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ABSTRACT

Currently, to interact with computer based systems one needs to learn the specific in-

terface language of that system. In most cases, interaction would be much easier if it could be

done in natural language. For that, we will need a module which understands natural language

and automatically translates it to the interface language of the system. NL2KR (Natural lan-

guage to knowledge representation) v.1 system is a prototype of such a system. It is a learning

based system that learns new meanings of words in terms of λ-calculus formulas given an initial

lexicon of some words and their meanings and a training corpus of sentences with their trans-

lations. As a part of this thesis, we take the prototype NL2KR v.1 system and enhance various

components of it to make it usable for somewhat substantial and useful interface languages.

We revamped the lexicon learning components, Inverse-λ and Generalization modules, and re-

designed the lexicon learning algorithm which uses these components to learn new meanings

of words. Similarly, we re-developed an inbuilt parser of the system in Answer Set Program-

ming (ASP) and also integrated external parser with the system. Apart from this, we added

some new rich features like various system configurations and memory cache in the learning

component of the NL2KR system. These enhancements helped in learning more meanings of

the words, boosted performance of the system by reducing the computation time by a factor of

8 and improved the usability of the system.

We evaluated the NL2KR system on iRODS domain. iRODS is a rule-oriented data sys-

tem, which helps in managing large set of computer files using policies. This system provides a

Rule-Oriented interface langauge whose syntactic structure is like any procedural programming

language (eg. C). However, direct translation of natural language (NL) to this interface language

is difficult. So, for automatic translation of NL to this language, we define a simple Intermediate

Policy Declarative Language (IPDL) to represent the knowledge in the policies, which then can

be directly translated to iRODS rules. We develop a corpus of 100 policy statements and man-

ually translate them to IPDL langauge. This corpus is then used for the evaluation of NL2KR

system. We performed 10 fold cross validation on the system. Furthermore, using this corpus

we illustrate how different components of our NL2KR system work.
i
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Chapter 1

Introduction and Motivation

For the purpose of interaction with computer based systems, we need to learn the specific inter-

face language of these systems. If a user wants to use one such system he should have good

knowledge of the grammar of the system’s interface language. In most cases, this interaction

would be much easier if it would be done in natural language.

In order to automate the process of direct interaction with the computer based systems

in natural language, we need a module which can translate natural language to an interface

language of these systems. As there is no single interface language which is suitable for dif-

ferent systems, we need a module which should be able to learn to translate natural language

to various interface languages. In [1], a prototype system is developed for this task. This pro-

totype uses an initial lexicon containing some words and their meanings and a set of training

corpus containing sentences in natural language and their translations to learn new meanings

of words. The system then uses the new learned lexicon to translate new sentences. In this

research, we make significant enhancements in this prototype by augumenting various compo-

nents and adding various new powerful features. We make various improvements in learning

component of the system, specifically in natural language text parser, lexicon learning compo-

nents i.e. Inverse-λ and Generalization, learning algorithm among others. Some of the new

features added to the system are memory cache to improve the computation time, better sys-

tem configuration to provide flexibility in efficiently handling the system.

We evaluate the NL2KR system on the iRODS1 system which is used to manage large

set of computer files using policies. This system provides Rule-Oriented language [13] to in-

teract with users and accordingly responds to their requests. The syntactic structure of this

language is very similar to a procedural programming language like C. A direct translation of

natural language to this interface language would be difficult. We design a simple Intermed-

icate Policy Declarative language (IPDL) such that natural language can be translated to this
1https://www.irods.org
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language and further one can directly translate IPDL to iRODS rules. We develop a corpus size

of 100 policies and manually translate them to IPDL statements for the evaluation purpose. A

10-fold cross validation is performed on the system using this corpus. We also illustrate working

of various components of the NL2KR system using this corpus.

1.1 Existing Work and Related Research

NL2KR v.1 System

The main idea behind the implementation of the prototype NL2KR v.1 system is to be able

to translate the natural language text into an appropriate knowledge representation language

so that a reasoning engine can reason with it and give a response accordingly. This system

is based on the approach described by Montague [10] whose idea was to represent mean-

ings of words/phrases in natural language text in terms of λ-calculus expressions such that by

compositions of the meanings of the constituent words, we can obtain the meaning of natural

language text. But, in order to compose the meaning of a sentence, we will need meanings

of each word/phrase in a sentence. Manually defining such meanings would be a very tedious

task because some meanings might have complex λ-calculus formulas. This system uses two

very elegant approaches: Inverse-λ and generalization for the automation of obtaining the λ-

calculus meanings of various words and phrases. In this section, we will briefly describe the

NL2KR v.1 system.

Overview of the system

The NL2KR system has two sub-parts which depends on each other (1) NL2KR-L, builds a

final lexicon by learning λ-calculus formulas of words in training dataset sentences. A weight

is assigned to each λ-calculus formula to deal with multiple meanings of a word. (2) NL2KR-

T, which uses the learned lexicon from NL2KR-L and translates a given sentence to a formal

representation. However in v.1 of the system, these components were integrated together into

a single application system.
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The system takes an initial lexicon consisting of some words and their meanings in

terms of λ-calculus expressions, a set of training sentences and their formal representations,

and a set of test sentences and their formal representations as an input. The learning sub-part

of the system uses Inverse-λ and Generalization algorithms to learn meanings of new encoun-

tered words which are not present in initial lexicon and adds them to the lexicon. A parameter

learning method is then used to estimate a weight for each lexicon entry (word, its syntactic

category and meaning) such that the probability that each sentence is translated to given for-

mal representation is maximized. Basic translation methodology is based on the technique

discussed in [1] i.e. Probabilistic Combinatorial Categorical Grammars (PCCG). Given a sen-

tence S, its translation M can be obtained by finding M which maximizes the probability function

P (M |S; Θ), which denotes the probability of translation of S to M , given the parameter vector

i.e. argmaxM P (M |S; Θ). As a particular translation can be obtained using multiple parse

trees, P (M |S; Θ) is defined as
∑

T P (M,T |S; Θ). The probability P (M,T |S; Θ) is defined

using the feature vector f̄(M,T, S) and a log linear model as follows:

P (M,T |S; Θ̄) = ef̄(M,T,S).Θ̄∑
(M,T )

ef̄(M,T,S).Θ̄

The feature vector is the one that counts the number of times each lexical entry is used in a

parse tree T. A lexicon Λ and a set of training data (Si,Mi), i = 1, .., n, where Si is a sentence

and Mi is its translation are used to find Θ that maximizes L(Θ,Λ), given by

P (M1|S1; Θ)× P (M2|S2; Θ)× ...× P (Mn|Sn; Θ)

Using this parameter estimation method, the lexicon is updated by adding weights for each

lexical entry. After parameter estimation, lexicon is again generalized to learn more meanings.

Once, the training component finishes its job, the translation component (NL2KR-T)

uses this updated lexicon, a test data set and translates sentences in test data set using PCCG

parser. Since words can have multiple meanings and their associated λ-calculus expressions,

weights assigned to each lexical entry in the lexicon helps in deciding correct meaning of a word

3



in the context of a sentence such that the meanings which corresponds to maximum probability

of translation are picked.

An overview of the prototype NL2KR v.1 system is described in figure 1.1. We will now

elaborate on various modules in NL2KR system.

Figure 1.1: Overview of the prototype NL2KR v.1 system

Inverse-λ Operators

As mentioned earlier, Inverse λ-module learns new meanings of words in training sentences.

For implementation of this module, theory proposed in [2] is used. The main idea behind this

theory is to compute a λ-expression F such that H = F@G or H = G@F . A basic version of

two components InverseL and InverseR is implemented in NL2KR v.1.

We will now present the definition of these components from [2]. Before, defining these

terminologies we will introduce some definitions and explanations necessary to help understand

them. Different symbols used in the definition are as follows:
4



- F, G, H and J represent the typed λ-calculus formulas.

- J1, J2, .., Jn represent the typed terms.

- v, w and v1, v2, .., vn represent the variables.

- Typed terms which are sub-terms of J i are represented by J i
k.

Definition 1 (Operator :) If we have two lists (same length) of typed λ-calculus formulasA1, ..., An

and B1, .., Bn, and a typed λ-calculus formula H , then result of the operation H(A1, ..., An :

B1, .., Bn) is defined as:

1.Find the first occurrence of formulas A1, ..., An in H .

2.Replace each Ai by the corresponding Bi.

3.Find the next occurrence of formulasA1, ..., An inH and go to step 2. Otherwise,stop.

Definition 2 (InverseL(H,G)) Given G and H :

1. G is λv.v

– F = λv.(v@H)

2. G is a sub-term of H

– F = λv.H(G : v)

3. G is not λv.v, (J1(J1
1 , ..., J

1
m), J2(J2

1 , ..., J
2
m), ... , Jn(Jn

1 , ..., J
n
m)) are sub-terms of H ,

and ∀J i ∈ H , G is

λv1, ..., vs.J
i(J i

1, ..., J
i
m : vk1 , ..., vkm) with 1 ≤ s ≤ m and ∀p , 1 ≤ kp ≤ s.

– F = λw.H(J1, ..., Jn : (w@J1
k1
, ...,@J1

km
), ..., (w@Jn

k1
, ...,@Jn

km
)) where each Jkp

maps to a different vkp in G.

4. H is λv1, ..., vi.J and f(σi+1, ..., σs) is a sub-term of J , G is λw.J(f(σi+1, ..., σs) :

w@σk1@...@σks) with ∀p, i+ 1 ≤ kp ≤ s.

– F = λwλv1, ..., vi.(w@λvi+1, ..., vs.(f(σi+1, ..., σs : vk1 , ..., vks)))
5



Definition 3 (InverseR(H,G)) Given G and H :

1. G is λv.v@J

– F = InverseL(H,J)

2. J is a sub-term of H and G is λv.H(J : v)

– F = J

3. G is not λv.v@J , (J1(J1
1 , ..., J

1
m), J2(J2

1 , ..., J
2
m), ... , Jn(Jn

1 , ..., J
n
m)) are sub-terms of

H such that for all i, J i(J i
1, . . . , J

i
m) = J1(J1

1 , . . . , J
1
m : J i

1, . . . , J
i
m) and G is

λw.H(J1(J1
1 , ..., J

1
m), ..., Jn(Jn

1 , ..., J
n
m) : (w@J1

k1
, ...,@J1

km
),

..., (w@Jn
k1
, ...,@Jn

km
)) for some permutation {k1, . . . , km} of {1, . . . ,m}.

– F = λvk1 , ..., vkm .J
1(J1

1 , ..., J
1
m : v1, ..., vm).

4. H is λv1, ..., vi.J and f(σi+1, ..., σs) is a sub-term of J , G is λw.λv1, ..., vi.(w@

λvi+1, ..., vs.(f(σi+1, ..., σs : vk1 , ..., vks))) with ∀p, i+ 1 ≤ kp ≤ s.

– F = λw.J(f(σi+1, ..., σs) : w@σk1@...@σks)

Generalization Algorithm

Inverse-L and Inverse-R are not enough to learn new meanings of words. Without any form

of generalization the system will not be able to extend meanings of words to go beyond the

ones that are present in the training data set. For generalization module in NL2KR v.1 system,

the generalization technique described in [1] is implemented. The generalization algorithm is

described as follows:

The GeneralizeD algorithm takes the lexicon Λ and a word entry α which we want to

generalize. IDENTIFY (li(word), li(semantics)) method will identify the part of semantics

of a lexical entry in the lexion such that the word in this lexical entry is present in the semantics.

For. eg. eats is part of semantics λy.λx.eats(x, y). REPLACE(li(semantics), I, α(word))

will replace the part in semantics of lexical entry with a word of α. For eg. We want to generalize
6



Algorithm 1 GeneralizeD(Λ, α)

for li ∈ Λ do
if li(category) = α(category) then

I = IDENTIFY (li(word), li(semantics))
S = REPLACE(li(semantics), I, α(word))
Λ = Λ ∪ (α(word), α(category), S)

end if
end for

the meaning of word entry (plays, (S\NP )/NP ). The lexicon already contains a lexical entry

(eats, (S\NP )/NP , λy.λx.eats(x, y)) whose category is same as that of word plays. The

above algorithm will add a new lexical entry (plays, (S\NP )/NP , λy.λx.plays(x, y)) to the

lexicon by generalizing plays from eats. Also, a default weight of 0.01 is assigned to the new

lexical entry for plays.

Learning Algorithm

NL2KR-L component of existing system uses following learning algorithm.

Algorithm 2 Lexicon Learning
Input: Input: A set of training sentences with their corresponding desired formal representa-

tions S = (Si, Li), i = 1, ..n where Si is the training sentence and Li is its formal repre-
sentation, an initial feature vector Θ0, an initial lexicon Λ0. Initially default weight (0.01) is
assigned to each lexical entry.

Output: Output: An updated ΛT+1 and an updated feature vector ΘT+1

Set Λ0

for t = 1, ..T do
for i = 1, ..n do

for j = 1, ..n do
Traversej : apply InverseL, InverseR and GeneralizeD to find new

λ-expressions of words or phrases α
Set Λt+1 Λt ∪ α

end for
end for
Parameter Estimation
Set Θt+1 = UPDATE(Θt,Λt+1)

end for
return Generalize(ΛT ,ΛT ), ΘT

7



Background Related Research

In this research, our main focus is on efficient implementation of various components of NL2KR

system and evaluation of this system on iRODS domain. The paper [1] describes the basic

implementation of components like Inverse-λ, generalization, Learning algorithm. In our work,

we have made improvements in these components for effective training of the system. Also,

we have implemented components: Inverse-λ , CCG parser and defined the representation of

formalisms like λ-calculus expressions in Answer Set Programming (ASP) [3] because of its

success in efficiently solving search problems which are reduced to computing stable models

and it can efficiently represent knowledge that needs non-monotonic reasoning which can be

used to improve performance of the system. Among many ASP systems, such as Smodels

[7], DLV [8] and Clingo [9], we use the Clingo system because Lua 2, a scripting language

which is required in implementation of some basic λ-calculus operations, is been demonstrably

integrated with Clingo [9].

For the evaluation of this system on iRODS domain, we have defined a simple yet ex-

pressive Intermediate Policy Declarative Language (IPDL). The paper [5] provides description

about Policy Description language which is based on event, condition and action paradigms. In

[6], an Action Description Language is introduced consisting of value and effect propositions.

The design of IPDL is strongly inspired by these researches.

1.2 Motivation

iRODS Corpus

In this work, we use the iRODS corpus which consists of policies/rules given in English lan-

guage and their translations in Intermediate Policy Declarative language (IPDL). We have a

corpus of 100 such policies in English language and manually translated these policies to IPDL

statements. iRODS system provides an iRODS Rule Language [13] to define policies and

2http://www.lua.org/
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actions in the system. An example of an iRODS policy in English is ‘Check if every file readable

by Tom is also readable by Jim’. This policy can be written in iRODS Rule language as follows:

rule {

*DataObjRS=readableDataObjs("Tom");

*Suc=true;

foreach(*DataObjKVP in *DataObjRS) {

msiGetValByKey(*DataObjKVP, "DATA_NAME", *DataObjName);

msiGetValByKey(*DataObjKVP, "COLL_NAME", *CollName);

if(!canAccess(/*CollName/*DataName, "Jim", "read") {

*Suc=false;

*Break;

}

}

*Suc;

}

Motivation Example

In the previous section, we talked about iRODS corpus and an example of a policy in iRODS

Rule Language. In order to automatically translate such policies, we need a system which

should be able to (1). process the natural language, (2). extract the knowledge and (3). use the

extracted knowledge to generate rules. However, it is difficult to have a system which directly

translates policies in natural language (NL) to such rules. For translation of NL to iRODS rules,

we will need an Intermediate Declarative Language such that we first translate natural language

sentences to it and then further it can be translated to iRODS rules.

In this research, we designed a simple Intermediate Policy Declarative Language (IPDL)

for iRODS system. An example of translation of policy ’On ingestion into collection gamma send

an email to curator of the collection’ to IPDL using the semantics of words in the sentence in

9



terms of λ-calculus expressions is described in table 1.1. A detailed description of syntax of

IPDL is given in chapter 2.

10
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1.3 Main Contribution

In this research, we have implemented NL2KR v.2 system over existing prototype NL2KR v.1

by improving various modules of the existing system. We have implemented an inbuilt CCG

parser for the system in ASP and also integrated an existing CCG parser (ASPccgTk parser

[14]) which also uses ASP to solve the parsing problem. We have also revamped the lexicon

learning techniques like Inverse-λ and Generalization and learning algorithm of the system.

Apart from this, we have also added some new features like better system configuration to

efficiently handle the system, memory cache in the learning component which improved the

computation time by approximately 8 times.

The existing system uses Java implementation of various components like Inverse-λ

algorithm, and various λ-calculus operations. Even though Java is very good programming

language, the type of problems we needed to solve as mentioned in the previous sections can

be easily solved using ASP which is very efficient in solving a search problem with only few

ASP rules. In order to implement Inverse-λ algorithm and various λ-calculus operations in

ASP, we need a good representation of the λ-expressions in ASP whether it could be a FOL-λ-

expression or an ASP-λ-expression or an IPDL-λ-expression. One of the main contributions of

this research is introduction of a succinct representation of λ-calculus expressions in ASP. We

have also implemented various λ-calculus operations and Inverse-λ in ASP. However, in order

to have an efficient implementation of these techniques, we needed some extra functionality

like generation of new IDs, string operations which ASP does not provide. So we intend to use

a light-weight scripting language Lua which is already integrated with the existing ASP solver

Clingo [9]. Thus, by using the power of ASP and Lua we are able to efficiently implement

components mentioned above. The details of this implementation is explained in chapter 4.

Another major contribution of this research is introduction of an Intermediate Policy

Declarative language (IPDL) for iRODS system. iRODS system is a rule oriented data man-

agement system used to manage large set of computer files. As we have already mentioned

in previous section that this system provides a rule oriented language to interpret policies. We

12



have designed a simple policy declarative language which can be further translated to rules in

iRODS rule oriented language. We need IPDL because we want to translate policies in natural

language to iRODS rules which is impossible if we do a direct translation being a procedural

language structure of iRODS rule oriented language.

We evaluated NL2KR v.2 system on iRODS domain. We first train the system using a

set of policies in natural language (English) and their corresponding IPDL translations and then

we test the system by translating new policies in natural language. A detailed description of

evaluation of the system and it’s performance analysis is provided in chapter 5.

1.4 Thesis outline

We have already talked about existing NL2KR v.1 system in this chapter. Rest of the work

is organized as follows: Chapter 2 presents an introduction of iRODS system and syntax of

IPDL language. Chapter 3 describes shortcomings of the NL2KR v.1 system and improve-

ments done in various components and integration of some new components to NL2KR v.2

system. Chapter 4 talks about an implementation of components operating on λ-calculus ex-

pression in ASP+Lua. Chapter 5 describes evaluation of NL2KR v.2 system and analysis of

performance of the system. Finally, chapter 6 finishes this work with conclusion and potential

future improvements in the system.

13



Chapter 2

Policy Translation

2.1 Introduction to iRODS system

iRODS system is Integrated Rule Oriented Data system developed to provide flexibility, adapt-

ability, customization of data. The iRODS system has a data grid architecture which is based on

client/server model and distributed storage. This system has a database to maintain attributes

and states of data and operations. It also provides a rule system which can be used to enforce

and execute adaptive rules. In order to execute such rules, this system provides an interface

of iRODS rule language [13]. iRODS Rule language can be used to define policies and actions

in the system. In iRODS Rule language everything is a rule. An example of iRODS rule is

described below

acPostProcForPut {

on($objPath like "*.txt") {

msiDataObjCopy($objPath, "$objPath.copy");

}

}

In this rule, acPostProcForPut is the name of the rule. This rule is automatically triggered

when a condition described in on() clause is true for an event. A {} followed by a rule condition

is executed when the rule is applied. A detailed description of this language is defined in [13].

As you can see, syntactic structure of this language is very similar to a procedural

language like C. So, direct translation of policies in natural language to such rules would be very

difficult. However, such translation would be doable if we extract the knowledge from natural

language in some intermediate declarative language format, which then can be converted to

iRODS rules. Thus, this intermediate language would interpret some kind of formalism over

natural language. In next section, we will define the syntax of Intermediate Policy Declarative

language.
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2.2 Syntax of Intermediate Policy Declarative language (IPDL)

For the purpose of this research, we have designed a very simple IPDL language which is a

combination of First Order Logic and Events. In order to design syntax of this language, we

have categorized iRODS rules in 3 categories: (1) Trigger rules, (2) Validation rules, (3) Direct

commands. A formal representation of iRODS policies/rules in IPDL can be any combination

of these categories. Each of these rules contain basic symbols: event, condition. An event

symbol is a function symbol of arity n which defines a specific operation in iRODS system.

Thus, an event could be a micro-service or a pre-defined procedure already provided by a user.

A basic condition symbol is a predicate symbol of arity m which defines a state information, a

description of an entity/object in iRODS domain or of the form m1 Θ m2, where Θ is a relational

operator (≤,≥, <,>,=) and m1, m2 are predicate symbol terms. A formal definition of IPDL

is described below.

Before defining syntax of IPDL let us first define the signature of this language as

S = (Ω,Π, R,D).

• Ω is a set of function symbols f with arity n ≥ 0, written as f/n. If n = 0, then f is called

constant symbol.

• Π is a set of predicate symbols p with arity m ≥ 0, written as p/m.

• R is a set of relation symbols. (eg. ≤,≥, <,>,=)

• D is the domain of iRODS system which includes a set of micro-services, a set of data

objects and collections, a set of numbers and mathematical symbols etc.

Now we will define syntactic formula for IPDL language.

< formula > ::= < rule > | ¬ < formula > |

< formula > ∧ < formula > |

< formula > ∨ < formula > |
15



< rule > ::= < trigger_rule > | < validation_rule > | < command >

< trigger_rule > ::= when > < event >

IF < condition >; (optional)

do > < rule >

< validation_rule > ::= validation > < condition > |

validation > < event >

IF < condition > (optional)

< command > ::= command > < event >

IF < condition > (optional)

< condition > ::= < term > | ¬ < condition > |

< condition > ∧ < condition > |

< condition > ∨ < condition > |

< event > ::= f(< term >1, < term >2, ..., < term >n) , f/n ∈ Ω

< term > ::= p(< term >1, < term >2, ..., < term >m) , p/m ∈ Π

An illustration of syntax of IPDL with some iRODS policies examples is given in table 2.1.
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Chapter 3

NL2KR v.2 System

3.1 Shortcomings of NL2KR v.1 system

We have already discussed about existing NL2KR v.1 system in chapter 1. As mentioned pre-

viously, v.1 is a very basic implementation of NL2KR system [1] aimed to verify correctness

of some concepts in the theory. However there are various shortcomings in the system. Sev-

eral components of the v.1 system needed revamping. In this section, we will discuss about

deficiencies in the NL2KR v.1 system.

• Integrated NL2KR-L and NL2KR-T components - A major drawback of the NL2KR v.1

system is integrated NL2KR-L and NL2KR-T components i.e. there are no separate sub-

systems for these components. So, a user has to run the complete system (training and

translation) in order to translate a sentence to a formal representation.

• CCG Parser - The NL2KR v.1 system has an inbuilt CCG parser which is incapable of

generating all possible combinations of CCG parse trees given CCG categories of words.

Hence, some of the good parse trees which could help in learning good semantics of

words can be eliminated.

• Inverse-λ - In the NL2KR v.1 system, a basic version of Inverse-λ component was im-

plemented which did not cover all the cases of Inverse-λ definition. This component was

able to compute missing λ-expression of a child given very simple λ-expressions of it’s

parent and sibling. For complex λ-expressions, it was not able to compute any result.

Hence the system performance was greatly affected.

• Generalization - Even though v.1 of the NL2KR system uses Generalization on demand

while learning new semantics of words in a parse tree of a sentence, during learning

phase, it still produces a large amount of new unnecessary semantics which could have

negative impact on performance of the system. Also, while generalizing lexicon, a default

weight is assigned to each lexical entry which could also affect the translation process.
18



Apart from this, the generalization component does not recognize singular and plural

words. The details about these drawbacks and their solutions is explained in section

3.6. Also, some configuration needed to enhance this component’s performance is also

described in details in section 3.8.

• Learning Algorithm - Current learning algorithm in v.1 of the system, was designed to

learn only missing semantics of words in a sentence using Inverse-λ and generaliza-

tion techniques. However, a word can have multiple semantics given a CCG category.

There could be possibility that a semantics of a word with a given CCG category is

learned by parsing one sentence, might not be applicable to construct meaning of an-

other sentence. For eg. consider two iRODS policy statements ‘Update collection’

(Translation: command > update(collection)) and ‘Delete iota collection’ (Translation:

command > delete(collection(iota))). In both of these sentences, ‘collection’ has cat-

egory N . However, a meaning of ‘collection’ in the first sentence should be collection

while in the second sentence, it should be λx.x@λy.collection(y). With existing learn-

ing algorithm, the system would learn a meaning of ‘collection’ by parsing first sentence.

Now while parsing second sentence, it would use the learned meaning of ‘collection’ i.e.

collection as it is not missing even though is not compatible with our formal representa-

tion of the sentence. So, the system won’t learn new meaning of ‘collection’ again.

3.2 NL2KR v.2 System Architecture

An overview of the NL2KR v.2 system architecture is described in figure 3.1. In next sections,

we will elaborate on improvements made in most of the components of the system.

3.3 Implementation of CCG Parser using ASP+Lua

As mentioned in previous section, an existing internal CCG parser of NL2KR v.1 system did

not generate all possible combinations of CCG parse trees given CCG categories of words

because of which some of the good parse trees which could help in learning good semantics

of words were eliminated. Most of the times, existing CCG parser did not return any parse tree
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Figure 3.1: Overview of NL2KR v.2 system

even if given CCG categories of words could produce a parse tree for a sentence. This parser is

implemented in Java and uses Stack data structure for implementation. However, with this stack

data structure, the parser was able to compose a parse tree based on adjacent word’s CCG

category only (did not consider adjacent phrases) which was a major flaw in implementation.

In NL2KR v.2 system, we have implemented an inbuilt CCG parser using ASP and Lua.

We know that obtaining all possible combinations of CCG parse trees given CCG categories

of words in a sentence is a search problem where we would need to search for all possible

compositions of adjacent words or phrases such that a root of a parse tree contains all words in

a sentence. ASP is an effective declarative programming language which is efficient in solving

such problems. However, in order to compose CCG category of a node from its children we

needed a functionality that is efficiently handled by Lua.

Before discussing about our implementation in ASP we will first present our ASP repre-

sentation of a CCG parse tree. We say that each node in a parse tree is a token of the format

nl2kr_token(TokenId, Word/Phrase, CCG, Position) where TokenId is a unique token,

Word/Phrase is a word/phrase which is a part of a sentence, CCG is a CCG category of a

word/phrase, and Position is a position of a word/phrase in a sentence.
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As a CCG parse tree is a binary tree, we represent a left child link between nodes

in ASP as follows: nl2kr_child_left(Parent_TID,Child_TID) where Parent_TID is a

unique token id of a parent and Child_TID is a unique token id of a child. Similarly we repre-

sent a right child link between two nodes as nl2kr_child_right(Parent_TID,Child_TID).

We assume that a root node of a parse tree will always have category S. Hence, our

parser will find a valid parse tree if there exists CCG categories of words/phrases in a sentence

such that their compositions will result in a sentence with CCG category S. We represent a

valid root node as nl2kr_valid_rootNode(TokenId) where TokenId is a token id of a node.

Example 1 A parse tree of a sentence "Every boxer walks" is represented in our ASP format

as follows

nl2kr_token(t1, “Every”, “(S/(S\NP ))/NP”, 1).

nl2kr_token(t2, “boxer”, “NP”, 2).

nl2kr_token(t3, “walks”, “S\NP”, 3).

nl2kr_token(t4, “Every boxer”, “S/(S\NP )”, 1).

nl2kr_child_left(t4, t1).

nl2kr_child_right(t4, t2).

nl2kr_token(t5, “Every boxer walks′, “S”, 2).

nl2kr_child_left(t5, t4).

nl2kr_child_right(t5, t3).

nl2kr_valid_rootNode(t5).

Now we will present Lua methods being used for implementation of the parser.

• function token_id()

This method will generate a new token id

Usage in ASP: ID := @token_id()

• function current_id()

This method returns a current id of a token which is recently generated by method
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token_id()

Usage in ASP: ID := current_id()

• function combine(ccg1, ccg2)

This method combines CCG category ccg1 with ccg2. For eg. a result of combination of

S/NP with NP will be S.

Usage in ASP: CCG := @combine(CCG1, CCG2)

• function canCombine(ccg1, ccg2)

This method check if a CCG category ccg1 can be combined with ccg2. The method

return 1 if it is a forward composition, return 2 if it is backward composition and return 0 if

ccg1 cannot be combined with ccg2

Usage in ASP: Result := @canCombine(CCG1, CCG2)

• function belongs_to(s, t)

This method check if a word/phrase t belongs to a sentence s.

Usage in ASP: Result := @belongs_to(”Every boxer”, ”boxer”)

• function append(a, b)

This method appends string b to a

Usage in ASP: Result := append(”Every”, ”boxer”)

Our parser takes a sentence and words/phrases in a sentence as an input in the for-

mat of nl2kr_token(TokenId, Word/Phrase, CCG, Position) illustrated before and con-

siders them as leaf nodes. For eg. for the sentence “Ever boxer walks", the input will be

sentence(“Every boxer walks”).

nl2kr_token(t1, “Every”, “(S/(S\NP ))/NP”, 1).

nl2kr_token(t2, “boxer”, “NP”, 2).

nl2kr_token(t3, “walks”, “S\NP”, 3).
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Now we will describe ASP rules which take an input described above and generate

parse trees.

We first define possible forward and backward applications between tokens considering

their positions in a sentence. For eg. one possible forward application would be between

Every ( (S/(S\NP ))/NP ) and boxer (NP ). Below are the rules which define possible

forward and backward applications.

valid_token(W, C, P) :- nl2kr_token(T, W, C, P), sentence(S),

@belongs_to(S, A) == true.

possible_backward_appl(T1, T2) :- nl2kr_token(T1, W1, C1, P1),

nl2kr_token(T2, W2, C2, P2),

X:= @canCombine(C1,C2), X == 1, P1 > P2,

valid_token(W1, C1, P1),

valid_token(W2, C2, P2).

possible_forward_appl(T1, T2) :- nl2kr_token(T1, W1, C1, P1),

nl2kr_token(T2, W2, C2, P2),

X:= @canCombine(C1, C2), X == 2, P1 < P2,

valid_token(W1, C1, P1),

valid_token(W2, C2, P2).

Using above possible forward and backward applications between two nodes n1 and

n2, we create intermediate nodes and their left and right child links. Below mentioned rules

specify this.

%forward application

3{ nl2kr_token(@token_id(), @append(A,B), @combine(C1, C2), P1),
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nl2kr_child_left(@current_tID(), T1),

nl2kr_child_right(@current_tID(), T2)

}3

:- nl2kr_token(T1, A, C1, P1), nl2kr_token(T2, B, C2, P2),

possible_forward_appl(T1, T2), A != B, C1 != C2, P1 != P2.

%backward application

3{ nl2kr_token(@token_id(), @append(B, A), @combine(C1, C2), P2),

nl2kr_child_left(@current_tID(), T2),

nl2kr_child_right(@current_tID(), T1) }3

:- nl2kr_token(T1, A, C1, P1), nl2kr_token(T2, B, C2, P2),

possible_backward_appl(T1, T2), A != B, C1 != C2, P1 != P2.

Finally, we say that a node is a valid root node if it’s CCG category is S and it’s phrase

is a sentence. The number of parse trees generated for a sentence is the number of valid root

nodes.

nl2kr_valid_rootNode(T) :- nl2kr_token(T,A, "S", P), sentence(S), A = S.

3.4 Integration of ASPccgTk CCG Parser

One of the drawbacks of using inbuilt CCG parser is, we have to provide CCG categories of all

the words in a sentence. Using inbuilt parser will not scale our system for larger training and

test data because for each sentence in training and test data set, we will need to provide CCG

categories of all the words. Hence, in order make our system scalable we will need to use the

existing CCG parser. C&C parser ([11] and [12]) uses the grammar from CCGBank and it

efficiently parses a sentence and returns a most probable parse tree. However, the parse tree

generated by C&C parser might not be a good parse tree for learning new semantics of words

corresponding to a given target language. Also, most of the times we want to specify a specific

CCG category for some words to increase performance of the system so that we can learn
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good semantics of such words. As C&C parser′s model is already trained on the CCGBank,

it is very difficult to override CCG categories of words during parsing process.

We need an efficient CCG parser which uses existing CCG grammar resources like

CCGBank, PennTreeBank and provides functionality of overriding CCG categories. ASPccgTk

CCG Parser [14] considers CCG parsing as a planning problem and uses ASP to solve this

problem. ASPccgTk CCG Parser provides an option of using our own hand-crafted grammar

and using a grammar generated by C&C Supertagger [15]. One of the main advantage of

using this parser is, we can tweak the source code of the parser easily to fit to our requirements

which would reduce post-processing task to a great extent. Hence, we have integrated this

parser with our NL2KR v.2 system. We will now elaborate on how we have integrated it with our

system and what changes we have made in the parser to easily integrate it with our system.

CCG Parsing

We have already presented our ASP representation of a parse tree which our system uses, in

the previous section. However, an output of the ASPccgTk CCG Parser is in a grid format. So,

we need to convert this output to our ASP format. We have a wrapper program written in ASP

which takes a stable model output of the ASPccgTk CCG Parser as input and frames it to our

own format. A stable model output of the ASPccgTk CCG Parser contains following predicates

which would help us create a parse tree in our format:

- word_at(Word, Position) where Word is a word in a sentence, Position is a position of a

word in a sentence.

- reachable(Position1, Position2, CCG) which specifies that a word at Position1 is reach-

able by another word at Positions2 through CCG.

Following rules creates possible parse tree tokens and their corresponding left and right

children.

2{ nl2kr_ptoken(@token_id(), W, @ccg(C), -1),

nl2kr_node(@current_tID(), P,P) }2 :- word_at(W, P), reachable(P,P, C).
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4{ nl2kr_ptoken(@token_id(), @append(W1,W2), @ccg(Z), -1),

nl2kr_node(@current_tID(), X, Y),

nl2kr_child_left(@current_tID(), T1),

nl2kr_child_right(@current_tID(), T2) }4

:- nl2kr_node(T1, X1, Y),

nl2kr_node(T2, X, Y1),

(Y1-X1) == 1,

reachable(X,Y,Z), T1 != T2,

nl2kr_ptoken(T1, W1, C1, P1),

nl2kr_ptoken(T2, W2, C2, P2).

First rule specifies that, if a word is reachable to itself then it is a possible basic to-

ken i.e. a leaf node. Predicate nl2kr_ptoken has the same type of arguments as that of

nl2kr_token, however, here we set the Position argument as -1 because this information is

already provided by word_at predicate. Predicate nl2kr_node will help us map the position

reachability information of words/phrases in a parse tree output of the ASPccgTk CCG Parser

to our parse tree so that we can correctly connect a token with it’s left and right child. Methods

token_id(), append(W1,W2), current_id() performs the same functionality as described in

the previous section. ccg(C) method converts the ASPccgTk CCG Parser’s CCG category i.e.

C format to our format. ASPccgTk CCG Parser represents a CCG category in functional rep-

resentation Eg. Category “S/NP” is represented as rfunc(‘S′, ‘NP ′). ccg method converts

rfunc(‘S′, ‘NP ′) back to normal format i.e. “S/NP”.

Second rule states that, if two nodes are reachable through category Z and their posi-

tions are adjacent to each other then create an intermediate node having category Z.

ASPccgTk CCG Parser uses a special category conj for conjunctions and disjunc-

tions. For eg. Consider a phrase ’tea and coffee’. CCG category for ‘tea’ is NP , for ‘coffee’
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NP and for ‘and’ is conj and a CCG category for the phrase is NP . But our system does not

understand conj category which binds us to convert it into a normal CCG category. But looking

at all CCG categories of words and the phrase we can easily guess that the CCG category of

‘and’ will be (NP\NP )/NP . Following rule defines this conversion.

4{ nl2kr_token(TRL, WRL, @catReplace(CR, "conj", @leftappend(C,CL)), PRL),

nl2kr_token(TR, WR, @catReplace(CR, CR, @leftappend(C, CL)), PR),

invalid_nl2kr_token(TR, WR, CR, PR),

invalid_nl2kr_token(TRL, WRL, "conj", PRL)

}4

:- nl2kr_ptoken(T, W, C, P),

nl2kr_child_left(T, TL), nl2kr_ptoken(TL, WL, CL, PL),

nl2kr_child_right(T,TR), nl2kr_ptoken(TR, WR, CR, PR),

nl2kr_child_left(TR, TRL), nl2kr_ptoken(TRL, WRL, "conj", PRL),

nl2kr_child_right(TR,TRR), nl2kr_ptoken(TRR, WRR, CRR, PRR),

@contains(CR, "conj") == true,

T != TRL, T!= TRR.

In the above rule, some new Lua methods are used which are not described ear-

lier. catReplace(CCG,Pattern, V alue) method replaces a Pattern in CCG with a V alue.

leftappend(CCG1, CCG2) appends a CCG2 category to left of CCG1 i.e. it creates a back-

ward application format. contains(CCG,Pattern) checks if a Pattern is present in the CCG

category.

Next rule creates valid nl2kr_token predicates from possible tokens if they are not

invalid.

nl2kr_token(T,W,C,P) :- nl2kr_ptoken(T,W,C,P),

not invalid_nl2kr_token(T,W,C,P).
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Again, we need to know a valid root node of a parse tree, which can be easily found using

below rule.

nl2kr_valid_rootNode(T) :- nl2kr_token(T,A, C, P), sentence(S), A = S.

Currently, our system understands parse trees whose nodes are connected using for-

ward and backward applications. So, we eliminate parse trees in which nodes are reachable

through other combinators like forward cross composition, backward cross composition among

others. These combinators are given in ASPccgTk CCG parser.

combinator(rule_fwd_comp;rule_bwd_comp).

combinator(rule_bwd_x_comp; rule_bwd_x_subst).

invalid_tree :- occurs_grid(Z, A,B,C,D,E,F,G), combinator(Z).

:- invalid_tree.

Including semantics in Parse Trees

We know that a word with a given CCG category can have multiple meanings. For eg. again

consider a sentence ‘Every boxer walks’. If we have 2 different meanings for words ‘Every’ and

‘boxer’ with given CCG category, then total possible parse trees will be 4 where each parse tree

will have unique set of meanings of words. This can be easily implemented in ASP. So instead

of post-processing each parse tree and creating duplicate copies of parse trees with unique set

of meanings of words, we can easily extend the ASP parse tree wrapper program described in

previous section, to include this functionality.

Now we will describe rules which will help use generate multiple parse trees with unique

set of meanings. We have already mentioned that this wrapper program takes a stable model

output of the ASPccgTk CCG parser as input. We will also take semantics of words in a

sentence with their corresponding CCG categories, as input. An ASP format for this input is

sem(Word,CCG, Semantics).
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First, we provide a unique semantics id for each semantics input.

1 { semantics(@sem_id(), T, W, Z, SS) } 1:- sem(W, CCG, SS),

nl2kr_token(T, W, Z,P),

Z := @process(CCG).

Here, process(CCG) is a lua method which trims a CCG category if necessary.

Following code generates all possible combination of semantics i.e. a stable model is

generated for each unique combination.

% A semantics is either selected or not selected in a stable model

selected(T) | not_selected(T) :- semantics(T ,TT, W, CCG, SS).

% remove all stable models in which a given node token

% has at-least 2 semantic meanings

:- selected(T1) , selected(T2), semantics(T1, TT, W, C, S1),

semantics(T2, TT, W, C, S2), T1 != T2.

% These rules specify that each stable model should have at-most

% one semantics for all the words whose semantics is taken as input

words(W) :- semantics(T, TT, W, CCG, M).

hasVisited(W) :- words(W), selected(T), semantics(T,TT, W,C,SS).

:- words(W), not hasVisited(W).

% assign a selected semantics to a token

nl2kr_semantics(TT, expression(SS)) :- selected(T),

semantics(T,TT, W,C,SS).
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3.5 Implementation of Inverse-λ Algorithm (Java)

Inverse-λ operators defined in [2] resemble a typical search problem. We have implemented

Inverse-λ operator definitions described in Marcos thesis [2] in Java programming language,

however with some restrictions for simplicity and efficiency of the algorithm. Typically, in defini-

tion 3 of InverseL and InverseR operators, we look for a pattern of the form

J1(J1
1 , ..., J

1
m), ..., Jn(Jn

1 , .., J
n
m)), in H . We assume that J1, J2, , ..., Jn are strict predi-

cates and (J i
1, ..., J

i
m) are arguments of J i where each J i

j can be a predicate of the form

J j(J j
1 , ..., J

j
m). For eg. in λx.(plane(x)∧ takes(x, Y )) valid J i’s are plane(x), takes(x, Y ) and

(plane(x) ∧ takes(x, Y )). With this restriction we limit the possible set of sub terms in H and

hence help in reducing the complexity of finding the sub-terms in H which match with G.

3.6 Implementation of Generalization Algorithm

As mentioned in section 3.1, existing generalization algorithm does not recognize a singular

and plural word. We have modified current Generalization algorithm to consider singular and

plural words. We have modified the IDENTIFY method which identifies a part of all the

lexicon entries of a word such that word can have singular or plural form in the semantics.

As described in chapter 1’s section 1.1, a default weight of 0.01 is assigned to each

new lexical entry learned. Although, when we perform generalization on demand during learn-

ing phase by parsing training data parse trees, a default weight won’t affect new translations

because during the parameter estimation phase weight of these new lexical entries learnt will

be estimated. However, in the NL2KR-T component when generalization of words in a sen-

tence with missing meanings is done, a default weights assigned to new lexical entries will

affect translation of a sentence. We know that using generalization technique, we might get dif-

ferent meanings of a new word based on it’s syntactic category. Moreover, semantics of a new

word can be learned from different lexical entries in the lexicon having same syntactic category

as that of new word but with different semantics.
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For eg. Consider two lexical entries from lexicon (takes, (S\NP )/NP ),

λw.λz.has(w, takes, z) and (loves, (S\NP )/NP ), λw.λz.loves(w, z). We want to learn

meaning of a new word likes having syntactic category (S\NP )/NP ). Using generalization

technique, semantics of likes learned would be λw.λz.has(w, likes, z) and λw.λz.likes(w, z)

and a default weight 0.01 will be assigned to each of the lexical entries corresponding to these

semantics. Now if we want to translate a sentence ‘Vincent likes Mia’, we can get two possible

translations for this sentence given semantics of ‘Vincent’ as vincent, ‘Mia’ as mia and ‘likes’

will have semantics learned through generalization. Translations are as follows:

has(vincent, likes, food)

likes(vincent, food)

We already know that NL2KR-T system uses PCCG to compute a translation of a sen-

tence. The idea behind PCCG is that given a sentence S, its translation M can be obtained

by finding M which maximizes the probability function P (M |S; Θ). Now given fixed weights for

lexical entries of ‘Vicent’ and ‘Mia’, we will obtain 2 different translations having same weight be-

cause there are two different semantics of ‘likes’ having same default weight. So, the NL2KR-T

system will apparently randomly pick one of these translations which might not be the correct

one. In order to resolve this problem to some extent, we assign a weight to a new lexical entry

as that of the one from which it is learned.

However, a particular semantics of a new word can be learned from multiple words

which have same CCG category. For eg. semantics of ‘likes’ - λw.λz.likes(w, z) can be

learned from words ‘loves’ - λw.λz.loves(w, z) and ‘eats’- λw.λz.eats(w, z). So in such cases

we assign a weight to the new lexical entry as that of the one which has maximum weight.
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Algorithm for Generalization is as follows:

Algorithm 3 GeneralizeD(Λ, α)

for li ∈ Λ do
if li(category) = α(category) then

I = IDENTIFY (li(word), li(semantics))
S = REPLACE(li(semantics), I, α(word))
Update weight W of S
Λ = Λ ∪ (α(word), α(category), S,W )

end if
end for

3.7 Implementation of Learning Algorithm

We have already discussed the shortcomings of the Learning algorithm in NL2KR v.1 sys-

tem. To overcome such problems, we will describe a better lexicon learning algorithm for our

NL2KR-L component, in this section. This algorithm is mainly designed by Nyugen Vo with my

assistance.

Now we will first mention some of the keywords and properties used in this algorithm.

• A node A in a parse tree can have two semantics: (1) expected semantics, (2) current

semantics. Expected semantics is obtained using a training data in the learning process.

Current semantics is obtained from an initial lexicon. An intermediate node’s current

semantics will be obtained from its descendants through λ-application.

• A has current semantics if and only if all of its children have current semantics.

• If node A has an expected semantics then it’s parent will also have an expected seman-

tics.
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Algorithm is as follows:

Algorithm 4 NL2KR-L Lexicon Learning Algorithm
function TRAVERSEPARSETREE(Node root)

push root in the Stack S
while S is not empty do

Node A = Pop node from S
Push all the children of A in stack S
if (A does not have current semantics) || (A’s expected 6= null && it’s current seman-

tics 6= expected semantics) then
LEARN(A)

end if
end while

end function
function LEARN(Node A)

if A is leaf node and has expected semantics then
Update the lexicon using the expected semantics of the node

end if
if only one child of A i.e. B does not have current semantics then

if B is the only child of A then
Learned semantics of B = expected semantics of A

else if If B’s sibling i.e. C has current semantics then
Learned semantics of B = Inverse-λ(A’s expected semantics, C ’s current seman-

tics) if A has expected semantics
end if
Set the learned semantics of B as its expected semantics

end if
if both the children of A have current semantics then

Set the expected semantics of one child as its current and use the expected semantics
of A and this child to compute the semantics of other one using Inverse-λ if A’s expected
semantics exists and visa versa.

end if
if any child of A is leaf and it still does not have expected semantics then

Use GeneralizationD technique to learn the expected semantics of children and up-
date lexicon

end if
end function
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3.8 Bug Fixes and New Features

There were some bugs in the existing NL2KR v.1 system. In the v.2 version of the NL2KR

system, we have fixed these bugs and also added some new features in the system to improve

performance of the system and increase it’s usability.

• The source code in v.1 is not well organized and code is not easily readable by devel-

opers. In version v.2 of the system, we have tried to modularize the code as much as

possible by maintaining code for a component in one package and it’s subcomponents

in corresponding sub-packages. Also, to make the code readable and understandable to

other developers we have provided comments for each procedure.

• We have already mentioned in chapter 1 that the v.1 system does not have separate

sub-systems for NL2KR-L and NL2KR-T components which forces a user to every time

train the system before using it for translation. In v.2, we have separated these two

components. A user can train the system anytime by running NL2KR-L sub-system. After

training the system, a final updated lexicon is saved. A user then, can use the NL2KR-T

sub-system any time to translate a sentence to a formal representation using the final

lexicon generated by NL2KR-L sub-system.

• In v.1, the lexicon has duplicate entries of lexical entity because of which the parameter

estimation component was not estimating a correct weight for a specific lexical entity. We

have fixed this issue in v.2. Now, the lexicon will always have unique entry of a lexical

entity.

• During parameter estimation phase in v.1, computation of feature vector for the parse

trees of a sentence was taking huge amount of time because of exponential increase in

number of parse trees. In order to reduce computation time, we have implemented a

cache to save feature vectors of all the parse trees of a sentence so that they can be

reused in subsequent iterations of parameter estimation. Also, to reduce the number of

iterations to compute a feature vector we have implemented a map which will save an
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index positions of features in lexicon. So, we don’t have to iterate over complete set of

lexicon features to get a feature vector table for a parse tree. This improved performance

of the system by approximately 8 times.

• Sometimes, NL2KR-L component does not learn semantics of all the words in a training

data set because of various factors like failure of Inverse-λ or generalization to learn good

semantics, or bad CCG parse tree of a sentence. Now during the parameter estimation

phase, a feature vector table is created for each parse tree of a sentence which is later

used for estimating parameters of each lexical entry. If semantics of all the words in a

sentence doesn’t comply to a formal representation, then a root node of a parse tree of

a sentence will be null. It is useless to compute feature vector for such parse tree in a

table because it won’t help in estimating parameters. Hence we have put a condition of

semantics not being null while creating feature vector table for a sentence. This fix has

removed an exception ’NullPointerException’ occurred during parameter estimation.

• Although, there are positive aspects of generalization technique, there are some draw-

backs also. It can produce a large amount of new unnecessary semantics which can

have negative impact on performance of the system. In order to limit these unnecessary

semantics, we have introduced some configuration in config.properties file. Following are

the configurations:

1. GENERALIZATION_D_EXCLIST - While learning a new semantics of words

in a parse tree of a sentence during learning phase, generalization on demand is

used. In order to limit generalization of some categories in generalization on de-

mand, we use GENERALIZATION_D_EXCLIST exclude list. It contains list

of CCG categories which we want to exclude.

2. LEX_GENERALIZATION_EXCLIST - In the end of lexicon learning phase,

generalization is used over complete lexicon. In order to limit generalization of some

categories in generalization of lexicon, we use LEX_GENERALIZATION_E-

XCLIST exclude list. It contains list of CCG categories which we want to exclude.
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3. GENERALIZATION_D_PREPOSITIONLIST - Most of the times, some

propositions in English natural language have same CCG categories and similar

semantic structures too. But, usually semantics of prepositions does not contain

an exact word. Most of the times, it is a lambda expression containing only lambda

variables. To improve the system performance and to limit the initial lexicon, we have

provided this configuration in config.properties. GENERALIZATION_D_PRE-

POSITIONLIST contains a list of prepositions which we want to generalize from

each other. For eg. for iRODS domain, we create a preposition list of on, of, by, to

among others.

4. GENERALIZATION_D_EXCWORD_LIST - If you want to exclude gener-

alization of some words regardless of their CCG categories, then we put such words

in this exclude list.

• In the previous sections, we have talked about CCG parsers (Existing ASPccgTk parser

[14] and inbuilt CCG parser). In order to ease an access of these parsers to the system,

we have provided a configuration in config.properties file which would allow us to use

either of them in our system. CCGPARSER is a configuration which we need to set

to ASPccgTk for ASPccgTk parser and to SimpleEnParser if we want to use inbuilt

parser.

Comparison between NL2KR v.1 and NL2KR v.2 system

In this section we will highlight major differences between NL2KR v.1 and v.2 systems as shown

in table 3.1.
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Table 3.1: Comparison between NL2KR v.1 and v.2 system

NL2KR v.1 System NL2KR v.2 System

NL2KR-L and NL2KR-T components Separate systems for NL2KR-L and
are tightly coupled together in one NL2KR-T components.
component.

Inbuilt CCG parser with restricted Inbuilt CCG parser in ASP which generates all possible
implementation. parse tree derivations and integrated ASPccgTk parser.

Limited implementation of Inverse-λ Java implementation covers all the cases
algorithm. It does not cover all the cases. with one restriction. ASP implementation is full-fledged.

Basic implementation of Generalization New improvised generalization algorithm.
algorithm.

Lexicon Learning Algorithm was designed to New improvised Lexicon Learning Algorithm
learn only missing meanings of words for capable of learning multiple meanings of
given CCG category. words for given CCG category.

Limited system configuration. Included many configuration of different components in
the system for better performance.

Basic implementation of Parameter Estimation Improved the Parameter Estimation Algorithm
Algorithm. Complexity to compute the feature by implementing the cache to handle feature
vector for each parse tree is exponential. vector computation. Improved the performance

of the system by approximately 8 times.

Learning of words beyond training data Added the generalization component in NL2KR-T system
set was done in the lexicon generalization so that missing meanings of new encountered words
phase during NL2KR-L learning. will be learned during translation phase itself.

Final lexicon generated has duplicate lexical Final generated lexicon has unique lexical entries.
entries which affects the parameter
estimation phase resulting in incorrect
computation of weights.
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Chapter 4

λ-calculus Operations and Inverse-λ in ASP+Lua

In Marcos thesis [2], a detailed study of formal languages in terms of λ-calculus formalism is

described and Inverse-λ technique is mentioned in terms of these formalism. In this research,

we would like to go a step further. We would like to represent a typed λ-calculus in ASP. One of

the major reasons for this approach is, ASP is easily extensible to new knowledge which would

be useful when we want to use world knowledge for correct translation of natural language

to a formal representation using λ-calculus. For eg. while constructing meaning or formal

semantics of a sentence from meanings of words/phrases in it, we might come across multiple

meanings of a given word which are applicable in a sentence’s meaning construction using λ-

application. So, we will need to pick a correct meaning of a word i.e. correct sense in order to

correctly translate a sentence to its formal representation. In order to do it, we will need world

knowledge to disambiguate senses of words which could be easily represented in ASP. Also,

we can easily write some generic rules in ASP which would help in disambiguating the senses.

We also know from the definition of Inverse-λ algorithm [2], that it is a typical search

problem in space where we look for a pattern F such that H=F@G or H=G@F. This pattern

is nothing but a λ-calculus expression. Thus, with our succinct representation of λ-calculus

expression in ASP, we can easily implement Inverse-λ definition by writing few rules in ASP

which is an efficient declarative programming paradigm to solve such problems.

In this chapter, we will talk about a generic representation of λ-calculus expressions in

ASP and Inverse-λ algorithm in ASP.

4.1 Representation of λ-calculus expression in ASP

In order to implement λ-operations in ASP, we need a succinct representation of λ-calculus

formulas in ASP. In this section, we will introduce a generic representation of λ-calculus in ASP

in accordance with the "Simply typed λ-calculus" in [16].
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λ-calculus signature

The signature of λ-calculus in ASP is defined below

1. A lambda operator ’λ’ represented in ASP as a predicate symbol ’l’.

2. A lambda application ’@’ represented in ASP as a predicate symbol ’a’.

3. A parenthesis (, )

4. An inifinte set of variables rn for each natural number n

Representation of λ-Abstraction in ASP

λx. E is a λ-abstraction where x is a bound λ variable and E is a λ-expression. We represent it

in ASP as follows

l(x,E)

A complex λ-expression having multiple variables can be represented in ASP in nested

structure format. λv1. λv2... λvn. E can be represented in ASP format as follows

l(v1, l(v2, ...l(vn,E)))

Representation of λ-Application in ASP

M@N is a λ-application where M, N are λ-expressions. ASP representation of M@N is

a(M,N)

Similar to a λ-abstraction, a complex λ-application term can be easily represented in

ASP in nested structure format.
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Table 4.1: Representation of Typed FOL λ-calculus

Category FOL Symbol ASP Representation

Quantifiers ∀ forall
∃ exists

Connectives ∧ and
∨ or
→ imply

Negation ¬ neg

Equality symbol = equal

Function symbol with given arity n function(a1, .., an) f(function, a1, ..., an)

Table 4.2: Examples of Typed FOL λ-calculus

FOL ASP Representation

¬x f(neg, x)
x
∧
y f(and, x, y)

xV y f(or, x, y)
x→ y f(imply, x, y)
x = y f(equal, x, y)
loves(x, y) f(loves, x, y)
λx.woman(x) l(x, f(woman, x))
∀x.(x→ h(x)) f(forall, x, f(imply, x, f(h, x))
λy.∀x.(x@z → y@z) l(y, f(forall, x, f(imply, a(x, z), a(y, z))))

(E1@E2)@E3 can be represented in ASP as follows

a(a(E1, E2), E3)

Representation of FOL-λ-calculus in ASP

In Marcos research [2], Typed First-Order-Logic λ-calculus language is introduced. In this

section, we talk about representation of this language in ASP. We consider that each FOL

expression is of the format f(expression). For eg. FOL expression a ∨ b can be represented

in ASP as f(or, a, b). An ASP representation of FOL terms/symbols is described in table 4.1.

Also, an illustration of examples of typed FOL λ-calculus is given in table 4.2.
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Table 4.3: Representation of Typed ASP-λ-calculus

Category ASP Symbol Our ASP Representation

Connectives ← imply
, and
or or
| or
. concat

Negation not dnot (default negation)
¬ cnot (classical negation)

Equality symbol = equal

Predicate symbol with given arity n function(a1, .., an) f(function, a1, ..., an)

Table 4.4: Examples of Typed FOL λ-calculus

ASP Our ASP Representation

a← b. f(imply, b, a)

a← b, c. f(imply, f(and, b, c), a)

has(x, property, red). f(concat, f(has, x, property, red),
has(x, instance, color). f(has, x, instance, color))

λx.(h(a)← x@b) l(x, f(imply, a(x, b), f(h, a)))

← woman(vincent). f(imply, f(woman, vincent), null)

λx.¬ x@z ← not x@z l(x, f(imply, f(dnot, a(x, z)),
f(cnot, a(x, z))))

Representation of ASP-λ-calculus in ASP

To represent ASP-λ-calculus in ASP we follow the same convention mentioned in previous

section for FOL-λ-calculus. We consider each ASP rule is of the format f(rule). A represen-

tation of ASP terms/symbols is defined in table 4.3 and an illustration of examples of typed

ASP-λ-calculus is given in table 4.4.

Special function symbols: concat, null

In our representation, we have introduced a special symbol concat for a ‘ . ’ (dot) operator in

ASP. With this symbol, we can represent a complete ASP program as a λ-calculus function.For

eg. a← b. b← c. can be represented in our format as follows

f(concat, f(imply, b, a), f(imply, c, b))
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Similarly, we have introduced a special symbol null for the cases where head of an

ASP rule is empty. For eg. ← b. can be represented in our format as f(imply, b, null)

Set representation of and, or, concat in ASP

In languages like FOL, ASP there are operators like ∧,∨, ‘,’ which connects the sub terms. Eg.

x ∨ y ∨ z which is equivalent to (x ∨ y) ∨ z, x ∨ (y ∨ z), x ∨ z ∨ y .... Here, (x, y, z) is typically

a set where x, y and z are connected to each other with disjunction operator.

Initially our ASP representation for such formulas was

• (x ∨ y) ∨ z - f(or, f(or, x, y), z)

• x ∨ (y ∨ z) - f(or, x, f(or, y, z))

We represented a series of conjunction, disjunction operators as a nested function.

One of the drawbacks of this ASP representation was difficulty to get all possible sub-terms of

such expressions. For the above expression, total possible sub-terms are 7. Also, it is difficult

to perform λ-calculus operations like substitution, replacing one pattern with another, checking

equivalence, if we have such nested structure representation of conjunction and disjunction

operators.

In order to avoid these complications, we consider conjunction, disjunction operators

connecting terms belong to a set. So, the expression x ∨ y ∨ z is a disjunction set of x, y, z

items. Thus our new ASP representation of this expression will be

x ∨ y ∨ z - f(or, x, y, z)

λ-calculus Operations in ASP

In the previous sections, we have introduced a succinct representation of λ-calculus formalism

in ASP as well as talked about ASP representation of FOL-λ-calculus and ASP-λ-calculus.

In this section, we will talk about various important λ-calculus operations like substitution, α-

conversion, α-equivalence, β-reduction.
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We will first begin with our initial approach of implementation of these operations in

ASP and will talk about the limitations of such implementation. We will then introduce efficient

implementation of these operations using ASP + Lua.

Implementation in ASP

In this section, we will present the implementation of substitution λ-calculus operation and it’s

limitations.

A variable X in expression E is substituted with the Value Y if there is a need of it.

This is encoded in ASP representation as need(substitution,E,X, Y ). For eg. if we want to

substitute x in f(loves, x, y) by mia, we encode it in ASP as

need(substitution, (f(loves, x, y)), x,mia)

We want to perform substitution on the sub-expressions too. The following three rules

define the need to do substitution on sub-expression of X where X is a function or a λ-expression.

need(substitution, Param1, X, Y) :- need(substitution,

f(FunctionName, Param1, Param2), X, Y).

need(substitution, Param2, X, Y) :- need(substitution,

f(FunctionName, Param1, Param2), X, Y).

need(substitution, Function, X, Y) :- need(substitution,

l(Var, Function), X, Y), Var != X.

We use sub(E, X, Y, Result) to represent the substitution of X in expression E by Y

yields Result. In the following rules, we define the result of substitution in the base case where

the expression X is a variable X. We use not_var(X) to indicate that X is not a variable (X can

be a function or a λ-expression).

subs(X, X, Value, Value) :- need(substitution, X, X, Value), not not_var(X).

not_var(f(A,B,C)) :- need(substitution, f(A,B,C), Y, Value).
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not_var(l(L,F)) :- need(substitution, l(L,F), Y, Value).

The following rule is for a case of replacing variable Y with variable X when X != Y.

subs(X, Y, Value, X) :- need(substitution, X, Y, Value),

not not_var(X), not not_var(Y), X != Y.

If an expression E is a function f(FunctionName, Param1, Param2), then the substitution

is performed on E’s sub-expressions i.e. Param1 and Param2.

subs(f(FunctionName, Param1, Param2), X, Y,

f(FunctionName, Result1, Result2))

:- need(substitution, f(FunctionName, Param1, Param2), X, Y),

subs(Param1, X, Y, Result1),

subs(Param2, X, Y, Result2).

Similarly, if E is a λ-expression l(V ar, Function), then we obtain the substitution result

by replacing sub-expression Function of E when substitution variable X is not equal to Var. If

variable X is same as Var, E does not change after substitution.

subs(l(Var, Function), X, Y, l(Var, ResultFunction))

:- need(subsitution, l(Var, Function), X, Y),

Var != X, not not_var(X)

subs(Function, X, Y, ResultFunction).

subs(l(Var, Function), X, Y, l(Var, Function))

:- need(substitution, l(Var, Function), X, Y), not not_var(X)

Var == X.

An example, of substitution is need(substitution, l(y, f(loves, x, y), x,mia) i.e. substi-

tute variable x with mia in expression l(y, f(loves, x, y). The result of this substitution will be
44



l(y, f(loves,mia, y). However, if we want to substitute variable y withmia, then the substitution

result will be the same expression l(y, f(loves, x, y) because it is invalid substitution.

Similarly, we can write ASP rules to perform other λ-calculus operations. But there are

some serious drawbacks of this implementation. Firstly, we know that, the number of atom in a

predicate function in ASP should be fixed. However, our requirement is that we need different

number of atoms in a function f(). In order to do that, we either need to duplicate ASP code

or switch to more complex ASP representation of λ-expressions. Secondly, even for the simple

operation like substitution, we needed to define many extra facts such as need() and not_var().

Implementation in ASP + Lua

In the previous section, we discussed about the implementation of λ-calculus operations in ASP

and its serious drawbacks. In order to overcome these drawbacks, we need a tool which would

help us solve the problem of predicate function of variable arity and at the same time help us

use the features of ASP.

Lua is a lightweight scripting language and it is nicely integrated with ASP. So, with a

combination of ASP and Lua we will get an advantage of having the procedural programming

(Lua) features as well as Logic programming (ASP) one which exactly suits our need. In this

section, we will discuss how efficiently we can use Lua to define the λ-calculus operations and

use them easily in ASP like any other predicate symbol in ASP.
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Definition of λ-calculus operation in Lua and its usage in ASP is illustrated below.

1. Substitution

• Lua Function Definition: substitute(Expression, V ariable, V alue)

where, Expression - λ-expression

Variable - λ-variable being substituted

Value - a substitution value

• Usage in ASP: result(R)← R := @substitute(Expression, V ariable, V alue).

Example: result(R)← R := @subsitute(l(x, f(loves, x, y)), y,mia)

The result of above substitution will be R = l(x, f(loves, x,mia)).

2. α-conversion

• Lua Function Definition: alphaC(Expression, StartIndex[optional])

where, Expression - Lambda expression

StartIndex - start index of generating new λ-variable

• Usage in ASP: result(R)← R := @alphaC(Expression, StartIndex[optional])

Example 1: result(R)← R := @alphaC(l(x, f(woman, x), 2).

Here, the resultant expression R will have λ-variable as ‘r2’.

R = l(r2, f(woman, r2)).

Example 2: result(R) ← R := @alphaC(l(x, f(woman, x))). Here, we did not

provide start index. So, the default start index will be 1.

R = l(r1, f(woman, r1))

3. α-equivalence

• This operation can be easily performed using ASP equality operator. So in order to

check the α-equivalence between two expressions, we first use the α-conversion on

both the expressions and then check their equivalence.

• Usage in ASP: equivalent← @alphaC(Expression1) ==

@alphaC(Expression2).
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Example: equivalent← @alphaC(l(x, f(woman, x)) == @alphaC(l(z,

f(woman, z))).

4. β-reduction

• Lua Function Definition: betar(Expression)

where, Expression - λ-expression

• Usage in ASP: result(R)← R := @betar(Expression).

Example: result(R)← R := @betar(a(l(x, x),mia))

The result of this β-reduction will be R = mia

4.2 Inverse-λ algorithm implementation

In this section, we present the Inverse-λ operators InverseL and InverseR from [2] in ASP.

The main aim of these two operators is that given a typed λ-expressions H and G, compute the

λ-expression F such that H = F@G or H = G@F . We have already discussed about these

operators in chapter 1.

Implementation of required operations for Inverse Algorithm

In this section, we will describe the implementation of common set of methods in Lua and

implementation of some definitions in ASP which are required for implementation of InverseL

and InverseR operators. We have already talked about the λ-calculus operations in section

4.1. All these λ-calculus operations are required for implementation of inverse operators. Apart

from these operations, we will need some more set of methods and rules which are illustrated

below.

• Replace method in Lua

– In order to implement the Definition 1 (operator :), we need a method which would

help in replacing a term with another one. We define the ‘replace’ method in Lua

which would help us do it.
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– Lua Definition: replace(Expression, Pattern, V alue)

where, Expression is λ-expression, Pattern is sub λ-expression to be replaced,

Value is replacement λ-expression for Pattern.

– The return value of this method is the λ-expression.

• ContainsPattern method in Lua

– We need this method to check if a term is a part of a λ-expression i.e. if a term is a

sub-term of a λ-expression.

– Lua Definition: containsPattern(Expression, Pattern)

where, Expression is λ-expression, Pattern is a term which we want to check if it

belongs to Expression.

– This method returns true if the Pattern is present in Expression, otherwise returns

false

• MergeSets method in Lua

– We have already discussed about Set representation of and, or and concat opera-

tors in section 4.1. After performing operations like β-reduction , replace, substitution

we might have a nested structure of these sets in resultant λ-expression. So we use

mergeSets method to merge the nested sets into one set.

– Lua Definition: mergeSets(Expression)

where, Expression is λ-expression

– This method returns a λ-expression containing merged sets.

• Sub-terms of a λ-expression

– A sub-term of a λ-expression L, is any term that occurs in L. In order to work on

Inverse operators, we need to know all the possible sub-terms of λ-expression H

and G.

– We define a predicate subterm(Expression, term) in ASP where Expression is a

λ-expression and term is a sub-term that occurs in Expression.
48



– In the below rule we say that any term which is a λ-expression is a sub-term of itself.

subterm(L, L) :- term(L).

– Further, we say that if any sub-term of L is of the form l(X,F ) i.e. a λ-expression

containing λ-variable X, then the sub-term of L is F .

subterm(L, F) :- subterm(L,l(X,F)).

– If a sub-term of L is a λ-application i.e. a(A1, A2) or A1@A2, then both A1 and A2

are the sub-terms of L.

2 { subterm(L, A1), subterm(L, A2) } 2 :- subterm(L, a(A1,A2)).

– If sub-term of L is of the form f(C,A1, A2) where C is a connector like imply which

connects two terms, then both the terms A1 and A2 are the sub-terms of L.

2 { subterm(L, A1), subterm(L,A2) } 2 :- subterm(L, f(C, A1, A2)),

connector(C).

– If a sub-term of L is a function symbol of arity n, then all the n arguments of this

function are sub-terms of L. We know that arity of a function symbol is not fixed.

So, it would be difficult to write a rule in ASP to get the arguments of a function

symbol. Hence, we use Lua method functionSubterm to get the arguments of a

function symbol. One more difficulty arises, when we return these arguments from

functionSubtermmethod. We cannot return a list of arguments because we would

then need to use those many ASP variables to capture these arguments which boils

down to the same problem. Hence, we return the arguments of function symbol

as a indent(X,Y ) predicate function where, X is the argument and Y is a nested

indent(X1, Y 1) predicate function. Now we can easily get the arguments by writing

a recursive rule in ASP. For eg. for the expression f(h, a, b, c), functionSubterm

method will return indent(a, indent(b, indent(c, stop))). Also, if the f() is a set of

and, or or concat operators then this method returns all possible combinations of

the set items.
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possible_subterm(L,R) :- subterm(L, F), R := @functionSubterm(F),

R != null.

possible_subterm(L,Y) :- possible_subterm(L, indent(X, Y)).

subterm(L,X) :- possible_subterm(L,indent(X,Y)).

Implementation of InverseL Algorithm in ASP

In the previous section, we have described common set of operations required for Inverse

operators. In this section, we will discuss about the implementation of each clause of InverseL

definition in ASP.

An input to the InverseL algorithm is defined as input(inverseL,H,G) and the result

is inverseL_result(F ).

Clause 1: If G is λv.v , then F = λv.(v@H)

ASP rule for this clause is given below which states that if G is α-equivalent to λx.x

then the result is λx.(x@H)

inverseL_result(l(x, a(x, H))) :- input(inverseL, H, G),

@alphaC(G) == @alphaC(l(x,x)).

Clause 2 : If G is a sub-term of H, then F = λv.H(G : v)

ASP rule for this clause is given below which states that if we replace Pattern G in H1

(α-conversion of H) with variable ’x’ and if H1 != R then the result of the inverseL operation is

λx.R

inverseL_result(l(x, R)) :- input(inverseL, H,G), H1 := @alphaC(H),

R := @replace(H1,G, x), H1 != R.

Clause 3: If G is not λv.v, J1(J1
1 , ...J

1
m), J2(J2

1 , ..J
2
m), .., Jn(Jn

1 , .., J
n
m) are sub-terms of H and

∀J i ∈ H and G is λv1..vs.J i(J i
1, ..J

i
m : vk1 , .., vkm) with 1 ≤ s ≤ m and ∀ p, 1 ≤ kp ≤ s, then F

= λw.H(J1 : w@J1
k1
..@J1

km
), ..., Jn : w@Jn

k1
..@Jn

km
)
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In order to implement this clause, we have multiple set of ASP rules as illustrated below.

possible_pattern(H,G, P, a(ID, S), ID) :- input(inverseL,H,G), subterm(H,S),

@alphaC(G) != @alphaC(l(x,x)),

P := @betar(a(G, S)), P != a(G,S),

ID := @generateNewID().

Using this rule, we get all the possible patterns/terms generated by applying sub-terms

of H to G. Argument P in possible_pattern is the pattern generated, a(ID, S) is the replace-

ment of P and ID is the λ-variable. For eg. if H is

l(x, f(and, f(woman,mia), f(happy,mia), f(man, vincent), f(happy, vincent))) and G is

l(u, l(v, f(and, u, f(happy, v)))), then one possible pattern P is

l(u, f(and, f(woman,mia), f(happy, u))) and its replacement is w@f(woman,mia).

There would be multiple nested λ-applications depending on the number of λ-variables

in G. Hence in order to get complete w@J1
k1
..@J1

km
replacement, we need a recursive rule

mentioned below.

possible_pattern(H,G,F1, a(P,S),ID) :- possible_pattern(H,G,l(X, F), P, ID),

subterm(H,S),input(inverseL,H,G),

F1 := @mergeSets(@betar(a(l(X,F),S))),

F1 != a(l(X,F), S).

Once, we have performed all the λ-applications on expression G to get a complete

target expression patterns without λ-variables, then we can capture only valid patterns using

below mentioned rule where valid patterns are the terms which are sub-terms of H.

valid_pattern(H,G,P,REPLACEMENT,ID) :- possible_pattern(H,G,P,REPLACEMENT,ID),

subterm(H,P).
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We know that the resultant F expression will have valid pattern P replaced by RE-

PLACEMENT in H. Thus, the possible result is of the form l(ID,R) where ID is the λ-variable

and R is the expression formed by replacing P with REPLACEMENT.

possible_result(H,G, l(ID, R),REPLACEMENT)

:- input(inverseL, H,G),

valid_pattern(H, G, P, REPLACEMENT,ID),

subterm(H,P),R := @replace(H, P, REPLACEMENT), R != H.

But, there can be multiple patterns P which needs to be replaced in H. The below rule

describes it.

2 { possible_result(H,G,R,REPLACEMENT),

invalid_result(H,G,X,PreviousReplacement) } 2

:- possible_result(H,G,X,PreviousReplacement),

valid_pattern(H, G, P, REPLACEMENT, ID),

input(inverseL,H,G), subterm(H,P),

@containsPattern(PreviousReplacement, P) != true,

R := @replace(X,P,REPLACEMENT), R !=X,

@containsPattern(R, a(ID, REPLACEMENT)) != true.

Thus, the result F of InverseL operation is the possible result R such that H = R@G.

inverseL_result(R) :- possible_result(H,G,R,Z), not invalid_result(H,G,R,Z),

R1 := @mergeSets(@betar(a(R,G))),

@compare(@alphaC(H) , @alphaC(R1)) == true,

input(inverseL,H,G).

In the above rule, compare method (defined in Lua) is used to compare the two expres-

sions. We know that the expressions might have sub-term which is a set of and, or or concat.
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This compare method will check the set equality too which we cannot check directly in ASP

using equality operator.

Clause 4: If H is λv1..λvi.J and J1(J1
i+1, ..J

1
s ) is a sub-term of J and G is

λw.J(J1(J1
i+1, ..J

1
s ) : w@J1

k1
...@J1

ks
) with ∀ p, i+1 ≤ kp ≤ s, then

F = λw.λv1..vs.(w@λvi+1...vs.(J
1(J1

i+1, ..J
1
s ) : vk1 , ..vks))

For the implementation of this clause, the main idea is to find the unmatched sub-terms

in H and G which does not match with each other i.e. terms of the form w@J1
k1
...@J1

ks
in G

and J1(J1
i+1, ..J

1
s ) in H respectively. In order to find these terms, we first obtain all the matched

sub-terms using below rule.

matched_pattern(H,G, S) :- input(TYPE, H,G), subterm(H,S), subterm(G,S).

We are interested in finding an unmatched pattern in G which is a sub-term of the form

a(a(.., Y )..), Z) i.e. w@J1
k1
...@J1

ks
.

invalid_pattern(G, a(X,Y)) :- subterm(G, a(X,Y)), subterm(G, a(a(X,Y), L)).

unmatched_patternG(H,G,a(X,Y)) :- not matched_pattern(H,G,a(X,Y)),

input(T, H,G),

not invalid_pattern(G,a(X,Y)),

subterm(G,a(X,Y)).

In order to find an unmatched pattern in H, we first extract the main target language

expression from a λ-expression of H and G i.e. we need to extract J from λv1..vi.J .

mainExpression(H, H) :- input(inverseL,H,G).

mainExpression(G, G) :- input(inverseL,H,G).

mainExpression(E, Y) :- mainExpression(E, l(X,Y)).

Now, unmatched pattern in H will be a pattern S such that if we replace the unmatched

pattern in G with this S we will get the main expression of H i.e. J.
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unmatched_patternH(H,G, S) :- input(inverseL, H, G), subterm(H,S),

unmatched_patternG(H,G,P),

R := @replace(J1, P, S),

mainExpression(H,J), J != l(X,Y),

mainExpression(H, l(X,Y)),

mainExpression(G, J1), J1 != l(X1,Y1),

mainExpression(G, l(X1,Y1)),R == J.

Once we have found the patterns in H and G respectively, we will need to create an

expression F from them. Below rules will create λvi+1...vs.(J
1(J1

i+1, ..J
1
s ) : vk1 , ..vks)) pattern

which is a part of expression F

internalExpression(H,G, X, l(ID, R)) :- unmatched_patternG(H,G,a(X,G1)),

unmatched_patternH(H,G,H1),

ID := @generateNewID(),

R := @replace(H1, G1, ID), R != H1.

internalExpression(H,G, X, l(ID, R)) :- internalExpression(H,G, a(X, G1), H1),

ID := @generateNewID(),

R :=@replace(H1,G1,ID), R != H1.

Now, we need to find valid sub-expression i.e. a sub-expression which does not have

any λ-application in it.

invalid_internalExpression(H,G, E) :- internalExpression(H, G, a(X, G1), E).

valid_internalExpression(H,G,E) :- internalExpression(H, G, X, E),

not invalid_internalExpression(H,G,E).

Below ASP rule will create the resultant expression F which is of the form

λw.λv1..vs.(w@λvi+1...vs.(J
1(J1

i+1, ..J
1
s ) : vk1 , ..vks)) and checks if H = F@G.
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inverseL_result(l(ID,H1)):- mainExpression(H,J), J != l(X,Y),

mainExpression(H, l(X,Y)), input(inverseL,H,G),

valid_internalExpression(H,G,E),

ID := @generateNewID(),

H1 := @replace(H, J, a(ID, E)), H1 != H,

R1 := @mergeSets(@betar(a(l(ID, H1), G))),

@alphaC(H) == @alphaC(R1).

Implementation of InverseR Algorithm in ASP

In this section, we will discuss about the implementation of each clause of InverseR definition

in ASP.

An input to the InverseR algorithm is defined as input(inverseR,H,G) and the result

is inverseR_result(F ).

Clause 1: If G is λv.v@J , then F = InverseL(H,J)

Here, we check that if the expression is of the form λv.v@J then we create an input for

InverseL operation i.e. input(inverseL,H, J). In this case, result of InverseL would be

the result of InverseR.

input(inverseL, H, J) :- input(inverseR, H, l(X, a(X, J))),

G1 := @alphaC(l(X, a(X, J))), G1 == l(r1, a(r1, J)).

inverseR_result(R) :- inverseL_result(R), input(inverseR, H, l(X, a(X, J))).

Clause 2: If J is a sub-term of H and G is λv.H(G : v), then F = J

The below ASP rule, finds a sub-term J of the expression H such that if we replace J with a

λ-variable, it would be α-equivalent to G. The result in this case would be J.

inverseR_result(J) :- input(inverseR, H,G), subterm(H,J),

@alphaC(G) == @alphaC( l(e1, @replace(H,J, e1))).
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Clause 3: If G is not λv.v@J , J1(J1
1 , ...J

1
m), J2(J2

1 , ..J
2
m), .., Jn(Jn

1 , .., J
n
m) are sub-terms of H

and G is λw.H(J1 : w@J1
k1
..@J1

km
), ..., Jn : w@Jn

k1
..@Jn

km
) with 1 ≤ s ≤ m and ∀p, 1 ≤ kp ≤

m, then F = λv1..vs.J i(J i
1, ..J

i
m : vk1 , .., vkm)

The above clause is valid if G is not λv.v@J . The below rule specifies this validity.

invalid_Rdefinition3(H, l(X, a(X, J))) :- input(inverseR,H, l(X, a(X, J))).

For the implementation of this clause in ASP, we would use most of the ASP rules from

the Clause 3 of InverseL operation. For this clause, we again use the ASP rule from Clause

3 to find the matched patterns between H and G. Similarly, we would use the ASP rule to find

the unmatched pattern in G from Clause 3 of InverseL.

Unlike one unmatched pattern of H in Clause 3 of InverseL, we might have multiple

unmatched patterns of H which maps to unmatched pattern in G. So, we need a set of different

rules to get all such patterns. First, we find possible unmatched patterns of H using below rule.

possible_unmatched_patternH(H,S) :- input(inverseR, H,G),

subterm(H,S), not matched_pattern(H,G,S).

Now, the unmatched pattern of H will be a possible unmatched pattern of H and it is not

an invalid term i.e. it is not a sub-term of a possible unmatched pattern of H.

contains(J,S, X) :- possible_unmatched_patternH(H,S),

possible_unmatched_patternH(H,J),

X := @containsPattern(J, S), J !=S.

invalid_term(J) :- contains(J,S,true).

unmatched_patternH(H,G,S) :- not invalid_term(S),

possible_unmatched_patternH(H,S),

input(inverseR,H,G).
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We again use the rule for creating the internal expression and getting the valid internal

expression from Clause 3 in InverseL algorithm. Thus, the result of InverseR operation, if H

and G fits this clause, is defined by below rule

inverseR_result(P) :- valid_internalExpression(H,G,P), input(inverseR,H,G),

not invalid_Rdefinition3(H,G) .

Clause 4: If H is λv1..λvi.J and J1(J1
i+1, ..J

1
s ) is a sub-term of J, G is

λw.λv1..vs.(w@λvi+1...vs.(J
1(J1

i+1, ..J
1
s ) : vk1 , ..vks)), then

F = λw.J(J1(J1
i+1, ..J

1
s ) : w@J1

k1
...@J1

ks
)

In order to implement this clause, we first perform the α-conversion on the input ex-

pressions.

alphaConverted_input(H1,G1) :- input(inverseR, H, l(X,G)),

(H1,C1) := @alphaC(H),

(G1,C) := @alphaC(G).

Below ASP rules are defined to get the main target language expression from the α-converted

λ-expression, the sub-terms of α-converted expression of H and mainExpressionG of the form

λvi+1...vs.(J
1(J1

i+1, ..J
1
s ) : vk1 , ...vks).

mainExpression(H,H) :- alphaConverted_input(H,G).

mainExpression(G,G) :- alphaConverted_input(H,G).

mainExpressionG(G, S) :- mainExpression(G,a(X, S)),

alphaConverted_input(H,G).

subterm(H,H) :- alphaConverted_input(H,G).
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The main idea behind the implementation of this clause in ASP is to find a valid possible

result from G such that by performing multiple λ-applications on mainExpressionG using sub-

terms of H, we get a valid term which is a sub-term of H. Below rules define this idea.

possible_resultG(G, G1, R, a(e1, S)) :- mainExpressionG(G, l(X,G1)),

subterm(H, S),

R := @substitute(G1, X, S),

alphaConverted_input(H,G).

possible_resultG(G, G1, R1, a(A, S)) :- possible_resultG(G,l(X,G1),R,A),

subterm(H,S),

R1 := @substitute(G1, X, S).

invalid_resultG(G, l(X,G1), R, A) :- possible_resultG(G, l(X,G1), R, A),

alphaConverted_input(H,G).

valid_resultG(G, G1, R,A) :- not invalid_resultG(G, G1,R,A),

possible_resultG(G, G1, R,A),

subterm(H,S), R == S.

Here, argument R of possible_resultG is the reduced term obtained by substituting λ-

variable X in G1 with sub-term S of H. G1 is the sub-term of λ-expression G of the form λx.G1,

while the last argument of the possible_resultG is the replacement pattern.

Thus, a resultant expression of InverseR operation would be an expression of the form

λx.F where F is obtained by replacing pattern R from valid_resultG with the replacement A.

inverseR_result(l(e1, F)) :- valid_resultG(G1, G,R,A),

alphaConverted_input(H,G1),

F := @replace(H, R, A).
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Chapter 5

Evaluation of system on Policy Translation

5.1 Experiment Setup

Experiment Data

To evaluate our system, we have created a corpus of iRODS policies. Policies in English were

gathered from various sources in iRODS domain and manually translated into IPDL language.

We have a set of 100 such policies and their translations. For 10 fold cross validation, we will

divide this data into 10 different files each containing a set of 10 policies and their translations.

Each training data file has different types of policies. For. eg one type of policy is a policy for

printing. An example of one training data file is given in table 5.1. We provide an initial lexicon

file to the system.

Configurations

For the NL2KR-L component we have made following configurations to get the best results. We

perform 2 iterations over the complete set of training data to learn lexicon (T=2).

Table 5.1: Training Data File example

Policy IPDL Representation

Generate report listing all command > generate(report)∧
preservation attributes list(report, preservation_attributes)
Do not allow renaming of objects command > ¬allow(rename(Data_folder(objects)))
in Data folder
Do not replace AIP template command > ¬replace(template(aip), template(dip))
with DIP template
List records that have a data command > list(records)∧
format with an expired lifetime have(records, have(data_format, expired_lifetime))
Verify the existence of required validation > existence(required(quantity(replicas)))
number of replicas
Compare staffing level required by command > compare(required_by(staffing_level,
a collection to current staffing collection), current_staffing)
Store template for mapping AIP to DIP command > store(template(map(aip, dip)))

Migrate files in Data folder to command > migrate(Datafolder(files), storage(new))
new storage
Protect the integrity of Data folder command > protect(integrity(Data_folder))
Print record containing number of command > print(record) ∧ contain(record,
master copy and required replicas quantity(master_copy) ∧ required(replicas))
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For better performance of this component, we provide some restriction configurations

in generalization algorithm. For our domain, most of the lexical entries in lexicon have cat-

egories N/N and N . In order to prevent blow up of the lexicon with unnecessary cate-

gories; while generalizing complete lexicon, we have put these categories in restriction list

LEX_GENERALIZATION_EXCLIST . However, to limit the initial lexicon and to learn

similar meanings of nouns, we do not provide category N in GENERALIZATION_D_EX-

CLIST . We have put prepositions which might have similar semantics in formal representation,

in the listGENERALIZATION_D_PREPOSITIONLIST . For eg. on, of, in among oth-

ers, have similar semantics for our domain. Again, to limit generalization of unnecessary mean-

ings of some words, we have put them in exclude word list i.e. GENERALIZATION_D_EX-

CWORD_LIST . Some of the nouns have estranged meanings generated through general-

ization process which greatly affects performance of the system. In order to limit the training

period, we have put these words in an exclude word list.

We assign a default weight of 0.01 to each lexical entry. To tune the weight of each

lexical entry, we performed 10 iterations of overall parameter learning algorithm with learning-

rate parameters α0 = 0.01 and c = 0.001 [17] in Parameter Estimation phase.

CCG Parsing

For our experiments, we use ASPccgTk CCG parser [14] to provide the syntactic parse trees

of the sentences. ASPccgTk CCG parser some times gives multiple syntactic parse trees of

the sentences. For the better performance of our system we have limited the total number of

syntactic parse tree for a sentence to 1.

Most of the policy statements in English are imperative sentences. Hence, there are

various ambiguities in the CCG parse of these sentences because the ASPccgTk parser takes

CCG categories of words from C&C Supertagger [15] which is trained on CCGBank [20]. So

sometimes, the parser might not return good parse trees which will affect the performance of

the system. We have first analyzed the parse tree structures for all the sentences in training

data set. To get correct CCG parse tree derivation, we have strictly overridden some of CCG
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Table 5.2: Sample training corpus

Sentence IPDL Representation

Generate audit_trail for all changes to rules command > generate(audit_trail(changes(rules)))
Transfer ownership to rods command > transfer(ownership, rods)

Generate report listing all preservation_attributes command > generate(report(list(preservation_attributes)))
Migrate files to new storage command > migrate(files, storage(new))

Protect the integrity of Data_folder command > protect(integrity(Data_folder))
Generate audit_trail for notifications on problems command > generate(audit_trail(notifications(problems)))
Create AIP template from SIP template command > create(template(aip), template(sip))

Create rule based-on AIP template command > create(rule, template(aip))

On deletion of files from collection erase metadata when > deletion(files(collection)); do > command > erase(metadata)

Generate report summarizing information of micro_services command > generate(report(summary(information(micro_services))))

categories of words. For eg. the ASPccgTk parser used the category N/N for verb Generate.

We have overridden the category of this word to (S\NP )/NP . Using such overrides, we were

able to get good parse tree derivations for most of the sentences.

Initial Lexicon

Initial lexicon is a key input for our system. To test efficiency of our system, we want to keep

the initial lexicon as minimal as possible. In this section, we will give an example of evolution of

initial lexicon to final lexicon during the learning process.

Consider a small training corpus of 10 iRODS policies as shown in table 5.2. The CCG

derivations of all the sentences in the corpus are given in tables 5.6, 5.7, 5.8 , 5.9, 5.10, 5.11,

5.12, 5.13, 5.14, 5.15. To demonstrate complete learning, we will keep generalization config-

uration as minimal as possible. We will only maintain GENERALIZATION_D_PREPO-

SITIONLIST and LEX_GENERALIZATION_EXCLIST configurations described in

previous section. We will now illustrate how performance of the system is affected by initial

lexicon by discussing two cases.

Case 1: An initial lexicon for this case is given in table 5.3. Let us talk about the iteration 1

of learning process. For a first sentence in the corpus, initial lexicon does not contain all the

meanings of words. Only meaning of ‘Generate’ is present in the lexicon. So, inverse algorithm

is not helpful in this cases. However, during the learning process, all the nouns ‘audit_trail’,

‘changes’, and ‘rules’ will be generalized and the lexicon will be updated with new meanings

audit_trail, changes and rules respectively for these words.
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Table 5.3: Case 1: Sample Initial lexicon

Word CCG Semantics

Transfer (S\NP )/NP λx.λy.command > transfer(x, y)

ownership N ownership

rods N rods

all NP/NP ;NP/N ;N/N λx.x

the NP/NP ;NP/N ;N/N λx.x

Generate (S\NP )/NP λx.command > generate(x)

For second sentence in the corpus, lexicon has meanings of most of the words. Inverse

algorithm would be helpful in this case. A missing meaning of word ‘to’ will be learned from this

case. The meaning of ’to’ learned is λy.λx.x@y and it is updated in lexicon.

For third sentence in the corpus, lexicon does not contain meanings of words ‘re-

port’, ‘listing’ and ‘preservation_attributes’. Inverse algorithm will not learn meaning of any

of these words. However, generalization algorithm will generalize words ‘report’ and ‘preserva-

tion_attributes’ to report and preservation_attributes. The meaning of word ‘listing’ will not

be learned using generalization because the lexicon does not contain any entry which has the

category same as that of ‘listing’.

For fourth sentence in the corpus, lexicon contains only meaning of word ‘to’. So again

here inverse algorithm will not learn anything. Generalization algorithm will help in learning the

meaning of words ‘Migrate’, ‘files’, ‘storage’. Meaning of word ‘new’ is still not learned through

any of these techniques.

For fifth sentence in the corpus, lexicon contains non of the words except ‘the’ and

‘Data_folder’. So again, inverse algorithm will not learn anything. Generalization technique will

help in learning meanings of words ‘Protect’, ‘integrity’. Meaning of word ‘of’ will not be learned.

For sixth sentence, lexicon does not contain words ‘for’, ‘notifications’, ‘on’ and ‘prob-

lems’. Generalization technique will learn the meanings of words ‘notifications’ and ‘problems’

from other words of categoryN . Meaning of word ‘for’ will be generalized from meaning of word

‘to’ because these words are prepositions and they share the same CCG category as shown in
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tables 5.7 and 5.11. We have already mentioned in the previous section about generalization

configuration for prepositions.

For seventh sentence, inverse algorithm will not learn anything. Generalization tech-

nique will help in learning meanings of words ‘Create’, ‘template’, and ‘from’. Preposition ‘from’

will be generalized from words ‘to’ and ‘for’ as they share the same category.

For eighth sentence, generalization technique will learn meanings of words ‘rule’. Mean-

ing of word ‘based-on’ will not be generalized from words having same category as that of

‘based-on’ because these words’ semantics does not contain any predicate names which can

be replaced by word ‘based-on’.

For ninth sentence, again generalization technique will learn meanings of words ‘dele-

tion’, ‘collection’, ‘erase’, ‘metadata’.

For tenth sentence, generalization technique will learn meanings of words ‘information’

‘micro_services’.

After learning from tenth sentence, the first iteration of the algorithm finishes. The up-

dated lexicon after first iteration is shown in the table 5.4. Even though we learned 29 new

meanings of words from sample training corpus, most of these meanings are unnecessary.

For eg. a new meaning of word ‘deletion’ is deletion. But, by looking at an IPDL represen-

tation of a sentence, this meaning will not be a good fit. A correct meaning which we want is

λx.deletion(x). So, in the iteration 2 of the learning process, we will not learn anything and

we will get the same final updated lexicon.

Thus, if we use this updated lexicon to for translation on the same sample corpus, we

will get only one correct result i.e. for sentence 2. Thus an accuracy of the system is 10%. This

proves, that this initial lexicon is not good.
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Table 5.4: Case 1: Updated lexicon after Iteration 1

Word CCG Semantics

Transfer (S\NP )/NP λx.λy.command > transfer(x, y)
ownership N ownership
rods N rods
all NP/NP ;NP/N ;N/N λx.x
the NP/NP ;NP/N ;N/N λx.x
Generate (S\NP )/NP λx.command > generate(x)

λx.λy.command > generate(x, y)
audit_trail N audit_trail
changes N changes
rules N rules
to (NP\(S\NP ))/NP λy.λx.x@y
report N report
preservation_attributes N preservation_attributes
Migrate (S\NP )/NP λx.command > migrate(x)

λx.λy.command > migrate(x, y)
Data_folder N data_folder
storage N storage
Protect (S\NP )/NP λx.command > protect(x)

λx.λy.command > protect(x, y)
integrity N integrity
for (NP\(S\NP ))/NP λy.λx.x@y
notifications N notifications
problems N problems
Create (S\NP )/NP λx.command > create(x)

λx.λy.command > create(x, y)
template N template
from (NP\(S\NP ))/NP λy.λx.x@y
rule N rule
deletion N deletion
files N files
collection N collection
metadata N metadata
erase (S\NP )/NP λx.command > erase(x)

λx.λy.command > erase(x, y)
information N information
micro_services N micro_services

Now let us add some more meanings in the initial lexicon. We will add following lexical

entries in the lexicon

1. deletion, N , λx.deletion(x)

2. Generate, (S\NP )/NP , λx.λy.command > generate(x@y)

Case 2: A new initial lexicon is given in table 5.5. Iteration 1 of the lexicon learning process

using this lexicon would be the same as described earlier. However, in this case more meanings

will be added in the lexicon. For eg. for a word ‘integrity’ two meanings will be added i.e.

integrity and λx.integrity(x). The updated lexicon after this iteration is described in table

A.1 in the appendix.
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Now let us discuss Iteration 2 in detail. For first sentence, we know semantics of all the

words except word ‘to’ with CCG category (NP\NP )/NP . Using inverse algorithm semantics

of ‘to’ will be computed and will be updated in the lexicon. For second sentence, we already

know all meanings of words. The algorithm will also try to learn new other meanings of words

for the given CCG categories. But, all possible semantics of words in a sentence are already

learned. So, no new meanings will be learned from this sentence. In case of third sentence,

new semantics of word ‘listing’ will be computed using inverse algorithm because semantics of

remaining words is already known. In fourth sentence, now we know meaning of all the words

except ‘new’. The semantics of ‘new’ will be learned through inverse-λ algorithm. Similarly,

in case of fifth sentence, semantics of word ‘of’ will be learned through inverse-λ technique.

Again, in sentence six, we know meaning of all the words except ‘on’. The semantics of ‘on’ will

be learned through inverse-λ technique. One important point to note here is that, semantics of

‘on’ could have been learned through generalization technique but during our learning process

we first prefer inverse-λ approach and if it does not work then we use generalization. In the

sentence seven, we do not know the semantics of ‘AIP’ and ‘SIP’. So, inverse-λ algorithm

will not learn anything. However, generalization technique will learn semantics of these words

from ‘new’. Semantics of word ‘based-on’ in sentence eight, will be learned through inverse-λ

technique as semantics of other words are known. In case of sentence nine, we do not know the

meaning of ‘On’ and ‘from’. In this sentence, ‘from’ has CCG category (NP\NP )/NP . Being

a preposition, the semantics of this word will be learned from word ‘of’ which has same CCG

category. Semantics of ‘On’ will not be learned through any of these technique in iteration 2.

Lastly, in a sentence ten, we will learn meaning of ‘summarizing’ through inverse-λ technique.

Thus, in this iteration we have learned meanings of all words in the training corpus

except word ‘On’. However, if we perform iteration 3 of lexicon learning, the meaning of ‘On’

will be learned. The final generated lexicon after complete learning process is shown in table

A.2. If we evaluate the training corpus over this final generated lexicon, we will get all the correct

predictions resulting in 100% accuracy. It implies that our initial lexicon is good.Thus with the

addition of just 2 new entries, the accuracy of the system is increased to a great extent.
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It is certainly evident that generalization technique plays a crucial role in learning pro-

cess and helps in maintaining initial lexicon minimal. However, as we increase the corpus size,

generalization technique will have negative impact on performance of the system because it

might blow up the lexicon with unnecessary meanings. Thus, we will have exponential number

of semantic parse trees which would greatly affect performance of the system. Hence, for the

larger corpus, we have limited the usage of generalization technique by setting various config-

urations described in previous sections because of which we had to increase the size of our

initial lexicon. We had to add semantics of some words mostly nouns in the initial lexicon even

though they could have been learned through generalization technique. For our 10 fold cross

validation experiment, our initial lexicon size was approximately 150 for each setup. The final

lexicon generated is approximately of size 630.

Even though the initial lexicon plays an important role in defining an accuracy of the

system, performance of the system is also greatly affected by CCG parse tree derivations. The

CCG derivations of the training corpus described here are idealist cases. Words in different

sentences share same categories which helped in learning more words. However, when we

use the external CCG parser, CCG derivations of sentences are not good. Sometimes, words

have different categories. For eg. word ‘of’ might have categories (NP\NP )/NP in one

sentence while in other sentence of the same pattern as that of first, it will have (N\N)/NP ,

and a parse tree structure of both of these sentences are same. Hence, in this case, we would

fail to learn new meanings. Another case is, two sentences have same CCG categories of

words but their derivations are different. Hence, again we will not learn much for this case. The

only way to cover these cases is to add more meanings in the initial lexicon.

Evaluation Process

To get good results for evaluation of the system on iRODS domain, we need a good initial

lexicon. So, we will first start evaluation with a small datasets. Initially we took a dataset of 25

sentences and their translations. In this dataset, all the simple policy statements of the similar

kind. The system was trained on this dataset and evaluation was also performed on this same
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Table 5.5: Case 2: New updated Initial lexicon

Word CCG Semantics

Transfer (S\NP )/NP λx.λy.command > transfer(x, y)

ownership N ownership

rods N rods

all NP/NP ;NP/N ;N/N λx.x

the NP/NP ;NP/N ;N/N λx.x

Generate (S\NP )/NP λx.command > generate(x)
λx.λy.command > generate(x@y)

audit_trail N λx.λy.audit_trail(x@y)

deletion N λx.deletion(x)

Table 5.6: CCG derivation for ‘Generate audit_trail for all changes to rules’
Generate audit_trail for all changes to rules

(S\NP )/NP N (NP\(S\NP ))/NP NP/N N (NP\NP )/NP N

S\NP (NP\(S\NP ))/NP NP NP\NP

S\NP (NP\(S\NP ))/NP NP

S\NP (NP\(S\NP ))

NP

Table 5.7: CCG derivation for ‘Transfer ownership to rods’
Transfer ownership to rods

(S\NP )/NP N (NP\(S\NP ))/NP N

S\NP NP\(S\NP )

NP

dataset to check that the system learned good meanings of words. In this process, we modify

the initial lexicon and generalization configuration to get the best results. The results of this

training is described in next section.

Table 5.8: CCG derivation for ‘Generate report listing all preservation_attributes’
Generate report listing all preservation_attributes

(S\NP )/NP N (NP\(S\NP ))/NP NP/N N

S\NP (NP\(S\NP ))/NP NP

S\NP NP\(S\NP )

NP
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Table 5.9: CCG derivation for ‘Migrate files to new storage’
Migrate files to new storage

(S\NP )/NP N (NP\(S\NP ))/NP N/N N

S\NP (NP\(S\NP ))/NP N

S\NP (NP\(S\NP ))

NP

Table 5.10: CCG derivation for ‘Protect the integrity of Data_folder’
Protect the integrity of Data_folder

(S\NP )/NP N/N N (NP\NP )/NP N

(S\NP )/NP N NP\NP

(S\NP )/NP NP

S\NP

Table 5.11: CCG derivation for ‘Generate audit_trail for notifications on problems’
Generate audit_trail for notifications on problems

(S\NP )/NP N (NP\(S\NP ))/NP N (NP\NP )/NP N

(S\NP ) (NP\(S\NP ))/NP N NP\NP

(S\NP ) (NP\(S\NP ))/NP NP

(S\NP ) NP\(S\NP )

NP

After, performing evaluation on dataset of 25 policies, we added another set of 25 poli-

cies of similar kind to the previous dataset (Now total size of dataset is 50). Again, evaluation is

performed on this dataset. Similarly, we performed evaluation of the system, on dataset of 75

and then dataset of 100.

Table 5.12: CCG derivation for ‘Create AIP template from SIP template’
Create AIP template from SIP template

(S\NP )/NP N/N N (NP\(S\NP ))/NP N/N N

(S\NP )/NP N (NP\(S\NP ))/NP N

S\NP NP\(S\NP )

NP
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Table 5.13: CCG derivation for ‘Create rule based-on AIP template’
Create rule based on AIP template

(S\NP )/NP N (NP\(S\NP ))/NP N/N N

S\NP (NP\(S\NP ))/NP N

S\NP NP\(S\NP )

NP

Table 5.14: CCG derivation for ‘On deletion of files from collection erase metadata’
On deletion of files from collection erase metadata

(S/(S\NP ))/NP N (NP\NP )/NP N (NP\NP )/NP N (S\NP )/NP N

(S/(S\NP ))/NP N (NP\NP )/NP N NP\NP S\NP

(S/(S\NP ))/NP N (NP\NP )/NP NP S\NP

(S/(S\NP ))/NP N NP\NP S\NP

(S/(S\NP ))/NP NP S\NP

S/(S\NP ) S\NP

S

Table 5.15: CCG derivation for ‘Generate report summarizing information of micro_services’
Generate report summarizing information of micro_services

(S\NP )/NP N (NP\(S\NP ))/NP N (NP\NP )/NP N

(S\NP ) (NP\(S\NP ))/NP N NP\NP

(S\NP ) (NP\(S\NP ))/NP NP

(S\NP ) NP\(S\NP )

NP

The main aim of training on small datasets and then gradually increase its size is to

analyze the initial lexicon and update it with missing meanings which cannot be learned during

training process. So, after training the system on complete data set, we will have good initial

lexicon.

Once, we have initial lexicon ready, we performed 10 fold cross validation on the dataset

of size 100. As already mentioned in the section 5.1, we divided this dataset in 10 chunks of

equal size each chunk having unique set of policies. The system was then trained on 9 chunks

and evaluated on the remaining 1 chunk, in 10 phases. As a baseline, in order to analyze the

performance of the trained system, we evaluated the system using initial lexicon on the same
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Table 5.16: Evaluation on training Data

Dataset Size Precision Recall

25 95.45% 84%
50 93.33% 84%
75 88.73% 84%
100 90.24% 83.14

Table 5.17: 10-cross fold validation on iRODS domain

System Precision Recall

Untrained system (Baseline) 58.2% 10%
(using untrained lexicon)
Trained System 68.2% 48%
(using trained lexicon)

dataset in 10 fold. While evaluating the system using initial lexicon we maintained a default

weight of 0.01 for each lexical entry. The results of this evaluation is described in next section.

5.2 Results and analysis of system performance

We measure the performance of the system using precision and recall where precision is per-

centage of correct translations returned and recall is percentage of examples with correct trans-

lations. The table 5.16 shows the results of evaluation on training dataset of sizes 25, 50, 75

and 100. The results of 10-cross fold evaluation on the system using untrained lexicon and

trained one are given in table 5.17.

We can easily see, the trained system performed very well in the evaluation phase. The

recall of the untrained system is very low because the initial lexicon didn’t have meanings of

all words present in a sentence, and the generalization component of the NL2KR-T system did

not generate good meanings of such words. However for the trained system, the precision and

recall dropped to some extent in 10 fold cross validation as compared to the results obtained

during initial lexicon building processing.

System’s performance was greatly affected by CCG parser because for some sen-

tences, the parser did not return good CCG derivations. The precision is dropped mainly due to

incorrect parse tree derivation and hence the composition of words resulted in incorrect formal

70



representation. Although, overriding CCG categories for some words improved the CCG parse

derivations but not for all sentences. Sometimes, two different sentences of same pattern were

parsed differently. For eg. The parser returned different parse tree derivations for the sentences

’Generate audit for changes in micro-services’ and ’Print report for changes in micro-services’,

even though they are of same pattern (same CCG categories). The CCG derivations of these

sentences are shown in table 5.18 and 5.19. So, the semantics of some words learned from

first sentence might not be a good fit for second sentence because the semantics of words are

tightly coupled with their corresponding CCG categories.

Table 5.18: CCG derivation for ‘Generate audit for changes in micro-services’
Generate audit for changes in micro-services

(S\NP )/NP N (NP\(S\NP ))/NP N (NP\NP )/NP N

S\NP (NP\(S\NP ))/NP N NP\NP

S\NP (NP\(S\NP ))/NP NP

S\NP (NP\(S\NP ))

NP

Table 5.19: CCG derivation for ‘Print report for changes in micro-services’
Print report for changes in micro-services

(S\NP )/NP N (NP\(S\NP ))/NP N (NP\NP )/NP N

S\NP NP\(S\NP ) NP\NP

NP NP\NP

NP

The precision of the trained system is also affected due to incorrect selection of se-

mantics of some words in the context of the sentence which unfortunately had high weight in

the lexicon. Although, the weights assigned to each lexicon entry helps in deciding the correct

translation of a sentence, sometimes these weights might mislead in picking incorrect lexicon

entries and hence we will get incorrect translation. For eg. Consider sentence ’Compare AIP

template with SIP template’. In this sentence, a word with is used in the context of compari-

son. The correct semantics of with present in the lexicon in this context is λy.λx.x@y. Now

consider the sentence ’List all people with access permission on collection’. In this sentence,
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a word with is used in the context of characterization or having some property. The semantics

of with in the lexicon for this context is λy.λx.x@have(y). The CCG category of word with is

same for both of these semantics. As the training data set has more sentences containing word

with in the context of comparison, the weight assigned to the lexicon entries for word with

was more biased towards the one having semantics λy.λx.x@y. Hence, NL2KR-T system

translated some sentences containing word with in the context of characterization, incorrectly.

Another, most important factor which affected the performance of the system, typically

in terms of time complexity is the number of semantic parse trees for each sentence. We know

that a word with a given CCG category can have multiple meanings. Consider a sentence ‘List

micro-services referenced by a rule’. If each of the words in this sentence has 5 different mean-

ings for their CCG category, the total number of parse trees having unique set of semantics for

each node will be 5 × 5 × 5 × 5 × 5 × 5 i.e. 15625. Thus, for one CCG parse tree derivation

of a sentence, we can get 15625 different trees. For multiple CCG parse derivations of a sen-

tence, the total number trees will increase in multiple of the number of CCG parse trees. During

the learning phase, with every iteration, the number of meanings in the lexicon might increase.

Hence, again the number of parse trees will increase by that factor. Processing of those many

parse trees takes great amount of time and it is just for a one sentence. Thus, the performance

of parameter estimation component in NL2KR-L and PCCG computation component in NL2KR-

T is greatly affected. Typically, the computation of feature vector for each parse tree takes huge

computation time as well as memory. If we have approximately 600 entries in the lexicon and

approximately 15,000 semantic trees for a sentence, then the computation of feature vector for

all the parse trees of one sentence will take 15,000*600 iterations. By addition of more lexical

entries in lexicon, the number of iterations quickly grow exponentially.
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Chapter 6

Conclusion and Future Work

Translation of natural language to a formal representation plays a key role in communication

between a computer based system and human beings. Sometimes, an interface langauge

for a computer based system is very complicated and direct translation of natural language to

this language becomes difficult. An example of one such computer based system is iRODS

which uses rule oriented language for interaction purpose. In this thesis, we have designed

an Intermediate Policy Declarative Language (IPDL) for this system such that natural language

can be translated to formal statements in IPDL and further it can translated to iRODS rules. For

the purpose of translation of natural language to a formal representation, we have developed

an improved version of NL2KR system (v.2) over NL2KR v.1 system [1] by improving and re-

developing various modules of this system. Further, we have evaluated improved version of the

system on iRODS domain and analysed performance of the system.

The NL2KR system’s key item is a CCG parse tree of a sentence. v.1 of the system

uses an inbuilt CCG parser with some implementation drawbacks. In v.2 of the system, we

re-developed this inbuilt CCG parser in ASP and also integrated the external CCG parser (AS-

PccgTk [14]) with the system and provided a configuration functionality to use either of them.

Other components of the system like Inverse − λ, Generalization were also improved and

new features were added to them. In v.1, the learning algorithm of NL2KR-L sub-system, has

some major drawbacks. It was learning only missing semantics of words in a sentence. In

v.2, we have re-designed this algorithm. Apart from this, we have fixed some major issues in

the system and introduced some new features like better system configurations to handle the

components, memory cache to improve computation time of the system.

While improving the system, we noticed that ASP would be a good fit for the implemen-

tation of some of the modules of the system because it can easily solve a search problem by

defining only few rules and, by having these components in ASP, we can easily use knowledge

to improve performance of the system. One of the major contribution of this research is ASP
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representation of λ-expressions and implementation of λ-operations like α-conversion, β-reduction,

substitution in ASP. We have also implemented Inverse-λ component in ASP.

We evaluated NL2KR v.2 system on iRODS domain and analysed it’s performance.

iRODS rule oriented language has syntactic structure like a procedural language. So we have

designed a simple Intermediate Policy Declarative Language (IPDL) for this system. Using

NL2KR v.2 system, we first train it with a set of policies in natural language (English) and their

corresponding IPDL translations and then we test the system by translating new policies in

natural language.

While this work provides various improvements in the NL2KR system, there are several

areas which could be desired extensions of this research. In the next sections, we will discuss

about few directions in which this research can extend.

6.1 Using world knowledge to enhance system performance

In the previous chapter, we have talked about the problem with number of semantic parse trees.

We know that, out of total parse trees of a sentence only few will generate a correct composition

of a formal representation. While generating all the possible parse trees, we only look at CCG

categories of words to pick their possible semantics. Instead of just using CCG categories to

pick semantics, we can use CCG categories and Sense of a word in the context of a sentence,

to pick possible semantics. Thus, we can easily limit number of parse trees and would increase

the system performance. The idea is to have one more entry in the lexicon for Sense for each

lexical item. So while parsing a sentence, we can disambiguate senses of words/phrases in

it and pick possible semantics of these words from lexicon using their CCG categories and

Senses together.

Another important use of world knowledge would be during translation phase. As dis-

cussed in previous section, the NL2KR-T system returned incorrect translation of some sen-

tences due to incorrect selection of semantics of some words in the context of a sentence

which unfortunately had high weight in the lexicon. Again, for such cases, knowing senses of

semantics of words would help in picking correct translation even though it has less probability.
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Table 6.1: Pattern Matching Example

Sentence Translation

Print staff experience report command > print(report(staff_experience))
Print financial audit report command > print(audit_report(finance))
Print preservation metadata template command > print(template(preservation_metadata))

We know that ASP is good at representing knowledge and is easily extensible to new

knowledge. We can use ASP to disambiguate senses of words in a sentence using knowledge.

We have already taken a step ahead by representing λ-expressions and implementing their

basic operations in ASP in this research. An extension of this research could be creating a

generic framework to use the world knowledge to guess particular semantics of a word in the

context of a sentence.

6.2 Improvements in NL2KR system

Our NL2KR-L learning component of the system, uses Inverse− λ and Generalization tech-

niques to learn new meanings of words. However, both these techniques are not enough to

learn new meanings of words. Inverse − λ technique will learn a meaning of a word in a

sentence provided meanings of other words in the sentence are present. Generalization

technique may produce large number of unnecessary semantics which might not help in com-

posing meaning of a sentence. Sometimes, both of these techniques do not help in learning

new meanings of a word. Typically this happens when both the children of a node does not

have semantics and non of them are leaf nodes. Thus, these techniques do not help much to

keep our initial lexicon minimal.

In research [18], a pattern matching approach is described. We can use similar ap-

proach that uses parse trees of sentences and their corresponding translations in training cor-

pus, and look for patterns in them and learn lexicon. For eg. Consider some examples of iRODS

policies in table 6.1. By analyzing patterns in these examples, we can learn that meaning of

print could be λx.command > print(x).

Another semantics learning technique we can integrate with our system is Higher Order

Unification. Although Higher Order Unification is undecidable, a restricted version of Higher
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Order Unification is described in [19]. The idea is to find the λ-expressions of the children given

a λ-expression of parent such that when applied produces same λ-expression of parent.
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Spain,2002

78



Appendix A

Case 2: Updated and Final Lexicons

Table A.1: Case 2: Updated new lexicon after Iteration 1

Word CCG Semantics

Transfer (S\NP )/NP λx.λy.command > transfer(x, y)
ownership N ownership
rods N rods
all NP/NP ;NP/N ;N/N λx.x
the NP/NP ;NP/N ;N/N λx.x
Generate (S\NP )/NP λx.command > generate(x)

λx.λy.command > generate(x, y)
λx.λy.command > generate(x@y)

audit_trail N audit_trail
λx.audit_trail(x)

changes N changes
λx.changes(x)

rules N rules
λx.rules(x)

to (NP\(S\NP ))/NP λy.λx.x@y
report N report

λx.report(x)
preservation_attributes N preservation_attributes

λx.preservation_attributes(x)
Migrate (S\NP )/NP λx.command > migrate(x)

λx.λy.command > migrate(x, y)
Data_folder N data_folder

λx.data_folder(x)
storage N storage

λx.storage(x)
Protect (S\NP )/NP λx.command > protect(x)

λx.λy.command > protect(x, y)
integrity N integrity

λx.integrity(x)
for (NP\(S\NP ))/NP λy.λx.x@y
notifications N notifications

λx.notifications(x)
problems N problems

λx.problems(x)
Create (S\NP )/NP λx.command > create(x)

λx.λy.command > create(x, y)
template N template

λx.template(x)
from (NP\(S\NP ))/NP λy.λx.x@y
rule N rule

λx.rule(x)
deletion N deletion

λx.deletion(x)
files N files

λx.files(x)
collection N collection

λx.collection(x)
metadata N metadata

λx.metadata(x)
erase (S\NP )/NP λx.command > erase(x)

λx.λy.command > erase(x, y)
λx.λy.command > erase(x@y)

information N information
λx.information(x)

micro_services N micro_services
λx.micro_services(x)
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Table A.2: Case 2: Final lexicon after Iteration 3
Word CCG Semantics Weight

Transfer (S\NP )/NP λx.λy.command > transfer(x, y) 0.07646726
λx.λy.command > transfer(x@y) -0.024746018
λx.command > transfer(x) -0.024746014

ownership N ownership 0.07570592
λx.ownership(x) -0.023981703

rods N rods 0.07493635
λx.rods(x) -0.023250459

all NP/NP ;NP/N ;N/N λx.x 0.107222944
λx.x@all -0.08715378

the NP/NP ;NP/N ;N/N λx.x 0.059751213
λx.x@all -0.03880422

Generate (S\NP )/NP λx.command > generate(x) -0.11762427
λx.λy.command > generate(x, y) -0.11698096
λx.λy.command > generate(x@y) 0.26020452

audit_trail N audit_trail -0.088598415
λx.audit_trail(x) 0.10562369

changes N changes -0.041762702
λx.changes(x) 0.0580377

rules N rules 0.05806967
λx.rules(x) -0.041730717

to (NP\(S\NP ))/NP λy.λx.x@y 0.10719467
(NP\NP )/NP λy.λx.x@y -0.0895291

report N report -0.08859752
λx.report(x) 0.105146274

preservation_attributes N preservation_attributes 0.05841183
λx.preservation_attributes(x) -0.041189767

Migrate (S\NP )/NP λx.command > migrate(x) -0.02325855
λx.λy.command > migrate(x, y) 0.076641545
λx.λy.command > migrate(x@y) -0.02325855

Data_folder N data_folder 0.05847109
λx.data_folder(x) -0.041031405

storage N storage -0.03994585
λx.storage(x) 0.05995425

Protect (S\NP )/NP λx.command > protect(x) 0.07548905
λx.λy.command > protect(x, y) -0.024013432
λx.λy.command > protect(x@y) -0.024013432

integrity N integrity -0.041033715
λx.integrity(x) 0.058468774

for (NP\(S\NP ))/NP λy.λx.x@y 0.006702896
notifications N notifications -0.04007826

λx.notifications(x) 0.059325315
problems N problems 0.059282325

λx.problems(x) -0.04012125
Create (S\NP )/NP λx.command > create(x) -0.055058286

λx.λy.command > create(x, y) 0.14011657
λx.λy.command > create(x@y) -0.055058286

template N template -0.13425219
λx.template(x) 0.1537129

from (NP\(S\NP ))/NP λy.λx.x@y 0.07550978
from (NP\NP )/NP λy.λx.x@y -0.057941414
rule N rule 0.059181765

λx.rule(x) -0.040024586
deletion N deletion -0.040011086

λx.deletion(x) 0.060000047
files N files 0.01237214

λx.files(x) 0.00748118
collection N collection 0.05986771

λx.collection(x) -0.040132284
metadata N metadata 0.05870446

λx.metadata(x) -0.041295536
erase (S\NP )/NP λx.command > erase(x) 0.075812176

λx.λy.command > erase(x, y) -0.024187827
λx.λy.command > erase(x@y) -0.024187835

information N information -0.040053308
λx.information(x) 0.059054725

micro_services N micro_services 0.05901827
λx.micro_services(x) -0.040089756

listing (NP\(S\NP ))/NP λz.λx.x@λy.list(z@y) 0.009448431
new N/N λx.x@new 0.00976438
of (NP\NP )/NP λy.λx.x@y 0.0059644114
on (NP\NP )/NP λy.λx.x@y 0.009079316
based-on (NP\(S\NP ))/NP λy.λx.x@y 0.009168728
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On (S/(S\NP ))/NP λx.λy.whenx; do > y 0.009695122
summarizing (NP\(S\NP ))/NP λy.λx.x@summary(y) 0.008973512
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Appendix B

ASPccgTK Parser details

• Parser configuration in config.properties

1. CCGPARSER = ASPccgTk : Set this configuration to use ASPccgTK parser

2. ASPccgTk_Strict_Override = true : If you want to use strict override of CCG
categories in the parser, set ASPccgTk_Strict_Override to true otherwise false
to use suggestion override

3. ASPccgTk_SUPERTAGGER = supertag.py : If you want to use the c & c
parser parts of speech tagger, set the configuration to ’supertag.py’ and if you want
to use the Stanford Parts-of-speech tagger, set the configuration to ’stanfordsu-
pertag.py’

• nl2kr_parsetree.asp is the wrapper ASP program over ASPccgTk parser.

• The supertagged files are saved in examples_supertagged folder in resources/aspccgtk-
parser directory.

• The output of the parsing is saved in output folder in resources/aspccgtk-parser directory.

• To run the parser from command prompt, use following command

python supertag.py -s=’<Sentence>’ -syntax_override=<syntax file path>
-strict_override=<True/False>

python parse_and_display.py examples_supertagged/<supertagged sentence file>
-nl2krSemDict=<semantics dictionary path>
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Appendix C

How to run the NL2KR v.2 system

1. Training System (NL2KR-L)

• To train the NL2KR system run the ’bioai.ccgprocessor.training.TrainingSystem.java’
file with the following arguments

-train -data=<training data file1>,<taining data file 2>,.. -dict=<initial lexicon1>,<initial
lexicon1>,... -syntax=<syntaxfile1>,<syntaxfile2>... -output=<final lexicon location>

• Training data file: training data file contains sentences and their formal representa-
tion seperated by TAB
eg.
Vincent loves Mia loves(vincent, mia)
Some boxer walks EX. (boxer(X) :- walks(X))

• Syntax dictionary: Syntax dictionary contains CCG categories of words. Each entry
contains word followed by its CCG. Both are seperated by TAB
eg.
Vincent NP
Mia NP
takes (S\NP )/NP

• Initial lexicon: Initial lexicon contains semantics of words. Each entry contains word,
its CCG and its semantics in terms of lambda expression. All are seperated by TAB
eg.
Vincent NP vincent
Mia NP mia
takes (S\NP )/NP #w.#z.(w@x.takes(z, x))

• OUTPUT: The output of the training the system is final lexicon file ’dictionary_train.out’
in output folder.

• NOTE: Training system uses ’clingo’ for parse tree generation. Make sure that your
clingo is executable. You can find executable clingo in ’resources’ directory

2. Translation System (NL2KR-T)

• To test the NL2KR system run the ’bioai.ccgprocessor.testing.TestingSystem.java’
file with the following arguments

-train -data=<test data file1>,<test data file 2>,.. -dict=<final lexicon1>,<final lexi-
con1>,... -syntax=<syntaxfile1>,<syntaxfile2>...
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• Test data: Test data file contains the sentences and their formal representation sep-
arated by TAB. It is similar to training data file

• Final Lexicon: Final lexicon is the lexicon generated by the training system.

3. Example

• Sample example files are given to show how the system works. Sample files are
sample_dict.txt
sample_syntax.txt
sample_train.txt
sample_test.txt

• For training : Run TrainingSystem.java file with arguments
-train -data=sample_train.txt -dict=sample_dict.txt -syntax=sample_syntax.txt
OR
-train -data=corpora/BioKR/bio_train.txt -syntax=corpora/BioKR/bio_syntax.txt
-dict=corpora/BioKR/bio_dict.txt -output=corpora/BioKR/bio_trained.txt

• For testing: Run TestingSystem.java file with arguments
-test -data=sample_test.txt -dict=dictionary_train.out -syntax=sample_syntax.txt
OR
-test -data=corpora/BioKR/bio_test.txt -dict=corpora/BioKR/bio_trained.txt
-syntax=corpora/BioKR/bio_syntax.txt
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