae for the BlA and 2.7 mm below the guide cannulae for 

the CeA. Movement of an air bubble the proper distance through the drug infusion line 

confirmed successful infusion of the drug. After the infusion was complete, the injectors 

remained in place for 1 min to ensure thorough diffusion. After removing the injectors, 

metal stylets and caps were replaced before the animal was placed into the conditioning 

chamber for the test sessions. 

Self-administration 

 Cocaine self-administration training took place daily for 2 h, 6 days per week. 

Animals were trained in operant conditioning chambers (28 × 10 × 20 cm; Med 

Associates, St Albans, VT, USA), each containing an active lever, a cue light 4 cm above 

the active lever, an inactive lever, a tone generator (500 Hz, 10 dB above ground noise), 

and a house light on the wall opposite the levers. Upon pressing the active lever to 
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complete a schedule of reinforcement, the light and tone cues were simultaneously 

activated and followed 1 s later by a 0.1-ml cocaine (0.75 mg/kg, i.v.) infusion delivered 

over 6 s. The house light was then activated for a 20-s timeout period, during which 

active lever presses were recorded but had no effects. Responses on the inactive lever 

were recorded but had no effects. 

 For the first 5 days of training, all animals began on a fixed ratio (FR) 1 schedule of 

reinforcement with the capability to progress to a variable ratio (VR) 3, and finally VR5 

schedule within a session. After ending the session on a VR5 schedule for five 

consecutive days, animals then began the next session on a VR3 schedule. Once animals 

began on a VR3 schedule and ended on a VR5 schedule, they began on a VR5 schedule 

for the rest of the sessions. All animals were starting on a VR5 schedule by day 14 and 

were on a VR5 schedule exclusively for at least the last 5 days of self-administration. All 

animals were restricted to 16 g of food to facilitate acquisition of self-administration (M. 

E. Carroll, et al., 1981) and remained food-restricted until they ended on a VR5 schedule 

for three consecutive sessions. Animals were then given food ad libitum for the rest of the 

experiment. 

Extinction phase 

Extinction training began once rats had completed at least 15 self-administration 

sessions and had received food ad libitum for at least the last 5 sessions. Extinction 

training occurred daily for 1 h/day. Rats were placed into the self-administration 

chambers as before and lever presses were recorded, but produced no consequences (i.e., 

no infusions or cues were presented). Catheters were connected to the infusion lines 

during extinction, as well as during all reinstatement tests, even though the infusion lines 
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were not connected to a syringe. Extinction sessions continued for 10–14 days and until 

there was an 80% reduction in active lever pressing from the animals’ highest response 

rate during extinction or to less than 20 active lever presses for three consecutive days.  

Experiments 

Upon meeting the extinction criterion, animals with BlA and CeA cannulae 

(experiments 1 and 2, respectively) underwent CP809101-primed reinstatement testing, 

cue-primed reinstatement testing, cocaine-primed reinstatement testing, and elevated plus 

maze (EPM) testing for the effects of CP809101 (0, 0.01, 0.1, or 1.0µg/0.2µg/side). 

Assignment to dosage groups was counterbalanced based on the amount of cocaine intake 

during self-administration, as this has been shown to affect reinstatement response rates 

(Baker, et al., 2001; Deroche, Le Moal, & Piazza, 1999). Animals received their assigned 

dose of agonist prior to each type of reinstatement test. In experiment 3, a new cohort of 

animals with CeA cannulae underwent CP809101-primed reinstatement testing for the 

effects of CP809101 (0.01µg/0.2µL/side) or SB242082 (0.1µg/0.2µL/side), cocaine-

primed reinstatement testing for the effects of CP809101 (0.01µg/0.2µL/side) or 

CP809101+SB242084 (0.01ug and 0.1µg/0.2µL/side, respectively), and a subset of 

animals underwent EPM testing for the effects of vehicle and CP809101 (0 and 

0.01µg/0.2µL/side). 

CP809101-primed reinstatement testing  

 Following extinction training, animals were assigned to one of three CP809101 

dose groups (0.01, 0.1, or 1.0 µg/side), counterbalanced based on the amount of cocaine 

intake during self-administration as this has been shown to affect reinstatement responses 

(Baker, et al., 2001; Deroche, et al., 1999). Animals underwent two tests for CP809101-
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primed reinstatement of extinguished cocaine-seeking behavior, receiving a vehicle 

microinjection prior to one test and their assigned dose of CP809101 prior to the other 

test, with the order of these pretreatments counterbalanced. Immediately after receiving 

their assigned microinjection, animals were given a 1 h extinction session where 

responding on either lever had no consequences. 

Cue-primed reinstatement testing 

 Animals underwent two tests for cue reinstatement of extinguished cocaine-seeking 

behavior, receiving a vehicle microinjection prior to one test and their assigned dose of 

CP809101 prior to the other test, with the order of these pretreatments counterbalanced. 

Animals were given a minimum of three extinction days between tests to allow extinction 

baseline rates to stabilize. If animals failed to meet the reinstatement criteria of doubling 

extinction baseline response rates and at least twenty responses on the active lever on 

either of the two test days, they were considered “nonreinstaters” and excluded from the 

analysis. Immediately after receiving their assigned microinjection, animals were tested 

for 1 h with the same stimulus complex as that paired with cocaine during training 

available response-contingently on an FR1 schedule; however, no cocaine was delivered 

during cue tests. The FR1 schedule was used in place of the VR5 training schedule 

because we have previously shown that under tests for cue reinstatement the FR1 

schedule yields higher response rates, and thus greater sensitivity for detecting the 

predicted decrease, than the training schedule (Acosta, et al., 2008). A noncontingent cue 

presentation was delivered if the animal did not receive a response-contingent cue within 

the first 5 min of the session to minimize the possibility that animals would fail to press 

the lever leaving them unaware that cues were available. 
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Cocaine-primed reinstatement testing 

 After the two cue reinstatement tests, animals received at least three extinction 

sessions to re-establish a stable baseline extinction rate of responding. They were then 

given two tests for cocaine-primed reinstatement of extinguished cocaine-seeking 

behavior. Prior to one test, they received the same dose of CP809101 as they had 

received during cue reinstatement testing. For the other test, they received a vehicle 

microinjection. The order of the two pretreatments was counterbalanced within a group. 

Immediately after the microinjection, animals received a priming injection of cocaine (10 

mg/kg) and were then immediately placed into the conditioning chamber. Lever presses 

were recorded, but produced no consequences (i.e., no cues or cocaine were delivered). 

To control for injection stress, animals were given mock i.p. injections immediately 

before the extinction session preceding each of their cocaine-reinstatement tests and the 

average response rates during these sessions was used as the extinction baseline. Animals 

were given a minimum of three extinction sessions between tests to allow extinction 

baseline rates to stabilize. If animals failed to meet the reinstatement criteria of doubling 

baseline and at least twenty responses on the active lever during at least one of the 

reinstatement tests, they were considered “nonreinstaters” and were excluded from the 

analysis. 

Elevated plus maze testing 

 Following the completion of reinstatement testing, animals were tested for the 

effects of CP809101 on anxiety-like behavior on the EPM following at least a 5-day 

washout period from their last CP809101 treatment. Animals all received one test on the 

EPM and were assigned to receive the same dose of CP809101 from reinstatement testing 
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or vehicle. The EPM apparatus consisted of four Plexiglas arms arranged in a cross, 

elevated 75 cm above the floor. Each arm was 10 cm wide and 50 cm long, and each arm 

was joined at the center by a 10 cm square platform. The two opposite ‘open’ arms 

contained no walls, while the other two ‘closed’ arms had 40 cm high sides. Animals 

received their assigned microinjection 5-minutes prior to testing, and then were 

individually placed in the center of the apparatus facing one of the two closed arms (File, 

Lippa, Beer, & Lippa, 2004). The 10-min test was conducted under dim lighting, and 

behaviors were scored using Observer 5.0 software (Noldus Information Technology BV, 

Wageningen, The Netherlands) from videotapes by a highly trained observer blind to 

group assignment. The following behaviors were scored: total time spent in open arms, 

closed arms, and the middle of the maze; and total number of entries into open arms, 

closed arms, and the middle of the maze. Locomotor activity was also recorded and 

analyzed with a computer-automated video tracking system (Clever Systems, Reston, 

VA). The apparatus was cleaned with 0.05% ethanol between each test. 

Histology 

Animals were deeply anesthetized with 3% isoflurane and given intracranial 

infusions (0.2 µl/side) of 1% methylene blue to verify cannulae placements. Animals 

were then decapitated, brains were removed, frozen, and stored at -20°C.  Brains were 

later sliced in coronal sections (40 µm), stained with cresyl violet, and examined under a 

microscope by observers unaware of group assignment who determined the point of drug 

infusion. Animals with incorrect placement of the drug infusions were excluded from the 

analyses. A schematic of accurate cannulae placements is shown in Figure 15.  
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Statistical Analyses 

For self-administration/reinstatement, data were analyzed using mixed-factor 

analyses of variance (ANOVAs) with session (e.g. extinction baseline, vehicle test, and 

CP809101 test) as a within-subjects factor and dosage group (0.01, 0.1 and 1.0 µg/0.2 

µl/side) as a between-subject factor. Effect size (η2) was also calculated for significant 

interactions. A Greenhouse-Geisser correction of degrees of freedom was used to correct 

for heterogeneity of variance in the data. Subsequent post-hoc comparisons were made 

using tests of simple main effects. In addition, planned t-tests were used to test the 

predictions that cocaine-seeking behavior would increase after cocaine priming or cue 

presentation relative to baseline. Baseline values were calculated as the average of the 

sessions that occurred before each test day (i.e., the day before testing with agonist and 

the day before testing with vehicle). 

For EPM testing, data were analyzed using one-way ANOVAs of percent of time 

spent on the open arms with dosage group as a between-subjects factor. In addition, 

planned t-tests were used to test the prediction that anxiety-like behavior would increase 

after CP809101 relative to vehicle pretreatment. We also calculated an anxiety index 

score described previously (Huynh, Krigbaum, Hanna, & Conrad, 2011) as follows: 

Anxiety Index = 1 – [(open arm time/10 min) + (open arm entry/10 min)] / 2 

Results 

Experiment 1 

Intra-BlA infusion effects on extinction  

Active and inactive lever presses during the first session of extinction training are 

shown in Table 3. All animals had at least 10 extinction sessions before reinstatement 
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testing began. The ANOVA of the number of active lever presses/h on the first day of 

extinction versus the last day of extinction before testing showed a main effect of day 

[F(1,19)=87.18, P<0.001] but no dose effect or interaction with dose. The main effect 

indicated a significant drop in responding across training sessions. There were no 

differences in inactive lever presses. 

Effects of CP809101 in the BlA on reinstatement of cocaine-seeking behavior 

Figure 16 illustrates that CP809101 priming injections infused into BlA prior to 

testing failed to alter responding relative to extinction baseline. The ANOVA of 

responses/h indicated that there were no significant effects on response rates on either the 

active or inactive levers. 

Effects of CP809101 in the BlA on cue reinstatement of cocaine-seeking behavior 

Figure 17 shows the effects of CP809101 infusions into the BlA on cue-elicited 

reinstatement of cocaine-seeking behavior. There was 1 rat out of 27 that failed to meet 

the reinstatement criteria and was excluded from the analyses. The ANOVA of 

responses/h on the active lever showed a main effect of test day [F(1.30,24.77)=20.51, 

P<0.001, η2=0.510] but no interaction with dose or main effect of dose. Tests of simple 

main effects indicated that when collapsed across dose, all animals showed cue 

reinstatement evident as an increase in responding on the vehicle and CP809101 

pretreatment test days relative to the extinction baseline (p<0.05). Table 3 shows inactive 

lever presses on CP809101 test days for all groups. There were no significant differences 

in inactive lever presses. 
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Effects of CP809101 in the BlA on cocaine-primed reinstatement of cocaine-seeking 

behavior 

 Figure 18 illustrates the effects of intra-BlA infusions of CP809101 on cocaine-

primed reinstatement of cocaine-seeking behavior. There were 4 animals out of 27 that 

failed to meet the reinstatement criteria and were excluded from the analyses. The 

ANOVA of responses/h on the active lever indicated a significant main effect of test day 

[F(1.45,24.71)=6.84, P<0.01, η2=0.276] but no interaction with dose or main effect of 

dose. Tests of simple main effects indicated that when collapsed across dose, all animals 

showed cocaine-primed reinstatement evident as an increase in responding on the vehicle 

and CP809101 pretreatment test days relative to the extinction baseline (p<0.05). There 

were no differences in inactive lever presses (see Table 3).   

Effects of CP809101 in the BlA on anxiety-like behavior on the elevated plus maze 

 Figure 19 shows the effects of CP809101 infused into the BlA on the percent of 

time spent on the open arms of the EPM. The ANOVA failed to show a significant effect 

of CP809101 dose, however planned comparisons indicated a significant difference 

between the vehicle and 1.0µg/µL groups (p<0.05). Figure 20 shows the effects of 

CP809101 infused into the BlA on an anxiety index score which accounts for percent of 

time spent in the open arms as well as number of open arm entries (Huynh, et al., 2011). 

The ANOVA did not show a significant effect of CP809101 dose, however planned 

comparisons indicated a marginally significant difference between the vehicle and 1.0 

µg/µL groups (p=0.052). 
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Effects of CP809101 in the BlA on locomotor activity 

 Figure 21 shows the effects of CP809101 infused into the BlA on spontaneous 

locomotor activity. The ANOVA of total distance traveled failed to show a significant 

effect of dose.  

Experiment 2 

Extinction behavior of animals with CeA cannulae 

Active and inactive lever presses during the first session of extinction training are 

shown in Table 3. All animals had at least 10 extinction sessions before reinstatement 

testing began. ANOVAs of the number of active and inactive lever presses/h on the first 

day of extinction versus the last day of extinction before testing showed significant main 

effects of day [F(1,20)=90.92, P<0.001 and F(1,20)=4.63, P<0.05, respectively] but no 

dose effect or interaction with dose. The main effects indicated a significant drop in 

responding across training sessions. 

Effects of CP809101 in the CeA on reinstatement of cocaine-seeking behavior 

Figure 22 illustrates that CP809101 priming injections infused into CeA prior to 

testing failed to alter responding relative to extinction baseline. The ANOVA of 

responses/h indicated that there were no significant effects on response rates on either the 

active or inactive levers. 

Effects of CP809101 in the CeA on cue reinstatement of cocaine-seeking behavior 

Figure 23 shows the effects of CP809101 infusions into the CeA on cue-elicited 

reinstatement of cocaine-seeking behavior. The ANOVA of responses/h on the active 

lever showed a significant main effect of test day [F(1.33,26.60)=23.78, P<0.001, 

η2=0.543] but no interaction with dose. There was a nonsignificant trend toward a main 
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effect of dose of CP809101 [F(2,20)=3.22, P=0.061, η2=0.244], however there were no 

statistical differences between CP809101 and vehicle test days at any specific dose. Tests 

of simple main effects indicated that when collapsed across dose, all animals showed cue 

reinstatement evident as an increase in responding on the vehicle and CP809101 

pretreatment test days relative to the extinction baseline (p<0.05). Table 3 shows inactive 

lever presses on CP809101 test days for all groups. There were no significant differences 

in inactive lever presses. 

Effects of CP809101 in the CeA on cocaine-primed reinstatement of cocaine-seeking 

behavior 

 Figure 24 illustrates the effects of intra-CeA infusions of CP809101 on cocaine-

primed reinstatement of cocaine-seeking behavior. There were 3 animals out of 23 that 

failed to meet the reinstatement criteria and were excluded from the analyses. The 

ANOVA of responses/h on the active lever indicated a significant day by dose interaction 

[F(4,34)=4.06, p<0.01, η2=0.323] as well as a main effect of test day [F(2,34)=12.33, 

P<0.001, η2=0.420]. Post hoc comparisons indicated an increase in responding relative to 

the extinction baseline on all vehicle test days and CP809101 test days at the 0.1 and 

1.0µg/µL doses (t-test, p<0.05) and a significant decrease in lever pressing at the 

0.01µg/µL dose of CP809101 compared to vehicle (t-test, p<0.05). Although the vehicle 

test days appear to have a fair amount of variance by dosage group, there were no 

significant differences between them. Further, there were no differences between animals 

that received their vehicle test day first compared to those that received their vehicle test 

day second. There were no differences in inactive lever presses (see Table 3).   
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Effects of CP809101 in the CeA on anxiety-like behavior on the elevated plus maze 

 Figure 25 shows the effects of CP809101 infused into CeA on the percent of time 

spent on the open arms of the EPM. The ANOVA failed to show a significant effect of 

CP809101 dose although planned comparisons indicated a trend toward a difference 

between the vehicle and 0.1µg/µL groups (p=0.071). Figure 26 shows that CP809101 

infused into the CeA had no effect on anxiety index score.  

Effects of CP809101 in the CeA on locomotor activity 

 Figure 27 shows the effects of CP809101 infused into CeA on spontaneous 

locomotor activity. The ANOVA of total distance traveled failed to show a significant 

between-group effect of dose.  

Experiment 3 

Extinction behavior of animals with CeA cannulae 

Active and inactive lever presses during the first session of extinction training are 

shown in Table 3. All animals had at least 10 extinction sessions before reinstatement 

testing began. ANOVAs of the number of active and inactive lever presses/h on the first 

day of extinction versus the last day of extinction before testing showed significant main 

effects of day [F(1,14)=82.99, P<0.001 and F(1,14)=10.26, P<0.01, respectively] but no 

dose effect or interaction with dose. The main effects indicated a significant drop in 

responding across training sessions. 

Effects of CP809101 and SB242084 in the CeA on reinstatement of cocaine-seeking 

behavior 

Figure 28 illustrates the effects of CP809101 or SB242084 priming infusions into 

CeA prior to testing on responding relative to extinction baseline. The ANOVA of 
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responses/h indicated that there were no significant effects on response rates on either the 

active or inactive levers. 

Effects of CP809101+SB242084 in the CeA on cocaine-primed reinstatement of 

cocaine-seeking behavior 

 Figure 29 illustrates the effects of intra-CeA infusions of CP809101 or 

CP809101+SB242084 on cocaine-primed reinstatement of cocaine-seeking behavior. 

There were 3 animals that failed to meet the reinstatement criteria and 1 animal that was 

an outlier (i.e., more than 2 standard deviations above the mean without data from the 

animal in question), and all 4 were excluded from the analyses. The ANOVA of 

responses/h on the active lever indicated a significant day by condition interaction 

[F(2,20)=9.30, p<0.01, η2=0.482] as well as a main effect of test day [F(2,20)=24.53, 

P<0.001, η2=0.710]. Post hoc comparisons indicated an increase in responding relative to 

the extinction baseline on all vehicle test days and on CP809101 or 

CP809101+SB242084 test days (t-test, p<0.05) as well as a significant decrease in lever 

pressing when animals received CP809101 compared to vehicle (t-test, p<0.01). There 

was a significant difference between vehicle test days for animals that received 

CP809101 compared to those that received CP809101+SB242084 (t-test, p<0.05). There 

were no differences in inactive lever presses (see Table 3).   

Discussion 

 Results from the present study partially support our hypothesis that 5-HT2CRs in 

the BlA are involved in cue-primed reinstatement and anxiety-like behavior, whereas 

those in the CeA are involved in cocaine-primed reinstatement. We found that the 5-

HT2CR agonist, CP809101, infused into the BlA increased anxiety-like behavior on the 



	   	   	  

75 

EPM. This result is consistent with findings that intra-BlA infusions of 5-HT2CR 

agonists, including CP809101, increase anxiety-like behavior in other anxiety paradigms 

(Campbell & Merchant, 2003; Christianson, et al., 2010; Q. Li, et al., 2012). Intra-CeA 

infusions of CP809101 also consistently attenuated cocaine-primed reinstatement at the 

lowest dose, and this effect was reversed with co-administration of a 5-HT2CR antagonist. 

CP809101 in the BlA or CeA had no effect on locomotor activity, so the anxiogenic 

effects in the BlA were likely not great enough to produce freezing behavior nor were the 

decreases in cocaine-seeking behavior likely due to nonspecific effects on motor 

function. 

Surprisingly, we found no support for our hypothesis that actions at 5-HT2CRs via 

CP809101 in the BlA attenuate cue-primed reinstatement. This hypothesis was based on 

previous findings demonstrating a role of the BlA in cue-primed reinstatement (B. J. 

Everitt, et al., 1999; Fuchs & See, 2002), an abundance of 5-HT2CRs in this region 

(Clemett, et al., 2000), and consistent attenuation of cue-primed reinstatement by 5-

HT2CR agonists (Burbassi & Cervo, 2008; Higgins & Fletcher, 2003; Neisewander & 

Acosta, 2007; Pentkowski, et al., 2010). It is possible that the doses of CP809101 tested 

were outside the range of effective doses for cue-primed reinstatement, however we 

observed significant effects at both the lowest and highest doses on other behavioral tests, 

which mitigates this explanation. Since the highest dose of CP809101 in the BlA 

increased anxiety-like behavior on the EPM and moderate acute anxiety increases cue-

primed reinstatement (Feltenstein, Henderson, & See, 2011), it is possible that there were 

opposing effects of cue incentive motivation on cocaine-seeking behavior and stress-

induced attenuation of behavior, resulting in a null effect. 
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 Interestingly, the effects of CP809101 in the CeA on cocaine-primed 

reinstatement were only seen at the lowest dose. It is not uncommon to observe a U-

shaped dose-response effect where only intermediate doses are effective (J. M. S. Davis, 

D. J., 1990; Neisewander, O'Dell, & Redmond, 1995). It is likely that as the dose of 

CP809101 decreases lower than the effective dose of 0.01 µg/µL/side in the CeA, the 

effects on cocaine-primed reinstatement diminish, resulting in an inverted U-shaped 

dose-response function. Unfortunately, we may not have captured the full CP809101 

dose-response function in this study, however our results as well as Christianson et al. 

(2010) found that 1.0 µg/µL/side in the BlA effectively increased anxiety-like behavior 

while 0.01 µg/µL/side was ineffective. One explanation for the lack of effect at higher 

doses is that these doses may produce nonspecific effects at 5-HT2ARs, which would have 

an opposite effect on cocaine-primed reinstatement from 5-HT2CR agonist inhibition 

effect (Fletcher, et al., 2002; Nic Dhonnchadha, et al., 2009). CP809101 is highly 

selective for 5-HT2CRs over 5-HT2A and 5-HT2BRs (Barnes & Sharp, 1999; Fletcher, 

Sinyard, & Higgins, 2010; Fletcher, et al., 2009; Siuciak, et al., 2007), however with 

administration directly into the brain it is possible that the higher doses in this study were 

high enough to activate 5-HT2ARs. Further, as the CeA is not densely packed with 5-

HT2CRs, the ratio of 5-HT2CR:5-HT2AR occupancy may be lower than in other regions 

with higher levels of 5-HT2CRs, such as the BlA (Clemett, et al., 2000; Q. Li, et al., 

2012). 5-HT2AR antagonists have been found to produce anxiogenic effects (Graeff, 

Guimaraes, De Andrade, & Deakin, 1996; Graeff, Netto, & Zangrossi, 1998), so this may 

be responsible for the trend toward an intra-CeA CP809101 effect on the EPM as well. In 

any case, the effect of the lowest dose of CP809101 in the CeA on cocaine-primed 
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reinstatement was replicated and reversed with co-administration of a 5-HT2CR 

antagonist, providing strong evidence that this is a 5-HT2CR-mediated effect.  

 There was an unusual amount of variability in our vehicle test results for cocaine-

primed reinstatement with infusions into the CeA. When CP809101 was injected into the 

CeA in experiment 2, the lowest dose consistently attenuated cocaine-primed 

reinstatement but we observed unusually high responding on the vehicle test day for this 

group. Statistically, however, there were no significant differences in vehicle test days 

across the dose groups, nor was there an order effect between animals that had their 

vehicle test first compared to second. In experiment 3, we again found a significant 

difference between vehicle and CP809101, as well as vehicle and SB242084, groups. 

Furthermore, there was again no order effect between animals that had their vehicle test 

first compared to second. The lack of order effects is likely due to the fact that there is a 

high amount of variability in lever pressing and the n=2-4 when split by drug and testing 

order, which reduces power to detect a potential order effect.  Thus we speculate that 

order of drug versus vehicle contributes to the high variance. Specifically, when the low 

dose of CP809101 was tested before vehicle, the suppression of cocaine-primed 

reinstatement may have resulted in a higher amount of lever pressing on the subsequent 

vehicle reinstatement test. By contrast, when the highest dose of CP809101 was tested 

first in experiment 2, there was no suppression of responding so extinction learning 

during that test likely resulted in lower responding on the subsequent vehicle test. While 

the variance in responding on vehicle test days in experiments 2 and 3 is curious, it does 

not detract from the reliability of our findings that 0.01 µg/0.2µL CP809101 in the CeA 

attenuated cocaine-primed reinstatement. 
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Other issues that are important to consider when using intracranial drug 

administration are spread of the drug to neighboring regions and potential damage or 

tolerance from repeated drug infusions. Because the BlA and CeA border each other, the 

region specificity of the effects suggests that the drug effects are not due to spread to a 

neighboring region. Animals underwent EPM testing at the end of the experiment when 

they had already received two to three injections of CP809101, and we still observed a 

significant effect of CP809101 in the BlA on this test. This finding mitigates the idea that 

tolerance to CP809101 developed or that there was a nonspecific effect of repeated 

infusion. Further, histological verification of cannula placements showed no evidence of 

excessive tissue damage from repeated infusions.  

We targeted the rostral section of the BlA. The rostral (rBlA) and caudal (cBlA) 

subsections of the BlA have divergent projections to the NAc core and dorsal agranular 

insular PFC, and NAc shell and prelimbic PFC, respectively (Groenewegen, Berendse, 

Wolters, & Lohman, 1990; Kita & Kitai, 1990; Shinonaga, Takada, & Mizuno, 1994). 

Inactivation of the rBlA using excitotoxic lesions, tetrodotoxin (TTX), and lidocaine 

inactivation has been consistently shown to disrupt cue-primed reinstatement (Grimm & 

See, 2000; Kantak, Black, Valencia, Green-Jordan, & Eichenbaum, 2002; Meil & See, 

1997), while cBlA lidocaine inactivation reduces drug-seeking behavior during cocaine 

self-administration (Kantak, et al., 2002). Other studies have found effects of 

pharmacological manipulations in the cBlA on both cue- and cocaine-primed 

reinstatement (Alleweireldt, et al., 2006; Berglind, Case, Parker, Fuchs, & See, 2006), 

and in the rBlA on cue-primed reinstatement (Alleweireldt, et al., 2006; Mashhoon, 

Tsikitas, & Kantak, 2009). Thus, if 5-HT2CRs in the BlA are involved in cue-primed 
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reinstatement, we likely would have observed an effect of CP809101 as the injections 

were in the rBlA.  

Based on previous literature, we expected CP809101 in the BlA, but not the CeA 

to affect anxiety-like behavior. We did observe a non-significant increase in anxiety-like 

behavior from CP809101 in the CeA, though the previous literature on 5-HT2CRs in the 

CeA is inconsistent (Campbell & Merchant, 2003; Christianson, et al., 2010; Heisler, 

Zhou, et al., 2007; Q. Li, et al., 2012), so 5-HT2CRs in this region may play are less 

prominent role in anxiety than the BlA 5-HT2CRs. Accordingly, Campbell and Merchant 

(2003) found that a 5-HT2CR agonist, mCPP, in the CeA did not affect ultrasonic 

vocalizations or exploratory behavior on a novel-object task, though in the BlA it 

increased ultrasonic vocalizations and decreased exploratory behavior on a novel-object 

task, which is consistent with an anxiogenic effect. Similarly, Christianson et al. (2010) 

found that a 5-HT2CR antagonist, SB242084, in the CeA did not affect anxiety-like 

behavior on a juvenile social exploration task, though in the BlA the antagonist decreased 

anxiety-like behavior. The elevated plus maze is a well-accepted test of anxiety in rodents 

where animals spend more time in the two closed arms of the maze when anxious than in 

the two open arms. Time spent in the open arms is also correlated with higher levels of 

the stress hormone, CORT, and is thought to be a measure of anxiety-like behavior 

(Pellow, Chopin, File, & Briley, 1985). 5-HT activates the hypothalamic-pituitary-

adrenal (HPA) axis (Fuller & Snoddy, 1980), an effect that is thought to involve 5-HT2CR 

stimulation (Heisler et al., 2007). Findings from our study and others suggest that the BlA 

is likely involved in the anxiogenic behavioral effects of 5-HT2CR stimulation. 
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While we can only speculate about the neurocircuitry underlying the effects of 

CP809101 on anxiety-like behavior in the BlA and cocaine-primed reinstatement in the 

CeA, we hypothesize that the mechanism is via modulation of GABA release. In the BlA, 

5-HT2CRs activate GABA interneurons (Stein, Davidowa, & Albrecht, 2000), however it 

is hypothesized that this effect is overshadowed by activation of projection neurons at 

higher doses (Rainnie, 1999) and leads to the anxiogenic effects of 5-HT2CR agonists 

(Campbell & Merchant, 2003). It is also possible that 5-HT2CR-induced GABA activation 

may inhibit other GABA interneuron inhibition of projection neurons, thus resulting in 

net disinhibition and anxiety-like behavior. To our knowledge, the cellular localization of 

5-HT2CRs in the CeA is not known, however it is possible that they are located on GABA 

interneurons and thus 5-HT2CR agonists in this region would increase GABA inhibition. 

Accordingly, GABA receptor agonists in the CeA attenuate footshock-primed 

reinstatement of cocaine-seeking behavior (McFarland, et al., 2004). While we did not 

assess the effects of CP809101 on stress-primed reinstatement, the CeA is involved in 

both stress and primary reinforcing effects of cocaine (Cain, Denehy, & Bardo, 2008; 

McFarland, et al., 2004; O'Dell, et al., 1999). However, since we did not observe an 

anxiogenic effect of CP809101 in the CeA, involvement of 5-HT2CRs in the CeA in 

stress-primed reinstatement would likely be due to the motivational impact of the stressor 

rather than an anxiogenic effect. 

In conclusion, our results suggest that 5-HT2CR activation in the CeA reduces 

cocaine-primed reinstatement, an effect that was reversed with concurrent administration 

of a 5-HT2CR antagonist. We also found an anxiety-like effect with 5-HT2CR activation in 

the BlA, but no effect on cue-primed reinstatement. The lack of effects of CP809101 in 
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the BlA on cue-primed reinstatement was surprising and warrants additional 

investigation, perhaps with approaches that alter expression of 5-HT2CRs in this region to 

verify our findings. CP809101 in the CeA did not significantly affect anxiety-like 

behavior on the EPM, and CP809101 in either region of the amygdala had no effect on 

locomotor activity. From these data, we conclude that 5-HT2CRs in the BlA play a role in 

anxiety and 5-HT2CRs in the CeA mediate the incentive motivational effects of cocaine 

priming.  
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Chapter 5 

Concluding Remarks 

The purpose of this dissertation was to examine the role of 5-HT2Rs in brain 

regions involved in reward on cocaine abuse-related behaviors and to explore the use of 

5-HT2R drugs for the treatment of cocaine abuse and dependence. Specifically, Chapter 2 

investigated the effects of a 5-HT2AR antagonist localized to the mPFC on cocaine-

seeking behavior; Chapter 3 examined a combination of a 5-HT2AR antagonist and 5-

HT2CR agonist on cocaine hyperlocomotion and neuronal activation in the dorsal 

striatum; Chapter 4 examined the effects of a 5-HT2CR agonist localized to either the BlA 

or CeA on anxiety-like and cocaine-seeking behaviors. 

We hypothesized that a 5-HT2AR antagonist in the mPFC would attenuate the 

incentive motivational effects of cocaine and cocaine-paired cues based on previous 

findings that 5-HT in the mPFC plays a role in cocaine-seeking behavior (Pentkowski, et 

al., 2010), 5-HT2AR antagonists attenuate cocaine-seeking behavior when given 

systemically (Fletcher, et al., 2002; Nic Dhonnchadha, et al., 2009), and the PFC plays a 

role in impulsivity and decision-making (Bechara, et al., 1994; Damasio, et al., 1994; 

Puumala & Sirvio, 1998), which contribute to drug abuse (Capriles, et al., 2003; 

Childress, et al., 1999). We found that the selective 5-HT2AR antagonist, M100907, 

microinfused into the mPFC dose-dependently attenuated cue-primed reinstatement of 

cocaine-seeking behavior, consistent with its effects when given systemically (Nic 

Dhonnchadha, et al., 2009). Surprisingly, M100907 infusions in the mPFC had no effect 

on cocaine-primed reinstatement in contrast to its systemic effects (Fletcher, et al., 2002; 

Nic Dhonnchadha, et al., 2009). The effects of M100907 in the mPFC were specific to 
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cue-induced motivation for cocaine, as the drug failed to affect cue-primed reinstatement 

of sucrose-seeking behavior. This finding together with a lack of effect on spontaneous or 

cocaine-induced locomotion suggests that the decrease in cue reinstatement of cocaine-

seeking behavior is not due to locomotor activity deficits. Further, M100907 infused into 

a neighboring region of the cortex failed to affect cue-primed reinstatement, supporting 

the anatomical specificity of the effect in the mPFC.  

Our findings from this study and Pentkowski et al, 2010 support the role of the 

PFC in cocaine-seeking behavior. After extended drug use, addicts exhibit 

“hypofrontality,” or deficits in PFC activation, which is thought to contribute to their lack 

of control over continued drug use (Childress, et al., 1999; Goldstein & Volkow, 2002).  

Despite this reduction in baseline PFC functioning, when exposed to drug-associated 

cues, animals and humans with drug history actually exhibit increased activity in the 

PFC, likely due to activation of the mesocorticolimbic DA pathway (Childress, et al., 

1999; Ciccocioppo, et al., 2001; Grant, et al., 1996; Maas, et al., 1998; Neisewander, et 

al., 2000). While we have not determined the neuroanatomical pathways underlying the 

attenuation of cocaine-seeking behavior by 5-HT2AR antagonists and 5-HT2CR agonists, 

they likely involve inhibition of the mesocorticolimbic DA pathway via increases in 

GABA or decreases in glutamate in the mPFC to reduce excitatory outputs to the VTA 

and NAc (Di Ciano & Everitt, 2001; McFarland, et al., 2003). An important future 

direction is to examine the circuitry of these localized effects of a 5-HT2AR antagonist 

and 5-HT2CR agonist in the mPFC.  

In Chapter 3 we discovered an interaction between a 5-HT2AR antagonist and 5-

HT2CR agonist. 5-HT2AR antagonists and 5-HT2CR agonists have been investigated for 
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their treatment potential in several mental health disorders, including schizophrenia, 

obesity, and addiction (Barnes & Sharp, 1999; Sargent, et al., 1997). However, both have 

side effects including sleep and appetite disturbances (Morairty, Hedley, Flores, Martin, 

& Kilduff, 2008; Sargent, et al., 1997), which may reduce their effectiveness in a clinical 

setting. Ideally, we may be able to use lower doses of these ligands to avoid side effects, 

while still maintaining therapeutic effects. We hypothesized that concurrent 5-HT2AR 

antagonism and 5-HT2CR agonism using subthreshold doses may interact to reduce the 

effects of cocaine. Accordingly, we found that ineffective doses of M100907 and 

MK212, a 5-HT2CR agonist, attenuated cocaine hyperlocomotion and cocaine-induced 

Fos activation in the dorsal striatum only when given together. The reduction of Fos in 

the CPu is fitting as this region is highly involved in stimulant-induced locomotion, 

stereotypy, and habitual behaviors (Brown, et al., 1992; Naylor & Olley, 1972; White, et 

al., 1998; Zimmerberg & Glick, 1974). Similarly, another recent study found that a 

combination of subthreshold doses of M100907 and WAY163909, another 5-HT2CR 

agonist, attenuated cocaine hyperlocomotion, cocaine-induced impulsivity, and cue- and 

cocaine-primed reinstatement (Cunningham, et al., 2013). Further, M100907 and Ro60-

0175, another 5-HT2CR agonist, were shown to decrease Zif protein activation in the 

dorsal striatum (Burton, Rizos, Diwan, Nobrega, & Fletcher, 2013). The findings from 

these studies reinforce our conclusion that a 5-HT2AR antagonist and 5-HT2CR agonist 

interact and involve the dorsal striatum to attenuate cocaine-related behaviors.  

A future direction is to clarify the role of the CPu in the interaction between a 5-

HT2AR antagonist and 5-HT2CR agonist. This study suggests the nigrostriatal pathway 

rather than the mesolimbic pathway may be a point of 5-HT2AR and 5-HT2CR interaction 
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effects. We have conducted an unpublished follow-up study examining the effects of 

intra- CPu administration of M100907 and another 5-HT2CR agonist, CP809101, on 

cocaine hyperlocomotion, however this combination treatment had no effect on 

systemically administered cocaine (15 mg/kg, i.p.). However, we did find that systemic 

administration of M100907 and CP809101 attenuated intra-CPu administration of 

cocaine (100µg/0.5µL/side). These findings lead us to hypothesize that systemic 

administration of M100907 and CP809101 may attenuate DA release in the CPu via 5-

HT2AR blockade and 5-HT2CR activation in the substantia nigra pars compacta (SNpc). 

While we have not directly tested this hypothesis yet, 5-HT2A and 5-HT2CRs are found in 

the SNpc (Cornea-Hebert, et al., 1999; Lopez-Gimenez, et al., 1997; Pasqualetti et al., 

1999) and this region sends a rich DA projection to the CPu, so this is a plausible 

explanation. We plan to further test this idea by administering M100907 and CP809101 

directly into the SNpc to examine the effects on cocaine hyperlocomotion and Fos 

activation in the CPu. 

Another future direction to this study mentioned by Cunningham et al, 2013 is to 

develop a single ligand to act as a dual 5-HT2AR antagonist and 5-HT2CR agonist. Some 

studies suggest that this type of treatment may be ideal for using low doses, thus 

increasing compliance by reducing side effects (Kiessling, Gestwicki, & Strong, 2006; 

Zhou et al., 2006). This is an important avenue to explore for pharmacological treatment 

of addiction, however to our knowledge a dual 5-HT2AR antagonist and 5-HT2CR agonist 

has not yet been developed. 

Finally, the last set of experiments in Chapter 4 sought to localize the effects of a 

5-HT2CR agonist in the BlA and CeA. 5-HT2CR agonists attenuate cocaine-seeking 
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behavior (Fletcher, et al., 2008; Neisewander & Acosta, 2007; Pentkowski, et al., 2010), 

and also increase anxiety-like behavior when given systemically or directly into the BlA 

(Campbell & Merchant, 2003; Christianson, et al., 2010; Heisler, Pronchuk, et al., 2007). 

Since the BlA and CeA are highly involved in cue- and cocaine-primed reinstatement, 

respectively, and 5-HT2CRs are found in these regions, we hypothesized that localized 5-

HT2CR agonism in the BlA may attenuate cue-primed reinstatement and increase anxiety-

like behavior, while CP809101 in the CeA would attenuate cocaine-primed reinstatement. 

We found that CP809101 in the BlA increased anxiety-like behavior on the EPM, but had 

no effect on cue- or cocaine-primed reinstatement. CP809101 in the CeA attenuated 

cocaine-primed reinstatement, and this effect was reversed with concurrent 

administration of a 5-HT2CR antagonist, but had no effect on cue-primed reinstatement or 

anxiety-like behavior on the EPM. We were surprised that CP809101 in the BlA did not 

attenuate cue-primed reinstatement due to the important role of the BlA in cue-primed 

reinstatement (B. J. Everitt, et al., 1999; Fuchs, et al., 2002) and the consistent attenuation 

of cue-primed reinstatement by 5-HT2CR agonists (Fletcher, et al., 2008; Neisewander & 

Acosta, 2007; Pentkowski, et al., 2010). We explored possible limitations to this finding 

in the discussion from Chapter 4 and suggest that increased anxiety from CP809101 in 

the BlA may have interfered with cue-primed reinstatement or that nonspecific effects of 

the drug at 5-HT2ARs may oppose the hypothesized action at 5-HT2CRs.   

A future direction for the Chapter 4 study is to examine the effects of a 5-HT2AR 

antagonist in the amygdala. 5-HT2ARs are found in the BlA, on both excitatory and 

inhibitory neurons (Bombardi, 2011; McDonald & Mascagni, 2007). It has been shown 

that 5-HT2AR agonism increases GABA inhibition from the BlA, but this effect is 
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attenuated after repeated stress (Jiang et al., 2009). 5-HT2ARs are also located in the CeA 

(Bombardi, 2011; Cornea-Hebert, et al., 1999; Wright, Seroogy, Lundgren, Davis, & 

Jennes, 1995), though the specific cellular localization has not yet been reported. Due to 

the opposing effects of 5-HT2AR antagonists and 5-HT2CR agonists on cocaine-related 

behaviors, it is possible that a 5-HT2AR antagonist in the BlA and CeA may have similar 

effects to a 5-HT2CR agonist in Chapter 4. 

An important issue to discuss when conducting pharmacological studies such as 

those in this dissertation is selectivy of the ligands being used. In Chapters 2 and 3, we 

used M100907 which is a highly selective 5-HT2AR antagonist. Due to the similarity of 

the 5-HT2A and 5-HT2CRs, the 5-HT2CR is the most likely receptor, aside from 5-HT2A, to 

be blocked by a non-selective 5-HT2AR antagonist. M100907 has greater than a 1000-fold 

selectivity for 5-HT2ARs over 5-HT2CRs (Kehne, et al., 1996), and reverses the effects of 

5-HT2AR agonists but not 5-HT2CR agonists (Dekeyne, et al., 1999; Gresch, et al., 2007; 

Hitchcock, et al., 1997; McCreary, et al., 2003; Vickers, et al., 2001; Wettstein, et al., 

1999). In Chapter 3, we used MK212, a moderately-selective 5-HT2CR agonist. While 

MK212 has affinity for the 5-HT2A, 5-HT2B, and 5-HT3Rs, it has a 150-fold selectivity 

for the 5-HT2CR relative to the other 5-HT2Rs (Cussac, et al., 2002; Glennon, et al., 1989; 

Porter, et al., 1999). Further, the effects of MK212 have been shown to be reversed with a 

5-HT2CR antagonist (Neisewander & Acosta, 2007; Pentkowski, et al., 2010; Stiedl, et 

al., 2007). In Chapter 4 we used a newer 5-HT2CR agonist, CP809101, which is more 

selective for the 5-HT2CR than MK212 and another older 5-HT2CR agonist, mCPP 

(Barnes & Sharp, 1999; Fletcher, et al., 2009). Additionally, we reversed the effects of 
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CP809101 with a 5-HT2CR antagonist, which greatly strengthens the argument that the 

effects of CP809101 were due to 5-HT2CR stimulation.  

In conclusion, this dissertation built upon the literature localizing the effects of 5-

HT2AR antagonists and 5-HT2CR agonists on cocaine-related behaviors and investigated a 

potential treatment mechanism via concurrent 5-HT2AR antagonism and 5-HT2CR 

agonism. There is a growing area of research on 5-HT2Rs and addiction, with the ultimate 

goal of identifying potential pharmacotherapeutic techniques to curb craving and 

motivation to seek addictive drugs. Studies such as those in this dissertation are essential 

in understanding the circuitry underlying the effects of 5-HT2R manipulations on 

cocaine-related behaviors, which, in turn, will aid in the use these mechanisms to treat 

addiction. Our findings, as well as others, offers strong support for the use of 5-HT2AR 

antagonists and 5-HT2CR agonists to attenuate the incentive motivational effects of 

cocaine and cocaine-associated cues, which contribute to relapse (Childress, et al., 1988; 

Jaffe, et al., 1989; Sinha, et al., 1999).  
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1 The number of animals shown for each test excludes those that did not reinstate or were outliers.  
Each animal received no more than 4 types of tests, and for each test type they received a vehicle 
infusion prior to one test and their assigned dose of M100907 prior to the other test, with order 
counterbalanced, resulting in a maximum of 8 microinfusions total.   

Table 1 Order of M100907 testing. 
 

Test 1 Test 2 Test 3 Test 4 

Self-Administration 
Testing (n=23)1 

Cue Reinstatement 
(n=42) 

Cocaine-Primed 
Reinstatement (n=39) 

M100907 Reinstatement 
(n=22) 

Cue Reinstatement 
(n=22) 

Cocaine-Primed 
Reinstatement (n=14) 

M100907 Reinstatement 
(n=14) 

Cue Reinstatement- 
Sucrose (n=10) 

M100907 Reinstatement 
(n=17)   Locomotor Activity 

(n=24) 
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Table 2 Lever presses/h (mean ± SEM) during the first day of extinction and during the 
M100907 reinstatement tests.	  	  

Brain Region 
and Dose 
Assignments 

Active Lever 
Presses 

Inactive Lever Presses 
 
 

 
 
PFC 

First Day 
Extinction 

First Day 
Extinction 

Cue 
Reinstatement 

Cocaine 
Reinstatement 

M100907 
Reinstatement 

 
0.1 µg/side  

 
109.2 ± 16.5 

 
24.4 ± 6.9 

 
8.8 ± 4.1 

 
10.2 ± 5.1 

 
2.7 ± 0.8 

 
0.3 µg/side 

 
106.2 ± 11.5 

 
23.8 ± 4.7 

 
8.4 ± 1.9 

 
3.7 ± 1.5 

 
5.7 ± 1.6 

 
1.0 µg/side 

 
104.9 ± 18.3 

 
27.5 ± 10.0 

 
4.9 ± 1.0 

 
10.0 ± 7.1 

 
6.2 ± 2.6 

 
1.5 µg/side 

 
83.8 ± 12.9 

 
20.9 ± 4.0 

 
4.7 ± 1.0 

 
12.6 ± 8.1 

 
2.8 ± 1.4 

Cg2      

1.5 µg/side 70.8 ± 13.3 24.8 ± 6.3 12.7 ± 3.0   
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* 0.01 µg/side was co-infused with 0.1 µg/side SB242084 in the CeA in Experiment 3. 

Table 3 Lever presses/h (mean ± SEM) during the first day of extinction and during the 
CP809101 and SB242084 reinstatement tests. 
 
Brain region and 
CP809101 Dose  
 

Active Lever 
Presses 

Inactive Lever Presses 

  
 
BlA 

First Day 
Extinction 

First Day 
Extinction 

Cue 
Reinstatement 

Cocaine 
Reinstatement 

CP809101 
Reinstatement 

 
0.01 µg/side  

 
90.5 ± 17.0 

 
32.3 ± 14.2 

 
11.3 ± 4.4 

 
7.0 ± 3.0 

 
14.3 ± 7.0 

 
0.1 µg/side 

 
84.9 ± 13.0 

 
15.0 ± 5.3 

 
15.3 ± 3.7 

 
26.3 ± 12.0 

 
9.9 ± 2.9 

 
1.0 µg/side 

 
81.0 ± 12.5 

 
29.6 ± 14.5 

 
7.0 ± 1.3 

 
34.8 ± 26.0 

 
9.0 ± 2.2 

CeA      

0.01 µg/side 102.2 ± 11.6 29.2 ± 8.1 11.2 ± 5.3 15.7 ± 7.7 9.8 ± 3.6 

 
0.1 µg/side 

 
69.9 ± 13.0 

 
16.0 ± 5.8 

 
7.0 ± 1.6 

 
4.4 ± 1.3 

 
12.0 ± 2.0 

 
1.0 µg/side 
 
0.01 µg/side 
+SB242084* 

 
83.6 ± 18.3 
 
103.0 ± 13.5 

 
66.6 ± 31.3 
 
25.5 ± 5.3 

 
25.5 ± 11.1 
 
 

 
13.3 ± 3.8 
 
27.6 ± 15.4 

 
12.9 ± 5.2 
 
8.9 ± 1.4 
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Figure 1 Thionin-stained sections taken in the coronal plane demonstrating representative 
cannula placements in mPFC (A) and Cg2 (B). 
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Figure 2  Effects of M100907 on cocaine self-administration, expressed as the mean ± 
SEM number of reinforcers (infusions of cocaine with cues) received over a 1-h test 
session in each dosage group (A) and collapsed across dosage groups (B).  Animals 
assigned to receive 0.1 (n=6), 0.3 (n=6), 1.0 (n=6), or 1.5 (n=5) µg/0.2 µl/side M100907 
into the mPFC were tested on one day with their assigned dose (striped bar) and on 
another day with the vehicle (black bar), with order counterbalanced.  Baselines (white 
bar) were calculated as the average number of reinforcers obtained during the first h of 
the self-administration sessions immediately preceding each test.  There was a small, but 
significant decrease in responding on the M100907 test day relative to baseline when 
collapsed across dose (i.e., main effect of test day).  The asterisk (*) represents a 
significant difference from extinction baseline, test of simple main effects, p<0.05.    
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Figure 3  Effects of M100907 pretreatment on cue-elicited reinstatement of cocaine-
seeking behavior when injected directly into the mPFC, expressed as mean responses/h ± 
SEM on the active lever.  Animals assigned to receive 0.1 (n=13), 0.3 (n=12), 1.0 (n=14), 
or 1.5 (n=17) µg/0.2 µl/side M100907 into the mPFC were tested on one day with their 
assigned dose (striped bar) and on another day with the vehicle (black bar), with order 
counterbalanced.  These pretreatments were infused within 1 min before placing the 
animals into the self-administration chambers, where light and tone cues were available 
response-contingently on an FR1 schedule.  Baselines (white bar) were calculated as the 
average number active lever presses during the extinction sessions immediately preceding 
each test.  The asterisk (*) represents a significant difference from extinction baseline, 
test of simple main effects, p<0.05.  The plus sign (+) represents a significant difference 
from vehicle pretreatment session, planned t-tests, p<0.05.	  	  



	   	   	  

128 

Cue reinstatement in anatomical controls

0

20

40

60

80

* *

Baseline Vehicle M100907

A
ct

iv
e 

le
ve

r 
pr

es
se

s/
h

± 
SE

M

	  
Figure 4  The effects of 1.5 µg/0.2 µl/side M100907 on cue-elicited reinstatement of 
cocaine-seeking behavior when injected directly into the Cg2 region of the anterior 
cingulate cortex (n=8), which served as an anatomical control site.  Animals received 1.5 
µg/0.2 µl/side M100907 and were tested on one day with their assigned dose (striped bar) 
and on another day with the vehicle (black bar), with order counterbalanced.  These 
pretreatments were infused within 1 min before placing the animals into the self-
administration chambers, where light and tone cues were available response-contingently 
on an FR1 schedule.  Baselines (white bar) were calculated as the average number active 
lever presses during the extinction sessions immediately preceding each test.  The 
asterisk (*) represents a significant difference from extinction baseline, test of simple 
main effects, p<0.05.   
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Figure 5  Effects of M100907 pretreatment on cocaine-primed reinstatement of cocaine-
seeking behavior, expressed as mean responses/h ± SEM on the active lever in each 
dosage group (A) and collapsed across dosage groups (B).  Animals assigned to receive 
0.1 (n=13), 0.3 (n=13), 1.0 (n=13), or 1.5 (n=14) µg/0.2 µl/side M100907 into the mPFC 
were tested on one day with their assigned dose (striped bar) and on another day with the 
vehicle (black bar), with order counterbalanced.  These pretreatments were infused, and 
immediately after the animals received the cocaine prime (10 mg/kg, i.p.), and were then 
immediately placed into the self-administration chambers.  No cues were presented 
during the test sessions.  Baselines (white bar) were calculated as the average number of 
active lever presses during the extinction sessions immediately preceding each test.  
When collapsed across doses (B) there was a significant increase in responding on both 
the vehicle and M100907 test days relative to extinction baseline and a significant 
decrease in responding on the M100907 test day relative to the vehicle test day.  The 
asterisk (*) represents a significant difference from extinction baseline, test of simple 
main effects, p<0.05. The plus sign (+) represents a significant difference from vehicle 
test day, test of simple main effects, p<0.05. 
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Figure 6  Effects of M100907 priming injections on reinstatement of cocaine-seeking 
behavior, expressed as mean responses/h ± SEM on the active lever.  Animals received 
0.1 (n=13), 0.3 (n=13), 1.0 (n=14), or 1.5 (n=13) µg/0.2 µl/side M100907 infused into the 
mPFC on one test day (striped bar) and vehicle on another day (black bar), with order 
counterbalanced. They were placed into the self-administration chambers immediately 
after these pretreatments.  Baselines (white bar) were calculated as the average number of 
active lever presses obtained during the extinction sessions immediately preceding each 
test.  No cues were presented during the test sessions. 
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Figure 7  Effects of M100907 pretreatment on cue reinstatement of sucrose-seeking 
behavior (n=10), expressed as mean responses/h ± SEM on the active lever.  Animals 
were tested on one day with 1.5 µg/side M100907 (striped bar) and on another day with 
the vehicle (black bar), with order counterbalanced.  These pretreatments were infused 
within 1 min before placing the animals into the self-administration chambers, where 
light and tone cues were available response-contingently on an FR1 schedule.  Baselines 
(white bar) were calculated as the average number of active lever presses obtained during 
the extinction sessions immediately preceding each test.  There was a significant increase 
in responding on both the vehicle and M100907 test days relative to extinction baseline.  
The asterisk (*) represents a significant difference from extinction baseline, test of simple 
main effects, p<0.05. 
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Figure 8  Effects of M100907 pretreatment on locomotor activity, expressed as total 
movement (m) during a 90-min test session.  Animals received either vehicle or 1.0 
µg/side M100907 into the mPFC (n=12/group) and were given an injection 5 min later of 
cocaine (10 mg/kg, i.p.) for one test and saline (10 mg/kg, i.p.) for the other test, with 
order counterbalanced.  They were then immediately placed into the test chambers.  A 
pound sign (#) indicates a difference from saline test day, ANOVA main effect, P<0.05. 
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Figure 9 Representative images of Fos positive nuclei in the dorsolateral CPu for animals 
that received either cocaine (a), saline (b), or cocaine + M100907 and MK 212 cocktail 
(c) and schematic representation of coronal sections of the rat brain taken at +3.2 (d) and 
+1.6 mm from Bregma (e; Paxinos and Watson, 1998). Numbers in the sections represent 
the regions analyzed for Fos as follows: (1) prelimbic cortex (PrL); (2) infralimbic cortex 
(IL); (3) dorsolateral CPu; (4) NAcC; (5) NAcSh. Scale bar on the first image (a) is equal 
to 100 µm. 
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Figure 10 Effects of 0.025 (a), 0.05 (b), and 0.1 (c) mg/kg M100907 (n=8/dose group) on 
cocaine hyperlocomotion, expressed as the mean ± SEM total distance traveled in meters 
across 15-min time bins relative to the last 15-min of habituation (baseline; BL), or for 
the entire 1-h session (insert). Dose was a between-subjects factor, while test day (vehicle 
or M100907) was a within-subjects factor. In between habituation and cocaine 
hyperlocomotion testing, rats were injected subcutaneously with vehicle on one test day 
(left) and their assigned dose of M100907 on the other test day (right), with order 
counterbalanced; 5 min later they were injected with cocaine (15 mg/kg, i.p.), indicated 
by the dotted vertical lines. Only the 0.025 mg/kg dose failed to have any effect on 
cocaine hyperlocomotion. The asterisk (*) represents a significant difference from 
baseline, P<0.05. The plus sign (+) represents a significant difference from the vehicle 
test day, P<0.05. 
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Figure 11 Effects of 0.125 (a), 0.25 (b), and 0.5 (c) mg/kg MK212 (n=8/ dose group) on 
cocaine hyperlocomotion, expressed as the mean ± SEM total distance traveled in meters 
across 15-min time bins relative to the last 15-min of habituation (baseline; BL). Dose 
was a between-subjects factor, while test day (vehicle or M100907) was a within-subjects 
factor. In between habituation and cocaine hyperlocomotion testing, animals were 
injected subcutaneously with vehicle on one test day (left) and their assigned dose of 
MK212 on the other test day (right), with order counterbalanced; 5 min later they were 
injected with cocaine (15 mg/kg, i.p.), indicated by the dotted vertical lines. Only the 
0.125 mg/kg dose failed to have any effect on cocaine hyperlocomotion. The asterisk (*) 
represents a significant difference from baseline, P<0.05. The plus sign (+) represents a 
significant difference from respective time point on the vehicle test day, P<0.05. 
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Figure 12 Panel a shows the effects of cocaine, saline, 0.025 mg/kg M100907 + cocaine, 
0.125 mg/kg MK212 + cocaine, and M100907 + MK212 cocktail + cocaine (n=8/group) 
on cocaine hyperlocomotion, expressed as the mean ± SEM total distance traveled in 
meters across 15-min time bins relative to the last 15-min of habituation (baseline; BL). 
Panel b shows the cumulative data for the entire 60-min session. In between habituation 
and cocaine hyperlocomotion testing, animals were injected subcutaneously with vehicle 
on one test day (left) and their assigned dose of MK212 on the other test day (right), with 
order counterbalanced; 5 min later they were injected with cocaine (15 mg/kg, i.p.), 
indicated by the dotted vertical lines. In both graphs, only the saline and the M100907 + 
MK212 cocktail + cocaine groups showed a significant difference from the cocaine alone 
group, indicating that M100907 and MK212 only had an effect when given in 
combination. The asterisk (*) represents a significant difference from the cocaine group, 
P<0.05.  
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Figure 13 Effects of saline, 0.025 mg/kg M100907, 0.125 mg/kg MK212, and 
M100907/MK212 cocktail (n=8/group) on spontaneous locomotion, expressed as the 
mean ± SEM total distance traveled in meters across 15-min time bins (a) and as total 
locomotion for the 1-h test (b). Animals were injected subcutaneously with their assigned 
drug, and 5-min later were given a 1-hr test for locomotor activity. There were no 
differences in locomotion between groups. 
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Figure 14 Effects of saline, 15 mg/kg cocaine, 0.025 mg/kg M100907 + cocaine, 0.125 
mg/kg MK212 + cocaine, and M100907 + MK212 cocktail + cocaine (n=8/group) on Fos 
activation in the dorsolateral CPu (a), NAc core (b) and shell (c), and infralimbic (d) and 
prelimbic (e) PFC, expressed as the mean ± SEM of percent of control (saline alone 
group). The dotted line indicates reference point for change from saline control (i.e., 
100%,). All animals underwent locomotor activity testing and were sacrificed 90 min 
after drug injections. Animals were perfused and brains were harvested for Fos 
immunohistochemistry. There was a significant difference between saline and cocaine 
groups, indicating that cocaine increased Fos expression in the CPu. There was also a 
difference between the M100 + cocaine and MK212 + cocaine groups, which shows that 
these drugs alone had no effect on cocaine-induced Fos activation. There was no 
difference between the saline and cocktail + cocaine groups, indicating that the cocktail 
decreased Fos activation levels back to baseline. There were no differences between any 
of the groups in any regions of the NAc or PFC. The asterisk (*) represents a significant 
difference from the saline group, P<0.05.  
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Figure 15 Histological reconstructions (left) with shaded regions showing where 
cannulae tips were considered correctly placed for the BlA (A) and CeA (B). The right 
sides show pictographs of cresyl violet stained tissue samples with methylene blue 
microinfusions for the BlA (A) and CeA (B). 
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Figure 16 Effects of CP809101 priming injections in the BlA on reinstatement 

responding, expressed as the mean ± SEM number of active lever presses received over a 

1-h test session in each dosage group. Animals assigned to receive 0.01 (n=7), 0.1 (n=8) 

or 1.0 (n=8) µg/0.2µL/side CP809101 into the BlA were tested on one day with their 

assigned dose (striped bar) and on another day with the vehicle (BlAck bar), with order 

counterbalanced. Baselines (white bars) were calculated as the average number of active 

lever presses during the extinction sessions immediately preceding each test. There was 

no effect of vehicle or CP809101 pretreatment on reinstatement responding. 
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Figure 17 Effects of CP809101 in the BlA on cue-primed reinstatement, expressed as the 

mean ± SEM number of active lever presses received over a 1-h test session in each 

dosage group. Animals assigned to receive 0.01 (n=6), 0.1 (n=8) or 1.0 (n=8) 

µg/0.2µL/side CP809101 into the BlA were tested on one day with their assigned dose 

(striped bar) and on another day with the vehicle (BlAck bar), with order 

counterbalanced. These pretreatments were infused within 1 min before placing the 

animals into the self-administration chambers, where light and tone cues were available 

response-contingently on an FR 1 schedule. Baselines (white bars) were calculated as the 

average number of active lever presses during the extinction sessions immediately 

preceding each test. The asterisk (*) represents a significant difference from extinction 

baseline, test of simple main effects, P<0.05. All groups showed significant 

reinstatement, but CP809101 had no effect on cue-primed reinstatement relative to 

vehicle. 
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Figure 18 Effects of CP809101 in the BlA on cocaine-primed reinstatement, expressed as 

the mean ± SEM number of active lever presses received over a 1-h test session in each 

dosage group. Animals assigned to receive 0.01 (n=5), 0.1 (n=7) or 1.0 (n=8) 

µg/0.2µL/side CP809101 into the BlA were tested on one day with their assigned dose 

(striped bar) and on another day with the vehicle (BlAck bar), with order 

counterbalanced. These pretreatments were infused immediately before the animals 

received the cocaine prime (10 mg/kg, i.p.) and were then immediately placed into the 

self-administration chambers. No cues were presented during the test sessions. Baselines 

(white bars) were calculated as the average number of active lever presses during the 

extinction sessions immediately preceding each test. The asterisk (*) represents a 

significant difference from extinction baseline, test of simple main effects, P<0.05. All 

groups showed significant reinstatement, but CP809101 had no effect on cue-primed 

reinstatement relative to vehicle. 
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Figure 19 Effects of CP809101 in the BlA on the percent of time spent on the open arms 

of the EPM. Animals assigned to receive vehicle (n=3), 0.01 (n=7), 0.1 (n=4) or 1.0 (n=8) 

µg/0.2µL/side CP809101 into the BlA were given one 10-min test on the EPM. These 

pretreatments were infused 5-min before animals were placed on the center of the EPM. 

The plus sign (+) indicates a significant difference from the vehicle group, planned 

comparison, (P<0.05). 
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Figure 20 Effects of CP809101 in the BlA on an anxiety-index score, which accounts for 

percent of time spent in open arms as well as open arm entries on the EPM. Animals 

assigned to receive vehicle (n=3), 0.01 (n=7), 0.1 (n=4) or 1.0 (n=8) µg/0.2µL/side 

CP809101 into the BlA were given one 10-min test on the EPM. These pretreatments 

were infused 5-min before animals were placed on the center of the EPM. The plus sign 

(+) indicates a marginally significant difference from the vehicle group, planned 

comparison, (P=0.052). 
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Figure 21 Effects of CP809101 in the BlA on spontaneous locomotor activity. Animals 

assigned to receive vehicle (n=3), 0.01 (n=7), 0.1 (n=4) or 1.0 (n=8) µg/0.2µL/side 

CP809101 into the BlA were given one 10-min test on the EPM. These pretreatments 

were infused 5-min before animals were placed on the center of the EPM. There were no 

effects of CP809101 on locomotor activity. 
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Figure 22 Effects of CP809101 priming injections in the CeA on reinstatement 

responding, expressed as the mean ± SEM number of active lever presses received over a 

1-h test session in each dosage group. Animals assigned to receive 0.01 (n=6), 0.1 (n=9) 

or 1.0 (n=8) µg/0.2µL/side CP809101 into the CeA were tested on one day with their 

assigned dose (striped bar) and on another day with the vehicle (BlAck bar), with order 

counterbalanced. Baselines (white bars) were calculated as the average number of active 

lever presses during the extinction sessions immediately preceding each test. There was 

no effect of vehicle or CP809101 pretreatment on reinstatement responding. 
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Figure 23 Effects of CP809101 in the CeA on cue-primed reinstatement, expressed as the 

mean ± SEM number of active lever presses received over a 1-h test session in each 

dosage group. Animals assigned to receive 0.01 (n=6), 0.1 (n=9) or 1.0 (n=8) 

µg/0.2µL/side CP809101 into the CeA were tested on one day with their assigned dose 

(striped bar) and on another day with the vehicle (BlAck bar), with order 

counterbalanced. These pretreatments were infused within 1 min before placing the 

animals into the self-administration chambers, where light and tone cues were available 

response-contingently on an FR 1 schedule. Baselines (white bars) were calculated as the 

average number of active lever presses during the extinction sessions immediately 

preceding each test. The asterisk (*) represents a significant difference from extinction 

baseline, test of simple main effects, P<0.05. All groups showed significant 

reinstatement, but CP809101 had no effect on cue-primed reinstatement relative to 

vehicle. 
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Figure 24 Effects of CP809101 in the CeA on cocaine-primed reinstatement, expressed 

as the mean ± SEM number of active lever presses received over a 1-h test session in 

each dosage group. Animals assigned to receive 0.01 (n=6), 0.1 (n=7) or 1.0 (n=7) 

µg/0.2µL/side CP809101 into the BlA were tested on one day with their assigned dose 

(striped bar) and on another day with the vehicle (BlAck bar), with order 

counterbalanced. These pretreatments were infused immediately before the animals 

received the cocaine prime (10 mg/kg, i.p.) and were then immediately placed into the 

self-administration chambers. No cues were presented during the test sessions. Baselines 

(white bars) were calculated as the average number of active lever presses during the 

extinction sessions immediately preceding each test. The asterisk (*) represents a 

significant difference from extinction baseline, test of simple main effects, P<0.05. The 

plus sign (+) represents a significant difference from vehicle test day, P<0.05. All groups 

showed significant reinstatement except for the 0.01 µg dose group, which was also 

significant different from the corresponding vehicle test day. 
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Figure 25 Effects of CP809101 in the CeA on amount of time spent in the open arms of 

the EPM. Animals assigned to receive vehicle (n=10), 0.01 (n=8), 0.1 (n=7) or 1.0 (n=6) 

µg/0.2µL/side CP809101 into the CeA were given one 10-min test on the EPM. These 

pretreatments were infused 5-min before animals were placed on the center of the EPM. 

There was no effect of CP809101 in the CeA on amount of time spent in the open arms of 

the EPM. 
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Figure 26 Effects of CP809101 in the CeA on an anxiety-index score, which accounts for 

percent of time spent in open arms as well as open arm entries on the EPM. Animals 

assigned to receive vehicle (n=10), 0.01 (n=8), 0.1 (n=7) or 1.0 (n=6) µg/0.2µL/side 

CP809101 into the CeA were given one 10-min test on the EPM. These pretreatments 

were infused 5-min before animals were placed on the center of the EPM. There was no 

effect of CP809101 in the CeA on anxiety-index score. 
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Figure 27 Effects of CP809101 in the CeA on spontaneous locomotor activity. Animals 

assigned to receive vehicle (n=10), 0.01 (n=8), 0.1 (n=7) or 1.0 (n=6) µg/0.2µL/side 

CP809101 into the CeA were given one 10-min test on the EPM. These pretreatments 

were infused 5-min before animals were placed on the center of the EPM. There were no 

effects of CP809101 on locomotor activity. 
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Figure 28 Effects of CP809101 priming injections in the CeA on reinstatement 

responding, expressed as the mean ± SEM number of active lever presses emitted over a 

1-h test session in each dosage group. Animals assigned to receive either 0.01 

µg/0.2µL/side CP809101 (n=9) or 0.1 µg/0.2µL/side SB242084 (n=7) into the CeA were 

tested on one day with their assigned dose (striped bar) and on another day with the 

vehicle (BlAck bar), with order counterbalanced. Baselines (white bars) were calculated 

as the average number of active lever presses during the extinction sessions immediately 

preceding each test. There was no effect of vehicle, CP809101, or SB242084 

pretreatment on reinstatement responding. 
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Figure 29 Effects of CP809101 and SB242082 in the CeA on cocaine-primed 

reinstatement, expressed as the mean ± SEM number of active lever presses received 

over a 1-h test session in each dosage group. Animals assigned to receive either 0.01 

µg/0.2µL/side CP809101 (n=7) or 0.01 µg/0.2µL/side CP809101 + 0.1 µg/0.2µL/side 

SB242084 (n=5) into the CeA were tested on one day with their assigned dose (striped 

bar) and on another day with the vehicle (BlAck bar), with order counterbalanced. These 

pretreatments were infused immediately before the animals received the cocaine prime 

(10 mg/kg, i.p.) and were then immediately placed into the self-administration chambers. 

No cues were presented during the test sessions. Baselines (white bars) were calculated as 

the average number of active lever presses during the extinction sessions immediately 

preceding each test. The asterisk (*) represents a significant difference from extinction 

baseline, test of simple main effects, P<0.05. The plus sign (+) represents a significant 

difference from vehicle test day, P<0.05. All groups showed significant reinstatement, 

however the 0.01 µg CP809101 group showed significantly lower responding on 

CP809101 test day relative to vehicle. 

SB242084 reversed the effects of CP809101
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