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ABSTRACT  
   

Type 1 Diabetes Mellitus (T1DM) is a chronic disease that requires maintaining tight 

metabolic control through complex behavioral and pharmaceutical regimens. Subtle cognitive 

impairments and stress response dysregulation may partially account for problems negotiating life 

changes and maintaining treatment adherence among emerging adults. The current study 

examined whether young adults with T1DM physiologically respond to psychological stress in a 

dysregulated manner compared to non-diabetic peers, and if such individuals also demonstrated 

greater cognitive declines following psychological stress. Participants included 23 young adults 

with T1DM and 52 non-diabetic controls yoked to T1DM participants based on age, gender, 

ethnicity, participant education, and maternal education. Participants completed a laboratory-

based social stressor, pre- and post-stressor neurocognitive testing, provided fingerstick blood 

spots (for glucose levels) and salivary samples (for cortisol levels) at five points across the 

protocol, and completed psychosocial questionnaires. Related measures ANOVAs were 

conducted to assess differences between T1DM participants and the average of yoked controls 

on cortisol and cognitive outcomes. Results demonstrated that differences in cortisol reactivity 

were dependent on T1DM participants' use of insulin pump therapy (IPT). T1DM participants not 

using IPT demonstrated elevated cortisol reactivity compared to matched controls. There was no 

difference in cortisol reactivity between the T1DM participants on IPT and matched controls. On 

the Stroop task, performance patterns did not differ between participants with T1DM not on IPT 

and matched controls. The performance of participants with T1DM on IPT slightly improved 

following the stressor and matched controls slightly worsened. On the Trail Making Test, the 

performance of participants with T1DM was not different following the stressor whereas 

participants without T1DM demonstrated a decline following the stressor. Participants with and 

without T1DM did not differ in patterns of performance on the Rey Verbal Learning Task, 

Sustained Attention Allocation Task, Controlled Oral Word Association Task, or overall cortisol 

output across participation. The results of this study are suggestive of an exaggerated cortisol 

response to psychological stress in T1DM and indicate potential direct and indirect protective 

influences of IPT.
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Type 1 Diabetes Mellitus (T1DM) is a chronic disease, usually diagnosed in childhood 

and adolescence, involving the inability to produce insulin, which leads to elevated blood glucose 

and impairment in nutrient utilization despite elevated glucose levels. When untreated or 

inadequately controlled, T1DM results in numerous immediate and long-term health problems 

including coma and death (Peyrot, McMurry, & Kruger, 1999).  Avoidance of long-term 

complications involves maintaining tight blood glucose control through complex behavioral and 

pharmaceutical regimens.  

Emerging adulthood, considered to span the ages of 18-30, is a key developmental 

period during which adolescents assume increasingly greater independence and responsibility of 

everyday demands as they transition into adulthood (Arnett, 2000). This transitional period is of 

particular concern for patients with T1DM who must cope with normative developmental 

challenges while simultaneously assuming relatively independent treatment responsibility and 

managing transitions to from pediatric to adult care (for a review of emerging adulthood 

challenges specific to T1DM see Garvey, Markowitz, & Laffel, 2012). The transition to adult care 

is viewed as a risky period for young adults with T1DM, characterized by the American Diabetes 

Association as “a perfect storm during which interruption of care is likely,” placing those who 

experience disruptions at greater risk for lack of medical follow-up in adulthood (Peters, Laffel, & 

The American Diabetes Association Transitions Working Group, 2011). An earlier age at which 

transition to adult care occurs is associated with poorer metabolic control, which may reflect 

differences in treatment approaches such as less integration of services within adult care 

(Helgeson et al., 2013). Emerging adulthood is also period of engagement in an array of poor 

health behaviors (e.g., increased alcohol consumption, smoking, disturbed sleep patterns) and 

increased risk-taking which occur at similar levels among young adults with and without T1DM 

despite worse relative consequences for such behaviors for those with T1DM (Palladino et al., 

2013). Blood glucose control tends to deteriorate across this period, with poor glycemic control 

peeking at approximately 18-19 years of age (Bryden et al., 2001). This transitional time is a 

period of increased risk of morbidity and mortality for individuals with T1DM due to increased 

acute complications associated with hypoglycemia and ketoacidosis (for a review see Weissberg-
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Benchell, Wolpert, & Anderson, 2007).  College life appears to place specific demands on young 

adults with T1DM, which are perceived as interfering in their ability to manage blood glucose 

levels including: adhering to diet regimens, irregular schedules, lack of parental involvement, peer 

pressure, drugs and alcohol, fear of hypoglycemia, and limited finances (Ramchandani et al., 

2000); however, the increase in demands and stressors may be only partly to blame for the lack 

of adequate glycemic control observed during this transitional period.  

Previous research has examined how disease-related features (e.g., disease duration, 

age of onset, number of episodes of hypoglycemia) can influence the development of mild 

cognitive impairments in individuals with T1DM (Gaudieri, Chen, Greer, & Holmes, 2008).  While 

the extent of such impairments should not be overstated, even mild impairments are likely to 

negatively influence the health outcomes of patients with T1DM as maintaining good blood 

glucose control is dependent on a dynamic and complex set of behavioral and pharmaceutical 

regimens (Boyle & Zrebiec, 2007). Moreover, patients with T1DM must be able to navigate 

medical decision trees (e.g., which treatment choice to use when responding to a given blood 

glucose reading) often while under stress (e.g., episodes of hypoglycemia can be both a 

psychological stressor as well as triggering a physiological stress response).  

In non-diabetic populations, acute psychological stressors have been demonstrated to 

impair specific cognitive processes (e.g., Kuhlmann, Piel, Wolf, 2005). Based on the physiological 

processes underlying T1DM, there is a theoretical argument that such patients are likely to 

develop a dysregulated physiological stress response, which a handful of studies have begun to 

demonstrate empirically (Delamater et al., 1988; Dutour, Dadoun, Feissel, Atlan, & Oliver, 1996; 

Wiesli et al., 2005).  One might expect that a dysregulated stress response would further impair 

cognitive processes during episodes of acute stress in a patient population already at-risk for mild 

cognitive impairments.   

The introduction that follows is divided into a number of sections to examine each of 

these aspects (i.e., T1DM pathophysiology, cognitive impairments, and stress response 

dysregulation) separately and provide a rationale for how the stress response may influence 

cognition in T1DM. To illustrate the complexities of successful disease management, I will begin 
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with an introduction of T1DM pathophysiology and how inherent alterations in normal 

physiological processes can undermine successful blood glucose control for young adults with 

T1DM. The second section will review research concerning observed cognitive impairments in 

patients with T1DM, previously identified risk factors for such impairments, and how these 

impairments may interfere with disease management. The third section will focus on one specific 

aspect of disease-related dysregulation—the physiological stress response—and how this may 

influence cognition and blood glucose levels in T1DM. The final section will introduce the current 

study, which will examine how the physiological stress response may become dysregulated in 

patients with T1DM, and how such dysregulation may negatively influence cognitive processes 

during stressful events. 

Type 1 Diabetes Mellitus 

Type I Diabetes Mellitus (T1DM) is an autoimmune disorder that results from the 

destruction of insulin-releasing ß-cells of the pancreas.  Under normal conditions, when blood 

glucose levels increase, after eating carbohydrates for example, the ß-cells release insulin, which 

allows cells to absorb glucose, which in turn reduces levels of plasma glucose.  Likewise, when 

healthy individuals experience episodes of hypoglycemia (lower blood glucose levels), insulin 

levels are suppressed and glucagon is secreted from the pancreatic α-cells, which acts to 

stimulate glucose production. Under normal functioning, blood glucose levels are tightly controlled 

by the integrated actions of the α-cells and ß-cells. Further, in healthy individuals episodes of 

hypoglycemia trigger a physiological stress response, which results in counter regulatory 

hormones including, epinephrine release (and cortisol if the hypoglycemic episode is prolonged), 

resulting in an increase in blood glucose levels. Individuals with T1DM lose the feedback control 

provided by endogenous insulin as well as the control of the glucagon response, which is typically 

lost between 1 and 5 years after disease onset (Weinger & Jacobson, 1998). This means that 

patients with T1DM must rely on the epinephrine response to counter-act episodes of 

hypoglycemia, and for many patients this response becomes attenuated over time (for reviews 

see Boyle & Zrebiec, 2007; Cryer, 2002; 2009; Weinger & Jacobson, 1998).  
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Without the use of exogenous insulin, individuals with T1DM will experience uncontrolled 

elevated levels of blood glucose, which will eventually result in keto-acidotic coma and death if 

intervention is not initiated. Long-term glucose elevations in poorly controlled diabetes can lead to 

numerous health complications including heart attack, stroke, gangrene in lower extremities, 

kidney failure, neuropathy, and blindness (Peyrot et al., 1999, Tomlinson & Gardiner, 2008). 

Importantly, such health risks can be largely avoided by maintaining near-normal levels of blood 

glucose (Diabetes Control and Complications Trial Research Group, 1993).  

A complication in management of T1DM is that too much insulin, too little food, too much 

exercise, or a combination thereof can result in hypoglycemia, which can also result in numerous 

negative consequences including impaired cognition, brain damage, unconsciousness, and death 

(Boyle & Zrebiec, 2007).  As such, the regular process of blood glucose must be tightly controlled 

through a complex regimen of blood glucose monitoring, insulin administration, and behavioral 

prescriptions. Moreover, variability in behaviors influencing blood glucose levels (e.g., diet, 

exercise, alcohol) necessitates close monitoring as well as thorough understanding of the 

interplay of factors influencing glucose levels and the various response options. Because there 

are multiple response options for a wide range of blood glucose readings, an individual must be 

able to determine the best response option for each set of differing circumstances. Therefore, 

successful management of T1DM not only involves proper medical education and adherence but 

also a complex set of cognitive abilities involved in navigating potential therapeutic options.  

Maintaining tight glycemic control often involves frequent administration of insulin.  One 

consequence of maintaining such tight control can be the recurrent experience of 

supraphysiological levels of insulin (elevated levels of insulin not reached within natural 

conditions), which results in hypoglycemia (Allen et al., 2001).  Such episodes occur with relative 

frequency for individuals with T1DM. Specifically, such individuals have reported an average of 

one to two episodes per week and at least one severe episode per year, resulting in thousands of 

episodes of hypoglycemia over the lifespan (Cryer, Davis, & Shamoon, 2003; Diabetes Control 

and Complications Trial Research Group, 1993; MacLeod, Hepburn, & Frier, 1993). Alterations in 

behaviors prior to sleep that influence blood glucose levels can result in unnoticed episodes of 
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hypoglycemia during sleep (nocturnal hypoglycemia).  Episodes of nocturnal hypoglycemia have 

been estimated to occur in 12 to 56% of patients enrolled in 11 clinical trials (Allen & Frier, 2003). 

Nocturnal hypoglycemia is especially dangerous in that both sympathetic response and 

hypoglycemia awareness are reduced during sleep so that a patient may be unable to respond or 

unaware of changes in blood glucose levels. As such, in order to avoid nocturnal hypoglycemia, a 

patient must be able to anticipate how his/her pre-bedtime behaviors may influence his/her 

nocturnal blood glucose levels.   

As detailed above, T1DM represents a complex set of serious health concerns some of 

which stem from treatment. High quality long-term health requires balancing very tight glycemic 

control (thereby avoiding the health consequences of hyperglycemia) and limiting episodes of 

hypoglycemia (thereby avoiding the health consequences of hypoglycemia) (Cryer, 2002).  

Maintaining such a balance requires rigorous health care management that depends on 

numerous cognitive abilities such as adequate memory, attention, and responsive problem 

solving, and maintaining such abilities within highly stressful contexts such as during episodes of 

hypoglycemia. Unfortunately, such disease-management specific abilities may be hindered by 

disease-related cognitive impairments (Soutor, Chen, Streisand, Kaplowitz, & Holmes, 2004).  

Cognitive Functioning in T1DM 

Impaired cognitive functioning is a critical issue in adolescents and young adults with 

chronic illness, as these problems can impact academic functioning as well as disease 

management. The young adult population is a difficult population to classify in terms of existing 

research concerning cognitive impairments observed in individuals with T1DM.  Specifically, 

research in this area is generally categorized as either “adult” (+18 years old) or 

“children/adolescent” (below 18 years old). While the period of young adulthood may be 

technically classified as “adult” (i.e., legally above the age of 18) such a category does not 

accurately depict the period of brain development specific to this age group. Such difficulty in 

categorization makes drawing inferences concerning deviations from normative cognitive 

development difficult. As such, the present paper will review both research conducted with 
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“adults” as well as “children/adolescents,” with the acknowledgement that neither group 

accurately depicts the present population. 

In a meta-analysis of cognitive impairments in adults with T1DM, Brands, Biessels, De 

Haan, Kappelle, & Kessels (2005) concluded that studies generally support the presence of mild 

to moderate cognitive impairments in patients with T1DM involving mental speed and flexibility 

compared to non-diabetic controls. More recently, the Diabetes Control and Complications Trial 

(DCCT, 2007) failed to observe declines in cognitive functions of 1144 patients with T1DM (age of 

study entry ranged from 13 to 39, M = 27, SD = 7) over an 18-year span, with the exception of 

reduced psychomotor efficiency in adults who had maintained higher glycated hemoglobin levels. 

However, this study did not include a non-diabetic control group so it is unclear how to describe 

participants’ cognitive performance during study entry.  Additionally, this sample was composed 

largely of adult patients (89%) with an average disease duration of 6 years, and very few were 

diagnosed at an early age (specific data regarding the age of diagnosis or percentage of sample 

with early disease onset was not provided).  As such, comparisons of cognitive functioning 

between individuals diagnosed as children and as adults were not reported. The impact of T1DM 

and its associated treatments are likely to have differential impacts on early brain development 

compared to adult brain functioning, which limits the applicability of these findings to populations 

diagnosed at an early age. 

Two recent meta-analyses concerning cognitive impairments in children and adolescents 

with T1DM have been performed.  Gaudieri et al., (2008) examined 15 studies with individuals 

under the age of 18 (mean age for T1DM = 12.96, for Control groups = 12.55) from 1985-2008, 

which noted mild impairments in overall cognition, crystallized and fluid intelligence, psychomotor 

efficiency and motor speed, attention/executive functioning, academic achievement, and visual 

motor integration (effect sizes generally small). Across studies, heterogeneous definitions (e.g. 

age 4, 5, & 7) were used to operationalize “early-onset,” so that Gaudieri et al. used a broad 

definition of diagnosis prior to age 7.  Such “early-onset” patients were identified as more at-risk 

for cognitive impairments, which included other domains including verbal and visual learning and 

memory, and were characterized by moderate effect sizes.  Additionally, Gaudieri et al. noted that 
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previous episodes of hypoglycemic seizures put individuals at a slighter greater risk for cognitive 

impairments, characterized by nominal to small effect sizes.  

Naguib, Kulinskaya, Lomax, and Garralda (2009) examined 24 studies with individuals 

under the age of 19 (mean ages not provided) published between 1980 and 2005 with an overlap 

of 10 studies with Gaudieri et al. These studies  noted mild impairments in overall IQ with 

impairments found in the domains of visuospatial ability, motor speed and writing, and sustained 

attention, reading, and verbal and performance IQ characterized by small effect sizes. Episodes 

of severe hypoglycemia were identified as a risk factor for more extensive impairments. This 

relationship between episodes of severe hypoglycemia and more extensive cognitive impairments 

was characterized by small effect sizes. 

More recently, Lin, Northam, Rankins, Werther, and Cameron (2010) reported findings 

from a 12-year longitudinal study (Northam et al., 1998; 2001), which followed newly diagnosed 

children with T1DM. After two years, those children who had been diagnosed before age four 

demonstrated developmental delays. Specifically, their scores on the Wechler Vocabulary and 

Block Design subtests did not demonstrate developmental gains compared to healthy controls or 

children with later disease onset. At the 6-yr follow-up, all children with diabetes demonstrated 

worse performance compared to healthy controls across numerous domains including 

intelligence, attention, processing speed, long-term memory, and executive skills. At the 12-year 

follow-up, children with T1DM performed more poorly compared to healthy controls on measures 

of working memory.   Moderate effect sizes were observed for the relationship between early 

disease onset and worse performance on tasks of associative learning (Glass’s ∆ ≈ 0.6), mental 

efficiency (Glass’s ∆ ≈ 0.3), divided (Glass’s ∆ ≈ 0.5) and sustained attention (Glass’s ∆ ≈ 0.6) 

(effect sizes reported in this document are approximations derived from a graphical display 

provided by Lin et al.). A history of severe hypoglycemic episodes (e.g., loss of consciousness or 

seizure) was associated with poorer verbal abilities (Glass’s ∆ ≈ 0.65), working memory (Glass’s 

∆ ≈ 0.8), and non-verbal processing speed (Glass’s ∆ ≈ 0.5) whereas a history of hyperglycemia 

was associated with poorer working memory (no effect sizes reported). Additionally, children with 

multiple risk factors (early-onset, hypoglycemia, or hyperglycemia) performed worse on verbal 
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abilities, working memory, and mental efficiency, as compared to both healthy controls and 

children with one or zero risk factors. However, the degree to which multiple risk factors impacted 

these cognitive domains was not clear, as information regarding effect sizes was not provided. 

The pathophysiological basis for reductions in cognitive abilities in individuals with T1DM 

is not completely understood or well researched. Various potential culprits have been suggested 

(e.g., early disease onset, hypoglycemia, hyperglycemia), which most likely differentially interact 

across developmental periods to induce cognitive deficits. Ryan (2006) argues that diabetes-

associated chronic hyperglycemia occurring early during development adversely impacts normal 

brain maturation.  Moreover, such an assault on central nervous system development reduces 

“brain reserve capacity [which serves] as a vulnerability factor for subsequent brain dysfunction” 

(p. 294, 2006). According to this hypothesis, children with early-onset diabetes are at heightened 

risk for deleterious effects of any future cerebral insult.  

In addition to adversely impacting cognitive development, recurrent episodes of 

hypoglycemia are concerning because of the transient impact of hypoglycemia on cognitive 

functioning, which may take up to an hour to return to baseline (for reviews see Bade-White, & 

Obrzut, 2009; Warren & Frier, 2005). Such episodes may impair concurrent learning of new 

material as well as interfere in appropriate responding to the abnormal glucose levels.  

Episodes of hypoglycemia are also physiological stressors in that such events trigger a 

physiological stress response. Likewise, supraphysiological levels of insulin act to stimulate a 

physiological stress response in healthy humans (Fruehwals-Schultes et al., 1999). As will be 

discussed below, repeated physiological stress activation can lead to dysregulation of the stress 

response that can lead to impairments in cognition and physiological and psychological health.  

Stress 

I have previously discussed some of the major points of pathophysiology inherent in 

T1DM and how these points of dysregulation have been postulated to impact cognitive 

impairments in T1DM. In this section, I will expand on one specific aspect of disease-related 

dysregulation—the physiological stress response—that represents an unexplored additional 

factor in understanding the development of such mild cognitive impairments.  
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Stress response. Stress has historically been defined as occurring when environmental 

demands exceed the resources and capacities of an individual (Cohen, Kessler, & Gordon, 

1995). Such demands may be physiological, such as an episode of hypoglycemia, or 

psychological, such as a patient’s perception that she feels ostracized due to her disease status. 

With regard to psychological stressors, Lazarus’ cognitive appraisal model of stress asserts that 

the influence of a potential stressful event is determined more by the perception of that event 

rather than the event in question (Lazarus & Folkman, 1984). Regardless of the origin 

(physiological or psychological), stressors elicit a physiological stress response, which includes 

the sympathetic nervous system (SNS) and hypothalamic-pituitary-adrenal (HPA) axis. The 

present paper will focus on the HPA-axis due to the more extensive literature concerning the 

HPA-axis and acute psychological laboratory stressors.  

The hypothalamic-pituitary-adrenal (HPA) axis is a major stress system that coordinates 

the highly complex neuroendocrine cascade, which results from a physiological stressor or the 

perception of stress.  The mature, well-regulated HPA-axis exhibits both a daily circadian rhythm 

(higher circulating levels of cortisol upon awakening, a peak 30 minutes after waking and with 

hormone levels attenuating across the day) as well as a superimposed stress dependent 

reaction.  In response to stress, stressor specific pathways in the brain converge in the 

paraventricular nucleus (PVN) of the hypothalamus.  Corticotropin releasing factor (CRF) is then 

released from the hypothalamus and subsequently triggers the release of adrenocorticotropic 

hormone (ACTH) from the anterior pituitary, which stimulates the release of glucocorticoids 

(cortisol in humans) in the adrenal glands. The release of cortisol regulates multiple bodily 

functions including cognition, energy mobilization, and immune and reproductive functions.  

Additionally, cortisol then crosses the blood-brain barrier where it acts on glucocorticoid receptors 

to provide a negative feedback to the brain, thus regulating the release of cortisol.  Alterations in 

any point of this complex circuitry can create dysregulation in other points of the circuit. 

While the HPA-axis is an incredibly adaptive system for maintaining homeostasis as well 

as preparing the body for danger, chronic levels of stress have been linked to dysregulated HPA-

functioning as well as a multitude of adverse physiological and psychological pathologies (for 
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reviews see Boyce & Ellis, 2005; Flinn, 2006; Gunnar & Vazquez, 2001; Lupien, Maheu, Tu, 

Fiocco, Schramek, 2007). Dysregulation of the HPA-axis during early childhood through 

adolescence is of particular concern, as these developmental periods appear to be critical 

windows in the long-term organization of the HPA-axis (see Charmandari, Kino, Souvatzoglou, & 

Chrousos, 2003). “Organizational” impacts of hormones refer to relatively permanent alterations 

in brain systems (both structural and functional) as a result of the presence or absence of a given 

hormone during a specific developmental period. Such brain organization then determines the 

effects of regulatory hormones in later life.  Children and adolescents who experience prolonged 

activation or under-activation of the HPA-axis are at risk for a multitude of chronic physical and 

mental health problems in adulthood including altered reproductive, metabolic, gastrointestinal, 

immune, and psychiatric functioning (Charmandari et al.). Moreover, recent research has 

demonstrated that adolescence, specifically, may be a particularly salient organizational period in 

terms of stress responsivity, in that adolescents demonstrate heightened physiological activity of 

the HPA-axis similar to an “adult” reactivity profile, when facing performance and peer-rejection 

stressors compared to younger children (Stroud et al., 2009).  

Stress and T1DM. As previously described, in T1DM, a hypo-response of the SNS 

during episodes of hypoglycemia often develops as the disease progresses, which can lead to 

altered response to hypoglycemia (for reviews see Boyle & Zrebiec, 2007; Cryer, 2002; Weinger 

& Jacobson, 1998). Prior elevations of cortisol occurring during prolonged periods of 

hypoglycemia have been found to at least partially account for a later hypo-response of the SNS 

during episodes of hypoglycemia (Cryer, 2009).  While dysregulation of the SNS and HPA-axis 

has been observed, there is an absence of longitudinal research in this area. Further, much of the 

existing cross-sectional literature has been conducted in adult populations. As such, the pathway 

by which such dysregulation occurs is not clear.  

Through a series of investigations, Roy and colleagues observed evidence of dysfunction 

at many points of the HPA-axis circuitry in adult patients with T1DM including cortisol output 

indicating dysregulation at some point in the system (e.g., increased 24-hour urinary-free cortisol 

(UFC) output), altered diurnal rhythm (e.g., elevated 9 a.m. plasma cortisol levels, elevated 4 p.m. 
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plasma ACTH levels), decreased sensitivity to the negative feedback effect of glucocorticoids 

(e.g., non-suppression to a dexamethasone suppression test), and increased hypothalamic 

responsiveness (e.g., elevated response to ovine corticotrophin-releasing hormone) (Roy, Collier, 

& Roy, 1990; Roy, Roy, & Brown, 1998; Roy et al., 1993). Further, Roy and colleagues found that 

duration of diabetes was related to higher 24-hr UFC outputs and noted a trend between diabetes 

health complications and 24-hr UFC outputs (Roy, Roy, & Brown).   An elevated response to 

CRH and non-suppression to dexamethasone in adult patients with T1DM have also been 

observed by other researchers (Ghizzoni et al., 1993; Hudson et al., 1984). Such HPA 

dysregulation may result from repeated episodes of hypoglycemia, exogenous administration of 

insulin, prolonged stress from the management of a chronic illness, or a combination of such 

factors.  

While past research has demonstrated a chronic hyperactivity of the HPA-axis in T1DM, 

little is known about how such chronic activation may influence stress reactivity in this population. 

Prolonged or frequent episodes of hypoglycemia and administration of insulin are known to 

trigger the HPA-axis (Cryer, 2002; Weinger & Jacobson, 1998).  Additionally, this population is 

much more likely to experience chronic levels of psychological stress due to daily hassles 

associated with disease management and associated disruptions within the family environment, 

disease-related traumas, and the consequence of stigma of growing up with a chronic illness and 

its associated limitations (Wasserman & Trifonova, 2006).  Further, adolescence already tends to 

be a period of development marked by increases in stressful events during normative 

development (Bryne, Davenport, & Mazanov, 2007). As such, adolescents with T1DM are likely at 

a heightened risk for dysregulated stress response due to the chronic levels of psychological and 

physiological stressors.  

Two previous studies have examined stress reactivity in adult T1DM patients.  Wiesli et 

al. (2005) observed cortisol reactivity characterized by large effect sizes in response to a 

psychological stressor within adults with T1DM regardless of food consumption. Specifically, the 

authors reported a large increase in salivary cortisol in adult patients with T1DM who underwent 
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the Trier Social Stress Task after fasting (d = 1.4) and after a meal (d = 1.06)
1
, however, not all 

samples were suitable for analysis, therefore, cortisol analyses were based on a subpopulation of 

participants (fasting n = 11 out of 20, after meal n =15 out of 20) and may not accurately reflect 

reactivity in the sample as a whole. While this study demonstrated that adults with T1DM may 

respond to a standardized stressor task with increased salivary cortisol, a lack of comparison 

group limits interpretation regarding potential dysregulation of cortisol reactivity in individuals with 

T1DM (i.e., findings regarding cortisol reactivity were descriptive, but no statistical comparisons 

across fasting and meal consumption groups were made). Dutour et al. (1996) also examined 

cortisol reactivity in adults with T1DM and found an elevated neuroendocrine response during a 

speaking task in front of an evaluative audience in those whose blood glucose levels were 

characterized as “unstable” compared to those whose blood glucose levels were characterized as 

“stable”; however, their sample size was small (six subjects per group).  

In an adolescent sample, Delamater et al. (1988) found a decrease in plasma cortisol 

levels after a cognitive task and interpersonal interactions (10-minute discussion with parent 

regarding a conflictual issue and 10-minute discussion regarding neutral topic); however, these 

observed changes were most likely due to diurnal rhythms as the stress-tasks occurred in the 

morning. Additionally, the stress tasks utilized may not have been stressful enough to produce a 

reliable stress response in that there was no evaluative component and no component of 

uncontrollability in that the cognitive testing was not very difficult or timed (for a meta-analysis 

regarding reliable elicitors of stress response, see Dickerson & Kemeny, 2004). 

While research in human models has not yet advanced beyond exploratory findings, 

stronger evidence of dysregulated stress response in T1DM has come from rodent models, 

although such research has yielded mixed results. In a series of studies, Chan and colleagues 

observed elevated HPA-axis activity (higher morning circulating plasma concentrations of 

corticosterone (i.e., the rodent hormonal equivalent to cortisol) and ACTH; Chan et al., 2001) but 

a reduced stress response in a rodent model of T1DM (Chan, Chan, et al., 2002; Chan et al., 

                                            
1
 The effect sizes were calculated from reported means and standard deviations from Wiesli et 

al., (2005), d = Cohen’s d. 
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2001; Chan et al., 2005; Chan, Inouye, et al., 2002). Additionally, in this series of studies, Chan 

and colleagues compared normal and diabetic rats’ stress responses to hypoglycemia, 

hyperinsulinemia, and restraint stressors. While the normal rats exhibited unique stress reactions 

to each type of stressor (least response to hyperinsulinemia and a greater response to 

hypoglycemia and restraint stress), the diabetic rats had the same stress reaction across types of 

stressor despite elevated basal plasma corticosteroid levels. Notably, in diabetic rats, response to 

more stressful episodes (hypoglycemia and restraint stressor) was equivalent to the less stressful 

experiences (hyperinsulinemia episodes).  

Several key points can be derived from Chan and colleagues’ body of research. Notably, 

administration of insulin and episodes of hypoglycemia have independent influences on stress 

reactivity in normal rats. Additionally, Chan and colleagues provided strong evidence that 

diabetes is associated with an impaired ability to appropriately regulate the stress response 

across differing stressors, which has important implications to treatment and management of 

diabetes in human populations who must face a variety of physiological and psychological 

stressors while coping effectively with T1DM (e.g., hypoglycemia, social stigma associated with 

illness). 

While Chan and colleagues have advanced basic understanding of HPA dysregulation in 

diabetic animal models, these researchers did not examine influences of developmental 

processes on HPA regulation. In a rodent model of T1DM, Moore et al. (2010) found that 

administration of insulin in a pattern modeling T1DM treatment during early development lead to 

later increased levels of fear-related behavior and stress reactivity (stress behavior and increased 

levels of corticosterone following a restraint stressor). Moreover, these alterations did not 

disappear with normalization of blood glucose and persisted into adulthood. 

Stress and Cognition. Under normal conditions, the HPA-axis and the hormonal 

secretagogues confer beneficial cognitive functioning related to responding to acute stress 

episodes.  Specifically, during an acute stressor, enhanced processing of stress-related features 

occurs such as focused attention for stress-related cues and enhanced long-term memory for 

emotional stimuli (Roozendaal, 2002).  While well-modulated stress reactivity aids in surviving 
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and learning from stressful episodes, too much activation, too little activation, or too long an 

activation can lead to impairments in everyday cognitive functioning and memory of material 

unrelated to the stressor (for a review see Lupien et al., 2007).  

Early research on exogenous administration of corticosteroids has demonstrated that 

such administration leads to transient cognitive deficits in healthy individuals, including 

impairment in verbal, spatial, and working memory (Young, Sahakian, Robbins, & Cowen, 1999; 

Newcomer et al., 1999). Likewise, multiple research groups have observed transient cognitive 

impairments following acute laboratory stressors, which were associated with endogenous 

cortisol responses. Domains of transient cognitive impairment include: verbal learning and 

memory (Kirschbaum, Wolf, May, Wippich, & Hellhammer, 1996), retrieval of previously learned 

verbal information (Kuhlmann et al., 2005), working memory when working memory load is high 

or when tasks require greater executive functions (Oei, Everaerd, Elzinga, van Weil, Bermond, 

2006; Schoofs, Wolf, Smeets, 2009), and sustained attention (Lupien, et al., 1990).  

Cognitive impairments have been documented in other, non-diabetic, chronically stressed 

child, adolescent, and adult populations (e.g. De Bellis, Hooper, Spratt, Woolley, 2009; Evans & 

Schamberg, 2009; Johnsen, & Asbjornsen, 2008; LaGarde, Doyon, & Brunet, 2010; Vasterling & 

Brailey, 2005), although the effects of acute stress on cognition within these populations has not 

been studied. Theoretically, the transient cognitive deficits observed after exposure to 

psychosocial stressors in healthy populations should be exacerbated in cognitively vulnerable 

populations such as T1DM, which may further impair young adults’ ability to manage blood 

glucose levels.  

Current Study 

As previously reviewed, management of blood glucose levels requires application of 

knowledge surrounding a complex set of dynamic factors that can influence blood glucose levels 

(e.g., understanding how alcohol can influence blood glucose levels). Mild cognitive impairments 

may impair young adults’ ability to select ideal responses from the variety of response options 

available (e.g., choosing to abstain from alcohol consumption vs. pre-dosing with insulin prior to 

drinking). Further, many of these disease-related decisions are likely to be sources of stress (e.g., 
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managing peer pressure to drink). Stress-induced cognitive deficits are likely to exacerbate pre-

existing vulnerabilities to cognitive impairments, which are likely to further hinder young adults’ 

decision-making abilities thus leading to poorer response choices and poorer blood glucose 

management (e.g., not considering the consequences of drinking and developing a severe 

episode of hypoglycemia due to “pre-dosing” with insulin prior to consumption). The current study 

sought to examine the initial components in this sequence:  (a) whether young adults with T1DM 

physiologically respond to psychological stress in a dysregulated manner compared to non-

diabetic peers, exhibiting either attenuated or exaggerated physiological responses, and (b) 

whether young adults with T1DM demonstrate greater cognitive declines in response to 

psychological stress.  A better understanding of the impact of stress on cognition in diabetic 

patients can help explain how mild cognitive impairments, which may not be readily apparent in 

standardized settings with limited stress, may lead to clinically significant impairments during 

critical high-stress moments of disease management.  Such an understanding can lead to better 

interventions for successful transition to young adulthood for these patients such as preventative 

training in stress management techniques (e.g., relaxation) and psychoeducation concerning the 

impact of stress. Based on the previous review of the literature, the following hypotheses were 

made: 

1) Compared to non-diabetic young adults, young adults with T1DM would 

exhibit a greater decline in cognitive functioning after a psychological stressor 

(e.g., worse performance on post-task cognitive tests compared to pre-task 

cognitive tests). 

2) Compared to non-diabetic young adults, young adults with T1DM would 

physiologically respond to a psychological stressor in a dysregulated manner 

(e.g., attenuated or exaggerated cortisol response). 
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METHODS 

Participants 

 Potential participants were recruited from the psychology research subject pool at 

Arizona State University, the general undergraduate population at Arizona State University, and 

the general population in the Phoenix metropolitan area. Recruitment flyers were displayed at 

locations likely to be seen by young adults with and without T1DM (e.g., college campuses within 

the metropolitan area, local chapters of diabetes organizations, medical clinics specializing in 

diabetes treatment). Recruitment information was also distributed via the internet through online 

message boards (e.g., craigslist), and social networking sites visited by young adults (e.g., 

Facebook).  Exclusion criteria included being non-English speaking. Inclusion criteria included 

self-reported diagnosis of T1DM, ages 18-30, or meeting matching criteria for T1DM participants. 

Potential control participants were matched on criteria chosen based on demographic 

characteristics known to be strong predictors of adult cognitive functioning and/or salivary cortisol 

levels (e.g., age, gender, participants’ education, ethnicity, paternal and maternal level of 

education). When considering matching on education, preference was given to matching more 

closely on maternal education than paternal education, as maternal education tends to be a 

stronger predictor of adult cognitive functioning (e.g., Kaplan et al., 2001). Participants were 

matched within +/- 2 years of age. Eligible participants were scheduled for participation on an 

afternoon of their convenience and given instructions for the day of scheduled participation.  

Seventy-two individuals participated in the current study including 23 participants with 

T1DM and 52 non-diabetic controls yoked
2
 to the diabetic participants based on key matching 

variables (i.e., age, gender, ethnicity, participant education level, and maternal and paternal 

education level). Each T1DM participant was yoked to at least two controls; however, several 

diabetic participants were yoked to more than two controls in anticipation of the possibility that 

some controls might require replacement due to aberrations within the protocol. Because the 

                                            
2
 The term “yoked” refers to one-to-one matching of a population of interest (i.e., diabetic patient 

group) with control populations, which is frequently a strategy in case controlled studies.  “Yoked” 
is used in the present description to emphasize the related nature of these observations as 
opposed to group-based matching.  
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particular analyses employed required a constant number of yoked controls for each diabetic 

participant, (as described in the data analysis section), “extra” control participants were excluded. 

In determining which of the overly matched control participants to exclude, the following 

aberrations resulted in the removal of a total of six controls: premature termination of stressor 

task (n = 1), diagnosis of schizoaffective disorder with neuroleptic prescription (n = 1), diagnosis 

of bipolar disorder (n = 1), incomplete data on computer tasks (n = 1), and extreme outlier on 

outcome variables (n = 2). A final sample of 23 participants with T1DM and 46 yoked controls 

were included in the subsequent analyses, yielding 23 clusters of related observations; each 

cluster contained one diabetic participant and two yoked controls. The average age of 

participants was 22.64 years (SD = 3.81). Forty-two (60.87%) participants were female, and 

27(39.13%) participants were male. Most participants identified their ethnicity as “Caucasian” (n = 

60, 87.00%), followed by “Hispanic” (n = 4, 5.80%), “Black or African American” (n = 3, 4.35%), 

and “more than one race" (n = 2, 2.90%). The most frequently endorsed level of participant 

education was “some college” (n = 37, 53.62%) followed by a “college degree” (n = 16, 23.20%), 

“high school diploma or GED” (n = 8, 11.59%), “master’s, doctorate, law, or medical degree” (n= 

5, 7.20%), and “Jr. college or technical school” (n= 3, 4.35%). The most frequently reported 

current income was “less than $14,000” (n = 72, 60.87%), followed by “$15,000-$29,000” (n = 15, 

21.74%), “$30,000-44,999” (n = 4, 5.80%), “$45,000-$59,999” (n = 4, 5.80%), “$60,000-$79,999” 

(n = 1, 1.45%), “$80,000-$99,999” (n = 1, 1.45%), “$100,000-$150,000” (n = 2, 2.90%).  A 

breakdown of demographic information by diabetic membership (diabetic vs. control) is provided 

in Tables 4-7.  

Procedure  

 See Figure 1 for a flow chart of study protocol and Figure 2 for a consort diagram of the 

flow of participants from initial recruitment. 

Eligible participants were scheduled for one of two standardized time slots (i.e., 12pm or 

3pm) on the day of their preference (Monday through Thursday). On the day of data collection, 

the lab assistant greeted participants, obtained informed consent, completed screening 

questions, and collected a screening finger-stick blood sample. If the participant’s blood glucose 
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screening level was above 350 mmol/L or the participant endorsed any screening questions that 

would interfere with the analysis of cortisol (i.e., consumption of caffeine, food or alcohol or recent 

exercise, within the previous two hours, heart problems, or pregnancy), the participant was 

rescheduled for a different day, if appropriate. The same screening procedure was used for both 

T1DM and non-T1DM participants. The research protocol began with a 20-minute period of 

acclimation during which participants began completing questionnaires. Following this time 

period, baseline saliva samples and finger-stick blood glucose readings were obtained. If the 

initial blood glucose reading was either less than 80 mmol/L or greater than 250 mmol/L, the 

participant was provided a small, low-fat snack containing 15 g carbohydrates consistent with 

recommendations from the American Diabetes Association (i.e., 4 oz. fruit juice; n.d.) or 

instructed to administer a dose of insulin, and baseline measurements were re-sampled following 

normalization of blood glucose levels (retested after 10 min). If blood glucose had not normalized 

to a safe range after the initial retesting, participants were retested up to three times (10 min 

intervals) prior to rescheduling participation. Subsequently, participants completed the 10-item 

PANAS (Watson & Clark, 1994) mood survey followed by pre-stressor cognitive testing (see 

Table 1 for order of pre- and post-stressor cognitive testing). Following pre-stressor cognitive 

testing, participants repeated the 10-item PANAS and provided a second saliva and finger-stick 

sample. Participants then completed the stressor task followed by repeating the 10-item PANAS. 

Saliva samples and blood glucose readings were collected immediately after completion of the 

stressor task, and 20 and 40 minutes post stressor task, during which time participants completed 

post-task cognitive testing and questionnaires. Participants were compensated either by $30 

(corresponding to approximately $15/hr of participation) or 2 hours of research participation 

credit.  

Assessments and Measures 

Social stressor task. 

Role-play social stress task. The social confrontation role-play task (Larkin, 

Semenchuk, Frazer, Suchday, & Taylor, 1998) was designed to replicate a common stressful 

experience in the lives of college students. Participants were told that they were trying to study for 
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an important exam, but their neighbor was playing his/her music too loud. During the 10-minute 

role-play, the participant attempted to get his/her neighbor to turn down the music. The 

“neighbor”, played by a gender-matched research assistant, maintained a neutral expression and 

delivered a standardized, structured script, indicating refusal to cooperate. College students have 

reported that this type of role-play relates well to relevant stressors in their lives (Waldstein, 

Neumann, Burns, & Maier, 1998). No harmful side effects have been noted. In a meta-analysis of 

208 laboratory studies of acute stress induction in adults, Dickerson and Kemeny (2004) found 

that tasks that included both a social-evaluative threat and uncontrollability  such as found in this 

role-play, elicited the largest cortisol response characterized by a large effect size (d = 0.92).  

Biological Measures. 

Salivary cortisol. Cortisol was collected by passive drool; participants expelled saliva 

through straws into a sterile 2 mL cryogenic vial. Samples were collected immediately before pre-

stressor cognitive testing, immediately prior to the stressor task, immediately after the stressor 

task, and 20, and 40 minutes following the stressor task. Samples were refrigerated at −20 °C 

until they were shipped to Biochemischen Labors (Trier, Germany) to be assayed. Cortisol values 

are not significantly affected by transport over a period of several days without refrigeration 

(Clements & Parker, 1998). Assays were conducted in duplicate using a time-resolved 

immunoassay with fluorometric detection (DELFIA) (Dressendorfer, Kirschbaum, Rohde, Stahl, & 

Strasburger, 1992). Intra-assay coefficients of variation (CVs, i.e., the degree to which duplicate 

analyses of each sample differ) were between 4.0% and 6.7%, and inter-assay CVs (i.e., the 

degree to which measurements across plates of samples differ) ranged from 7.1% to 9.0%. 

Cortisol reactivity was analyzed using the area under the curve with respect to increase (AUC i) 

and area under the curve with respect to ground (AUCg). This method is a standard analysis 

technique in endocrine and neuroscience research for assessing repeated measurements over 

time (Pruessner, Kirschbaum, Meinschmid, & Hellhammer, 2003).  

 Blood glucose. Blood glucose readings were collected by a fingerstick and read by a 

standard commercial blood glucose meter. Measuring blood glucose levels via fingerstick is a 

part of standard T1DM disease management, and patients are required to collect numerous 

http://www.sciencedirect.com.ezproxy1.lib.asu.edu/science?_ob=ArticleURL&_udi=B6TBX-4X66CM5-2&_user=56861&_coverDate=04%2F30%2F2010&_rdoc=12&_fmt=high&_orig=browse&_origin=browse&_zone=rslt_list_item&_srch=doc-info(%23toc%235154%232010%23999649996%231697108%23FLA%23display%23Volume)&_cdi=5154&_sort=d&_docanchor=&_ct=17&_acct=C000059542&_version=1&_urlVersion=0&_userid=56861&md5=56b33dd5c006a81691936254228dd08e&searchtype=a#bib10
http://www.sciencedirect.com.ezproxy1.lib.asu.edu/science/article/pii/S0306453009003692#bib19
http://www.sciencedirect.com.ezproxy1.lib.asu.edu/science/article/pii/S0306453009003692#bib19
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readings throughout the day. As such, this method of sampling should not be novel or aversive 

for T1DM participants. Fingerstick blood collection may be novel and mildly aversive for non-

diabetic participants; however, all participants were fully informed of the use of fingerstick blood 

sampling and the potential for mild discomfort in this study during the informed consent. Single-

use disposable lancet devices (OneTouch® SureSoft™) and single-use test strips were used for 

each sample collection, and the blood glucose meter was sanitized between users according to 

the manufacturer’s directions eliminating any issues of cross contamination. Study personnel 

followed World Health Organization (WHO) recommendations for Standard Precautions and the 

Centers for Disease Control and Prevention (CDC) recommended practices as they pertain to 

diabetes care in performing fingersticks and handling blood spots (WHO, 2007; CDC, 2005). 

Blood spot samples were collected immediately before pre-stressor cognitive testing, immediately 

prior to social stress task, immediately after the stressor task, and 20, and 40 minutes following 

the stressor task. Blood glucose reactivity was analyzed using the area under the curve with 

respect to increase (AUCi) and Area under the curve with respect to ground (AUCg). This method 

is a standard analysis technique in endocrine and neuroscience research for assessing repeated 

measurements over time (Pruessner, Kirschbaum, et al., 2003). 

Cognitive Testing. 

Sustained Attention Allocation Task.  Based on the Rapid Visual Information 

Processing Task (Wesnes & Warbuton, 1984), the Sustained Attention Allocation Task requires 

integrated skills of sustained visual attention and working memory. During this task participants 

are presented with a series of single digits on a computer screen at a rate of 100/minute for four 

minutes.  Participants are instructed to press the space bar as quickly as possible with their 

dominant hand every time a sequence of three consecutive odd or even digits is presented. The 

number of distractor digits presented between valid response series ranges from 5 to 25, with 

approximately 10 valid response sequences per minute. The order of digit presentation is the 

same for all participants. Correct responses are recorded as “hits” when the key is pressed within 

100 and 1200 ms following the presentation of the third digit in a valid sequence. Responses are 

recorded as “misses” when the space bar is pressed after invalid digits (errors of commission) or 
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when the participant fails to press the space bar after a correct digit (errors of omission), A 

Microsoft Excel script was used to present stimuli and record responses for the task. The 

difference between hits and misses was used to quantify attentional performance. This task was 

administered in both pre- and post-stressor batteries. Higher scores reflect better performance. 

 Rey Verbal Learning Test (RVLT). The RVLT is a measure of verbal learning and 

memory, which has been extensively used in both clinical and healthy samples (see Mitrushina, 

Boone, Razani, & D’Elia, 2005 for a review) and is considered to be one of the most sensitive 

measures available of verbal memory (Lezak, Howieson, & Bigler, & Tranel, 2012). There have 

been many varieties of administration procedures across studies using the RVLT (Mitrushina et 

al.); the present study followed the standard protocol set out in Strauss, Sherman, and Spreen 

(2006, p. 784).  Specifically, the participant was presented with a list of 15 words at a rate of one 

second between each word after which the participant was asked to recall as many of the words 

as he/she could remember. Five consecutive trials of the same 15 words were administered 

followed by presentation and recall of a 15-word interference list and then a delayed recall of the 

original list (short-delay recall). Approximately 20 minutes later the participant was asked to recall 

words from the original list again (long-delay recall) followed by a recognition task in which 

participants were asked to identify words from the original list among a collection of words from 

the original list, the interference list, and a selection of new words. In the present study, 

procedures from presentation of the original list through the short delay recall occurred during the 

pre-stressor cognitive task and the long-delay recall and recognition tasks occurred during post-

stressor cognitive testing. There are a multitude of scores that can be derived from RVLT with 

total score across learning trials, the delayed recall score, and Trial 5 score being the more 

reliable measures (Strauss et al.); however, the present study used the number of words recalled 

on the fifth learning trial to reflect pre-stressor total learning and the number of words recalled 

after a long delay as measures of post-stressor verbal memory. Higher scores reflect better 

performance. 

 Controlled Oral Word Association Test. The COWAT is a measure of verbal fluency, the 

efficiency by which verbal information is organized and recalled, which is thought to be multi-
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determined by a variety of cognitive abilities including auditory attention, short-term memory, 

initiation, cognitive flexibility, inhibition, mental processing speed, and long-term storage of 

vocabulary (see Mitrushina et al., 2005 for a review).  The COWAT consists of two versions of 

three letters each (C, F, & L and P, R, & W), which were selected due to equivalence in number 

of words occurring in the English language that begin with each letter combination (C, F, & L and 

P, R, & W). The correlation between performance on letter combinations CFL and PRW is high (r 

= .82; Benton, Hamsher, & Sivan, 1994). In a randomized design, Schum, Sivan, & Benton 

(1989), observed equivalence between these versions when administered to children (6-12 years 

old; i.e., CFL administered to half and PRW administered to half). Participants were given 60 

seconds to generate as many non-proper words in the English language as possible. The present 

study used letters C, F, and L in the pre-stressor cognitive battery and P, R, and W in the post-

stressor cognitive battery. The total number of valid words generated was summed across the 

three trials so that one score was used for pre-stressor verbal fluency (i.e., letters C, F, & L) and 

one score was used for post-stressor verbal fluency (i.e., letters P, R, & W). Higher scores reflect 

better performance.  

 Stroop Test. The Stroop Test is traditionally viewed as a measure of cognitive inhibition 

(see Mitrushina et al., 2005 for a review). There are many versions of this task; however, varieties 

typically include a trial in which participants read a list of color-words  (e.g., red, blue, yellow), and 

then an interference trial in which participants are asked to name the color of color-words printed 

in incongruent ink color (e.g., name the color of the word “red” printed in yellow ink). The 

interference trial is a more difficult task in that participants must inhibit an over-learned response 

(reading) in order to complete a more novel one (naming colors). The present study will use the 

Golden Stroop task (Golden, 1978; Golden & Frechwater, 2002) for both the pre and post-

stressor battery. This tasks consists of three stimulus cards, a Word Page with 100 color words 

(red, green, blue), a Color Page with 100 series of Xs printed in red, blue, or green ink, and a 

Color-Word page with 100 color words (red, blue, green) printed in incongruent ink color. The 

participant is instructed to read words or name the ink color as quickly as possible within a 45 

second time frame. The test yields three scores based on the number of items completed on 
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each of the three trials. The present study used an interference score calculated as the difference 

between the interference trial and the color naming trial. This task was administered in both the 

pre- and post-stressor cognitive battery. Scores from the interference trial are typically negative, 

with lower scores (i.e., more negative) reflecting greater interference. 

 Trail Making Test. The TMT was originally developed as part of the Army Individual Test 

Battery (1944) and was then included as part of the Halstead-Reitan Battery. Currently, the TMT 

is one of the most frequently used neuropsychological tests to measure executive functions 

(Mitrushina et al., 2005). The TMT is a visual-motor tracking task requiring a range of abilities 

including: motor-spatial, basic sequencing, visual tracking, mental flexibility, and attention (see 

Mitruchina et al. for a review). In full, the TMT is comprised of two distinct trials, part A (TMA) and 

part B (TMB); however, the TMB is a more difficult task due to differences in structural complexity 

of the stimuli and additional sequencing demands. Taylor has argued that TMB can be 

administered in isolation without greatly impacting performance (1998). The present study will 

administer only the TMB during the pre-stressor testing to reduce fatigue and practice effects. 

TMB consists of encircled numbers 1-13 and encircled letters A-L.  Examinees are instructed to 

draw lines connecting the circles in sequence alternating between numbers and letters (e.g., 1-A-

2-B, etc.) as quickly as possible, with total time to completion recorded. A short set of sample 

items is provided prior to administration. An alternative version to the TMT was developed by 

DesRosiers and Kavanagh (1987). In DesRosiers and Kavanagh’s alternative form, the relative 

positions of the circles were retained from the original TMT; however the sequence was inverted. 

The original validation study found the alternative formats to be highly correlated to the original 

formats (TMA/TMC r = 0.73; TMB/TMD r = 0.80; DesRosiers & Kavanagh), which has been 

replicated (TMA/TMC r = 0.70 ; TMB/TMD r = 0.78; Franzen, Paul, Iverson, 1996). LoSasso, 

Rapport, Axelrod, and Reeder (1998) found TMD to be more difficult than TMB, making it less 

impacted by practice effects. The current study used TMB in the pre-stressor cognitive test 

battery and TMD in the post-stressor cognitive test. Total time to complete was recorded. Lower 

scores reflect better performance.  

 Questionnaires.  
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Demographics. Participants completed demographics concerning their age, gender, 

race/ethnicity, level of education, childhood family income, and level of parents’ education. T1DM 

participants also reported on insulin pump usage and age of disease onset. 

 Cortisol covariates. The following were provided by the participant: time of waking, hours 

of sleep on previous night, average daily caffeine use, average weekly alcohol use, cigarette use, 

hormonal contraception use, medication use, time of last menstrual cycle (for females) (Kudielka, 

Hellhammer, & Wϋst, 2009).  

 Positive and Negative Affect Schedule (PANAS). The PANAS (Watson & Clark, 1994) is 

a 10-item measure of positive and negative affect.  Baseline mood can influence the stress 

response, and is therefore assessed as a potential covariate (Folkman & Moskowitz, 2007; 

Forbes & Dahl, 2005). The PANAS has been found to have good internal reliability (Cronbach’s 

= .85 for negative affect scale; Cronbach’s  = .89 for positive affect scale; Crawford & Henry, 

2004). In the current study, a similar level of internal consistency was observed for baseline 

positive affect (Cronbach’s  = 0.84), but was questionable for baseline negative affect 

(Cronbach’s  = 0.68) and did not improve with deletion of any items. 

Depression Anxiety Stress Scales 21 (DASS-21), stress subscale. The DASS-21 is a 

21-item instrument measuring current symptoms of depression, anxiety, and stress that was 

shortened from the original DASS (Lovibond & Lovibond, 1995). Each of the three scales consists 

of 7 items which are responded to using a 0-3 likert-scale (0 = did not apply to me at all, 3 = 

applied to me very much, or most of the time). The present study used the stress subscale. An 

example item from the stress scale is “I found myself getting upset by quite trivial things.” The 

range of possible scores for each scale is 0-21. Internal consistency for each scale has been 

found to be high in large community sample (Cronbach's  = 0.90 for Stress subscale; Henry & 

Crawford, 2005). In the present study, internal consistency was observed to be acceptable 

(Cronbach's  = .79). 

Data Analysis 

 For a tabular depiction of study design see Tables 2 and 3. 
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Preliminary analyses. Descriptive statistics, correlation matrices, skewness, kurtosis, and 

univariate graphical displays were examined for all variables of interest. The assumptions of 

normality were examined for each variable of interest, and transformations most appropriate to 

the shape of the distribution were attempted to correct deviations from normality following the 

recommendations set forth by Tachbachnick and Fidell (2001, p. 92). For variables that did not 

benefit from transformations and were found to be heavily influenced by the presence of 

univariate outliers, individual scores were winsorized by assigning a raw score one unit larger (or 

smaller) than the next non-outlier score in the distribution, but retaining rank order in the case of 

more than one outlier (Tabachnick & Fidell, 2001, p. 45). 

Establishing within-cluster equivalence on matching criteria. T-tests were run to confirm 

group equivalence on the matching variables.  

To examine equivalence on matching criteria within clusters, a series of related measures 

one-way ANOVAs
3
 were performed for each matching criteria with diabetic membership as the 

three-level related measures factor (diabetic, yoked control 1, yoked control 2).The two yoked 

controls for each diabetic participant were randomly assigned to yoked control condition (yoked 

control 1 versus yoked control 2).  A planned contrast tested the difference between the diabetic 

member and the average of the two yoked controls for each cluster of participants (see Table 2 

for a depiction of the contrast used in the analyses). 

Identification of cortisol covariates. A number of factors that could influence cortisol 

activity were considered for inclusion as covariates in the main analyses predicting cortisol AUC i 

and AUCg .  These included blood glucose AUCg, and AUCi, time since waking, number of hours 

slept in previous evening, smoking status, average daily number of serving of caffeine intake, 

average servings of alcohol consumed during a week, body mass index (BMI), waist to hip ratio 

(WHR), hormonal contraception use by female participants (yes/no), days since last menstrual 

period began for female participants, baseline positive and negative affect, number of cortisol-

affecting medications (e.g., cholesterol medications, benzodiazepines, SSRIs; Granger, Hibel, 

                                            
3
 These analyses are more commonly referred to as repeated-measures; however, the term 

related was selected for the present study to more accurately reflect the nature of the design.  
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Fortunato, & Kapelewski, 2009) taken other than insulin or hormonal contraception, and score on 

the DASS stress scale. The influence of insulin pump status was included to examine the 

potential for an interaction with diabetic group status (diabetic, non-diabetic) because of its 

significance to the treatment of T1DM. A cluster of cases (one diabetic and two yoked controls) 

that contained a diabetic who employed an insulin pump was coded as an insulin pump cluster; 

all other clusters were coded as non-insulin pump clusters. While gender and age are both known 

to influence cortisol reactivity, the yoking procedure equated the diabetic and yoked controls on 

these variables. As such, these variables were not included in potential covariates.  

Potential covariates were examined separately for each of the cortisol outcomes (e.g., AUCi 

or AUCg). Variables were selected as covariates in the main analyses of cortisol outcomes if the 

potential covariate was significantly correlated with the cortisol outcome under consideration (p < 

.05) or if the magnitude of the correlation was strong (e.g., r ≥ .40 or r ≤ -.40). For variables that 

were either strongly related or significantly related, evidence that the yoking process did not 

equate for the potential covariate across levels of diabetic membership within clusters was also 

required (e.g., no difference between the diabetic member and the average of the two yoked 

controls for each cluster of participants). A planned contrast tested the difference between the 

diabetic member and the average of the two yoked controls for each cluster of participants (see 

Table 2 for a depiction of the contrast used in the analyses). A potential covariate was then 

included if the planned contrast was statistically significant at a level of p < .05 or if the effect size 

for the planned contrast was large (e.g., ηp
2
 ≥ .26; Cohen, 1988). Potential interaction terms (e.g., 

insulin pump status) were included if the interaction term was significantly correlated with the 

cortisol outcome under consideration (p < .10) or if the magnitude of the correlation was strong 

(e.g., r ≥ .40 or r ≤ -.40). The statistical significance threshold level for correlation with cortisol 

outcomes was set somewhat higher for interaction terms given that the sample size on which 

these analyses were based was smaller (e.g., only based on diabetic participants). 

 Identification of cognitive covariates. A number of factors that could influence 

executive functioning, attention and processing speed were considered for inclusion as covariates 

in the main analyses: number of hours slept in previous evening, baseline positive and negative 
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affect, number of medications used other than insulin or hormonal contraception, cortisol AUC i, 

and cortisol AUCg. The influence of insulin pump status was also considered because of its 

significance to the treatment of T1DM. A cluster of cases (one diabetic and two yoked controls) 

that contained a diabetic who employed an insulin pump was coded as an insulin pump cluster; 

all other clusters were coded as non-insulin pump clusters. Early age of disease onset, (prior to 

age 7 versus 7 and older) was also considered. A cluster of cases that contained a diabetic 

whose age of onset was prior to age 7 was coded as young onset; all other clusters were coded 

as older onset.  Early age of onset was anticipated to be examined as a potential interaction with 

diabetic group status (diabetic, non-diabetic) given the importance of early disease onset in 

predicting cognitive impairment in T1DM (as previously discussed in the introduction); however, 

given the very small number of participants with diabetes diagnosed prior to the age of 7 

observed in the present study (n = 3), this variable was no longer considered for inclusion as a 

potential interaction term. Variables known to predict general cognitive functioning that the yoking 

procedure equated within clusters (e.g., participants’ education, maternal education, childhood 

family income) were not considered for inclusion as covariates. 

Potential covariates were examined separately for each of the cognitive outcomes. Given the 

small samples size available for the main analyses, strict criteria were used in determining 

inclusion of covariates. As previously detailed, selection of potential covariates was based on 

past research concerning influences on cognition in general without the application of a stressor 

as well as associations specific to cognitive deficits in T1DM. No known or reliable covariates 

have been identified from the limited literature regarding the effect of physiological stress on 

cognition within using repeated measurement (i.e., the majority of research regarding the effects 

of stress on cognition has used a no-stress control group for comparisons; e.g., Al’Absi, Hugdahl, 

& Lovallo, 2002; Bohnen, Houx, Nicolson, & Jolles, 1990). As such, potential covariates were 

chosen to account for differences in baseline cognitive functioning prior to stress induction, which 

is consistent with recommendations set forth by Tabachnick and Fidell (2001, p. 424) concerning 

the selection of covariates in repeated measures designs.  
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Covariates to control for differences in baseline cognitive functioning were included in the 

main analyses if they were significantly related to the pre-stressor cognitive test (p < .05) or if the 

magnitude of the correlation was strong (e.g., r ≥ .40 or r ≤ -.40). For variables meeting this 

criteria, evidence that the yoking process did not equate the potential covariate across levels of 

diabetic membership within clusters was also required (i.e., through same data analysis design as 

described in establishing equivalence on matching criteria).  

To examine equivalence on potential covariates within clusters, a series of related measures 

one-way ANOVAs were performed for each potential covariate with diabetic membership as the 

three-level related measures factor (diabetic, yoked control 1, yoked control 2). A planned 

contrast tested the difference between the diabetic member and the average of the two yoked 

controls for each cluster of participants (see Table 2 for a depiction of the contrast used in the 

analyses). A potential covariate was then included if the planned contrast was statistically 

significant at a level of p < .10 or if the effect size for the planned contrast was large (e.g., ηp
2
 ≥ 

.26; Cohen, 1988).  

Potential interaction terms (e.g., insulin pump status) were included if the interaction term 

was significantly correlated with the cortisol outcome under consideration (p < .10) or if the 

magnitude of the correlation was strong (e.g., r ≥ .40 or r ≤ -.40). The statistical significance 

threshold level for correlation with cortisol outcomes was set somewhat higher for interaction 

terms given that the sample size on which these analyses were based was smaller (e.g., only 

based on diabetic participants). 

Testing assumptions of related measures ANOVA. For each main analysis, the 

assumptions of related-measures ANOVA were tested according to the recommendations set 

forth by Tabachnick and Fidell (2001). Skewness and kurtosis values for each level of the design 

(e.g., diabetics vs. controls in the one-way related measures design) were assessed for violations 

of normality. Homogeneity of variance was assessed by examining the ratio of the largest 

variance to smallest variance within all levels of the design, which was then evaluated against the 

Fmax ≤ 10 threshold. The assumption of sphericity was tested through Mauchly’s test. 

Primary Analyses.  
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Primary analyses of cortisol outcomes. Primary analyses were conducted separately for 

each cortisol outcome.  To assess differences between diabetic and control participants on 

cortisol outcomes, separate one-way related-measures ANOVAs were conducted on the cortisol 

outcomes of interest (e.g., AUCi and AUCg) with diabetic membership (diabetic, yoked control 1, 

and yoked control 2) as the related measures factor with a planned contrast performed in lieu of 

the omnibus ANOVA to maximize power for the hypotheses of interest as recommended by 

Tabachnick and Fidell (2001, p. 296). A planned contrast assessed the difference between 

diabetic participants and the average of the two yoked controls on the cortisol outcomes (see 

Table 2 for display of study design and planned contrast). As reviewed in the results section, no 

covariates were retained in the analyses of cortisol outcomes. 

Primary analyses of cortisol outcomes with inclusion of a between-subjects factor. If 

insulin pump status was identified as a potential interaction term (e.g., as demonstrated by a 

significant correlation with outcomes), a 2 X 3 mixed related-measures ANOVA was performed on 

the cortisol outcome of interest with the between-subjects measure being the two levels of the 

covariate of interest (e.g., insulin pump vs. no insulin pump). If the interaction term (e.g., 

interaction of between-subjects variable with planned contrast of diabetic membership described 

previously) was significant, separate one-way related measures ANOVAs were conducted within 

each level of the between-subjects factor. If the interaction term was not significant, the between-

subjects factor was removed from the model due to the unknown theoretical significance of 

insulin pump status on cortisol levels in T1DM, following the recommendations set forth by Aiken 

and West (1991, p. 105). 

Primary analyses of cognitive outcomes with no identified covariate. For cognitive 

outcomes without covariates, cognitive changes from pre- to post-stressor were analyzed by 

conducting 2 x 3 related measures ANOVAs with the pre and post-stressor scores as the two-

level repeated measure and diabetic membership (diabetic, yoked control 1, and yoked control 2) 

as the three-level related measures factor with a planned contrast performed in lieu of the 

omnibus ANOVA to maximize power for the hypotheses of interest as recommended by 

Tabachnick and Fidell (2001, p. 296). A planned contrast assessed the interaction between 
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change in performance from pre- to post-stressor tasks and the contrast of diabetic membership 

(e.g., contrast of diabetic participant vs. the average of the two yoked controls), which tests the 

hypothesis that diabetics and yoked controls differ in their change in cognitive performance from 

pretest to posttest (see Table 3 for depiction of study design and planned contrasts).  

Primary analyses of cognitive outcomes covariate(s). For cognitive tasks requiring 

adjustment for covariates, the score from the post-stressor task was adjusted for the score on the 

pre-stressor task as well as the covariate(s). Specifically, the post-test score was regressed on 

the pretest score plus the covariate.  The residuals of the regression analysis (i.e., post-test score 

with corresponding pretest score and covariate partialed out) were adjusted post-stressor scores 

that served as the dependent variable for the analysis of the impact of diabetes on performance. 

A one-way related measures ANOVA was then conducted on the adjusted post-stressor score 

with diabetic membership (diabetic, yoked control 1, and yoked control 2) as the related 

measures factor. A planned contrast assessed the difference between the diabetic participant and 

the average of the two yoked controls (see Table 2 for depiction of study design and planned 

contrast).  

Primary analyses of cognitive outcomes with inclusion of a between-subjects 

factor. To examine whether insulin pump status interacted with diabetes membership, a 

between-subjects factors was added to the previously described related-measures designs. If the 

interaction between the between-subjects factor and the related-measures factors was significant, 

separate lower-level analyses were carried out at each level of the between-subjects factor. For 

example, for insulin pump status, a separate one-way related measures ANOVA was conducted 

at each level of insulin pump status (i.e., for clusters in which there was a diabetic with an insulin 

pump and clusters in which there was a diabetic not on an insulin pump). 
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RESULTS 

Preliminary Analyses   

Evaluation of yoking procedure.  Non-repeated measures t-tests were employed to 

confirm group equivalence on the matching variables. The 23 diabetic participants were 

contrasted with the 46 yoked controls. On average, diabetic participants were not statistically 

different from control participants on any matching factor (p ≥ .24 for all t-tests, see Table 5 for 

descriptive information). While group equivalence was demonstrated, more important to the 

present study design (i.e., related measures) was demonstration of within cluster equivalence.  

Overall, the series of related measures ANOVAs demonstrated within cluster equivalence 

on matching criteria within the pre-determined acceptable level of difference (e.g., participants 

were matched within +/- 2 years of age and maternal education was given preference over 

paternal education in identifying most closely matched participants).  

With regard to within-cluster equivalence of participants’ age, the difference between the 

age of the diabetic participants and the average of the two yoked control participants was 

significant, F(1,22) = 6.37, p = .02, ηp
2
 = 0.23). While the diabetic participants were observed to 

be older than the average of their two matched peers, the observed difference between the 

diabetic participants (M = 23.00, SE = 0.84,) and the average of the matched pairs (M = 22.46, 

SE = 0.79) was less than one year, well within the criteria used for matching (+/-2 years). There 

was also a difference between the paternal level of education of the diabetic participants (M = 

3.78, SE = 0.37) and the average of the two yoked control participants (M = 4.28, SE = 0.37) that 

reached significance, F(1,22) = 4.87, p = 0.04, ηL
2 
= 0.18;

4
 however, groups were not different on 

participant’s level of education, maternal education, or childhood family income, supporting 

equivalence on developmental demographic factors most predictive of adult cognitive functioning 

(e.g., Kaplan et al. 2001; Richards, Hardy, Kuh, & Wadsworth, 2001).  

With regard to group equivalence of ethnicity, there was not a significant difference in the 

proportions of ethnicities represented within each group (e.g., diabetic vs. control, see Table 5). 

                                            
4
 ηL

2 
= lower limit of partial eta squared, which is provided when assumption of sphericity is 

violated. 
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With regard to the equivalence of ethnicity within clusters, 21 out of 23 (91.30%) diabetics were 

exactly matched to the ethnicity of their respective yoked control participants. Exact ethnicity 

matches were unable to be recruited for two diabetics who indicated “more than one race” as 

their primary ethnic identification. In these cases, potential participants were recruited if they 

matched one of the ethnic categories endorsed by the diabetic participant, and every attempt was 

made to vary the ethnicity of the yoked control participants across the ethnicities endorsed by the 

diabetic participant while balancing contributions from other matching variables.  

Descriptive statistics, tests of normality, and outlier screening for cortisol analyses. All 

cortisol variables and potential covariates were screened for univariate outliers and violations of 

normality.  

The raw cortisol values from one participant with T1DM were outside the normal physiological 

range of afternoon salivary cortisol levels (time 1 = 42.15 nmol/L, time 2 = 41.25 nmol/L, time 3 = 

19.51 nmol/L, time 4 = 50.13 nmol/L; Aardal & Holm, 1995; Lo, Ng, Azmy, & Khalid,1992). This 

participant and the two yoked control participants were excluded from further analyses involving 

cortisol. One participant did not have complete data available for computation of AUCi due to 

early termination after post-stressor cognitive tasks; therefore, this cluster was not included in 

cortisol analyses. The final analysis sample for cortisol outcomes included 21 clusters of 

participants.  

Of the potential covariates examined for inclusion in the main cortisol analyses, the 

distributions of several variables appeared to be heavily influenced by the presence of a few 

univariate outliers [average daily servings of caffeine (1 diabetic, 1 control extremely high), 

average weekly servings of alcohol (1 control extremely high), blood glucose AUCi (1 diabetic 

extremely low), DASS stress (1 diabetic extremely high)]. The non-normality of blood glucose 

AUCg did not appear to be primarily driven by the presence of outliers. As an initial attempt to 

correct for violations of normality, each variable was transformed in the manner most appropriate 

to the shape of the distribution following the recommendations set forth by Tachbachnick and 

Fidell (2001, p. 92). Upon visual examination of the distributions, q-q plots, and indicators of 

skewness and kurtosis, following transformations, only blood glucose AUCg benefited from 
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transformation (square root transformation). To reduce the impact of the univariate outliers for the 

variables that did not benefit from transformations, individual scores were winsorized by assigning 

a raw score one unit larger (or smaller) than the next non-outlier score in the distribution, but 

retaining rank order in the case of more than one outlier (Tabachnick & Fidell, p. 45). While the 

effect of winsorizing did improve the normality of the distributions, winsorizing did not significantly 

influence the correlations among the potential covariates and cortisol outcomes. As such, 

winsorzing lessened the violation of the normality assumption of ANOVA without altering which 

potential covariates were included in the main analyses.  

Due to safety procedures built into the laboratory protocol (i.e., consumption of juice when 

blood glucose dropped below 80), variability in protocol standardization (i.e., whether the 

participant consumed juice during participation) was a possible confound to cortisol analyses. To 

examine how such variability in standardization might introduce error into subsequent analyses, a 

related measures logistic regression was conducted to examine if the probability of diabetics 

differed from the average probabilities of the two yoked controls with regard to variability in 

standardization, which revealed no difference within clusters, Wald χ
2
 = 1.99, p = .16, OR

5
 = 2.42.  

A related measures ANOVA was also conducted to examine if diabetics differed from the 

average of the two yoked controls with regard to variability in protocol start time, which revealed 

no difference within clusters, F(1, 20) = .08, p = .78, ηp
2 
< .01. An additional related measures 

ANOVA was also conducted to examine if diabetics differed from the average of the two yoked 

controls with regard to variability in time elapsed from start time to initial cortisol sample, which 

revealed no difference within clusters, F(1, 20) = 0.76, p = .39, ηp
2 
 = .04. 

Means, standard deviations, medians, ranges, skewness and kurtosis of the cortisol 

variables and potential covariates by group (i.e., diabetic vs. control) are included in Tables 10 

and 11, and frequencies of categorical variables are included in Table 12.  Correlation matrices 

for potential covariates that were significantly correlated with either cortisol AUGi or AUGg at a 

level of p < .05 or that had a correlation of strong magnitude (r ≥ .40 or r ≤ -.40) for either diabetic 

                                            
5
 OR = Odds Ratio 
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or control participants are provided in Table 13 for total sample (collapsed across diabetic and 

control participants), Table 14 for control participants and Table 15 for diabetic participants. 

Correlations for the total sample were used in determining potential covariates. Of these possible 

covariates, no variables met pre-determined criteria for inclusion as a covariate (p < .05 or r ≥ .40 

or r ≤ -.40 for total sample). Usage of an insulin pump was strongly negatively correlated with 

AUCi  (r = -.40, p = .08), which was within the threshold for inclusion as an interaction term (e.g., p 

< .10, or r ≥ .40 or r ≤ -.40).  Because insulin pump status is not possible to equate within cluster 

(i.e., yoked controls are never on an insulin pump) and the interaction of insulin pump status with 

the planned contrast of diabetic membership  described previously (e.g., diabetic participant 

versus the average of the two yoked control participants, see Table 2 for planned contrast) is of 

theoretical importance, this variable was retained as a between subjects variable.  

With regard to cortisol AUCg, waist to hip ratio was significantly positively correlated with 

cortisol AUGg (r = .25, p = .05) for the entire sample (collapsed for diabetic and control 

participants). To examine equivalence on waist to hip ratio within clusters, a related measures 

one-way ANOVA was conducted where the related measures factor was diabetic membership. A 

planned contrast compared the waist to hip ratio of the diabetic participant with the average of the 

two yoked control participants. The difference between the waist to hip ratio of the diabetic 

participants and the average of the two yoked control participants was not significant, F(1,20) = 

.72, p = .41, ηL
2 
= .01. Given equivalence within clusters on waist to hip ratio this variable was not 

included as a covariate in the main analyses of cortisol AUCg. 

The number of cortisol-influencing medications was found to be significantly negatively 

correlated with cortisol AUGg (r = -.34, p = .007) for the entire sample (collapsed for diabetic and 

control participants). To examine equivalence on number of medications affecting cortisol taken 

within clusters, a related measures one-way ANOVA was conducted where the related measures 

factor was diabetic membership. A planned contrast compared the number of medications taken 

by the diabetic participant with the average of the two yoked control participants. The difference 

between the number of medications taken by the diabetic participants and the average of the two 

yoked control participants was not significant, F(1,20) = .35, p = 0.56, ηL
2 
= 0.01. Given 
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equivalence within clusters on number of medication taken, this variable was not included as a 

covariate in the main analyses of cortisol AUCg. 

For both diabetics and controls, skewness and kurtosis fell below recommended cut-offs for 

use of maximum likelihood estimation; this was true for all variables included in the main analyses 

of cortisol (skewness < 2, kurtosis < 7; West, Finch, & Curran, 1995). While log transformations 

are commonly performed in analyses involving cortisol AUC, such a transformation resulted in a 

much larger deviation from normality in the present data (e.g., AUCi skewness = -6.95, kurtosis = 

46.96). As such, the non-transformed values were used in the main analyses. 

Descriptive statistics, tests of normality, and outlier screening for cognitive analyses. 

All cognitive variables and potential covariates were screened for univariate outliers and 

violations of normality. Of the cognitive outcomes, there was one diabetic participant whose 

scores on the computerized sustained attention allocation task (SAAT) indicated lack of task 

engagement (e.g., the number of times the participant pressed the space bar was suggestive of 

continuous bar pressing without regard to stimuli). Therefore, this participant and the two yoked 

controls were excluded from the remainder of SAAT analyses. There were univariate outliers on 

Trails B and the pre-stressor Stroop task; however, upon inspection of the raw scores, there was 

no indication that the scores were invalid (e.g., the scores were within plausible raw scores for 

adequate effort). Transformations were used to neutralize the effect of the outliers and improve 

violations of normality. Trails B appeared to violate assumptions of normality, which were 

improved with a log transformation. A log transformation was also applied to Trails D to ensure 

equivalence across pre and post measurement. The distribution of trial 5 of the RVLT list-learning 

task also violated assumptions of normality with a negative skew due to the performance of a few 

individuals. An inverse transformation was applied to trial 5 of RVLT as well as the delayed recall 

trial to which trial 5 is compared in the main analyses. These transformations improved the 

distribution of these variables as shown in graphical displays, q-q plots, and measures of 

skewness and kurtosis and did substantially alter the results of the analyses. 

Means, standard deviations, medians, ranges, skewness and kurtosis of the cognitive 

variables and potential covariates by group (i.e., diabetic vs. control) prior to transformations are 
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included in Tables 16-18. Correlation matrices for potential covariates are provided in Table 19 

for the total sample (collapsed across diabetic and control participants), Table 20 for control 

participants, and Table 21 for diabetic participants. Within these tables, correlations were 

provided for variables that were significantly correlated with cognitive outcomes at a level of p < 

.05 or that had a correlation of strong magnitude (r ≥ .40 or r ≤ -.40) for diabetic participants, 

control participants, or total sample. Correlations for the total sample were used in determining 

potential covariates. No variables approached a significant correlation with any of the cognitive 

outcomes. Therefore, the main analyses for these outcomes were conducted without the 

inclusion of covariates. Insulin pump status was significantly negatively correlated with Trails B (r 

= -.45, p = .03), and was negatively correlated with performance on the Stroop task at the trend 

level (r = -.37, p = .08), meeting criteria for inclusion as interaction terms for these variables. 

Because insulin pump status is assigned at the cluster level (i.e., the cluster is designated as 

containing a diabetic with an insulin pump or not), and the interaction of insulin pump with the 

planned contrast of diabetic membership described previously (see Table 2 for depiction of the 

planned contrast) is of theoretical importance, this variable was retained as a between subjects 

variable for Trails and Stroop tasks.  

Primary Analyses for Cortisol  

Cortisol AUCi. A 2 X 3 mixed between-subjects related-measures ANOVA was performed on 

cortisol AUCi with insulin pump usage as the between subjects factor (cluster with a diabetic on 

an insulin pump versus cluster with a diabetic not on an insulin pump) and diabetic membership 

as the three-level related measures factor (diabetic, yoked control 1, yoked control 2). There was 

no violation of homogeneity of variance (Fmax = 1.71) or sphericity (W = .95; χ
2 
= .86, p = .65).   

There was a marginally significant interaction between the insulin pump factor with the 

related measure factor (i.e., diabetic vs. yoked control 1 level vs. yoked control 2), F(1,19) = 3.88, 

p = .06, ηp
2 
= .17 on cortisol AUCi (see Figure 3). Planned follow-up repeated measures ANOVAs 

were run separately for the two levels of the insulin pump factor (i.e., insulin pump vs. no insulin 

pump). For clusters in which the diabetic participant was on an insulin pump, there was no 

difference between the cortisol AUCi of participants with T1DM (M = 30.76, SE = 2511.95) and 



37 

the pooled average of the two yoked control participants, (M = -637.32, SE = 3408.85; F(1,10) = 

.05, p = .82, ηp
2 
= .01). Among clusters in which the diabetic participant was not on an insulin 

pump, mean AUCi for diabetic participants (M = 5826.12, SE = 2614.13) was significantly greater 

than the pooled average of the yoked control participants (M = -4537.85, SE = 3097.77; F(1,9) = 

6.45, p = .03, ηp
2 
=.42).  

Post-hoc analyses of cortisol AUCi. Post-hoc visual inspection of plots of the different groups’ 

average raw cortisol values across participation (i.e., T1DM participant on an insulin pump, T1DM 

participant not on an insulin pump, and the two matched control groups) suggested that cortisol 

levels for control participants yoked to T1DM participants not on an insulin pump generally 

declined across the protocol with a peak cortisol value at the first sample (see Figure 4), prior to 

initiation of experimental protocol (e.g., pre-stressor cognitive testing or stressor task). 

Additionally, visual inspection of plots of total AUCi across groups (see Figure 3) suggested that 

control participants yoked to T1DM participants not using an insulin pump demonstrated lower 

overall AUCi compared to all other groups, although the magnitude or statistical significance of 

this difference was not apparent from the graphical display. 

Because AUCi is a summary score of reactivity relative to a participants’ initial cortisol level, 

further post-hoc exploration was undertaken to examine to what degree previous findings (i.e., 

difference in AUCi between diabetics not using an insulin pump and yoked controls) might be 

influenced by elevated initial cortisol levels within the yoked control group rather than due to 

differences in cortisol reaction to the interpersonal stressor.  

To examine within cluster-equivalence on initial cortisol levels, a 2 X 3 mixed between-

subjects related-measures ANOVA was performed on initial cortisol level with insulin pump usage 

as the between subjects factor (cluster with a diabetic on an insulin pump versus cluster with a 

diabetic not on an insulin pump) and diabetic membership as the three-level related measures 

factor (diabetic, yoked control 1, yoked control 2). There was no violation of homogeneity of 

variance (Fmax = 5.71) or sphericity (W = .80; χ
2 
= 4.03, p = .13).   

There was a significant interaction between the insulin pump factor with the related measure 

factor (i.e., diabetic vs. yoked control 1 level vs. yoked control 2), F(1,19) = 4.62, p = .05, ηp
2 
= .20 
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on initial cortisol levels. Planned follow-up repeated measures ANOVAs were run separately for 

the two levels of the insulin pump factor (i.e., insulin pump vs. no insulin pump). For clusters in 

which the diabetic participant was on an insulin pump, there was no difference between the initial 

cortisol sample of participants with T1DM (M = 4.97, SE = 0.80) and the pooled average of the 

two yoked control participants, (M = 4.91, SE = 0.88; F(1,10) = .02, p = .91, ηp
2 
= .001). Among 

clusters in which the diabetic participant was not on an insulin pump, mean initial cortisol level for 

diabetic participants (M = 3.67, SE = 0.42) was significantly lower than the pooled average of the 

yoked control participants (M = 5.56, SE = 1.05; F(1,9) = 6.75, p = .03, ηp
2 
=.43).  

Additional non-repeated measures t-tests were performed to compare the initial cortisol level 

of the two control groups and to compare the two diabetic groups (on and off insulin pump). When 

examining only control participants, the initial cortisol level of control participants yoked to diabetic 

participants not using an insulin pump (M = 5.56, SD = 3.15) was not different from that of control 

participants yoked to diabetic participants using an insulin pump (M = 4.91, SD = 2.69, t = .73, p = 

.47, d = .22). Additionally, when examining only diabetic participants, the initial cortisol level of 

diabetic participants not using an insulin pump (M = 3.67, SD = 1.32) was not different from the 

initial cortisol level of the diabetic participants using an insulin pump (M = 4.97, SD = 2.66, t = -

1.40, p = .18, d = .62). 

To examine possible differences in whether peak cortisol values occurred during the first 

sample, participants were coded as having a peak cortisol value at the first sampling period or 

having a peak cortisol value at a time other than the first sampling period. A greater proportion of 

control participants (21/42) had a peak cortisol level at the first sampling period compared to 

diabetic participants (5/21, χ
2
 = 3.96, p = .047, Φ

6
 = -0.25). The proportion of control participants 

matched to diabetic on an insulin pump (11/22) with a peak cortisol value at the first sampling 

time did not differ from the proportion of the control participants matched to diabetic not on an 

insulin pump (10/20; χ
2
 = 0.00, p = 1.00, Φ = 0.00). There was also no difference between the 

proportion of diabetic participants on an insulin pump (3/11) with a peak cortisol value at the first 

                                            
6
 Φ= phi coefficient, a measure of effect size for chi-square tests. 
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sampling period and the proportion of diabetic participants not on an insulin pump with a peak 

cortisol value at this time point (2/10, χ
2
 = .15, p = .70, Φ =.09).  

In examining individual plots of control participants’ raw cortisol values across participation, 

there appeared to be variability in subsequent cortisol levels. Specifically, of the 21 control 

participants who demonstrated peak cortisol levels at the first sampling period, the majority also 

demonstrated later fluctuations, with rising and falling cortisol levels (n = 13/21) although such 

fluctuations did not reach the initial peak level. A smaller proportion of control participants who 

peaked at the initial sampling period exhibited a continuous decline in cortisol levels (n = 8/21).  

To examine if the control groups (i.e., control participants yoked to diabetic participants using 

an insulin pump versus control participants yoked to diabetic participants not using an insulin 

pump) differed on variables potentially related to cortisol AUCi, t-tests and chi-squared tests were 

run on these variables (i.e., age, number of medications, waist to hip ratio, time slept the previous 

night, time from participation start to first saliva sample, stress (from DASS), average daily 

caffeine intake, body mass index, time since waking, days since last menstrual (for females), 

average alcohol consumption, education level, gender, smoking status, maternal education, 

paternal education, childhood family income, nonstandard protocol administration, initial positive 

affect, and initial negative affect . To control for the increased type 1 error rate from conducting so 

many post-hoc analyses, a more conservative p-value was set (i.e., p < .01). No differences 

between controls yoked to diabetics on or off an insulin pump were observed across these 

variables at the conservative level or traditional criteria (i.e., p< .05).  

Within diabetic and non-diabetic participants, different variables were related to AUCi (see 

Tables 14-15). Specifically, smoking status was negatively correlated with AUCi within the 

diabetic participants, but was not correlated to AUCi within control participants. Likewise, male 

gender was positively associated with higher cortisol AUCi within control participants, but was not 

correlated to AUCi within diabetic participants. Baseline positive affect was negatively correlated 

with AUCi within control participants and was positively, although not significantly correlated with 

AUCi within diabetic participants. Moreover, as detailed above, there was a significant difference 
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in the proportion of control participants with a peak cortisol value at the first sampling period 

compared to the portion of diabetic participants with a peak cortisol value at this sampling period.  

Given that the difference observed in the primary analysis of cortisol AUCi may be due in part 

to the differential initial response of cortisol a post-hoc ANOVA was conducted to examine if there 

were differences between the two diabetic groups (e.g., with and without insulin pump). While 

smoking status and perceived stress were both negatively correlated with cortisol AUCi among 

diabetic participants, these variables were also correlated with each other. As recommended by 

Tabachnick and Fidell, only one of several correlated covariates was selected to be included in 

the model (2001, p. 424).  Given prior research regarding the effect of habitual smoking on 

cortisol attenuation (e.g., Morgan et al., 2004; Badrick, Kirschbaum, & Kumari, 2007), smoking 

status was included as a covariate.  

After controlling for the effect of smoking status, there was a trend toward a main effect of 

insulin pump status, F(1,18) = 3.40, p = 0.08, ηp
2 
= 0.16. Specifically, diabetic participants using 

an insulin pump (M = -55.06, SE = 2237.63) had lower cortisol AUCi compared to diabetic 

participants not using an insulin pump (M = 5920.52, SE = 2346.88).   

Cortisol AUCg. A one-way related ANOVA was performed on cortisol AUCg with diabetic 

membership as the three-level related measures factor (diabetic, yoked control 1, yoked control 

2). There was no violation of homogeneity of variance (Fmax = 1.03) or sphericity (W =.74; χ
2 
= 

5.67, p =.06).   

There was no difference between the cortisol AUCg of participants with T1DM (M = 30.76, SD 

= 8331.19) and the pooled average of the two yoked control participants, (M = -637.32, SD = 

10819.92), F(1,20) = .11, p = .75, ηp
2 
= .01).  

Post-hoc analyses of cortisol AUCg. Given the previously described problems with the use of 

current control groups in analyses of cortisol within the present sample, differences in AUCg of 

diabetic participants with and without insulin pumps were compared. There was no difference 

between the cortisol AUCg of diabetic participants on an insulin pump (M = 24300.82, SE = 

3554.29) and diabetic participants not on an insulin pump (M = 23683.23, SD = 3727.77), F(1,19) 

= .01, p = .91, ηp
2 
= .001. 
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Primary Analyses for Cognitive Tasks 

Trails. A 2 X 3 X 2 mixed related-measures ANOVA was performed on the transformed pre- 

and post-stressor Trails scores. Insulin pump usage was the between subject factor (cluster with 

a diabetic on an insulin pump versus cluster with a diabetic not on an insulin pump); diabetic 

membership was the three-level related measures factor (diabetic, yoked control 1, yoked control 

2); pretest versus posttest was the repeated measures factor. There was no violation of 

homogeneity of variance (Fmax = 4.21) or sphericity (W = 0.82; χ
2 
= 3.93, p = 0.14).   

The interaction between insulin pump status, diabetic membership, and change from pre to 

post-stressor on Trails was not significant, F(1,21) = 1.75, p = 0.20, ηp
2 
= 0.08. Because the 

theoretical significance of insulin pump status on cognitive abilities is unknown, insulin pump 

factor was removed from the model as recommended by Aiken and West (1991, p. 105).  

Following the removal of the between-subjects factor (e.g., insulin pump status), a 2 X 3 

related measures ANOVA was performed on pre- and post-stressor Trails scores with diabetic 

membership as the three-level repeated measures factor (diabetic, yoked control 1, yoked control 

2). A planned contrast assessed the interaction between change in performance from pre- to 

post-stressor tasks and the contrast of diabetic membership (e.g., contrast of diabetic participant 

vs. the average of the two yoked controls), which tests the hypothesis that diabetics and yoked 

controls differ in their change in Trails performance from pretest to posttest (see Table 3 for 

depiction of study design and planned contrasts). There was no violation of homogeneity of 

variance (Fmax = 2.92) or sphericity (W = .90; χ
2 
= 2.23, p = .32). There was a significant 

interaction between diabetic membership and change on Trails from pre to post, F(1,22) = 4.75, p 

= .04, ηp
2 
= .18 (see Figure 5). As expected, the post-test Trails D test was more difficult than the 

pretest Trails B test. Pairwise comparisons revealed that the control participants took more time 

to complete the post-stressor Trails than the pre-stressor Trails (MD
7
 = .35, SE = .08, t = 4.26, p 

= .0001), whereas the time it took diabetic participants to complete Trails did not differ from pre to 

post (MD = 0.15, SE = .09, t = 1.74, p = .10).  

                                            
7
 MD = Mean Difference 
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Stroop. A 2 X 3 X 2 mixed related-measures ANOVA was performed on transformed pre- 

and post-stressor Stroop interference scores with insulin pump usage as the two-level between 

subjects factor (cluster with a diabetic on an insulin pump versus cluster with a diabetic not on an 

insulin pump) and diabetic membership as the three-level repeated measures factor (diabetic, 

yoked control 1, yoked control 2). There was no violation of homogeneity of variance (Fmax = 2.08) 

or sphericity (W = .97; χ
2 
= .67, p = .72).   

There was a significant interaction between insulin pump status, diabetic membership, and 

change from pre to post-stressor on Stroop interference task, F(1,21) = 6.68, p = .02, ηp
2
= .24 

(see Figure 6). Follow-up related measures ANOVAs were carried out separately at each of the 

two levels of the insulin pump factor (i.e., has insulin pump vs. does not have insulin pump).  

For clusters in which the diabetic participant was on an insulin pump, there was no violation 

of homogeneity of variance (Fmax = 1.42) or sphericity (W = .85; χ
2 
= 1.82, p = .40). A planned 

contrast assessed the interaction between change in performance from pre- to post-stressor 

tasks and the contrast of diabetic membership (e.g., contrast of diabetic participant vs. the 

average of the two yoked controls), which tests the hypothesis that diabetics and yoked controls 

differ in their change in Stroop performance from pretest to posttest (see Table 3 for depiction of 

study design and planned contrasts).There was a significant interaction between diabetic 

membership and change on pre-stressor Stroop interference to post-stressor interference, 

F(1,12) = 8.52, p = 0.01, ηp
2 
= .42 (see Figure 6). Pairwise comparisons of pre- versus post-

stressor scores revealed that the performance did not change from pretest to posttest for control 

participants (MD = 3.35, SE = 3.27, t = 1.02, p = .32)
8
. For diabetic participants, there was a trend 

toward an improvement in Stroop performance from pre to post- stressor (MD = -3.15, SE = 1.73, 

t = -1.82, p = .09).  

For clusters in which the diabetic participant was not on an insulin pump, there was no 

violation of homogeneity of variance (Fmax = 2.08) or sphericity (W = .86; χ
2 
= 1.17, p = .56). The 

interaction between diabetic membership contrast (diabetic vs. average of two yoked controls), 

                                            
8
 MD= mean difference of pre-stressor score minus post-stressor score, negative MD reflects 

improvement on Stroop task from pre to post-stressor administration. 
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and change from pre to post-stressor on the Stroop interference score was not significant, F(1,9) 

= 1.12, p = .32, ηp
2 
= .11.   

COWAT. A 2 X 3 related-measures ANOVA was performed on pre- and post-stressor 

COWAT scores with diabetic membership as the three-level repeated measures factor (diabetic, 

yoked control 1, yoked control 2). There was no violation of homogeneity of variance (Fmax = 1.81) 

or sphericity (W = .91; χ
2 
= 1.97, p = .37).  

The planned comparison of the interaction between diabetic membership contrast (diabetic 

vs. average of two yoked controls), and change from pre to post-stressor on COWAT was not 

significant, F(1,22) = .59, p = .45, ηp
2 
= .03. 

RVLT. A 2 X 3 related measures ANOVA was performed on transformed pre- and post-

stressor RVLT scores (Pre-stressor = Trial 5, Post-stressor= Delayed Recall Trial) with diabetic 

membership as the three level repeated measures factor (diabetic, yoked control 1, yoked control 

2). There was no violation of homogeneity of variance (Fmax = 1.23) or sphericity (W = .90; χ
2 
= 

2.23, p = .33). The planned comparison of the interaction between diabetic membership contrast 

(diabetic vs. average of two yoked controls), and change from pre to post-stressor on RVLT was 

not significant, F(1,22) = .66, p = .43, ηp
2 
= .14. 

SAAT. A 2 X 3 related measures ANOVA was performed on pre- and post-stressor SAAT 

scores with diabetic membership as the three level repeated measures factor (diabetic, yoked 

control 1, yoked control 2). There was no violation of homogeneity of variance (Fmax = 1.43) or 

sphericity (W = .99; χ
2 
= .17, p = .92). The planned comparison of the interaction between diabetic 

membership contrast (diabetic vs. average of two yoked controls), and change from pre to post-

stressor on SAAT was not significant, F(1,21) = .06, p = .80, ηp
2 
< .01. 

Post-hoc comparisons of participants with T1DM on and off an insulin pump. 

Current and childhood family income. Given the theoretical significance of socioeconomic 

status to insulin pump use, post-hoc comparisons were made to assess differences in childhood 

family income and current household income between diabetic participants using and not using 

an insulin pump. No differences were observed in current household income for diabetic 

participants using a pump (M = 1.85, SD = 1.28) compared to diabetic participants not using a 
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pump (M = 2.10, SD = 1.85, t = 0.39, p = .70). However, diabetic participants not using an insulin 

pump (M = 2.70, SD = 1.57) reported lower childhood family income compared to diabetic 

participants using an insulin pump (M = 5.31, SD = 1.44, t = -4.15, p < .001).   

 DASS stress score. Given the theoretical significance of reductions of sources of stress 

to insulin pump use, post-hoc comparisons were made to assess differences in DASS stress 

score between diabetic participants using a pump and not using an insulin pump. Diabetic 

participants using an insulin pump reported higher levels of perceived stress on the DASS (M = 

7.64, SD = 3.64) compared to diabetic participants not using an insulin pump (M = 4.40, SD = 

3.41, t = -2.10, p = .05). 
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DISCUSSION 

The purpose of the present study was to examine differences between young adults with T1DM 

and matched non-diabetic peers with regard to neurocognitive and hormonal stress reactivity. 

Based on previous literature, it was hypothesized that compared to matched peers, young adults 

with T1DM would demonstrate a dysregulated cortisol reaction (i.e., hyper or hypo response) in 

response to an interpersonal stressor. Likewise, it was hypothesized that compared to matched 

peers, young adults with T1DM would demonstrate a relatively greater decline in neurocognitive 

functioning across the same interpersonal stressor.  

Summary of Findings 

 Cortisol reactivity. The results of the present study provide mixed support for the above 

hypotheses. With regard to cortisol reactivity (as measured by AUCi), differences between young 

adults with and without T1DM were dependent on whether the young adult with T1DM was using 

an insulin pump. Specifically, young adults with T1DM using an insulin pump did not differ from 

matched peers without T1DM. In contrast, young adults with T1DM not using an insulin pump 

demonstrated greater cortisol reactivity compared to matched peers without T1DM.  

When examining only participants with T1DM (the reasons for which are discussed at length 

in a later section) there was a trend for those using an insulin pump to exhibit lower cortisol 

reactivity than those not on a pump. There was no statistically significant difference between 

young adults with and without T1DM with regard to total cortisol hormonal output (as measured 

by area under the curve with respect to ground) across the interpersonal stressor task. 

Neurocognitive reactivity. With regard to neurocognitive changes across the interpersonal 

stressor task, findings were dependent on the specific task. On a measure of attention and 

processing speed (i.e., Trail Making Test, or TMT; Lezak et al., 2012), young adults with and 

without T1DM demonstrated distinct patterns of neurocognitive stress reactions. It was 

hypothesized that individuals with T1DM would show greater decline from pre to post stressor 

performance. However, the performance of young adults with T1DM on the TMT was not 

statistically different from pre to post stressor performance whereas young adults without T1DM 

demonstrated a decline in performance from pre to post stressor administration. On a measure of 
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cognitive interference, or one’s ability to inhibit an overly learned response in favor of a new one 

(the Stroop Task; Lezak et al.), differences in performance from pre to post stressor task between 

young adults with and without T1DM were dependent on insulin pump usage. Young adults with 

T1DM not using an insulin pump did not differ from matched peers without T1DM in performance 

across pre to post stressor administration of the Stroop. In contrast, young adults with T1DM 

using an insulin pump differed from matched peers without T1DM in their performance from pre to 

post-stressor administration of the Stroop. Young adults with T1DM using an insulin pump slightly 

improved across the stressor task whereas matched peers without T1DM remained stable. No 

other differences emerged for all other indicators of cognitive performance. 

Interpretation of Cortisol Reactivity Findings 

Collectively, these results add to an emerging body of literature suggesting an exaggerated 

cortisol reaction in response to psychological stressors in individuals with T1DM. There are 

several theoretical lenses through which the present findings can be interpreted. The present 

discussion will focus on two: exacerbation of pathophysiological underpinnings inherent in T1DM 

and the influence of socioeconomic status (SES) on health disparities. 

Exacerbation of pathophysiological underpinnings inherent in T1DM. As previously 

reviewed in the introduction, past research has generally demonstrated chronic hyperactivity of 

the HPA-axis in T1DM (Roy et al., 1990; Roy et al., 1998; Roy et al., 1993), which may be due, in 

part, to repeated episodes of hypoglycemia, exogenous administration of insulin, prolonged 

stress from the management of a chronic illness, or a combination of such factors (Cryer, 2002; 

Wasserman & Trifonova, 2006). However, only a handful of studies have explicitly examined 

cortisol stress reactions in response to psychological stress in T1DM (e.g., Delamater et al. 1988; 

Dutour et al., 1996; Wiesli et al., 2005), none of which have made comparisons of individuals with 

T1DM to a non-diabetic control group.
9
  

                                            
9 Dutour et al. (1996) had a group of non-diabetic fourth-year medical students as participants; 
however, no statistical comparisons were made between the non-diabetic group and the groups 
with T1DM. Moreover, the non-diabetic group were not matched to the groups with T1DM on any 
variables and were of different educational backgrounds, different age ranges, and did not 
experience the same stressor task. 
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Blood glucose control. Of the three studies that have examined cortisol reactivity in 

response to psychological stressors in T1DM (e.g., Delamater et al. 1988; Dutour et al., 1996; 

Wiesli et al., 2005), the strongest support for dysregulation (i.e., attenuated or exaggerated 

response to stress) of the cortisol stress response comes from the work of Dutour and 

colleagues. When comparing participants with T1DM on the basis of “brittle” versus “stable” 

T1DM,
10

 Dutour et al. observed an exaggerated cortisol response in participants with “brittle” 

T1DM. Despite study limitations described in the introduction, Dutour et al. provides support for 

an exaggerated cortisol reaction to psychological stressors in T1DM and suggests that such 

dysregulation is due to unstable blood glucose control. The present study did not directly assess 

blood glucose control (i.e., did not measure HbA1c); however, assuming insulin pump use may 

act as an indicator of blood glucose control (see section below for review of insulin pump use), 

the present findings are consistent with Dutour et al. in that an exaggerated cortisol response was 

observed in young adults with T1DM who do not use insulin pumps when compared to two 

different groups: matched peers without T1DM and young adults with T1DM who use an insulin 

pump. In contrast, no difference in cortisol reactivity was observed between young adults with 

T1DM who use insulin pumps and matched peers.  

Insulin pump usage. Given the centrality of insulin pump use to the present findings, a 

brief review of the mechanism of action and associated benefits of insulin pump therapy is 

provided. Insulin pump therapy, or continuous subcutaneous insulin infusion (CSII), mimics 

insulin-delivery patterns of individuals without diabetes (for a review see Pickup, 2012). The 

mechanism by which CSII improves blood glucose stability is through the use of more rapid-

acting insulin compared to the insulin prescribed in standard multiple daily injections (MDI). 

Rapid-acting insulin has a much lower variation of absorption (±3%) compared to long-lasting 

insulin (±50%, Pickup). Lower variation of absorption reduces wide swings in blood glucose levels 

as well as severe episodes of hypoglycemia.  

                                            
10

 Brittle diabetes was defined by Dutour et al. as number of hypoglycemic evens (>10 per month) 
and hyperglycemic peaks requiring the addition of rapid insulin (>20) per month. 
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There are numerous brands and types of insulin pump therapy devices, which vary in 

which technological features are incorporated into the basic CSII design. One general class that 

is gaining in popularity is sensor-augmented pump therapy (SAPT), which incorporates CSII with 

a continuous blood glucose monitoring device (CMD).
11

  A recent meta-analysis by Yeh et al. 

(2013) concluded that the benefit (i.e., better blood glucose stability, avoidance of severe 

hypoglycemia, patient satisfaction) of insulin pump therapies appears dependent on several 

factors: the type of device (stronger benefit from SAPT compared to CSII alone), age of patient 

(children and adults generally benefit more from CSII compared to adolescents), and patients’ 

blood glucose control prior to pump initiation (patients with poorer pre-pump control see largest 

improvement).  

A burgeoning literature has also suggested that insulin pump therapy may be associated 

with benefits beyond improved blood glucose control such as improved dietary habits (e.g., 

Markowitz et al., 2013; Peters et al., 2013). Research concerning other benefits such as improved 

quality of life has been inconclusive and largely anecdotal (e.g., Hirose, Beverly, & Weinger, 

2012; Pickup, 2012); however, one randomized clinical trial has reported a wide range of quality 

of life improvements with the strongest improvements in diabetes-specific quality of life domains 

such as decreased fear of hypoglycemia (e.g., Rubin, Peyrot, STAR 3 Study Group, 2012). 

Mechanisms by which insulin pumps may influence cortisol stress reactivity. In the 

present study, an exaggerated cortisol response was observed for young adults with T1DM not 

using insulin pumps (compared to matched peers as well as young adults with T1DM using 

insulin pumps), whereas no difference was observed between young adults with T1DM using 

insulin pumps and matched peers. This finding is suggestive that use of insulin pump therapy 

may be beneficial to other endocrine systems beyond glucose control, such as the HPA axis. 

Insulin pumps may impact cortisol stress reactivity by decreasing the intensity and frequency of 

both physiological and psychological stressors. Prolonged or frequent episodes of hypoglycemia 

                                            
11

 Continuous monitoring devices (CMD) are also available as a stand-alone device and function 
by providing near continuous monitoring of blood glucose levels some of which are able to alert 
users when blood glucose levels deviate outside of a specified range (for more extensive 
description see Yeh et al, 2013; Wagner, Tennen, & Wolpert, 2012).  



49 

and administration of insulin are known to trigger the HPA-axis (Cryer, 2002; Weinger & 

Jacobson, 1998). By stabilizing blood glucose levels, insulin pumps allow for avoidance of severe 

hypoglycemic episodes, which would suggest that the HPA-axis is also less frequently stimulated. 

Less frequent stimulation of the HPA-axis would likely reduce allostatic load, the chronic wear-

and-tear of chronic activation of natural physiological responses to stress, and lead to 

improvements across numerous physical and psychological health conditions attributed to the 

accumulated effects of allostatic load (McEwen & Gianaros, 2010).
12

 Similar to the hypothesized 

causal relationship between HPA-axis perturbations and development of Type 2 Diabetes Mellitus 

(Rosmond, 2003), exaggerated cortisol stress responses may act to exacerbate the 

pathophysiological mechanisms inherent in diabetes (Reagan, Grillo, & Piroli, 2008). For these 

reasons, improved regulation of the HPA-axis may have reciprocal influences on blood glucose 

control in young adults with T1DM. 

In addition to a direct physiological reduction in HPA-axis stimulation, insulin pumps likely 

affect HPA-axis functioning through a reduction in exposure to daily hassles, reduction in health-

related anxieties, and promotion of more adaptive coping. Illustratively, in a randomized clinical 

trial comparing improvement in quality of life between patients receiving sensor-augmented 

insulin pump therapy (SAPT) or multiple daily injections (MDI), individuals assigned to SAPT 

reported substantial reductions in hypoglycemia fear, hypoglycemia-avoidant behavior, treatment 

problems, blood glucose monitoring burden, interference in daily activities, diabetes worries, and 

psychological well-being after one year (Rubin et al., 2012). Collectively, these improvements 

may reflect a reduction of diabetes-related daily hassles and anxieties with concomitant benefits 

to the HPA-axis.  

Accumulation of minor daily hassles can exert a powerful negative effect on health and well-

being (e.g., Almeida, 2005; Cohen, Gunthert, Butler, O’Neil, & Tolpin, 2005; DeLongis, Coyne, 

                                            
12

 One determinant of the direction of cortisol reactivity dysregulation (i.e., exaggerated or 
attenuated) caused by allostatic load is the underlying pathophysiology of co-morbid diseases 
(Miller, Chen, & Zhou, 2007). Hypo-cortisolism in Addison’s disease versus hyper-cortisolism in 
Cushing’s syndrome represent most extreme example of this continuum of potential 
dysregulation.  
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Dakof, Folkman, & Lazarus, 1982; Zautra, 2003). Although less is known about hassles and 

cortisol relations in diabetic populations, there is evidence that greater daily hassles may be 

associated with perturbations in the cortisol response to psychological stressors with studies 

reporting both attenuated (e.g., Roy, 2004) and exaggerated (e.g., Peters, Godaert, Ballieux, & 

Heijnen, 2003) cortisol response in healthy adult males. According to the cognitive appraisal 

model of stress (Lazarus & Folkman, 1984), how a given hassle or stressor influences health is 

determined by the perception of the event (i.e., to what extent the event is perceived as 

exceeding the individual’s resources or capacities). The appraisal of an event will then determine 

both physiological disturbance (i.e., activation of physiological stress response) as well as 

engagement in specific coping strategies (e.g., avoidance versus approach). Specific cognitive 

processes can alter the perception of a threat. In a recent meta-analysis, Denson, Spanovic and 

Miller (2009) observed that anxious thought processes (i.e., rumination and uncontrollable 

repetitive thoughts) were associated with exaggerated cortisol response to psychological 

stressors. Similarly, ruminations over diabetes-specific worries (e.g., fear of hypoglycemia) likely 

lead to exaggerated cortisol response for young adults with T1DM. The present study did not 

measure frequency of daily hassles, however, young adults with T1DM using an insulin pump 

reported greater perception of stress compared to young adults with T1DM not using an insulin 

pump. This is somewhat inconsistent with the above hypothesis that insulin pumps may confer 

benefits through a reduction of daily hassles associated with diabetes management.  However, 

reduction of daily hassles specifically associated with diabetes may reduce activation of the HPA-

axis independent of reducing overall perception of stress across domains of life. In a large-scale 

randomized clinical trial comparing quality of life improvements after one-year of insulin pump 

therapy versus multiple daily injection,
13

 Rubin and colleagues observed significant improvements 

in diabetes-related quality of life related to insulin pump use, but did not observe differences in 

general quality of life across mental and physical domains. Given that the current study did not 

                                            
13

 n = 334 adults with T1DM, n = 147 children/adolescents, n = 147 parents 
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assess daily hassles (general or diabetes-specific) or the perception of diabetes-specific stress, 

the independence of global versus diabetes specific stressors on the HPA-axis is speculative. 

The cognitive appraisal model of stress argues that specific coping strategies influence 

engagement in adaptive or maladaptive health behaviors (Lazarus & Folkman, 1984) in response 

to perceived stressors. Coping strategies can be conceptualized along a continuum of “approach” 

versus “avoidance,” with approach strategies generally thought to reflect a more adaptive coping 

compared to avoidance strategies (Wilkinson, Walford, & Espnes, 2011). The way in which 

individuals T1DM appraise and cope with stressors appears to influence metabolic control with 

greater negative appraisals of stressors and more use of avoidance coping strategies found in 

adolescents with T1DM with “poor” metabolic control (as defined by HbA1c  levels) compared 

with those with “good” metabolic control (Delamater, Kurtz, Bubb, White, & Santiago, 1987). In a 

5-year longitudinal study, Sultan, Epel, Sachon, Vaillant, and Hartemann-Heurtier (2008) found 

that baseline use of adaptive coping strategies in adults with T1DM (i.e., greater use of approach 

strategies) predicted decreases in state anxiety and better blood glucose control five years later. 

Engagement in insulin pump therapy may facilitate more adaptive coping strategies allowing for 

greater engagement in adaptive health behaviors as reflected by improved dietary habits 

following insulin pump therapy initiation (e.g., Markowit et al., 2013; Peterset al., 2013). However, 

given that the present study did not assess coping strategies, the above interpretation is 

speculative. 

 The influence of socioeconomic status on health disparities. Living in low 

socioeconomic conditions exposes individuals to numerous sources of chronic stress such as 

poor housing and neighborhood quality, pollutants and toxins, crowding and congestion, and 

noise exposure (for a review see Evans & Kim, 2010). Growing up with lower socioeconomic 

resources exerts powerful effects on later adult health outcomes, above and beyond the effects of 

current, adult SES (for a review see Cohen, Janicki-Deverts, Chen, & Matthews, 2010). McEwen 

and Gianaros (2010) argue that the association between low SES and poorer health outcomes 

may be due to accelerated allostatic load (McEwen, 1998). In support of the allostatic load 

hypothesis, lower SES has been associated with indicators of accelerated aging across both 
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peripheral and central biological systems including cerebral, autonomic nervous system, 

cardiovascular, metabolic, and immune functioning (for reviews see McEwen & Gianaros, 2010; 

Seeman, Epel, Gruenewald, Karlamangla, & McEwen, 2010). While lower SES has been 

repeatedly associated with cortisol perturbations, no consistent direction of dysregulation (e.g., 

blunted versus exaggerated) has been observed (for a review see Dowd, Simanek, & Aiello, 

2009). As detailed by Miller, Chen, and Zhou (2007), chronic stress can lead to either elevated or 

suppressed HPA-axis activity with pathological consequences resulting from deviations in either 

direction. The authors argue that the direction of cortisol deviation following exposure to chronic 

stress is influenced by multiple stressor-specific factors: time since onset, required adaptational 

demands, induced emotions, controllability, and psychiatric (e.g., effects of stress-induced 

depression versus stress-induced PTSD).   

The relatively higher SES of insulin pump users may provide greater resources (both 

physiological and psychosocial) with which individuals can cope with stress as well as fewer 

sources of stress, which may protect against chronic stimulation of the HPA-axis above and 

beyond the direct impacts of insulin pump therapy. The annual, national cost associated with 

T1DM is estimated at $14,926 billion dollars with an annual per person cost of $14,856 (Dall et 

al., 2009). These costs are disproportionately felt by under- or non-insured families.
14

  These 

families not only bear a higher percentage of costs, but are also unable to take advantage of 

third-party fee negotiations (for a more detailed discussion see Dall et al., 2009). Low SES has 

been observed to negatively influence metabolic control (for a review see Seeman et al., 2010). 

Within a pediatric T1DM specialty clinic, Hassan, Loar, Anderson, and Heptulla (2006) found 

worse blood glucose control, less likelihood of engagement in intensive treatment (i.e., intensive 

MDI or insulin pump therapy), and greater likelihood of depression in patients growing up in lower 

SES relative to more affluent patients.  

                                            
14

 According to the Juvenile Diabetes Research Foundation (Spain, 2008), insulin pump devices 
cost, on average $5,000 with basic supplies costing $100 per month and reimbursement of costs 
is variable across insurance providers, although most plans cover pump associated costs. 
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Within the present study, post-hoc analyses revealed that young adults with T1DM using 

an insulin pump reported higher childhood family income compared to young adults with T1DM 

not using an insulin pump. As suggested by Hassan et al. (2006) there are at least two possible 

mechanisms explaining the observed difference in economic status and insulin pump use in the 

present study: the direct effects of health care access disparity and the indirect effects associated 

with low SES (e.g., less frequent self-monitoring, less diabetes knowledge, reduced self-efficacy; 

Chaturvedi, Stephenson, & Fuller, 1996) leading to poor candidacy for insulin pump therapy.  

Interpretation of Neurocognitive Reactivity 

The present research was the first known study to examine neurocognitive stress reactivity in 

T1DM, the results of which suggest a differential response in young adults with T1DM compared 

to matched non-diabetic peers dependent on specific cognitive tasks. Due to the distinct functions 

represented by tasks used in the present study, the discussion of findings is organized by 

domains of neurocognitive functioning assessed in the present study. 

 Sympathetic nervous system facilitation of attention and processing speed. On a 

measure primarily reflecting attention and processing speed (i.e., Trail Making Test, TMT), the 

performance of young adults with T1DM remained stable whereas the performance of matched 

peers without T1DM tended to worsen following an interpersonal stressor. This may reflect 

differences in stress responses not assessed by the present study, such as activation of the 

sympathetic nervous system (SNS). Given that the present study did not assess markers of SNS 

activation, the interpretation provided below is thus theoretical with regard to explaining the 

current findings. Activation of the SNS can disrupt or facilitate the “attentional matrix” through 

global mechanisms of catecholamines on cerebral glucose and oxygen perfusion rate (i.e., 

combined top-down modulation from frontal, parietal, and limbic systems and bottom-up 

regulation from ascending reticular activating system; Mesulam, 2000). The effects of SNS 

stimulation are considered to reflect the general Yerkes-Dodson curvilinear theory of arousal such 

that too little or too much activation results in disrupted attention whereas moderate activation 

results in improved attention (see Mendl, 1999). While speculative, differences between the 

performance of young adults with and without T1DM on the TMT may reflect different thresholds 
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at which SNS increase occurs. Despite chronic SNS tonal over-activation, a blunted epinephrine 

response to hypoglycemia and other physical stressors has been repeatedly observed (see 

Cryer, 2009) and is thought to be due to desensitization of components of the SNS (i.e. 

noradrenergic system; see Parekh, 2009). The potentially lethal effect of this has been noted in 

regard to responding to episodes of hypoglycemia (i.e., hypoglycemia unawareness). Such 

chronic tonal activation of SNS combined with reduced sensitivity of the SNS may result in a 

relative flat of attentional response during times of mild stress.  

No differences were observed on the Sustained Attention Allocation Task, which is 

thought to reflect both sustained attention and working memory; however, given a lack of reports 

of normative data, test-retest reliability or cross-validation with other established measures of 

sustained attention, it is unclear what specific neuropsychological functions this task measures 

(e.g., Lawrence, Ross, Stein, 2002; Petrie & Deary, 1989; Warburton & Mancuso, 1998; Wesnes 

& Warburton, 1984). Further, should T1DM confer a relative attentional benefit during acute 

stress, this benefit would not necessary translate to the SAAT given the high degree of working 

memory (generally reflective of frontal-system control, see Mesulam, 2000) demands of this task.  

Curvilinear effect of cortisol and differential effects on verbal learning, memory 

and fluency. The present study did not observe differences in performances on tests of verbal 

learning and memory (RVLT) or verbal fluency (COWAT) between participants with and without 

T1DM. Neuroanatomically, verbal memory consolidation and retrieval is thought to rely on medial 

temporal lobes with a primary role played by hippocampal systems (for a review see Mesulam, 

2000). Verbal fluency tasks (e.g., COWAT) require rapid retrieval of semantic information and are 

thought to be dependent on both hippocampal (retrieval of verbal information) and frontal systems 

(working memory; see Strauss et al., 2006). These null findings may be, in part, due to a 

curvilinear effect of cortisol on learning and memory, as well as executive functions such as 

working memory (see Lupien et al., 2007). While the current study was not designed to assess a 

mediational effect of cortisol on neurocognitive stress reactivity (i.e., due to lack of statistical 

power), a consideration of the general curvilinear effect of cortisol on neurocognition provides a 

useful lens through which to consider the present null findings.  
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Exogenously administered corticosteroids exhibit a curvilinear dose-dependent effect on 

domains of neurocognitive functioning associated with brain regions with a high density of 

glucocorticoid receptors (i.e., frontal lobe and hippocampus), with frontal systems being relatively 

more sensitive compared to hippocampal systems.
15

  Low levels of glucocorticoid administration 

confer a neurocognitive benefit with these domains of cognition while higher doses impair these 

functions (Lupien,Gillin, & Hauger, 1999; Lupien et al., 2002, Lupien, Wilkinsons, et al., 2001). 

The curvilinear effect of glucocorticoids is also reflected by the meta-analytic finding that the 

cognitive effects of glucocorticoids are dependent on time of day (Het, Ramlow, & Wolf, 2005). 

When administered in the morning, when endogenous cortisol levels are highest, exogenous 

administration generally inhibits cognitive processes. In contrast, when administered in the 

afternoon, when endogenous cortisol levels are generally at a nadir, exogenous administration of 

glucocorticoids generally facilitates cognition.  

Studies of stress-induced endogenous release of cortisol are inconsistent with regard to 

cognitive domains impaired by psychological stressors and the role of cortisol in producing such 

deficits. In cases of extreme stress during which very high levels of endogenous cortisol are 

released, the relationship between elevated cortisol and cognitive impairment appears more 

readily detected (e.g., Taverniers et al., 2010, Taverniers, Taylor, & Smeets, 2011). Findings from 

laboratory-based studies using more mild psychological stressors stimuli similar to that of the 

present study have been mixed with some studies observing impairments (e.g., Al’Absi, Hugdahl, 

& Lovallo, 2002), some failing to observe impairments (e.g., Hoffman & al’Absi, 2003), and others 

observing impairments in select domains (e.g., Bohnen et al., 1990; Kulmann et al., 2005). 

Moreover, elevated cortisol reactivity in response to stress has been associated with both 

improved cognitive functioning (e.g., Myer, Smeets, Giesbrecht, Quaedflieg, & Merckelbach, 

                                            
15

 As reviewed by Lupien et al. (2007), a primary mechanism by which acute glucocorticoid 
administration is thought to influence neurocognitive functioning is through differential actions on 
glucocorticoid receptors and the relative distributions of each receptor type across distinct 
neuroanatomical regions. Specifically, cognitive functions are theorized to be enhanced when 
mineralocorticoid receptors (MR) are saturated, but glucocorticoid receptors (GR) are minimally 
activated, resulting in a high MR/GR activation ratio. In contrast, cognitive functioning is thought 
to be impaired when MR/GR activation ratio is low.  
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2013) as well as impaired performance (e.g., Al’Absi et al., 2002). Inconsistency in these findings 

is likely due to differential effects of mild increases of cortisol dependent on time of day (e.g., Het 

et al., 2005). 

Within the present study, it was hypothesized that participants with T1DM would exhibit a 

greater decline in neurocognitive performance following an interpersonal stressor when compared 

to matched peers. Notably, the present study took place during the afternoon to facilitate 

capturing cortisol stress reactivity; however, stressors occurring during the afternoon, when 

cortisol levels are at a nadir, do not consistently impair neurocognitive processes thought to be 

most sensitive to the effects of cortisol reactivity (learning, memory, and working memory; e.g., 

Hoffman & al’Absi, 2004; Myer, et al., 2013). It is possible that overall cortisol levels stayed within 

a range that would impair or facilitate neurocognitive functioning in an equitable fashion across 

participants with and without T1DM. This is supported by the lack of statistical differences 

observed in overall cortisol output (AUCg) between participants with and without T1DM. It is also 

possible that divergent patterns of cortisol reactivity produced similar of changes in 

neurocognitive functioning reflective of the curvilinear effect of cortisol. Participants with T1DM 

that were not on an insulin pump were found to have elevated cortisol reactivity compared to 

matched peers. Within this group, both high and low cortisol responses could have, theoretically 

led to a similar pattern of neurocognitive decline reflective of over and under saturation of cortisol 

receptors. Likewise, participants with T1DM treated with an insulin pump did not statistically differ 

from matched peers in terms of cortisol reactivity, which would also be theoretically consistent 

with a similar neurocognitive pattern on these tests. Collectively, the above interpretations, while 

supported by theory and previous research, were not directly assessed within the present study 

and are solely speculative in nature. 

Significant differences on performance of the Stroop tasks were observed between young 

adults with and without T1DM that were dependent on whether the young adult with T1DM was 

using an insulin pump. The Stroop task is dependent on frontal systems and thus may be 

vulnerable to cortisol reactivity. However, interpreting the findings from the Stroop task through 

the lens of cortisol reactivity is somewhat more difficult in that the performance of young adults 
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with T1DM not using an insulin pump was not different from matched peers, and neither group 

demonstrated significant change across the stressor. While young adults with T1DM using an 

insulin pump generally improved across the stressor compared to matched peers, it is unclear to 

what extent this improvement can be explained by differences in cortisol as these relationships 

were not originally hypothesized within the present study and not directly assessed. Further, no 

significant differences between the cortisol reactivity of participants with T1DM on an insulin 

pump and matched peers were observed. Performance patterns on the Stroop task may be better 

accounted for by other process described below.  

 Promotion of adaptive coping reflected by the Stroop task: Indirect benefits of 

insulin pumps.  Within the present study, young adults with T1DM on an insulin pump 

demonstrated a benefit from repeated exposure to the Stroop task whereas matched peers did 

not benefit from repetition. In contrast, young adults with T1DM not treated with an insulin pump 

did not statistically differ from matched peers in patterns of performance across administrations of 

the Stroop task. The current findings are suggestive that coping with T1DM within the context of 

adequate resources (assuming insulin pump therapy represents relative greater access to 

resources) may confer specific cognitive benefits during subsequent stressful experiences, which 

then reciprocally facilitate contextually adaptive and flexible responding. 

Performance on the Stroop task requires management of dual task demands of goal maintenance 

simultaneous with inhibiting habitual responding. While the translation of cognitive abilities 

represented by neuropsychological tasks to real-life situations remains uncertain (for a discussion 

see Marcotte & Grant, 2009), the specific cognitive abilities represented by the Stroop task 

appear uniquely suited to promote a more flexible response to stress (i.e., inhibiting an 

overlearned response) while facilitating goal achievement (i.e., maintaining focus on goal).  

One lens through which to view these findings is that coping with the stress of a chronic 

illness, such as T1DM, with adequate internal and external resources may lead to an inoculation 

effect against future stressors. The concept of stress inoculation is related to that of resilience, 

but focuses on a process by which repeated stress exposure may facilitate adaptive responses to 

future stressors (for a review see Luecken, Roubinov, & Purdom, 2011). One mechanism by 
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which exposure to repeated stressors may lead to adaptive coping strategies is suggested by 

Huether (1996; 1998) who argues that coping strategies that are adaptive are acquired through 

an alteration of controllable and uncontrollable stressors. Huether explains that the presentation 

of repeated controllable stressors aids to cement effective patterns of appraisals and coping 

through strengthening neuronal connections, whereas the presentation of uncontrollable 

stressors serves to help extinguish maladaptive patterns of coping and provides a necessary 

prerequisite for the reorganization of neuronal networks and behavioral patterns (through 

activation of the stress response).  

The bulk of the literature supporting stress inoculation effects comes from studies of 

rodents and nonhuman primates exposed to repeated mild stressors. Nonhuman primate models 

have been particularly useful in demonstrating the beneficial impact of mild/moderate stressors 

during early development on physiological and behavioral stress responses later in development 

(see Lyons & Parker, 2007 for a review). More recently, a cerebral benefit of stress inoculation 

has been observed as evidenced by increased ventromedial prefrontal cortex (Katz et al., 2009) 

as well as increased hippocampal neurogenesis (Lyons et al., 2010), areas involved in learning in 

memory. Support of stress inoculation in humans is more limited. The experience of mild stressful 

events in childhood has been associated with reduced cardiovascular reactivity to a laboratory 

stress test (Boyce & Chesterman, 1990) and the use of positive coping strategies in adulthood 

(Khoshaba & Maddi, 1999). Luecken (2002) and Luecken, Kraft, Appelhans, and Enders (2009) 

found that young adults who lost a parent in childhood and reported a warm relationship with their 

surviving parent had higher social support and smaller stress-related increases in negative 

emotion during daily life stressors than nonbereaved young adults who reported similarly caring 

relationships during childhood. Thus, successfully coping with a stressor early in life may 

enhance individuals' personal competence in coping and thus enable such individuals to appraise 

potential stressors as "challenges" instead of as "threats." 

 Enrollment in insulin pump therapy often requires intensive training not only on insulin 

pump use, but also on diabetes management in general as well as intensive physician monitoring 

during initial stages (Pickup, 2012). Engagement in insulin pump therapy appears to provide spill-
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over effects reflective of greater engagement in healthier behaviors such as improved diet 

adherence (e.g., Markowitz et al., 2013; Peters et al., 2013) and improvements in quality of life 

(e.g., Rubin et al., 2012). Collectively, these insulin pump “extras” may provide young adults with 

T1DM effective coping skills to successfully manage T1DM. Successful management of T1DM 

may act to provide young adults with T1DM a sense of mastery not available to non-diabetic 

peers. This sense of mastery may then facilitate an approach to future stressors through the lens 

of a “challenge” rather than a “stressor,” which may translate into greater task engagement 

across the present study regardless of the presence of an interpersonal stressor. In contrast, 

matched peers without T1DM who likely have not benefited from such an inoculation, may view 

the post-stressor administration of tasks through the lens of a “stressor” rather than a “challenge,” 

and thus be less engaged in the task demands. Although we cannot rule out the possibility that 

peers without T1DM have not had life experiences that might cause an inoculation, the matching 

procedure used in the current study, successfully equated clusters of young adults with T1DM on 

an insulin pump and matched peers on maternal education, race/ethnicity, and childhood family 

income, which have been conceptualized as demographic indices of childhood stress (see Luthar 

& Zigler, 1991). Additionally, populations with chronic health conditions have been shown to 

experience a greater level of daily hassles, which were more strongly related to later health 

outcomes compared to major life events (DeLongis et al., 1982). 

Methodological Considerations When Interpreting Results 

Post-hoc analyses revealed a pattern of differential initial and peak cortisol levels that 

may have biased the present findings. Regardless of the mechanism by which differential initial 

and peak cortisol levels occurred, these differences may have influenced the present findings and 

a more in-depth discussion of these possible biases and associated implications is provided. 

Lower initial cortisol sample in participants with T1DM not using an insulin pump 

and differential peak cortisol between participants with and without T1DM. As detailed in 

the results section, initial cortisol levels were lower for participants with T1DM not using an insulin 

pump when compared to matched controls. In contrast, there was not a statistically significant 

difference between initial cortisol levels of participants with T1DM using an insulin pump and 
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matched controls. There was also not a significant difference in initial cortisol levels between the 

two control groups. Additionally, participants with and without T1DM differed in whether or not 

cortisol levels peaked at the first sample: a significantly greater proportion of control participants 

had a peak cortisol value at the first sampling period compared to the proportion of participants 

with T1DM who had a peak cortisol value at this sampling period. In contrast, a similar proportion 

of participants with T1DM with and without insulin pumps demonstrated a peak cortisol level at 

the initial sample period. There are two possible mechanisms by which such a pattern may have 

occurred: 1) differential impact of initial fingersticks among participants depending on level of 

familiarity with fingersticks, and 2) attenuated baseline cortisol levels in participants with T1DM 

not on insulin pumps.  

Possible differential experience of fingersticks. Although the experimental protocol 

was designed to offer a standardized interpersonal stressor experience, one interpretation of the 

above pattern of findings is that participants may have had differential reactions to the protocol. 

Specifically, one aspect of the protocol involved repeated fingersticks which may have been more 

aversive to those participants less familiar with daily blood glucose tests (i.e., non-diabetic control 

participants and potentially young adults with T1DM using insulin pump therapies). The current 

study did not sample salivary cortisol or assess positive or negative affect prior to initial finger-

stick blood spot screening. Therefore, the degree to which baseline cortisol patterns in all groups 

except participants with T1DM not using an insulin pump reflects anticipatory stress (e.g., 

anticipating a novel aversive stimuli) versus pain induction (through fingersticks) is uncertain and 

may reflect the influence of both. 

The influence of fingersticks on cortisol reactivity has not been directly examined; 

however, fingersticks likely represent a novel, aversive stimuli for finger-stick naïve individuals 

such as young adults without diabetes. The likelihood that fingersticks represent an aversive 

stimuli for insulin pump users is less clear due to the unknown frequency of finger-stick use within 

this sub-population of T1DM.
16

 Novel, aversive stimuli are well-known to activate the HPA-axis 

                                            
16

 Alternatives to finger-stick blood glucose monitoring are available. Insulin pump use does not 
eliminate the need for external blood glucose monitoring (some pumps lack monitoring devices 
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(for a review see Steckler, 2005). The heightened pain sensitivity found in the finger-tip (Schady, 

Torebjörk, & Ochoa, 1983) is suggestive that puncture of other less sensitive skin sites such as 

during venipuncture would provide an approximation of the potential effect of fingersticks on 

cortisol. Studies using a venipuncture-stressor paradigm have been found to elicit a cortisol 

response for some participants across genders and developmental periods (e.g., Hillman, Dorn, 

Loucks, Berga, 2011; Hubert, Möller, & Nieschlag, 1989; McCarthy et al., 2009; Sontag-Padilla et 

al., 2012; Susman, Dorn, Inoff-Germain, Nottelmann, & Chrousos, 1997). Application of a painful 

stimuli (e.g., cold pressor tasks) is generally shown to produce a more reliable activation of the 

sympathetic nervous system compared to HPA-axis activation (see Smeets et al., 2012), which 

would suggest that activation of the HPA-axis would be largely driven by anticipation of a finger-

stick rather than the physiological effect of pain induction. 

For individuals initially diagnosed with diabetes (both type 1 and type 2), the pain and 

discomfort of fingersticks are noted as a barrier to blood glucose monitoring (Cradock & 

Hawthorn, 2002). Fear of blood and injury are related both to less frequent blood glucose 

checking and poorer blood glucose control in adults with T1DM (Berlin et al., 1997). The aversive 

nature of fingersticks is also reflected by the burgeoning industry of devices that can provide 

accurate measurement of blood glucose at alternative, less painful sites such as the forearm 

(Lee, Weinert, Miller; 2002) and eliminate the need for skin puncture (e.g., mid-infrared 

spectroscopy measurement of skin glucose concentration, Pleitez et al., 2013). Although these 

findings indicate that individuals with T1DM are not immune to negative perceptions of 

fingersticks, it is plausible that a T1DM population not using insulin pump therapy may be more 

likely to have habituated to the pain and emotional distress of fingersticks compared to relatively 

                                                                                                                                  
and pumps with monitors require regular external calibration), however, the recommended 
frequency of external monitoring is “greatly reduced” when continuous blood glucose monitors 
(CMD) or devices that incorporate CMD such as sensor-augmented insulin pumps are used 
(Juvenile Diabetes Research Foundation, n.d.).  Additionally, socioeconomic disparities in health 
care access translate to greater use of more expensive, state-of-the-art disease management 
technologies such as insulin pumps and monitoring devices not dependent on fingersticks (Brown 
et al., 2004). 
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more finger-stick naïve populations. However, anxiety surrounding fingersticks was not assessed 

thus differential experiences of fingersticks is entirely speculative.  

Attenuated baseline cortisol levels in participants with T1DM not on insulin pumps 

potentially due to poorer metabolic control. An assumption implicit in the above interpretation 

regarding fingersticks is that the cortisol pattern from the first sampling period reflects elevated 

baseline cortisol within control participants and participants with T1DM using an insulin pump. 

However, if one assumes the reverse, that the cortisol pattern is reflective of attenuated baseline 

cortisol within participants with T1DM not using an insulin pump, a consideration of alternative 

interpretations is warranted. An attenuated baseline cortisol in participants with T1DM not using 

an insulin pump may reflect an altered diurnal rhythm in addition to exaggerated cortisol 

reactivity. Given that this study did not assess diurnal cortisol, this interpretation is extremely 

speculative. Moreover, this interpretation is not consistent with past research, which has found 

elevated morning and afternoon plasma cortisol and failure to suppress cortisol following 

administration of dexamethasone (reflective of negative feedback failure; Roy et al., 1990)
17

 and 

increased total 24-hour urinary-free cortisol output (Roy et al., 1998)
18

 within adults with T1DM 

compared to healthy controls. Another possible explanation is that participants with T1DM not 

using insulin pumps failed to demonstrate the normative anticipatory stress response that occurs 

on days in which individuals are anticipating a psychological stressor (e.g., Lovallo, Farag, & 

Vincent, 2010) due to psychological processes not assessed in the current study. Regardless of 

the mechanism, differences in baseline cortisol levels may have influenced the primary findings, 

and this will be explored below.  

Influence of differential initial and peak cortisol on cortisol reactivity. The precise 

nature of how such initial elevated cortisol levels prior to the experimental induction might 

influence observation of later cortisol reactivity is unclear. In healthy individuals, stress-induced 

                                            
17

 Average disease duration was 12.0 years (SD = 7.2). Disease duration was not correlated with 
plasma cortisol levels, but was correlated postdexamethasone plasma levels of cortisol collected 
on a different day (reflective of negative feedback failure).   

18
 Average length of duration of T1DM was 13.56 years. Increased urinary cortisol was related to 

longer disease duration and higher frequency of other diabetic complications. 
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hormonal activation should lead to rapid inhibitory feedback of glucocorticoids on the subsequent 

release of ACTH at the hypothalamic level, lasting between 5 to 15 minutes (Fulford & Harbuz, 

2005). Such rapid inhibitory feedback might then interfere or alter subsequent HPA-axis 

experimental activation. Additionally, given the temporal periodicity of possible stressors that 

participants could experience across the current study’s protocol (periodic fingersticks, cognitive 

testing, and interpersonal stressor), the HPA-axis of some control participants may have been 

periodically stimulated so as to maintain elevated levels of cortisol. A stress response would then 

be obscured by the fact that no “true” baseline cortisol value was obtained for most participants 

(i.e., on average, the first cortisol sample occurred 31.95 minutes after the initial screening finger-

stick, SD = 8.38).  Mathematically, should a person reach a maximum level of cortisol prior to 

experimental stress induction, repeated activation would not be apparent from the calculation of 

area under the curve with respect to increase given that reactivity is assessed from initial baseline 

sample.  

The influence of elevated initial cortisol levels may have influenced AUCi differently for 

high responding insulin pump users compared with control participants. Specifically, while insulin 

pump users also demonstrated an elevated initial cortisol level, they were no more likely to “peak” 

at this time point than participants with T1DM not using an insulin pump. In contrast, a greater 

proportion of control participants demonstrated a “peak” response at this initial sampling 

compared to participants with T1DM.  

Within control participants from the present study, the peak cortisol response at baseline 

appeared to influence control participants’ later cortisol responses in a variable manner. In 

examining individual plots of control participants’ raw cortisol values across participation, there 

appeared to be variability in subsequent cortisol levels. Specifically, of the 21 control participants 

who demonstrated peak cortisol levels at the first sampling period, the majority also demonstrated 

later fluctuations, with rising and falling cortisol levels (n = 13/21) although such fluctuations did 

not reach the initial peak level. A smaller percentage of control participants who peaked at the 

initial sampling period exhibited a continuous decline in cortisol levels (n = 8/21).  
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Effect of differential initial cortisol levels on neurocognitive stress reactivity. The 

influence of cortisol levels on neurocognitive processes was not part of the study design or 

analysis. However, a large literature documenting the effects of glucocorticoids on neurocognitive 

functioning (for a review see Lupien et al., 2007) suggests that point-to-point changes in cortisol 

not captured by AUCi may relate to performance on cognitive tasks at specific times during the 

protocol.  

Differential timing of cortisol increases may have obscured cognitive performances at 

baseline and post-stressor. Such interference may have eliminated or reversed differential 

patterns between participants with and without T1DM on tasks involving dependent on brain 

regions with greater glucocorticoid receptor densities (i.e., COWAT, RVLT, & Stroop task 

dependent on frontal and hippocampal systems). A larger proportion of the control participants 

demonstrated a peak cortisol level at the first sample and higher initial cortisol levels. These 

individuals may have benefited from this relatively higher level of cortisol during the first 

administration of the cognitive tasks, artificially boosting their pre-stressor baseline neurocognitive 

test performance. Viewed from this perspective, a relative worsening of performance following a 

stressor (i.e., lack of practice effect on the Stroop task) may reflect the impact of relatively 

decreasing cortisol levels later in the protocol (i.e., the other side of the curvilinear relationship 

between cortisol and cognition). In contrast, a smaller proportion of individuals with T1DM 

demonstrated a peak cortisol level at the first sample, and in general, demonstrated an increase 

in cortisol from the baseline levels, which may, in part, explain an improvement on the Stroop task 

for those individuals on insulin pumps.  

General Limitations 

In addition to the potential selection-history confound described above, several other 

factors complicate interpretation of the present findings. First, while the present study was 

designed to occur in the afternoon to best capture the effects of psychological stressors on 

cortisol response, such a time period likely hindered observing cognitive deficits due to stress as 

these impairments are best seen in the morning when cortisol levels are higher as previously 

described in great detail (Het et al., 2005). Second, while the number of participants with T1DM is 
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comparable to previous studies examining HPA-axis reactivity in T1DM, the size of the present 

sample was potentially underpowered to observe subtle cognitive deficits, which previous meta-

analyses have described as small in terms of effect size.  

A third limitation that also reduced power to observe subtle cognitive deficits was the use 

of cognitive tests that produced floor (most participants performing at very low levels) and ceiling 

effects (most participants performing at very high levels). Specifically, most participants learned 

and retained a large proportion of words from the word list learning task used (RVLT). While the 

RVLT is very sensitive in measuring verbal learning and retention in older populations, it is less 

sensitive with younger populations (Strauss et al., 2006). In contrast, most participants performed 

poorly on the sustained attention task used (SAAT). Specifically, few participants were able to 

correctly respond to many target stimuli without also responding to many distractor foils. The use 

of such insensitive cognitive tests further reduces statistical power to observe stress-induced 

deficits in cognitive performance. Fourth, while the current study did not assess pre-stressor 

cognitive deficits, an underlying theory on which hypotheses regarding neurocognitive stress 

reactivity were based was that stress-induction would exacerbate cognitive deficits in cognitively 

“vulnerable” populations. Previous meta-analyses have identified early disease onset (i.e., below 

age 7) as a risk factor in predicting cognitive deficits in T1DM (Gauderi et al., 2008); however, the 

present study sample contained very few participants diagnosed with T1DM at an early age.  

Fifth, the present study did not measure an objective indicator of blood glucose control 

(i.e., HbA1c) and did not obtain information concerning the type of insulin pump used by 

participants with T1DM. As previously stated, an assumption made in interpreting some of these 

findings is that participants on insulin pumps have better overall blood glucose control compared 

to participants not on an insulin pump; however, as previously reviewed, insulin pumps alone 

(without a continuous blood glucose monitoring component) have not reliably demonstrated better 

overall blood glucose control.  

Sixth, the present study used a sampling period of 20-minute intervals designed to 

capture the effects of the interpersonal stressor on salivary cortisol. These sampling intervals are 

likely too long to accurately capture blood glucose changes. Blood glucose reactivity and output 
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were not related to cortisol outcomes, which likely reflects differential timing of the stress 

response for blood glucose and salivary cortisol. Changes in blood glucose can occur very rapidly 

and sampling periods of 1-5 minutes have been suggested to best capture metabolic reactions 

(Wagner, Tennen, & Wolpert, 2012).  

Seventh, the index used in the present study to capture cortisol reactivity (i.e., AUC i) is a 

summary indicator of HPA-axis reactivity. AUCi was used in the present data as its computation 

accounts for both baseline hormone levels as well as changes across time (Pruessner et al., 

2003). As detailed by Fekedulegn et al. (2007), AUCi is always negative when cortisol levels are 

declining and positive when cortisol levels are increasing. However, when patterns of cortisol 

change involve both increases and decreases, AUCi can be either positive or negative depending 

on the ratio of net increase to decrease. Moreover, AUCi can be problematic when attempting to 

observe nuances within patterns of reactivity (e.g., increases at one point, but then decreases at 

a subsequent point). Highly correlated patterns of responding can result in considerable 

differences in AUCi and different patterns of responding can result in identical values of AUCi. 

Study Strengths 

The current study was the first known to the author to attempt several advances in the 

field of neurocognitive and neuroendocrine functioning in T1DM. As reviewed in the introduction, 

the human literature regarding neuroendocrine stress reactivity within T1DM is extremely limited 

and marked by a lack of equitable comparison groups. The current study is the first to compare 

neuroendocrine and neurocognitive stress reactivity in T1DM to a matched control group. 

Secondly, the present study used a much more narrow age range of 18-30, allowing for better 

control of the effect of age on cortisol reactivity. In addition to allowing better control over the 

potential influence of age-related changes in the HPA-axis, the age range represented by the 

present study population is a developmental period of specific interest to the treatment of T1DM. 

Third, the current study is the first known study to examine differences in hormonal regulation 

between individuals with T1DM on and off insulin pump therapies and represents a unique 

contribution of the present study to the insulin pump therapy literature.  
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Beyond the strengths of the present study specific to T1DM, this study also introduced a 

methodological model for detecting subtle cognitive impairments that can be potentially applied to 

studying a wide range of diseases that result in cognitive impairments. The induction of a stressor 

may aid in illuminating cognitive deficits at earlier stages of disease processes when intervention 

is still possible (e.g., prior to neuronal death). One example of how such a model may be applied 

to other diseases beyond diabetes is in the field of Alzheimer’s disease research. As reviewed by 

Resia et al. (2011), there is a convergence of evidence that the pathophysiological basis of 

Alzheimer’s disease begins years to decades prior to symptom manifestation. As advocated by 

the National Institute of Aging, developing diagnostic guidelines for preclinical stages of 

Alzheimer’s disease will likely require advances in neuropsychological assessment. In addition to 

the development of more sensitive neuropsychological instruments, application of novel 

assessment methods (i.e., through a stress induction paradigm) may aid in the detection of 

preclinical cognitive impairments across a wide array of diseases with central nervous system 

effects.  

Future Directions 

The current study offers a number of directions for future research. Most importantly, 

these results highlight the potential role of insulin pumps in reducing the negative impact of T1DM 

on other outcomes beyond blood glucose control. Given the preliminary nature of the present 

findings due to study limitations, replication of these findings is essential. Research concerning 

neurocognitive functioning in T1DM should use targeted recruitment of individuals with T1DM 

who were diagnosed in early childhood (i.e., below the age of 7) to maximize power to detect 

stress-induced cognitive impairments potentially related to early onset. Given the rising popularity 

and accumulating evidence of the benefits of insulin pumps, studies should be careful to recruit 

an equal number of individuals with T1DM who are on and off insulin pumps. Moreover, a 

powerful direction to build from the current study would be to examine neuroendocrine and 

neurocognitive stress reactivity before and after initiation of insulin pump therapy within the same 

individuals. Findings from the current investigation also suggest that future studies utilizing non-

diabetic control groups should assess blood glucose through pain-free means (e.g., mid-infrared 
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spectroscopy measurement of skin glucose concentration, Pleitez et al., 2013) to eliminate the 

potential differential experience of stress between individuals with and without diabetes or better 

yet, use continuous blood glucose monitoring devices, which allow precise execution of 

monitoring intervals best representative of blood glucose changes (for a discussion of inclusion of 

continuous monitoring devices in behavioral research, see Wagner et al., 2012). Experimental 

evaluation of cortisol reactivity due to fingersticks alone and in combination with a psychological 

stressor in finger-stick naïve populations is an important line of research given that finger-stick 

blood spots remain the least expensive method to assess blood glucose.  

The present study used AUCi as a summary index to capture cortisol reactivity. The 

drawbacks of AUCi as detailed elsewhere (see Limitations section).  Future research not 

constrained by the same limitations of the current study (i.e., sample size and clustered data, 

variability in sampling periods due to adherence to blood glucose safety procedure), would benefit 

from pursuing alternative approaches in capturing cortisol reactivity.   Ideally, to best capture such 

pattern of responding, mixed regression models such as hierarchical linear models, growth curve 

models, and random coefficient models would be used (Blackwell, Mendes de Leon, & Miller, 

2006). Other alternatives detailed by Fekedulegn et al. (2007) include reactivity (difference 

between first and last sample), slope of the line through the baseline and last measurement 

(reactivity divided by time from baseline to last measurement), and slope of the regression line 

fitted through the raw cortisol data. An additional statistical method has been used by Morris and 

colleagues (Morris, Rao, & Garber, 2012; Morris, Rao, Wang, & Garber, 2013), who computed 

cortisol AUCi based on the second through last cortisol measurements, controlling for initial 

cortisol level.  

A strength of the present study was the use of a psychological stressor as a paradigm to 

assess subtle cognitive deficits. Future research should make use of this paradigm in assessment 

of subtle cognitive deficits across diseases with central nervous system effects. As previously 

noted, the National Institute on Aging has specifically advocated for methodological 

improvements in neurocognitive assessment of subtle cognitive changes associated with 

preclinical stages of Alzheimer’s disease (Reisa et al., 2011), which is only one example of how 
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this paradigm might be applied to other diseases. In applying such paradigms in the future, 

protocols should take place in the morning to maximize observation of stress-induced cognitive 

impairments (Het et al., 2005). Further, careful consideration of test battery selection to avoid 

floor and ceiling effects observed in the present study will improve the ability to detect such subtle 

changes.  

Conclusions and Clinical Implications 

The current research sought to examine neuroendocrine and neurocognitive stress 

reactivity in young adults with and without T1DM. It was hypothesized that compared to matched 

peers, young adults with T1DM would demonstrate 1) a dysregulated cortisol reaction and 2) 

greater neurocognitive decline in response to an interpersonal stressor. The results of this study 

provide mixed support for these hypotheses. Young adults with T1DM not using an insulin pump 

demonstrated an exaggerated cortisol response when compared to matched peers, suggesting 

that relatively poorly controlled T1DM may be associated with elevated cortisol reactivity. 

However, the hypothesis that young adults with T1DM would exhibit a greater cognitive decline in 

response to stress when compared to matched peers was not supported. Across most 

neurocognitive tasks (i.e., RVLT, SAAT, COWAT) no difference in performance pattern was 

observed between young adults with T1DM compared to matched peers. While different 

performance patterns were observed on the Trail Making Test and the Stroop task, these patterns 

were not in the hypothesized direction. Young adults with T1DM appeared to remain stable while 

matched non-diabetic peers appeared to deteriorate on the Trail Making Test, a test measuring 

attention and processing speed. Young adults with T1DM using an insulin pump demonstrated a 

benefit from repeated administration of the Stroop Task, a test of cognitive interference, whereas 

matched peers did not. 

The present findings add to an emerging literature documenting elevated cortisol reactivity in 

response to psychological stressors in individuals with T1DM. Previous research suggests that 

the magnitude of over-activation of the HPA-axis is associated with longer disease duration, 

which is concerning given the present study’s focus on young adults (suggesting that this 

exaggerated response may become more pronounced over time). Hyper-activation of the HPA-
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axis has been theorized to exacerbate medical complications associated with T1DM (e.g., 

retinopathy, cardiovascular complications; Roy et al., 1998) and potentially play an etiological role 

in diabetes-related depression (Brown, Varghese, & McEwen, 2004). While not assessed in the 

present study, chronically elevated tonal SNS activation coupled with sympathetic nervous 

system response desensitization may also influence the health and well-being of young adults 

with T1DM (see Cryer 2009, Parekh, 2009). Performances on a measure of attention and 

processing speed, which are sensitive to SNS activation, were flat in young adults with T1DM but 

declined within matched peers following the stressor, a pattern consistent with possible 

decreased cerebral noradrenergic sensitivity within young adults with T1DM. Dysregulated stress 

responses may undermine the calibration of adaptive coping strategies and engagement in 

healthy behaviors in young adults with T1DM, which would likely be more difficult to establish in 

later adulthood (see Del Giudice, Ellis, & Shirtcliff, 2011), although such theories were not 

hypothesized or assessed within the present study.  

In addition to highlighting areas of impaired functioning in T1DM, the current findings are 

suggestive that insulin pump therapy may potentially ameliorate such dysregulation. Several 

mechanisms by which insulin pumps may be protective are suggested by previous research and 

theory. However, the present study was not designed to evaluate these processes and their 

influences are thus speculative. Benefits of insulin pump use are likely due to both direct and 

indirect effects. Direct effects may include reduction in the frequency with which the HPA-axis is 

stimulated through better metabolic control as well as decreased daily hassles and diabetes-

related anxieties. Potential indirect effects include a theorized promotion of adaptive coping 

strategies and health behaviors, as well as benefits associated with a relatively more affluent 

socioeconomic status.  

The presence of T1DM within the context of insulin pump use was also related to a relative 

improvement compared to non-diabetic peers on a task reflective of inhibition of habitual 

responses in favor of achieving a goal. These findings are suggestive that insulin pump status 

may reflect processes similar to stress inoculation whereby experience of a moderate stressor 
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such as a chronic illness that does not overwhelm capacities and resources may provide 

protection against the deleterious effects of future stressors.  

Emerging adulthood (i.e., spanning ages 18-30, Arnett, 2000) is considered a transitional 

period of particular concern for patients with T1DM (Garvey et al., 2012) during which young 

adults with T1DM must cope with normative developmental challenges while simultaneously 

assuming relatively independent treatment responsibility and managing transitions to from 

pediatric to adult care. The current findings suggest that insulin pump therapies and/or 

components derived from such treatments (e.g., potential closer connection with health care 

services) may provide protection during this risky period of transition.  If replicated, these effects 

support greater third-party payment or subsidization of these devices, which are currently 

prohibitively expensive for many individuals. Collectively, the results of this study add to an 

emerging literature demonstrating an exaggerated cortisol response during psychological stress 

within T1DM, which may exacerbate challenges faced by young adults with T1DM during this 

transitional period of development. However, these findings also highlight that the diagnosis of 

T1DM does not equate to inevitable disability. 
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Table 1. 

Order of cognitive tests used in pre- and post-stressor cognitive battery 

Pre-stressor cognitive test battery Post-stressor cognitive test battery 

Sustained attention task RVLT long-delay and recognition 

COWAT Sustained attention task 

Stroop COWAT 

Trail Making Test Stroop 

RVLT- trials 1-5 through short delay recall Trail Making Test 
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Table 2 

Display of study design for one-way related measures ANOVA 

Cluster Cortisol AUCi Within Cluster Total 

 Diabetic Control 1 Control 2  

C1    ∑ C1 

C2    ∑ C2 

...    ... 

C21    ∑ C21 

Diabetic 
Membership 
Totals 

∑Diabetic ∑Control 1 ∑Control2  

Note. Cj refers to a cluster of cases containing one diabetic participant and two yoked control 

participants. Yoked controls were randomly assigned to position “Control 1” or position “Control 

2.” Study design for one-way related measures used for examining within-cluster equivalence on 

matching variables and cortisol outcomes. The planned contrast compares the effect of diabetic 

membership versus the average of the two control participants across levels of clusters (as 

reflected by the shading). 
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Table 4 

Descriptive statistics and t-tests on matching variables for the two matched control groups. 

 Control 1 (n = 23) 
M (SD) 

Control 2 (n = 23) 
M(SD) 

t p 

Gender (%male) 39.13% 39.13% 0.00 1.00 
Age 22.48 (3.87) 22.43 (3.67) -0.56 0.58 
Highest Education  3.74 (1.21) 3.43 (1.24) -0.22 0.83 
Maternal Education 3.96 (1.36) 3.65 (1.72) 0.38 0.71 
Paternal Education 4.43 (1.50) 4.13 (1.69) 1.19 0.24 
     
   χ

2
 p 

Ethnicity(%):    0.36 0.84 
Non-Hispanic White 91.3% 87.0%   
Hispanic or Latino/a 4.35% 8.70%   
Black 4.35% 4.35%   

Note. For each cluster of participants (e.g., diabetic, yoked control 1, and yoked control 2), the 

two control participants were randomly assigned to position of “Control 1” and “Control 2.” 
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Table 5 

Descriptive statistics and t-tests on matching variables between diabetic member and pooled 

controls. Statistics for the control cases are calculated across the 23 x 2 = 46 control cases; n= 

23 diabetic cases.  

 Diabetic  
(n = 23) 
M(SD) 

Control  
(n = 46) M(SD) 

t p 

Gender (%male) 39.13% 39.13% 0.00 1.00 
Age 23.00 (4.02) 22.46 (3.73) -0.56 0.58 
Highest Education  3.65 (1.11) 3.59 (1.22) -0.22 0.83 
Maternal Education 3.65 (1.61) 3.80 (1.54) 0.38 0.71 
Paternal Education 3.78 (1.76) 4.28 (1.59) 1.19 0.24 
     
   χ

2
 p 

Ethnicity(%):    4.20 0.24  
Non-Hispanic White 82.61% 89.13%   
Hispanic or Latino/a 4.35% 6.52%   
Black 4.35% 4.35%   
More than one race 8.69% 0.00%   
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Table 6 

Related-measures ANOVA among diabetic, yoked control 1 and yoked control 2 on continuous 

matching variables. 

Variable Diabetic  
(n=23)  

EMM(SE) 

Control 1  
(n = 23) 

EMM(SE) 

Control 2  
(n = 23) 

EMM(SE) 

F p ηp
2
 

Age (in years) 23.00 (0.84) 22.48 (0.81) 22.44 (0.76) 2.63 .08 .11 

Note. EMM = Estimated Marginal Mean, SE = Standard Error. For each cluster of participants 

(e.g., diabetic, yoked control 1, and yoked control 2), the two control participants were randomly 

assigned to position of “Control 1” and “Control 2.” 

  



92 

Table 7 

Planned contrast between the diabetic participant and average of the two yoked controls on 

continuous matching variable age. 

Variable Diabetic (n=23), 
EMM(SE) 

Control (n=46) 
EMM(SE) 

F  p ηp
2
 

Age 23.00 (.84) 22.46 (.79) 6.37 .02* .23 

Note. EMM = Estimated Marginal Mean, SE = Standard Error. Planned contrast from related 

measures ANOVA to compare difference between the diabetic and the average of participant’s 

two yoked controls. Differences between the two matched controls did not reach statistical 

significance and effect sizes were below. 
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Table 12 

Frequency information for potential cortisol binary covariates  

Variable N Yes (%) No (%) 

Current smoker    
Diabetic 21 4 (19.04%) 17 (80.95%) 
Control 42 4   (9.52%) 38 (90.48%) 

Oral contraception     
Diabetic 13 6 (46.15%) 7 (53.85%) 
Control 42 11 (42.31%) 15 (57.69%) 

Insulin Pump Use    
Diabetic 21 11 (52.38%) 10 (47.62%) 
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Figure 1. Study Protocol 
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Figure 2. Consort Flow Chart 
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Figure 3. Interaction between T1DM status and insulin pump status (i.e., clusters with and without 

diabetics on insulin pump) on cortisol AUCi. 
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Figure 4. Plots of average raw cortisol levels for each group (i.e., Diabetics with insulin pump, 

controls matched to diabetics with insulin pumps, diabetics without insulin pumps, controls 

matched to diabetics without insulin pump) across samples collected over the course of 

participation. 
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Figure 5. Interaction between T1DM status and performance on Trail Making Test from pre- to 

post-stressor task. Higher scores reflect longer time to complete task and poorer performance. 
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a) Significant interaction between T1DM diagnosis and change in performance across pre to 
post-stressor Stroop interference task within clusters in which the T1DM participant was on an 
insulin pump.  

 

b) non-significant interaction between T1DM diagnosis and change in performance across pre to 
post-stressor Stroop interference task within clusters in which the T1DM participant was not on an 
insulin pump.  

Figure 6. Significant interaction between insulin pump status, T1DM diagnosis and pre to post-
stressor changes on Stroop interference task. Higher scores (closer to zero) indicate lower 
interference and better performance. 
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APPENDIX A  

QUESTIONNAIRES 
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10-ITEM PANAS 

Question: Describe how you feel right now on a scale of 1 to 10, where 1 is “not at all,” 

and 10 is “extremely”:  

Items in order: 

 upset 

nervous 

interested 

hostile 

enthusiastic 

strong 

irritable 

excited 

ashamed 

determined 
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DEPRESSION AND ANXIETY STRESS SCALE (DASS) 

STRESS SUBSCALE 

ITEMS: 

I found it hard to wind down. 

I tended to over-react to situations. 

I felt that I was using a lot of nervous energy. 

I found myself getting agitated. 

I found it difficult to relax. 

I was intolerant of anything that kept me from getting on with what I was doing. 

I felt that I was rather touchy. 

 

SCALE: 

 

Value Description 

0 did not apply to me at all 

1 applied to me to some degree or some of the time 

2 applied to me to a considerable degree, or a good part of the time 

3 applied to me very much, or most of the time 
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APPENDIX B  

IRB APPROVAL DOCUMENTATION 
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